
1

Practical Privacy-Preserving Indoor Localization
based on Secure Two-Party Computation

Raine Nieminen and Kimmo Järvinen

Abstract—We present a privacy-preserving indoor localization scheme based on received signal strength measurements, e.g., from
WiFi access points. Our scheme preserves the privacy of both the client’s location and the service provider’s database by using secure
two-party computation instantiated with known cryptographic primitives, namely, Paillier encryption and garbled circuits. We describe a
number of optimizations that reduce the computation and communication overheads of the scheme and provide theoretical evaluations
of these overheads. We also demonstrate the feasibility of the scheme by developing a proof-of-concept implementation for Android
smartphones and commodity servers. This implementation allows us to validate the practical performance of our scheme and to show
that it is feasible for practical use in certain types of indoor localization applications.

Index Terms—Indoor localization, location privacy, WiFi fingerprinting, secure multi-party computation, Paillier encryption, garbled
circuits, Android smartphones

F

1 INTRODUCTION

W ITH the rise of smartphones and other smart mobile
devices, location data has become an important as-

set that is used in various Location-Based Services (LBSs)
ranging from traditional navigation and map applications to
social media and targeted advertising. An obvious prereq-
uisite for any LBS is localization, the process of obtaining
the physical location of a client (or more precisely the
client’s device). In outdoor environments localization is pre-
dominately based on Global Navigation Satellite Systems
(GNSSs) such as GPS or Galileo. However, GNSS satellite
signals are very weak and effectively blocked by physical
obstacles leading to poor localization service particularly in
indoor environments but even in certain outdoor environ-
ments (e.g., dense woods or urban canyons). Hence, alterna-
tive localization techniques are required for providing LBSs
for indoor environments.

Providing accurate indoor localization is important in
order to facilitate useful LBSs such as indoor navigation,
e.g., for shopping malls, airports, exhibition centers, hos-
pitals, university campuses, etc. [1], [2], [3]. For instance,
a navigation application for a shopping mall will help
customers to find stores easily; retailers naturally benefit
from this also, and they may get further benefits through
targeted location-based advertising. To answer the need
for indoor localization, many indoor localization techniques
have been proposed in the literature and also deployed in
practice (see, [4], [5] for surveys) based on using WiFi [6],
[7], [8], [9], [10], cellular [11], RFID [12], Bluetooth [13], or
Zigbee [14] signals. Localization based on WiFi Received
Signal Strength (RSS) fingerprinting is particularly tempting

• R. Nieminen, while preparing the research work described in this paper,
was with Department of Computer Science, University of Helsinki,
Helsinki, Finland, e-mail: raine.i.nieminen@iki.fi

• K. Järvinen is with Department of Computer Science, University of
Helsinki, Helsinki, Finland, e-mail: kimmo.u.jarvinen@helsinki.fi

Manuscript date: January 25, 2021.

because (a) many indoor areas already have an extensive
WiFi infrastructure readily installed leading to small cost of
deployment for the Service Provider (SP) and (b) localiza-
tion can be implemented with regular smartphones without
the need for additional hardware for the client. In the future,
opportunities for precise localization for both indoors and
outdoors can be provided by RSS fingerprinting in very
dense 5G networks [15]. In RSS fingerprinting a SP records
RSS values from multiple locations in the area covered by
the localization service and stores them in a database in a
server. When a client wants to perform localization, his/her
device measures RSS values and sends them to the server
which computes the location based on comparisons with
the entries in the database and returns it to the client.

Location data is very privacy sensitive and even lit-
tle information about peoples’ locations allows to identify
them [16]. In the shopping mall use case, location infor-
mation reveals the stores, restaurants, etc., that a customer
visits and, consequently, gives out sensitive details about
the customer and allows very accurate profiling. Notice
that even a single location query may reveal information
that a customer is unwilling to share (e.g., a visit to a
specific shop). WiFi fingerprinting is privacy-violating by
nature because the actual localization is performed in the
SP’s server, which leaks the clients’ locations to the SP.
Customers would benefit from deployment of a Privacy-
Preserving Indoor Localization (PPIL) that prevents the SP
from obtaining the customers’ locations because this would
remove their privacy concerns. Also the SP has incentives
to provide PPIL because it would significantly increase
privacy-aware customers’ interest towards an indoor LBS
and would help the SP to comply with privacy regulations
(e.g., EU GDPR). Hence, a PPIL has potential to benefit
both parties, given that it does not imply excessive compu-
tation or communication overheads into the system; these
are particularly important factors for the clients who are
using mobile devices. The SP may additionally require that
the scheme can be extended with additional features such



2

as (privacy-preserving) location-based targeted advertising
and statistics about clients’ movements.

Clients’ location privacy could be fully protected by
sending the database to the clients’ devices and perform-
ing localization locally. This would also be essentially free
in terms of computation and communication overheads.
Unfortunately, performing localization in clients’ devices
is seldom an option in practice because it contradicts the
SP’s interests. The database is the SP’s primary asset as
database collection is laborious and time-consuming. A
secret database permits the SP to charge from the use of the
localization service (either from the owner of the premises or
the clients) and, therefore, the SP has economical incentives
to hide the database which has often lead to sacrificing
clients’ privacy. The database may also reveal sensitive
details about the infrastructure, e.g., thick doors or walls,
which should be kept in secret, especially, from criminals.
Hence, PPIL should hide (a) the clients’ locations from the
SP and (b) the database from the clients. Finally, we em-
phasize that PPIL solves only a part of all location privacy
problems because there can be other ways to track clients’
movements, but they are out of the scope of this work.

A few attempts to develop a PPIL scheme for RSS fin-
gerprinting fulfilling the above requirements are available
in the literature. Li et al. [17] presented a PPIL scheme based
on Paillier encryption [18], but severe weaknesses leading to
full database recovery were recently found in their system
in [19]. Konstantidis [20] used k-anonymity to hide a client’s
real location trace among k−1 fake traces, but the protection
is not very strong because use of auxiliary information (e.g.,
a building map) may reveal the real trace. Zhang et al. [21]
showed a PPIL based on Support Vector Machine (SVM)
and Paillier encryption, but [19] showed that it suffers from
similar weaknesses as [17]. Yang and Järvinen provide four
proposals for PPIL in [19]. The most promising proposal
appears to be a hybrid secure two-party computation pro-
tocol based on Paillier encryption and Garbled Circuits
(GCs), but they provides only a high-level sketch of the
scheme without detailed implementation considerations or
results. In [22], Järvinen et al. propose a scheme based on
secure multi-party computation where the client and server
outsource most of the computation and communication to
two semi-trusted servers. While their scheme achieves very
good performance, the requirement for semi-trusted parties
can be a problem in some cases because such trusted parties
may not be available. To summarize, the literature still lacks
a secure yet efficient two-party PPIL for RSS fingerprinting.

We provide the following contributions:

• We describe a PPIL scheme based on Yang and
Järvinen’s high-level proposal from [19]. Our scheme
is based on standard cryptographic primitives: Pail-
lier encryption, GC, and One-Time Pad (OTP).

• We present several optimizations to the scheme that
considerably improve its performance by reducing
both computation and communication overheads.

• We develop a Proof-of-Concept (PoC) implementa-
tion of the scheme for Android smartphones and
commodity servers that allows us to evaluate the
practical feasibility of the scheme.

• Our scheme is the first two-party PPIL scheme based

on RSS fingerprinting that is both secure and feasible
for deployment.

The rest of the paper is structured as follows. Sec. 2
surveys the relevant background on indoor localization,
cryptographic primitives, and the threat model. We describe
our PPIL scheme in Sec. 3. In Sec. 4, we present multiple op-
timization techniques that are required to make our scheme
practical. In Sec. 5, we provide theoretical evaluation of com-
putation and communication overheads. We describe the
details of a PoC implementation for Android smartphones
and Linux servers in Sec. 6 and provide results from it in
Sec. 7. Finally, we draw conclusions in Sec. 8.

2 PRELIMINARIES

This section covers the required background. We start by
explaining RSS fingerprinting based indoor localization in
Sec. 2.1. Cryptographic techniques are described in Sec. 2.2,
2.3, and 2.4. Finally, we describe our threat model in Sec. 2.5.

2.1 Indoor Localization
Indoor areas, such as airports and shopping malls, require a
non-GNSS based localization technique. A common solution
for indoor localization is a fingerprint-based localization
scheme where an SP holds a database of RSS information
pre-measured from predefined Access Points (APs) in cer-
tain locations [23], [24]. Our scheme does not rely on a
specific type of APs, so the source of the RSS is not relevant
at this point, but they can be, e.g., from WiFi APs.

For simplicity, the localization process can be divided
into two phases:

• Training phase. The SP constructs the database D.
Firstly, the SP determines a set of APs used in the
scheme and defines a (public) list

T1 = {APj}Nj=1

where APj is a unique identifier of the j-th AP (e.g.,
the MAC address) and N is the number of the APs.
Next, the SP specifies the locations, where RSS values
are going to be pre-measured and defines a (public
or private) ordered list

T2 = {χi}Mi=1

where χi is the location parameter at the i-th posi-
tion (e.g., coordinates) and M is the number of the
locations.
Then the SP (or a contractor) visits each location of
T2, measures the RSS vi,j from all the APs defined
in T1, and constructs a database D from the collected
values and lists T1, T2. An overview of the structure
of D can be seen in Tab. 1. D is stored on a server S
deployed by the SP.

• Location retrieval phase. In this phase, a client C
requests its current location from the server S . Firstly,
C asks the list T1 from S , if C does not already have
it. Then, C measures the RSS fj of all the APs in T1
at its current location and sends these values to S .
The server S computes the distances of the received
RSS values and the pre-measured RSS values in D



3

TABLE 1
The structure of the database D constructed during Training phase of

the fingerprint-based localization scheme.

i Location AP1 AP2 · · · APN

1 χ1 v1,1 v1,2 · · · v1,N
2 χ2 v2,1 v2,2 · · · v2,N
...

...
...

...
. . .

...
M χM vM,1 vM,2 · · · vM,N

for each location in T2 and obtains a list of distances
{di}Mi=1. We use the squared Euclidean distance di =∑N
j=1(fj − vi,j)2 and utilize the fact that the formula

for di can be expanded into three parts [25]:

di =
N∑
j=1

f2j +
N∑
j=1

(−2fj · vi,j) +
N∑
j=1

v2i,j . (1)

We later refer to the three terms in (1) as δ1, δ2, and
δ3, respectively. Finally, S finds the indices of the k
smallest distances in the list. The method is known
as the k-Nearest Neighbor (kNN) [26]. The location
of C is computed as the centroid of the locations in
T2 corresponding to the indices.

2.2 Paillier Encryption Scheme
The Paillier encryption scheme [18] is an additive homomor-
phic probabilistic public-key cryptosystem proposed by P.
Paillier in 1999. In the following, we describe the cryptosys-
tem and review certain properties of the scheme. Further
details and optimizations are found in [18] and [27].

• Key Generation. Let p and q be two randomly se-
lected large prime numbers and n = pq. Let B be
the set of elements of order nα in Z∗n2 , where α is
a positive integer, and g a base from B. The public
key pk is the pair (n, g) and the secret key sk is
λ = lcm(p− 1, q− 1), i.e., the least common multiple
of p− 1 and q − 1.

• Encryption. For a plaintext m ∈ Zn, the encryption
is done as follows. We select a random r ∈ Zn and
compute the ciphertext c by using the formula

c = gm · rn mod n2 (2)

with the public key (n, g). Henceforth, Paillier en-
cryption of m is denoted by E(m).

• Decryption. Decryption of a ciphertext c (< n2) is
performed as follows:

m =
L(cλ mod n2)

L(gλ mod n2)
mod n , (3)

where λ is the secret key and L(u) = u−1
n . Hence-

forth, Paillier decryption of c is denoted by D(c).

Paillier encryption is an additively homomorphic encryp-
tion scheme and we emphasize the following properties that
are used in our scheme:

∀m1,m2 ∈ Zn and k ∈ N
D(E(m1)E(m2) mod n2) = m1 +m2 mod n (4)

D(E(m1)k mod n2) = km1 mod n . (5)

The reason why the Paillier encryption scheme is used in our
localization scheme follows from (4) and (5). Other secure
and efficient additively homomorphic encryption schemes
offering the same features could be used as well (see,
e.g., DGK [28], exponential ElGamal [29] and the blinded
encryption schemes [30]); the choice of Paillier encryption is
supported by the facts that it is widely-studied and has an
ISO standard (ISO/IEC 18033-6:2019).

2.3 One-Time Pad

OTP is an encryption technique that provides perfect secrecy
[31] and it works as follows.

• Key Generation. Choose a unique truly random key
R ∈ Zn, where n is a positive integer.

• Encryption. For a plaintext m ∈ Zn, use the key R ∈
Zn to compute the ciphertext c = m+R mod n.

• Decryption. Decryption follows similar procedure,
namely, m = c−R mod n.

It is crucial for the security that R is a truly random value
of the size of the plaintext and must never be reused.

2.4 Garbled Circuits

GC is a technique for secure computation that was implicitly
introduced by A. Yao in [32]. GC can be used for secure two-
party computation, i.e., two parties can evaluate a function
f(x, y) without revealing the respective inputs x, y to each
other or a third party. The idea of GC is to describe the
function as a Boolean circuit for the two inputs. The wires
of the circuit are assigned with two random s-bit values
corresponding to the bit values zero and one, respectively.
The gates of the circuit are “garbled” so that their output
wire values are encrypted by using the input values as keys
according to the truth tables, after which the rows of the
tables are randomly permuted. The derived tables form the
“garbled” function f̃(x̃, ỹ), which can be evaluated securely
with the garbled inputs x̃, ỹ to obtain the result.

Yao’s original GC proposal is widely considered unprac-
tical due to its high computation and particularly com-
munication overheads, but significant improvements have
been made during the last decades (see, e.g., [33], [34],
[35], [36], [37], [38]). Next, we highlight three state-of-the-
art optimizations that have a major impact on the effi-
ciency of GC based secure computation. In [36], Kolesnikov
and Schneider introduced a technique that reduces both
computation and communication overhead of each XOR
gate of the circuit to zero. In [38], Zahur et al. presented
a technique that reduces the communication overhead of
gates by 50% (4s to 2s) compared to Yao’s original proposal.
In [34], Bellare et al. showed that GCs can be constructed
by using a block cipher (e.g., AES) with a fixed key as
the basic cryptographic primitive consequently leading to
major speedups in computation overhead (e.g,. by using
the AES-NI instruction set extension). Our scheme can be
implemented by using any GC framework but, as will be
discussed with more details in Sec. 6.2, we use ABY [39] for
the PoC. It is a state-of-the-art framework that implements
(among others) the optimizations of [34], [36], and [38].



4

2.5 Threat Model
This section covers privacy threat model for a PPIL scheme.
In short, the information of both the server S and the client
C needs to be secured and kept private. In the perspective
of S this means that an adversary AC who uses the service
as a client should not be able to construct the database D (or
a close equivalent D′ that allows running a similar service).
I.e.,AC should not learn the pre-measured RSS values vi,j of
D from the messages sent in the protocol. On the other hand,
in the perspective of C, S may be AS who wants to obtain
the locations of its clients and the protocol should reveal
nothing about the location of C within the area covered
by the service. I.e., AS should not obtain C’s location (the
output of the protocol), the RSS values fj of C’s query, or any
intermediate values that depend on them (e.g., distances di).

A regular fingerprint-based localization scheme (e.g., as
described in Sec. 2.1) can easily be made resistant against
AS , if S simply sends D to C, but obviously this directly
implies insecurity against AC . On the other hand, even the
simple scheme in Sec. 2.1 is resistant against against AC , if
only the final location is sent to C, but then the protocol fails
to protect against AS . Therefore, we demand that a PPIL
scheme must be resistant against both types of adversaries
AC and AS .

Most of the related work has considered the above
privacy requirements under the Honest-But-Curious (HBC)
threat model (if any at all). The HBC assumes that both
parties faithfully follow the protocol but try to compromise
the other party’s privacy by using information given by
the protocol (e.g., message contents). However, Yang and
Järvinen [40] recently argued that HBC is not sufficient
to protect PPIL in practice. Indeed, a malicious client AC
can easily deviate from the protocol by manufacturing fake
queries (e.g., such that all RSS values are zeros or only
one is non-zero), send them to S , and deduct information
about D from the response [17], [19]. In most PPIL proposals
clients’ queries are encrypted, so S has no way to notice
such malicious behavior. In fact, practical attacks building
on such ideas have been recently presented against several
PPIL proposals in [19]. A malicious server AS , on the
other hand, must follow the protocol because any deviation
would immediately results in a drop in the quality of local-
ization which would be noticed by C who would probably
stop using the service [40]. Motivated by these observations,
[40] proposed that a Unilateral-Malicious (UM) threat model
should be used for PPIL. In UM, AC is allowed to deviate
from the protocol, but AS is not. In addition to introducing
the UM threat model, [40] also proved that the high-level
proposal from [19], which is also the basis of our PPIL
scheme, is secure against both AC and AS under the UM
model. For the sake of clarity, we omit further details and
point interest readers to [40] for more detailed descriptions
of UM and the security proofs.

3 PRIVACY-PRESERVING LOCALIZATION

This section introduces the PPIL scheme based on a high-
level idea given in [19]. Basically, the scheme uses the
Paillier encryption scheme to hide the clients’ RSS values
from the server. The Paillier scheme cannot protect the
database by itself. Therefore, each distance is masked with

a unique random value, which protects the database and
prevents the attack from [17]. The mask is removed and
the kNN is run within a GC. Although, the GCs could be
utilized for a complete location retrieval without the need
of the Paillier scheme, the communication overhead would
be enormous [19].

3.1 Description of the Scheme
The following introduces the details of the scheme.

• Training phase. This phase is exactly the same pro-
cedure explained in Sec. 2.1. The outcome is the same
database D as in Sec. 2.1 and it is stored on a server S
in plaintext. No interaction with any client is needed.

• Distribution phase. The purpose of this phase is
to let a client C and the server S share necessary
values with each other. Ideally, this phase needs to
be done only once with each C. In addition to T1, T2
and C’s Paillier public key pk (defined in Sec. 2.1
and Sec. 2.2, respectively), fixed values used in GC
protocol should be distributed according to the re-
quirements of the specific GC protocol in use.

• Paillier phase. The location retrieval starts by C
measuring the RSS fi from every AP in T1. Then,
C computes the following list

{E(−2fj)}Nj=1

and ∆3 = E(
∑N
j=1 f

2
j ), which are sent to S . Next, S

computes the following values for i = 1, . . . ,M

∆i,1 = E

 N∑
j=1

v2i,j

 (6)

∆i,2 =
N∏
j=1

E(−2fj)
vi,j (7)

and then computes Di = ∆i,1 · ∆i,2 · ∆3. Due to
the homomorphic properties of Paillier encryption
(see (4) and (5)), decryption of Di would yield di,
where di is exactly the distance as in (1). Finally, S
masks each Di with a random value Ri ∈ Zn. I.e., S
computes the following list

{Di · E(Ri)}Mi=1 (8)

and sends it to C, who decrypts every item on the list
and obtains

{di +Ri}Mi=1 .

• GC phase. In this phase, C uses a garbled circuit (see
Sec. 2.4) to remove the masks and to compute the
kNN in the following way

1) S constructs a Boolean circuit that takes two
lists X,Y both containing M values of size
l′, where l′ is the maximum bit-length of a
distance. The circuit computes first X − Y =
{x1− y1, . . . , xM − yM}, and then returns the
indices of the k smallest values in the list. This
Boolean circuit is then used in GC construc-
tion and the GC is sent to C along with the
servers garbled input Ỹ = {ỹ1, . . . , ỹM} =



5

{R̃1, . . . , R̃M}, where R̃i is the garbled value
of the random value Ri.

2) Before C can evaluate the GC, it needs to ob-
tain the garbled values X̃ = {x̃1, . . . , x̃M} =

{ ˜d1 +R1, . . . , ˜dM +RM} for its input X by
using an Oblivious Transfer (OT) protocol
[41], [42].

3) C evaluates the GC and obtains the list of
indices of the k smallest distances. Finally, C
deduces the locations from T2 and retrieves
its own location by computing the centroid.

Remark 1. In Step 3 of GC phase, T2 could be a part of
the GC, which could then return the location directly,
i.e., the centroid can be computed within the circuit. The
GC phase may also include Step 4 containing additional
service related material, such as promo codes or discount
vouchers, allowing location-based targeted marketing
without losing privacy and practicality.

3.2 Security
The security of our scheme relies on commonly known cryp-
tographic protocols, namely, Paillier encryption, OTP and
GCs (see Sec. 2.2, 2.3 and 2.4, respectively). In this section,
we take a closer look on how the system protects against
the attacks described in Sec. 2.5 and what assumptions need
to be made. The high-level proposal from [19] was shown
to be secure under the UM threat model in [40]. Because
our scheme follows the high-level proposal, this proof holds
also for our scheme and we claim that our scheme is secure
under the UM model. In the following, we provide an
informal rationale behind this claim and refer interested
readers to [40] for a formal treatment.

3.2.1 Privacy of the Client’s Location
The client’s precise location information (RSS values) is
encrypted during the whole Paillier phase and is safe from
any adversary assuming that Paillier encryption is secure.
After a client decrypts the received masked distances, GC
phase begins. Therefore, the client’s location information is
still vulnerable at this point and we must be able to trust on
the security of the GC protocol. Precisely, the OT protocol
must ensure that AS is not able to reveal any information of
the client’s input for the GC. There are many well studied
OT protocols, which are believed to be secure (see [41] and
[42]).

3.2.2 Privacy of the Server’s Database
Without the random mask R on the distances, the server’s
database D is leaked to the client during the Paillier phase
response after N queries. The attack is fully explained in
[17], but basically the client simply solves a set of linear
equations to obtain the exact D. Therefore, it is essential that
the masking secures the distance values from adversaries.
This is the case because the random mask acts as an OTP.
The mask is removed during GC phase inside the GC.
Hence, the secrecy of D relies also on the security of the
GC protocol. GCs are believed to be secure when proper
label/key sizes and secure symmetric-key algorithms are
used in the construction and evaluation.

4 OPTIMIZATIONS

This section covers several techniques to decrease the com-
putational and communication overheads. Without these
techniques, the scheme described above would be unprac-
tical in areas, where parameters (particularly N or/and
M ) are large. In practice, both N and M depend on the
size of the building covered by the service but typically
M > N . Some public databases are available1 and, e.g.,
M = 505 and N = 241 for the TUT measurement data
of a four-story office building. However, it is possible that
N could be significantly pruned in such databases without
significant reductions in localization accuracy by removing
less significant APs and possible duplicates (e.g., one AP
with several MAC addresses).

4.1 Client Pre-computation

The Paillier encryption (see (2)) contains two modular expo-
nentiations and one multiplication. Especially, rn mod n2 is
computationally involving for every encryption, since r and
n are always large. However, that part of the encryption
is independent of the message m and can be computed
in advance. For each encryption, r needs to be a fresh
random value, and therefore multiple values should be pre-
computed into a stack.

With the pre-computation of rn mod n2, the encryption
complexity depends on gm mod n2. On C’s side, the mes-
sage m is always related to an RSS value, which is normally
bounded to a small value. Technically, C needs to encrypt∑N
j=1 f

2
j and every {−2fj}Nj=1. However, later we will see

that
∑N
j=1 f

2
j does not need to be encrypted. Therefore, C

can store g−2f mod n2 for each possible RSS value. Con-
sequently, each encryption is only a multiplication of two
pre-computed values.

Each query requires N + 1 encryptions on C’s side.
Hence, a small stack of pre-computed rn mod n2 values
runs out of values after a few queries. On the other hand,
constructing a very large stack might not be feasible on C’s
side due to the time and power consumption. The overhead
of pre-computations could be reduced, e.g., by performing
them in the nighttime while the device is charging, but this
must comply with the background processing policies of
the mobile operating system. In a practical scenario, the
stack size should be at least N + 1 and the stack could be
initialized before the actual query is made. This reduces the
online location retrieval time but prevents C from making
a new query immediately after the previous one. This is
acceptable in many practical scenarios (see, e.g., Ex. 4.3).

4.2 Server Pre-computation

If storage space is not a problem, every ∆i,1 for i = 1, . . . ,M
(see (6)) can be pre-computed for each client after Dis-
tribution phase. This reduces the computational overhead
tremendously while computing the encrypted distances Di,
since we can avoid M encryptions.

1. UJIIndoorLoc Data Set: https://archive.ics.uci.edu/ml/datasets/
ujiindoorloc; TUT Indoor WLAN measurement data: http://www.cs.
tut.fi/tlt/pos/MEASUREMENTS WLAN FOR WEB.zip



6

4.3 Server Computation Improvements

A dynamic programming style technique can be applied for
computation of ∆i,2 with (7) to reduce the computational
overhead. Firstly, we make an observation that each vi,j is
normally a small number. E.g., if the maximum bit-length
of RSS is 4, then vi,j ∈ {0, 1, . . . , 15}. Let vmax,j denote the
maximum value of vi,j for each j = 1, . . . , N (the maximum
RSS in each column of the database), then we compute the
lists L = {1, E(−2fj), E(−2fj)

2, . . . , E(−2fj)
vmax,j}Nj=1.

Now every possible E(−2fj)
vi,j value is computed and

can be derived from the lists during the computation of
each ∆i,2 for i = 1, . . . ,M . This technique is shown in
Alg. 1 and it prevents the server from computing the same
exponentiation multiple times.

Algorithm 1: An optimization technique for ∆i,2

Data: E(−2f1), . . . , E(−2fN ),D
Result: L

1 for j = 1 to N do
2 vmax ← 0;
3 for i = 1 to M do
4 v ← D[i, j];
5 vmax ← max(v, vmax);

6 α← 1;
7 list[0]← α;
8 for i = 1 to vmax do
9 α← α · E(−2fj);

10 list[i]← α;

11 L[j]← list;

4.4 Distance Packing

S has to send M ciphertexts to C, which increases the
communication overhead tremendously in a real life setting,
where M is large. To overcome this issue, S can pack
multiple distances into one ciphertext using the packing
technique from [25]. Firstly, we need to deduce the bit-
length of a distance di, which can be derived from (1). Let l
be the maximum bit-length of a RSS value, then

l′ =
⌈
log2

(
(2l − 1)2 ·N

)⌉
(9)

is the maximum bit-length of di for every i = 1, . . . ,M .
Essentially, by packing we mean that multiple distances

are aligned in one larger value by linearly shifting them
with a proper constant value. We call the result a package
regardless of whether the distances in it are in encrypted
form or not. The length of a package is the number of
distances it contains.

The maximum bit-length of the plaintext in Paillier
encryption is γ = dlog2(n)e. To avoid the possibility of
an overflow (with high probability) resulting in a modular
reduction modulo n during decryption after R is added into
the package (cf. (8)), we leave some of the most significant
bits to zero on purpose by packing fewer distances into one
plaintext that what would fit there. Let t be the number of
distances we pack in one package and T the total number
of packages needed to transmit all M distances. After S has

d1 d2 d3 d4 d5 d6 d7

0 13 26 39 52 65 78 91 2048

Fig. 1. Example of packing

computed Di for all i = 1, . . . ,M , it computes the packages
as follows {

t∏
i′=1

D2(i
′−1)l′

t(k−1)+i′

}T
k=1

.

Example 4.1. Let M = 7 and so we have the encrypted
distances D1, . . . , D7. We assume that l′ = 13, γ = 2048
and t = 7. Thus, T = 1 and we can fit all the distances
in one package by computing

∏t
i=1D

2(i−1)l′

i . Due to the
homomorphic properties, the effect on the plaintext is
the following

t∑
i=1

di · 2(i−1)l
′
.

The distances line up in the plaintext as shown in Fig. 1.

The masking is done in a similar fashion to (8), but only
T masks are needed. The random mask should be chosen
uniformly at random from Zn to avoid any information
leaking about the distances after the decryption.

If the distances cannot be divided exactly into T pack-
ages of length t, the remaining ε distances are distributed
evenly in the packages, i.e., we have that M = T · t + ε
and T = bM/tc. The best choice for T (or t) can be derived
from the minimum point of a cost function that evaluates the
complexity of the processes related to the packing, namely
the packing itself, the random masking, the overhead of
sending the packages to C and the decryption at the C’s
side.

For every distance di, the plaintext of ∆3, namely,
δ3 =

∑N
j=1 f

2
j , is a positive constant that only increases

the value of every di. Therefore, the kNN gives the same
result, even if δ3 is left out. However, the distances di are not
necessary positive anymore, which is problematic, since we
are using modular arithmetic. To overcome this problem, the
client adds δ3 to the decrypted masked distances after the
decryption to ensure the positivity of each distance. With the
packing technique, δ3 needs to be added to every distance
in a package.
Example 4.2. Let us use a similar setup as in Ex. 4.1. Without

∆3 the plaintext would be
∑t
i=1(δ1 + δ2) · 2(i−1)l′ + R.

Therefore, we need to add
∑t
i=1 δ3 · 2(i−1)l

′
to obtain

t∑
i=1

(δ1 + δ2 + δ3) · 2(i−1)l
′
+R =

t∑
i=1

di · 2(i−1)l
′
+R .

Remark 2. Since δ3 is eventually added to the package(s),
the packing cannot be denser, i.e., l′ must be computed
as before (see (9)).

4.5 Masking Pre-computations
The encryption of Ri could be done after Distribution
phase by pre-computing them into a stack for each client.
However, the number of needed encrypted masks is un-
known, since it depends on the number of a particular



7

client’s queries which could be hundreds per day. This tech-
nique used with the packing reduces the masking process
down to only T multiplications. However, it is difficult to
justify the practical feasibility of this technique.
Example 4.3. Let us imagine a shopping mall that offers

a PPIL service by using our scheme. We can store a
certain number of encrypted masks for each client and
refill this storage, e.g., during the nighttime (at least for
several thousands of clients). If such a storage is not used
or it runs out of pre-computed values, the service may
limit the frequency at which the client can make queries
(e.g., only every 5 seconds) and use the intermediate
time for filling the stack of pre-computed values. This
would not degrade the quality of service significantly.
This also allows the client to perform the client-side pre-
computations discussed in Sec. 4.1. The only difference is
that the server must serve several clients simultaneously
and perform multiple pre-computations in the same time
where a client performs only its own pre-computations.

4.6 Garbled Circuit Pre-computations
Since GC phase is a distinct part in the scheme, it is
difficult to do any specific optimizations. However, since the
structure of the circuit is known, the server could construct
it in advance. The problem is that the GC needs to be unique
for each query and the size of one GC is already large (even
several megabytes).

In practice, the new GC for the next query can be con-
structed right after the current query. This technique follows
the same idea as the Paillier phase optimization techniques
with pre-computation, where we assumed that there is a
long enough delay between multiple queries. Furthermore,
the new GC could be sent to the client right after the
construction before the actual query is made. This may give
a notable saving in time from making the location query to
receiving the location, especially, in slower networks.

5 THEORETICAL EVALUATION

We denote the computational cost of a modular mul-
tiplication with Mult-C(m) and an exponentiation with
Exp-C(a,m), where a is the exponent andm is the modulus.
The square-and-multiply algorithm gives

Exp-C(a,m) = 1.5 log2 a ·Mult-C(m) (10)

on average (the exact cost depends on the Hamming weight
of a).

With Crypt-C(s) we denote the computational cost of
a decryption in the garbled circuit evaluation, where s =
dlog2 w̃e is the label size (in bits). The computational cost
depends on s and the garbled circuit encryption function.

5.1 Computational Overhead
The computational overhead of C during Paillier phase is

C-Mult-C2(N,M)

= N ·Mult-C(n2) + T · 3/2 log2 n ·Mult-C(n)

with the pre-computation technique, which decreases the
encryption step down to N multiplications modulo n2.

The rest of the overhead comes from the decryption step,
which involves T decryptions. The cost of one decryption is
approximately 3/2 log2 n multiplications modulo n with the
state of art optimizations [18], [27].

The following equation

Mult-C(n2) = 4 ·Mult-C(n) (11)

gives the complexity relation of a schoolbook multiplica-
tion2. It is used to simplify the overheads and we get

C-Mult-C2(N,M) = (N + T · 3/8 log2 n) ·Mult-C(n2) .

The computational overhead of S for Paillier phase is

S-Mult-C2(N,M)

= (N · (2l − 2) +M ·Na +M · ((t− 1)l′/2 + 1) + T )

·Mult-C(n2)

where Na denotes the average number of non-zero RSS
values in each row of D, which basically stands for the
average number of available APs at each location3. The first
part of the complexity comes from Alg. 1, when we assume
the worst case, i.e., each column contains every possible RSS
value. Finally we can compute everyDi with the list L using
M ·Na multiplications modulo n2. The rest of the overhead
comes from the packing (see Sec. 4.4) and from the masking,
which is only T multiplications with the pre-computations
(see Sec. 4.5).

Finally, we omit the multiplication complexity and ob-
tain

Client-C(N,M) = N + T · 3/8 log2 n (12)
Server-C(N,M)

= N · (2l − 2) +M · (Na + (t− 1)l′/2 + 1) + T .
(13)

Now we can plot the overheads to find out which party is
computationally more involving in our scheme. Firstly, we
fix several parameters. Let l = 4 and by using (9), we get l′

as a function of N . For simplicity, we set Na = 0.15N,n =
22048 and t = 25, which makes T = dMt e dependent only
on M . Now both (12) and (13) depend only on N and M .
The overheads with these assumptions are shown in Fig. 2.
Clearly, S has a higher computational overhead than C.
However, the overhead can be shifted by altering t. Here
we suggested that t = 25 is a good overall upper bound for
the number of distances in packages, but other values may
be more appropriate in certain applications.

The computational overhead of GC phase comes only
from the GC execution on C’s side, when the pre-
computation techniques are used (see Sec. 4.6). The execu-
tion complexity depends on the number of AND gates in
the circuit. It can be estimated using information available
in [33] that the subtraction and the kNN require approx-
imately M · l′ = ζ AND gates and 3k · ζ AND gates,
respectively. Therefore, we get the following overhead

GC-C(N,M) = (3k + 1) · ζ · Crypt-C(s) . (14)

2. There exists faster variants of a long multiplication, such as the
Toom-Cook algorithm [43].

3. In practice, about 85% of the values in the database are normally
zeros (see, e.g., [44]), which means that Na ≈ 0.15N .



8

100
200

300
100

0

5

·104

M

N

M
ul

t-
C
(n

2
)

Server-C(N,M)

Client-C(N,M)

Fig. 2. The number of multiplications modulo n2 needed for Paillier
phase separately for S and C, when l = 4, Na = 0.15N , n = 22048

and t = 25.

In general, Mult-C(n) is more complex than Crypt-C(s)
(e.g., AES), but the exact relation depends on the computing
platform. The cost of Crypt-C(s) can be often reduced signif-
icantly even with commodity hardware by utilizing specific
instructions such as Intel’s AES-NI. Accelerating Mult-C(n)
is more complicated, but specific hardware accelerators (e.g.,
with FPGAs) can be used on the server side, and they may
allow significant speedups for these operations.

5.2 Communication Overhead
The communication overhead (in bits) of Paillier phase is

Paillier-Comm(N,M) = (N + T ) · log2 n
2 (15)

and during GC phase the overhead is

GC-Comm(N,M) = 2s ·M · l′ . (16)

We assume that the GC and S’s (garbled) input have been
sent in advance and that the OT pre-computations are done.
Fig. 3 depicts the overheads when N and M are increased
with fixed parameters l = 4, n = 22048, t = 25 and s =
112. Normally, the communication overhead of GC phase
becomes dominant.

The communication overhead reflects to the location
retrieval time, since the data transfer takes some time. Espe-
cially with low bandwidth, the delay might be significant.
For some clients, the communication overhead might be an
issue also due to data transfer costs. Therefore, we also want
to see the total communication overhead for each query. The
overheads of different objects are gathered into Tab. 2. It is
easy to see that the size of the garbled circuit becomes domi-
nant quickly, especially with large k, when M increases. The
growth is also linear, which makes extrapolation easy.

6 IMPLEMENTATION

In the following, we give an overview of the PoC implemen-
tation of our PPIL scheme introduced in Sec. 3. The client
side is programmed to an Android device4 with the Android

4. Samsung S6 SM-G920F running Android 7.0

100
200

300
100

0

1

·105

M

N

Th
e

co
m

m
un

ic
at

io
n

(i
n

by
te

s)

Paillier-Comm(N,M)

GC-Comm(N,M)

Fig. 3. The communication overheads in bytes for Paillier phase and
GC phase separately, when l = 4, n = 22048, t = 25 and s = 112.

Studio5. The server side is not restricted to any particular
operating system, but we use a GNU/Linux Ubuntu server6.
The details of the hardware used for evaluating our PoC
implementation were Exynos 7420 with 8 CPU cores and
2.74 GB of RAM running at 1.5 GHz for the client side and
Xeon E5-2697 v2 with 4 CPU cores and 8.17 GB of RAM
running at 2.7 GHz for the server side.

6.1 Paillier Phase

In this section, we concentrate on the implementation as-
pects of Paillier phase programmed in Java7. The imple-
mentation follows the description given in Sec. 3 with the
optimization techniques from Sec. 4.

The Paillier encryption scheme implementation follows
Sec. 2.2 with the state-of-the-art optimization techniques of
[18] and [27]. The random numbers are generated with Java
class SecureRandom8, which provides a cryptographically
strong random number generator that complies the specifi-
cation FIPS 140-2.

Modular arithmetic relies on the Java class BigInteger9.
Random prime numbers of specific length are generated
with the SecureRandom. The most important method is the
modPow(..) from the BigInteger class, which computes
an exponentiation with a modulus. The method uses the
sliding window techniques [45] and the Montgomery do-
main [46], which improves the efficiency of an exponentia-
tion slightly more than we estimated in (10).

Remark 3. The modPow(..) is not a constant time al-
gorithm by default, but we ignore this fact since our
implementation is a PoC. However, a constant-time
exponentiation should be used in practice to prevent
timing attacks [47]. In our scheme, the exponents are

5. https://developer.android.com/studio/
6. https://www.ubuntu.com/server
7. https://www.java.com/en/
8. https://docs.oracle.com/javase/8/docs/api/java/security/

SecureRandom.html
9. https://docs.oracle.com/javase/8/docs/api/java/math/

BigInteger.html



9

TABLE 2
The total communication overhead of the scheme.

Paillier phase GC phase Pre-computation (Online) Offline
Ciphertexts OT Garbled circuit S’s input OT

(N + T ) · log2 n2 2sζ (6k + 2) · sζ sζ 4sζ + 6s2

often small (e.g., a RSS value). Hence, a global constant-
time exponentiation routine allowing exponents up to
the size of n would slow down these computations
tremendously. However, because the maximum values
of the exponents are known in every exponentiation, tai-
loring constant-time exponentiation routines for specific
exponent lengths solves this problem.

A multiplication of two BigIntegers follows the Toom-Cook
algorithm [43], which is faster than a regular multiplication
for large numbers. We store pre-computed values in a Con-
currentLinkedQueue10, which is thread-safe meaning that
we can access the queue safely with multiple threads. In-
deed, we use the queue as a stack for the pre-computations.

The communication between a client C and the server S
is implemented with Java network sockets. Java objects are
transferred between C and S containing the necessary val-
ues. The (socket) connection stays open during the compu-
tations at S and is closed after C has received the encrypted
and masked distances from S . The same connection cannot
be used in GC phase, which is a slight drawback in our
PoC implementation (see the reason in Sec. 6.2). Ideally, one
connection should be kept open for the whole duration of a
location retrieval to reduce the number of connection calls
that increase unnecessary routing and possible handshakes.

6.2 GC Phase

The implementation of GC phase is separated from Paillier
phase, since we take advantage of the framework for effi-
cient mixed-protocol secure two-party computation called
ABY [39] available online at GitHub11. Therefore, the socket
connection of Paillier phase mentioned previously cannot
be used here. Overall, the implementation of GC phase
relies fully on ABY and its functionality, which is used in
a black box manner. ABY was chosen because it is a state-
of-the-art framework for secure two-party computation.

ABY provides three secure computation schemes based
on Arithmetic sharing, Boolean sharing and Yao’s garbled
circuits. We use Yao’s garbled circuits. The OT extension
implementation of [42] is used within ABY. ABY requires
that the pre-computations must be done during the current
query after Paillier phase, which means that they do not
give any advantage. This is a practical drawback of our PoC,
but this can be fixed in production level code. Nevertheless,
ABY still allows us to analyze the exact overheads of our
scheme even from this PoC implementation (see Sec. 7.3).

The first subtraction (“the mask removal”) is difficult to
implement with the packing technique, since we need to do
a subtraction of two large numbers which is not directly
supported by ABY and would result in an increase in the

10. https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentLinkedQueue.html

11. https://github.com/encryptogroup/ABY

TABLE 3
Security levels and corresponding parameter bit-lengths.

Security Level (s) Paillier (n) Garbled circuits (w̃ and c)

112 2048 112
128 3072 128

size of the GC. To overcome this, we slice this subtraction
into individual 16-bit subtractions and tolerate the small
errors caused by the lack of carry propagation between the
16-bit subtractions. For simplicity, we fix the bit-length of
a distance to 16 bits in our implementation, i.e., l′ = 16
regardless of l and N . Following the recommendations
from [48], we fix l = 4 resulting in an upper bound of 291
for N (due to (9)). This means that for smaller values of
N , there will be “free space” (zero bits) after each distance
in the package, which in turn means that the chance of the
carry-bit error decreases.

7 PRACTICAL EVALUATION

In this section, we present the computational and commu-
nication overheads of our scheme obtained with measure-
ments from the PoC implementation discussed in Sec. 6.
We start by analyzing the practicality of the scheme in real
life environment in Sec. 7.1. Next, we construct artificial
databases of different sizes and use them in Sec. 7.2. This
allows us to test the implementation for different values of
N and M . Finally, we give the overheads of the distinct
steps of our scheme in Sec. 7.3.

We provide experimental results for our PoC imple-
mentation for cryptographic security levels of 112 and 128
bits. We have gathered parameter sizes of the cryptographic
primitives with the corresponding security levels in Tab. 3
according to the guidelines of [49] and [50].

7.1 Real Life Experiment
We experimented our PoC implementation in one building
at the university campus. There were 17 Wi-Fi and 17 LTE
APs located within the test area. We used three different
databases (constructed by us) which each had M = 76
reference locations. The databases were constructed by mea-
suring RSS from only the Wi-Fi (N = 17), only the LTE
(N = 17) and both the Wi-Fi and LTE APs (N = 34).

We measured the total duration of the location retrieval,
which is the time of Paillier and GC phase together, while
walking in the building. The parameter values for our im-
plementation during this experiment are gathered in Tab. 4.
With this setting, we observed that the location retrieval
time is 2.208 seconds on average. We will investigate the
time spent in each step precisely in Sec. 7.3, but we men-
tion already here that the OT pre-computations (which are
mostly independent of N and M ) took 1.032 seconds in



10

TABLE 4
The parameter values for our real life experiment.

Security Level (s) N M k l l′ T t

112 17 or 34 76 1 4 16 1 76

TABLE 5
The number of packages T when M is given.

(a) s = 112

M 100 200 300 400 500 600 700 800

T 10 20 25 33 41 50 50 50

(b) s = 128

M 100 200 300 400 500 600 700 800

T 5 15 20 25 33 40 50 50

our experiment (see Tab. 7(a)). In this experiment, the pre-
computations had to be included in the online phase since
our PoC implementation uses ABY as a separated part as
explained in Sec. 6.2. Therefore, the location retrieval time
could be reduced down to around one second with a more
compatible GC implementation.

Communication overhead is constant for each query. The
measurements were done with vnstat12 at the server. To
avoid measurement errors, the following values are aver-
aged over 10 queries. Each query required about 90 KBs
of data to be send to the server (uplink) and 327 KBs to
be received (downlink), when N = 17. When N = 34,
the communication overhead was 103 and 334 KBs for the
uplink and downlink, respectively. Theoretically, the only
difference should have been in the uplink data, where addi-
tional 17 ciphertexts (8.7 KBs) are sent but small measuring
errors may have occurred, particularly, because M is small.
The theoretical communication overheads (see Tab. 2) are
slightly optimistic (around 282 KBs in total) compared to
the practical ones, but the order of magnitude is correct.

7.2 Artificial Databases

In this section, we form databases of different sizes contain-
ing randomized RSS entries of bit-length l = 4. We make
the databases more realistic by setting most of the entries to
zero; more precisely, we set Na = 0.2N .

7.2.1 Paillier Phase
We generate several databases with fixed N and M and
take a closer look at the computational and communication
overheads during Paillier phase. We choose T according
to Tab. 5, where we have taken balancing aspects (see
Sec. 4.4) under consideration and set T ≤ 50 to limit the
communication overhead.

The location retrieval times are shown in Fig. 4 for
both security parameters 112 and 128. The pre-computation
techniques from Sec. 4 are applied, but we have limited
the number of client’s encryption pre-computations to 50.
Consequently, the encryptions are almost free whenN ≤ 50.
On the other hand, the client must perform 50 or 100 online

12. https://humdi.net/vnstat/

encryptions for N = 100 and N = 150, respectively, and
the total time increases dramatically. We could allow the
client to do N encryption pre-computations, but the above
procedure allows us to evaluate the overheads of online
encryptions and pre-computations.

The security parameter s has a large impact. Fig. 4(a)
and 4(b) show that the increased complexity of encryptions
and decryptions leads to significant increases in the location
retrieval times for s = 128 compared to s = 112 with larger
N . When s = 128, our scheme becomes impractical for large
N and M . However, with the pre-computations (N = 50)
and s = 112, the time stays in decent limits even for large
areas with many reference locations (large M ).

A detailed discussion of the communication overhead of
Paillier phase is omitted here. Nevertheless, we mention
that the total communication per query is at most some
hundreds of KBs even in large settings.

7.2.2 GC Phase
The computational overhead of GC phase is discussed more
closely in Sec. 7.3. Here we proceed to analyze Fig. 5 show-
ing the communication overhead of GC phase. The value
of N is irrelevant for GC phase because we used a fixed l′.
We observe that the uplink communication remains almost
constant for both security levels. According to Fig. 5(a) and
5(b), the client sends on average 71.44 and 116.31 KBs with
s = 112 and s = 128, respectively.

The communication overhead is dominated by the
downlink transfer(s), notably, when M and/or k are large.
The security level does not have a significant effect, as
shown in Fig. 5(c) and 5(d). The overhead increases linearly
with M and k.

7.3 Precise Overheads of Phases
This section breaks our scheme into smaller steps and ex-
amines the overhead of each step and its effect to the total
overhead. In addition, we see how much “unnecessary”
online overhead the ABY implementation creates.

7.3.1 Paillier Encryption with Java
We chose the parameters N = 50, M = 150, s = 128
and T = 10 for our test case and collected the result in
Tab. 6. The computational overhead is separated into six
steps: namely, Encryption, Decryption, Distance, Packing,
Masking and Pre-encryption, shown in Tab. 6(a).

The steps involving encryption, specifically, Encryption
and Masking, become negligible with pre-computations
computed already after the previous query. The pre-
computations are useful because they reduce the online
location retrieval time, i.e., the delay that a client must
wait after “pushing the button” until finally obtaining the
location. The client’s (parallelized) pre-computation took
2.447 seconds, which is the time that the client needs to
wait before making a new query. This delay between queries
is acceptable in many practical settings (see Ex. 4.3), but it
could become infeasible in buildings with hundreds of APs.

The Distance step stands for the squared Euclidean dis-
tance calculation with the ciphertexts at the server side. It
also involves encryptions but they can be avoided with pre-
computations (see Sec. 4). Even with Alg. 1, the cost of this
step is 28.3% of the total overhead.



11

100 300 500 700
0
3
6
9

12
15

20

25

30

35

40

M

Ti
m

e
(s

)

N = 150

N = 100

N = 50

(a) s = 112

100 300 500 700
0
3
6
9

12
15

20

25

30

35

40

M

N = 150

N = 100

N = 50

(b) s = 128

Fig. 4. The location retrieval time of Paillier phase, when s = 112, 128 and N = 50, 100, 150. The value for T follows from Tab. 5. The number of
client’s encryption pre-computations is limited to 50.

TABLE 6
The overhead of Paillier phase with N = 50, M = 150, s = 128 and

T = 3.

(a) Computational
Step Time (ms)

Client

Encryption 7.77
Decryption 299.07
Total 306.84

Server

Distance 334.55
Packing 535.91
Masking 3.82
Total 874.28

Pre-computation (Client)

Pre-encryption 2446.74

(b) Communication
Step Uplink (bytes) Downlink (bytes)

For each new query

Paillier phase 41984 6144

The rest of the computational overhead comes from the
Decryption and Packing steps. The overhead can be shifted
between these steps and, consequently, between the client
and server, as explained in Sec. 4. In our case T = 3 and
the packing consumed 0.237 seconds more time than the
decryptions. Nonetheless, the cost of these steps is dominant
emphasizing the importance of wise packing in our scheme.

The communication overhead of Paillier phase is
straightforward as shown in Tab. 6(b). The size of one
ciphertext is 768 bytes, when s = 128. We compare this to
the measurements and obtain that 41984 − N · 768 = 3584
bytes (uplink) and 6144− T · 768 = 3840 bytes (downlink),
which indicates that the constant communication overhead
produced by the Java object is about 4 KBs.

TABLE 7
The overhead of GC phase, when N = 50, M = 150, s = 128 and

k = 3.

(a) Computational
Step Time (ms)

One-time expense

Init 0.73
CircuitGen 0.07
Network 313.07
BaseOTs 1032.17
Total 1346.04

For each new query

OTExtension 23.04
Garbling 48.38
Online 294.89
Total 366.31

(b) Communication
Step Uplink (bytes) Downlink (bytes)

One-time expense

BaseOTs 49958 49956

For each new query

Setup 43256 916881
Online 411 147500
Total 43667 1064381

7.3.2 Garbled Circuits with ABY
We investigate the precise overheads of GC phase by utiliz-
ing the benchmarking routines of ABY on the server side.
The benchmarking is shown in Tab. 7, where we chose the
parameters to be N = 50, M = 150, s = 128, and k = 3.

The results for the computational overhead are gath-
ered in Tab. 7(a), where we have separated the one-time
expenses, i.e., the expense, when two parties connect for
the first time, and the expenses required for each query. We
observe that 78.6% of the time goes to the one-time expenses
and, as a consequence, the actual computational overhead is
only 0.366 seconds per query.

The overhead of the initialization (“Init”) and circuit
generation (“CircuitGen”) steps are negligible, but the



12

40 60 80 100 120
60

80

100

120

M

U
pl

in
k

da
ta

(K
Bs

)

k = 1

k = 3

k = 7

(a) Uplink, s = 112

40 60 80 100 120
60

80

100

120

M

k = 1

k = 3

k = 7

(b) Uplink, s = 128

40 60 80 100 120

500

1,000

1,500

M

D
ow

nl
in

k
da

ta
(K

Bs
)

k = 1

k = 3

k = 7

(c) Downlink, s = 112

40 60 80 100 120

500

1,000

1,500

M

k = 1

k = 3

k = 7

(d) Downlink, s = 128

Fig. 5. The amount of data transferred during GC phase, when s = 112, 128 and k = 1, 3, 7.

“BaseOTs” step takes over a second to complete. This is not
surprising since it requires expensive public-key operations.
Hence, it is justified to say that the location retrieval time in
our real life experience (see Sec. 7.1) would be only about
one second with a better integrated GC implementation.

The network step of Tab. 7(a) includes the time the
server waits the client to connect. With our implementa-
tion, the network time includes the time of the Paillier
phase response and decryption since the server starts the
GC phase immediately after the masking is done. The
decryption takes 0.097 seconds (when T = 1) and we
can estimate that the response takes roughly 30 ms. This
gives the total time of GC phase with our implementation,
namely, 1346.04 + 366.31 − 97 − 30 = 1585.35 ms. We
measured the total time also in the Android application
and obtained 1584 ms, which is very well aligned with the
benchmarking of ABY.

The communication overheads are shown in Tab. 7(b).
The only one-time expense comes from the “BaseOTs” step,
which requires 49.96 KBs in both directions. Most of the
overheads for each query come from the setup step, which
consists of the OTExtension and Garbling steps. The setup
downlink overhead consists of the actual GC and dominates
the overall communication overhead. The ABY benchmarks
show that there are 28650 AND gates, which means that the
circuit size is 2 · 128 · 28650/(8 · 1000) = 916.8 KBs. We can
conclude that the downlink communication of OTExtension
step is negligible in the setup step but the uplink commu-

nication for each query is dominated by the OTExtension
step. The online step consists of the server sending its
inputs to the circuit to the client. Therefore, the downlink
communication is dominant.

The measurements with vnstat show that the server
received 117.42 KBs (uplink) and sent 1106.27 KBs (down-
link). This is consistent with Tab. 7(b) having 93.63 and
1114.34 KBs, respectively.

8 CONCLUSION

We introduced a PPIL scheme based on secure two-party
computation following the sketch in [19]. We proposed
several optimization techniques and gave the theoretical
overheads for the scheme. Furthermore, we implemented
a PoC implementation for a basic Android device and
experimented it in a real environment. We measured the
practical overheads of the implementation with databases of
various sizes. They are small enough to consider the scheme
as practical for certain applications. However, it is clear that
the scheme cannot be used in every setting where indoor
localization is used nowadays or it at least requires some
additional measures to fit in certain applications.

The idea of using Paillier encryption and garbled circuits
for PPIL was shown to be feasible with certain reserva-
tions. The advantage of such a system is that the privacy
relies fully on well-known cryptographic protocols provid-
ing cryptographic guarantees that privacy of the inputs of
both parties is protected. The drawback is the increment



13

in computational and communication overheads resulting
in longer response delays, greater power consumption, and
bigger data usage per query. The costs of privacy are easily
noticeable and increase linearly with the building related pa-
rameters (N and M ). However, a simple tradeoff between
efficiency and clients’ location privacy exists by splitting the
area covered by the service into smaller sub-areas.

Our scheme is suitable for a service that provides clients
with an application allowing them to make explicit location
retrieval requests to locate themselves in buildings such as
airports, hotels, and shopping malls. In such scenarios, the
client can wait for a few seconds to retrieve the location and
is unlikely to make several consecutive queries. Our PoC
implementation was designed for such a scenario and it was
demonstrated to be practical with real life experiments.

The scheme is infeasible when quick tracking of a fast
object, such as a vehicle, is required. However, continuous
tracking of walking speed movements could still be done
by combining our scheme with tracking based on auxiliary
information. E.g., an application may refresh the location
every 5–10 seconds with our scheme and use, e.g., the
motion sensors of a smartphone to track the movements
between the queries. The overheads can be mitigated also
with high performance devices, but other factors, such as
power consumption and heat, may set up new practical
limitations. On the other hand, we can safely assume that
performance of devices (i.e., smartphones and servers) con-
tinues to improve also in the future together with other
aspects such as faster communication and better batteries,
consequently, increasing the practical attractiveness of our
scheme. Nevertheless, it is unlikely that our scheme will
ever be feasible, e.g., for autonomous cars.

Topics for future research include at least the following:

• It is essential that APs or reference locations that have
no or only minor effect on localization accuracy are
pruned from the database to avoid unnecessary over-
heads. Optimal ways for such pruning and tradeoffs
between database sizes and localization accuracy
require further research.

• Hardware acceleration of critical operations on the
server side can provide significant reductions for the
server side delays. The expensive Paillier operations
are the primary candidate for hardware acceleration.
The GC phase utilizes mostly secret-key primitives
and existing instruction set extensions, e.g., for AES
can be used in a straightforward manner.

• Other additively homomorphic encryption schemes
(e.g., [28], [29], [30], [51]) may perform better than
Paillier encryption in certain settings and the use of
other encryption schemes is worth investigating.

• SPs require specific incentives to deploy indoor lo-
calization schemes and these are often related to
customer tracking and targeted advertising. Privacy-
preserving location-based advertising (e.g., discount
vouchers) may be added to our PPIL scheme, more
precisely in the GC. Privacy-preserving collection of
statistics about customers movements may also be
built on top of our scheme, e.g., by using existing
techniques for privacy-preserving data mining (see,
e.g., [52], [53], [54]). Nevertheless, specific schemes

should be developed to attract SPs to use PPIL
schemes in practice.

• Other techniques for indoor localization exist be-
sides RSS fingerprinting (e.g., angle-of-arrival, time-
of-arrival, etc.). PPIL solutions for such techniques
should be also studied and developed in the future.

ACKNOWLEDGMENTS

This work was funded by the INSURE project (303578)
of Academy of Finland. We thank Matthias Senker and
Christian Weinert from Technische Universität Darmstadt
for helping to compile the ABY framework for Android
devices.

REFERENCES

[1] C. K. Chung, I. Q. Chung, Y. H. Wang, and C. T. Chang, “The
integrated applications of WIFI and APP used in the shopping
mall environment for menber card E-marketing,” in Intl. Conf.
Machine Learning and Cybernetics (ICMLC), vol. 2, 2016, pp. 671–
675.

[2] T. Guan, L. Fang, W. Dong, Y. Hou, and C. Qiao, “Indoor local-
ization with asymmetric grid-based filters in large areas utilizing
smartphones,” in IEEE Intl. Conf. Communications (ICC), 2017, pp.
1–6.

[3] S. He, W. Lin, and S.-H. G. Chan, “Indoor localization and auto-
matic fingerprint update with altered AP signals,” IEEE Transac-
tions on Mobile Computing, vol. 16, no. 7, pp. 1897–1910, 2017.

[4] C. Langlois, S. Tiku, and S. Pasricha, “Indoor localization with
smartphones: Harnessing the sensor suite in your pocket,” IEEE
Consumer Electronics Magazine, vol. 6, no. 4, pp. 70–80, 2017.

[5] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen,
R. Raulefs, and E. Aboutanios, “Recent advances in indoor lo-
calization: A survey on theoretical approaches and applications,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327–
1346, 2017.

[6] A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, and D. S. Wal-
lach, “Robotics-based location sensing using wireless ethernet,”
Wireless Networks, vol. 11, no. 1-2, pp. 189–204, 2005.

[7] P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallach, “Wireless LAN
location-sensing for security applications,” in ACM Workshop on
Wireless Security, 2003, pp. 11–20.

[8] A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E.
Kavraki, “On the feasibility of using wireless ethernet for indoor
localization,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 3, pp. 555–559, 2004.

[9] A. M. Ladd, K. E. Bekris, G. Marceau, A. Rudys, D. S. Wallach,
and L. E. Kavraki, “Using wireless ethernet for localization,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, vol. 1, 2002,
pp. 402–408.

[10] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach,
and L. E. Kavraki, “Practical robust localization over large-scale
802.11 wireless networks,” in Intl. Conf. Mobile Computing and
Networking (MobiCom), 2004, pp. 70–84.

[11] J. Talvitie and E. S. Lohan, “Modeling received signal strength
measurements for cellular network based positioning,” in Intl.
Conf. Localization and GNSS (ICL-GNSS). IEEE, 2013, pp. 1–6.

[12] K. Chawla, C. McFarland, G. Robins, and C. Shope, “Real-time
RFID localization using RSS,” in Intl. Conf. Localization and GNSS
(ICL-GNSS). IEEE, 2013, pp. 1–6.

[13] L. Chen, H. Kuusniemi, Y. Chen, L. Pei, T. Kröger, and R. Chen,
“Information filter with speed detection for indoor Bluetooth po-
sitioning,” in Intl. Conf. Localization and GNSS (ICL-GNSS). IEEE,
2011, pp. 47–52.

[14] A. S.-I. Noh, W. J. Lee, and J. Y. Ye, “Comparison of the mech-
anisms of the Zigbee’s indoor localization algorithm,” in ACIS
Intl. Conf. Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD). IEEE, 2008, pp. 13–
18.

[15] A. Hakkarainen, J. Werner, M. Costa, K. Leppänen, and
M. Valkama, “High-efficiency device localization in 5G ultra-dense
networks: Prospects and enabling technologies,” in IEEE Vehicular
Technology Conf. (VTC Fall). IEEE, 2015, pp. 1–5.



14

[16] S. M. Bellovin, R. M. Hutchins, T. Jebara, and S. Zimmeck, “When
enough is enough: Location tracking, mosaic theory, and machine
learning,” NYU Journal of Law & Liberty, vol. 8, p. 556, 2013.

[17] H. Li, L. Sun, H. Zhu, X. Lu, and X. Cheng, “Achieving privacy
preservation in WiFi fingerprint-based localization,” in IEEE Conf.
Computer Communications (INFOCOM), April 2014, pp. 2337–2345.

[18] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology — EUROCRYPT.
Springer, 1999, pp. 223–238.

[19] Z. Yang and K. Järvinen, “The death and rebirth of privacy-
preserving WiFi fingerprint localization with Paillier encryption,”
in IEEE Conf. Computer Communications (INFOCOM). IEEE, 2018,
pp. 1223–1231, full version: https://eprint.iacr.org/2018/259.pdf.

[20] A. Konstantinidis, G. Chatzimilioudis, D. Zeinalipour-Yazti,
P. Mpeis, N. Pelekis, and Y. Theodoridis, “Privacy-preserving
indoor localization on smartphones,” in IEEE Intl. Conf. Data
Engineering (ICDE), May 2016, pp. 1470–1471.

[21] T. Zhang, S. S. M. Chow, Z. Zhou, and M. Li, “Privacy-preserving
Wi-Fi fingerprinting indoor localization,” in Advances in Informa-
tion and Computer Security (IWSEC), 2016.

[22] K. Järvinen, H. Leppäkoski, E. Lohan, P. Richter, T. Schneider,
O. Tkachenko, and Z. Yang, “PILOT: Practical privacy-preserving
indoor localization using OuTsourcing,” in IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 448–463.

[23] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-
based user location and tracking system,” in IEEE Conf. Computer
Communications (INFOCOM), vol. 2, 2000, pp. 775–784.

[24] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless
indoor positioning techniques and systems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 37, no. 6, pp. 1067–1080, Nov 2007.

[25] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” in Intl. Conf. Information Security and
Cryptology (ICISC). Springer, 2010, pp. 229–244.

[26] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor
search,” SIGMOD Rec., vol. 27, no. 2, pp. 154–165, Jun. 1998.

[27] I. Damgård, M. Jurik, and J. B. Nielsen, “A generalization of Pail-
lier’s public-key system with applications to electronic voting,”
International Journal of Information Security, vol. 9, no. 6, pp. 371–
385, Dec 2010.

[28] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure
comparison for on-line auctions,” in Australasian Conf. Information
Security and Privacy (ACISP). Springer, 2007, pp. 416–430.

[29] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and opti-
mally efficient multi-authority election scheme,” European transac-
tions on Telecommunications, vol. 8, no. 5, pp. 481–490, 1997.

[30] J. Dossogne and F. Lafitte, “Blinded additively homomorphic
encryption schemes for self-tallying voting,” Journal of Information
Security and Applications, vol. 22, pp. 40 – 53, 2015.

[31] C. E. Shannon, “Communication theory of secrecy systems,” The
Bell System Technical Journal, vol. 28, no. 4, pp. 656–715, Oct 1949.

[32] A. Yao, “How to generate and exchange secrets,” in IEEE Symp.
Foundations of Computer Science (FOCS), 1986.

[33] T. Schneider, Engineering Secure Two-Party Computation Protocols:
Design, Optimization, and Applications of Efficient Secure Function
Evaluation. Springer, 2012.

[34] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in IEEE Symposium on
Security and Privacy (IEEE S&P), May 2013, pp. 478–492.

[35] S. R. Tate and K. Xu, “On garbled circuits and constant round
secure function evaluation,” University of North Texas, Tech. Rep.,
2003.

[36] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free
XOR gates and applications,” in Intl. Colloquium on Automata,
Languages and Programming (ICALP). Springer, 2008, pp. 486–498.

[37] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
two-party computation is practical,” in Advances in Cryptology —
ASIACRYPT. Springer, 2009, pp. 250–267.

[38] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,”
in Advances in Cryptology — EUROCRYPT. Springer, 2015, pp.
220–250.

[39] D. Demmler, T. Schneider, and M. Zohner, “ABY - a framework
for efficient mixed-protocol secure two-party computation,” in
Network and Distributed System Security Symposium (NDSS), 2015.

[40] Z. Yang and K. Järvinen, “Modeling privacy in WiFi fingerprinting
indoor localization,” in ProvSec. Springer, 2018, pp. 329–346.

[41] V. Kolesnikov and R. Kumaresan, “Improved OT extension for
transferring short secrets,” in Advances in Cryptology–CRYPTO.
Springer, 2013, pp. 54–70.

[42] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More effi-
cient oblivious transfer and extensions for faster secure computa-
tion,” in ACM SIGSAC Conf. Computer & Communications Security
(CCS). ACM, 2013, pp. 535–548.

[43] S. A. Cook and S. O. Aanderaa, “On the minimum computation
time of functions,” Transactions of the American Mathematical Society,
vol. 142, pp. 291–314, 1969.

[44] E. S. Lohan, J. Torres-Sospedra, H. Leppäkoski, P. Richter, Z. Peng,
and J. Huerta, “Wi-Fi crowdsourced fingerprinting dataset for
indoor positioning,” Data, vol. 2, no. 4, 2017.

[45] C. Koç, “Analysis of sliding window techniques for exponentia-
tion,” Computers & Mathematics with Applications, vol. 30, no. 10,
pp. 17 – 24, 1995.

[46] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519–521,
1985.

[47] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Advances in
Cryptology—CRYPTO, 1996, pp. 104–113.

[48] P. Richter, Z. Yang, O. Tkachenko, H. Leppäkoski, K. Järvinen,
T. Schneider, and E. S. Lohan, “Received signal strength quantiza-
tion for secure indoor positioning via fingerprinting,” in Intl. Conf.
Localization and GNSS (ICL-GNSS), 2018.

[49] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid,
“SP 800-57. Recommendation for key management, part 1: General
(revised),” NIST, Tech. Rep., 2007.

[50] M. Abdalla, T. E. Bjørstad, C. Cid, B. Gierlichs, A. Hülsing,
A. Luykx, K. G. Paterson, B. Preneel, A.-R. Sadeghi, T. Spies,
M. Stam, M. Ward, B. Warinschi, and G. Watson, “Algorithms,
key size and protocols report,” ECRYPT - CSA, Tech. Rep., 2018.

[51] S. D. Galbraith, “Elliptic curve Paillier schemes,” Journal of Cryp-
tology, vol. 15, no. 2, pp. 129–138, 2002.

[52] R. Agrawal and R. Srikant, Privacy-preserving data mining. ACM,
2000, vol. 29, no. 2.

[53] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Journal
of Cryptology, vol. 15, no. 3, pp. 177—-206, 2002.

[54] C. C. Aggarwal and P. S. Yu, A General Survey of Privacy-Preserving
Data Mining Models and Algorithms. Springer, 2008, pp. 11–52.

Raine Nieminen received the M.Sc. (Tech.) de-
gree in computer, communication and informa-
tion sciences from Aalto University in Finland in
2018. He had short-term Research and Teach-
ning Assistant positions in Aalto University in
2016 and 2017. In 2018, he was a full-time Re-
search Assistant with the Department of Com-
puter Science in University of Helsinki in Finland.
From 2019 to 2020, he was a Security Specialist
in Insta Digital in Finland. His research interests
lie in the domains of security and cryptography.

Kimmo Järvinen received the M.Sc. (Tech.) and
D.Sc. (Tech.) degrees in electrical engineering
from Helsinki University of Technology (TKK) in
Finland in 2003 and 2008, respectively. From
2008 to 2013 and from 2015 to 2016, he was
a postdoctoral researcher in the Department of
(Information and) Computer Science in Aalto
University in Finland. From 2014 to 2015, he
was with the COSIC Group in KU Leuven ESAT
in Belgium. Since 2016, he has been a Senior
Researcher with the Department of Computer

Science in University of Helsinki in Finland. His research interests are in
the domains of security, cryptography, and cryptographic engineering.


