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a b s t r a c t

Context: Artificial intelligence (AI) has made its way into everyday activities, particularly through new
techniques such as machine learning (ML). These techniques are implementable with little domain
knowledge. This, combined with the difficulty of testing AI systems with traditional methods, has
made system trustworthiness a pressing issue.
Objective: This paper studies the methods used to validate practical AI systems reported in the
literature. Our goal is to classify and describe the methods that are used in realistic settings to ensure
the dependability of AI systems.
Method: A systematic literature review resulted in 90 papers. Systems presented in the papers were
analysed based on their domain, task, complexity, and applied validation methods.
Results: The validation methods were synthesized into a taxonomy consisting of trial, simulation,
model-centred validation, and expert opinion. Failure monitors, safety channels, redundancy, voting,
and input and output restrictions are methods used to continuously validate the systems after
deployment.
Conclusions: Our results clarify existing strategies applied to validation. They form a basis for the
synthesization, assessment, and refinement of AI system validation in research and guidelines for
validating individual systems in practice. While various validation strategies have all been relatively
widely applied, only few studies report on continuous validation.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Artificial intelligence (AI) has taken society like a storm. Au-
onomous systems provide us with recommendations of what to
atch, where to travel, and where to eat. If newspapers are to be
elieved, even self-driving cars are just around the corner. With
uch promises, we must ask how can these systems be trusted?
his question has been acknowledged as a major software en-
ineering challenge in the research literature and industry, for
oth its importance and difficulty (Gao et al., 2019; Kumeno,
019). The inherent continuous adaptability and unpredictability
f intelligence not only promise opportunities but also create
roblems unforeseen in traditional software. When considering
oftware quality in use, we must pay attention to effectiveness,
fficiency, satisfaction, freedom of risk, and context coverage (ISO,
011). Thus, a self-driving car is supposed to work as intended in a
rossroads it has never seen, with other cars it has never seen, and
ith a pothole it has never seen. The question has become even
ore important with the emergence of easily implementable AI
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libraries, such as TensorFlow,1 and PyTorch2 that provide efficient
tools for use even to those who have no experience with or
knowledge of the practical implications of the technologies.

In particular, machine learning (ML) – currently a trendy AI
paradigm – has spurred roadmaps (Breck et al., 2017) and re-
search (see e.g. (Zhang et al., 2020)) on how learning systems
should be and are developed while ensuring their correct func-
tionality. However, earlier research is focused primarily on ML
as such and does not address AI systems as a whole where,
for example, an ML model is just one component. Furthermore,
the main focus has been on the correctness and robustness of
the ML models themselves, even though the importance of the
correctness and robustness of the entire system or application
is both acknowledged by the aforementioned research and is of
paramount concern for software engineering overall.

This paper aims to gather a holistic view on the validation
of practical AI systems and applications. By practical, we mean
a complete system that performs a purposeful function in a
realistic context. Henceforth, AI systems and applications are
referred to shortly as systems (ISO, 2011). Our focus on practical

1 https://www.tensorflow.org/.
2 https://pytorch.org/.
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systems is motivated by earlier research pointing out the lack
of such comprehensive work in current research (Zhang et al.,
2020). A large share of software engineering research has also
been observed to be relevant mainly for the research community
and less so for practitioners (Sjoberg et al., 2007; Ivarsson and
Gorschek, 2011). Thus, focusing on practical AI systems could help
o both improve the state of research in general and to allow
ore practical research to take the leap into actual practice. For
larity, we are not limited to ML but consider any system that
an be characterized as containing AI. Respectively, we are not
imited to any application domain or task. On the one hand, we
re interested in research concerning practical AI systems that are
alidated using one or more methods, and, on the other hand,
esearch on validation method proposals that are applied to some
ractical system. Thus, solution proposals, ideas, and theoretical
ettings – even though often valuable for the research community
are out of the scope of this paper. We understand validation
in contrast to verification – as a method of ensuring that a

ystem works as intended and designed, fulfilling its objectives
n the context (Geraci et al., 1991). This meaning has special
ndications with practical AI systems, as they are intended to
unction with little to no human intervention or even to tune their
ehaviour autonomously in response to the environment (Vas-
ev and Hinchey, 2014). Moreover, measures may be needed
o ensure that the system keeps fulfilling its objectives well
fter deployment. Thus, in addition to the initial validation of
he system, we are also interested in these additional measures,
enceforth referred to as continuous validation. Finally, any non-
atural entity that autonomously monitors its environment and
hanges its behaviour accordingly, or is built with ML techniques,
ay be considered artificially intelligent. However, as the focus
f this paper is on practical systems, we are only interested in
ulti-component systems containing some AI or simpler smart
ystems, which have clear implications of their usability as is. To
void confusion, such simple systems will henceforth be referred
o as ‘‘model-centred’’. This means that, for example, autonomous
obots and surveillance systems with autonomous access control
re in the scope of this paper, whereas whether or not artificial
eural networks can be trained to recognize a dog in a stock
hoto out of context is not.
This study is conducted as a Systematic Literature Review (SLR)

ecause SLRs are an efficient means to acquire knowledge about
he current stage of research (Kitchenham and Charters, 2007).
LR as a research method helps to reach beyond the present
nowledge on certain domains and venues of individual re-
earchers. A review based solely on the present body of knowl-
dge may not cover all aspects and possible applications of the
ubject at hand, especially in the case of such a broad one as AI.
hus, conducting systematic searches in multiple databases and
electing papers based on inclusion–exclusion criteria expands
he scope of the review from what the researcher is already
amiliar with to a potentially much wider body of knowledge—if
he search string formation is successful. SLR can be parallelled
o surveys, as both aim to gather evidence from a set of sources.
owever, these sources differ in respect to research type (SLR
r surveys), being either reported research or empirical settings,
espectively. SLR was chosen from the two because the existing
esearch – which would provide a good background for the survey
had not been synthesized. We used four databases (Scopus,
eb of Science, ACM Digital Library, and IEEE Xplorer) in this

LR to gather the papers using automatic search. The papers were
irst selected based on their title, keywords, and abstract. Closer
election, sorting, and analyses were conducted after the initial
election.
This paper is organized as follows. Section 2 describes the

ackground and related work. The research questions and meth-
ds are described in Sections 3 and 4, respectively. Section 5
2

provides an overview of the final set of papers, including an
analysis of their rigour and relevance. Section 6 summarizes the
results for the first research question. Section 7 summarizes the
results for the second research question. Sections 8 and 9 discuss
our results and their validity, respectively. Section 10 concludes
the paper.

2. Previous work: AI systems and validation

2.1. Background

There are numerous definitions for AI. IEEE-USA defines AI
in IEEE-USA (2017) as follows: ‘‘Artificial Intelligence (AI) is the
theory and development of computer systems that are able to
perform tasks that normally require human intelligence such as
visual perception, speech recognition, learning, decision-making,
and natural language processing’’. On the other hand, in their re-
port for Stanford University, Stone et al. (2016) use the following:
‘‘Artificial Intelligence is that activity devoted to making machines
intelligent, and intelligence is that quality that enables an entity
to function appropriately and with foresight in its environment’’.
Based on these, we understand artificially intelligent systems as
systems that adapt to, have extensive knowledge of, or learn from
their environment or application domain.

The conceptual basis of validation, as applied in this paper,
stems from the IEEE standard (Geraci et al., 1991) that defines
validation as ‘‘an activity that ensures that an end product stake-
holder’s true needs and expectations are met’’. In other words,
a validation process is for assessing whether or not the final
product works as it is supposed to, or whether or not ‘‘the right
product was built ’’. As such, validation is a part of the verification
& validation (V&V) process of a system. However, verification and
other parts of the V&V process besides validation are not in the
scope of this paper.

The problems in validation begin to stack up when attention
is turned to special characteristics of AI systems compared to
traditional ones. According to Vassev & Hinchey (Vassev and
Hinchey, 2014), if an AI system should function with very few
interruptions by humans in its own environment, its require-
ments should be changed accordingly to include, for example,
what objectives the system should perform autonomously, what
knowledge it should have, what it should monitor, what it should
be aware of, how robust the system is to errors, how adaptable
it should be, how dynamic it should be in its adaptations at run-
time, how it should resolve unanticipated disruptions, and which
parts of the system can be repurposed. Specifying and meeting
such highly complex requirements is difficult, as is validating the
AI system based on these requirements and showing that the
requirements are actually met. Of course, not every AI system
is supposed to adapt its behaviour radically after deployment,
but surely e.g. a self-configuring system should not only find the
initial best configuration but also the most suitable configuration
for the changing environment. Additionally, it is a well-known
fact that a once descriptive ML model may become outdated
as the world around it changes (known as concept drift in the
literature) (Tsymbal, 2004). Thus, validating AI systems is not only
about what to validate, but also when to validate.

It is important to note that what we mean by validation is
ot the same as ML model validation: ML model validation often
eans testing the generalization ability of a model (Wang and
heng, 2013). We do not rule out that ML model validation could
e used by some as a validation method for the entire system,
ut it is not what our study is strictly about. Therefore, it is not
eaningful to discuss the validation of AI systems without using
t least nearly realistic systems and contexts.
Finally, we also differentiate something that we call continu-

us validation, which emerges from the above-mentioned special
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characteristics of AI systems. Continuous validation observes a
deployed system and is applied to ensure that the AI system also
works in situations unseen during development or in training
data, essentially testing that the AI system operates as intended,
which is the definition of validation. There is, however, no estab-
lished conceptualization for continuous validation. For instance,
Zhang et al. (2020) address continuous validation as a part of
online testing, whereas Breck et al. (2017) use the term ‘‘moni-
toring testing’’. Continuous validation differs somewhat from the
traditional way of seeing validation as something usually applied
to the end product (Geraci et al., 1991). Many AI systems continue
to change their behaviour well after deployment or – as discussed
above – are difficult to validate to a satisfactory degree before
deployment, thus challenging the idea of an unchangeable end
product to a degree. Considering this, post-deployment methods
to ensure desired functionality and requirements are met, such as
monitoring, fault-tolerance measures, and other safety or quality
assurance, are reported as continuous validation in this work.

2.2. Related work

As it turns out, validation has been shown to be problematic
or AI-based systems. Kumeno’s literature review about software
ngineering challenges for ML systems (Kumeno, 2019) reports
hat validation was one of the major difficulties reported in the
iterature related to ML systems. This is parallelled by Gao et al.
2019), who argue that the difficulty of setting the required level
f assurance and criteria are amongst the major challenges in
nsuring the quality of software utilizing AI. These challenges
ay arise from many qualities quintessential to AI systems, one
f them being the so-called Oracle Problem: if the system is
upposed to function autonomously for a long time, adapt, or
hange its behaviour accordingly to its environment over time,
t may be difficult or even impossible to know what the desired
utcome will be beforehand. While consistency of behaviour is
sually viewed as a desired quality in traditional software, this
ay not be the case with AI. Another source of challenges in-
ludes the sheer scale and diversity of the intended environments
nd contexts of use. For example, according to Kalra and Paddock
2016), to statistically significantly prove in a real environment
hat a fully autonomous car is less prone to fatal accidents than
uman drivers are would require driving 275 million test miles
approximately 443 million kilometres), and Koopman and Wag-
er (2016) present the same kind of infeasibility regarding time.
enghi et al. (2019) also argue that even simulations of cyber–
hysical systems can suffer from the enormous state space of
I systems if not applied purposefully. Consequently, validation
hallenges have been well observed in the earlier research, and
ur aim in this paper is to study the validation methods that
esolve or alleviate these challenges.

Gao et al. (2019) also argue that there is a deficiency in
upporting tools for validating AI systems. Readily available tools
re not non-existent. For example, Simulink3 provides tools for
imulating cyber–physical systems, and Menghi et al. (2019) have
eveloped SOCRaTEs to automatically generate test oracles for
imulink simulations. The Dronology initiative by Cleland-Huang
t al. (2018) is another example, which provides an environment
or both simulations and physical trials of small unmanned aerial
ehicles (UAVs or ‘‘drones’’). However, Gao et al. do not argue that
here are no tools but rather that suitable tools are difficult to
ind. This could suggest that either the tools and frameworks are
till rare or focused on certain domains, or that they are still very
ecent, scattered, and poorly available. While it is also important
o have tools, we focus on how to validate, i.e. the methods for

3 https://www.mathworks.com/products/simulink.html.
3

validation that the tools can then support, and do not cover the
topic of assisting tools.

The problematic nature of validating AI systems, along with
the difficulty of finding suitable solutions, calls out for research
on the validation of artificially intelligent systems. In addition
to the mentioned tools, reports (Zhang et al., 2020) and guide-
lines (Breck et al., 2017) have spawned to find answers to these
problems in the realm of ML. However, Zhang et al. (2020) liter-
ature review on testing ML software focuses solely on machine
learning and mainly on what they call offline testing. This es-
sentially means ML model validation and less the validation of
the complete AI system. If we return to the example of a self-
configuring system, the ML model-centred approach is question-
able: in Nair et al. (2017), Nair et al. show that even a less accurate
learning model outperforms finer learning models when the val-
idation metrics are chosen more appropriately. Thus, validating
just the ML model may be inadequate, and the question of what
is validated should be emphasized. Zhang et al. acknowledge the
importance of validating entire systems – which they call ‘‘online
testing’’ – and are supported in this by the guideline of Breck
et al. (2017). Zhang et al. also say that more knowledge on online
testing should be attained by the research community. This leaves
room and desire for a literature review on the validation methods
of practical systems, which is the focus of our paper.

3. Research questions

In this work, we seek answers to the following two research
questions:

• RQ1: What kinds of practical AI systems and their character-
istics are presented and validated in the research literature?

• RQ2: What kinds of validation methods are used with prac-
tical AI systems in the research literature?

The goal of RQ1 is to understand the realm of current research.
Knowing what kinds of systems are handled in the research liter-
ature helps to understand not only what is being covered but also
where research gaps may exist. This helps to see and understand
the focus, limitations, and shortcomings of the current research.
Moreover, a way can be paved for studies focusing on the less
covered areas of AI systems.

RQ2 aims to synthesize the scattered information concerning
the validation methods, including continuous validation. Knowing
what validation methods others have considered effective, what
validation methods exist in the first place, and how they are
implemented can make a difference when building a new system
utilizing AI: skill and awareness of appropriate measures are keys
for safe and reliable systems.

4. Research method

The research method of this work follows the SLR method
(Kitchenham and Charters, 2007). The literature search was con-
ducted with four databases (Scopus, Web of Science, ACM Digital
Library, and IEEE Xplore) and using semantically the same search
string. After the search, three selection stages were applied to
reduce the initial set of 1164 papers. The remaining 90 final
papers were analysed. The structure of the applied search and
selection process is shown in Fig. 1.

4.1. Search strategy

The first phase (‘‘Search’’) of the search and selection process
(the full process in Fig. 1) was to gather the initial set of papers
by searching scientific databases. The search strategy was revised,
and the following steps were taken when conducting the search:

https://www.mathworks.com/products/simulink.html
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Fig. 1. Search and selection process.

1. Identify general terms used for systems that utilize ML or
other types of AI

2. Identify synonyms and alternative forms for terms used for
systems that utilize AI

3. Identify prominent domains that utilize AI in the research
literature

4. Identify terms associated with or supporting the term val-
idation as described above

5. Identify terms that imply usability or industrial relevance
of systems described in the research literature

6. Form a search string based on the identified terms and
discussions

7. If the database allows, use wildcards in the search terms
when reasonable

8. Exclude search hits already found in previous databases
4

Automatic search was chosen over manual search and snow-
balling (Wohlin, 2014) due to the wide range of domains in which
AI can be of use. Manual search may lead to missing important
venues utilizing the techniques in, e.g., medicine or agriculture.
This is especially noteworthy considering the chosen focus on
practical systems over the techniques themselves: realistic, ap-
plied AI systems may not be presented in venues focusing on,
e.g., computer science but in those focusing on the application
domain of the said system. For example, a system looking for
tumours in CT scans is very likely to be presented in a venue
focusing on medicine.

The final search string consisted of three parts: a part for
capturing AI; a part to filter out articles that do not emphasize the
validation of the system it is presenting; and a part to emphasize
articles with the intended use of the system it is presenting. The
AI part of the search string consisted of the term ‘‘artificial intel-
ligence’’, its abbreviation ‘‘AI’’, a set of terms commonly used for
artificially intelligent systems, and a few recent and prominent
domains of AI, all connected through logical OR. Inclusion of these
domains is not intended to narrow down but rather to widen
the scope of the review: according to our earlier experience and
acquired knowledge while working on steps 1–3 of the search,
these domains are prominent and of interest for this research, but
the papers related to them often lack explicit mentions of more
general AI terms. We decided it was better to include these few
specific terms explicitly, rather than risk not having any of the
papers included in the review. These terms may have implications
on the results, which are discussed further as a threat to validity
in Section 9. The validation part of the search string required
the term ‘‘validation’’ and additional terms to emphasize that
validation is meant as a part of the V&V process, as described
in Section 2. This was necessary because, as also discussed in
Section 2, validation has a different, established meaning in the
ML domain, i.e. ML model validation. Thus, combining ‘‘machine
learning’’ or ‘‘ML’’ with ‘‘validation’’ without additional restric-
tions resulted in a very large number of false-positive search hits.
The final part was to narrow down the scope to practical systems
with intended use or industrial relevance, and it thus consists
of terms deemed to reliably imply such qualities in the research
literature.

The three parts were connected through the logical AND, and
the terms in each part are connected through the logical OR,
esulting in the following final search string:

(AI OR artificial intelligence OR machine learning OR au-
tonomous system OR self-adaptive system OR self-learning sys-
tem OR intelligent system OR robot OR self-driving vehicle OR
autonomous vehicle OR self-driving car OR autonomous car)

ND

validation AND (verification OR testing OR v-model))

ND

user OR customer OR industrial OR industry)

The searches were targeted to the title, keywords, and abstract
f the articles. However, ACM Digital Library yielded a large num-
er of hits that did not match the search string when searching
n these fields. Therefore, in the said database, the search was
arrowed down to only include hits in the keywords.
A total of 1164 unique papers were found using the search

tring. The databases were searched sequentially, starting with
copus and continuing to Web of Science, then to ACM Digital
ibrary, and finally to IEEE Xplore. This way, 619 papers were
ound in Scopus, 200 in Web of Science, 57 in ACM, and 551 in
EEE on November 11th 2019, February 10th 2020, March 11th
020, and March 18th 2020, respectively. The initial set of 1164
apers was reached by removing duplicates.
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4.2. Paper selection

The paper selection was performed in three stages (Fig. 1) by
he first author, who discussed a few unclear papers with the
ther authors. At the first stage, all 1164 preliminary papers from
he search were assessed and included using the inclusion criteria
ound below. At the second stage, the remaining 372 papers were
ssessed and excluded using the exclusion criteria. At the third
tage, the remaining 142 papers were assessed based on their
elevance, resulting in the final set of 90 papers.

.2.1. The first stage
The first stage of selection yielded 372 papers. The selection

as based on the title, abstract, and keywords of the papers, and
he inclusion criteria below, both of which a paper had to fulfil
o be included.

IC1 The paper introduces/discusses a method for validating an
AI system or the paper applies a method for validating an
AI system and

IC2 to count as a system, the presence of at least two compo-
nents must be declared or implied or direct usability of the
said system must be declared or clearly implied.

A consequence of the second criterion (IC2) is that the focus
s on papers that acknowledge AI as part of a larger system or as
n application as such. For example, the methods of ML model
alidation or the model’s ability to learn are not included in this
tudy unless the paper describes other components or if the paper
ives a strong indication that the proposed model is being used by
omeone as is, even if the main focus of the paper is on the AI or
L model. As using a model in a context implies the existence of
t least a user interface and raises the model from a technique to a
roduct, this satisfies the definition of a system as a ‘‘combination
f interacting elements organized to achieve one or more stated
urposes’’ (ISO, 2011).

.2.2. The second stage
The second stage of the selection resulted in 142 papers. The

ssessment was based on the full texts of the papers. The papers
ere not included but excluded from the previously narrowed
own set. A paper was excluded if at least one of the following
xclusion criteria was met:

EC1 The full paper was not available in English
EC2 The full paper was not acquirable with reasonable effort
EC3 The paper turned out to not validate the system it described
EC4 The paper turned out to not describe a system or a validation

method as described above
EC5 The described system turned out to not have properties

recognizable as AI
EC6 The paper was less than six pages long
EC7 The paper was published in a workshop, a symposium, or

another minor forum

EC1 was enforced by our language skills and the prominent
tatus of English language in SE research. As to EC2, a paper was
xcluded if it could not be found or accessed in full through
easures considered a normal information search. It is hard

o assess the effect such papers could have had, as we simply
ould not get our hands on them, but only a very small number
f papers were excluded based on this criterion. EC3—EC5 are
erived directly from our research topic. EC6 and EC7 rose from
he fact that, according to Kitchenham et al. (2010), workshop
apers, opinion papers, and other grey literature often do not have
uch to add to the SLRs when included. Kitchenham et al. do
dvise to be cautious when excluding papers solely based on the
5

publication venue and suggest to first ponder what kind of infor-
mation is of value to the SLR. However, we are more interested
in detailed descriptions of the systems, settings, and validation
methods, which, in our experience, are the characteristics that
grey literature papers often lack due to the preliminary nature of
the results and to page limitations. Also, the preliminary results
of workshop and symposium papers are often later expanded to
full conference and journal papers. Thus, we decided to focus
our effort on papers with presumed higher detailed descriptions,
accepting the risk of missing a few relevant grey literature papers.

4.2.3. The third stage
The final set of 90 papers was achieved in the third stage of the

selection. The selection was made based on the relevance assess-
ment of the papers, so that only papers of high enough relevance
were included in the final set. We measure relevance in a paper
by the degree of realism in the research settings (see Ivarsson and
Gorschek (2011)). The selection was made because our research
topic demands a certain level of relevance from the included
papers, as we are interested in practical, utilizable systems with
intended usability. We decided to label the papers based on
the six-label classification of Alves et al. (2010) and to outright
exclude the lower tier papers. Only papers labelled L4, L5, or L6
were included in this study. The papers were labelled by applying
the following criteria for each label:

L1 No evidence
L2 The system, its functionality or setup is heavily simplified

considering its context, the applicability of the system is
not easily recognizable even if it can be recognized as a
system, or the evaluation environment is valid but arbitrary
considering the context

L3 The evidence of the paper is not based on empirical eval-
uation presented in the paper but on a domain expert’s
preferences of how things should be. For example, general
guidelines with no actual evidence presented in the paper

L4 The system, its functionality or setup is not overly simplified
and the evaluation environment of the study is realistic, yet
not real considering the context

L5 The evaluation environment of the study is real but the
study is conducted by researchers and the system is not
actively used in the industry, even if it is being developed
for industrial use

L6 The described system is actively used by someone in the
industry

For example, if a robot with obstacle avoidance functionality
was tested in just any room with a single box in it, the paper
would fall in the L2 category. If the same robot had been tested
with a thought-out obstacle course with appropriate structure,
it could have fallen in the L4 category. Furthermore, if it had
been tested at an industrial facility, it could have been labelled
as L5. On the other hand, if it was not only tested in an industrial
facility, but also explicitly put into actual, practical use for which
it was designed for at that facility, it could be labelled as L6.

4.3. Information extraction

Data from each paper were extracted using the data extrac-
tion form (Table 1) and stored on a spreadsheet. Likewise as in
the search and selection process, the first author performed the
analysis and discussed unclear papers with other authors.

Items F1–F3 in data extraction cover basic bibliographic in-
formation. The values for F4–F9 were extracted and generalized
from the papers without prior values. That is, the papers were
analysed bottom-up by generalizing and categorizing from the
data in a manner similar to grounded theory analysis presented
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Table 1
Data extraction form.
Abbreviation Field

F1 Author(s)
F2 Title
F3 Year
F4 Domain
F5 Task
F6 System complexity
F7 System malfunction impact
F8 Validation method
F9 Continuous validation
F10 Relevance score
F11 Rigour score
F12 Machine learning

in Strauss and Corbin (1998). F4–F7 are characteristics of the AI
system under validation in the papers. If a paper did not describe
an intelligent system but rather a tool or method to validate
such systems, it was classified based on what kind of system was
validated with it.

The domain of a system (F4) is the broad idea of its appli-
ability. For example, the domain of an autonomous car or a
ystem related to it would be ‘‘car’’, whereas an autonomous
adiation shield for projectional radiography would be labelled as
‘medical’’.

The task of the system (F5) is the actual objective it has. For
xample, the task of a robot searching for and fixing cracks in the
ull of a ship would be ‘‘maintenance’’ and the task of a service
obot for the elderly would be ‘‘care’’. Tasks are primarily con-
idered as tasks of the full system. Exceptions to this are papers
hat focus on describing and evaluating a specific subsystem of a
arger system, which has a different task of its own. For example,
he objective of an autonomous car is to drive people from one
lace to another but the objective of the navigation system is
o find the most suitable road to the desired destination. Thus,
n autonomous navigation system can be seen as a complete
ubsystem of its own in the context of the car. If a paper described
nd evaluated the navigation system instead or in the context of
full car, the task would be considered as ‘‘navigation’’ instead of

‘transportation’’, albeit its domain would still be ‘‘car’’.
The papers were categorized according to the complexity of

he system they presented (F6), which resulted in three groups:
model-centred system, system, and multi-component. A model-

entred system is a simple, yet complete system, which essen-
ially consists of an AI model and a user interface. A system
onsists of at least two components (not including user-interface)
orking together. For example, a surveillance system consisting
f a camera and an AI model attempting to autonomously rec-
gnize unlawful activity would be considered a system per its
omplexity. A multi-component system is a complex system with
ultiple components and possibly multiple AI models. For exam-
le, an autonomous car would be considered a multi-component
ystem. If a system’s complexity was not clear or not inferential
ithin reason, the system was labelled as ‘‘unspecified’’.
The malfunction impact (F7) of the systems was also consid-

red. Systems were categorized based on their worst yet probable
utcome in the event of a malfunction. For example, an au-
onomous drone for crop ripeness detection could fall out of the
ky and kill someone, but that cannot be considered as a probable
orst outcome. Instead, such a drone’s malfunction impact cat-
gory would be ‘‘economic’’, as the probable malfunction would
e the misclassification of the crop that would result in the loss
f income.
The methods used to validate the system (F8) were extracted.

ased on the methods used, validation methods were categorized
y comparing the similarities and differences of the validation
6

methods each paper presented. These categories were further
split into subcategories based on the minor variance between the
papers in the same category, resulting in a taxonomy. The names
of the categories and subcategories were either directly from or
inspired by the papers or the validation methods described. In
addition, the described methods were analysed qualitatively in
greater detail and provided with a descriptive account. For each
method, at least one high-quality paper is used as a more detailed
exemplar, with others supplementing it. These more detailed
descriptions can be found in Section 7.2.

If a paper describes a method for continuous validation of
the system during its life cycle (F9), that too, was analysed.
Respectively, as for F8, a categorization, a qualitative analysis, and
an exemplar are then presented. These more detailed descriptions
can be found in Section 7.3.

To assess the quality of the final papers, we adopted the
rigour & relevance framework (Ivarsson and Gorschek, 2011) that
represents two orthogonal dimensions for the quality assessment
of a paper. Relevance in the framework refers to the realism of the
environment used in the study along with the applied research
method. Rather than adopting the relevance measures from the
framework directly, we used the labels of relevance already anal-
ysed during paper selection for the relevance score (F10) (see
Section 4.2.3) because the labels represent realism similarly as
in the framework. We omitted the explicit analysis of research
methods for relevance, although the research methods roughly
match the applied levels. It is noteworthy that, as relevance was
already applied during the selection of the final papers, only the
papers assessed to levels 4–6 are included in the set of final
papers. Rigour (F11) refers to the precision or exactness of the
research method used and reported, and it was assessed as a
sum according to a rubric of three concerns (context descrip-
tion, design description, and validity discussion of the study) and
three scores in each concern adapted from Ivarsson and Gorschek
(2011) as follows.

Rigour scores:
Context description

• 1: To the degree where a reader can understand and com-
pare it to another context.

• .5: Briefly, but not to the degree to which a reader can
understand and compare it to another context.

• 0: No description.

Study design description

• 1: To the degree where a reader can understand, e.g., the
variables measured, the control used, the treatments, the
selection/sampling used etc.

• .5: Briefly, but not in detail.
• 0: No description.

Study validity discussion

• 1: Validity is discussed in detail through several threats
or mitigation strategies, or at least through two different
validity types in a clear manner.

• .5: The validity of the study is mentioned once or twice but
not described in detail

• 0: No discussion.

We assessed whether or not the system utilized ML (F12). If
ML or an ML technique was explicitly mentioned, or if the system
was interpreted as using ML, the paper was classified as ‘yes’. If
the paper mentioned other types of intelligence, or performed
tasks not typical for ML, the paper was classified as ‘no’. Papers
not belonging to either of these categories were classified as
‘plausible’.



L. Myllyaho, M. Raatikainen, T. Männistö et al. The Journal of Systems & Software 181 (2021) 111050

5

t
a

E
T
2
t
t
b
c
o
w

o
F
t
a
2
r
c
p

a
a
i
b
c

h
b
t

Fig. 2. Publication years of papers. 2020 excluded due to incomplete data.

Fig. 3. The number of papers at the different levels of rigour and relevance.

. Overview of the final papers

The final papers are listed in Appendix in Table 10. Results of
he data extraction are also provided in the Appendix in Tables 11
nd 12.
Of the 90 final papers, 50 were published by IEEE, 15 by

lsevier, 11 by Springer, 5 by ACM, and 9 by other publishers.
he newest papers were published in 2020 and the oldest in
001, the median being 2017.5. There is a clear rising trend
owards recent years (Fig. 2), with 2017, 2018, and 2019 having
he most published articles (10, 19, and 23, respectively), as can
e expected considering the rising interest in the field. The search
overed only the beginning of year 2020. In 2012 and from there
nward, a notable rise is seen in the number of papers compared
ith preceding years.
On the rigour score (F11), 71 (79%) papers received a score

f 1.5 or 2 out of 3 (see Table 12 in the Appendix, as well as
ig. 3). This means that most papers either scored high on one or
wo dimensions (presented in Section 4.3) and poorly on one, or
dequately on all. Only seven papers got a rigour score of at least
.5. Most papers reported well their context and design, whereas
esult validity was rarely discussed. 62 papers scored a 1 for their
ontext and 55 scored a 1 for their design. In stark contrast, 76
apers do not discuss validity at all.
Relevance was assessed with a relevance level, which was also

pplied as an inclusion criteria (see Table 12 in the Appendix,
s well as Fig. 3). Thus, only papers at level 4 or higher were
ncluded. The majority, i.e., 72.2% of the papers were assessed as
eing at level 4, 24.4% at level 5, and 3.3% at level 6, which is
onsidered the industrial level.
The highest scoring papers of each validation method are

ighlighted in their respective subsections in Sections 7.2 and 7.3
elow. As we already used the relevance score for paper selec-
ion, and only papers with a high enough relevance score were
7

Table 2
Domains in the final papers.
Domain Number of

papers
Percentage

Agriculture 4 4.4%
Aviation 2 2.2%
Car 10 11.1%
Commercial 13 14.4%
Gaming 1 1.1%
Government 1 1.1%
Industrial 12 13.3%
Medical 7 7.8%
Robotics 21 23.3%
Safety 3 3.3%
Smart environment 4 4.4%
Software testing 4 4.4%
Unspecified 3 3.3%
Wearable AI 5 5.6%

included, we consider all papers in the final set to be relevant.
Quality comparison and synthesis are therefore primarily based
on rigour scores.

6. Characteristics of validated AI systems (RQ1)

This section characterizes the validated AI systems by rep-
resenting quantitative statistics extracted from the papers. The
statistics represent results for answering RQ1.

A significant observation is that most presented systems ap-
plied some form of ML (F12). Seventy-nine papers either explic-
itly concerned ML or were reasonably interpretable as such. Six
systems were deemed to clearly not be concerned with ML. The
final five were considered plausible. The non-ML papers were not
excluded from the results, as the search method was not designed
to only include ML papers. However, the reader should be aware
of this while going through the results.

Robotics was the most frequent domain, with 21 papers. The
second most common domain was systems with some commer-
cial use – e.g. user experience evaluation tools [S88] or storage
time estimators [S21] – with 13 papers. The third most common
domain was industrial – e.g. a system to assess tunnel con-
struction progress [S38] or a metallic structure defect detection
tool [S10] – systems with 12 papers, followed by the car, with
10 papers. A total of 13 domains were recognized in the final
papers, excluding unspecified domains. Domains reported with
their frequencies are presented in Table 2.

Recognition & classification was by far the most common task
reported by the papers, with 31 such systems. It was followed
by transportation, with nine papers. Systems with other tasks
than these two were presented fewer than seven times each.
Eighteen tasks were recognized, excluding unspecified ones. The
remaining, less frequent tasks are presented in Table 3.

The papers represented somewhat evenly the different levels
of system complexity. A full system was described in 36 papers.
A more complex multi-component system was described in 31
papers. A simple model-centred system was described in 21
papers, and 2 papers were categorized as ‘unspecified’.

Considering system malfunction impacts, a total of eight cate-
gories were recognized, excluding ‘unspecified’. Economic dam-
age was the most common category with 28 papers. Of the
systems, 17 were deemed ‘lethal’, which was the second most
common category along with ‘nuisance’, which also had 17 oc-
currences. All the malfunction categories can be seen in Table 4.

Considering how the system domains have been covered over
the years (Fig. 4), commercial, industrial, and medical systems
have been presented somewhat consistently. Robots and cars,
on the other hand, have significantly risen in numbers in recent
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Table 3
Tasks of the presented systems.
Task Number of

papers
Percentage

Assembly 1 1.1%
Assessment 6 6.7%
Assistance 1 1.1%
Control 6 6.7%
Critical missions 1 1.1%
Decision support 6 6.7%
Design 1 1.1%
Loading 3 3.3%
Maintenance 5 5.6%
Recognition & classification 31 34.4%
Rehabilitation 1 1.1%
Safety 4 4.4%
Scheduling 1 1.1%
Search and rescue 1 1.1%
Security 2 2.2%
Care 2 2.2%
Testing 3 3.3%
Transportation 9 10.0%
Unspecified 6 6.7%

Table 4
System malfunction impact categories.
Impact category Number of

papers
Percentage

Bias 3 3.3%
Economic 28 31.1%
Environmental 1 1.1%
Harmful 8 8.9%
Lethal 17 18.9%
Mission critical 8 8.9%
Nuisance 17 18.9%
Privacy 2 2.2%
Unspecified 6 6.7%

Fig. 4. System domains over time. Year 2020 has been excluded due to
incomplete data.

years. Other domains pop up here and there, but do not seem to
be studied consistently. Perhaps interestingly, the small peak in
papers in 2012–2013 seems to consist of nearly equal numbers
of systems in almost all domains.
8

Table 5
Validation methods used in papers.
Validation method Number of

papers
Percentage

Expert opinion 2 2.2%
Simulation 20 22.2%
Model-centred 13 14.4%
Trial 42 46.7%
Multiple 13 14.4%

Table 6
Individual validation methods used when multiple
methods are divided into their respected categories.
Validation method Occurrences

Expert opinion 3
Simulation 31
Model-centred 15
Trial 55

Total 104

Table 7
Methods for continuous validation.
Validation method Occurrences Percentage

Failure monitor 4 4.4%
Input restrictions 2 2.2%
None 63 70%
None – method description 13 14.4%
Output restrictions 2 2.2%
Redundancy 1 1.1%
Safety channel 5 5.6%
Voting 1 1.1%

7. Validation methods (RQ2)

7.1. Quantitative analysis of validation methods

This section presents statistics concerning the validation
methods. The categories emerged from the data analysis in a
bottom-up manner (Cf. Section 4.3). This section, along with more
detailed descriptions of the methods in Sections 7.2 and 7.3,
represents results to RQ2.

Of the papers that used only one validation method, a to-
tal of 42 used some form of trial (Table 5). This is more than
twice the number compared to simulation, which was the second
most frequent method, with 20 occurrences. In 13 papers, the
system was validated with a combination of the listed methods.
Expert opinion was rare but was used twice as the sole validation
method.

If papers using multiple validation methods are partitioned
into their respective categories, trial is the largest gainer with
an additional 13 occurrences, resulting in a total of 55 occur-
rences (Table 6). This means that every combined set of validation
methods included a trial of some sort. Simulation gained 11 oc-
currences, rising to a total of 31 occurrences. Model-centred val-
idation and expert opinion gained 3 and 1 occurrences, resulting
in a total of 16 and 3 occurrences, respectively.

Methods for continuous validation (described in more detail
in Section 7.3) over the life cycle of the presented system were
described in 14 papers (Table 7). This leaves 76 papers that did
not report using any method of continuous validation. The papers
described a total of six methods for continuous validation. Safety
channel was the most frequent one with five occurrences. Safety
channel was followed by a failure monitor with four occurrences.
The other described methods were input and output restrictions,
redundancy, and voting.

When observing the popularity of the validation methods in
different domains (Table 8), trials appeared to be popular in
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Fig. 5. Validation methods over time. Year 2020 has been excluded due to
incomplete data. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 8
The validation methods used in each domain.
Domain Expert

opinion
Simulation Model-

centred
Trial

Agriculture 0 0 0 4
Aviation 0 1 1 1
Car 0 7 1 5
Commercial 0 1 4 8
Gaming 0 0 0 1
Government 0 1 0 0
Industrial 1 2 5 7
Medical 0 1 3 4
Robot 0 13 0 14
Safety 0 1 1 1
Smart environment 0 2 1 1
Software testing 0 0 0 4
Unspecified 1 1 0 1
Wearable AI 1 0 0 4

all domains. Model-centred approaches were relatively popular
in commercial, industrial, and medical domains—all of which
have raised research interest quite consistently over time (cf.
Section 6). Simulations, in turn, were extremely popular in cyber–
physical domains, especially in cars and robots.

Considering how the popularity of validation methods has
volved over time (Fig. 5), trials (blue) and simulations (green)
ave nearly exploded in recent years, following the overall in-
rease of research (cf. Fig. 2). This change in popularity, espe-
ially in the case of simulations, follows the rising interest in
yber–physical domains such as cars and robots, in which sim-
lations and trials were very popular (cf. Table 8 and Section 6.
odel-centred approaches (orange) and expert opinions (red)
ave been used quite consistently, although they remain low in
otal numbers without any clear trends.

.2. Descriptive analysis on validation methods

While analysing the papers, we observed that the validation
ethods form a shallow taxonomy (Fig. 6). In this section, we
escribe in more detail how the validation methods within the

axonomy are used and which factors seem to affect the choice

9

Fig. 6. The taxonomy of the validation methods, along with their relative
commonness represented by the height of the bar.

of using these methods. We go over the basic principles of the
four main validation methods (cf. Table 5), and their variations,
along with their strengths and weaknesses. This section, along
with the following Section 7.3, provides a more in-depth analysis
for the methods presented in Section 7.1 for RQ2. The papers
that used multiple validation methods or multiple variations are
acknowledged individually in each section.

7.2.1. Simulation
In this section, we describe three simulation variations. Over-

all, in simulations, the system is validated in a clearly artificial
environment (virtual or real) mimicking the actual deployment
environment. Simulations seem to be heavily favoured in cyber–
physical systems, as 11 out of 21 papers about robotics and 8 out
10 papers about cars describe simulations (see Table 8).

Fully virtual simulation. In a fully virtual simulation, the
final deployment environment of the system is replicated with a
virtual simulator, along with possible physical components of the
system itself [S1], [S5], [S9], [S20], [S22], [S34], [S35], [S37], [S38],
[S44], [S50], [S53], [S56], [S70], [S73], [S75], [S77], [S78]. Basically,
the inputs of the real scenario are replaced with inputs created
by the simulator. Depending on the system, the outputs can be
assessed as is or they can be mimicked by a virtual model of the
system. 11 of the 18 systems are either cars or robots. The only
paper with a rigour score of 2.5 or higher is [S78]. In [S78], the
test cases are modelled real-life traffic situations. A single vehicle
in the situation is replaced with a virtual model of an autonomous
car while other models in the simulator mimic the vehicles of the
modelled situation. The system-under-test navigates amidst the
models of real cars, and the simulator observes whether or not
the virtual model violates declared safety constraints and reports
on the violations.

Alternatively, the test cases can, for example, be passed down
as ontologies or as a set of constraints from which the simulator
extracts the different situations in a combinatorial manner [S1],
[S9], or the tests can be designed by hand [S9]. Another example



L. Myllyaho, M. Raatikainen, T. Männistö et al. The Journal of Systems & Software 181 (2021) 111050

t
i
[
t
e

o
m
c
b

v
d
o
p
b

a
t
a
p
c
h
p
r
t

a
t
a
v
h
m
s
w
p
i
m

T
v
s
H
n
[
n
H
p
r

f
[
i
I
n
o
i

t
a
i
v
d

is to inject faults and errors into the software or some established
test scenarios to find the components and test cases that are the
most prone to faults [S5].

Fully virtual simulation makes validating safety-critical sys-
ems safer, as the functionality of the system can be tested
n potentially dangerous situations without actual danger [S78],
S1]. Also, simulations provide a faster and more convenient way
o run the tests of a highly complex system than a trial in a real
nvironment would [S1], [S9], [S78].
As a downside, a fully virtual simulation puts a lot of pressure

n the simulator [S1]. Any deviation between the real environ-
ent and the simulation or the full system and its simulated
ounterpart can have serious consequences. That is, as also noted
y [S78], the validity of a simulator is difficult to prove.
Simulation can also serve as initial validation before other

alidation methods [S20], [S22], [S75]. This way the full system
oes not have to be built before there is some level of certainty
f its functioning through modelling the system. As such, some
otentially malfunctioning components will fail rapidly and can
e fixed early on.
Hardware-in-the-loop simulation (HIL). In HIL simulation –

s it is called by [S6] – the final deployment environment of
he system is replicated with a virtual simulator or some other
rtificial means [S6], [S72], [S83], [S86]. The main difference com-
ared with the fully virtual simulation is that other, non-virtual
omponents of the system are included in the validation setup for
andling inputs or outputs. All systems in this category are cyber–
hysical systems (cars and robots). No paper reached a higher
igour score than 2.0 on the rigour scale, and so [S72] is used as
he top example.

A way of conducting HIL simulation is to give inputs to the
ctual sensors of the systems instead of inputting them directly to
he software [S6], [S72], [S83]. In the top example [S72], pictures
nd videos of 3D-printed stand-ins for microrobots are used to
alidate the depth estimation of optical tweezers. The images,
owever, are not fed to the software directly but through a
icroscope used in the system setup. Thus, the images and videos
imulate the actual inputs that would be microrobots observed
ith the microscope. For a more imaginative example, in [S83], a
hysical steering wheel reacts to commands resulting from inputs
n a traffic simulator, and the steering wheel angle is used as the
etric for successful lane-keeping.
HIL is in many ways comparable to fully virtual simulation.

he benefits and drawbacks of HIL are similar to those of fully
irtual simulation. However, in comparison to a fully virtual
imulation, faults can be injected into hardware and software in
IL simulations. Also, hybrid-faults originating from the combi-
ation of hardware and software can be monitored more easily
S6]. As hardware is included in the validation environment,
ot everything must be modelled in the simulator. However,
IL simulation is impractical or even impossible for most sim-
le model-centred systems, as some physical components are
equired.

System-in-the-loop simulation (SIL). In SIL simulation, the
ull system is placed into an artificial environment [S8], [S10],
S17], [S19], [S28], [S42], [S45], [S48], [S68]. Thus, the full system
s under test. The environment can be a virtual or a physical one.
n SIL simulation, the environment is clearly artificial and does
ot necessarily aim to replicate a real environment as is but some
f its features. The only paper with a rigour score of 2.5 or higher
s [S8]. Six out of nine systems were robots or cars.

SIL simulation can be conducted by picking presumed key
asks and challenges the system is expected to face and building
n environment for simulating these [S8], [S68]. For example,
n [S8], a service robot for an elderly care centre was initially
alidated in a laboratory setting with specific tasks before vali-
ating it in its real deployment environment. It was instructed to
10
enter a room, to locate and approach a person, and to recognize
the said person, etc. Thus, the setting does not replicate the
environment, i.e., an elderly care centre, its obstacles, or its noise,
but the system can be sent on similar missions than in a real
environment. In other words, the robot does what it is supposed
to do, but not in its final environment. In a similar manner, for
the mining industry, a ‘‘simulated test environment’’ was built to
replicate the difficulties a robot would face in a mine stope and
to make the observations of the robot under test easier than in a
real stope [S68].

The environment can also be virtual [S42]. Unlike in fully
virtual simulation, the full system is used, not just its software.
Essentially, virtual inputs are given to the full system and the
system’s behaviour is observed in real time. For example, in
[S42], a UAV is tasked with following a virtual cow in a virtual
environment while the vehicle itself is hovering in a laboratory.
Instead of the UAV being modelled in the simulator, its actions
are copied into it.

An interesting case of SIL simulation is presented in [S17]. For
validating autonomous cars, the paper presents a mixed-reality
approach, in which the avatars of real-world traffic participants
are projected into a virtual simulator. These avatars can be pro-
jected into shared situations, which could potentially be danger-
ous in the real world. As a result, more realistic behaviour of the
system under test and other traffic participants can be provided
for the simulator compared with other, more modelling-oriented
simulations.

The benefits of SIL simulation include safety and precision. As
with other simulations, tests can be conducted even in scenarios
that could be dangerous to the system or to other participants
in real environments [S17], [S42]. On the one hand, having the
full system in the validation process yields a more precise picture
of how the system would behave in the validation scenarios. On
the other hand, requiring real-world participants is heavy for the
process compared with other simulation methods, and careless
design in the environment may give a false impression of the
system’s functionality. This can be seen in our example paper [S8],
in which the robot’s interaction suggestion ‘‘touch me’’ resulted
in people touching the robot anywhere instead of on its UI screen.
This only occurred during later validations and did not come up
during the simulation.

SIL simulation may be used as initial validation before other
validation methods, as in [S8]. Success in a more controlled en-
vironment can provide confidence to update the system to even
more realistic environments, for example, for a trial in the actual
deployment environment.

7.2.2. Trial
This section describes the different trial variations. In the

trials, the system, as is, is deployed and monitored in the final
deployment environment or something close to it. The setting and
goals are similar to alpha or beta testing in software engineer-
ing (Bourque et al., 2014). However, while alpha and beta testing
may be somewhat uncontrolled, the trials should be planned
so that at least some key scenarios are covered. Additionally,
compared with alpha and beta testing, the inclusion of potential
end-users in the trials may not be necessary.

Trial in a real environment. Trial in a real environment aims
to validate the system by using the system as it would be used
in the final deployment environment [S3], [S4], [S7], [S8], [S14],
[S18], [S20], [S21], [S24], [S26], [S29], [S30], [S31], [S33], [S35],
[S36], [S38], [S48], [S50], [S52], [S54], [S58], [S62], [S63], [S65],
[S67], [S71], [S74], [S75], [S81], [S82], [S83], [S84], [S85], [S88],
[S90]. Thus, the system is put under similar pressure as it is
designed to be in during real use. The validation environment is
a use case or an actual intended usage where it is observed, pos-
sibly accompanied with additional precautions. Also, ML systems
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that gather test data the way the complete system would be used
fall into this category (e.g., [S24]). Papers with a high rigour score
in QA are [S7], [S8], [S30], [S54], and [S71].

As an example, in [S7], a gaming-based application is built to
ssist in the screening of attention-deficit/hyperactivity disorder
ADHD). Test subjects are monitored while they play, and the data
athered by the instructor and the game are fed to the appli-
ation, which gives a prediction of whether or not the subject
as ADHD. This is then compared with the medical diagnoses
f the subjects. The subjects are chosen from a larger sample of
hildren, diagnosed with or without ADHD. This is to ensure that
oth key scenarios – the subject having and not having ADHD –
re included in the validation process. Thus, even if the system is
sed in an actual use case, the validation settings can be arranged
n a way that ensures that all the key scenarios are covered.

Because all papers using multiple validation methods also
sed trials, one approach for validating systems is to acquire a
igher level of certainty in key scenarios by validating the system
ith other validation methods – such as SIL simulation – first, and
nly then proceeding to the trial in a real environment (e.g., [S8]).
lternatively, trials can be conducted sequentially, starting from
mall and simple missions and then proceeding to the full scope
S26].

Trials in real environments hold one feature above other vali-
ation methods: the entire system is under test as intended. Thus,
ossible problems in component collaboration, communication,
ensors, or usability become more easily evident, which may not
e the case in simulations or less rigorous trials [S35].
On the other hand, rigorous trials are laborious. Even in the

bove example [S7], the number of test subjects is too small to
ive full confidence in the system. To their credit, however, the
uthors do discuss this when considering the validity of their
pplication.
Trial in a mock environment. Trial in a mock environment

s a form of trial in which the full system is validated in an
nvironment that replicates an actual environment [S2], [S11],
S13], [S15], [S16], [S22], [S23], [S25], [S27], [S32], [S40], [S43],
S47], [S59], [S60], [S66], [S77], [S80], [S86]. There are no artificial
omponents in the system under validation, but the environment
s not real in a sense that it is designed to replicate or dupli-
ate the actual deployment environment. The only paper in this
ategory with a high rigour score is [S25].
In [S25], the trial of an intelligent music selection applica-

ion was conducted in a laboratory setting. The application was
nstalled on a phone, and it monitored the subjects’ heartbeats
hile they were studying, trying to select music that would
elp the subjects be more efficient. Thus, the system was used
s intended, but the environment was stripped of the noise of
real environment: the students were asked to study in an

nvironment probably strange to them, and not necessarily when
hey were prepared to study. A trial can also be conducted in an
nvironment that is a straight or partial copy of the deployment
nvironment [S2], [S11]. It can also be a simple example part of
he deployment environment [S15], [S16].

Malfunction in a mock environment instead of a real one
elieves the possibility of major damage to the real environment
r tasks at hand. Also, the system does not have to be brought
nto potentially dangerous environments, where it could be a
istraction to other participants (e.g., [S27]).
The narrowed simplified environment can also serve as a

ownside. For example, [S25] discusses that people’s emotions
re influenced by many things. The authors do not elaborate, but
ne interpretation is that the limited test environment narrows
own the validity of their emotion-centred application.
In some cases, distinguishing between a trial in a mock en-
ironment and SIL simulation (presented earlier in Section 7.2.1)

11
may be difficult or even arbitrary. However, the main difference is
the environment, which is clearly artificial in SIL simulation and
does not necessarily aim to replicate the real environment as is
but some of its features.

7.2.3. Model-centred validation
Model-centred validation is a set of validation methods that

focus on ensuring the correct functioning of the used AI model
[S12], [S46], [S49], [S51], [S55], [S57], [S61], [S64], [S69], [S76],
[S79], [S82], [S85], [S87], [S89]. This type of validation is often
data-centred and can be seen as having trust in the system by
ensuring that the model works. These methods are mostly used
in testing simple, model-centred systems (10 out of 15 of the
systems are model-centred), but there are some more compli-
cated systems, such as in [S69], which also rely on model-centred
methods. No paper received a rigour score of 2.5 or higher. [S57]
is used as the main example.

The approaches are often the same as approaches to ML model
validation in general (Zhang et al., 2020). Cross-validation is
widely used: for example, in [S57], a subset of the training data
is placed aside and later used to show that the system under
test correctly predicts most of the test inputs. Another approach
(referenced as ‘‘torture tests’’ in [S46]) tests the robustness of the
model by intentionally altering or deleting small pieces of the
model between inputs or by giving slightly modified inputs to
see how this affects the model’s performance. As such, model-
centred validation includes ML model validation, as described in
Section 2. Compared with the trials described in Section 7.2.2, it
is noteworthy that in model-centred validation methods the data
are not gathered the way a finalized system would.

Model-centred validation can be used as an initial validation
before other validation methods [S82], [S85]. For example, the
model-centred system in [S82] is first tested statistically to in-
vestigate the – as they put it – model errors. Afterwards, the
system is further validated by comparing it with corresponding
benchmarks and through a trial.

7.2.4. Expert opinion
Expert opinion [S39], [S41], [S82] is a rarely reported method

for validation. Its main feature is that the expertise required to
conduct the validation is not present in the team responsible for
the system but is obtained from the outside: the focus is less
on rigorous testing and more on the expert’s ideas of what is
important in the system. The said expert is not necessarily an
expert of software engineering or AI but rather an expert of the
application domain, such as an intended end-user. Thus, expert
opinion can be seen as a related term to beta testing of the
system (Bourque et al., 2014). No paper received a rigour score
of 2.5 or higher. [S39] is used as the main example.

In [S39], a decision support system for emergency resource
management was validated through interviews with fire officers.
Example scenarios were presented to the experts, who then elab-
orated on which features they believe would add value to their
work, and which deficits or delays are bearable and which are
not. Also, the fire officers suggested that lower system accuracy is
acceptable, thus suggesting thresholds for further development. A
benefit of expert opinion is that the perceived usability and sever-
ity of potential problems are evaluated by those who actually face
them in actual use.

Another approach is to compare the system’s decisions with
those of an expert or benchmark application [S41], [S82]. In this
approach, the expert – or in the case of a benchmark applica-
tion, ‘‘the expert application’’ – can provide insight into which
scenarios – and failures – are crucial ones.

All three papers include the usage of the system by or pre-

sented to the expert. However, we decided to differentiate the



L. Myllyaho, M. Raatikainen, T. Männistö et al. The Journal of Systems & Software 181 (2021) 111050

w
h
i
m
a
i

l
a
t
t
p
p
p

7

m
m
d
v
d
a
T

7

s
s
s
o
N
t

o
m
d
p

n
r
o

7

p
[
p
[
[

v
d
a
i
t
s

o
s
[

category from trials, as other means are included, such as inter-
views. These include assessing the success of modelling and even
the acceptable thresholds to be used in further validations [S39].

Compared with more rigorous trials, a short and rare session
ith experts may leave some problems related to key scenarios
idden. The same goes for benchmark applications, as compar-
sons made directly with them may not reveal what the bench-
ark application is not suitable for. Using expert opinions in
ddition to other validation methods is a way of tackling this
ssue [S39], [S82].

This kind of validation is most likely prone to the same prob-
ems as trials. With complex systems, presenting the system to
n acceptable degree may turn out to be time-consuming. Also, as
he expert comes from the end-user side and not necessarily from
he production team, scheduling the validation sessions could
rove problematic. As a benefit, more immature systems may
ossibly receive valuable feedback on how – and whether – to
roceed with development.

.3. Descriptive analysis of continuous validation methods (RQ2)

As discussed at the end of Section 2, we report on system
onitoring and other safety assurance as continuous validation
ethods. In this section, we describe these methods in more
etail. We go over the basic principles of the different continuous
alidation methods (cf. Table 7). As less research has been con-
ucted on these methods, we also synthesize the major benefits
nd drawbacks to a lesser degree than in the previous section.
his section, along with Sections 7.1 and 7.2, answers RQ2.

.3.1. Failure monitoring
Failure monitoring is a form of continuous validation for en-

uring that system malfunctions do not go unnoticed during a
ystem’s life cycle. Failure monitors are designed to observe the
ystem, its subsystems, and components and alert the user in case
f malfunction or suspicious behaviour [S5], [S26], [S29], [S45].
o paper received a rigour score of 2.5 or higher. [S5] is used as
he main example.

In [S5], a failure monitor of an autonomous vehicle observes
ther components. In case one shows signs of failure, the failure
onitor alerts the human driver of a potential problem. The
etails of the observations, however, are not discussed in the
aper.
Failure monitors only provide users with information and take

o actions by themselves. Thus, human interference is always
equired in the case of a malfunction. This may be problematic
r even dangerous in situations requiring rapid actions.

.3.2. Safety channel
A safety channel is a backup component that takes over if

rimary components are compromised [S6], [S35], [S48], [S67],
S78]. This way the systems can continue to function in the
resence of danger or malfunction, i.e. they may ‘‘fail safely’’, as
S67] puts it. Safety channels are a form of continuous validation.
S78] is the only paper with a rigour score of 2.5 or higher.

In [S78], if the sensor of an autonomous car detects another
ehicle too close in front, the safety channel forces the car to slow
own. Thus, the system’s safety constraints are compromised,
nd the main controller’s directions are disregarded. Similarly,
n [S48], if physical obstacles are recognized, the robot’s func-
ionalities are reduced accordingly to ensure the safety of the
ituation.
A safety channel may be a simpler, yet more robust version

f the main controller of a car [S6]. Alternatively, in a group of
ystems, other systems can take over the tasks of a failed system
S35].
12
As the safety channel’s primary objective is to keep the system
running safely when needed, it usually reduces system function-
ality. This could mean that it cannot necessarily keep the system
safe for longer periods and thus requires interference at some
point.

7.3.3. Redundancy
In redundancy, critical components are duplicated within the

system [S15]. This way the duplicating components can work as a
backup along the lines of a safety channel. While a safety channel
takes over in case of a malfunction or safety hazard and attempts
to keep the situation safe, redundant components take over the
malfunctioning component they duplicate and attempt to keep
up initial functionality. In addition, the components can share the
workload of the primary components if the performance level of
the system drops. [S15] has a rigour score of 2.

In [S15], every component responsible for a task in the soft-
ware controller of an autonomous car is replicated to achieve
redundancy. Implementation details are not really described in
the paper, but when introducing the idea of using redundancy,
they cite Jiang and Yu (2012), on which we base much of this
description.

Redundancy makes systems more tolerant to faults but also
adds costs [S15]. This is due to the need to multiply the same
components. In addition, the state space of the system grows,
which may make it more difficult to monitor.

7.3.4. Voting
Various intelligent components can be implemented in a sys-

tem to execute the same task and then vote among each other
on the action to be taken [S20]. Thus, damage caused by a single
failing component is reduced if the others are still functional.
Voting is a form of continuous validation. [S20] has a rigour score
of 2.

In [S20], a robot assembles small objects by mimicking a
person performing the same task. Voting is involved when deter-
mining which motions the person takes based on the video input,
and hence, what the robot should do. Unfortunately, further
details of the voting process itself are not clearly discussed in the
paper.

Similar to redundancy, voting requires multiple components
capable of performing the same task and plan to be voted on. This
raises the costs of the system.

7.3.5. Output and input restrictions
Output restrictions are hard limits given to a system [S50],

[S78]. This is to continuously validate that the system will not
take actions that are known to be potentially dangerous or false.
This way the system can also work more predictably. [S78] has a
rigour score of 2.5.

In [S78], an autonomous car has limited outputs if certain
criteria apply. For example, if another vehicle is directly adjacent
to the vehicle-under-test, the vehicle-under-test will not change
into that lane, no matter what the controller suggests.

Input restrictions, in turn, limit what kinds of situations the
system is allowed to handle autonomously [S74], [S87]. By limit-
ing inputs, the system can be ensured to not attempt to handle
a situation it is not designed or trained for. Neither of the papers
received a rigour score of 2.5 or higher. [S87] is used as an
example.

In [S87], a report assignment tool is built to automatically
assign incoming reports to the corresponding development team.
While making predictions, the system does not take into account
certain strings (such as ‘‘error’’ and ‘‘ericsson’’) in the input, as
the commonality of these strings in the product reports decreases
prediction accuracy.
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Table 9
Summary of validation methods (RQ2).
Validation method Description Exemplar

Validation:
Simulation:
Fully virtual simulation The deployment environment of the system is replicated with a virtual simulator [S78]
Hardware-in-the-loop simulation A virtual simulator that contains also some non-virtual components [S72]
System-in-the-loop simulation The system in an artificial environment [S8]

Trial:
Trial in a real environment The system is used as it would be used in the final deployment environment [S7]
Trial in a mock environment The system is used in an environment that replicates an actual environment [S25]

Model-centred validation Validation focusing solely on validating the model [S57]

Expert opinion The system is assessed against expert’s opinion [S39]

Continuous validation:
Failure monitor System’s malfunction detection [S5]
Safety channel Backup component that takes over if the primary components are compromised [S78]
Redundancy Critical components are duplicated in the system [S15]
Voting Different components perform the same task and vote on the action to be taken [S20]
Output and input restrictions Hard limits given to the system input and output [S78], [S87]
8. Discussion

8.1. Overview of results

Practical intelligent systems are receiving rising interest the
esearch literature. We found 90 primary studies in total. The
umber of publications in the area has risen for five consecutive
ears. The sudden peak in numbers from 2012 to 2013, however,
emains a mystery, as the papers are published on several forums.

The quality assessment of the papers revealed a wide disre-
ard for validity discussion among the papers. While more than
alf of the papers received a high score in context, design, or both,
he vast majority of the papers in no way mentioned the validity
f their research. Explicitly discussing validity threats or limita-
ions of the research is important, especially because the majority
f research is conducted in academic, simplified contexts. Another
ignificant observation is the lack of realistic industrial studies,
.e. studies in evidence levels 5 and 6, which would increase
alidity and facilitate research on continuous validation.
Our focus was only on papers with solid empirical evidence

epresenting at least level L4 in the taxonomy of Alves et al.
2010). Thus, the numbers do not represent the research liter-
ture as a whole. Thus, the selection of papers aims to cover
ore mature research and disregard immature solution propos-
ls that may become breakthroughs but equally could just fade
way. Even the original SLR guidelines (Kitchenham and Char-
ers, 2007) emphasize empirical evidence, and recent experiences
oncerning systematic reviews (Raatikainen et al., 2019) suggest
imiting analysis to papers with a higher level of evidence and
uality, which grants a better stand when analysing the papers
ualitatively.

.2. Answer to RQ1: Characteristics of validated systems

As for RQ1, a wide variety of systems has been reported in
he research literature, as we identified 13 classes of systems.
onsidering this variety over different aspects of the systems
detailed below), it is difficult to pinpoint large common char-
cteristics beyond the apparent dominance of ML (at least 87%
f all included studies). Thus, it may be that the practical use
f AI is not naturally characterizable in regards to the specific
omains, complexity, or malfunction impact but broadly spreads
cross various dimensions.
The variety can be seen in the large numbers of application

omains. Large numbers in certain domains may be a result of
13
our search method, but the diversity of the identified domains
indicates wide applicability of AI research interests. Of course,
the actual variety was even vaster, as, for example, commercial
and industrial domains contain systems very different from one
another but that were ‘‘forced’’ into the same category.

The same variety goes for tasks performed by systems. Recog-
nition & classification are by far the most common tasks assigned
to systems with AI, but they are by no means the only ones.
Variety can be seen as an implication of the flexibility of AI
techniques. However, the popularity of a few tasks may pose
a threat where progress is not made holistically but research
rather focuses on minor, local improvements in known, well-
suited tasks, such as recognition and classification, and applies
the task to similar problems in slightly different domains..

Variety can also be found in the impact of system malfunc-
tion. The impact of the systems ranges from nuisance to lethal.
This supports the previous implications that AI raises interest
in a wide range of problems, whether they are dangerous or
not. However, systems concerning people’s privacy or the risk
of discrimination are scarce and far apart. Also, every system
may not have to be validated to the same degree: a system
annoying someone is much more forgivable than a system that
kills someone. Thus, the impact level of the system malfunction
should be taken into account when building a system.

However, while the systems are widely spread across different
categories, they are heavily characterized by narrow application
within these categories. Many categories in each aspect were
represented by only a few or even only one system. For example,
some domains were significantly less represented than others,
as well as less consistently represented. Robotics overshadowed
agriculture and even medical applications, and this difference
has been growing in recent years. Recognition & classification
dominated the system tasks. This may be due to researchers’
accessibility to certain resources, such as robots, or to the sheer
popularity of certain applications, such as autonomous cars, or
perhaps to the maturing technology’s ability to finally be applied
in these more complex domains. Nonetheless, the less popular
domains should not go unnoticed in further studies, as lower
popularity does not mean they are less valuable, and AI could
prove to be a great asset in problems such as crop ripeness
assessment and crop disease detection, or MRI scan assistance.
This is especially noteworthy considering that practical research
on these potentially hugely benefitting areas could help the tech-
nologies reach the practitioners and should be taken to account

in research. This has not always been the strong point of software
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engineering research (Sjoberg et al., 2007; Ivarsson and Gorschek,
2011).

We also note that a large portion of the tasks assigned to the
ystems are relatively low level in complexity. For example, the
argest category ’recognition & classification’ is not an easy task,
ut it is often relatively simple in terms of the problems that it
olves: Is there mould in the goods? Are these pictures taken of
he same person? Is the crop ripe for harvesting? Now compare
his to the rare task of assembly, which can be seen as consisting
f recognition and something more: recognize the relevant pieces
nd put them together in a purposeful manner. Thus, it seems
hat only a little of the research on practical AI systems is focused
n highly complex tasks. This may indicate that the time is only
ust ripening for the field to take on these complex problems in
ractical settings.

.3. Answer to RQ2: Validation methods

As for the second research question (RQ2, see summary in Ta-
le 9), a taxonomy of validation methods was extracted from the
apers (see also Fig. 6). The validation methods were identified,
escribed, and provided with exemplars from the papers. The tax-
nomy consists of four main validation methods: simulation, trial,
odel-centred validation, and expert opinion. The simulation is

urther divided into fully virtual simulations, hardware-in-the-
oop simulations, and system-in-the-loop simulations. The trial
s further split into trials in a real environment and trials in a
ock environment. In 77 papers, a single validation method was

eported. This means that only 13 papers reported using more
han one method.

Trial was the most used validation method among the in-
luded papers and a popular approach across domains. This sug-
ests that researchers prefer bringing their systems close to their
ntended settings. Trials can be cheaper in situations where the
inal environment is simple enough, as building a high-quality
imulation is likely to add costs. Also, trials are not prone to
eficits in simulators or data, which speaks for using trials: if
system works, it works because it should and not because of

mprecise modelling. Considering the close relation of trials to
lpha and beta testing and their established position in software
ngineering, it may not be that far-fetched to assume that trials
re also commonly practised in the industry.
However, even otherwise well-constructed papers, such as

S7], rely on very small sample sizes in their trials. This could be
ecause, as declared by Kalra and Paddock (2016), Koopman and
agner (2016), some systems are laborious, hard, or infeasible

o test by trial. Additionally, some systems may be considered
oo hazardous to be validated by trials, such as safety-critical
ystems. These seem to be reflected in the numbers: a large
ortion of more complex cyber–physical systems, such as cars
nd robots, rely on simulation over trials. This can be seen in
he rising interest in simulations along with the rising interest in
hese domains. Thus, it seems that researchers believe that high-
evel simulations are the way to tackle these problems pertaining
o trials. However, this does not come without its problems, as
tated in [S1]: even the slightest deviations between a simula-
ion and the real environment can have dire consequences, and
ccording to [S78], the simulator’s validity is hard to prove. In
ddition, many – especially virtual – simulators were presented
ith one or two example cases. This may suggest that current
igh-level simulators have been difficult to find, as suggested
y Gao et al. (2019), or, for some reason, they have not been
atisfactory to the researchers at the time of developing their
ystem.
Model-centred validation is also widely applied, especially

mong model-centred systems. Its rarity in validating other kinds
14
of systems can be considered a relief when considering the earlier
idea that model performance may not be the best metric for
validating systems (Nair et al., 2017).

Expert opinion is rarely reported in the research literature. We
also note that we do not know how common it is for researchers
to not validate their systems at all, as a presented validation
method was an inclusion criterion in our paper selection phase.

As data-driven ML testing in general, a large part of the val-
idations based on model-centred approaches are prone to data
problems (Zhang et al., 2020). However, if enough good-quality
data are available, model-centred methods are an efficient and
potentially faster way of validating model-centred systems or at
least models used in the systems. If a system consisted of multiple
components, we would advise to carefully consider whether or
not the model-centred approach is a suitable validation method.

Many traditional software testing methods (e.g. unit, integra-
tion, or regression testing) were not mentioned in the papers. This
could be due to the Oracle problem and the differing require-
ments of traditional and AI systems (Vassev and Hinchey, 2014):
testing non-deterministic systems is difficult with deterministic
tests. Usually in traditional software testing, the indication of
correct functioning is that with a given series of inputs, a cer-
tain state or output is reached at any given time. But how to
choose the deterministic tests that indicate that a possibly non-
deterministic system works as intended? It may well be that
getting a different outcome at two points in time is the intended
or acceptable functionality. Respectively, what to actually test
with unit tests and what the actual desired outcome is can be
difficult to identify. For example, when an autonomous car is sent
on a mission, it goes through an enormous set of inputs, most of
which have multiple outputs that can be considered correct, as
well as multiple outputs that can be considered incorrect, with
possibly no indication of which can be considered the best. How
do you choose which ones to implement? However, this does not
mean that no such tests were used in the systems at all, as most
systems do not consist solely of non-deterministic components.
We even consider a total lack of these tests unlikely. Nevertheless,
even if the tests are there, the researchers have not considered
them essential enough to be mentioned when validating their en-
tire systems. This, too, could underline the troubled relationship
between traditional testing to non-determinism. That being said,
traditional testing may also have a place in validating AI systems.
Not every AI system changes its behaviour autonomously. Also,
those that do adapt over time can have some corner cases in
which functionality should remain the same, no matter how
much they should adapt to their environment. For example, if the
sensors of a robot indicate a steep slope in front of it, the robot
should probably always stop, and a financial bot should probably
never grant loans to someone with no income or assets. Such
corner cases could potentially be used in regression testing, at
least in self-learning systems, to indicate possible deterioration of
the system over time. This may be an interesting topic for future
research.

Only 14 papers reported using a method for continuous val-
idation. Failure monitoring, safety channel, redundancy, voting,
and output and input restrictions were identified as methods for
continuous validation (Table 9). The number of studies carrying
out continuous validation seems low considering that other liter-
ature has emphasized the importance of monitoring the system
even if the initial validation was successful (Breck et al., 2017;
Zhang et al., 2020). The methods were often described cursorily,
with little emphasis, and often in papers with low QA scores.
However, we must note that not mentioning a method does not
necessarily mean that one does not exist or was not intended:
many of the papers describe a system to the point of its initial
validation, and the settings are typically academic rather than
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industrial use. Thus, methods for continuous validation may not
have been in the scope of the paper and were left out. Also, 13
of the papers mainly focused on describing a tool or method for
initial validation, leaving little room for describing the validated
system and its life cycle altogether. Either way, research reporting
on continuous validation is far from desired.

Overall, initial validation seems to be emphasized in the liter-
ture over continuous validation. This may not be surprising, as
his is the traditional way of doing things: to put it simply, when
he system seems ready to be deployed, it is tested and then it
s ready. However, considering again the differing requirements
f AI and traditional systems (Vassev and Hinchey, 2014), this
ay not be the case. If we once again return to the example of
self-configuring system, the initial validation would probably

nclude the validation of self-configurability and the initial con-
iguration. However, should the system reconfigure itself during
eployment, the new configuration should probably be validated
s well, to ensure the system still meets its requirements. The
ame goes, let us say, for the recommendation algorithm of a
ideo streaming platform, the user base of which may constantly
e changing: with no continuous validation, the algorithm may
ail to meet its requirements, unbeknownst to the developers and
sers.
Our validation and continuous validation classifications were

ased on and emerged from the primary studies. As such, it is
ot our aim to assess the completeness of the classifications in
his study. As various taxonomies may also be useful, a future
hallenge is to assess, extend, and refine these taxonomies for
alidity and utility for classifying and understanding AI validation.

. Threats to validity

The numbers presented in this paper only investigate papers
ublished over the years by the scientific community. Thus, they
an give an indication of what has been of interest to researchers
n the AI field. However, they do not necessarily reflect what
s happening in the industry, nor should they be considered
epresentative of the commonness or rareness of various systems
r validation methods used in the industry.
Our choice of an automatic search may have left some relevant

apers out, as the search is so dependent on the successful
ompaction of the search string. This dependability can probably
e seen in the high occurrence rates of the domains that were
pecifically mentioned in the search string. Although the use of
ertain domains may have influenced the included domains, we
id not intentionally select the domains in favour of something.
nstead, we selected all the domains we identified to be relevant
o the topic but that could be at risk of being excluded if more
eneral terms were used solely. The use of trendy domains may
lso be one of the reasons why recent papers were much more
ommon than older ones. However, the wide variety of domains,
asks, and other characteristics, along with the number of papers
ound is encouraging when considering the trustworthiness and
overage of the search.
The dominance of ML in the results poses a threat to the

eneralizability of the results. As most papers presented systems
tilizing ML, the results would be safest to interpret as results
oncerning ML literature, not AI in general. The skewed results
ould be due to the search terms ‘ML’ and ‘validation’ usually
oing hand-in-hand. Also, it is not uncommon for technologies
o ‘‘lose’’ their status as AI, and not be referred to as AI any-
ore, thus leaving the stage for ML to roam free. Finally, the
mount and rigour of empirical research in computer science and
oftware engineering have risen over the years. Older research
oncerning AI, which is more often theoretical or basic research,
nd predates the resurgence of ML, may not have been conducted
15
or reported in the required manner to reach the desired level of
relevance.

No description of validation methods was based on a single
paper, but in the case of continuous validation, the evidence
was scarce. This gives confidence in the construct validity of
the descriptions, as commonalities could be used as the core of
each description. Thus, some light is shed on the validation of
entire AI systems, as requested by Zhang et al. (2020). Methods
for continuous validation, however, were often described in less
detail and in fewer papers. Also, the analysis was largely done by
a single researcher, which leaves the taxonomy prone to bias.

Bias is of course a potential threat in other forms as well. One
potential source of bias is caused by most of our paper selection
and analysis being performed by the first author. Unclear cases
were evaluated with other researchers, but there is no guarantee
that what the first author views as a clear case would also be clear
and unambiguous to others. This applies to both paper selection
and the analysis of the final set of papers. Some relevant papers
may have been excluded based on a mere interpretation of them,
and some analyses may not be accurate because of how they were
interpreted. Bias may also affect the terms used in the search
string. The terms may not be biased in and of themselves, but the
choices of including or excluding a term are of course guided by
what the authors consider to be intelligent behaviour and what
type of research the authors are aware of in the first place. The
latter is especially true in the case of including domains thought
to be relevant yet at risk of not being included when only using
general terms. Other domains were considered, but nothing can
guarantee that no choices were misguided, or that there are no
domains that should have been included but were not considered
for some reason.

Sometimes differentiating between validation methods – for
example, system-in-the-loop simulation and trial in a mock
environment – can be difficult or even arbitrary. This can be
problematic when categorizing papers precisely. However, as
no description of a validation method was based on a single
paper, categorizing one or two papers ‘‘wrongly’’ should not pose
any threat to the validity of the descriptions. More precise and
consistent use of terminology in publications could ease further
assessments.

10. Conclusions

We presented a systematic literature review on the validation
methods of AI systems based on 90 primary studies. The primary
studies represent 14 domains carrying out 18 tasks and their
impact on malfunction ranges from nuisance to lethal, which
demonstrates a wide variety and broad application of AI tech-
nologies. As our selection focused on studies with solid empirical
evidence, these studies represent relatively mature practical ap-
plications rather than immature solution proposals in early-stage
research. However, most of these systems applied ML. Concerning
the quality of the papers, most described their context and design
well but lacked discussion on the validity of the study. This is
something the research community should be more aware of.

We identified a taxonomy of four validation methods: sim-
ulation, trial, model-centred validation, and expert opinion. In
addition to this, we described the validation methods and their
common variations, provided with examples from empirical stud-
ies. Thus, the taxonomy should be easily used as a basis for further
attempts to synthesize the validation of AI systems or even to
propose general ideas on how to validate systems. However, as
the taxonomy emerged from the included papers alone, it may
not be complete. Thus, further assessment and refinement may be
needed for it to be fully utilized in understanding the validation
of AI systems.
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A set of continuous validation methods was also presented,
onsisting of seven classes. These methods are described in only
3 papers and in less detail. Thus, not only is the set in need of
ssessment, but we also suggest placing more emphasis on these
ethods in system descriptions, as they can be vital for the safety
nd functionality of systems during their life cycles.
Given our results, it seems that more care needs to be taken,

pecifically for a few concerns. Overall, study validity needs to
e taken more into account in the measures and discussions, as
any papers deal with, e.g., academic settings and small samples,
et do not discuss this in the paper. In terms of research design,
n the one hand, academic research settings could improve their
alidity by more commonly adopting multiple validation methods
o mitigate the threats to study validity. On the other hand, more
esearch, assessment, and development need to be conducted in
ealistic, industrial settings. This, in particular, would also allow
o better adopt and study continuous validation methods, as they
re currently discussed in very little detail. More research should
e done on continuous validation if these ideas are to be gen-
ralized. Also, if high-quality simulators are indeed intended to
arry out the validation of high-complexity systems in the future,
ore research is to be conducted on them. Many simulators in

he papers seem small in scale, and, as discussed by the papers,
heir validity is difficult to prove. Initiatives e.g., Simulink and
ronology have taken fine first steps in the area but should
e accompanied by others, possibly aimed at different domains.
inally, we would also like to see more research on the rarer
pplication domains, along with completely new ones.
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he bibliographic data of the primary studies. The columns are the fields of the data extraction form (Section 4.3).
ID Author(s) (F1) Year (F3) Title (F2) and DOI

S1 Li, Y.; Tao, J. & Wotawa, F. 2020 Ontology-based test generation for automated and autonomous driving
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S3 Mannini, A. & Intille, S. 2019 Classifier Personalization for Activity Recognition Using Wrist
Accelerometers (10.1109/jbhi.2018.2869779)

S4 Lu, B.; Wang, L.; Liu, J.; Zhou, W.; Guo, L.; Jeong, M.-H.; Wang,
S. & Han, G.

2019 LaSa: Location Aware Wireless Security Access Control for IoT Systems
(10.1007/s11036-018-1088-x)

S5 Jha, S.; Banerjee, S.; Tsai, T.; Hari, S.; Sullivan, M.; Kalbarczyk,
Z.; Keckler, S. & Iyer, R.

2019 ML-Based Fault Injection for Autonomous Vehicles: A Case for Bayesian
Fault Injection (10.1109/dsn.2019.00025)

S6 Fu, Y.; Terechko, A.; Bijlsma, T.; Cuijners, P.; Redegeld, J. & Ors,
A.

2019 A Retargetable Fault Injection Framework for Safety Validation of
Autonomous Vehicles (10.1109/icsa-c.2019.00020)

S7 Mwamba, H.; Fourie, P. & van den Heever, D. 2019 PANDAS: Paediatric attention-deficit/hyperactivity disorder application
software (10.3390/app9081645)

S8 Portugal, D.; Alvito, P.; Christodoulou, E.; Samaras, G. & Dias, J. 2019 A Study on the Deployment of a Service Robot in an Elderly Care Center
(10.1007/s12369-018-0492-5)

S9 Domínguez, C., Martínez, J., Busquets-Mataix, J.V. et al 2019 Human–computer cooperation platform for developing real-time robotic
applications. (10.1007/s11227-018-2343-4)

S10 Ramezani, S. & Hasanzadeh, R. 2019 Defect detection in metallic structures through AMR C-scan images using
deep learning method (10.1109/pria.2019.8786029)

S11 Lin, W.; Anwar, A.; Li, Z.; Tong, M.; Qiu, J. & Gao, H. 2019 Recognition and Pose Estimation of Auto Parts for an Autonomous Spray
Painting Robot (10.1109/tii.2018.2882446)

S12 Kachamas, P.; Akkaradamrongrat, S.; Sinthupinyo, S. &
Chandrachai, A.

2019 Application of artificial intelligent in the prediction of consumer behavior
from facebook posts analysis (10.18178/ijmlc.2019.9.1.770)

S13 Li, T.-H.; Kuo, P.-H.; Tsai, T.-N. & Luan, P.-C. 2019 CNN and LSTM Based Facial Expression Analysis Model for a Humanoid
Robot (10.1109/access.2019.2928364)

S14 Cai, C.-H.; Sun, J. & Dobbie, G. 2018 B-Repair: Repairing B-models using machine learning
(10.1109/iceccs2018.2018.00012)

S15 Yan, R.; Yang, J.; Zhu, D. & Huang, K. 2018 Design verification and validation for reliable safety-critical autonomous
control systems (10.1109/iceccs2018.2018.00026)

S16 Ericsson, M.; Zhang, X. & Christiansson, A.-K. 2018 Virtual Commissioning of Machine Vision Applications in Aero Engine
Manufacturing (10.1109/icarcv.2018.8581207)

S17 M. R. Zofka et al. 2018 Traffic Participants in the Loop: A Mixed Reality-Based Interaction Testbed
for the Verification and Validation of Autonomous Vehicles
(10.1109/itsc.2018.8569226)

S18 Nishimi, T.; Sato, Y.; Kajihara, S. & Nakamura, Y. 2018 Good die prediction modelling from limited test items
(10.1109/itc-asia.2018.00030)
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2018 Validation of the Robot Rendezvous and Grasping Manoeuvre Using
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S20 Wang, Y.; Xiong, R.; Yu, H.; Zhang, J. & Liu, Y. 2018 Perception of Demonstration for Automatic Programing of Robotic
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(10.1109/tmech.2018.2799963)

S21 Coronel-Reyes, J.; Ramirez-Morales, I.; Fernandez-Blanco, E.;
Rivero, D. & Pazos, A.

2018 Determination of egg storage time at room temperature using a low-cost
NIR spectrometer and machine learning techniques
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S22 Lyons, D.; Arkin, R.; Jiang, S.; O’Brien, M.; Tang, F. & Tang, P. 2017 Performance verification for robot missions in uncertain environments
(10.1016/j.robot.2017.07.001)
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continuous experimentation (10.1109/seaa.2017.15)

S24 Cavallo, D.; Cefola, M.; Pace, B.; Logrieco, A. & Attolico, G. 2017 Contactless and non-destructive chlorophyll content prediction by random
forest regression: A case study on fresh-cut rocket leaves
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S25 Chiu, M.-C. & Ko, L.-W. 2017 Develop a personalized intelligent music selection system based on heart
rate variability and machine learning (10.1007/s11042-016-3860-x)

S26 Balta, H.; Bedkowski, J.; Govindaraj, S.; Majek, K.; Musialik, P.;
Serrano, D.; Alexis, K.; Siegwart, R. & De Cubber, G.

2017 Integrated Data Management for a Fleet of Search-and-rescue Robots
(10.1002/rob.21651)

S27 Shi, S.; Wu, H.; Song, Y. & Handroos, H. 2017 Mechanical design and error prediction of a flexible manipulator system
applied in nuclear fusion environment (10.1108/ir-04-2017-0066)

S28 Oleś, Jakub, et al. 2017 A 2D microgravity test bed for the validation of space robot control
algorithms (10.14313/jamris_2-2017/21)

S29 Fotinea, S.-E.; Dimou, A.-L.; Efthimiou, E.; Tzafestas, C.; Goulas,
T. & Pitsikalis, V.

2016 The MOBOT human–robot interaction-Showcasing assistive HRI
(10.1145/3003733.3003812)

S30 Jonsson, L.; Borg, M.; Broman, D.; Sandahl, K.; Eldh, S. &
Runeson, P.

2016 Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts (10.1007/s10664-015-9401-9)

S31 Xu, D.; Chen, Y.; Chen, X.; Xie, Y.; Yang, C. & Gui, W. 2016 Multi-model soft measurement method of the froth layer thickness based
on visual features (10.1016/j.chemolab.2016.03.029)

S32 Silva, R.; Fleury, A.; Martins, F.; Ponge-Ferreira, W. & Trigo, F. 2015 Identification of the state-space dynamics of oil flames through computer
vision and modal techniques (10.1016/j.eswa.2014.10.030)

S33 Navarro, J.; Parada, G. & Duenas, J. 2014 System Failure Prediction through Rare-Events Elastic-Net Logistic
Regression (10.1109/aims.2014.19)

S34 Aguilera, S.; Torres-Torriti, M. & Auat, F. 2014 Modeling of skid-steer mobile manipulators using spatial vector algebra
and experimental validation with a compact loader
(10.1109/iros.2014.6942776)

S35 Portugal, D. & Rocha, R. 2013 Distributed multi-robot patrol: A scalable and fault-tolerant framework
(10.1016/j.robot.2013.06.011)

S36 Azadeh, A.; Ghaderi, S.; Anvari, M.; Izadbakhsh, H.; Rezaee, M.
& Raoofi, Z.

2013 An integrated decision support system for performance assessment and
optimization of decision-making units (10.1007/s00170-012-4387-6)

S37 Serrano, E. & Botia, J. 2013 Validating ambient intelligence based ubiquitous computing systems by
means of artificial societies (10.1016/j.ins.2010.11.012)

S38 Ranaweera, K.; Ruwanpura, J. & Fernando, S. 2013 Automated real-time monitoring system to measure shift production of
tunnel construction projects? (10.1061/(asce)cp.1943-5487.0000199)

S39 Pottebaum, J.; Artikis, A.; Marterer, R. & Paliouras, G. 2012 User-oriented evaluation of event-based decision support systems
(10.1109/ictai.2012.30)

S40 Torta, E.; Cuijpers, R.; Juola, J. & Van Der Pol, D. 2012 Modeling and testing proxemic behavior for humanoid robots
(10.1142/s0219843612500284)

S41 Begum, S.; Ahmed, M.; Funk, P. & Filla, R. 2012 Mental state monitoring system for the professional drivers based on Heart
Rate Variability analysis and Case-Based Reasoning (NA)

S42 Chen I.YH., MacDonald B. & Wünsche B. 2012 Evaluating the effectiveness of mixed reality simulations for developing
UAV systems (10.1007/978-3-642-34327-8_35)

S43 Faria, A. W., Menotti, D., Pappa, G. L., Lara, D. S., & Araújo, A. D.
A.

2012 A methodology for photometric validation in vehicles visual interactive
systems (10.1016/j.eswa.2011.09.126)

S44 Campuzano, F.; Serrano, E. & Botia, J. 2012 Towards socio-chronobiological computational human models
(10.1007/978-3-642-34654-5_40)

S45 Wang, X.; Liang, B.; Li, C. & Xu, W. 2008 The ground-based validation technology of teleoperation for space robot
(10.1109/ramech.2008.4681426)

S46 Baumeister, J.; Bregenzer, J. & Puppe, F. 2007 Gray box robustness testing of rule systems
(10.1007/978-3-540-69912-5_26)

S47 Lye, S.; Lee, S. & Chew, B. 2004 Virtual design and testing of protective packaging buffers
(10.1016/j.compind.2003.01.001)

S48 Raineri, M.; Perri, S. & Lo Bianco, C. G. 2019 Safety and efficiency management in LGV operated warehouses
(10.1016/j.rcim.2018.11.003)

S49 Li, C.; Kong, F.; Wang, K.; Xu, A.; Zhang, G.; Xu, N.; Liu, Z.; Guo,
H.; Wang, X.; Liang, K.; Yuan, J.; Qi, S. & Jiang, T.

2019 Microscopic Machine Vision Based Degradation Monitoring of Low-Voltage
Electromagnetic Coil Insulation Using Ensemble Learning in a Membrane
Computing Framework (10.1109/ACCESS.2019.2928025)

S50 Prado, A. J.; Michalek, M. M. & Cheein, F. A. 2018 Machine-learning based approaches for self-tuning trajectory tracking
controllers under terrain changes in repetitive tasks
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2017 Deep Learning Parkinson’s from Smartphone Data
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S59 Paudyal, P.; Lee, J.; Banerjee, A. & Gupta, S. K. S. 2019 A Comparison of Techniques for Sign Language Alphabet Recognition Using
Armband Wearables (10.1145/3150974)

S60 Amsuess, S.; Goebel, P.; Graimann, B. & Farina, D. 2015 A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis
Control: Validation in Real-Life Scenarios on Amputees
(10.1109/TNSRE.2014.2361478)

S61 Shamsollahi, P.; Cheung, K. W.; Quan Chen & Germain, E. H. 2001 A neural network based very short term load forecaster for the interim ISO
New England electricity market system (10.1109/PICA.2001.932351)

S62 Mariani, L.; Pezze, M.; Riganelli, O. & Santoro, M. 2012 AutoBlackTest: Automatic Black-Box Testing of Interactive Applications
(10.1109/ICST.2012.88)

S63 Renaudie, D.; Zuluaga, M. A. & Acuna-Agost, R. 2018 Benchmarking Anomaly Detection Algorithms in an Industrial Context:
Dealing with Scarce Labels and Multiple Positive Types
(10.1109/BigData.2018.8621956)

S65 Xi-Zheng Zhang 2007 Building Personalized Recommendation System in E-Commerce using
Association Rule-Based Mining and Classification
(10.1109/ICMLC.2007.4370866)

S66 Vamsikrishna, K. M.; Dogra, D. P. & Desarkar, M. S. 2016 Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning
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S75 Zhang, Y.; Guo, L.; Gao, B.; Qu, T. & Chen, H. 2020 Deterministic Promotion Reinforcement Learning Applied to Longitudinal
Velocity Control for Automated Vehicles (10.1109/TVT.2019.2955959)
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S77 Ryota Kurozumi; Kosuke Tsuji; Shin-ichi Ito; Katsuya Sato;
Shoichiro Fujisawa & Toru Yamamoto
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Girard, A. R.

2018 Game Theoretic Modeling of Driver and Vehicle Interactions for
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S79 Liu, K.; Li, Y.; Hu, X.; Lucu, M. & Widanage, W. D. 2020 Gaussian Process Regression With Automatic Relevance Determination
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2016 Gear fault diagnosis using discrete wavelet transform and deep neural
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S82 Zhou, Y.; Yang, J. & Zheng, L. 2019 Multi-Agent Based Hyper-Heuristics for Multi-Objective Flexible Job Shop
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S86 Jo, K.; Jo, Y.; Suhr, J. K.; Jung, H. G. & Sunwoo, M. 2015 Precise Localization of an Autonomous Car Based on Probabilistic Noise
Models of Road Surface Marker Features Using Multiple Cameras
(10.1109/TITS.2015.2450738)

S87 Jonsson, L.; Broman, D.; Sandahl, K. & Eldh, S. 2012 Towards Automated Anomaly Report Assignment in Large Complex
Systems Using Stacked Generalization (10.1109/ICST.2012.124)

S88 Souza, K. E. S.; Seruffo, M. C. R.; De Mello, H. D.; Souza, D. D. S.
& Vellasco, M. M. B. R.

2019 User Experience Evaluation Using Mouse Tracking and Artificial Intelligence
(10.1109/ACCESS.2019.2927860)

S89 Fei, X.; Zhang, Q. & Ling, Q. 2019 Vehicle Exhaust Concentration Estimation Based on an Improved Stacking
Model (10.1109/ACCESS.2019.2958703)

S90 Khosrowjerdi, H.; Meinke, K. & Rasmusson, A. 2018 Virtualized-Fault Injection Testing: A Machine Learning Approach
(10.1109/ICST.2018.00037)

Table 11
The full data to the research questions from the primary studies. The columns are the fields of the data extraction form (Section 4.3).
ID Domain (F4) Task (F5) Complexity (F6) Malfunction (F7) Validation (F8) Continuous validation (F9) ML (F12)

S1 car transportation multi-component lethal simulation no - test description plausible
S2 robot maintenance multi-component nuisance trial no yes
S3 wearable ai recognition system bias trial no yes
S4 smart environment security system privacy trial no yes
S5 car transportation multi-component lethal simulation failure monitor yes
S6 car transportation multi-component lethal simulation safety channel yes
S7 medical recognition system bias trial no yes
S8 robot care multi-component nuisance simulation & trial no yes
S9 robot unspecified system mission critical simulation no - test description plausible
S10 industrial recognition model mission critical simulation no yes
S11 industrial recognition system economic trial no yes
S12 commercial recognition model economic statistical proof no yes
S13 robot recognition system nuisance trial no yes
S14 testing recognition system bias trial no yes
S15 car transportation multi-component lethal trial redundancy yes
S16 robot recognition system nuisance trial no yes
S17 car transportation multi-component lethal simulation no yes
S18 commercial recognition model economic trial no yes
S19 robot maintenance multi-component mission critical simulation no yes
S20 robot assembly multi-component economic simulation & trial voting yes
S21 commercial recognition system nuisance trial no yes
S22 robot critical missions multi-component lethal simulation & trial no - test description yes
S23 unspecified unspecified unspecified unspecified trial no - test description yes
S24 agriculture recognition system economic trial no yes
S25 wearable ai decision support system nuisance trial no yes
S26 robot search and rescue multi-component lethal trial failure monitor no
S27 robot maintenance system economic trial no yes
S28 robot maintenance multi-component economic simulation no - test description yes
S29 robot care multi-component nuisance trial failure monitor yes
S30 commercial recognition model economic trial no yes
S31 industrial recognition model economic trial no yes
S32 industrial recognition system environmental trial no yes
S33 commercial recognition model economic trial no yes
S34 robot loading multi-component nuisance simulation no - test description no
S35 robot unspecified multi-component mission critical simulation & trial safety channel yes

(continued on next page)
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ID Domain (F4) Task (F5) Complexity (F6) Malfunction (F7) Validation (F8) Continuous validation (F9) ML (F12)

S36 commercial decision support model unspecified trial no yes
S37 smart environment safety multi-component lethal simulation no - test description no
S38 industrial recognition system economic simulation & trial no plausible
S39 unspecified decision support system economic expert opinion no - test description yes
S40 robot unspecified multi-component nuisance trial no yes
S41 wearable ai recognition system lethal expert opinion no yes
S42 aviation recognition multi-component nuisance simulation no yes
S43 car recognition model economic trial no yes
S44 smart environment safety system lethal simulation no - test description plausible
S45 robot loading multi-component mission critical simulation failure monitor yes
S46 medical unspecified model unspecified statistical proof no - test description no
S47 industrial design model economic trial no yes
S48 robot loading multi-component harmful simulation & trial safety channel yes
S49 industrial recognition model economic statistical proof no yes
S50 robot transportation multi-component lethal simulation & trial output restrictions yes
S51 medical assesment system harmful statistical proof no yes
S52 agriculture recognition system economic trial no yes
S53 government control model harmful simulation no yes
S54 gaming testing multi-component economic trial no yes
S55 commercial decision support model economic statistical proof no yes
S56 unspecified unspecified unspecified unspecified simulation no - test description yes
S57 commercial recognition model economic statistical proof no yes
S58 testing recognition system economic trial no yes
S59 wearable ai recognition system nuisance trial no yes
S60 medical recognition multi-component nuisance trial no yes
S61 industrial decision support model mission critical statistical proof no yes
S62 testing testing system economic trial no yes
S63 industrial recognition model unspecified trial no yes
S64 safety recognition system privacy trial no yes
S65 commercial decision support system nuisance trial no yes
S66 commercial rehabilitation multi-component harmful trial no yes
S67 robot security multi-component harmful trial safety channel no
S68 safety safety multi-component lethal simulation no - test description plausible
S69 industrial maintenance system economic statistical proof no yes
S70 commercial safety model harmful simulation no yes
S71 wearable ai control system nuisance trial no yes
S72 robot recognition system mission critical simulation no yes
S73 robot control system unspecified simulation no - test description plausible
S74 agriculture recognition system economic trial input restrictions yes
S75 car control system lethal simulation & trial no yes
S76 medical assesment system harmful statistical proof no yes
S77 medical assistance system harmful simulation & trial no yes
S78 car transportation multi-component lethal simulation safety channel & output

restrictions
yes

S79 commercial assesment model nuisance statistical proof no yes
S80 safety assesment system economic trial no yes
S81 agriculture control multi-component economic trial no plausible
S82 industrial scheduling model economic statistical proof &

expert opinion & trial
no yes

S83 car control multi-component lethal simulation & trial no yes
S84 medical recognition system lethal trial no yes
S85 aviation transportation multi-component mission critical statistical proof & trial no yes
S86 car transportation multi-component lethal simulation & trial no no
S87 industrial recognition model economic statistical proof input restrictions yes
S88 commercial assesment system nuisance trial no yes
S89 smart environment assesment model nuisance statistical proof no yes
S90 testing testing system economic trial no yes
20
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Table 12
Quality assessment and evidence levels as a measures for rigour
and relevance.

Context Design Validity Rigour Relevance

S1 1 1 0 2 4
S2 0.5 1 0 1.5 4
S3 0.5 1 0 1.5 4
S4 1 1 0 2 4
S5 1 1 0 2 4
S6 1 0.5 0 1.5 4
S7 1 1 1 3 4
S8 1 1 0.5 2.5 5
S9 0 1 0 1 4
S10 1 0.5 0 1.5 4
S11 0.5 0.5 0 1 4
S12 0 1 0.5 1.5 4
S13 1 0.5 0 1.5 4
S14 0.5 0.5 0.5 1.5 4
S15 1 1 0 2 4
S16 0.5 0 0 0.5 4
S17 0.5 0.5 0.5 1.5 4
S18 0.5 1 0 1.5 4
S19 1 0.5 0 1.5 4
S20 1 1 0 2 4
S21 1 0.5 0 1.5 4
S22 1 1 0 2 4
S23 0.5 1 0 1.5 4
S24 1 1 0 2 4
S25 1 1 1 3 4
S26 1 1 0 2 6
S27 0.5 0.5 0 1 4
S28 0.5 0.5 0 1 4
S29 0.5 0.5 0 1 5
S30 1 1 1 3 6
S31 1 0.5 0 1.5 5
S32 1 1 0 2 4
S33 1 0 0 1 5
S34 1 1 0 2 4
S35 1 1 0 2 4
S36 1 0 0 1 5
S37 1 0.5 0 1.5 4
S38 1 1 0 2 5
S39 1 1 0 2 4
S40 1 1 0 2 4
S41 1 1 0 2 4
S42 1 1 0 2 4
S43 1 0.5 0 1.5 4
S44 1 0 0 1 4
S45 0.5 0.5 0.5 1.5 4

(continued on next page)
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Table 12 (continued).
Context Design Validity Rigour Relevance

S46 1 1 0 2 4
S47 1 1 0 2 5
S48 1 0.5 0 1.5 5
S49 1 0.5 0 1.5 4
S50 1 1 0 2 4
S51 1 0.5 0 1.5 5
S52 1 1 0 2 4
S53 1 0.5 0 1.5 4
S54 1 1 1 3 5
S55 0.5 0.5 0 1 4
S56 1 0.5 0 1.5 5
S57 1 1 0 2 5
S58 1 0.5 0 1.5 5
S59 0.5 1 0 1.5 4
S60 1 1 0 2 4
S61 0.5 1 0 1.5 5
S62 0.5 0.5 1 2 5
S63 0.5 0.5 1 2 4
S64 1 1 0 2 4
S65 0.5 1 0 1.5 5
S66 1 1 0 2 4
S67 0.5 0.5 0 1 5
S68 1 1 0 2 5
S69 1 1 0 2 4
S70 1 0.5 0 1.5 4
S71 1 1 0.5 2.5 4
S72 1 1 0 2 4
S73 0.5 1 0 1.5 4
S74 1 0.5 0 1.5 4
S75 1 1 0 2 4
S76 1 1 0 2 4
S77 1 1 0 2 4
S78 1 1 0.5 2.5 4
S79 0.5 1 0 1.5 4
S80 1 1 0 2 4
S81 1 0 0 1 4
S82 1 0.5 0 1.5 6
S83 1 0.5 0 1.5 4
S84 1 1 0 2 5
S85 1 1 0 2 4
S86 1 1 0 2 4
S87 0.5 1 0 1.5 5
S88 0.5 1 0 1.5 5
S89 0.5 1 0 1.5 5
S90 0.5 1 0 1.5 4
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