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Abstract 

The physiological functions of the aryl hydrocarbon receptor (AHR) are only beginning to unfold. Studies in wildtype and AHR knockout (AHRKO) mice 

have recently disclosed that AHR activity is required for obesity and steatohepatitis to develop when mice are fed with a high-fat diet (HFD). In addition, 

a line of AHRKO mouse has been reported to accumulate retinoids in the liver. Whether these are universal manifestations across species related to AHR 

activity level is not known yet. Therefore, we here subjected wildtype and AHRKO male rats (on Sprague-Dawley background) to HFD feeding coupled with 

free access to 10% sucrose solution and water; controls received a standard diet and water. Although the HFD-fed rats consumed more energy throughout 

the 24-week feeding regimen, they did not get overweight. However, relative weights of the brown and epididymal adipose tissues were elevated in HFD- 

fed rats, while that of the liver was lower in AHRKO than wildtype rats. Moreover, the four groups exhibited diet- or genotype-dependent differences in 

biochemical variables, some of which suggested marked dissimilarities from AHRKO mice. Expression of pro- and anti-inflammatory genes was induced 

in livers of HFD-fed AHRKO rats, but histologically they did not differ from others. HFD reduced the hepatic concentrations of retinyl palmitate, 9-cis-4- 

oxo-13,14-dihydroretinoic acid and (suggestively) retinol, whereas AHR status had no effect. Hence, the background strain/line of AHRKO rat is resistant 

to diet-induced obesity, and AHR does not modulate this or liver retinoid concentrations. Yet, subtle AHR-dependent differences in energy balance-related 

factors exist despite similar weight development. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The ligand-activated transcription factor aryl hydrocarbon re-

ceptor (AHR) was originally discovered as the mediator of

xenobiotic-metabolizing enzyme induction by, and toxicity of, both

polycyclic aromatic hydrocarbons and dioxin-like polyhalogenated

compounds [1] . More recent studies have primarily focussed on

its numerous physiological roles. It has been found to be involved
Abbreviations: AHR, aryl hydrocarbon receptor; AHRKO, AHR knockout; ATRA, a

dihydroretinoic acid; HFD, high-fat diet; ILC3, type 3 innate lymphoid cells; JAK

LOD, limit of detection; LRAT, lecithin:retinol acetyltransferase; RA13C, 13- cis -retin

suppressor of cytokine signalling 3; TCDD, 2,3,7,8-tetrachlorodibenzo- p - dioxin; W
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in cell proliferation, migration and apoptosis [2 , 3] , liver and blood

vessel development [4 , 5] , and the control of reproductive systems

[6] , immune responses [7] and behaviour [8] . Recently, much re-

search has been devoted to AHR’s critical participation in the

maintenance of intestinal microbiome stability and mucosal in-

tegrity [9–13] . 

A novel action of the AHR, possibly related to its intestinal

impacts, came to light a few years ago. It was unexpectedly
ll- trans retinoic acid; BAT, brown adipose tissue; CORA, 9- cis -4-oxo-13,14- 

/STAT3, Janus kinases-signal transducer and activator of transcription 3; 

oic acid; REOH, retinol; REPA, retinyl palmitate; SD, standard diet; SOCS3, 

AT, white adipose tissue; WT, wildtype. 
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observed that in congenic C57BL/6J mice, differing only at the

Ahr locus, obesity on a high-fat diet (HFD) correlated positively

with the affinity of AHR to the most potent dioxin congener,

2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) [14] . Subsequent stud-

ies showed that if AHR signalling was blocked or even partially

inhibited by genetic or pharmacological means, HFD-induced

obesity, fatty liver, glucose intolerance and insulin resistance could

be prevented, while no influence of AHR status on body weight

was discernible on a standard diet (SD) [15–18] . The effect seemed

to principally emanate from enhanced energy expenditure, but

the exact mechanism remained elusive. Additional research on

tissue-specific AHRKO male mice revealed that AHR ablation in

neither the liver nor the white adipose tissue (WAT) alone could

reproduce the anti-obesity outcome [19 , 20] , thus excluding these

two tissues as critical sites for the effect. 

The opposite physiological state to that of AHR deficiency, per-

petual hyperactivation of AHR, can be brought about with TCDD.

Chronic exposure to a low, sub-lethal dose of TCDD was found to

augment obesity in mice on HFD [21] . Hence, gentle global AHR

activation seems to favour energy conservation whereas AHR de-

ficiency or impaired signalling promote energy expenditure and

thereby protect against diet-induced obesity in mice. In contrast,

extreme activation of AHR by a high (lethal) dose of TCDD to lab-

oratory animals typically results in a wasting syndrome which en-

tails a dramatic, up to > 50% body weight loss during 2–6 weeks

post-exposure, finally culminating in death [22] . 

In addition to energy balance, the AHR may be involved in

the regulation of hepatic retinoid status, but its role there is still

unclear. A study in AHRKO mice reported substantially elevated

liver retinoid (all- trans retinoic acid [ATRA], retinol [REOH], and

retinyl palmitate [REPA]) concentrations compared with their wild-

type (WT) counterparts [23] . However, this finding could not be

confirmed in another AHRKO mouse line [24] . Retinoids may also

participate in, or contribute to, the outcomes of modified AHR

function since AHR overactivation brought about by TCDD expo-

sure leads to signs and pathologies reminiscent of vitamin A defi-

ciency and/or vitamin A excess (discussed in further detail else-

where [24] ). Similar to the AHR, retinoic acid has proven to be

essential for ILC3 development and function [25] . Because all the

experimental data available at present on the impact of AHR de-

ficiency on both energy homeostasis and liver retinoids originate

from mice, it is uncertain whether they are true across species

or confined to mouse alone. Therefore, we deemed it important

to study these phenomena in another species, the rat, testing the

set hypothesis that AHR deficiency would afford protection against

diet-induced obesity in that species as in the mouse. As the bulk

of the relevant AHRKO mouse studies were conducted in male an-

imals, we also focussed on that sex. To further facilitate compar-

isons with previous data, the HFD we used provided 45% of energy

from fat, similarly to the case in some major mouse studies with

inhibited AHR activity [15 , 18] . However, in contrast to the AHRKO

mouse background strain (inbred C57BL/6J) that is highly obesity-

prone on HFD [26] , the response to HFD of the background strain

for the rat AHRKO model, outbred Sprague-Dawley, is more unpre-

dictable. Although some researchers have found Sprague-Dawley

rats to be relatively well-suited to diet-induced obesity studies

(with their body weight gain, however, only about half of that

in Wistar rats [27] ), others have reported that a substantial pro-

portion of WT outbred Sprague-Dawley rats are resistant to di-

etary obesity [28] due to a polygenic pattern of resistance inheri-

tance [29] . As a precautionary measure, we therefore provided our

HFD-fed rats concomitantly free access to a 10% sucrose solution.

HFD combined with high fructose/glucose in drinking water has

been shown optimal for producing non-alcoholic steatohepatitis in

mice [30] . Furthermore, consumption of sucrose-sweetened water,
but not equivalent levels of solid sucrose, led to body fat gain in

C57BL/6 mice [31] . 

. Materials and methods 

2.1. Experimental animals 

A pair of homozygous Sprague-Dawley AHRKO rats was purchased from

SAGE/Horizon Labs (Horizon Discovery, Saint Louis, MO, USA). Due to the informa-

tion obtained from the provider that these rats might carry Entamoeba muris proto-

zoa, heterozygous founder animals for a breeding colony were produced by mating

the male AHRKO rat with WT female Sprague-Dawley rats and transferring the em-

bryos into the uteri of recipient rats. The experimental animals were offspring of

these heterozygotic parents with an Ahr mutant allele. Genotyping of pups was car-

ried out by conventional PCR on DNA samples acquired through auricular piercing

at pup marking. Sanger sequencing revealed that the in-house-bred homozygous

AHRKO progeny were totally devoid of exon 2 in their Ahr gene. The WT controls

in the study were littermates of the AHRKO rats. At the beginning of the study, all

the 32 male rats included were 7–8 weeks old. The rats were humanely treated

so that pain, suffering and distress were minimized throughout the study including

the euthanization phase. The experiment was approved by the Laboratory Animal

Center of the University of Helsinki. No external approval was necessary since the

experiment was of non-invasive nature. 

2.2. Study design 

The animals were assigned into four experimental groups: WT-SD (5 rats), WT–

HFD (10 rats), AHRKO–SD (7 rats), and AHRKO–HFD (10 rats). All 32 rats were

housed singly in individually ventilated plastic cages (Sealsafe IVC Blue Line or

Green Line IVC Sealsafe PLUS Rat, Techniplast, West Chester, PA, USA), initially with

two drinking bottles (see below), and maintained on a 12-h light/dark cycle (lights

on 06:0 0 −18:0 0). The cage floor was covered with aspen wood bedding (Tapvei,

Estonia), and each cage was enriched with a transparent red plastic hiding tube,

nesting material and chew blocks (both aspen wood, Tapvei, Estonia). When the

rats reached the weight of 600 g, they were transferred into a larger cage of the

same brand with only one drinking bottle. The animal room temperature was kept

at 22 ±1 °C and the relative humidity at 38–75% (typically 50%). 

The rats had free access to feed and drink for the entire duration of the study

(24 weeks). The diets provided were manufactured by Research Diets Inc. (New

Brunswick, NJ, USA). The HFD (D12451) contained 4.7 kcal/g, with 45% of the energy

from fat, 20% from protein and 35% from carbohydrate. Its vitamin A concentration

was 4,660 IU/kg. The SD (D12450B) contained 3.82 kcal/g, of which 10% from fat,

20% from protein and 70% from carbohydrate; it provided 3790 IU vitamin A/kg

diet. For drink, the animals fed on HFD were supplied with one bottle of 10% su-

crose solution and one bottle of tap water until the rats reached the weight of 600

g, after which they were offered the sucrose solution alone because the cage type

only allowed suspension of a single bottle. The SD fed rats were initially supplied

with two bottles of tap water and later on, if their weight exceeded 600 g, with a

single water bottle. 

The body weight of each animal was measured weekly. Intake of food and drink

(over 24 h) was measured four times during the study (at 2, 10, 11 and 21 weeks).

At week 24, the rats were fasted for about 6 h and euthanized with CO 2 followed

by exanguination through the right cardiac ventricle and tissue harvesting. The or-

der of euthanization of the animals was determined by alternation among the four

groups and randomization within the groups. Samplings were conducted during

three consecutive days. 

2.3. Tissue samples 

In addition to the carcass, the following tissues were weighed: liver, interscapu-

lar brown adipose tissue (BAT), epididymal white adipose tissue (WAT), inguinal

WAT and brain. Serum was separated, and together with samples of liver, BAT and

skeletal muscle (from the back of thigh), flash-frozen in liquid nitrogen and then

stored at -70 °C until analyses. Furthermore, pieces of liver and epididymal WAT

were also fixed in 10% buffered formalin before being processed for histopathologi-

cal evaluation. 

2.4. Analytical methods 

2.4.1. Serum clinical chemistry 

Clinical chemistry analyses on serum were carried out at the Central Laboratory

of the Department of Equine and Small Animal Medicine, University of Helsinki. En-

zymatic methods were used for the determination of serum free fatty acids (NEFA-

C, Waco Chemicals GmbH, Neuss, Germany), glycerol and D-3-hydroxybutyrate

(Glycerol [GPO-PAP] and RANBUT [3-HB], Randox Laboratories Ltd. Crumlin, UK).

These analyses were performed with an automatic chemistry analyser (Konelab 30 i ,

Thermo Fisher Scientific). The rest of the serum analytes [alanine aminotransferase

(ALT), aspartate aminotransferase (AST), bile acids, creatinine, glucose, triglycerides,
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cholesterol and urea] were analysed using the reagents and adaptations recom-

mended by the manufacturer of the automatic chemistry analyser (Konelab 60 i ,

Thermo Fisher Scientific). 

2.4.2. mRNA expression levels 

Total RNA was reverse transcribed to cDNA at 50 °C for 1 h using M-MLV RT

RNase H-Point Mutant (Promega, Fitchburg WI, USA). Quantitative real-time PCR

(qPCR) was performed using HOT FIREPol EvaGreen qPCR Mix Plus (no ROX; Solis

Biodyne, Tartu, Estonia) on Rotor-Gene 3,0 0 0 or Rotor-Gene Q instruments (Qiagen,

Hilden, Germany). This was carried out by absolute quantification, using the diluted

total cDNA amount for normalization (20 ng/reaction, quantity assumed based on

the original amount of RNA in RT reactions) [32 , 33] . Each cDNA sample was run

in a duplicate reaction to obtain technical replicates. No-template controls were

included in each run to control for reagent contamination. Primer specificity was

confirmed by melt curve analysis at the end of each run. If the RT-qPCR result was

below the detection limit, a conservative approach was taken and the sample was

given the value of the limit. 

Primer sequences, amplicon lengths and amplification efficiencies are shown in

Supplementary Table S1. Standard curves were constructed for each primer pair

by preparing a 10-fold dilution series starting from known concentrations of iso-

lated and purified target gene PCR products amplified from cDNA samples, using

the same primers as for RT-qPCR. 

2.4.3. Retinoid analysis 

Concentrations of ATRA, 13-cis-retinoic acid (RA13C), 9-cis-4-oxo-13,14-dihydro

retinoic acid (CORA), REOH and REPA were measured in liver samples as previously

described [34] . These analyses were carried out on liver samples from all rats of

the SD-fed groups and 6 randomly selected rats from each of the HFD-fed groups.

The different retinoid forms, extracted from liver homogenates, were separated on

HPLC and detected by UV at 340 nm for the polar retinoic acid derivatives (ATRA,

RA13C and CORA) [35] , and at 325 nm for the apolar retinoid forms REOH and

REPA [36] . Briefly, 300 mg of liver was homogenised with 300 μl of water, and

retinoids were extracted with isopropanol from 400 μl of the homogenate. Sepa-

ration of polar from apolar retinoid forms was achieved by solid-phase-extraction

using an aminopropyl-phase cartridge (Agilent SampliQ amino, Agilent, Santa Clara,

CA, USA) [35] . 

Analytes were separated on a Poroshell 120 EC-C18 column (Agilent) using a bi-

nary HPLC system (Agilent 1100 series, Agilent). Retinoid standards included RA13C,

ATRA, REPA and REOH from Sigma-Aldrich (Madrid, Spain), whereas acitretin and

retinyl acetate (Sigma-Aldrich) were used as internal standards. The retinoic acid

metabolite CORA was not commercially available (see [35] for quantification de-

tails). 

The limit of detection (LOD) was 0.6 pmol/g for ATRA, 0.5 pmol/g for RA13C, 1

pmol/g for CORA, and 5.6 pmol/g for REOH and REPA [35] . 

2.4.4. Histopathological analysis 

The formalin-fixed samples of liver and epididymal WAT were embedded in

paraffin, sectioned at 4 μm thickness and stained with haematoxylin-eosin for

histopathological evaluation at the Finnish Centre for Laboratory Animal Pathol-

ogy (FCLAP), HiLIFE, University of Helsinki. The sections were read blinded to the

diet and AHR status of the animals. In the liver, steatosis (0-3; no, minimal, mild,

moderate) and inflammation (0–3) were semi-quantitatively graded. In epididymal

WAT, inflammatory activity and adipocyte size were estimated: The total number

of crown-like structures [37] in each section (approximately equal-sized sections)

was counted and the mean and median surface area and the circular diameter of

adipocytes [38] per each section calculated. The adipocyte assessment was based

on three representative photomicrographs (878 ×658 µm) captured with a 10x ob-

jective, in which the fat cells were automatically identified and their area initially

measured using the Adiposoft [39] plugin of the Fiji ImageJ image processing pro-

gram [40] , version 1.53c. After automated analysis with Adiposoft, the resultant

tagged photomicrographs and measurement tables were inspected, and erroneous

adipocyte hits removed manually. After manual curation, the three analysed pho-

tomicrographs contained 130–286 quantifiable adipocytes in total [38] depending

on the adipocyte size and section quality. One animal (347; Supplementary Table

3) with dense mononuclear infiltrates in the adipose tissue was left out of the

adipocyte area analysis due to widespread breakage of cell membranes. 

2.4.5. Statistics 

The data are provided as mean ±SEM. The majority of the parameters measured

were subjected to two-way analysis of variance (ANOVA) with diet and genotype as

independent variables. The normality of data distribution was analysed by Shapiro-

ilk’s test for each cell of the design, outliers were detected by boxplots, and vari-

ance homogeneity was evaluated by Levene’s test. In the case of skewed data dis-

tribution, extreme outliers, or non-homogeneous variances, log10 and square root

transformations were attempted. If these failed to rectify the issue, the outliers

were converted to less extreme values retaining their original ranks, and/or the

data were assessed both with and without these outliers. In cases where the in-

teraction term proved significant, simple main effects were next analysed using

the pooled error term, otherwise main effects were evaluated using unweighted
marginal means. In a single case ( Tnfa expression), variance non-homogeneity was

recalcitrant to all rectification attempts. Therefore, a significant two-way interaction

was there followed by Welch’s robust one-way ANOVA and Games-Howell’s multi-

ple comparisons. 

Body weight development and the contributions of diet and sucrose for to-

tal energy intake of HFD-fed rats were statistically assessed by mixed three-way

ANOVAs. Data distribution, outliers and homogeneity of variances were analysed

and treated as above. The assumption of sphericity was tested by Mauchly’s test

of sphericity and Greenhouse-Geisser correction was used when appropriate. Major

histopathological findings were graded and statistically evaluated using the Kruskal-

allis non-parametric ANOVA on ranks except for adipocyte size measurements

which were analysed by two-way ANOVAs. Finally, possible differences among the

groups in vitamin A intake were tested (in addition to two-way ANOVA) by one-

way ANOVA followed by the Student-Newman-Keuls post-hoc test, after verifying

the assumptions as described for two-way ANOVA. These statistical analyses were

conducted with the SPSS software (IBM SPSS Statistics for Windows, Version 24.0

or 25.0, Armonk, NY, USA), and the level of statistical significance was always set at

P ≤.05. 

3. Results 

3.1. Feeding and drinking 

Throughout the 24-week study and independent of genotype,

rats on HFD consumed more energy than their counterparts on

SD, as evidenced by 24-h energy intakes measured on four occa-

sions in the course of the study ( Fig. 1 ). While the rats on SD ate

on average 70–80 kcal/day, HFD feeding raised this value to 100–

110 kcal/day at 2 weeks, and to 130–150 kcal/day thereafter. This

subsequent elevation was not attributable to increased eating but

to increased drinking. Whereas the rats fed with SD had only wa-

ter to drink, those fed with HFD could freely select between wa-

ter and 10% sucrose solution, up to the point that they reached

the weight of 600 g (from there on, the sucrose solution was their

only option). Both WT and AHRKO rats kept their HFD intake sta-

ble over the course of the study but substantially elevated their

sucrose drinking. This manifested itself as a steady rise in the con-

tribution of sucrose to the total energy intake, reaching an equal

level to the diet by 21 weeks (Supplementary Fig. S1). This change

was evident as a highly significant ( P < .001) energy source x time

interaction term by mixed ANOVA. It occurred at the expense of

water uptake: while the HFD-fed rats drank some 50% of the vol-

ume consumed by SD-fed rats at 2 weeks, by 10 weeks their water

consumption had diminished to about 25% of their SD-fed part-

ners (Supplementary Fig. S2). Water consumption could not be de-

termined at the last time point (21 weeks) for HFD-fed rats be-

cause the majority of them were then provided only sucrose for

drink. 

3.2. Body weight development and relative organ weights 

In the light of their elevated energy consumption, it was sur-

prising that the rats fed with HFD did not gain any more weight

than SD-fed rats during the study period ( Fig. 2 ). Although a sub-

tle tendency towards higher body weights in HFD vs. SD rats

was seen by the end of the study, both a three-way mixed

ANOVA over all body weight data and a two-way ANOVA on body

weight change (100 ∗[terminal BW – initial BW]/initial BW) showed

that the differences among the groups failed to reach statistical

significance. 

A genotype-based difference was recorded in relative liver

weight, which was lower in AHRKO vs. WT rats ( Fig. 3 ). In contrast,

relative interscapular BAT and epididymal WAT weights exhibited

diet dependency, being heavier in rats on HFD vs. SD. No differ-

ence was detected in relative weights of inguinal (subcutaneous)

WAT and brain (brain data not shown). 
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Fig. 1. Daily energy consumption of WT and AHRKO rats fed with SD or HFD (mean + SEM). In all cases, the interaction term was non-significant as assessed by ANOVA, but 

the main effect of diet (D) was highly significant ( ∗∗∗: P ≤.001). The number of rats was 5, 7, 10 and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

Fig. 2. Body weight development in the experimental groups during the study pe- 

riod (mean ±SEM). Note that the Y axis scale does not contain zero. The number of 

rats was 5, 7, 10 and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respec- 

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Clinical chemistry 

Of the serum biochemical variables analysed, only urea dis-

played a significant genotype x diet interaction. This turned out

to be attributable to HFD-fed AHRKO rats, which exhibited an ele-

vated urea concentration compared with both their genotype and

dietary controls ( Fig. 4 ). Another index of renal function, creati-

nine concentration, was higher in rats on HFD vs. SD. This was also

true of two indices of energy metabolism, the ketone body 3-OH-

butyrate and glucose. Glucose values were further slightly higher
in AHRKO than WT rats. The converse was true of serum glycerol

concentrations. No differences existed in free fatty acids, triglyc-

erides, cholesterol, ALT, AST, or bile acids (data not shown). 

3.4. Histopathology 

In the liver, most of the rats exhibited variable glycogen ac-

cumulation and very lenient (mainly macrovesicular) steatosis

(Supplementary Table S2). Other findings included occasional

focal hepatocyte foaming or vacuolation and modest infiltration

of inflammatory cells. One rat (in the WT-SD group) exhibited

moderate focal inflammation and one rat (in the AHRKO-HFD

group) had a focally extensive subcapsular necrosis. No statistically

significant differences existed among the groups. 

In epididymal WAT, the number of crown-like structures (as an

index of adipose inflammation severity [37] ) showed no connec-

tion with the genotype or diet of the rats (Supplementary Table

S2). In contrast, there was a statistically significant main effect of

diet ( P < .05) on adipocyte size, whether assessed by area or circu-

lar diameter, with the HFD-fed rats exhibiting larger cells (Supple-

mentary Fig. S3). Furthermore, this outcome was independent of

the use of the mean or median of the analysed adipocytes (me-

dian not shown). 

3.5. Liver retinoids and vitamin A intake 

Of the five hepatic retinoids measured, none displayed a statis-

tically significant interaction between diet and genotype. However,

for REPA and CORA diet dependency was evident, with rats on HFD

harbouring lower concentrations of them compared with SD-fed

rats ( Fig. 5 ). A similar tendency was observed for REOH ( P = .056). 

The same patterns emerged in total retinoid quantities in the

liver: no statistically significant interactions existed, but for both
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Fig. 3. Liver, interscapular BAT and epididymal & inguinal WAT weights relative to terminal body weight (mean + SEM). In all cases, the two-way interaction was non-significant 

as assessed by ANOVA, but the main effects of genotype (G) or diet (D) proved significant for some of the tissues ( ∗: P ≤.05; ∗∗: P ≤.01). The number of rats was 5, 7, 10 and 10 

for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively (for liver in AHRKO-HFD, n = 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REPA and CORA, diet displayed a significant main effect (Supple-

mentary Fig. S4). Again, the levels were higher in rats fed with SD

compared with those on HFD. 

Mean intake of vitamin A ( ±SEM; IU) in the experimen-

tal groups over the four 24-h consumption measurements was

308 ±10.9, 275 ±10.7, 311 ±12.3, and 312 ±19.0 for W T-SD, W T-HFD,

AHRKO-SD and AHRKO-HFD, respectively. These values did not dif-

fer significantly as assessed by either two- or one-way ANOVAs. 

3.6. Transcripts related to energy metabolism 

3.6.1. BAT transcripts 

In BAT, a statistically significant interaction between diet and

genotype occurred for Ucp1, Acox1 and Ppard. In all of these

cases, a different experimental group stood out from its diet and

genotype controls: AHRKO-HFD, WT-SD or AHRKO-SD, respectively

( Fig. 6 ). For Pgc1a and Cd36 , a genotype-related difference existed

in BAT, with AHRKO rats having a higher transcript abundance than

WT rats. For Ppara , AHRKO rats similarly exhibited greater gene ex-

pression vs. WT rats (non-significant), but concomitantly HFD feed-

ing displayed a repressing influence on this gene. 

3.6.2. Liver transcripts 

A significant two-way interaction was found for Ucp2, Cpt1a2

and Cd36 . In all of these cases, simple main effect analysis re-

vealed that the AHRKO-HFD group had a higher gene expression

level than its counterpart – either AHRKO-SD ( Ucp2 & Cd36 ) or

WT-HFD ( Cpt1a2 ). 

Expression of the de novo fatty acid biosynthesis genes Scd1 and

Elovl6 was repressed by HFD feeding, whereas it promoted Pparg

expression. The AHRKO genotype was associated with diminished

Ppard, Acox1 and (to a lesser degree) Elovl6 expression. 
No statistically significant difference in abundance among the

groups was found for the following hepatic mRNAs: Hmgcs2, Acaca,

Pgc1a, Per1, Pdk4, Fasn, Sirt1, Sirt3, Fgf21, Rictor, and Ppara ; the lev-

els of Cyp1b1 were below the detection limit. For the sensitive in-

dicator of AHR activity, Cyp1a1 , the mRNA concentration was be-

low the detection limit in 18/20 AHRKO rats (being very close to it

in the remaining 2 individuals), whereas it was above the detection

limit in all but one WT rats (data not shown). 

3.6.3. Muscle transcripts 

The abundances of four skeletal muscle mRNAs were assessed

( Ucp2, Pgc1a, Ppara and Ppard ). Of these, the only significant find-

ing was a slight main effect of diet on Ucp2 expression ( P = .040),

with rats on HFD showing higher levels than those on SD (Supple-

mentary Fig. S5) ( Fig. 7 ). 

3.7. Liver transcripts related to inflammation 

Both the pro-inflammatory gene Il1b and the anti-inflammatory

Il10 showed conspicuously similar expression patterns, with the

AHRKO-HFD group having 1.5–2.5 times as high mRNA levels as all

the other experimental groups ( Fig. 8 ). Also, Tnfa resembled them,

but here the AHRKO-HFD group only differed from its diet con-

trol. Neither genotype nor diet influenced the expression of Pgts2

or Socs3 . 

4. Discussion 

Overweight, obesity and the comorbidities associated with

them (the metabolic syndrome) constitute one of the most con-

cerning public health problems globally today, and have there-
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Fig. 4. Serum concentrations of 3-OH-butyrate, glucose, glycerol, creatinine and urea (mean + SEM). The data were statistically assessed by two-way ANOVA. IA: interaction; 

NS: non-significant; D: diet main effect; G: genotype main effect. Asterisks denote statistical significance ( ∗: P ≤.05; ∗∗: P ≤.01; ∗∗∗: P ≤.001). In the urea panel, the asterisks 

indicate a difference in simple main effects vs. diet control (AHRKO rats on SD) and the lowercase letter “a” vs. genotype control (WT rats on HFD; P ≤.05). The number of rats 

was 5, 7, 10 and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fore sparked exploration for novel treatments. A number of stud-

ies have consistently shown that AHR activity is required for diet-

induced obesity to evolve, and by inhibiting AHR activity, super-

fluous body weight gain can be prevented [14–18] . Whether these

exciting findings on AHR are specific to mouse alone or applicable

across species is currently unknown. However, there are epidemi-

ologic data associating serum AHR agonist levels with manifesta-

tions of the metabolic syndrome in humans [41 , 42] . Very recently,

upregulation of AHR expression was also reported in blood cells of

obese children [43] . Therefore, we set out to examine the effects of

HFD in AHRKO rats. 

The background strain of the rat AHRKO model, Sprague-

Dawley, often shows resistance to diet-induced obesity [28] , and

we therefore combined HFD-feeding with provision of liquid su-

crose. The higher consumption of dietary energy in the HFD vs.

SD groups throughout the study failed to induce obesity in HFD-

WT rats. Since calories originating from fat are more efficient for

the animal than calories from carbohydrate [44] , the difference

in utilizable energy was initially even larger between the dietary

groups, but moderated with the increasing uptake of liquid sucrose

by HFD-fed rats in the course of the study. Because there was no

genotype-related difference in either energy intake or body weight

gain, it can be concluded that at least AHR deficiency did not in-

terfere with the mechanism(s) of the natural resistance of Sprague-

Dawley rats. 
Despite similar body weight development, the experimental

groups still exhibited both diet- and genotype-dependent effects

in organ weights and biochemical analytes, some of which sug-

gested marked differences between mouse and rat AHRKO models.

The HFD-fed rats proved to harbour a larger epididymal WAT mass

along with larger adipocytes compared with SD-fed rats. The fact

that this mass difference did not extend to subcutaneous inguinal

WAT is not unprecedented because their growth is fundamentally

different (predominantly by hypertrophy for the epidididymal fat

depot but by hyperplasia for inguinal WAT [45] ), and they have dif-

ferent metabolic roles [46] . For example, diabetes induces a dras-

tically more severe reduction in subcutaneous compared with epi-

didymal fat in rats [47] . 

In line with epididymal WAT, also interscapular BAT weight was

affected by the HFD. Enlarged BAT mass in the context of obesity

primarily reflects lipid content [44] , but because HFD-fed rats in

the present study were not obese, it might represent a marker of

induced thermogenic activity, keeping in mind that BAT is central

to diet-induced thermogenesis in rodents [48] . This is particularly

true of AHRKO-HFD rats in which the expression of the critical ox-

idative phosphorylation-uncoupling gene, Ucp1 , was also increased.

A contributing factor may have been sucrose drinking which pro-

motes BAT development in rats [49] . AHRKO rats on both diets

showed high expression levels for the major mitochondrial biogen-

esis regulator gene, Pgc1a , the fatty acid transporter Cd36 , and the
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Fig. 5. Hepatic retinoid concentrations (mean + SEM). In all cases, the two-way interaction was non-significant as assessed by ANOVA, but the main effect of diet (D) proved 

significant for REPA and CORA ( ∗: P ≤.05; ∗∗: P ≤.01). The number of rats was 5, 7, 6 and 6 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

important regulator of fuel oxidation, Ppara . This suggests that they

are well endowed with the necessary tools to activate the ther-

mogenetic machinery if necessary. The protection of WT Sprague-

Dawley rats from overweight on HFD, in turn, could be related to

their prominent expression of muscular Ucp2 . Although the main

role of Ucp2 may not be in the regulation of energy metabolism

but rather in protection from oxygen radicals, the protein product

of this gene is able to uncouple ATP production from mitochondrial

respiration [50 , 51] . 

In the liver, Ucp2 expression was again elevated on HFD, but

this time in AHRKO rats alone, which further exhibited a high ex-

pression level of Cpt1a2 , encoding carnitine palmitoyltransferase I.

This enzyme plays a pivotal role in the regulation of mitochon-

drial fatty acid oxidation [52] . On the other hand, Acox1 , a rate-

limiting enzyme in peroxisomal fatty acid β-oxidation, showed low

expression levels in AHRKO rats in the liver, but high in BAT – in

both cases irrespective of diet. There is a major difference between

these two organelles in the substrates they use: While mitochon-

dria oxidize long-chain fatty acids, the substrates of peroxisomes
are very long-chain ( > 22 carbons) fatty acids, branched-chain fatty

acids, and some leukotrienes and prostaglandins. Moreover, per-

oxisomal β-oxidation is essentially involved in biosynthesis path-

ways, while the mitochondrial pathway is related to catabolism

and energy production [53] . Interestingly, eating the HFD raised

BAT Acox1 expression in WT rats to the same high level at which

AHRKO rats expressed it on both diets. There may thus be a major

genetic difference between AHRKO and WT rats as regards hepatic

and BAT lipid metabolism. 

In AHRKO rats, hepatic expression of the fatty acid transporter

Cd36 was also increased. In mice, AHR activation has been asso-

ciated with induced Cd36 expression and fatty acid uptake [54] ,

albeit HFD feeding per se may also boost Cd36 expression in mice

[55] . Concomitantly here, expression of genes participating in fatty

acid synthesis was either repressed ( Scd1, Elovl6 ) or unchanged

( Acaca, Fasn ). This is consistent with the conclusion of a previous

study in rats: “Diet-induced thermogenesis, in contrast to cold-

induced non-shivering thermogenesis does not lead to increased

fatty-acid synthesis and this is presumably due to the inhibitory
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Fig. 6. Abundances of transcripts for Ucp1, Pgc1a, Cd36, Acox1, Ppard and Ppara in interscapular BAT (mean + SEM). The data were statistically assessed by two-way ANOVA. IA: 

interaction; NS: non-significant; G: genotype main effect. Asterisks denote statistical significance ( ∗: P ≤.05; ∗∗: P ≤.01; ∗∗∗: P ≤.001). For transcripts with a significant interaction 

term, the asterisks indicate a difference in simple main effects vs. diet control and the lowercase letters vs. the opposite genotype on the same diet (b: P ≤.01; c: P ≤.001). The 

number of rats was 5, 7, 10 and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

effects on lipogenesis of the high dietary fat intake characteristic

of cafeteria diets” [56] . Of particular interest among these genes is

Elovl6 , because the AHRKO genotype was found to potentiate the

HFD-related reduction in its expression. Our previous studies with

TCDD had revealed that Elovl6 is highly inducible (˜40-fold at 4 and

10 days after exposure to 100 µg/kg) in a TCDD-sensitive rat strain

but recalcitrant in a TCDD-resistant strain [57] . It thus seems to be

transcriptionally regulated by AHR. 

In the present study, although the histological analysis did not

reveal aggravated inflammation in either the liver or WAT as op-

posed to findings in diet-induced obesity models [58] , the HFD

triggered an increased hepatic expression of the pro-inflammatory

genes Tnfa and Il1b in AHRKO rats. The fact that a highly similar re-

sponse also occurred in expression of the anti-inflammatory gene

Il10 may represent feedback regulation. On the other hand, induced

Il10 expression might account for the lack of discernible cellular in-

flammatory reaction. In any case, the transcript response suggests

that, in contrast to mice, in rats AHR deficiency might render HFD-

fed animals prone to immune activation in internal organs, proba-

bly through impaired intestinal barrier function [59 , 60] . Finding a

way to cause frank obesity in WT rats (possibly by further increas-

ing the proportion of energy acquired from fat in the HFD) would

be crucial in the future for verification of this hypothesis and un-

obscured comparison of the mouse and rat AHRKO models. 

Besides ascertaining the influence of AHRKO on HFD-induced

body weight gain in rats, another objective of the present study

was to find out whether the previously reported drastic changes
in hepatic retinoid concentrations in an AHRKO mouse line would

also occur in AHRKO rats. They could potentially bear on the ben-

eficial metabolic impacts of AHRKO, because ATRA and its pre-

cursor, retinaldehyde, have proven to be capable of counteract-

ing diet-induced obesity [61 , 62] . Although AHRKO rats exhibited

unaltered hepatic retinoid levels on SD similar to a different

AHRKO mouse line [24] , interestingly, HFD reduced CORA and REPA

concentrations with a similar tendency for REOH. In mass units,

rats ate the HFD less than the SD. However, vitamin A concen-

tration was higher in the HFD (4,660 IU/kg vs. 3,790 IU/kg), fully

offsetting the consumption difference. Therefore, the diminished

hepatic retinoid concentrations are unlikely to have stemmed from

lowered vitamin A intake of rats on HFD. Consistent with these

data, HFD feeding in two rat strains lowered REOH concentration

and tended to decrease REPA concentration in the liver [63] . Like-

wise, both HFD-fed and genetically obese mice have been reported

to harbour reduced hepatic REOH and REPA concentrations, and in-

creasing severity of fatty liver disease in humans correlates with

decreases in hepatic vitamin A [64] . Contrary to these convergent

findings, however, one previous study recorded an elevated hepatic

REOH concentration in HFD-fed rats. It seemed to arise as a conse-

quence of suppressed REOH metabolism, which was partially due

to increased serum cholesterol level [65] . This may account for the

discrepancy inasmuch as our rats fed with HFD did not exhibit any

rise in serum cholesterol. 

There were, overall, relatively few statistically significant alter-

ations in serum clinical chemistry. A notable diet-related impact
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Fig. 7. Expression of genes related to energy balance in the liver (mean + SEM). The data were statistically assessed by two-way ANOVA. IA: interaction; NS: non-significant; 

D: diet main effect; G: genotype main effect. Asterisks denote statistical significance ( ∗: P ≤.05; ∗∗: P ≤.01; ∗∗∗: P ≤.001). For transcripts with a significant interaction term, the 

asterisks indicate a difference in simple main effects vs. diet control and the lowercase letter “a” vs. the opposite genotype on the same diet ( P ≤.05). The number of rats was 

5, 7, 10 and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was seen in 3-OH-butyrate, which was considerably increased in

rats fed on HFD in accordance with the high fat content of their

feed. Concomitantly, these rats also exhibited an increase in serum

glucose probably due to their sucrose drinking. Glucose levels were

slightly higher and glycerol levels lower in AHRKO than WT rats,

which might suggest more active gluconeogenesis in the former.

Although circulating creatinine concentration was elevated by the

HFD, frank renal damage is unlikely in WT rats due to lack of

dyslipidemia [66] and of a parallel change in serum urea. In con-

trast, AHRKO rats displayed elevated serum urea concentration,

which probably reflects the established occurrence of subclinical

hydronephrosis and -ureter in this animal model [67] . 

Previously, the protection of AHRKO mice from obesity and hep-

atic steatosis on HFD was found to be associated with augmented

expressions of Socs3, Fgf21, Cyp1b1, Scd1 and PPAR α target genes

(such as Cd36, Cpt1a and Elovl6 ). Wada et al. [20] showed that

while HFD induced hepatic Socs3 expression, liver-specific AHRKO

attenuated it, concomitantly exacerbating HFD-triggered steato-
hepatitis. Socs3 proved to be a transcriptional target of AHR, and

a rescue of Socs3 expression restored the liver status in terms of

fat content and inflammation to on par with that in WT mice. Also

employing liver-specific AHRKO (though inducible in this case),

Girer et al. [68] reported a sexually dimorphic influence of AHRKO

in mice, with body weight gain being suppressed by AHRKO on

both SD and HFD in females alone. A key mediator role was pro-

posed for Fgf21 , whose liver expression was doubled in AHRKO

mice. Mice inducibly deficient of both AHR and FGF21 gained

weight faster on SD than their WT controls. Most recently, it was

found that HFD induced the hepatic gene expression of Cyp1b1,

Scd1, Spp1 and some of PPAR α target genes, whereas AHR inhibi-

tion by chemical agents reversed this [18] . Especially central for

both HFD-induced obesity and its prevention by AHR was inferred

to be Cyp1b1 . In the present study, Cyp1b1 abundance was be-

low detection level, but none of the other hepatic genes listed

above (excluding Spp1 that was not determined) responded in the

manner reported. Although the resistance to diet-induced obe-
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Fig. 8. Expression of genes related to inflammation in the liver (mean + SEM). The data were statistically assessed by two-way ANOVA. IA: interaction; NS: non-significant; D: 

diet main effect; G: genotype main effect. Asterisks denote statistical significance ( ∗: P ≤.05; ∗∗: P ≤.01). For transcripts with a significant interaction term, the asterisks indicate 

a difference in simple main effects vs. diet control and the lowercase letters vs. the opposite genotype on the same diet (a, P ≤.05; c, P ≤.001). The number of rats was 5, 7, 10 

and 10 for WT-SD, AHRKO-SD, WT-HFD and AHRKO-HFD, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sity shown by our rats may have contributed to the discrepant

outcome, interspecies differences between mice and rats are also

likely. 

Finally, an interesting issue is also whether AHRKO affords any

metabolic advantages in lean rats. In the present study, there were,

indeed, certain Ahr genotype-dependent differences in metabolic

variables, such as lower serum glycerol but higher glucose in

AHRKO vs. WT rats. Likewise, the expression of BAT Cd36 and

Pgc1a was increased, while that of liver Ppard, Elovl6 and Acox1

was decreased in AHRKO rats compared with their WT counter-

parts. Further studies are needed to tease out the significance of

these and other differences to the energy metabolism as a whole. 

This is the first study on AHRKO rats fed with HFD. Its strengths

include long exposure time, fairly high group size for HFD-fed an-

imals and a broad spectrum of variables analysed. Limitations, in

turn, include unfavourable background strain of the animal model,

single sex, infrequent measurement of food and drink intakes, and

lack of data on some metabolic hormones (insulin, leptin) and on

glucose tolerance. 

Taken together, the present study demonstrates that promoting

dietary obesity in male Sprague-Dawley rats of the AHRKO back-

ground line is much more challenging than described in the liter-

ature for C57BL/6 mice, and therefore the protective effect of AHR

deficiency against diet-induced obesity could not be assessed in

AHRKO rats. Although body weight gain did not differ among the

experimental groups, they still exhibited both diet- and genotype-

dependent biochemical effects, some of which suggested marked

differences between mouse and rat AHRKO models. For example,

the reported alterations in gene expression of some genes sug-

gested critical in HFD-fed AHRKO mice (such as Socs3 and Fgf21 )
did not occur in AHRKO rats, while increased expression of inflam-

matory genes was recorded in AHRKO rats, but reportedly does not

occur in AHRKO mice. No evidence of AHR influence on hepatic

retinoid concentrations in rats was obtained, in contrast to what

has been reported in a single mouse AHRKO line. Further studies

are needed to elucidate the factor(s) responsible for this discrep-

ancy. 
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