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Abstract. One-dimensional nanowires with strong spin–orbit coupling and

proximity-induced superconductivity are predicted to exhibit topological supercon-

ductivity with condensed-matter analogues to Majorana fermions. Here, the nonequi-

librium Green’s function approach with the generalized Kadanoff–Baym ansatz is em-

ployed to study the electron-correlation effects and their role in the topological su-

perconducting phase in and out of equilibrium. Electron-correlation effects are found

to affect the transient signatures regarding the zero-energy Majorana states, when the

superconducting nanowire is subjected to external perturbations such as magnetic-field

quenching, laser-pulse excitation, and coupling to biased normal-metal leads.
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Electron correlation effects in superconducting nanowires 2

1. Introduction

One-dimensional nanowires may host Majorana zero modes (MZMs) when subjected

to a suitable combination of spin–orbit interaction, proximity to an s-wave bulk

superconductor, and an external magnetic field [1,2]. The MZMs’ nonabelian statistics

and their exponential localization at the opposite ends of the nanowire are highly desired

properties for designing quantum computation with reduced decoherence issues due to

topological protection [3, 4]. Even though the theoretical prescription is fairly simple,

the experimental implementation for the observation of such topological signatures has

proven extremely challenging [5–8].

The Coulomb repulsion of electrons is present in any real material. While fairly

large amount of work has been devoted to, e.g., disorder effects and how they affect the

topological signatures [9–17] (to mention just a few), also the interaction effects have

received some attention [18–29]. In particular, for systems exhibiting the MZM, there

is no guarantee of instantly relaxing to a steady-state configuration once the system

has been driven out of equilibrium by applying an external perturbation [30–35]. To

the best of the author’s knowledge, only a few investigations of transient signatures of

the MZM in the interacting case have been presented before [36, 37], even in the clean

limit. This is especially timely and relevant as state-of-the-art time-resolved pump–

probe spectroscopy and transport measurements are pushing the temporal resolution

down to the (sub-)picosecond regime [38–43], where these effects could be observed in

real time.

It is the purpose of this paper to study the electron-correlation effects and their role

in the topological superconducting phase in and out of equilibrium. This investigation

is carried out by using the nonequilibrium Green’s function (NEGF) approach [44–47]

within the generalized Kadanoff–Baym ansatz (GKBA) [48, 49]. This approach allows

for addressing both equilibrium and nonequilibrium properties at equal footing, and also

for studying the interaction effects in a mathematically transparent and systematic way

by the inclusion of the many-body self-energy.

After the Introduction, the paper is organized as follows. In Section 2, the model

Hamiltonian for the superconducting nanowire is outlined. In Section 2, also the

NEGF equations used for inferring both equilibrium and nonequilibrium properties are

outlined. The equilibrium and nonequilibrium properties are studied in Sections 3 and 4,

respectively. Diverse signatures of the transient build-up of the MZM are observed,

depending on the electronic interaction, when the superconducting nanowire is subjected

to external perturbations. Finally, Section 5 is a summary of the work, together with

some prospects for future directions.

2. Model and method

The studied system is a one-dimensional nanowire in proximity to an s-wave bulk

superconductor, see Figure 1. The nanowire is assumed to feature a strong spin–
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Electron correlation effects in superconducting nanowires 3

Figure 1. Schematic of the studied model. A one-dimensional nanowire consisting of

N atomic sites (blue spheres) is in proximity to a bulk superconductor (grey slab) and

in presence of a magnetic field. The origin (O) of the real-space coordinate system

(x) is set in the middle of the nanowire. The green and blue lines below the nanowire

depict schematically the probability density of the two zero-energy states associated

with the MZM, which are exponentially localized at the opposite ends of the wire. The

nanowire is perturbed by an external laser pulse (red shaded area, see Section 4.2) and

by contacting to normal-metal leads (Section 4.3).

orbit interaction, for which suitable candidates include, e.g., InSb or InAs [50, 51]. In

addition, the nanowire is in the presence of an external magnetic field, which breaks

the time-reversal invariance. The nanowire is characterized by the second-quantization

Hamiltonian [19]

Ĥ =
∑
i

[
− J

2
(ĉ†i ĉi+1 + h.c.)− (µ− J)ĉ†i ĉi −

α

2
(iĉ†iσy ĉi+1 + h.c.) + VZĉ

†
iσz ĉi

+∆(ĉi↑ĉi↓ + h.c.) + Un̂i↑n̂i↓
]
, (1)

where the sum runs over the nanowire sites i ∈ [1, N ], J is the nearest-neighbor hopping

between the nanowire sites, µ is the (equilibrium) chemical potential, α is the strength

of the spin–orbit coupling, VZ is the Zeeman splitting (due to the external magnetic

field), ∆ is the induced superconducting pairing potential, and U is the on-site electron–

electron repulsion (Hubbard type). The fermionic operators, ĉ
(†)
iσ , annihilate (create)

electrons from (to) site i with spin orientation σ ∈ {↑, ↓}. The density operator in the

interaction term is defined as n̂iσ = ĉ†iσ ĉiσ. The number of particles in the nanowire is

determined by µ. In Equation (1), the spin indices are summed over when suppressed,

and σy = ( 0 −i
i 0 ), σz = ( 1 0

0 −1 ) are the Pauli matrices. The external perturbations shown

in Figure 1 for the laser pulse and the leads are discussed later, in Sections 4.2 and 4.3,

respectively.

Dynamical properties of the system described by Equation (1) are extracted by the

one-particle Green’s function [45]

Giσ,jσ′(z, z′) = −i〈Tγ[ĉiσ(z)ĉ†jσ′(z
′)]〉, (2)

which is an expectation value, with respect to the grand-canonical ensemble, of contour-

ordered fermionic operators. These operators are represented in the Heisenberg picture,

and the ensemble average can be expressed as a trace over the density matrix. The

complex time variables z, z′ run over the Keldysh contour γ ≡ (t0, t)⊕(t, t0)⊕(t0, t0−iβ),
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Electron correlation effects in superconducting nanowires 4

where t0 marks the beginning of an out-of-equilibrium process, t is the observation time,

and β is the inverse temperature. Expressed in the one-particle site basis of the nanowire,

the Green’s function matrix satisfies the equation of motion [45]

[i∂z − h(z)]G(z, z′) = δ(z, z′) +

∫
γ

dz̄Σ(z, z̄)G(z̄, z′), (3)

where h is the one-particle part of the Hamiltonian in Equation (1) and Σ is the

the self-energy kernel. References [44–47] provide a thorough overview of the NEGF

methodology.

In practice, the equation of motion (3) is transformed into real-time Kadanoff–

Baym equations by using the Langreth rules: Both the Green’s function and the self-

energy have components lesser (<), greater (>), retarded (R), advanced (A), left (d),
right (e), and Matsubara (M) depending on their time coordinates on the contour [45].

Concentrating on the equal-time limit on the real-time branch, z = t−, z′ = t+, leads to

d

dt
ρ(t) + i[hHF(t), ρ(t)] = −[I(t) + h.c.], (4)

which is the equation of motion for the reduced one-particle density matrix ρ(t) ≡
−iG<(t, t). In Equation (4), hHF(t) ≡ h(t) + ΣHF(t) is the (time-local) Hartree–Fock

(HF) Hamiltonian with

(ΣHF)i↓(↑),j↓(↑)(t) = δijUρi↑(↓),i↑(↓)(t) (5)

for the Hubbard interaction [47]. The time-nonlocal part in Equation (4) is included in

the collision integral

I(t) =

∫ t

t0

dt̄[Σ>
c (t, t̄)G<(t̄, t)−Σ<

c (t, t̄)G>(t̄, t)]− i

∫ β

0

dτ̄Σec(t, τ̄)Gd(τ̄ , t), (6)

where Σc is the correlation self-energy. Here, this is approximated at the second-order

Born (2B) level,

(Σc)
≷
i↓(↑),j↓(↑)(t, t

′) = U2G≷
i↓(↑),j↓(↑)(t, t

′)G≶
j↑(↓),i↑(↓)(t

′, t)G≷
i↑(↓),j↑(↓)(t, t

′), (7)

for the Hubbard interaction [47]. For a general Fermi–Hubbard model, the 2B

approximation has been shown to be very accurate in the regime U . J , even compared

to numerically exact methods [52,53]. It is worth noting that, because of the factor 1/2

in front of the hopping term in Equation (1), an interaction strength U in this modeling

corresponds to 2U in the standard Fermi–Hubbard model literature. Therefore, in our

setting, let us focus on the parameter regime U/J . 0.5. For larger interaction strengths,

more accurate results could be achieved by, e.g., the T -matrix approximation [54].

A closed equation for the one-particle density matrix in Equation (4) is obtained

by using a reconstruction formula for the lesser/greater Green’s functions by the GKBA

G≶(t, t′) ≈ i[GR(t, t′)G≶(t′, t′)−G≶(t, t)GA(t, t′)], (8)
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Electron correlation effects in superconducting nanowires 5

and the propagators are approximated by their HF form

GR/A(t, t′) ≈ ∓iθ[±(t− t′)]T e−i
∫ t
t′ dt̄hHF(t̄), (9)

where T is the chronological time ordering. We shall discard the imaginary-time

collision integral in Equation (6) for now. This is a typical approach with the GKBA

due to the lack of a GKBA-like expression for the mixed components Ge,d. The

contribution therefore is obtained by the adiabatic preparation of the initial state,

starting from the uncorrelated (or HF) system and turning on the many-body interaction

in the 2B self-energy [55, 56]. Since electronic interactions can modify the chemical

potential, the occupation, and the density, a self-consistent preparation of the correlated

initial state is important. Equation (4) is then solved numerically by a time-stepping

procedure [45,46,57,58].

3. Equilibrium properties

The nanowire hosts the MZM with, e.g., the following set of parameters: J = 1, α = 0.5,

VZ = 0.25, ∆ = 0.1, µ = 0, and when the nanowire is of length N ≥ 50 [33]. The hopping

value therefore fixes the unit system. As the parameter space for this model is fairly

large, let us concentrate on this representative point in the MZM regime and fix the

length N = 50 unless stated otherwise. It is worth mentioning that the size of the

one-particle basis for the Green’s function is 4N = 200 due to the spin⊗particle–hole

representation in Equation (1).

The equilibrium properties can be studied by evolving the system in time in the

absence of external perturbations. In this context, it is useful to evaluate the momentum-

and energy-resolved spectral function

A(k, ω) =
i

N

∑
ij

eik(xi−xj)
∫

dτeiωτ [G>
ij(T +τ/2, T−τ/2)−G<

ij(T +τ/2, T−τ/2)], (10)

where xi are the real-space lattice coordinates along the nanowire, τ ≡ t − t′ is the

relative-time coordinate, and T ≡ (t + t′)/2 is the center-of-time coordinate. The real-

space coordinate system is fixed with a lattice spacing of one, and the origin is set in

the middle of the two center-most sites in the nanowire (see Figure 1). Tracing out the

k-resolved part gives the standard spectral function

A(ω) = i

∫
dτeiωτTr[G>(T + τ/2, T − τ/2)−G<(T + τ/2, T − τ/2)]. (11)

When visualizing the spectral functions, it is useful to shift the frequency axis about

the band center, ωc, which is set between the two centermost eigenvalues of the HF

Hamiltonian. It is worth noting that ωc depends on the interaction strength U , and

it is not necessarily equal to µ which is simply a model parameter in this description

[cf. Equation (1)]. Since µ fixes the filling of the system, ωc is also not necessarily

in the middle of the highest occupied molecular orbital and the lowest unoccupied
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Figure 2. Momentum and energy-resolved spectral function (color map; arbitrary

units, where darker is higher) for the (a-b) noninteracting, U = 0.0, and (c-d)

interacting, U = 0.5, nanowire. The cutouts on the right-hand side of the color maps

show the k-integrated spectral function [Equation (11)] with the vertical axes aligned

with the color map. Analytically resolved energy bands for the infinite, noninteracting

nanowire are superimposed with solid lines in panels (a-b) [Equation (12)]. The shaded

areas in the cutouts correspond to the states lying outside of the superconducting gap

|ω − ωc| > ∆. The fixed parameters are J = 1, α = 0.5, VZ = 0.25, ∆ = 0.1.

molecular orbital. Moreover, the electron–electron repulsion essentially gives rise to

a charging energy and thus effectively renormalizes µ [19]. This is taken into account

self-consistently by the adiabatic preparation of the initial state.

3.1. Energy-band structure

While the description in Equations (10) and (11) will lack spectral information beyond

the HF form in Equation (9), as the GKBA satisfies the condition, GR−GA = G>−G<,

they are still useful for visualizing the energy-band structure.

In Figure 2, the momentum- and energy-resolved spectral function [Equation (10)]

for the nanowire is shown. This is evaluated by performing a time propagation up to

t = 250J−1, and then taking T at half the total propagation time. Then, the relative-

time coordinate in Equation (10) spans the maximal range diagonally in the (t, t′) plane.

The total bandwidth extends up to roughly±2J but let us concentrate on the low-energy

states around the superconducting gap. In the noninteracting case, U = 0, the energy

bands for an infinitely long nanowire can be obtained analytically as the k-dependent
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Electron correlation effects in superconducting nanowires 7

eigenvalues of [45]

hk = a+ be−ik + b†eik, (12)

where the on-site and nearest-neighbor contributions [33],

a =


J − µ+ VZ −∆ 0 0

−∆ µ− J + VZ 0 0

0 0 J − µ− VZ ∆

0 0 ∆ µ− J − VZ

 , (13)

b =


−J/2 0 −α/2 0

0 J/2 0 −α/2
α/2 0 −J/2 0

0 α/2 0 J/2

 , (14)

respectively, are expressed in the spin⊗particle–hole representation. The bands organize

in the way of a standard topological superconductor. As the spin–orbit coupling breaks

the spin-degeneracy, there are two sets of parabolas around k = 0; these are further

duplicated for particles and holes at positive and negative energies, respectively. The

Zeeman splitting opens a gap at k = 0, which makes it possible for the superconducting

pairing potential to open another gap at k 6= 0, inducing a p-wave like pairing as long

as [1, 2]

V 2
Z > µ2 +∆2. (15)

In this situation, the MZMs emerge in the case of a finite wire, as can be seen by the

spectral peak at zero energy in Figure 2(a). In Figure 2(b), the situation corresponds to

the boundary of Equation (15). At this point, the characterization changes qualitatively

as the gap closes. For higher values of µ, the gap would be opened again and the system

would transform into an ordinary superconductor, without a peak at zero energy.

The MZMs are robust against the electron–electron interaction as the zero-energy

peak remains for U > 0, see Figure 2(c). This is in accordance with density matrix

renormalization group (DMRG) data of Reference [19] where it was found that repulsive

interactions enhance the effective Zeeman splitting while suppressing the pairing

potential. Interestingly, we see for the elevated chemical potential in Figure 2(d) that

the zero-energy state still pertains for the interacting system whereas the noninteracting

system would already undergo a phase transition. While the topological phase is

evidently protected against interactions, the parameter phase space may be extended

beyond Equation (15). This shall be addressed next.

3.2. Phase diagram

Let us look at the spectrum more thoroughly. The position of the lowest-energy spectral

peak is extracted for a wide range of parameters VZ and µ while keeping the other

parameters fixed, and the equilibrium phase diagram is shown in Figure 3. Here, the

topological phase is attributed to the spectral peak position at zero energy. Again,
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Figure 3. Equilibrium phase diagram for (a) noninteracting, U = 0.0, and (b)

interacting, U = 0.5, nanowire obtained by the low-energy spectral peak position (color

map) for varying parameters VZ (vertical axes) and µ (horizontal axes). The dashed

line in panel (a) shows the noninteracting phase boundary according to Equation (15).

The crosses and the arrow in panel (a) indicate the quench calculation in Section 4.1.

The fixed parameters are J = 1, α = 0.5, ∆ = 0.1.

in the noninteracting case the peak position adheres to the standard phase boundary

according to Equation (15), see Figure 3(a).

As already seen in Figure 2, the topological regime is extended to a larger chemical

potential window on the right-hand side of Figure 3(b). Enhancing the effective Zeeman

splitting becomes more apparent when the filling (µ) is increased, and thus, the many-

body interactions become more significant. On the other hand, lower filling (µ) on the

left-hand side of Figure 3(b) retains the noninteracting phase boundary as there are

fewer interparticle interactions. Not only the effective Zeeman splitting is enhanced but

also the effective pairing strength is suppressed due to interactions. The ‘minimum’ of

the phase boundary is lowered below VZ = ∆ while it is also shifted to an elevated value

for the chemical potential µ > 0. This confirms the robustness of the MZM against

interactions and is in good agreement with the DMRG data of Reference [19]. It is also

possible to estimate the relative increase in the size of the topological region due to

interactions by simply checking how much of the phase diagram is covered by “zeros”,

i.e., those spectral peaks associated with the topological phase. While this calculation

depends in some sense of the investigated parameter space, going from U = 0.0 to

U = 0.5 leads to an estimate of 39% relative increase of the topological region in this

parameter range.

4. Out-of-equilibrium dynamics

As the NEGF+GKBA approach with the 2B self-energy has now been shown to capture

the essential many-body effects of the interacting nanowire, let us then investigate how

the interacting nanowire and the MZM are affected by external perturbations. Again,

Equation (4) is numerically evolved in time, and now an external perturbation is applied,

Page 8 of 21AUTHOR SUBMITTED MANUSCRIPT - NJP-113586.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Electron correlation effects in superconducting nanowires 9

50 100 150 200 250 300 350 400

−0.4

−0.2

0.0

0.2

0.4
ω
−
ω
c

(a) U = 0.0

50 100 150 200 250 300 350 400

T

−0.4

−0.2

0.0

0.2

0.4

ω
−
ω
c

(b) U = 0.5

0

500

1000

1500

2000

2500

3000

A
(T
,ω

)

0

500

1000

1500

2000

2500

3000

A
(T
,ω

)

Figure 4. Time-dependent nonequilibrium spectral function (color map) for (a)

noninteracting, U = 0.0, and (b) interacting, U = 0.5, nanowire. The dashed vertical

lines at T = 100 indicate the instant of time when the system is quenched by suddenly

increasing VZ = 0→ 0.25. The fixed parameters are J = 1, α = 0.5, ∆ = 0.1, µ = 0.

driving the nanowire out of equilibrium.

4.1. Sudden quench of magnetic field

Figure 4 presents a calculation of the nonequilibrium spectral function, evaluated at

different instances of the center-of-time coordinate T [see Equation (11)]. Also in this

calculation, the center-of-time-coordinate is taken at T = t/2, where t is the present

instant in the time evolution. The beginning corresponds to the nanowire being in the

ordinary superconducting phase (VZ = 0, ∆ = 0.1), and then the magnetic field is

suddenly quenched (VZ = 0.25) at t = 200 to drive the system towards the topological

superconducting phase. The quench process is indicated by the arrow and crosses in

Figure 3(a).

Before applying the quench, the system is in the ordinary superconducting phase.

Compared to the noninteracting case [Figure 4(a)], the spectral peaks around the

boundary of the superconducting gap at |ω − ωc| ≈ ∆ = 0.1 appear more bundled

together for the interacting system [Figure 4(b)]. At first, this seems counterintuitive

as interactions typically broaden the spectral peaks. However, in our calculation, the

spectral broadening is described at the HF level [cf. Equation (9)], so the effect here is

Page 9 of 21 AUTHOR SUBMITTED MANUSCRIPT - NJP-113586.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Electron correlation effects in superconducting nanowires 10

more about multiple states being crammed together as the interaction is renormalizing

the spectral peak positions [cf. Figure 2(a,c)].

The quench is a very strong out-of-equilibrium condition, and the system behavior

is crucially altered. In the noninteracting case [Figure 4(a)], a spectral peak at zero

energy starts forming after the quench. This spectral peak can, again, be attributed to

the MZM. Interestingly, it takes from T = 100 to T = 150 (a duration of 50J−1) until

the peak starts forming, which corresponds to the time for the information about the

quench to cross the nanowire of length N = 50. This build-up time of the zero-energy

peak and its dependence on the nanowire length is crucial, since it corresponds to a

pair state localized at the opposite ends of the nanowire. The amplitude of the zero-

energy peak first oscillates and then saturates to a nonzero value as is consistent with

the stationary state in Figure 2(a). With respect to the energy axis, the oscillations of

the spectral weight inside the superconducting gap |ω − ωc| < 0.1, until the stationary

state is reached, could be associated with memory effects from the initial state in the

ordinary superconducting phase. It is worth noting that these transient oscillations are

different than stationary-state Majorana oscillations with respect to, e.g., Zeeman-field

variation [25].

While the interacting case [Figure 4(b)] retains the zero-energy peak in the

stationary state, the initial transient oscillations are modified. The oscillation periods

appear to be slightly longer compared to the noninteracting case. Also, the oscillations of

the spectral weight inside the superconducting gap, related to the memory of the initial

state in the ordinary superconducting phase, appear to last longer in the interacting

case. This is understandable as interparticle interaction introduces scattering events

within the nanowire, thus obstructing the signal for reaching the nanowire ends, and

the formation of the zero-energy peak and the loss of memory of the initial state take

a longer time. This can be related to a similar effect of electron traversal times in

nanojunctions being affected by disorder [59]. The frequency content of the transient

oscillations is analyzed in more detail in Section 4.2. At around T = 250, after multiple

reflections of the wavepackets, higher energy side bands start to take shape. These

correspond to the upper (unoccupied) and lower (occupied) bands in Figure 2 split

by the Zeeman energy. As this Zeeman splitting is effectively enhanced due to the

interactions, the side peaks emerge further away from the main spectral peaks, when

compared to the noninteracting case.

4.2. Laser-pulse excitation and transient spectroscopy

Let us then keep the nanowire characterized by the Hamiltonian in Equation (1) with

fixed parameters, and add an external laser-pulse excitation

Ĥext(t) =
∑
i∈I

E(t)ĉ†i ĉi, (16)

where the pulse shape is taken as a gaussian, E(t) = E0 sin(Ω(t − tc))e−4.6(t−tc)2/t2c of

amplitude E0, frequency Ω, and centering tc = 2πnc/Ω with nc being the number of
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Electron correlation effects in superconducting nanowires 11

optical cycles. In all calculations, nc = 3 is used. In Equation (16), I represents the

set of atomic positions along the nanowire being irradiated by the pulse (see Figure 1).

Like in Equation (1), also here, the spin indices are summed over (suppressed), i.e., the

pulse excitation is not spin selective.

To investigate how charge is (re-)distributed along the nanowire after the pulse

excitation, let us look at the (field-induced) time-dependent dipole moment [46]

d(t) =
∑
i

xiρii(t), (17)

where xi are, again, the real-space lattice coordinates along the nanowire, and ρii is the

diagonal element of the density matrix, i.e., the site occupation number. The Fourier

transform of the dipole moment, d(ω) =
∫

dte−iωtd(t), gives us access to the spectral

properties of the nanowire: The dipole spectrum d(ω) is peaked at the excitation energies

of dipole-allowed transitions [46].

Let us now investigate the time-dependent response of the nanowire in the

topological regime (J = 1, α = 0.5, VZ = 0.25, ∆ = 0.1, µ = 0) to a laser-pulse

excitation. The field-induced, time-dependent dipole moment and the corresponding

dipole spectra are shown in Figure 5. The laser-pulse excitation starts at t = 100

and it is focused on the left-most atomic site of the nanowire [cf. Equation (16)].

Irradiating different or larger portions of the nanowire has been checked to not alter the

frequency content of the induced dynamics qualitatively. As the important mechanisms

for the characterization of the MZM take place at low energies (in-gap states . ∆),

we focus on low-frequency and low-amplitude pulses Ω ∈ {0.1, 0.2}, E0 ∈ {0.1, 0.2} in

Equation (16). Applying such low-frequency pulses necessitates fairly long propagation

times, for which the GKBA approach is beneficial. For a better frequency resolution, the

Fourier transforms are calculated from an extended temporal window up to t = 1500,

and Blackman-window filtering is used [60].

The dipole moment oscillation amplitudes are considerably suppressed by the

interactions, cf. Figure 5(a-b). After the laser-pulse excitation, the charge redistribution

along the nanowire is naturally affected by interparticle scatterings, and the back-and-

forth charge sloshing is significantly damped. In the noninteracting case (U = 0.0),

the low-frequency pulse (Ω = 0.1) excites only the first transitions from the zero-

energy Majorana state to the first states around the superconducting gap edge, see

Figure 5(c). This corresponds to the dominant oscillation seen in Figure 5(a). Some

lower-frequency beating can also be observed although it is comparably weak. Higher-

amplitude pulse only enhances the spectral peak heights but the peak locations remain.

This picture is modified in the interacting case (U = 0.5) as the double peak around

ω = 0.1 is spread over a range of smaller frequencies, see Figure 5(d). The main

oscillatory character observed in Figure 5(a) is indeed suppressed in Figure 5(b), and

there is no clear dominant transition as the interacting nanowire seems to contain more

dipole-allowed transitions at lower energies. When the pulse frequency is increased to

Ω = 0.2, more transitions around the superconducting gap edge start to take place for
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Figure 5. Field-induced, time-dependent dipole moment for (a) noninteracting,

U = 0.0, and (b) interacting, U = 0.5, nanowire in the topological superconducting

phase, and the corresponding dipole spectrum (c-d) calculated as the absolute value of

the Fourier transform of the time-dependent signals. The legend in panel (a) applies

to all panels. The nanowire parameters are fixed J = 1, α = 0.5, VZ = 0.25, ∆ = 0.1,

µ = 0.

the noninteracting case. These are visible as the low-frequency peaks in Figure 5(c). In

addition, also higher-energy transitions are present. Interestingly, the interactions again

modify this picture as the low-frequency peaks are bundled together around ω = 0.05

and the higher-frequency ones between ω ∈ [0.15, 0.20]. In the interacting case, the

higher-frequency driving now excites a few dominant transitions. This indicates a

strong mixing of the spectral peaks of the interacting band structure (cf. Figure 2)

and the dipole matrix elements at these energies. While these low-energy excitations

are accessible by low-frequency driving, it is likely that a higher-frequency laser-pulse

excitation would bring about high-order harmonics of the basic driving frequency and

the corresponding dipole-allowed transitions [61–63].

In order to gain further insight about the frequency content, in Figure 6, we consider

for comparison the nanowire in the ordinary superconducting phase (J = 1, α = 0.5,

VZ = 0, ∆ = 0.1, µ = 0). Now, in the noninteracting case (U = 0.0), the dipole

response to the low-frequency pulses (Ω = 0.1) is considerably weaker. As there

are no zero-energy states, the dipole-allowed transitions within this frequency window

are suppressed compared to the higher-frequency pulse, see Figure 6(c). The higher-

frequency pulses (Ω = 0.2) correspond to an energy span over the supeconducting gap,

so the transition around ω = 0.20 evidently becomes the dominant one, which is observed
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Figure 6. Same as Figure 5 but for the nanowire in the ordinary superconducting

phase. The nanowire parameters are fixed J = 1, α = 0.5, VZ = 0, ∆ = 0.1, µ = 0.

as the main oscillation in Figure 6(a). This can be understood as resonant driving with

a strong mixing between the first excitation energy and the frequency of the pulse.

Also here, some comparably weak lower-frequency beating can be observed. Again,

the situation changes in the interacting case, see Figure 6(b,d). With interactions,

the main oscillatory character for the ordinary superconducting phase is suppressed

in amplitude, and it consists of a low-frequency peak around ω = 0.05 and some

comparatively weak higher-frequency ones around ω = 0.20. In contrast to the

topological superconducting phase, the dipole response in the ordinary superconducting

phase appears more straightforward. There is a clear dominant transition implying

a collection of dipole-allowed transitions between states around the superconducting

gap edge, which could be understood by the lack of in-gap states and the associated

intricacies. Instead, in Figure 5(d), a broader range of dipole-allowed transitions at lower

frequencies is clearly visible. It is possible that driving with even lower frequencies would

single out the dipole transitions related to the zero-energy states more clearly. However,

to reliably access the corresponding dipole spectrum, significantly longer time evolutions

would be required, which are still computationally inaccessible.

4.3. Coupling to biased normal-metal leads

Ultimately, let us consider a quantum-transport setup with the nanowire being contacted

to two normal-metal leads, cf. Figure 1. For this description, the Hamiltonian in
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Electron correlation effects in superconducting nanowires 14

Equation (1) is supplemented with two additional terms for the leads and coupling [64]

Ĥlead =
∑
kλ

εkλĉ
†
kλĉkλ, (18)

Ĥcoupl =
∑
ikλ

(Jikλĉ
†
i ĉkλ + h.c.), (19)

respectively, where εkλ is the energy dispersion in lead λ and Jikλ are the coupling

matrix elements between the i-th site in the nanowire and the k-th basis function in

lead λ. Again, like in Equation (1), the spin indices are suppressed and summed over.

However, it would be possible to generalize this description to the spin-dependent case,

such as for ferromagnetic leads. In accordance with the contour-time description in

Section 2, the lead energy levels are shifted for times t ≥ t0 on the horizontal branch by

εkλ → εkλ + Vλ(t) to model a bias-voltage profile. The leads are noninteracting which

allows for a nonperturbative treatment via the embedding self-energy

Σ
R/A
emb,λ(t, t

′) = e−iψλ(t,t′)
∫

dω

2π
e−iω(t−t′)[Λλ(ω)∓ iΓλ(ω)/2], (20)

Σ≶
emb,λ(t, t

′) = ±ie−iψλ(t,t′)
∫

dω

2π
f [±(ω − µ)]Γλ(ω)e−iω(t−t′), (21)

where ψλ(t, t
′) =

∫ t
t′ dt̄Vλ(t̄) is the bias-voltage phase factor and f(x) = 1/(eβx + 1) is

the Fermi function at inverse temperature β. The level-shift and level-width matrices

are completely specified by the lead and coupling Hamiltonians

(Λλ)ij(ω) =
∑
k

JikλP
(

1

ω − εkλ

)
Jkλj, (22)

(Γλ)ij(ω) = 2π
∑
k

Jikλδ(ω − εkλ)Jkλj, (23)

where P denotes the principal value. In order to connect the retarded embedding

self-energy with the retarded propagators in Equation (9), the wide-band limit

approximation (WBLA) is considered. In this approximation, the level-width matrix is

taken as frequency independent: Γλ(ω) ≈ Γλ. Then, the level-shift matrix vanishes due

to Kramers–Kronig relations, and the propagators are approximated by

GR/A(t, t′) ≈ ∓iθ[±(t− t′)]T e−i
∫ t
t′ dt̄[hHF(t̄)∓iΓ/2], (24)

where Γ ≡
∑

λ Γλ. It is worth noticing, that the lesser/greater embedding self-energies

in Equation (21) enter explicitly in the collision integral in Equation (6) for which

there is no requirement of WBLA. The WBLA is used only for the approximation of

the propagators, and this approximation becomes better when Equations (22) and (23)

have weak dependence on frequency around the biased Fermi level of the leads.

Finally, after solving Equation (4) with the addition of embedding self-energies in

the collision integral and using Equation (8) together with Equation (24), the time-

dependent current from lead λ to the nanowire is calculated by the Meir–Wingreen
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Figure 7. Transport properties of the nanowire contacted to normal-metal leads.

The tunneling rate is fixed such that Γλ = 0.01 and the zero-temperature limit is

considered. (a) Differential conductance obtained from the stationary current–voltage

characteristics, where the bias voltage is applied symmetrically VL = −VR ≡ V . (b)

Transient behavior of the current for two bias voltage values. For clarity, an upward

shift of 0.0015 is applied for the V = 0.05 case. The legend in panel (a) applies to both

panels. The nanowire parameters are fixed J = 1, α = 0.5, VZ = 0.25, ∆ = 0.1, µ = 0.

formula [65]

Iλ(t) = 4ReTr

∫ t

t0

dt̄[Σ>
emb,λ(t, t̄)G

<(t̄, t)−Σ<
emb,λ(t, t̄)G

>(t̄, t)]. (25)

As shown in Figure 1, the nanowire is connected to left (L) and right (R) leads,

i.e., λ ∈ {L,R}. The coupling strength from the first and N -th sites of the nanowire

to the leads is chosen such that the tunneling rate Γλ = 0.01. The bias-voltage

profile is taken as a sudden shift of the lead energy levels, it is applied symmetrically,

VL = −VR ≡ V , and the zero-temperature limit is considered. Stationary net current

through the nanowire I ≡ (IL + IR)/2 is obtained from Equation (25) at the long-

time limit for various bias voltages. The bias-voltage window, V ∈ [−0.125, 0.125],

is chosen relatively low for the description of the zero-energy Majorana states (in-gap

states . ∆). In this regime, the WBLA is a very good approximation due to the

weak coupling and small bias voltage [66–68]. The stationary current is, in turn, used

for the calculation of the differential conductance dI/dV shown in Figure 7(a). The

differential conductance is peaked at the resonant energy levels of the nanowire within

the bias-voltage window. In particular, the zero-bias peak associated with the MZM,

is present for both noninteracting and interacting cases. This is consistent with the

equilibrium spectral functions in Figure 2(a,c). It is worth mentioning that for the

ordinary superconducting phase (with ∆ = 0.1), the current signal would be mostly

zero due to the lack of in-gap states within this small bias window [33].

The current calculation also includes a comparison between the description of

electronic interactions at the HF and 2B level. The interactions smear out the states

around the gap edge so that transmission can be obtained with smaller bias voltages than
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Electron correlation effects in superconducting nanowires 16

in the noninteracting case. Qualitatively, HF and 2B give very similar results with each

other; the zero-bias peak due to the MZM is also broadened similarly. In principle, this

effect is not limited by the spectral broadening of the GKBA [cf. Equation (24)], because

the current–voltage characteristics is obtained from the lesser/greater Green’s function

[cf. Equation (25)], which can contain more information than the retarded/advanced

ones [69]. However, as the interaction strength considered here is fairly small, no

significant interaction-induced broadening of the differential conductance is observed,

and it is mostly specified by the tunneling rate Γ .

It is worth pointing out that the long-time limit of Equation (25) could be evaluated

even without the proper relaxation of the initial state due to the loss of memory at the

stationary state [70]. However, for a proper description of the transient behavior, the

preparation of the initial state is crucial. Not only the adiabatic switching of the many-

body self-energy but also the embedding self-energy contributes to the relaxation of the

initial state. For a relatively small tunneling rate, Γλ = 0.01, it takes a fairly long

relaxation time before the bias voltage can be applied. Recently, it has been shown

that the information about the initial contact and correlation can be included in the

out-of-equilibrium simulation as a separate calculation [71, 72]. This amounts to the

inclusion of the imaginary-time convolution in Equation (6) for both the correlation

and embedding self-energies. In the present context, this is important both for the sake

of efficient computation and for a partition-free treatment [70,73].

The transient current through the nanowire is shown in Figure 7(b) for two bias

voltages V ∈ {0.02, 0.05} within the superconducting gap ∆ = 0.1. Therefore, only

the in-gap MZMs are possible transport channels. The transient current grows rapidly

and then starts oscillating. The relaxation towards the stationary current is relatively

slow due to the weak coupling to the leads. In the noninteracting case, the oscillation

frequencies correspond exactly to the energy difference between the biased Fermi level

of the lead and the zero-energy state of the nanowire, cf. Reference [33]. More precisely,

for the bias voltage V = 0.05 the oscillation period is roughly 125 which translates

to a frequency of 2π/125 ≈ 0.05. Accordingly, a slower oscillation is observed when

V = 0.02.

Electronic interactions, again, affect the transient behavior as the amplitude of

the transient oscillations is damped due to the interparticle scattering events taking

place throughout the nanowire. Also here, HF and 2B give qualitatively similar results

with each other, and only the oscillation amplitudes are slightly altered. The absolute

value of the current can therefore be altered by the approximation of the many-body

self-energy but, clearly, it does not affect the differential conductance [cf. Figure 7(a)].

While the electronic interactions have already been seen to sustain the zero-energy

Majorana state [cf. Figure 2], the initial transient is affected by the interactions. After

the initial transient has settled (t & 200), the main oscillation, again, corresponds

to the same transition from the biased Fermi level of the leads to the MZM in the

nanowire. A proper Fourier analysis of the frequency spectrum, similar to Section 4.2,

would require significantly longer time evolutions, which presently are still out of reach
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Electron correlation effects in superconducting nanowires 17

computationally. However, it can be generally argued that the transient oscillations

of the current between the lead and the nanowire are qualitatively different than the

overall charge (or plasma) oscillations within the nanowire, cf. Section 4.2.

5. Conclusions

Electron-correlation effects in superconducting nanowires were studied in and out of

equilibrium. The NEGF approach within the GKBA allowed for a simultaneous study

of the correlation, embedding and transient effects. Particular emphasis was put on

the role of electronic interactions in the topological superconducting phase and the

associated MZMs.

In equilibrium, the MZMs were found to be protected against electronic interactions,

and the equilibrium phase diagram to be extended to a larger chemical-potential window.

This finding is in line with the DMRG data of Reference [19], thus consolidating the

applicability of the NEGF+GKBA approach for these systems.

Out of equilibrium, the transient build-up of the MZM was found to be affected

by the electronic interactions. This was related to interparticle scattering events,

taking place within the nanowire, which are obstructing the electronic signal. The

transient charge oscillations excited by a laser pulse were also found to be damped

due to interactions. The dipole response in the topological superconducting phase with

electronic interactions was found to host a broad range of transitions at low energies,

whereas the dipole response in the ordinary superconducting phase with electronic

interactions was found to consist of a single dominant transition due to the lack of

in-gap states. On the other hand, time-resolved transport signatures were found to be

qualitatively less affected by the interactions because, in that case, the main transient

oscillations resulted from transitions between the biased Fermi level of the leads and the

zero-energy states within the nanowire [33]. In general, the transient oscillations carry

important information about the underlying out-of-equilibrium scattering mechanisms,

which might not be available from the stationary-state data.

While the experimental verification of the MZMs in these systems is yet to be

presented, it is useful to estimate limits for the required temporal resolution for time-

resolved transport measurements with the help of the simulations presented here. As

the unit system was fixed by the hopping value J = 1, which determines, e.g., the

material’s bandwidth and is typically on the electron-volt scale, the transient current

oscillations lasting for hundreds of J−1 would correspond to the picosecond time scale.

While this resolution is at limits of what is routinely achievable, recent development

in ultrafast transport measurements with on-chip femtosecond technology has allowed

a sub-picosecond temporal resolution to detect the Hall current in graphene [38]. In

addition, the possibility of finding trivial zero-energy states for the systems considered

here due to, e.g., smooth confining potentials around the superconducting island [7]

poses another great challenge. It would be interesting to investigate, particularly in

the transient regime, whether these states remain robust against electronic interactions,
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and if the time-resolved signatures could be uniquely attributed to the topological zero-

energy states.

The computational effort for the resolution of the out-of-equilibrium simulations

is not to be underestimated. Due to the relatively large spin⊗particle–hole basis

of the system studied here, the efficient construction of the many-body self-energies

is important [74]. While the time-propagation via the GKBA approach considered

here scales as the number of time steps squared (compared to the cubic scaling of

the full Kadanoff–Baym equations), it may still render longer time evolutions fairly

inaccessible. Recent progress in this issue has allowed for an equivalent but more efficient

representation of the GKBA time evolution with only a linear scaling in the number of

time steps [75–78]. It would be very useful to extend these procedures to open quantum

systems in order to study, e.g., time-dependent radiation in molecular junctions out-of-

equilibrium [79,80]. This shall be addressed in a forthcoming paper.
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[58] Tuovinen R, Golež D, Schüler M, Werner P, Eckstein M and Sentef M A 2019 Phys. Status Solidi

B 256 1800469

[59] Ridley M, Sentef M A and Tuovinen R 2019 Entropy 21 737

[60] Blackman R B and Tukey J W 1959 Particular Pairs of Windows: In The Measurement of Power

Spectra, From the Point of View of Communications Engineering (New York: Dover)
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