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Abstract7

Urban forests consist of patches of recreational areas, parks, and single trees on roadsides and other forested8
urban areas. Large number of tree species and heterogeneous growing conditions result in diverse canopy9
structure. Large variation can be found both at the level of single tree crowns and canopy characteristics of10
larger areas. As urban forests are typically managed with small-scale, even tree-level operations, there is a11
need for detailed forest information. In this study, the effect of varying canopy conditions was tested on nine12
tree mapping methods. All methods utilized canopy height models (CHM) derived from dense airborne laser13
scanning data. The mapping methods utilized modified watershed segmentation differed in the intensity of14
CHM filtering. The performance of mapping methods was compared in different canopy conditions. The15
results showed considerable variation between the methods when tested in varying canopy conditions.16
Especially, presence of large broadleaved trees affected the accuracy of detecting individual trees.17
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Introduction20

There is a growing interest in more detailed information on urban trees. Typically, tree-level data are needed21
for maintaining the urban tree reserve (allocating tree maintenance etc.) but during recent years, the interest22
has grown to apply tree-level information for defining the ecosystem services (ES) provided by the trees.23
Mapping of ES such as storm water catchment or air pollutant removal would likely benefit from detailed24
tree-level data. Quantifying and mapping the ES provided by urban trees helps in justifying the costs needed25
for tree management as well as assessing the ES-related benefits in regional level. As manual generation and26
maintenance of tree-level data is time consuming and thus costly, methods utilizing various high-resolution27
remote sensing (RS) material have been implemented for detecting and monitoring urban trees.28

During the last decade, airborne laser scanning (ALS) datasets have become a common tool for urban29
mapping and planning (e.g., elevation models and building delineation in urban areas). Therefore, they have30
a high potential in operative mapping of urban vegetation (Lee et al., 2016; Saarinen et al., 2014; Moskal et31
al., 2011). The main advantage of ALS data is the ability to capture the vertical structure of forest stands with32
high detail and accuracy (e.g., White et al., 2015; Suárez et al., 2005). Potentially high spatial resolution, i.e.,33
point density, enables detection of individual tree crowns (e.g., Tanhuanpää et al., 2016; White et al., 2013;34
Hyyppä and Inkinen, 1999). On the other hand, the spectral resolution has typically been limited to a single35
wavelength, which makes species interpretation challenging (Kim et al., 2011; Vauhkonen et al., 2009).36
Hence, ALS datasets have often been accompanied by spectral information from another RS data source (e.g.,37
Alonzo et al., 2014; Koukoulas and Blackburn, 2005).38

Delineating individual trees from ALS data has been widely studied, especially in the field of forestry (Mongus39
and Zalik, 2015; Duncanson et al., 2014; Hyyppä et al., 2012). Individual tree detection (ITD) aims at mapping40
all trees from a given area and estimating the trees’ key attributes. Depending on the attribute of interest41
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and the materials used, tree attributes can be modeled with combined use of ALS and field data (e.g.,42
Tanhuanpää et al., 2014; Vauhkonen et al., 2010; Persson et al., 2002) or measured directly from ALS data43
(Tanhuanpää et al., 2015; Vauhkonen, 2010; Popescu and Zhao, 2008). A central hindrance in ALS-based ITD44
becoming an operational state-of-the-art for producing tree maps for large areas has been the sensitivity of45
the approach to the spatial structure of the canopy. Depending on the density and spatial distribution of the46
canopy (i.e., forest structure), ITD methods often suffer from either omission or commission errors (Eysn et47
al., 2015; Vauhkonen et al., 2011). Omission errors typically occur in multi-layered canopy conditions, where48
crowns of  larger  and older  trees  cover  smaller  trees.  On the other  hand,  wide and forked crowns of  old49
broadleaved trees are likely to cause commission errors.50

In the last decade, the interest towards utilization of point clouds from digital aerial photogrammetry (DAP)51
in providing information about forest resources has increased (White et al. 2016). This is partly due to the52
long tradition of utilizing aerial images in forest inventories but mostly because of the cost of DAP has been53
estimated to be one-third to one-half of the cost of ALS data (White et al. 2013). Although the capability of54
DAP point clouds in penetrating the canopy is not comparable with ALS (Vastaranta et al. 2013) comparable55
results between ALS and DAP in identifying individual trees has been obtained (Rahlf et al. 2015, St-Onge et56
al. 2015). Tanhuanpää et al. (2016) concluded that although plot-level mean height can be similar to ALS-57
based, identifying individual trees and estimating their height with DAP remains challenging. Additionally,58
DAP point clouds tend to require an accurate digital terrain model (DTM) that is usually produced with ALS59
data due to its capability of providing observations also below the canopy.60

Several ALS-based tree delineation methods have been published during the last two decades (see review,61
Lindberg and Holmgren, 2017). Basically, the methods can be divided into two core approaches where the62
ALS point clouds are analyzed either directly (e.g., Lu et al., 2014; Wang et al., 2008) or by first simplifying63
them into canopy height models (CHM) that describe the outer envelope of the canopy (e.g., Yu et al., 2011).64
The direct analysis of point clouds enables the use of all the data in the delineation process, whereas in the65
CHM approach most of the data are typically discarded. The main benefit from simplifying the data into a66
CHM is that further processing of the data is computationally less intensive.67

Previous studies have shown that the performance of different ITD methods varies between different canopy68
conditions (e.g., Eysn et al., 2015; Vauhkonen et al., 2011). It has also been reported that, due to their simpler69
crown structure, coniferous trees can be detected more accurately than deciduous trees (Jing et al., 2012;70
Koch et al., 2006). However, majority of the ALS-based ITD studies have been conducted in forest71
environment. Urban forest and trees are often interwoven with buildings, poles, wires, and other built72
objects common in urban environment. Because of the special qualities, urban areas are challenging73
environments for classification of trees and other objects (e.g., Rottensteiner et al., 2014). In terms of forest74
characteristics, urban forests are typically dominated by deciduous tree species and characterized by75
heterogeneous and fragmented canopy. Both CHM and point cloud-based ITD methods have been studied in76
urban surroundings. In Holopainen et al. (2013), dense ALS data were utilized in CHM-based method for77
detecting single trees in urban park area. The automatic method found 65.5% of the trees with DBH of 5 cm78
or above. Zhang et al. (2015), detected urban park trees directly from ALS point clouds, thus finding 90.6 %79
of the trees with DBH over 10.16 cm (4 inches). To our best knowledge urban comparisons on ITD methods’80
performance have not been made. Hence, there is little information available on the effects of canopy81
characteristics on ITD or the superiority of ITD methodologies in urban surroundings.82

Watershed segmentation (WS) and its variations are commonly used in CHM-based approaches for83
delineating individual tree crowns (Duncanson et al., 2014; Koch et al., 2006, Hyyppä and Inkinen, 1999). In84
WS, the canopy envelope is typically inverted and treated as the floor of a water body. Local minima (i.e., the85
sinks of the CHM) are then used as seed points to delineate the basins, i.e., the individual tree crowns. As a86
tree crown can result in several local minima in a CHM, a central part of the WS process is to reduce the87
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number of possible seed points. The reduction can be done by using a threshold distance between88
neighboring seed points (e.g., Yu et al., 2011). The assumption is that the proportion of tree height and crown89
width is rather constant within the study area.  The other option is to smooth the CHM, using either varying90
or fixed intensity smoothing kernel (e.g., Tanhuanpää et al., 2016; Hyyppä and Inkinen, 1999). For both91
approaches, finding the optimal number of seed points requires a priori knowledge about the tree crowns’92
height-width ratio. This is problematic in urban surroundings were high spatial variation of species and93
growth environments complicates choosing the correct number of seed points.94

Earlier studies have pointed out the significance of deciduous trees for the accuracy of ITD (e.g., Koch et al.,95
2006). The large trees affect the crown delineation in two levels. Firstly, the crown shape affects how the96
tree itself appears in the data, and secondly the crown size and shape affect the detectability of the97
neighboring trees. It is typical for old trees to have several distinguishable tops within the crown. This type98
of crowns often cause commission errors in crown delineation, as each top act as a seed point in99
segmentation process. Here, threshold values are used to control the number of resulting tree segments. The100
value is used in determining the minimum distance between detectable trees (Yu et al., 2011). However, the101
growth pattern of urban open-grown trees has been reported to differ from that of closed canopy conditions,102
as bigger share of biomass is allocated in tree crown (e.g., Riikonen et al., 2017; Tanhuanpää et al., 2017). In103
varying light and other growth conditions the relation between tree height and crown width varies104
considerably, which complicates choosing the correct threshold value. If the value is defined too low, the105
single crown is split into several crown segments within the delineation process. On the other hand, too high106
threshold value causes losing the smaller tree crowns. The same logic also affects the smoothing of CHMs.107
Choosing the level of smoothing according to the large deciduous trees is likely to results in losing the smaller108
trees (Tanhuanpää et al., 2014).109

Because of the heterogeneous nature of urban forest canopy, a widely applicable urban ITD method should110
be able to adapt to a wide range of variation in crown shapes and sizes. In this study, performance of nine111
ITD approaches was tested in heterogeneous urban park areas. The aim of the study was threefold.112

Firstly, we wanted to investigate the effect of heterogeneous urban canopy conditions on the performance113
of ITD methods. Assumption was that park areas with lower canopy cover would offer more favorable114
conditions for ITD than denser areas. Secondly, as large trees have been found to complicate especially urban115
ITD, we explored their effect on plot-level accuracy of the ITD methods. Thirdly, expecting that none of the116
methods would outperform others in all canopy conditions, we wanted to define the best methods for117
different conditions and thus clarify the requirements of a universal ITD methodology oriented to118
heterogeneous urban park areas.119

Material and methods120

Study area121

The study was conducted in the city of Helsinki, located in southern Finland (60°10'10.27"N, 24°56'7.62"E,122
Figure 1). The study area consisted of 2000 hectares of parks and recreational urban forests. The area was123
separated from other urban areas according to a property classification maintained by the City of Helsinki.124
The canopy structure of the selected areas varied from isolated individual tree crowns to multi-layer125
recreational areas amidst the city. The species composition ranged from pure deciduous parks to conifer126
dominated forest-like conditions.127

128
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129

Figure 1: Aerial image of the study area (in red) and the sample plot locations (yellow numbering).130
131

ALS data132

The City of Helsinki supplied The ALS data. The data were collected in eight separate flights between May133
20th and July 7th, 2015 using Leica ALS-70 HP and ALS-70 CM scanners. Scanning altitude was 500 m above134
ground level and side overlap between neighboring flight lines was 50%. Pulse density at nadir was 20 p/m2.135

CHM generation136

ALS data were simplified into a CHM for the needs of park stratification and tree delineation. All calculations137
were done in Terra Scan software (Terrasolid, Helsinki, Finland). The CHM was created by first triangulating138
a  digital  elevation  model  (DEM)  (see,  Axelsson,  2000)  and  generating  a  digital  surface  model  (DSM),139
representing the outer envelope of the canopy, from the highest echoes. The cell sizes were 1.0 m x 1.0 m140
and 0.5 m x 0.5 m for the DEM and DSM, respectively. Smaller cell size was used for DSM for capturing the141
fine-scale variation in tree crowns. The CHM was generated by subtracting the DEM values from the values142
of DSM. The spatial resolution of the final CHM was 0.5 m. ALS-based CHM is visualized in Figure 2.143
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144

Figure 2: Plot number 37 visualized in an aerial image (left) and an ALS-based canopy height model (right) over an145
aerial image.146

147
Stratification of park areas148

For capturing the variation within the park areas, the whole study area was first divided in three strata in149
terms of canopy cover and mean height. As open grown trees have typically wider crowns than forest trees,150
we  used  32  m  by  32  m  grid  for  the  stratification.  This  resulted  in  four  times  larger  plots  compared  to151
operational forest attribute mapping carried out by the Finnish Forest Centre (Suomen metsäkeskus). The152
grid was placed over the park areas and each grid cell fully inside park area was characterized by ALS-derived153
mean height (Hmean) and canopy cover-% (CC). Both figures were achieved by applying simplified WS (i.e., all154
peaks in the CHM were considered seed points) with cut height of 2 m (i.e.,  CHM values under 2 m were155
ignored) to the unfiltered ALS-based CHMs. CC was calculated as the proportional area of canopy polygons156
inside each 32 m by 32 m grid cell. Similarly, Hmean was calculated for each grid cell as a mean of height maxima157
of the canopy polygons. Hence, Hmean represents the height of vegetation peaks in CHM, not the mean height158
of ALS points. The stratification was used for allocating field plots over the study area proportionally to the159
total area of each strata (Table 1).160

Table 1: Definition and key characteristics of the field plots within the park strata. nplot stands for the number of plots,161
ntree for the total number of trees, CCmean for the ALS-derived mean canopy cover, Hmean for the ALS-derived mean162
height, DBHmean for the mean, DBHmin for the minimum, and DBHmax for the maximum field-measured DBH within each163
stratum.164

Stratum Definition nplot ntree CCmean Hmean DBHmean DBHmin DBHmax

1 CC < 50 % 12 82 26 % 8.0 m 20.6 6.0 108.2

2 CC > 50 % and Hmean < 15 m 15 453 74 % 10.5 m 19.6 6.0 65.1

3 CC > 50 % and Hmean > 15 m 10 277 83 % 18.0 m 25.6 6.2 116.2

Total All plots 37 812 63 % 12.2 m 21.7 6.0 116.2

165

In terms of individual trees’ size and shape, the variation between the three strata was substantial. Stratum166
1 (Figure 3) consisted largely of open or semi-open grown trees, whereas most trees in strata 2 and 3 (Figures167
4 and 5) were growing under significant light competition. Although Hmean in stratum 1 was the lowest within168
the study, it included some of the thickest trees.169
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170

Figure 3: Two 32 m x 32 m sample plots describing the canopy conditions in stratum 1. Yellow circles represent the171
position and relative size (DBH) of the field reference.172

173

174

Figure 4: Two 32 m x 32 m sample plots describing the canopy conditions in stratum 2. Yellow circles represent the175
position and relative size (DBH) of the field reference.176

177
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178

Figure 5: Two 32 m x 32 m sample plots describing the canopy conditions in stratum 3. Yellow circles represent the179
position and relative size (DBH) of the field reference.180

181

Field measurements182

In total, 37 grid cells were field measured as sample plots. All plots were scanned in June-July 2016 using183
Leica HDS 6100 (Leica Geosystems AG, Heerbrugg, Swizerland) terrestrial laser scanner (TLS). The field crew184
scanned each plot from five locations and co-registered the scans using spherical reference targets. The185
resulting point clouds were georeferenced by positioning the scan locations with Trimble R8s GNSS receiver186
(Trimble Navigation Ltd., Sunnyvale, CA, USA). Following the work of Saarinen et al. (2014), the georeferenced187
point clouds were used for creating tree maps for each field plot. The initial tree maps were first generated188
from TLS data by excerpting a 20 cm slice from the point clouds at the height of 1.3 m. In case of multi-stem189
trees, all stems that had branched below 1.3 m (i.e., DBH could be measured) were considered individual190
trees. The TLS-derived tree maps were field-checked for error of omission and commission in April 2017. In191
total, there were 812 trees on the field plots. Diameter at breast height (DBH) was determined for each tree192
by measuring them from two directions with a caliper. All trees with DBH of 6 cm or above were recorded.193
Based  on  total  basal  area,  the  most  common  tree  species  in  stratum  1  were  Salix  sp.  group  (28%),  Acer194
platanoides (25%), and Betula pendula (17%). The most common tree species for stratum 2 were Betula195
pendula (21%), Salix sp. group (19%), and Ulmus glabra (12%) and for stratum 3 Betula pendula (25%),196
Quercus robur (23%), and Acer platanoides (11%).197

198

Tree delineation methods199

Altogether, nine different crown delineation methods were tested for detecting the trees from ALS data200
(Table 2). All the applied methods were based on WS of smoothed CHMs.201

Table 2: Description of the tree delineation methods tested in the study. WS stands for watershed segmentation.202

Method Filter description Relative weight of
center cell

Kernel size:
pixels (effective) Delineation method

G0.2 Gaussian, σ = 0.2 84.4% 3 x 3 (1.5 m x 1.5 m) simple WS

G0.4 Gaussian, σ = 0.4 24.9% 5 x 5 (2.5 m x 2.5 m) simple WS
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G0.5 Gaussian, σ = 0.5 15.9% 7 x 7 (3.5 m x 3.5 m) simple WS

G0.7 Gaussian, σ = 0.7 8.1% 9 x 9 (4.5 m x 4.5 m) simple WS

G0.9 Gaussian, σ = 0.9 4.9% 11 x 11 (5.5 m x 5.5 m) simple WS

G1.0 Gaussian, σ = 1.0 4.0% 13 x 13 (6.5 m x 6.5 m) simple WS

F1 Fixed kernel 25.0% 3 x 3 (1.5 m x 1.5 m) simple WS

F2 Fixed kernel 42.9% 3 x 3 (1.5 m x 1.5 m) simple WS

Gadapt Gaussian, σ = 0.2 – 2.0 4.0% – 96% 3 x 3 – 13 x 13
(1.5 m x 1.5m - 6.5 m x 6.5 m) marker controlled WS

203

The first eight of the methods presented in Table 2 (i.e., G0.2 – F2) utilized WS without any pre-assumptions204
on crown size. Here, the segmentation process was changed only by using different filter when smoothing205
the CHM prior to applying WS. A Gaussian filter was tested using six different values of parameter σ,206
determining the size and weights of the filter (G0.2 – G1.0). The size of Gaussian filters ranged from 1.5 to 6.5207
meters and the relative weight of the center cell varied from 84.5% to 4%, respectively. Methods F1 and F2208
were adapted from earlier studies (Hyyppä et al. 2001 and Kaartinen et al. 2012, respectively). They can be209
considered as modifications of G0.2 filter giving the center cell a lower relative weight with the same spatial210
extent.211

Gadapt was the most sophisticated method tested in the study. It used an automatic algorithm of local maxima212
finding with a moving window of varying size, followed by crown delineation. The details of the algorithm213
are: firstly, the CHM was smoothed with a Gaussian filter with varying window size and value of σ was214
adjusted according to the CHM values, so that the higher the CHM value was the higher the value of σ. All in215
all, the widow size varied between 1.5 m x 1.5 m and 6.5 m x 6.5 m; Secondly, local maxima were searched216
for and considered as tree tops. Relying on the presumed relationship between crown width and tree height,217
the search radius was determined with Equation 1, which is adapted from an earlier study (Pitkänen et al,218
2004)219

௪ܥ = 1.2 + 0.16ℎ, (1)220

were Cw is crown width and h tree height in meters.  Finally, single tree crowns were delineated using marker221
controlled WS with the tree tops found in the previous step as control markers. Afterwards, tree locations222
were obtained from the CHM pixels having the highest value within each tree segment.223

Modelling of DBH224

DBH was modeled using non-parametric Random Forest (RF) methodology (see, e.g., Yu et al., 2011). The RF225
method classifies target observations by number of randomly selected predictors. Best predictors are chosen226
by repeating the classification procedure several hundred times. In this study, sample trees for the training227
data  were  selected  among  the  field  measured  trees.  In  this  step  most  of  the  small  trees  (DBH  <  20  cm)228
standing next to larger ones were discarded because their crowns were not represented properly by the229
crown segments. Depending on the tested ITD method, the number of trees in the training set varied230
between 356 and 442. The variation between methods was caused from matching the predicted tree crowns231
with field measurements. Prediction models for DBH were created using 26 tree-level ALS-derived height and232
density metrics as predictors. The DBH estimates were obtained by repeating the classification procedure233
300 times.234

Accuracy assessment235

Stem count, minimum (DBHmin), maximum (DBHmax), and mean DBH (DBHmean)  were  used  as  criteria  in236
defining the plot-level accuracy for each method. For DBH, minimum and maximum were included to show237
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whether there are differences in the detection of small and large trees, whereas mean characterized whole238
plots. For each criterion, best-case accuracies were determined for each stratum. All assessments were made239
first at plot-level and combined into stratum-level results. Estimates were compared using root mean square240
error (RMSE) (Equation 2), bias (Equation 3) and their relative values (Equations 4 and 5).241

ܧܵܯܴ = ට∑ (௬೔ି௬ො೔)మ೙
೔సభ

௡
 , (2)242

ݏܾܽ݅ = ∑ (௬೔ି௬ො೔)೙
೔సభ

௡
 , (3)243

௥௘௟ܧܵܯܴ = ோெௌா
௬ത

 , (4)244

௥௘௟ݏܾܽ݅ = ௕௜௔௦
௬ത

 , (5)245

where n is the number of trees, y the observed value, ො the modeled value, andݕ ത the mean of observations.246ݕ

In addition, DBH estimates were transformed into DBH distributions with 3 cm bin size. DBH distributions247
were compared to the field-measured distributions using Reynold’s Error index (Reynolds et al., 1988)248
(Equation 6) and relative error index (Packalén and Maltamo, 2008) (Equation 7). As both the DBH and the249
tree count are present in the approach, the distribution-based methods illustrate the overall correctness of250
plot-level observations.251

ܫܧ = ∑ ௜หݓ ௜݂ − መ݂௜ห௞
௜ୀଵ , (6)252

௥௘௟ܫܧ = ∑ 0.5 ቚ௙೔
ே
− ௙መ೔

ே෡
ቚ௞

௜ୀଵ , (7)253

where k is the number of DBH classes, ௜ݓ  is the weight of class i, ௜݂  is the observed tree count in class i, መ݂௜ is254
the predicted tree count in class i, N is the observed, and ෡ܰ the predicted tree count in the plot. Here, weight255
parameterݓ௜   was set to 1, giving equal weight for all DBH classes. EI shows the absolute difference between256
the observed and predicted distribution, whereas EIrel is  its  modification  and  can  be  interpreted  as  a257
proportion of incorrect observations in terms of the shape of the reference distribution. In this study, EI was258
used in comparing the within stratum results, whereas EIrel was utilized when comparing the performance of259
each method in different strata.260

Results261

Tree count262

The performance of all ITD methods showed considerable variation between the three strata. Depending on263
the stratum and the ITD method used, the RMSErel of  tree  count  varied  between  0.36  –  1.79  and  biasrel264
between -1.23 – 0.63 (Table 3).265

In terms of RMSErel stratum 2 had the highest accuracies. For biasrel, stratum 3 showed the best results.266
Methods G0.5 and F1 resulted in the best accuracies in all three strata in nearly all criteria. An exception to267
this were RMSE and RMSErel in stratum 2, were Gadapt resulted in the best results.268

Table 3. RMSE and bias for the number of detected trees in all three strata. Column Total shows the overall accuracy269
without stratification. The accuracies of the best methods within each stratum are highlighted.270

271

M e Stratum 1 Stratum 2 Stratum 3 Total
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G0.2 12.3 1.79 -8.4 -1.23 20.9 0.69 -14.1 -0.47 24.1 0.78 -15.3 -0.50 19.3 0.81 -11.9 -0.50

G0.4 5.3 0.78 -3.2 -0.46 12.9 0.43 7.1 0.23 19.3 0.63 7.4 0.24 14.8 0.62 4.8 0.20

G0.5 3.7 0.54 -1.2 -0.17 15.2 0.50 10.9 0.36 21.0 0.68 11.8 0.38 16.7 0.70 8.3 0.35

G0.7 4.7 0.69 1.6 0.23 18.5 0.61 15.3 0.51 23.8 0.77 15.7 0.51 19.1 0.80 12.0 0.50

G0.9 5.3 0.77 1.7 0.24 19.2 0.64 15.7 0.52 24.0 0.78 16.2 0.53 19.8 0.83 12.4 0.52

G1.0 6.2 0.90 3.0 0.44 22.9 0.76 18.9 0.63 27.1 0.88 19.4 0.63 22.2 0.93 14.9 0.63

F1 6.3 0.92 -3.9 -0.57 11.1 0.37 1.9 0.06 18.6 0.60 1.0 0.03 13.7 0.57 0.8 0.03

F2 5.8 0.84 -3.7 -0.54 13.0 0.43 5.3 0.18 19.7 0.64 4.9 0.16 14.8 0.62 3.3 0.14

Gadapt 4.7 0.69 -2.4 -0.35 11.0 0.36 3.2 0.11 21.2 0.69 12.3 0.40 15.0 0.63 4.8 0.20

272

When comparing the accuracy of different methods, method F1 resulted in the best results overall. F1 had273
the lowest RMSE and bias within stratum 3 (18.6 and 1.0, respectively) and within the unstratified data274
(column Total, 13.7 and 0.8, respectively). Overall, the methods performing the best resulted in low bias in275
all strata. However, the RMSE remained rather high for all methods and strata.276

DBH estimates277

As  the  tree  candidates  were  not  matched  to  the  field  reference,  the  accuracy  of  DBH  estimates  was278
investigated  at  plot-level.  The  accuracies  of  estimated  minimum,  maximum,  and  mean  DBHs  were279
investigated and the plot-level results are presented in Table 4. The accuracy of minimum and maximum DBH280
illustrates the methods’ ability to detect the smallest and the largest trees, whereas mean DBH demonstrates281
the methods’ ability to capture the overall structure of the plot.282
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Table 4. Accuracy of plot-level estimates of minimum, maximum, and mean DBH. Column Total shows the283
accuracy for the entire data set. The bolded figures highlight the most accurate methods within each284
stratum for each DBH measure (min, max, and mean).285
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G 0
.2

min 29.3 4.88 11.9 1.98 2.2 0.37 -1.5 -0.25 6.3 1.01 -2.6 -0.41 17.0 2.84 2.5 0.42

max 16.8 0.16 1.2 0.01 19.8 0.30 -8.9 -0.14 16.9 0.15 0.3 0.00 17.9 0.15 -3.2 -0.03

mean 23.3 1.13 8.7 0.42 3.9 0.20 -2.8 -0.14 11.0 0.43 -8.4 -0.33 14.8 0.70 -0.8 -0.04

G 0
.4

min 27.2 4.54 10.4 1.73 4.2 0.71 -3.6 -0.59 8.0 1.29 -5.5 -0.89 16.3 2.72 0.3 0.05

max 17.0 0.16 2.7 0.02 6.6 0.10 1.5 0.02 21.3 0.18 3.8 0.03 15.0 0.13 2.1 0.02
mean 22.4 1.09 8.2 0.40 4.4 0.23 -3.6 -0.18 11.9 0.47 -9.8 -0.38 14.7 0.69 -1.7 -0.08

G 0
.5

min 27.6 4.61 9.7 1.61 6.4 1.07 -5.1 -0.85 9.3 1.50 -5.3 -0.86 17.0 2.83 -0.5 -0.09

max 17.7 0.16 1.2 0.01 5.6 0.09 3.2 0.05 17.8 0.15 8.2 0.07 13.9 0.12 3.8 0.03

mean 23.4 1.13 7.5 0.37 5.5 0.28 -4.4 -0.22 10.0 0.39 -7.5 -0.29 14.9 0.70 -1.6 -0.08

G 0
.7

min 27.4 4.56 8.7 1.44 7.9 1.32 -6.4 -1.06 9.9 1.60 -8.5 -1.37 17.2 2.87 -2.2 -0.36

max 17.6 0.16 7.4 0.07 4.3 0.07 2.3 0.04 19.3 0.17 12.9 0.11 14.1 0.12 6.6 0.06

mean 23.8 1.15 8.6 0.42 6.9 0.35 -6.0 -0.30 12.4 0.48 -9.3 -0.36 15.8 0.74 -2.4 -0.11

G 0
.9

min 26.8 4.47 4.9 0.82 11.5 1.91 -10.7 -1.78 20.8 3.36 -17.2 -2.78 19.9 3.32 -7.2 -1.21

max 10.2 0.09 0.0 0.00 8.2 0.13 2.9 0.05 17.6 0.15 6.4 0.06 11.7 0.10 2.8 0.02

mean 18.1 0.88 3.6 0.18 9.3 0.48 -8.6 -0.44 17.8 0.70 -14.5 -0.57 15.2 0.72 -6.5 -0.30

G 1
.0

min 22.5 3.75 4.5 0.75 11.7 1.96 -10.6 -1.77 12.3 1.99 -10.1 -1.64 16.2 2.69 -5.7 -0.94

max 19.0 0.18 6.9 0.06 9.5 0.15 4.9 0.08 16.4 0.14 10.8 0.09 14.8 0.13 6.9 0.06

mean 20.2 0.98 6.1 0.30 8.3 0.42 -7.4 -0.38 15.2 0.59 -11.4 -0.45 15.1 0.71 -4.4 -0.21

F 1

min 28.7 4.78 10.4 1.73 3.0 0.51 -2.7 -0.46 8.2 1.32 -5.4 -0.87 17.0 2.84 0.7 0.11

max 14.0 0.13 3.7 0.03 7.4 0.11 5.1 0.08 17.0 0.15 8.5 0.07 12.5 0.11 5.4 0.05

mean 23.8 1.15 8.9 0.43 3.3 0.17 -2.6 -0.13 8.5 0.33 -5.9 -0.23 14.6 0.69 -0.1 0.00

F 2

min 27.6 4.59 10.4 1.73 3.8 0.63 -3.3 -0.55 7.8 1.26 -4.2 -0.68 16.4 2.73 0.8 0.14

max 16.9 0.16 0.4 0.00 7.9 0.12 3.3 0.05 15.9 0.14 6.6 0.06 13.5 0.12 2.8 0.02

mean 23.7 1.15 8.5 0.41 3.8 0.19 -3.0 -0.15 11.2 0.44 -8.4 -0.33 15.2 0.71 -1.0 -0.05

G a
da

pt

min 26.8 4.47 8.9 1.48 4.3 0.72 -4.0 -0.67 7.9 1.28 -4.5 -0.73 16.0 2.67 0.1 0.02
max 12.9 0.12 3.9 0.04 9.5 0.15 8.2 0.13 20.9 0.18 15.3 0.13 14.1 0.12 8.6 0.07

mean 23.6 1.14 9.1 0.44 2.2 0.11 -0.7 -0.04 7.5 0.30 -3.0 -0.12 14.0 0.66 1.8 0.08

287

In stratum 1, all tested methods underestimated the minimum DBH and method G1.0 resulted in the most288
accurate results. The relative bias remained high for all methods, varying from 0.75 – 1.98. The relative RMSE289
ranged between 3.75 and 4.88. For maximum and mean diameters, the results were more accurate, method290
G0.9 giving the most accurate results. The relative bias of maximum and mean diameters ranged from 0.00 –291
0.07 and 0.18 – 0.44, respectively. The best results in stratum 1 were achieved by using rather heavy filtering292
of CHM, i.e., using methods G0.9 and G1.0.293

As the minimum diameter was systematically underestimated in stratum 1, the situation was the exact294
opposite in stratum 2. All methods overestimate the minimum DBH, method G0.2 giving the most accurate295
results. Overall, the relative bias of minimum DBH in stratum 2 ranged from -0.25 to -1.78. Relative RMSE296
ranged between 0.37 and 1.96. Except for G0.2, maximum DBH was underestimated by all methods. Method297
G0.4 delivered the lowest biasrel (0.02) but method G0.7 resulted in the smallest RMSErel (0.07). Relative bias298
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and RMSE for maximum DBH ranged from -0.14 to 0.13 and from 0.07 to 0.30, respectively. For mean DBH,299
method Gadapt resulted in the most accurate results (biasrel = -0.04 and RMSErel = 0.11). Overall, all methods300
overestimated the mean DBH. The relative bias and RMSE for mean DBH ranged from -0.44 to -0.04 and from301
0.11 to 0.48, respectively.302

Also, in stratum 3, all  methods overestimated the minimum DBH. G0.2 was the most accurate method for303
minimum  DBH.  The  relative  bias  ranged  from  -2.78  to  -0.41  and  relative  RMSE  from  1.01  to  3.36.  For304
maximum DBH method G0.2 resulted in the lowest bias (biasrel = 0.00) and F2 the lowest RMSE (RMSErel = 0.14).305
Overall, all methods underestimated the maximum DBH also in stratum 3. Relative bias and RMSE ranged306
from 0.00 to 0.13 and 0.14 to 0.18, respectively. The mean DBH was best captured using method Gadapt (biasrel307
= -0.12 and RMSErel = 0.30). All methods overestimated the mean DBH. The relative bias and RMSE for mean308
DBH ranged from -0.57 to -0.12 and from 0.30 to 0.70, respectively.309

When the study area was not stratified, Gadapt was the most accurate method for determining minimum DBH310
(biasrel = 0.02 and RMSErel = 2.67). The relative bias and RMSE ranged from -1.21 to 0.42 and from 2.67 to311
3.32, respectively. For maximum DBH, all methods except G0.2 resulted in slight overestimates. G0.4 (biasrel =312
0.02) and G0.9 (RMSErel = 0.10) resulted in the most accurate estimates, whereas the relative bias and RMSE313
overall  ranged  from  -0.03  to  0.07  and  from  0.10  to  0.15,  respectively.  The  most  accurate  methods  for314
estimating mean DBH were F1 (biasrel = 0.00) and Gadapt (RMSErel = 0.66). The relative bias and RMSE of mean315
DBH estimates ranged from -0.30 to 0.08 and from 0.66 to 0.74, respectively.316

When comparing the accuracy of the DBH estimates from the three strata, stratum 1 clearly stands out. With317
few exceptions, in stratum 1 the RMSErel is at its highest for all methods. Also, it is only in stratum 1 that the318
methods utilizing heavy filtering (i.e., G0.9 and G1.0) outperform the others. In strata 2 and 3, heavy filtering319
typically resulted in lowest accuracies in all three DBH estimates. For these two strata, G0.2 was found the320
most accurate for minimum DBH, which reflects the methods sensitivity to small scale variation in CHM. For321
the same two strata, Gadapt was found the best method for acquiring the mean DBH. For maximum DBH, the322
differences between methods were relatively small and none of the methods clearly stood out. Except for323
G0.2, all methods underestimated the maximum DBH in all three strata.324

DBH distributions325

Error indices describing the correctness of the ITD-derived DBH distributions are presented in Table 5. As the326
tree count varies between the strata, EI is used to compare the performance of the methods within each327
stratum, whereas EIrel is used for assessing the performance of each method over all strata.328

329
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Table 5. Error index (EI) and Relative error index (EIrel) of the ITD-derived DBH distributions in all three strata. Column330
Total shows the overall accuracy without stratification. Best EI within each stratum are bolded.331

Method Stratum
1 2 3 Total

G0.2
EI 160 506 428 1094

Eirel 0.590 0.386 0.573 0.501

G0.4
EI 116 339 302 757

Eirel 0.594 0.409 0.616 0.522

G0.5
EI 98 350 276 724

Eirel 0.607 0.499 0.602 0.561

G0.7
EI 75 343 274 692

Eirel 0.644 0.502 0.655 0.588

G0.9
EI 82 356 265 703

Eirel 0.715 0.543 0.673 0.633

G1.0
EI 82 373 265 720

Eirel 0.725 0.611 0.681 0.666

F1
EI 115 378 343 836

Eirel 0.621 0.440 0.613 0.543

F2
EI 116 338 328 782

Eirel 0.563 0.402 0.618 0.509

Gadapt
EI 89 374 257 720

Eirel 0.475 0.439 0.548 0.478

332

When examining EI within stratum 1, method G0.7 results in the lowest number of errors in classification (75333
misclassifications) followed by G0.9 and G1.0 (82 misclassifications). Large filter size seemed to increase the334
accuracy in terms of correctness of DBH distributions. In stratum 2, method F2 had the lowest number of335
classification errors. However, the differences between G0.4,  G0.7,  and  F2 are small (339, 343, and 338,336
respectively). Unlike in stratum 1, there is no clear pattern between filter size and classification accuracy. In337
stratum  3,  method  Gadapt results in the best classification accuracy (257). Still, methods’ G0.9 and  G1.0338
classification accuracies (265 for both) are close to that of Gadapt.  Hence, it seems that, also in stratum 3,339
methods with larger filter size result in more accurate estimates for plot-level DBH distributions. Looking at340
column Total, the effect of different methods is clear. The intensity of CHM filtering increases gradually for341
methods G0.2-G1.0, which decreases the number of detected tree candidates. Method G0.2 strongly342
overestimates, whereas G0.4-G1.0 underestimate the tree count. The best results were achieved with method343
G0.7.344

Differences between the three best methods within each stratum were visualized through DBH distributions.345
In stratum 1 (Figure 6), the methods with the best EI values resulted in two-peaked DBH distributions, which346
resembled that of the field reference. However, none of the three methods were able to detect the highest347
DBH values. Also, Gadapt overestimated the tree count both in the smallest and the largest DBH classes. In348
stratum 2 (Figure 7), all three methods underestimated the number of trees with DBH <10 cm, whereas349
method F2 overestimated the number of trees with DBH between 20-30 cm. The results are similar in stratum350
3 (Figure 8), where the number of trees with DBH <20 cm is underestimated. Considering all three strata, the351
amount of detected small trees decreased as canopy cover and plot mean height increased.352

353
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354

Figure 6. DBH distributions of the field reference and three best performing methods (G0.7, G0.9, and Gadapt) in stratum 1.355

356

Figure 7. DBH distributions of the field reference and three best performing methods (F2, G0.4, and G0.5) in stratum 2.357

358

Figure 8. DBH distributions of the field reference and three best performing methods (Gadapt, G0.9, and G1.0) in stratum 3.359

360

Overall performance of the best methods361
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The best performing methods were selected on grounds of EI as it summarized the predicted information of362
number of trees and DBHs. Table 6 summarizes the accuracy for the best methods in terms of EI, DBH, and363
number of trees.364

Table 6. A summary of the best-performing ITD methods’ accuracies for each stratum.365
366

Stratum Best method
 (in terms of EI)

Number of trees DBHmin DBHmax DBHmean

EI EIrel
RMSErel biasrel RMSErel biasrel RMSErel biasrel RMSErel biasrel

1 G07 0.69 0.23 4.56 1.44 0.16 0.07 1.15 0.42 75 0.644

2 F2 0.43 0.18 0.63 -0.55 0.12 0.05 0.19 -0.15 338 0.402

3 Gadapt 0.69 0.40 1.28 -0.73 0.18 0.13 0.30 -0.12 257 0.548

all G07 0.80 0.50 2.87 -0.36 0.12 0.06 0.74 -0.11 692 0.588

367

Discussion368

In this study, we investigated the effect of heterogeneous canopy conditions on the performance of nine369
CHM-based ITD methods in urban parks. To do so, the park areas were stratified into three groups according370
to ALS-derived canopy mean height and canopy cover. In addition, the effect of large trees on plot-level371
accuracy of ITD methods was explored. Accuracy was evaluated through the correctness of plot-level stem372
count and three DBH-related criteria (DBHmin, DBHmax, and DBHmean). All criteria were examined separately to373
define the best-case methods for each stratum and criterion. Finally, special requirements of urban ITD374
methodology were brought up by defining the best ITD methods for each stratum, by using Reynold’s Error375
index. As expected, the canopy conditions had a considerable effect on the performance of ITD methods.376
Contrary to our expectations, areas with lowest canopy cover turned out as the most demanding for ITD377
approach. This was largely due to heterogeneity of the stand structure, but also large open-grown trees.378
Finally, we demonstrated that selecting stratum-specific ITD methods improves the overall results of urban379
ITD.380

Although the estimation of DBH was not in the core of this study, the issue is addressed here because DBH381
was a central parameter when assessing the accuracy of ITD methods. The light conditions varied from nearly382
open areas  to  closed canopy,  which is  known to affect  the growth pattern of  trees  (e.g.,  Mäkinen,  2003;383
Niemistö, 1995). Variation in growth pattern weakens the relation between DBH and height and thus lowers384
the accuracy of DBH estimates (Tanhuanpää et al., 2017). Also, as the species of the detected trees were not385
identified, the species information could not be used in DBH modelling. As the growth patterns differ386
between different tree species, including species information to the process would likely enhance the overall387
accuracies. Still, as the DBH modelling procedure was the same for all methods, we presume that the method-388
related variation of DBH estimates remained fairly constant in all ITD methods tested, and that the main389
differences between methods resulted from differences in crown delineation. Considering the estimates for390
DBHmin and DBHmax, the number of trees is rather small, which decreases the robustness of these two figures.391
Since only one tree per plot was selected as the smallest or the biggest, the figures rely on 10-15 trees (i.e.,392
one tree per plot) in stratum-level and 37 trees when no stratification was done. As all trees in each plot are393
used to achieve DBHmean, this figure is more robust for describing the methods’ performance.394

As expected, the performance of ITD methods varied substantially between the three park strata. Table 6395
shows how the relative RMSE of stem count and DBH-related accuracy indicators increase considerably while396
shifting from stratum 2 to stratum 3, towards denser and higher canopy. As similar results have been397
reported  before  (e.g.,  Koch  et  al.,  2006),  similar  results  were  also  expected  to  be  reported  in  urban398
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surroundings. What was surprising in the results was that the poorest overall performance of ITD methods399
was found in stratum 1, representing the areas with sparse canopy. Table 6 shows how the performance of400
the best ITD methods is at the lowest in stratum 1 considering most of the studied criteria. Similarly, looking401
at the best-case results in stem count and DBH criteria (Tables 3 and 4), the results in sparse canopy areas402
are mainly weaker than in the other two strata. In the open park areas of stratum 1, variation in canopy403
structure is wide. The stratum contains the smallest and some of the largest trees in the study area. Also, the404
spatial distribution of the trees varied substantially within the stratum as clustering of the trees was not taken405
into consideration. Hence, similar composition in terms of canopy cover and mean height may result from406
highly different spatial patterns. Evenly distributed crowns are an ideal subject for delineation of individual407
trees as every tree stands out from the CHM. Then again, clustered crowns result in challenging crown objects408
for crown delineation, because tree crowns are interlocking, and tall trees cover the smaller ones.409

As shown in earlier studies in managed rural forests, deciduous trees differ from conifers in crown shape410
(e.g., Kwack et al., 2007; Koch et al. 2006) and thus pose special requirements for ITD methods. The same411
also holds for urban forests where manmade growing conditions result in altered growth patterns412
(Tanhuanpää et al., 2014, 2017). As expected, similar findings were also made in this study. The observed413
effect of large deciduous trees was twofold. Because of their wide and fragmented crowns, old deciduous414
trees tended to be oversegmented with all methods. In addition to visual observations during the process,415
the phenomenon was also supported indirectly by the results. Stratum 2, which had the most accurate ITD416
results with respect to all criteria (Tables 3-5), had lower DBHmean and DBHmax than strata 1 and 3 (Table 1).417
This means that the relative number of large trees in stratum 2 was lower and that the biggest trees were418
notably smaller than in the other two strata. Still, as the crowns were not investigated in detail, only indirect419
interpretations can be made. In addition to commission errors, large deciduous crowns also resulted in420
omission  errors.  Especially  smaller  trees  located  under  or  even  close  to  large  crowns  were  easily  left421
undetected. We found this was especially problematic in case of open-grown crowns. To be correctly422
delineated, the wide multi-top crowns required either heavy filtering of CHM or, depending on the method423
used, large threshold value for seed point selection. In both cases small tree tops were ignored. Brandtberg424
et al. (2001) reported similar findings on delineating unevenly sized trees simultaneously.425

The effect of large crowns can be seen in the distributions describing the trees in strata 2 and 3 (Figures 4426
and 5). Looking at the reference distributions, the largest DBH classes in stratum 2 (Figure 7) consisted of427
trees with DBH <10 cm. However, with all the ITD methods tested, the trees in the largest classes had DBH428
of 20 cm and above. We presume that this was caused mainly by two factors. Firstly, small trees remained429
undetected under the taller ones which lead to omission errors in small diameter classes. On the other hand,430
fragmentation of large tree crowns caused detection of non-existing trees, which lead to commission errors431
in larger diameter classes. However, as dense dominant canopy layer is known to suppress shorter trees in432
CHM-based ITD regardless of whether there are single large trees or not (Wang et al. 2016), the finding can433
be only partly supported by the results. The effects of high canopy cover and large tree crowns are very434
similar and thus challenging to separate. In both cases, smaller DBH classes suffer from omission errors. The435
results lead to a conclusion that many of the large open-grown trees are likely misdelineated, resulting in436
several smaller crown segments, but the effect of higher canopy cover cannot be fully excluded from the437
analysis.438

The effect of large trees was most evident in stratum 1, which turned up to be the most challenging439
environment for ITD (see, Tables 3-5). Then again, stratum 2 that consisted of areas with the lowest mean440
DBH and the canopy was formed mainly from young trees with rather consistent crowns, seems to represent441
the most favorable conditions for ITD in the study area.442

Comparing the results from stratified and non-stratified data shows that there are no methods that would443
be the best in all strata. Despite the differences in smoothing of CHM and applying WS, simple WS and marker444
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controlled WS resulted in similar results. Applying the methods with the lowest EI (i.e.,  G0.7,  F2 and Gadapt)445
leads to total of 670 misclassifications, whereas the best performing method (G0.7) for the unstratified dataset446
leads to 692 misclassifications.447

All the best three methods had similar trend of performance between the three strata (Table 5). In terms of448
EIrel, stratum 2 had the most accurate results. For strata 1 and 3, the EIrel values were typically rather similar449
between the methods.  For the best three, results for stratum 1 were slightly better that for stratum 3. This450
means that the shape of the DBH distributions were more accurate in stratum 1. Overall, all the best methods451
underestimated the plot-level tree count (Table 6). From the three strata, the biggest underestimations were452
found in stratum 3 where majority of the small undergrowth was missed due to dense cover of the453
suppressing canopy (Figure 8).454

In general, ITD approach performed the best in stratum 2. When comparing the results from the best-455
performing methods, the accuracy in stratum 2 was the highest in nearly all the criteria presented in Table 6.456
The only exception to this was DBHmean, which had slightly higher relative bias than in stratum 3. We suggest457
that the reason for having the best results in stratum 2 lies in the low number of old open-grown trees. This458
is supported by the mean characteristics of the strata. On average, the trees in stratum 2 are growing much459
denser than in the other two strata. Also, the mean diameter is the lowest and mean height close to that of460
stratum 1. Hence the canopy in stratum 2 consists of younger trees with narrow and hence distinct crowns.461

Stratification of park areas served two purposes. Firstly, it could be means for reaching more accurate results,462
as sites can be mapped with methods adjusted for those specific conditions. Secondly, considering463
operational applications, it allowed assessing the accuracy of the methods tested separately for each464
stratum. Knowing that the accuracy of ITD varies over the mapped area, the stratum-level accuracy could be465
used as a quality indicator for the created tree maps. However, as only ALS-derived metrics (CC and Hmean)466
were used for the stratification, the actual structure of the resulting strata varied considerably. The within-467
strata variation seemed to affect the accuracy of ITD. In terms of tree size, the park areas in stratum 1 and 3468
are more diverse than in stratum 2. High variation in the size of trees lowered the accuracy of ITD regardless469
of the method used. In the light of this study, urban ITD methods would benefit from better and broader470
description of canopy. Further research effort should be put on meaningful stratification of park areas for471
enhancing the performance of ITD in park areas.472

Overall, applying a single method for all three strata leads to lower overall accuracy with all three indicators473
tested (i.e., number of trees, DBH, and Error index). This underlines that applying ITD for heterogeneous474
urban forests requires specialized methods. Compared to the ITD methods developed for forest conditions,475
urban forests require algorithms that are more agile to cope with the high variation in tree size and shape.476

477

Conclusions478

The intense management of park areas creates growing conditions that are rather unnatural. This holds479
especially for light conditions. Altered growing conditions affect the formation of individual tree crowns and480
thus the characteristics of the whole canopy. In this study, we pursued the issue by stratifying the park areas481
by ALS-derived features describing the canopy structure. The results show that urban, highly heterogeneous,482
and deciduous-dominated forests are a challenging environment for CHM-based detection of individual483
trees. In the light of this study, the key elements limiting the accuracy of urban ITD are the presence of large484
open-grown deciduous trees and, on the other hand, the heterogeneity of the canopy. Large deciduous trees485
result in both omission and commission errors and are thus a single key component in forming a successful486
ITD application. In addition, it seems that canopy cover type-specific methods would increase the accuracy.487
However, the specialized methods need to tackle a large variation of crown characteristics even within small488
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park areas. To achieve the best possible results, stratifying the park areas into more homogeneous areas is a489
viable option.  At least for the relatively open park areas, basing the stratification solely on canopy cover and490
mean height is not enough for defining the most suitable crown delineation method. As for adaptive491
delineation methods, this means that controlling the segmentation algorithm with solely CHM height does492
not provide enough information for achieving good ITD accuracy.493
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