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Finnish forest structures vary from even-aged planted forests to two- and multi-storied mixed stands. Also,
the range of silvicultural systems in use has increased because thinning from above and continuous cover
management are gaining popularity. The data currently available for modelling stand dynamics are insufficient
to allow the development of unbiased and reliable models for the simulation of all possible transitions
between various current and future stand conditions. Therefore, the models should allow temporal and regional
calibration along the accumulation of new information on forest development. If the calibration process is
automated, the simulators that use these models constitute a self-learning system that adapts to the properties
of new data on stand dynamics. The current study first developed such a model set for stand dynamics that
is technically suitable for simulating the stand development in all stand structures, silvicultural systems and
their transitions. The model set consists of individual-tree models for diameter increment and survival and a
stand-level model for ingrowth. The models were based on the permanent sample plots of the 10th and 11th

national forest inventories of Finland. Second, a system for calibrating the models based on additional data
was presented. This optimization-based system allows different types and degrees of calibration, depending on
the intended use of the models and the amount of data available for calibration. The calibration method was
demonstrated with two external datasets where a set of sample plots had been measured two times at varying
measurement intervals.

Introduction
Growth predictions have a central role in forest planning and
the practice of sustainable forest management. Errors in growth
predictions lead to suboptimal use of forest resources, and they
may also lead to unsustainable forestry. Most growth models
(see Pretzsch, 2009) are best suited for even-aged stands, corre-
sponding to the forestry doctrine of the past decades, and avail-
able empirical data. However, in Finland for example, all forests
are not even-aged, and alternatives for even-aged management
have become more tempting for various reasons as described by
Nieminen et al. (2018) and Vauhkonen and Packalen (2019). In
the latest forest act of Finland, issued in 2014, continuous cover
forestry became equally acceptable as even-aged management,
and silvicultural instructions have recently been developed also
for continuous cover forestry (Äijälä et al., 2014).

The structures of Finnish forests form a continuum from
even-aged, single-species stands via two-storied and multi-
species stands to multi-storied and uneven-aged structures
(Kuuluvainen, 2009). A common structure due to natural

succession is to have spruce regeneration under canopies
dominated by pine and birch. The spruce layer may be uneven-
aged, and it may replace the pines and the birches when they are
cut or start to die. During this process, an originally even-aged
stand first develops into a two-storied stand, from which it may
further develop toward a multi-storied structure. This process
is sometimes counteracted by human interference, namely
thinning from below and removing the advance regeneration
before the thinning operation.

Growth model systems based on site index (or age and
dominant height) are not well suited for stand structures other
than even-aged forest that is treated with thinning from below.
Besides, stand age is not always measured in forest inventories.
Management-oriented forest inventories are increasingly based
on remote sensing (e.g. Maltamo and Packalen, 2014). Airborne
laser scanning techniques provide good estimates for tree height
(Wang et al., 2019) and other forest biophysical attributes that
are correlated with height (e.g. Nilsson, 1996; Næsset, 1997a, b;
Maltamo et al., 2004a, b). The stand age can be imputed from
plots measured as ground truth data in other stands. Despite
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this, it is reasonable to develop age-independent methods for
estimating the site index (Solberg et al., 2019).

As a partial reaction to the lack of correspondence between
existing growth models and emerging forest structures, Pukkala
et al. (2013) developed prediction models that are technically
suitable for all stand structures. These models do not use
stand age or dominant height as predictors. The model set also
includes a sub-model for ingrowth, which is an important
element of the stand dynamics in continuous cover forestry.
The models of Pukkala et al. (2013) are based on datasets that
are geographically biased and partly also quite old. The models
of Hynynen et al. (2002) might also be unfit as management
alternatives have increased, resulting in changes in stand
structures. Also, climate change and other factors (for instance
nitrogen deposition) have already significantly increased the
growth rate of Finnish forests (Henttonen et al., 2017) compared
with the years of growth modelling data. Therefore, there are
obvious reasons to develop new growth models for Finnish
forestry.

Simultaneously, new demands have been set for forest
planning and growth simulators: prediction models and simula-
tors should be transparent, flexible and adjustable. In Finland,
forest management is highly important for climate change
mitigation, maintenance of biological diversity and the national
economy. Because of the importance of forest management
for multiple ecosystem services, both the decision-makers and
the citizens are highly interested in the growth predictions for
Finnish forests, estimates of sustained yield as well as knowledge
and reasoning behind them. In this respect, transparency of the
prediction models is a necessity. When the prediction models
and calculation systems are open and transparent, all interested
parties can test the assumptions on which the calculations
supporting national (Sievänen et al., 2014; Kärkkäinen et al.,
2020) or regional (Haakana et al., 2017; Kärkkäinen et al.,
2019; Hyvönen et al., 2020) forest policies are based. The users
of forest growth prediction models may also have their own
regional or context-specific datasets, which they want to use
to test the models and perhaps calibrate them. The possibility
for easy calibration and modification extends the life-span of
the prediction models and simulation systems in changing
conditions and makes them more widely applicable and
acceptable.

The objective of this study was to develop a complete set of
generic forest growth prediction models for three sub-processes
of stand dynamics: diameter increment, tree mortality/survival
and regeneration (ingrowth). Model forms that can be used in
different stand structures and silvicultural systems were tar-
geted. Therefore, stand age was not used as a predictor (nor
site index that is based on stand age and dominant height),
and the model set includes sub-models for ingrowth. Also, a
method for calibrating the models or part of them is presented
and demonstrated. A self-learning simulator for stand dynamics,
adjustable for changing conditions, evolved in the course of the
study. This simulator can be used to test the generic prediction
models developed in this study, calibrate the models with empiri-
cal datasets and simulate stand dynamics with either the generic
or calibrated model sets.

Materials and methods
Data
Sample plot and stand description data from the Finnish National
Forest Inventory (NFI; Korhonen, 2016; Korhonen et al., 2017)
were used. The NFI data are a statistical sample of all land area
in Finland. The whole data of the 11th NFI (NFI11, measured in
2009–2013) consist of 54 396 plots. The sample plots were so-
called restricted relascope plots, i.e. on each sampling point (plot)
the measured trees were selected with the probability propor-
tional to size sampling design. The plot radius thus increased as a
linear function of tree diameter. The maximum radius of the plot
was 12.52 m in South Finland and 12.45 m in North Finland.

This study focused specifically on observations from perma-
nent inventory plots measured in the 10th NFI (NFI10, 2005–
2008) and NFI11. The total number of permanent plots was
16 062, of which altogether 11 987 plots were selected based on
two criteria: (1) the plots studied had to be located on productive
or poorly productive forest land and (2) the centre point of the
previously measured plot was found with certainty in the latter
inventory. These plots cover mainland Finland except for the
sparsely forested three northernmost municipalities where NFI10
was not implemented (in 2020, Finland had 310 municipalities).
Altogether 8258 plots (69 per cent) were located on mineral soils
and the remainder on different types of peatlands. No silvicultural
treatment history during the most recent 10-year period was
discovered on altogether 7394 plots (62 per cent), while the rest
of the plots had been treated.

The tree-level data consisted of observations for a total of
121 231 and 119 391 trees measured from the permanent plots
in NFI10 and NFI11, respectively. The tree variables included
diameter at breast height (diameter at breast height (d.b.h.)
at 1.3 m from ground), tree species, tree status (dead, alive)
and change in tree status between NFI10 and NFI11 (survivor,
ingrowth, removed and mortality). Of the tree level observations,
21 per cent were measured on herb-rich and better sites, 47 per
cent on mesic sites, 25 per cent on sub-xeric sites and 6 per cent
on xeric or poorer sites. Of all measured trees, 50.1 per cent were
Scots pine (Pinus sylvestris L.), 27.6 per cent Norway spruce (Picea
abies (L.) H. Karst.), 3.6 per cent silver birch (Betula pendula Roth),
14.8 per cent downy birch (Betula pubescens Ehrh.), 1.4 per cent
aspen (Populus tremula L.) and 2.4 per cent other species.

For each plot, more than 100 stand-level variables were addi-
tionally available, describing the stand compartment of the plot.
In NFI, the stand compartment is determined as a region that is
homogenous in terms of site type, growing stock, past manage-
ment and recommended future management. Thus, the stand-
level variables describe an area that is markedly larger than the
plot. The following stand-level variables were extracted for this
study:

• Site type: mineral soil or peatland
• Site fertility (6 classes, see below)
• Altitude above sea level (m)
• Effective temperature sum (degree days)
• The most recent silvicultural treatment and its estimated

timing.
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Data preparation
The data measured on relascope plots were used to prepare
modelling data for the individual-tree diameter increment model,
individual tree survival function and stand-level ingrowth model.
The potential predictors for the diameter increment and survival
models included variables that describe tree size, competition
and site productivity. The models were fitted separately for Scots
pine, Norway spruce and broadleaf species. The main broadleaf
species were silver birch, downy birch, aspen, alder (Alnus incana
(L.) Moench) and rowan (Sorbus aucuparia L.). Tree size was
described by d.b.h., competition total by the basal area of trees
(expressed in m2 ha−1) and the basal area of trees larger than the
subject tree (BAL; Wykoff, 1982; Vanclay, 1994), and site produc-
tivity by latitude, altitude, temperature sum, fertility class and soil
type (mineral soil vs peat) (Hynynen et al., 2002; Trasobares et al.,
2004). The fertility classes were mesotrophic herb-rich, herb-rich,
mesic, sub-xeric, xeric and barren heath.

Diameter at breast height and all the site variables were
directly available in the sample plot data. The stand basal
area and BAL were calculated by summing the basal area
factors of the measured trees. Each tree represented the
same basal area. The basal area factor was 2 m2 ha−1 in
South Finland and 1.5 m2 ha−1 in North Finland. However,
there were some exceptions from this rule since there was a
maximum distance from the plot centre beyond which trees
were no longer measured. BAL and basal area were computed
separately for pines, spruces and broadleaved species. This made
it possible to include the effect of species composition in the
models.

Diameter increment was obtained as the difference in the
diameter of the same tree in two consecutive measurements.
The measurement interval was ∼5 years. However, since plots
were measured also during the growing season and the date
was not the same in the two measurements of the same plot,
the diameter increment was converted to a 5-year increment by
utilizing the starting and ending dates of the growing season at
different latitudes (https://www.ilmatieteenlaitos.fi/terminen-ka
svukausi). It was assumed that the rate of diameter increment is
constant during the growing season.

In a relascope plot, there can be ingrowth to all diameter
classes, and the number of trees per hectare represented
by one measured tree decreases when the tree grows. In
this study, the calculation of the number of ingrowth trees
was based on the following formula (N = number of trees per
hectare):

N (t + 1) = N(t) − Nmortality + Ningrowth (1)

where N(t) is the number of trees per hectare at measurement
occasion t, calculated using the tree diameter (expansion factor)
of time point t; N(t + 1) is the number of trees per hectare at
measurement occasion t + 1, calculated using the tree diameter
(expansion factor) of time point t + 1 and Nmortality is the number
of trees per hectare that died between the time points t and t + 1,
calculated using the expansion factor of time point t.

Of the variables of equation 1, all except Ningrowth were known.
Therefore, Ningrowth was computed as follows:

Ningrowth = N (t + 1) − N(t) + Nmortality (2)

Since N and Nmortality apply to trees taller than 1.3 m, Ningrowth
is the estimate of new trees that pass the 1.3-m height limit
between time points t and t + 1. Ingrowth was calculated
separately for pine, spruce, silver birch, downy birch and other
broadleaved species.

Only non-cut plots were used for fitting the baseline models
(Tables 1 and 2). This allowed us to keep the models simple as
variables describing the removed competition were not needed
as model predictors. The average 5-year diameter increment of
all trees was 1.3018 cm, and the 5-year survival rate calculated
over all trees was 0.9829.

Small trees have very high expansion factors when the basal
area factor is 2 m2 ha−1. Therefore, the overall level of ingrowth
estimate obtained from equation 2 mainly depends on the small-
est trees that were measured at time point t + 1 but not at time
point t. These are mostly trees that had passed the 1.3-m limit
during the measurement interval. These trees must be very close
to the plot centre to become included in a relascope plot. There-
fore, if there are more than one tree that had passed the 1.3-m
limit, these trees are very close to each other. Often they are a
group of trees such as coppice shoots sprouting from the same
stump. Since a maximum of one of these shoots has space to
grow to larger dimensions, the data were censored following the
suggestion of Lappi and Pukkala (2020). All ingrowth estimates
larger than 25 000 trees ha−1 were replaced by 25 000, which
roughly corresponds to accepting only one of those trees that
had passed the 1.3-m limit during the measurement interval.
Compared with uncensored data, censoring decreased the mean
ingrowth estimate by 8 per cent in Scots pine, 20 per cent in
Norway spruce, 43 per cent in birch and 53 per cent in other
broadleaf species.

Model fitting method
The candidate predictors and their transformations were
selected based on previous research and literature (Vanclay,
1994; de-Miguel et al., 2012; Pukkala et al., 2013) and the
availability of the variables both in the dataset of this study
and in datasets of potential applications. Different variable
combinations were tested using fixed-effects regression mod-
elling, aiming at a low number of predictors, logical signs of the
regression coefficients and robust model forms. The fit statistics
used in these comparisons were the Akaike information criterion,
standard deviation of residuals and statistical significance of
the parameters. Of the available site variables (temperature
sum, altitude, latitude, longitude, fertility class, soil type), only
temperature sum, fertility class and soil type (mineral soil
vs. peat) were systematically significant at the 95 per cent
confidence level.

Non-linear regression analyses and model forms that prevent
illogical predictions were used. The forms of the models are as
follows.

Diameter increment (DI) : DI = exp(f (x)) (3)

Survival rate (S) : S = 1/(1 + exp(−(f (x))) (4)

Ingrowth (NI) : NI = exp(f (x)) (5)
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Table 1 Diameter increment and survival modelling data.

Diameter increment (n = 72 280) Survival (n = 73 535)

Variable Min Mean Max Min Mean Max

Altitude, m 0 133.9 430.5 0 133.9 430.5
Temperature
sum, d.d.

606 1081 1362 606 1081 1362

Measurement
interval, a

3.52 4.72 5.72 3.52 4.73 5.72

Basal area,
m2 ha−1

1.50 21.66 64 1.5 21.7 64

Pine basal area,
m2 ha−1

0 9.95 56 0 9.93 56

Spruce basal
area, m2 ha−1

0 6.88 48.45 0 6.88 48.45

Broadleaf basal
area, m2 ha−1

0 4.85 64 0 4.89 64

Diameter (d.b.h.),
cm

0.5 17.94 68.30 0.5 17.86 68.3

BAL, m2 ha−1 0 9.96 62 0 10.05 62
Pine BAL,
m2 ha−1

0 5.19 54 0 5.20 54

Spruce BAL,
m2 ha−1

0 2.99 46.45 0 3.02 46.45

Broadleaf BAL,
m2 ha−1

0 1.78 62 0 1.83 62

d.d. (degree days) is the sum of the mean temperatures, minus five degrees, of those days on which the mean temperature is higher than five degrees
Celsius.

Table 2 Ingrowth data (9599 plots).

Minimum Mean Maximum

Altitude, m 0 137.5 430.5
Temperature
sum, d.d.

606 1071 1362

Measurement
interval, a

3.52 4.75 5.72

Basal area,
m2 ha−1

0 14.24 64

Pine basal area,
m2 ha−1

0 7.05 56

Spruce basal
area, m2 ha−1

0 4.05 48.45

Broadleaf basal
area, m2 ha−1

0 3.15 64

where x is a vector of predictors and f (x) is of the form
a0 + a1x1 + a2x2 . . . (ai is regression coefficient and xi is pre-
dictor). These model forms guarantee that negative model
predictions are not obtained, and the predicted survival rate is
between 0 and 1. Since trees measured in the same plot were
correlated observations, the final models were fitted as mixed-
effects models assuming a normally distributed random plot

factor in the model (a0 was replaced by a0 + uj where uj is random
plot factor). The models fitted in regression analysis are referred
to as generic models.

Model calibration procedure
The procedure originally proposed by Pukkala et al. (2011) and
later used by de-Miguel et al. (2014), Juma et al. (2014) and Jin
et al. (2019) was adapted for calibrating the models with datasets
other than the modelling data of this study. The method needs
data on the diameter distribution of trees in several sample plots
in two or more measurement occasions. The idea of the method
is to use the diameter distribution at the first measurement
occasion and simulate the stand development until the sec-
ond measurement occasion. The simulated diameter distribution
(or some other stand variable) is compared with the measured
one. The simulator is linked with an optimization algorithm that
adjusts the parameters of the models aiming at minimizing
the difference between the simulated and measured diameter
distributions at the second measurement occasion.

In this study, the minimized loss function was as follows:

argminθ

=
∑J

j=1

{
a

[∑Ij
i=1

∣∣∣gm
ij − gs

ij (θ)

∣∣∣c1+b
∑Ij

i=1

∣∣∣f m
ij −f s

ij (θ)

∣∣∣c2
]}

(6)
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where � is the set of coefficients of the models for diameter
increment, survival and ingrowth; J is the number of plots; Ij
is the number of diameter classes in plot j; gm

ij and gs
ij(θ) are,

respectively, measured and simulated basal area (m2 ha−1) of
diameter class i at the end of the measurement interval; fijm
and f s

ij (θ) are, respectively, measured and simulated number of
trees in diameter class i; and a and b are the weights of the
diameter distributions of basal area and number of trees. Three-
centimetre diameter classes were used in the loss function. The
weights (a and b) also remove the effects of the different units
of basal area and number of trees (a should be larger than b if
the unit of basal area is m2 ha−1 and f ij is the number of trees
per hectare). Parameters c1 and c2 determine how quickly the
difference between measured and simulated values increases
the loss.

As an alternative, the following loss function was also used in
model calibration:

argminθ =
∑4

k=1

∑J

j=1

{
a

[∣∣∣Gm
jk − Gs

jk (θ)

∣∣∣c1 + b
∣∣∣Fm

jk − Fs
jk (θ)

∣∣∣c2
]}

(7)

where Gm
jk and Gs

jk(θ) are, respectively, measured and simulated
basal area (m2 ha−1) of species k (k = 1 for pine, k = 2 for spruce,
k = 3 for birch and k = 4 for other species) at the end of the mea-
surement interval and Fik

m and Fs
jk(θ) are, respectively, measured

and simulated number of trees per hectare.
The method of Nelder and Mead (1965) was used in calibration

(as explained in Supplementary Data). It is a population-based
method, which operates with several solution vectors (Pukkala
2009). The number of solution vectors (population size) is one
more than the number of optimized model coefficients. For
example, if 10 coefficients of the models are adjusted with
the calibration method, 11 combinations of 10 coefficients are
produced and updated for several iterations using the principles
of the Nelder and Mead algorithm. In the calibration examples of
this study, the initial population of solution vectors was obtained
by drawing a uniformly distributed random number from a range
specified for each coefficient:

xi = U[xMin
i, xMax

i] (8)

where xi is the value of coefficient i in an initial solution vector.
The minimum value of the coefficient was 0.5 times the value of
the coefficient obtained from regression analysis (Tables 3, 5 and
6) and the maximum value was 1.5 times the coefficient.

Calibration datasets
Two datasets were used to test and demonstrate the model
calibration procedure described above. The two datasets were
Spati and Silvi, both described in Pukkala et al. (2013). The Spati
data were collected from 135 rectangular plots during the 1980s.
Plots were measured in pine, spruce and mixed conifer stands
in North Karelia on mineral soil sites. The past 5-year radial
growth was measured from every tree using increment cores.
Ingrowth was not measured, and tree mortality was negligible
in these plots that represented managed commercial forests.

The plots have been used in several studies to fit distance-
dependent individual-tree diameter increment models (e.g.
Pukkala and Kolström, 1987; Miina and Pukkala, 2000). Plots were
purposefully measured in different spatial distributions of trees,
ranging from very regular plantations to highly aggregated tree
arrangements.

The Silvi data were measured from several silvicultural experi-
ments established during the 1980s. The individual plots of these
experiments represented even-aged management and different
variants of continuous cover forestry. Altogether 139 measure-
ment intervals ranging from 2 to 22 years were available. In
each measurement, the number of trees was counted in 1-cm
diameter classes by tree species. The trees were not numbered.
Therefore, no growth, survival and ingrowth data were avail-
able as measurements. Only the combined influences of the
three sub-processes of stand dynamics were observed in these
plots.

In the Spati dataset, only diameter increment models were
calibrated and used in simulation. The calibration was referred
to as ‘scaling’ when only the intercepts of the models were
optimized. In the other case (referred to as ‘fitting’), all model
parameters except the coefficients for temperature sum and
peatland were optimized. Equation (7) was minimized in scaling
and equation (6) in fitting. Weights a (for basal area) and b (for
number of trees per hectare) were 1 and 0.001, respectively, and
the exponents of the loss functions (c1 and c2) were both 1.5.

When the Silvi data were used, the intercepts of all 10 models
were optimized in scaling, and equation (7) was minimized. In
fitting, a total of 64 parameters of the 11 models were optimized
(all parameters except the coefficients for peatland since none of
the plots was located in peatland).

Results
Diameter increment models
All three diameter increment models (pine, spruce and
broadleaves) had 10 predictors (Table 3). Increased temperature
sum increased diameter increment most in spruce and least
in pine, implying that the growth difference between southern
and northern Finland is the greatest in spruce. Indicator variable
Peat affected diameter increment only in pine, most probably
because the peat layer is often thin in spruce and broadleaf
peatland forests. The reduction corresponded to the effect of
one site class; for example, the growth of pine on mesic peatland
was approximately the same as on sub-xeric mineral soil site
(Figure 1). Site fertility affected diameter increment more in
spruce than in pine.

The effects of tree size and competition on diameter
increment were logical. Among broadleaved species, increasing
diameter started to decrease growth later in silver birch and
aspen, as compared with other species (Fig. 1). The model
predicted similar growth rates for small trees of different
broadleaf species, but the growth rate of species other than silver
birch and aspen started to decline earlier. The coefficients for the
BAL variables (BAL/

√
(d + 1)) show that the diameter increment

of spruce increased with the increasing proportion of pine and
broadleaves among larger trees. The growth of broadleaf species
increased with the increasing proportion of pine.
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Table 3 Diameter increment models.

Predictor Pine Spruce Broadleaf

Coefficient t Coefficient t Coefficient t

Intercept −7.1552 −26.4 −12.7527 −25.9 −8.6306 −16.9√
d 0.4415 16.1 0.1693 5.0 0.5097 14.6

d −0.0685 −21.8 −0.0301 −8.2 −0.0829 −17.7
ln(G + 1) −0.2027 −17.5 −0.1875 −8.7 −0.3864 −23.0
BALTotal/

√
(d + 1) −0.1236 −41.2 −0.0563 −10.7 – –

BALSpruce/
√

(d + 1) – – −0.0870 −14.8 – –
BALSpruce + Broadleaf/

√
(d + 1) – – – – −0.0545 −11.8

ln(TS) 1.1198 28.9 1.9747 28.1 1.3163 18.0
Herb-rich or better 0.1438 7.3 0.2688 12.6 0.2566 12.5
Sub-xeric −0.1754 −13.4 −0.2145 −6.8 −0.2256 −7.5
Xeric or poorer −0.5163 −26.0 −0.6179 −6.6 −0.3237 −5.1
Peat −0.2425 −18.8 – – – –
d × (Pendula or Aspen) – – – – 0.0253 24.5
AIC 89 159 63 358 49 726
Sdev of plot factor 0.3432 0.4719 0.3522
Residual (RMSE) 0.7486 0.9873 1.0425
Number of plots 6645 4206 4545
Number of trees 36 416 20 068 15 796

d is diameter at breast height (cm); G is stand basal area (m2 ha−1); BAL is basal area in larger trees (m2 ha−1); TS is effective temperature sum
(degree days); herb-rich, sub-xeric and xeric are indicator variables for the respective site fertility classes; Peat is indicator variable for peatland forest;
Pendula and Aspen are indicator variables for Betula pendula and Populus tremula, respectively; Sdev is standard deviation; and RMSE is the square
root of the mean of squared errors.

Figure 1 Predictions of diameter increment models for pine, spruce and silver birch (temperature sum is 1100 d.d., stand basal area is 25 m2 ha−1

and basal area in larger trees is 10 m2 ha−1). ‘in Pine’ means that the tree (spruce or silver birch) is growing in a pine stand, ‘Peat’ means that the soil
is peat and ‘Downy’ means that the prediction is for downy birch. ‘Old’ refers to predictions calculated with the models of Pukkala et al. (2013).
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Table 4 Mixed-effects survival models.

Predictor Pine Spruce Broadleaf

Coefficient t Coefficient t Coefficient t

Intercept 4.1505 5.26 9.6649 3683.55 3.6655 6.60√
d 3.1513 9.00 1.0157 380.63 1.0650 4.65

d −0.3575 −8.21 −0.1577 −58.35 −0.1509 −5.02
BALTotal/

√
(d + 1) −0.4001 −10.44 – – – –

BALPine/
√

(d + 1) – – – – −0.0326 −1.15
BALSpruce/

√
(d + 1) – – −0.3244 −124.66 – –

BALSpruce + Broadleaf/
√

(d + 1) – – – – −0.2768 −11.63
Peat −0.3813 −1.39 −0.7366 −1.91 −0.3884 −2.32
Aspen – – – – −0.0562 −0.22
Birch – – – – 1.0780 6.39
AIC 3787 1877 4079
Sdev of plot factor 6.244 7.447 2.325
Number of plots 6659 4219 4602
Number of trees 36 874 20 302 16 359

d is diameter at breast height (cm); BAL is basal area in larger trees (m2 ha−1); TS is effective temperature sum (degree days); Peat is indicator variable
for peatland forest; Birch and Aspen are indicator variables for Betula spp. and Populus tremula, respectively; Sdev is standard deviation.

Survival models
Increasing diameter first increased survival rate, after which it
decreased slowly (Tables 4 and 5, Figure 2). The survival rate
was slightly lower in peatland forests in all species, as com-
pared with mineral soil sites. Temperature sum and fertility class
were not significant predictors of survival rate. Species compo-
sition had a significant effect on survival rate in such a way
that the predicted mortality of spruce increased with increas-
ing competition by spruce, and competition by pines increased
the mortality of broadleaves less than competition by other
species. With a certain diameter and competition (BAL), birch
had a higher predicted survival rate than the other broadleaf
species.

Figure 2 suggests that the fixed parts of the mixed-effects
models may not be plausible since they predict almost 100 per
cent survival rate for all except very small trees (Figure 2, red
curves). The reason for this outcome might be the combined
effect of small plot size (few trees per plot) and the very small
average number of dead trees in the sample plots. As a con-
sequence, the plot factors of the mixed-effects models may
explain most of the variation in survival rate. The high stan-
dard deviation of the random plot factor (Table 3) also suggests
that the effect of the plot on survival rate may be much larger
than the effect of the fixed model predictors. Since the use
of the fixed part of the mixed-effects models seems to result
in an over-estimated survival rate, also fixed-effects survival
models were fitted (Table 4). They are more recommendable
than the mixed-effects model when the latter models cannot be
calibrated.

Ingrowth models
The ingrowth models predicted less ingrowth with increasing
basal area (Table 6, Figure 3). The ingrowth of spruce and birch

increased with the increasing presence of pine. The effect of
species composition was substantial in spruce; at typical values
of basal area, the model predicted 5–10 times higher spruce
ingrowths for pine stands, as compared with pure spruce stands.

The ingrowth of pine was the highest in sub-xeric sites and the
lowest in herb-rich (or better) sites, mesic and xeric (or poorer)
sites being in between. The situation was very different in spruce,
where sub-xeric sites had much less ingrowth than more fertile
sites. Birch resembled spruce but the effect of site fertility on birch
ingrowth was less pronounced.

In all species, increasing temperature sum increased ingrowth.
This can be explained by more frequent seed years in the south
and the slow growth rate of seedlings in the north. The effect of
temperature sum was the largest in broadleaf species other than
birch (Table 5).

Ingrowth is an important element of stand dynamics in all sil-
vicultural systems, which are not based on artificial regeneration.
The essential prediction is the number of surviving ingrowth trees.
The mortality of small trees may be high under dense canopies
of large trees, which means that many of the new ingrowth trees
may soon die. The difference between predicted ingrowth and 5-
year mortality of the ingrowth trees is visualized in Figure 4 for
different basal areas, temperature sums and site fertility classes.
A typical basal area after thinning from above is often around
10 m2 ha−1 in continuous cover management (or between 10
and 20 m2 ha−1 on fertile sites). For a temperature sum of 1100
degree days (d.d.), the models of this study predicted net annual
ingrowth rates ranging from 2 (birch on xeric site) to 50 (pine on
xeric site) trees per hectare in pure stands when the basal area
was 10 m2 ha−1 (Figure 4). Ingrowth decreased with increasing
basal area, most rapidly in pine and birch. In Figure 4, the net
ingrowth rates of spruce in spruce stands range from 0.5 to
7.5 trees per hectare in fire years. However, the models predict
that an admixture of pine would significantly increase spruce
ingrowth.
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Table 5 Fixed-effects survival models.

Predictor Pine Spruce Broadleaf

Coefficient t Coefficient t Coefficient t

Intercept 1.41223 3.451 5.01677 7.261 1.60895 5.019√
d 1.8852 9.668 0.36902 1.199 0.71578 4.291

d −0.21317 −8.554 −0.07504 −2.116 −0.08236 −3.469
BALTotal/

√
(d + 1) −0.25637 −14.286 – – – –

BALPine/
√

(d + 1) – – – – −0.04814 −2.903
BALSpruce/

√
(d + 1) – – −0.2319 −9.306 – –

BALSpruce + Broadleaf/
√

(d + 1) – – – – −0.13481 −10.611
Peat −0.39878 −3.882 −0.47361 −3.107 −0.31789 −3.148
Aspen – – – – 0.56311 3.178
Birch – – – – 1.40145 13.215
AIC 4416 2474 4353
Number of plots 6659 4219 4602
Number of trees 36 874 20 302 16 359

d is diameter at breast height (cm); BAL is basal area in larger trees (m2 ha−1); TS is effective temperature sum (degree days); Peat is indicator variable
for peatland forest; Birch and Aspen are indicator variables for Betula spp. and Populus tremula, respectively.

Figure 2 Prediction of the survival models of pine, spruce and broadleaf species (temperature sum is 1100 d.d. and basal area in larger trees is 15
m2 ha−1). ‘Mixed’ means that the prediction is calculated with a mixed-effects model (otherwise it is based on fixed-effects model), ‘Peat’ means
that the soil is peat and ‘in Pine’ means that the tree is growing in a pine stand. ‘Old’ refers to predictions calculated with the models of Pukkala et al.
(2013).

Comparison with previous models
All models exhibited fairly similar effects of tree size, species
composition, competition, temperature sum and site fertility as
the models of Pukkala et al. (2013). The similarity of the effect
of tree size on diameter increment and survival can be seen
from Figures 1 and 2 (dotted lines are predictions of the earlier
model of Pukkala et al. (2013)). However, the diameter increment

models predict higher growth rates than the previous model. As a
difference to the previous models, the new models also describe
the effect of temperature sum on ingrowth and the effect of soil
type (mineral soil vs peatland forest) on diameter increment and
survival.

Of the three sub-processes of stand dynamics, namely incre-
ment, mortality and regeneration (ingrowth), ingrowth is the
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Table 6 Ingrowth models.

Pine Spruce Birch Other
Coefficient t Coefficient t Coefficient t Coefficient t

Intercept −6.6933 −2.13 −9.6128 −1.67 −3.2919 0.90 −48.4331 −3.86
ln(TS) 1.9051 4.26 2.2897 2.81 1.5438 2.96 7.6107 3.46√

G −0.5035 −11.22 −0.8739 −3.84 −1.2920 −3.97 −0.2227 −3.52√
GPine – – 0.7121 2.88 0.9436 2.73 – –

Herb-rich or better −1.3223 −2.34 – – – – 1.3402 2.95
Sub-xeric 0.7679 654 – – – – – –
Sub-xeric or poorer – – −1.6702 −3.35 −0.8891 −4.56 −0.9439 −0.73
AIC 173 448 172 273 183 030 181 490
Number of plots 9599 9599 9599 9599

G is stand basal area (m2 ha−1); TS is effective temperature sum (degree days); herb-rich and sub-xeric are indicator variables for the respective site
fertility classes.

Figure 3 Prediction if the ingrowth models for pine, spruce and birch (temperature sum is 1100 degree days if not indicated otherwise). ‘30 per cent
Pine’ means that 30 per cent of stand basal area is pine.

most erratic and most difficult to predict. In relascope plots with a
high basal area factor, the sampling error is very high for ingrowth
since one new ingrowth tree to a small diameter class corre-
sponds to a very high number of trees per hectare. In addition, the
calculated ingrowth of relascope plots may also be negative as
the number of trees per hectare represented by a tree decreases
when the tree grows. Despite these features of relascope plots
used in this study, the average number of ingrowth was of the
same magnitude in the current study and the earlier studies of
Pukkala et al. (2013) and Lappi and Pukkala (2020) (Table 7). The
number of pine ingrowth was higher in the current study, which
may be explained by differences in the proportions of site fertility
classes in the two studies. In Table 7, the difference between the

measured and predicted ingrowth of this study is explained by
the use of censored data.

Calibration examples
All calibration cases decreased the root mean squared error of the
periodical basal area increment calculated for the plots (Figure 5).
The generic models were almost non-biased in the Spati data,
and therefore, calibration had almost no effect on bias. In the Silvi
data, a large positive bias (overestimated growth) turned into a
smaller negative bias.

Figure 6 shows the biases in basal area increment in the Spati
and Silvi data when growth was simulated with the generic
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Figure 4 Net ingrowth predictions [(5-year ingrowth – 5-year mortality of the ingrowth trees)/5] for different basal areas (G), fertility classes (mesic,
sub-xeric, herb-rich) and temperature sums (800, 1100 or 1400 degree days).

Table 7 Average number of ingrowth trees (number of trees that pass the 1.3-m height limit during a 5-year period) in the current study and two
earlier studies.

This study Pukkala et al., 2013 Lappi and Pukkala, 2020

Data Censored prediction Whole data Silvi data Data Prediction Censored prediction

Pine 251 230 58 27 90 89 47
Spruce 164 131 223 258 261 260 149
Birch 536 308 480 354 545 533 175
Other 271 121 687 70 – – –

Censored prediction means that the model was fitted using censored data, i.e. the highest measured ingrowths were replaced by a subjectively set
value.

and calibrated models. All other coefficients of the diameter
increment models except the coefficients for temperature sum
and peat were solved using optimization (the loss function of
equation (6) was minimized). In the Silvi data, all coefficients
of all models except the coefficients for peat were solved. It
can be seen that the bias of the generic models increased with
increasing stand basal area. Calibration removed a part of this
trend, and the large positive bias of the Silvi data was greatly
reduced.

Figure 7 graphically depicts the generic and calibrated diam-
eter increment models for pine and spruce. The overall shape of
the models did not change much. However, the predicted level
of the diameter increment of spruce was reduced significantly
when the model was calibrated using the Silvi data. It can also be
seen that scaling the model for pine in the Sati data had almost
no effect on the model (the curves ‘Generic’ and ‘Scaled Spati’
coincide in Figure 7). However, calibrating all model parameters

except the coefficient for temperature sum and peat changed the
model so that the predicted growth of small trees increased and
the prediction for large trees decreased.

Discussion
The models fitted in this study resemble those that have
been developed for uneven-aged stands (de-Miguel et al.,
2012; Pukkala et al., 2013). Model forms and predictors were
selected in such a way that the models can be used in all stand
structures, and they can be used to simulate transformation
from even-aged to multi-layered structures. de-Miguel et al.
(2012) compared even-aged (with site index based on age
and dominant height used) and uneven-aged types (with site
index, age and dominant height not used) of individual-tree
growth models in the Pinus brutia forests of Lebanon where
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Figure 5 Calibration results. In the Spati data, three diameter increment models were scaled (3 model intercepts optimized) or fitted (26 parameters
of the three diameter increment models were optimized). In the Silvi data, 10 models were scaled (10 model intercepts were optimized) or fitted
(64 model parameters were optimized). In ‘Scaled’, the loss function minimized deviations between measured and measured species-specific stand
basal areas in the second measurement, whereas deviation between measured and simulated frequencies of trees in 3-cm diameter classes were
minimized in ‘Fitted’.

the situation is comparable to Finland in the sense that stand
structures cannot be easily categorized into even- or uneven-
aged. Based on several criteria, de-Miguel et al. (2012) concluded
that the uneven-aged modelling approach is to be preferred in
structurally complex stands. These models may not be as good
as the best possible models for even-aged stands because age,
dominant height and site index derived from age and dominant
height were not used. However, the loss in precision may be
small in forestry practice, due to inaccurate measurement of age
in forest inventories and the fact that many even-aged stands
have been developed from released advance regeneration, which
weakens the ability of age and dominant height to indicate site
productivity.

The generic models developed in this study seem to predict
higher growth than the earlier models (Hynynen et al., 2002;
Pukkala et al., 2013). Compared with Pukkala et al. (2013), higher

growth is predicted for all species but especially for large sil-
ver birches and aspens. The effect of species composition on
diameter increment, survival and ingrowth is fairly similar as
in Pukkala et al. (2013). As a new element, the new models
include the effect of latitude (temperature sum) on ingrowth.
The models predict that ingrowth decreases toward the north,
most probably due to smaller seed yields and slower growth of
seedlings. The effect of peatland site is included in the diameter
increment model of pine and in all survival models, which is also
an improvement compared with previous models (Pukkala et al.,
2013).

The number of observations available for fitting the generic
models is not larger than in previous studies (Hynynen et al.,
2002; Pukkala et al., 2013). However, the advantage of the cur-
rent modelling dataset is good geographic coverage and a high
number of plots. Therefore, the models are likely to predict the
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Figure 6 Bias (simulated – measured) in periodical basal area increment
in the Spati and Silvi datasets when diameter increment was calculated
with the generic models (Tables 3, 5 and 6) or using calibrated models
(denoted as ‘Fitted’ in Figure 5). In the Spati data, the length of the growth
period was 5 years for all plots, and in the Silvi data, it ranged from 2 to
22 years.

effect of location (temperature sum) on stand dynamics more
reliably than the previous models.

The study also developed a model adjustment procedure that
allows model calibration with empirical data. Calibration utilizes
diameter distributions measured from the same plots or stands
at least twice. It is noteworthy that the models for diameter
increment, survival or ingrowth can be calibrated without mea-
sured diameter increment, survival and ingrowth. Only the out-
come of these processes, i.e. the change in diameter distribution,
needs to be measured. Counting the number of trees in different
diameter classes is fast, which means that calibration data can
be collected at low cost.

The degree of calibration depends on the amount and quality
of the calibration data. In most cases, calibrating the diam-
eter increment models would most probably suffice as mor-
tality is usually low in managed forests and fitting improved
ingrowth models needs large datasets due to the erratic nature of
ingrowth. The simplest calibration is to just adjust the intercepts,
which is recommended if the calibration dataset is small. The
dataset also affects the loss function that is minimized in calibra-
tion. Minimizing the deviation between measured and simulated
diameter distribution (equation 6) makes sense only if the sample
plots used in calibration are large and include tens of trees.

Figure 7 Generic and calibrated models for 5-year diameter increment of
Scots pine and Norway spruce. Temperature sum is 1100 d.d., stand basal
area is 25 m2 ha−1 and basal area in larger trees is 10 m2 ha−1.

The extent of calibration also depends on the use of the
models. If the models are used in the short-term simulations
of forest planning (for instance one or two decades), it is most
important to calibrate the diameter increment models. Assuming
that a new inventory is conducted after 10 or 20 years, the
survival and ingrowth models are not critically important, not
even in continuous cover forestry. They become important if the
models are used in simulations and optimizations that cover the
whole rotation or several decades.

As shown in the calibration examples, it is possible to calibrate
only a part of the model coefficients and only a part of the
models. Although the calibration procedure described here is
flexible in terms of data and degree of calibration, the topic
deserves further investigation. For example, Bayesian approaches
should be studied in the future and well as machine learning
methods other than the optimization approach used in the cur-
rent study.

Model forms proposed for the modelling of count variables,
such as Poisson, negative binomial and hurdle models (e.g. Zell
et al., 2019; Lappi and Pukkala, 2020), were not used in ingrowth
modelling. It was known, which ones of the trees of the relascope
plots had passed the 1.3-m height limit during the previous 5-
year period, i.e. how many such trees there were in different
plots. The reason for not using count modelling was the fact
that relascope plots have no plot area, which is required in count
modelling. In cases where there is one new tree (a tree that
passed 1.3 m), it is possible to derive the plot area from the tree
diameter and basal area factor. The plot area does not need to be
the same in different plots since the plot area can be treated as
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an offset variable (Lappi and Pukkala, 2020). Problems arise when
there is more than one new tree in the plot, and especially when
there are no new trees at all. In the latter case, it is impossible to
calculate any plot area within which there are no trees.

The generic models of this study were based on plots where
the number of trees was low. A likely impact of this situation
is that the growth and survival of the measured trees depend
significantly on the surroundings of the plot. The situation can be
expressed by saying that the sampling errors of the predictors,
especially stand basal area and BAL, are large. As a consequence
of high sampling error, the effect of basal area and BAL on diame-
ter increment and survival rate may be underestimated. Figure 6
supports this conclusion as it shows that the bias increases
with increasing basal area. In Figure 6, positive bias means over-
estimated growth. Figure 6 suggests that high basal areas do
not decrease growth sufficiently and/or low basal areas (lack of
competition) do not increase growth sufficiently. This means that
the generic models should be used with caution in exceptionally
sparse and dense stands.
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