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To International Journal of Mass Spectrometry (IJMS) 

 

Helsinki, March 27th 2020 

 

Dear Editor, 

 

Enclosed, please, find an electronic submission of a review manuscript entitled  

Advances in analytical tools and current statistical methods used in ultra-high-performance 

liquid chromatography-mass spectrometry of glycero-, glycerophospho- and sphingolipids 

written by Henri Avela and Heli Sirén for publication in International Journal of Mass 

Spectrometry. 

We have broadly reviewed the status of current RPLC-MS analytics in the light of UHPLC-MS 

studies between the time frame of 2017-2019 to elucidate both standardized and variable aspects 

practiced by researchers for both identification and quantitation in lipidomics.  

We focus to the importance of the topic and to orient current method validation towards factors (e.g. 

gradient, adducts) yet undecided in the lipidomic community and to clarify the choices made in 

lipidomic analyses. Moreover, complex lipidomic data demands high-throughput data processing as 

well as the appropriate chemometric and statistical tools, which are also represented in the review. 

The manuscript contains 4 figures and 5 tables. Among them, Figure 4 needs permission for 

reprinting.  

 

Looking forward to receive your decision about the review paper. 

 

Sincerely, 

 

Henri Avela and Heli Sirén 



Cover letter 

The response letter to the reviewer’s comments on the manuscript 

IJMS_2020_121 

 

Advances in analytical tools and current statistical methods used in ultra-high-performance 

liquid chromatography-mass spectrometry of glycero-, glycerophospho- and sphingolipids 

by Avela and Sirén 

 

To the Editor of International Journal of Mass Spectrometry 

Professor Zheng Ouyang 

Please, find below our responses to the comments of the reviewers about the first version of the 

manuscript IJMS_2020_121. 

 

1. Response to the reviewers' comments 

 

Comment 1: This review contains a very wide coverage of literature of LC-MS methods for lipids 

analysis, this makes it too lengthy to read. I suggest the authors to remove basic knowledges of lipid 

nomenclature, liquid chromatography and mass spectrometry. 

 

Response 1: The exposition on basic knowledge concerning the topics lipid analysis, LC and MS 

were minimized. However, some paragraphs were kept to preserve the text’s flow and readability. 

Comment 2: Besides, discussion of challenges specific to the analysis of each type of biological 

sample should be added. 

Response 2: A brief introduction to biofluids, tissue and cell culture sample preparation was added 

to the Chapter ‘Instrumentation’. Biological samples and their sample preparation is discussed 

elsewhere, since the main text was asked to be minimized. 

 

 

Reviewer #1:  

Comment 1: Although LC-MS are widely used for lipid analysis, shotgun lipidomics methods were 

also developed and employed into various biological samples. 

 

Response 1: We have included our comments  and compare shortly direct infusion techniques with 

HPLC-MS in the Chapter on ‘Quantification of lipids’. We think that an extra paragraph on the 

mehod comparison will increase the basic information, which was suggested to be removed or 

decreased in the main paper 

 



Comment 2: I understand that emphasizing UPLC can make this review more focusing, however, 

since many MS methods are developed based on HPLC, some very important MS methods for lipid 

analysis may be omitted. 

Response 2: We have acknowledged this limitation in the ‘Discussion’ section and addressed some 

techniques mentioned by reviews on lipidomic MS-analysis. 

Comment 3: During past few years, more attentions were paid onto lipid isomer analysis by 

developing new MS methods, e.g. C=C isomer and sn-isomer analysis. Related references should be 

included. 

 

Response 3: The topic was extended upon up-to-date methods (e.g. Paterno-Büchi acetone 

derivatization) in the end of the Chapter ‘Identification of lipids’. Furthermore, some methods were 

already mentioned in the text (e.g. SWATH, SONAR, PRM in the ‘Introduction’ and SWARM in the 

‘Instrumentation’ chapter)  

 

Comment 4: Reference [15] is a review paper, it cannot be used a source of experimental conditions 

in Table S1. Acetone has been reported as a major component of the mobile phase both for HILIC 

(2019) and RPLC (Anal. Chem. 2020) separation phospholipids. 

 

Response 4: The study on buttermilk by Castro-Gómez et al. [15] includes an experimental section 

and results discussing them. Anyhow, acetone is now mentioned and cited as a organic phase in the 

limitations-paragraph of the Discussion-section (side note: UHPLC articles barely noted this solvent, 

though it must be used for the Paternó-Büchi photochemical derivatization) 

 

Comment 5: Quantitation of lipids in biological samples should be discussed. 

 

Response 5: A chapter (‘Quantitation of lipids’) was included to address the topic and its 

challenges. Furthermore, additional information had to be added for the normalization (i.e. standard 

usage) of lipidome data. 
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Abstract 

The review concentrates on the properties of analytical and statistical ultrahigh-performance 

liquid chromatographic (UHPLC) – mass spectrometric (MS) methods suitable for glycero-, 

glycerophospho- and sphingolipids in lipidomics published between the years 2017-2019. 

Trends and fluctuations of conventional and nano-UHPLC methods with MS and tandem MS 

detection were observed in context of analysis conditions and tools used for data-analysis. 

Whereas general workflow characteristics are agreed upon, more details related to the 

chromatographic methodology (i.e. stationary and mobile phase conditions) need evidently 

agreements. Lipid quantitation relies upon isotope-labelled standards in targeted analyses and 

fully standardless algorithm-based untargeted analyses. Furthermore, a wide spectrum of 

setups have shown potential for the elucidation of complex and large datasets by minimizing 

the risks of systematic misinterpretation like false positives. This kind of evaluation was shown 

to have increased importance and usage for cross-validation and data-analysis. 

Keywords 

Lipidomics, mass spectrometry, ultrahigh performance liquid chromatography, nano-liquid 

chromatography, chemometrics, statistical methods, multicomponent analysis  
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Highlights 

• Method development and application enhancements in lipidomics 

• The review sums up chemometric and statistical methods for current lipidomics 

• State of the art data collection and evaluation is discussed 

• Identification/quantitation of biological lipids 

• Tandem MS data-independent and data-dependent analysis 

Abbreviations 

ACP acyl carrier protein, AF4 asymmetric flow field flow fractionation, ANOVA analysis of 

variance, AUC area under curve, CARS coherent anti-Stokes Raman scattering, CCS collision 

cross-section, CN total carbon, CRS coherent Raman scattering, DB double bond, DDA data 

dependent acquisition, DESI desorption electrospray ionization, DG diacylglycerol, DIA data 

independent acquisition, DIMS direct infusion MS, FDR false discovery rate, FA fatty acyl, 

FFA free fatty acid, GC gas chromatography, GL glycerolipid, GP glycerophospholipid, HCA 

hierarchical cluster analysis, i.d. internal diameter, IMS ion mobility spectrometry, HPLC 

liquid chromatography, LESA liquid extraction surface analysis, m/z mass-to-charge [ratio], 

LSI Lipidomic Standards Initiative, HR/LRMS high/low resolution mass spectrometry, MSE 

all ions scans, MS/MS tandem mass spectrometry, MS/MS/MS second-generation 

fragmentation mass spectrometry MSn  on-line coupled mass spectrometry system, MSI mass 

spectrometric imaging, m/z mass-to-charge ratio, NP normal phase, NSI nano-electrospray 

ionization,  nESI negative ion mode in electrospray ionization, OPLS-DA orthogonal 

projections to latent structures discriminant analysis, (L)PA (lyso-)phosphatidic acid, (L)PC 

(lyso-)phosphatidylcholine, (L)PE lyso-phosphatidylethanolamine, pESI positive ion mode in 

electrospray ionization, (L)PG (lyso-) phospatidylglycerol, (L)PI (lyso-)phosphatidylinositol, 

NP-HPLC normal phase liquid chromatography, PIS precursor ion scan, PLS-DA partial least 

squares discriminant analysis, PRM parallel reaction monitoring, (L)PS (lyso-



3 
 

 

)phosphatidylserine, QqQ triple quadrupole mass analyzer, QTOF quadrupole - time of flight, 

ROC receiver operating characteristics curve, RP-HPLC reversed phase liquid 

chromatography, RT retention time, SP sphingolipid, SFC supercritical fluid chromatography, 

SWATH sequential window acquisition of all theoretical fragment ion mass spectra, SWARM 

sliding window adduct removal method, TG triacylglycerol, TOF time of flight mass analyzer, 

UHPLC ultra-high performance liquid chromatography, VIP variable importance projection 

1. Introduction 

Recent lipid research has emerged due to improved multidimensional computer algorithms and 

highly efficient commercial, open-source and in-house software platforms. Furthermore, data 

libraries for automated routine searching of mass spectra is adopted for lipid identification. 

International organizations have started together to harmonize knowledge about lipidomics. 

Especially, the Lipidomics Standard Initiative (LSI, https://lipidomics-standards-

initiative.org/) found under the International Lipidomic Society 

(https://lipidomicssociety.org/about/) and Lipid Home (https://www.lipidhome.co.uk/) strive 

to standardize lipidomic information with the globally acknowledged platform Lipid MAPS 

(https://www.lipidmaps.org/). Furthermore, Sumner et al. [1] have stated minimal requirements 

for retraceable lipid analyses, [1] which are important for integrated research in lipidomics. 

This review on lipid investigatios encompasses research conducted with ultra-high 

performance mass spectrometry (UHPLC-MS) during 2017-2019 [2-79]. To clarify, this 

review uses the term high performance liquid chromatography (HPLC) to describe both 

conventional HPLC and UHPLC. However, blindspots of exclusive UHPLC-research are 

attempted to be covered in the Discussion-section.  

Particularly, half of the reviewed studies deal with computerized platforms to identify lipid 

species of several classes. These computerized platforms have successfully enabled data 

handling with in silico analyses, commonly generalized as machine learning algorithms. After 

https://lipidomics-standards-initiative.org/
https://lipidomics-standards-initiative.org/
https://lipidomicssociety.org/about/
https://www.lipidhome.co.uk/
https://www.lipidmaps.org/
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all, the most popular means of comprehensive identification in -omics research is on-line 

coupled mass spectrometry systems (MSn, e.g. tandem mass spectrometry [MS/MS]), which 

demand extensive and thorough data-handling. In the field of lipidomics, MSn is often divided 

into data-dependent acquisition (DDA) and data-independent acquisition (DIA). Here, DDA is 

typically defined as fragmentation of only targeted precursors, as is the case in parallel reaction 

monitoring (PRM) [15], [44], [45]. It is a technique, in which all fragments of the chosen lipid 

precursors are measured. In DIA, all available lipid precursors are fragmented and measured 

in a full scan with a set of collision energy (CE) or energies, detecting a substantial amount of 

lipid adducts fragmentation patterns, e.g. in an all ions scan (MSE) [9-15], [32-34], [55-61], 

[68], [74]. 

Recent DIA research were applied in a novel MS technique called sequential window 

acquisition of all theoretical fragment ions spectra (SWATH MS) [6], [44], [73-76] and 

similarly, with QTOF-specific SONAR technology [69]. The consecutive fragmentation or 

scan of precursors (i.e. PRM for DDA and SWATH or SONAR for DIA) and their product ions 

provide cleaner MS spectra in favour of library searches, an improved detection rate, broadened 

range, and expanded specificity in any given fragmentation frame compared to other methods 

[34], [44], [73], [69]. Different MS and MS/MS techniques are compiled in Table 1. When 

significant, instrumental and experimental conditions for glycero-, glycerophospho- and 

sphingolipids are focused on and referred to [80-88]. 

2 Fatty acids, lipids and metabolites of the survey 

Fatty acids are synthetized in cells and their cell membranes, endoplasmatic reticulum, Golgi 

apparatus, and mitochondria [89], [90]. Most lipids are products of free fatty acids in presence 

of coenzyme A and NADPH [91]. This literature survey deals with a short area of lipidomics 

and contains commonly studied lipids, e.g. glycerolipids (GLs) like mono- (MG), di- (diacyl-, 

DG), and triacylsubstituted (triacyl-, TG) glycerols. [91] To look the structural challenges of 
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lipids in analytics, Figure 1 illustrates the functionalities of TG lipids. Glycerophospholipids 

(GPs) from GLs are also included, since they are frequently detected like the most abundant 

lipids in eukaryotic cells, i.e. phosphatidylcholine (PC) and phosphatidylethanolamine (PE) 

[92]. Other GPs dealt in this review include phosphatidic acid (PA), phosphatidylserine (PS), 

phosphatidylinositol (PI), phosphatidylglycerols (PGs), and PG-derived cardiolipins (CLs). 

[92] To observe the challenges of separation and identification issues some glycerolipids and 

glycerophospholipids are illustrated in Figure 2.  

GPs may appear with fatty acids which both are bound with ester or ether groups, the latter 

being defined as plasmalogens (PLs) [92]. PLs are detected and identified either by an alkenyl 

linker with an oxygen (e.g. PI[O-18:0/17:0]) or with a phosphorous (e.g. PI[P-18:0/17:0]) [92]. 

Those structural hetero atoms help mass spectrometric detection, although there may not be 

improvements in chromatographic separation.  

An interesting group of surveyed lipids is sphingolipids (SPs, Figure 3, [28]). They have a 

basic backbone with various kinds of lipids. The backbone is formed from serine amino acid 

and a long-chain fatty acyl catalyzed by coenzyme A in mammals [92]. The analytics is focused 

to ceramides (Cer), which have amine-bonds with fatty acids.  To sum up, interest is focused 

on esterified fatty acids with glycerol head groups (glycerolipids, glycerophospholipids) or a 

sphingosine headgroup (sphingolipids), but not a sugar backbone (saccharolipids, a topic of 

worth its own review). Other groups left out are defined by characteristic hydrocarbon 

structures, i.e. fatty acyls, prenol lipids, sterols and polyketides [94]. More analysis on lipid 

classes and metabolism is discussed elsewhere [101]  

3 Instrumentation 

In lipidomics, a wide range of articles introduce new or improved methods which are validated 

with UHPLC-MS, capillary-UHPLC-MS (nUHPLC-MS or nano-UHPLC-MS) instruments 

(Table 2). Most of these studies concentrate on sample preparation [14], [20], [46], [66], 
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development of chromatographic methods [9], [22], [27], [45], MS/MS identification [7], [16], 

[23], [27], computational methods for improvement of measurement performance [17], and 

data analysis [21], [25], [96]. Recent challenges in HPLC-MS seem to be fluctuation 

(repeatability) of analysis [97], [98] results, which hinder reliable identification and inter-

laboratory tests of lipids. Since in chromatographic environments elution of different lipid 

types and their species may differ [98], deconvolution of data via manual or computational 

analysis may be the only reasonable compromise. 

The reviewed papers show that all lipid analyses have fluctuation of lipid composition and 

intensity based on the fingerprint profiles of different biological matrices. These observations 

can be explained by distinctive matrix effects, which in turn inform that there is a specific need 

of sample preparation before analyses. Usually, lipidome studies are done with simplified 

sample preparation to avoid recovery losses in clean-up steps. [99] Mostly, the clean-up steps 

are protein precipitation and extraction of solid matrix compounds (e.g. biological tissues) and 

fluids (e.g. plasma, serum, lavages, cell suspensions and supernatants).[99] Furthermore, solid 

materials may trap internal standards and analytes, which increases variation of results in 

quantification and leads to less accuracy and precision of the methods. [100] Sample 

preparation of biological and clinical samples is discussed more elsewhere [101].  

Though reconstitution with the most used polar acetonitrile - water mixture (60:40, v/v) and 

organic isopropanol - acetonitrile (90:10, v/v) eluents is practical, none of these dissolve lipids 

comprehensively. For instance, acetonitrile - water at 60:40 (v/v) recovers STs and TGs 

incompletely. [45] Furthermore, Danne-Rasche et al. [45] observed a distortion or even loss of 

lipids with i-propanol - acetonitrile mixture (9:1, v/v),  when the eluent was used in nano-

UHPLC. Thus, lipids need to  be reconstituted into a standardized mixture such as butanol - i-

propanol - water (8:23:69, v/v/v) [45] prior to injection. The solvent composition is important 

for lipid solubility. Due to high solvent volumes from pretreatment processes at the end of 
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sample preparation, all lipid samples need to be dried for getting concentrates of HPLC-MS 

research. Furthermore, concentrates are needed to measure multidimensional MS spectra to 

obtain accurate identification and algorithm-based data handling of features.  

To reduce systematic noise and other disadvantages (e.g. adsorption, peak broadening, adduct 

formation) in chromatographic data has been attempted via computational methods, i.e. with 

the sliding window adduct removal method (SWARM). [102] SWARM is based on the 

systematic interference caused by multiple adduct ions of the same analyte. The interference 

induces systematic noise patterns that may be excluded to enhance accurate mass acquisition 

for metabolites. Then, the adduct signal overlap correction for low-to-moderate resolution mass 

spectra could be utilized. 

Modern instrumental separation and detection methodologies are still on-going needed to avoid 

frequent appearance of false negative lipid identifications and to establish sufficiently reliable 

and label-free (i.e. standard-free) methods. Identification of lipids showed to be improved by 

multiply usability of analytical variables and by using more independent properties, such as 

chromatographic retention times (RT) and mass spectrometric mass-to-charge ratios (m/z) of 

lipid ions/adducts, fragmentation/isotope patterns, and collision reactions. Reliability for 

targeted lipid species identified by internal standards and calibrants have made lipid analyses 

possible in quite many case, but especially non-targeted lipid analyses demand the super power 

and speed of computers with algorithm-based libraries.[96], [103], [104] Thus, the analyses 

can be independently conducted without potent analytes. Evidently, the computerized methods 

have utilized automated systems when internal standards for normalization are neglected. [2], 

[3], [10], [11], [13], [14], [16], [17], [20], [21], [22], [24], [26], [30], [32-36], [38], [44], [4 6], 

[47], [59], [63], [66], [73]. 

3.1 UHPLC 
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HPLC techniques are preferred for their ability to enhance identification by predictable 

retention time patterns [98], [105] and reduced mass ambiguity [106]. In lipid research, the 

sub-method UHPLC is preferred over HPLC due to its lower dispersion, substantial decrease 

in solvent usage, shorter analysis times without compromising resolution, higher resolution 

performance due to smaller (sub-2 µm) fully porous particles or (sub-3 µm) core-shell material 

[73] in columns (enabled by higher pressure capabilities) and enhanced retention precision. 

[107] 

Our dataset [2-79], [108] informs current lipidomic UHPLC-MS separations to be primarily 

done with additive-assisted reversed phase liquid chromatography (RP-HPLC) hyphenated 

with separate experiments on positive electrospray ionization (pESI) and negative electrospray 

ionization (nESI). Though ESI was predominantly used for UHPLC-MS, some atmospheric 

pressure chemical ionization (APCI) studies were also conducted. [23], [44], [47]. ESI as a 

‘soft’ and APCI as a ‘hard’ ionization technique, respectively, are suitable for supporting lipid 

identification. [23] In respect of that, Beccaria et al. [23] developed a method suitable for both 

detection approaches with no need to change HPLC parameters.  

Elution of lipids in HPLC is done in many elution models (e.g. isocratic elution, curved 

gradient following an exponential or logarithmic function, stepped gradient, linear gradient, 

etc.). The suitable stationary and mobile phases with methods are also found in Table 1. More 

detailed information on stationary and mobile phases as well as lipid adduct concentrations is 

in Supplementary (Table S1). 

3.1.1 Reversed phase separation in HPLC 

In lipidomics the commonly used RP-HPLC separation methods are based on the interaction 

of a nonpolar stationary phase with nonpolar lipid analytes. Nonlinear or second-degree curves 

between the retention times and total carbon (CN) double bonds (DB) are used for quantitative 

calculations. [9], [16], [98], [105] For example, they help to differentiate possible sodium 
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adducts from similar exact masses (e.g. [PC(38:4)+Na]+ and [PC(40:7)+H]+ [9]). However, 

retention time prediction can be complicated due to pH dependent speciation [109], 

experimentally made validation and multi-step liquid gradients [23].  Separation of polar 

components (i.e. early retaining lipids) can be affected by the mobile phase gradient. When 

elution is started with high percentage of organic mixture, polar compounds are longer 

adsorbed and retained on RP-HPLC phases. [110] However, changes of eluent polarity are 

interlinked with the ionization rate of polar lipids, which in turn can have an impact on elution. 

[110] RP-HPLC with polar solvents (i.e. non-aqueous RP-HPLC) is enabled by polymer-based 

columns which are end-capped by a methyl or hydrogen group. [110] Some column materials 

are based on modified silica, which when not shielded are short-periodically used with water 

modified organic solvents due to free silanol groups having the attractive functions. [110] 

In contrast to phenomena in reversed phases, normal phases in HPLC (NP-HPLC) typically 

separates analytes containing polar  functionalities having silanol, amino- or diol groups. [111] 

NP-HPLC is excluded from the review, since only a single article on NP-HPLC with amide 

column was observed during 2017-2019 on lipid separation [31]. 

Since even the variation among lipid class species can be substantial, it is not surprising that 

the polarity of their classes varies a lot. Tumanov and Kamphorst [85] (Figure 4) demonstrated 

the lipid-subclass range of four distinct chromatographic approaches, which are divided to two 

groups (one a RP, one a NP separation strategy in each group). The subclasses in (A) include 

lipids of the nonpolar kind, whereas the separations of (B) are modelled to the polar lipid 

subclasses. Particularly, polar (lyso-forms, MGs, sphingosine-related compounds, FAs, acyl 

carnitines and acetyl coenzyme A) and mid-polar (PS, PG, PI, Cer) lipids seem to be species 

often analysed with the negative ionization mode, though more species are primarily found 

with positive ionization. From the GLs only MGs have FA chains with 16 counts, i.e. they are 

small enough to be rather polar. As a thumb rule, SPs are on the mid-polar lipid spectrum, when 
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they have amide-bound FA chains. [85] Thus for reliable research data, accurate UHPLC-MS 

methods are needed to identify the individual lipid class species.  

3.1.2 HILIC 

Essentially, hydrophilic interaction liquid chromatography (HILIC) columns are micro-bore 

columns with stationary phases of mixed hydrophilic interactions for nonpolar compounds and 

hydrophobic interactions for polar compounds. However, nonpolar lipids (e.g. CEs, TGs) and 

lipids with only one hydroxyl group (e.g. Cer, DG, MG, and cholesterol) are often barely 

retained. [16] Nevertheless, HILIC is a well-established subclass of NP chromatography that 

allows usage of water as the eluent (5-40%, >2% needed) as in contrast to conventional NP. 

[112] HILIC platforms are ideal for quantitation, since lipid class species co-elute with their 

respective calibrants. [109]  

PAs and PSs species are known to have broad or barely detectable peaks in RP-HPLC, thus, 

HILIC is used. [112] Furthermore, as PAs and LPAs co-elute among major lipid components 

(e.g. PCs, PEs, SMs) in RP-HPLC. Because of that the comparatively lower abundance of lipids 

in this class, PAs and LPAs have no selective fragment to differentiate from other lipid classes. 

Thus, proper methods for PA/LPA separation have been specifically approached with HILIC. 

[113], [109]  

Though being a well-established technique for HPLC-MS quantitation, not many UHPLC 

analyses have used HILIC-columns for separation. [16], [47] Thus, HILIC applications are also 

excluded from the scope of this review. 

3.1.3 Nano-UHPLC 

In nano-HPLC [112] columns of sub-millimetre internal diameter (i.d.) are filled with 

conventional column packing materials. Published papers [41], [71], [24], [45], [42] inform 

only about using a loaded capillary (i.d.: 1-0.001 mm [114]) or a nanobore column (i.d.: 0.1-

0.025 mm [114]). For comparison, a large majority of the lipid studies are done with the 
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smallest possible narrow bore columns (2.1-4 mm). Surprisingly, along with nano-HPLC a 

low-resolution triple-quadrupole mass spectrometer was unequivocally preferred.  

In contrast to a faster UHPLC separation, in nano-HPLC the “loading time” followed by the 

sample elution was extended due to the low flow rate restrictions (0.3-0.35 μl/min). [71]  

Nano-HPLC methods show a great capacity for lipid identification with a low-resolution mass 

analyser, since then both an extremely broad identification range and high sensitivity at the low 

fmol-scale are gained using a low throughput (analysis time: 40-60 min). [41], [45] The result 

was that the low fmol range for almost every GLs, GPs, SPs and their lipid derivatives was 

reached in the positive ionization electrospray mode (pESI). For example, the calibration curve 

for a specific PE (17:0/14:1) demonstrated a linear relationship between 16-10000 fmol by 

pESI-MS detection and 0.64-2000 fmol by nESI-MS detection [41] By contrast, with HPLC-

ESI-MS the linear dynamic range for the same analyte reached around 80-10000 fmol by pESI-

MS and 16-2000 fmol by nESI-MS. [45] Similarly, Kim et al. [115] achieved a LOD-range 

from 59 fmol (LPC(17:0)) to 507 fmol (LPG(14:0)) with untargeted nano-UHPLC-ESI-

MS/MS of lipoprotein by pESI and nESI ionization, respectively. [115] 

3.1.4 Mobile phases in hyphenation of HPLC with MS 

Mobile phases in HPLC are usually modified to help in lipid detection and their separation with 

HPLC. [112] As the sensitivity issues are concerned, composition of eluents is important to 

obtain stabile adduct ions in MS. [23] Volatile buffers (e.g. formic acid, acetic acid, or their 

ammonium salts [116]) are used in lipidomics methods. [113] However, earlier studies report 

lipid results with 5 µM phosphate buffer (nanoelectrospray ionization) [9] and 5 mM 

phosphoric acid [45]  

In some cases, additives in HPLC eluents may cause analytes to become undetectable due to 

signal suppression. Cajka and Fiehn [117] studied the effects of five different modifiers in both 

pESI and nESI mode with two different HPLC columns filled with ethylene bridged hybrid 
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(BEH) particles and the slightly better charged surface hybrid (CSH) particles. [117] Whereas 

the experiments could be concluded by choosing the optimal mobile phase modifier to be 

formic acid or formic acid/ammonium acetate for pESI and ammonium acetate for nESI. Using 

a CSH C18 column with HPLC-pESI-MS studies Monnin et al. [118] reported about a further 

enhanced ionization efficiency by choosing 0.02% acetic acid as the additive in eluent. 

Whereas the signal for LPLs (except LSM) and GPs certainly increased by manifold, Cer and 

PCs experienced a decrease in peak area when compared with analyses data with 10 mM 

ammonium acetate. [118] However, specific to PCs their carbonate ion adducts showed 20-

fold stronger signals compared to their ammonium adducts with CID-MS/MS. [119] 

3.2 Importance of mass spectrometry detection in lipid research 

Formation of adducts is dependent on the molecular structure and functional groups of a lipid 

(e.g. deprotonation of carboxyl groups in fatty acid with nESI). Lists of exact masses in MS 

and MS/MS, non-protonated adducts, possible collision energies and lipid classes/topics are 

listed in Table 3. Furthermore, sources like Lipid maps providing a free MS/MS prediction 

tool (http://lipidmaps.org/resources/tools/index.php) and a structure database library 

(http://lipidmaps.org/data/classification/LM_classification_exp.php) allow data handling in 

lipidomics. 

MS advancements, such as a quadrupole Orbitrap mass analyzer (Q-Orbitrap) [9], [17], [20], 

[22], [27], [31], [46], [49], [51], [55], [56], [62-65], [77], [79], and NSI [24], [45], [71] have 

extremely increased resolution capabilities (theoretical plate number in HPLC >35 000 /m) for 

lipid identification. However, compromises need to be done before the analyses, since either 

mass accuracy or ion resolution is emphasized depending on whether identification or 

quantitation is preferred. Furthermore, identification is improved with the help of orthogonal 

measurements, such as collisional cross-section (CCS) values with ion mobility spectrometry 

(IMS), achieved with a drift tube coupled with MS instruments, such as a quadrupole time of 

http://lipidmaps.org/resources/tools/index.php
http://lipidmaps.org/data/classification/LM_classification_exp.php
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flight (QTOF) [6], [16], [25], [68]. Furthermore, the inclusion of trapped IMS (TIMS) 

combined with parallel accumulation serial fragmentation (PASEF) has emerged to enhance 

complementary MS/MS and IMS data. [126] 

For high-resolution MS, an Orbitrap [2], [5], [34], QTOF [4], [6], [10-16], [21], [25], [28], 

[30], [32], [33], [36-40], [43], [44], [53], [54], [59-61], [66], [68-71], [71], AA073, [74], [75], 

AA076, [78] and QOrbitrap [3], [5], [9], [17-20], [22],  [26],  [27],  [31], [34], [35], [46], [47], 

[49-51], [55-58], [60], [62-65], [72], [77], [79] were used. However, some studies settled for 

low-resolution MS, mostly with a triple quadrupole instrument [7], [8], [23], [24], [30], [41-

43]. Most rarely, pseudotargeted methods [21], [30], [54] (i.e. lipid identification with an in 

silico library), polarity switching [5], [17], [23], [41], [49], standalone nESI mode in MS [29], 

[43], [68], NSI [45], [71] and atmospheric pressure chemical ionization (APCI) [23], [44], [47] 

were used.  

3.3 Data acquisition and processing 

Identification and determination of lipids and their metabolites need commercial, open-source, 

and sophisticated tailor-made tools [127]. The statistical tools, analysis software, and 

algorithms enable visualization and perceiving of patterns from large datasets and raw data 

[103]. Metabolic profiling of MS data is done with multi-variant programs, such as 

Metaboanalyst, [10], [11], [17], [27], [32], [34], [37], [40], [46], [59], [63], [77] or MeV [3], 

[30], [65], [61], [79], [103],. All in all, reported software environments for data processing 

constitute mostly of R and SPSS languages.  

Manual programming from the ground up or with borrowed code demands more computational 

expertise. Koelmel et al. [96] compared identification algorithms with the commercial R-based 

LipidMatch-tool, which is tailored for lipid identification softwares. [96] For a deeper 

understanding of differences in program functionalities, the article on “LipidMatch: an 
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automated workflow for rule-based lipid identification using untargeted high-resolution 

tandem mass spectrometry data“ gives excellent information [96].  

4 Analysis 

4.1 Identification of lipids  

Lipid identification can be enhanced by using information about the individual lipid itself, e.g. 

by increasing orthogonal information via “polarity switching” [5], [17], [23], [41], [49] instead 

of only using one ionization mode in the measurements or by the introduction of supporting 

measurements or (lipid class) expanding methods. Identification demands are partly already 

mentioned in Introduction and chapters, where chromatographic parameters are discussed 

referenced to resolution and sensitivity. 

In lipid studies, absolute retention time (RT) variation during sample analyses is easily 

increased by small differences in experimental conditions (preparatory, chromatographic, and 

instrumental parameters). However, more repeatable separation techniques along with feature 

alignment enables more reliable identification with RTs in inter-laboratory studies in the future. 

[128] Since measurements of m/z ratio are significantly less deviant (parameters affecting m/z: 

ionization efficiency and mass spectrometric setup), single m/z, feature, and low-resolution 

spectra matching are the most used means for quick identification. [7] If needed, high 

resolution precursor and product ion spectra are usually obtained to achieve accurate 

identification between highly similar species. For further optimization of mass spectrometric 

identification, adduct formation and control of collision energy should also be studied and used. 

It is commonly agreed that adduct ions are formed mostly during ionization [9], [73], which is 

why lipid species appear at the same retention time in both pESI-MS and nESI-MS. Apart from 

protonated and deprotonated species, adding of millimolar concentrations of salts can be 

harnessed for signal enhancement [129]. Though at too high concentrations lipid signals can 

drastically be inhibited due to background noise caused by ion clusters [129]. Common ligand 
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ions are acetate (CH3COO-) [56], [68], formate (HCOO-) [48], [50], [57], [58], [60], [75-77], 

and ammonium (NH4
+) [48], [50], [56-58], [60], [74-76]. Sodium (Na+) and potassium (K+) 

adducts are also commonly observed, though no controlled addition of such salts was noticed 

[92]. 

High resolution RP-HPLC separates structural isomers of lipid classes, [9] up to the point of 

carbon chain regioisomers (i.e. sn-positions of lipids). However, comprehensive identification 

of isobars and isomers could not be achieved by solely using MS/MS. For example, Lisa et al. 

[16] and Blaženović et al. [25] reported unresolved isomers and isobars with identical CNs and 

DBs but different fatty acyl composition. Adducts with same nominal mass can be separated 

with MS/MS [23], but specific information like sn-position of DBs needs other methods, like 

derivatizing of free fatty acids to form 4-iodobenzyl esters [130]. The reaction is made to 

esterified fatty acids into distinguishable epoxides via  ketone dioxide catalyst and oxidant 

[131] or to oxetane-adducts via the Paternó-Büchi photochemical reaction. [132], [133], [134] 

Mass spectrometric solutions include second-generation fragmentation (MS/MS/MS) by dual 

stage collision-induced dissociation (CID) [135] or CID and ozone-induced dissociation 

combined, or silver-ion chromatography (currently achieved only with TGs) [81], [112], [136]. 

Recently, Zhao et al. [119] also mentioned electron impact excitation of ions from organics 

(EIEIO) and photo-ultraviolet dissociation (PUVD, photodissociation [130]) in the list of non-

CID methods for sn and DB position.  Since lyso-forms of GPs, i.e. sn-2 acyl lipids retain less 

in a HPLC column than their sn-1 isomers, they can be identified as separated double peaks. 

[9]  

4.2 Quantification of lipids 

Burla et al. [99] (a statement of the global lipidome community) compiled guideline 

recommendations for quantitative analysis in clinical sample matrices, specifically absolute 

quantification of lipids in plasma and serum. For the quick comparison of absolute 
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quantification results, lipid concentrations should be reported in the SI-units mol/L or molar 

percentages whenever possible. [99] 

In comparison to lipid identification, quantitative analysis is increasingly dependent on control 

samples as well as the quality and concentration of included standards, i.e. internal standards 

and calibrants. Common control samples include blanks and quality control (QC): Blanks are 

included for standard impurity monitoring and validation purposes, whereas QC samples (a 

pooled sample of all study samples in a batch) serves to monitor and correct batch-related 

uncertainty, instrumental errors and evaluate the performance of lipid analytes for validation 

purposes. [99]  

Absolute quantitative calibration of lipids is either conducted via spiked QC samples (surrogate 

calibration) or by direct introduction of standards in the study sample as is often done in single-

point and standard addition calibration. [75] However, single-point calibrations are reported to 

overestimate target lipid concentrations due to inherent flaws in the regression. [75] An ideal 

calibrant for complex matrices has an identical response factor, ionization efficiency and 

experiences comparable matrix effects as the analyte. [137]  

For better understanding quantitative UHPLC-MS, some differences between HPLC-MS and 

DIMS should be pointed out. Though DIMS is more robust at the high-concentration lipids 

(µmol/L-mmol/L) of a sample, HPLC-MS is advantageous for the identification and 

quantification of low- and very low-abundance lipids (<nmol/L-mmol/L). [137], [99] Anyway, 

lipid class coverage and sensitivity are considerably improved in HPLC-MS experiments. [99] 

As an inherent disadvantage in HPLC-MS, the risk of lipid-lipid interaction increases due to 

the enrichment of same lipid species occurring in the column, though hetero-interaction 

between different lipid species decreases. [137] HPLC-MS uses peak areas in contrast to 

DIMS, where more stable ionization conditions enable quantification via peak intensity. [82]  
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Moreover, the fluctuating quality and quantity of molecular species in the ion source is a 

recurring problem for lipid quantifications. These issues are amplified by the increasing 

complexity of experimental setups, such as chromatographic gradients affecting electrical 

properties (i.e. ionization efficiency) of the eluent. This has implications not only for the 

ionization efficiency, but also for the MS instrument’s response factor: alongside solvent 

composition, Drotleff et al. [75] reports post-acquisition MSn procedures like SWATH or 

multiple reaction monitoring (MRM) to further deviate the detector’s response values from one 

unit per molecule. Drotleff et al. [75] proposed “post-acquisition recalibration” as a reasonable 

compromise, if not enough sample is available for using the standard addition method. Then, 

sensitivities of analytes can be determined via a certified reference material. For lipids, only 

the NIST CRM 1950 plasma reference is currently acknowledged. [75] Standard mixtures, such 

as the Splash® Lipidomix® mixture (Avanti Polar Lipids Inc., Alabaster, AL, USA) have been 

used for mimicking corresponding lipid concentrations in experiments as in biological fluids, 

e.g. human plasma, and for normalization of the analyses [14], [28], [66]. Since lipidome 

isotope labelling of yeast (LILY, complete lipidome carbon labelling with C13 isotope [138]) 

technology is discovered very recently, studies on using it in practice could not be considered 

in this review. 

Furthermore, solvent-system dependent lipid concentrations of >10-100 mmol/L are reported 

to form significant amounts of poorly ionic lipid aggregates (results found in a DIMS 

experiment). [137] The formation of aggregates like dimer, oligomer and micellar structures is 

further increased by the hydrophobicity of the lipid analyte and polarity of the mobile phase. 

[137]  

Biological matrices include inherent variation in concentrations. UHPLC-MS experiments 

mostly revolve relative quantification and study changes in the lipidome of biological systems. 

However, in general HPLC-MS lipidomics has grown enough to advance further in absolute 
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quantification of targeted lipids. [99] Main limitations of absolute quantification in HPLC-MS 

concern ambiguities preceding calibration, i.e. the structural versatility of lipid species, lipid 

concentrations at the lower (or upper) border of their linearity range, and various matrix effects 

such as ion suppression and enhancement. [99] Whereas polar lipid species quantification 

reaches a ~5% accuracy (due to the polar headgroup predominantly explains their MS 

sensitivity) [137]. Mid- to nonpolar lipids like TGs and cholesteric esters are more effected by 

their specific structure in ESI-MS. [104] Thus, these lipids need more attention in standard 

representation. More details on quantitative and validation in lipid analyses are informed in 

Refs. [99] and [104].  

5 Data analysis of lipids 

According to the lipidome community, experimentally acquired raw data should be available 

for result-validation purposes and study re-analysis, whereas analytical details and results 

should be included in a file with acknowledged “XML[-based] or structured tabular format”. 

[99] Corresponding raw data information can be taken from the proteomic field, which has 

practical formats for efficient data sharing. [99] 

5.1 Normalization 

Normalization of raw data is used to reduce systematic fluctuation concerning an accurate 

measurement. For example, Boysen et al. [139] developed the best matched internal standard 

normalization (B-MIS), an algorithm-driven solution for correcting non-biological variation of 

raw data (i.e. ion suppression by matrix effects, chromatographic quality and analytical drift). 

Obscuring variation, i.e. changes of peak area as a function of concentration, is compared 

between an unrestricted set of internal standards and analyte peaks in a QC sample. As a result, 

the algorithm chooses a suitable standard for normalization if the relative standard deviation of 

the peak area is improved by 40%. [139] Furthermore, Drotleff et al. [76] considered B-MIS 

to be the best normalization model for reducing intragroup variation between the coefficient of 
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variation, median absolute deviation and variance. His team observed a small difference in real 

positives favouring this normalization, but also noted that normalization models may work in 

a complementary fashion with their respective strengths and weaknesses. [76] Though not yet 

applied in absolute quantification experiments, B-MIS appears as a good alternative for model-

based peak area normalization in relative quantification methods. [139], [76]  

Normalization is done with single standards representing the whole range of lipid classes. 

Suitable internal calibration standards with the same head groups and similar, but not identical 

fatty acids (e.g. odd-numbered <1% abundant in higher organisms [104]), or isotope-labeled 

fatty acids are preferred for normalization [104]. The most used internal standards are 

deuterated at the carbon chain of their FA end to have either 7 or 9 deuterium atoms. [75] 

Internal standards included in QC samples are used for post-correction of systematic errors (i.e. 

drift and other batch-biases) [104], [99] like changes in peak shapes influencing the peak areas 

and for monitoring carry over [112].  

5.2 Data libraries  

Typically, lipid metabolite features in untargeted analyses are compared to available library 

spectra. [66], [118] Therefore, acquired data is represented by a “closest-match” for the m/z or 

total ion spectrum that is compared, typically accompanied by a score from 1-100%. Evidently, 

this approach may lead to false positive results, when the database used is incomplete or when 

the reference data is noisy [128]. 

Along with home-made databases [30], [32], [33], [36], [51], [54], [68], [78], commercial and 

open-source libraries have gained popularity and variety both for monitoring the lipid range 

with MS by characterizing fragmentation patterns for selective identity searching of lipids. 

Information about individual libraries and their respective types are compiled in Table 4. 

Specific tools like open-source softwares are mentioned in Table 5, whereas chemometric and 

statistical concepts are introduced in the next chapters. Additional information can be found 
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from the LSI document (https://lipidomics-standards-initiative.org/links) and LIPID MAPS 

pages (http://lipidmaps.org/resources/tools/index.php). 

5.3 Chemometric tools 

Typically, metabolic correlation and significance analyses of lipids is conducted with a set of 

visual chemometric analyses and statistical methods. Chemometric methods provide an 

overview on analyte trends and outliers in relationship to their observations (features, spectra, 

etc.) with principal component analysis (PCA) [5], [7], [13], [16], [17-19], [27], [30], [31], [33-

36], [38-40], [43], [47-49], [51], [52], [54], [56-60], [62-64], [66], [68], [69], [72], [73], [75-

79], [124], systematic but hidden/uncorrelated variation between lipidome states with partial 

least-squares regression – discriminant analysis (PLS-DA) [3], [7], [10], [11], [26], [32], [34], 

[35], [48], [59], [60], [64], [76], [79], or orthogonal projection of latent structures – 

discriminant analysis (OPLS-DA) [4], [6], [9], [19], [27], [33], [36], [37], [49], [50], [52], [54], 

[57], [60], [69], [78], [79], (relative or exact) concentration evaluation with boxplots [10], [18], 

[19], [32], [34], [37], [40], [44], [45], [48], [58], [60], [61], [67], [69], [73], [76] or a heatmap 

[3], [5], [7], [10], [11], [17], [26-28], [30-32], [34-38], [40-42], [45], [47], [48], [52], [56-58], 

[62], [68], [69], [73], [77], [79] visualizations for significant outlier detection such as the 

Bland-Altman plot [16], [40], [43-45], [55], analyte interaction or metabolic interlinkage of 

lipid species via hierarchical cluster analysis (HCA, often included with heatmap analysis) [3], 

[5], [7], [10], [17], [26], [27], [34], [37], [39], [40], [47-49], [68], [69], [73], [77], [79], 

interactive network [3], [26], [47] or pathway analysis [3], [7], [11], [26], [27], [37], [60], and 

diagnostic tools such as importance testing of PLS-DA variables  with variable importance 

projection (VIP) [3], [10], [26], [33-37], [48], [50], [52], [57], [64], [79], OPLS-DA variable 

reliability and importance evaluation via S-plots [6], [27], [50], [57], [69], [79] or volcano plots 

[11], [31], [41], [42], [48], [60], [63], [67], [74], [77], [78], and method or sample comparisons 

with Venn diagrams [11], [17], [27], [30], [45], [49], [60], [66], [76]. 

https://lipidomics-standards-initiative.org/links
http://lipidmaps.org/resources/tools/index.php
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PCA [140] pursues to flatten a large dataset with multiple variables to find the most important 

two sources of variation, i.e. principal components. This is done by comparing the transitions 

between all variables and flattening them into two dimensions with matrix operations. Thus, 

the most important information about multivariate data is found. This reduction process may 

help to divide the studied compounds into different groups and characterize them. [141] 

Similarly, PLS-DA seeks to flatten multivariate data to find the most fitting parallel two-

dimensional plane representing the whole dataset, [140] whereas OPLS-DA reduces the dataset 

to an orthogonal plane found with the partial least square plateau of the dataset. [142] Briefly, 

HCA clusters and categorizes sample components according to their apparent covariant 

relationship. [143]  

Before actual multivariate data-analysis, the data needs often to be transformed, i.e. cleaned, 

scaled and re-centered, as is often done with e.g. statistical noise corrections or discarding of 

noisy data/spectra/outliers, unit variance or Pareto scaling and mean centering for PCA. [144] 

Chemometric methods, such as PCA, PLS-DA and OPLS-DA have kept their positions as the 

most common tools for visualizing analyte groupings (PCA) and metabolic changes (PLS-DA, 

OPLS-DA). Furthermore, VIP has emerged as an emphasis estimator of PLS-DA variables [3], 

[8], [26], [32], [34], [37], [64], [79] emphasizing the importance (i.e. magnitude) of each 

variable. In this context, lipids in the projection plot with VIP scores >1 are most accountable 

to predict changes in metabolism. More extensive analyses can be found in Ref. [88] 

5.4 Statistical tools 

In lipidomic research, statistical methods have developed into a broad variety of numerical tests 

and visualization techniques. Targeted and untargeted methods are two distinctively different 

approaches, as well as the means of data processing. Gorrochategui et al. [103] divided the 

targeted processing of metabolites into five phases: (1) the acquisition of raw data, (2) the 

contemplation of which database should be used when considering the research question and 
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analytes, (3) the pre-processing and identification of these metabolites, (4) the normalization 

and quantification of the identified species, and (5) the reflection of the results on the 

biochemical/physiological context of metabolic pathways. [103] In contrast to targeted 

approaches, untargeted approaches need more careful experimental MS data processing, data 

modification, and evaluation for pre-processing to attain sufficient data quality. By this way, 

relevant biomarkers can be identified from the totality of detected features/peaks. The data 

quality is directly affected by the sensitivity and resolving power of the applied 

instrumentation. The non-targeted steps include the same pathway elucidation as in the targeted 

analyses, however, with respective appropriate tools. [103] 

Statistical methods include a null hypothesis to test similarities by using one dataset. However, 

the p-value parameter in the Student’s t-test [2],  [10], [14], [15], [18], [19], [26], [27], [32], 

[37-39], [42], [50], [52], [54], [56], [57], [60], [61], [63], [67], [72], [79],  the non-parametric 

Mann-Whitney U-test, [15], [31], [35], [41], [50], [57], [58], [74], [77], and the analysis of 

variance test (ANOVA) [2], [7], [10], [17], [22], [27], [32], [33], [46], [64], [69], [79] are for 

comparison of two or more datasets. These methods are often used for validation of analytical 

data and for detection of changes (e.g. analyte concentrations) between a control sample and 

authentic samples. Together with statistical tests, correction methods such as the Benjamini-

Hochberg test [145] are used to calculate the false discovery rate (FDR), i.e. minimizing false 

positive data in the dataset [56-58], [60], [74], [76]. 

The t-test designed for comparing two independent variables (e.g. patient versus control group 

lipidome data and that before and after drug intake) may be unreliable, when the sample size 

number is small (n<30) or when other kinds than normal distributions arise through the data 

processing [63]. This is the case for most sample number described in the articles reviewed for 

this paper. The average number of real samples studied was around 10-20 with the excluded 

outliers of 283 [36] and 10115 [94] test subjects. As to analyse control samples, there was a 
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clear split of 7-16 and ~30 in the number of controls used in the individual studies [30], [34]. 

Some cases of statistical testing of the datasets may be questionable, since e.g. t-tests were not 

reliable, when variances between populations were different.  [146] For these kinds of cases, 

an unequal variance test like the Storey [74], [115] or Welch [48] t-test may be used instead 

[48], [74].    

The Mann-Whitney U-test [147] (also known as the Wilcoxon rank-sum test) is used in 

mathematical data handling, when there are not any fixed parameters, which can be used to 

evaluate similarities of two independent dataset medians with a null hypothesis. For two sets 

with same or different sample sizes, the values of both datasets are sorted from the smallest to 

the largest one. The ranking integer is divided, if two values are identical: for instance, when 

two datapoints have the value 2, they will be both noted as 1.5 [147]. Then, the separately 

ranked sample value sets are individually summed. When any of the sums reaches the critical 

value range of the U-test, the null hypothesis can be rejected.  Akin to the Student´s t-test [63], 

the U-test is evaluated by determining the z-score (𝑧 =
𝑥𝑖−𝜇

𝑆𝐷
, where xi is a value of a single 

datapoint, µ the population mean and SD the population standard deviation) from a normal 

distribution, suitable for a large number of studied samples (>30) [147]. In essence, the z-score 

is a distance-measurement of a single datapoint in relation to a normal distribution’s standard 

deviation, determining the distance between its mean and single measurement. 

A Mann-Whitney U-test [147] can be fitted for non-Gaussian distribution data. It is typically 

combined with a Benjamini-Hochberg (or Bonferroni-Holm [63]) test to exclude false positive 

values, thus providing the FDR. These methods were applied in multiple studies to limit 

uncertainty in the results of lipids. Furthermore, Paepe et al. [27] and Gong et al. [60] used 

cross-validated ANOVA test (CV-ANOVA) to improve reliability of the identified analytes. 

The reviewed papers also gave information that Mann-Whitney U-tests and FDR corrections 
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with the Benjamini-Hochberg test [145] were used to discover the real positive results from 

analysed MS datasets.   

In the Benjamini-Hochberg method [145] p-values of two sample sets (between the control and 

the test groups) are inflated mathematically to reveal possible false positive results. Since 

affected and unaffected lipids represent two distinct normal distributions, false positive values 

can be ideally seen to differentiate a distribution from the normal when using a big sample 

number in the study. In the data analysis of lipid species, the original p-values are inflated and 

excluded by their significance desired for the p-values (e.g. p=0.1, 10% significance). The p-

values are then ranked from the smallest to the largest, after which the individual p-values are 

converted to a largest-to-smallest sequence. The largest p-value is kept, but the second largest 

p-value is determined as the smaller value of the two options. Therefore, either it is the same 

value preceding it, or it is the value calculated with a separate equation [145]. 

Lately, Tietz-Bogert et al. [31] calculated the FDR value in a lipido-metabolomic study by 

searching significant biomarkers of primary sclerosing cholangitis [31], which is a disorder of 

lipids in the bile duct of unknown origin. The concentrations of lipid species in control samples 

of healthy individual’s and the clinical samples of sick patient’s blood and bile were compared 

to find changes with a statistical significance of p=0.01 [31]. Simpler classical methods like 

ANOVA for multiple variables [2], [32], [46] were only occasionally used.  

Machine learning and software advancements for multi-ionic identification have allowed to 

evaluate MS spectra produced with UHPLC-MS in silico, which is only demonstrated in a few 

recent articles within our scope [3], [18], [21], [25], [33], [67]. Due to machine learning 

techniques and their discovered use in omics, automated lipidomic analyses, receiver operating 

characteristic curve/area under curve (ROC/AUC) cross-validation analyses [3], [60], [67], 

[76] random forest studies [18], [32], [59], [67], neural network applications [67], [96], in silico 

spectra evaluation [21], and CCS value generation algorithms [25] have become in use. 
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6 Discussion 

UHPLC-MS lipidomics is divided into isotope-labelled standard methods and fully 

standardless algorithm-based analyses. Furthermore, the separation and acquisition of highly 

abundant lipid classes (mmol/L) from mid- (µmol/L) and low-abundance (≤nmol/L) classes 

and their species is a challenge. [113] This is especially the case when (semi-)quantitative 

analysis is conducted for all quantifiable lipids in the sample, which can be the case for in-

depth studies on biological materials.  

When comparing matrix effects in pharmacokinetic analysis made with HPLC and supercritical 

fluid chromatography (SFC) coupled with ESI-MS/MS, Svan et al. [148] observed a higher 

amount of ion suppression in SFC than in HPLC due to more ion enhancement. Is this general 

notion also applicable to HPLC-MS in lipidomics? Further information may be obtained from 

matrix effects via post-column infusion [148] as demonstrated by Drotleff et al. [75] or 

observations from more laborious (though more informative) post-extraction process. [149] 

Both of these tools may be important for improving the understanding of lipidome analysis in 

the future, as sightings of such matrix effect analysis is rare in recent lipid papers. 

For practical reasons, a limitation of the comprehensive lipidome analysis is caused by the 

lipids without reasonable sensitivity. [9] Thus, the solution in that case is the Pareto principle, 

i.e. a limited number of biomolecules (lipid species) can be explained and measured using the 

main part of the studied biomass. [9] This is especially understandable in studies, where all the 

components are not relevant to the scientific question proposed. For example, metabolic lipid 

profiling with uncorrelated variation analysis (PLS-DA, OPLS-DA) in combination with 

metabolic knowledge highlight certain lipids from others to determine the most viable 

biomarkers. These biomarkers may form a conjoint array, which can already explain the 

changes in metabolism. 
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The studies reviewed revealed a constant change, which affect retention time and peak focusing 

in a HPLC method: flow rate, gradient and oven temperature. Apart from an isocratic [43] and 

three-solvent eluents [10], [32], using aqueous - organic solvent gradients by increasing organic 

solvent percentage appeared in stepped (two [21], [40], [48] to three [25], [29], [38], [39] 

plateau steps or two [6], [69] to three [51] inclined steps), curved (exponential, [8], [37], [45], 

[67] logarithmic, [2], [19], [24], [41], [42], [50], [71] or s-curve [20], [27], [39], [49], [59], 

[63], [66]) and most popularly in linear [3], [9], [12], [13], [16], [17], [18], [22], [26], [28], 

[33], [34], [47], [52-54], [56], [67], [78] form. Modifications and combinations such as an 

inverted (i.e. increase in polar solvent percentage) linear [60], [79] or logarithmic [11] gradient, 

pyramidic [57], [77], pit-like [15], modified S-curve [5], [7], [45], [64] linear/isocratic [19], 

[23], exponential/linear [62], [68], [75], exponential/exponential [65], S-curve/exponential [64] 

and S-curve/isocratic [5] gradient were also used.  

In particular, it was observed that the lipid studies were done under various column heating 

temperatures, from room temperature to 65 ˚C. [65] Instrumentation for keeping the oven 

temperature stabile is very important in lipids analysis standardization. Furthermore, the 

research was done under various mobile phase temperatures, i.e. lipid analytes experienced 

significant temperature changes (up to 10-20 ˚C) from column inlet to outlet. [107], [150] In 

addition, as heat is propagated from the column walls to the centre, temperature gradients are 

evident. [107] Though this is partly considered by narrow bore packed columns and the pre-

equilibration of the analyses, the eluents flown from solvent units in room-temperature may 

cool down the column unevenly resulting in separation of lipids with low resolution.  

The choose of column properties in lipid analyses should be considered by sorbent chemistry 

[109], particle size, pore size [86], and particle technology [117]. The unanimously preferred 

column (i.d. 2.1 mm) is not necessarily optimal, since narrower columns are more prone to wall 

effects. [107], [144] This is due to a relatively more heterogeneous packing in comparison to 
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bigger columns (internal diameter larger, i.d.). Moreover, a bigger i.d. (3 mm) is argued to 

enhance column efficiency and allow higher flow rates. [107] However, this may be an 

insignificant issue compared to the current disparity in lipidome method standardization and 

validation. [97] 

Avanti Polar Lipids (https://avantilipids.com/tech-support/physical-properties/ionization-

constants) provides pKa-values of phospholipids to be closest to buffer pKa at 2.6 (PS 

phosphate group), 3 (PAs), 2.9-3.5 (PGs) and 5.5 (carboxyl group of PS) when compared to 

the pKa values of formic acid (3.74 [151]) and acetic acid (4.75 [151]). This means that when 

those organic acids are used PSs (and PAs/PGs at low pH) are never once charged ions. Further 

problems may arise for amines such as in sphingosine (pKa 9.1 [152]), PE (9.6 [153]) or PS 

(9.8 [153]) when ammonia (pKa 9.25 [151]) is used. Modifiers used as eluent additives may 

also lead to fluctuations of pH in non-buffered systems in on-line coupled HPLC-MS. [154] 

The phenomena are possible either in the eluent during electrochemical ionization due to 

charge-balancing redox reactions, and during droplet shrinkage, since it may cause structural 

perturbations and discrepancy in the ratios of ionization species. [154] 

In lipidome analytics, interdisciplinary analyses on multifunctional and computational methods 

will be crucial to effective and improved data processing. Furthermore, it is important to use 

the most practical parameters such as precursors, fragments, and CCS values in evaluation of 

data to get fast identification and determination of lipids. Multifunctional methods used are 

statistic and chemometric analyses, whereas computational methods include algorithms, data-

processing interfaces, specific software, and machine learning strategies. Both method 

categories were attempted to be refined with tailored software platforms for necessary data pre-

processing, pattern recognition, and for using large datasets with an immense amount of data-

processing interfaces. 

https://avantilipids.com/tech-support/physical-properties/ionization-constants
https://avantilipids.com/tech-support/physical-properties/ionization-constants
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Concerning common terminology, Aristizabal et al. [155] suggest names depending on the 

acquired structural information: brutto (e.g. PC 36:1), medio (e.g. PC(18:0/18:1), sn-position 

not known), genio (e.g. PC(18:0/18:1), sn-position known) and infinio (e.g. PC(18:0/18:1-9Z), 

sn-position not known). The same research group identified two distinct trends in lipidomics, 

which are the global analysis of lipids (coined macrolipidomics) and the specialized analyses 

for low-abundant lipids (microlipidomics). 

Finally, the recognition correlation of HCA analyses is derived from information often 

visualized in the Heatmaps. Since HCA sorts out (i.e. clusters) groups of similar analyte species 

with each other, similar tools can potentially be developed by means of identifying and 

distinguishing matrices from each other.  

As the scope of this review focuses mainly on UHPLC applications, it may limit some aspects 

of progress in HPLC-MS lipidomics as a whole. However, this was deemed necessary as 

publications on lipidomics have drastically increased. [156], [157] In our opinion -as may be 

representative for lipid studies in general- the most neglected topic mainly left out in the dataset 

was nutritional lipidomics [133] (mainly personalized nutrition [158] and nutritional 

intervention [159] studies). This is in tune with the main tendency of lipidomics towards life-

sciences and bioanalytical questions concerning physiology and pathology. Furthermore, 

UHPLC-IMS-MSn studies were rarer than might be expected from current trends in HPLC-

IMS-MSn lipidomics. Our dataset between the years 2017-2019 (topics discussed elsewhere 

[101]) included research on lipid method development, physiological profiling and metabolic 

changes via multicomponent analysis including drug development and biomarker studies. 

Sample matrices included plants, microbiota, mammals, fish and human patients. [101] 

As UHPLC instruments are less frequent in the total scheme of lipidomics compared to the 

commonly used HPLC instruments, limitations concerning this review’s scope on lipidome 

applications must be noted. For instance, the use of acetone in an eluent mixture was only used 
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by Castro-Gómez et al. [15] though some studies use a HPLC-MS ternary gradient separation 

in the fashion of Graeve et al. [160] ; acetone/ethyl acetate (v/v 2:1) and alkane:ethyl acetate 

(alkane: e.g. isooctane or n-heptane, v/v 99.8:0.2)  is applied. [161] The lipidome community 

has also gone out of its way to develop a comprehensive and high-throughput method for lipid 

analysis, which puts emphasis on simple and quick sample preparation, high 

resolution/sensitivity MSn analysis and data handling via extensively automated data 

processing. Consequently, a derivatization step for UHPLC-MS was used only once in our 

dataset [8] where TMSD methylation was applied for separate acidic lipid analysis; neutral and 

basic lipids were directly analysed after sample preparation. [8] Though derivatization may be 

necessary for very low-abundance lipids or to increase lipid class specificity, another reason 

for the reduction of sample preparation steps is the minimization of experimental errors. [137] 

A particularly important outlier in lipidome applications was the research on double bond 

position elucidation; for the absolute determination of double bond positions, other options 

than multiple collision MSn-experiments or spectral library matching have been developed.  

7 Conclusions 

Current challenges in lipidomics are closely related to the lack of uniform methods across the 

field. Compared with the lipid research generally made with RP-HPLC-MS, UHPLC-MS 

needs more focus on the chromatographic method parameters, such as stationary (e.g. column 

choice, oven temperature) and mobile phase properties (flow rate, pH, solvents, gradients, 

eluent modifiers).  

Normalization with representative or single internal standards has been widely adopted in the 

field. Since computational methods alongside chemometric and statistical methods have 

increased in both importance and usage in HPLC-MS technology for cross-validation and data-

analysis, lipidomics needs interdisciplinary studies to reach full potential with big and complex 

datasets. The process of typical data-analyses in lipidomics is suggested to be reduced into four 



30 
 

 

parts: Pre-processing, identification/quantitation, chemometric, and statistical analyses. A 

substantial amount of specific processing tools are provided, i.e. commercial and open-source 

ones, including self-made algorithms. Since ever, more lipid libraries have emerged as well for 

untargeted, relatively targeted and in silico methods. Currently, chemometric analyses appear 

to be popular in lipidomics, i.e. for developing methods, profiling lipids in samples, and 

evaluating metabolic relationships between lipid species. For accurate identification, ion 

mobility mass spectrometry has been applied with liquid chromatography, alongside 

chromatographic separation modes with mass-spectrometric ionization, or/and MSn systems. 

When chemometric methods shed light to the inter- and intra-analyte properties of typically 

biological medium, statistical analyses were used for data-validation (e.g. significance testing 

and filtering out of false positives) and detection of abonormal changes (e.g. metabolic 

profiling of diseases).  
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Supplementary Table S1. Experimental conditions for the solid and mobile phase in chromatography 

Precolumn Column Polar Solvent (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

Yes T3 C18 1:1 MeOH:H2O (pH 7.5) (PG;PS) 6:4 MeOH:ACN (GP;PS) 
 

AmFo, FoA 2017 [15] 
 

C18 HSS 19:19:2 ACN:MeOH:H2O IPA 
 

AmFo, FoA 2017 [8] 
 

C18 HSS T3 3:4:3 ACN:acetone:IPA (DG;TG) 3:7 ACN:IPA (DG;TG) 
 

AmOH 2017 [15] 
 

C18 BEH 40:60 ACN:H2O 90:10 IPA:ACN 
 

AmAc, AcA 2017 [19] 
 

N/A 40:60 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [18] 
 

C18 50:50 ACN:H2O 95:5 IPA:ACN 
 

AmFo, FoA 2017 [20] 
 

C18 CSH H2O  50:50 IPA:ACN 
 

AmFo, FoA 2017 [11] 
 

C18 60:40  MeOH/H2O 60:40 MeOH:IPA 
 

AmAc, AcA 2017 [7] 
 

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [22] 
 

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2017 [21] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

- 2017 [4] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc, FoA 2017 [6] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [22] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2017 [14] 
 

C18 HSS 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2017 [3] 
 

C18 BEH 90:10 ACN:H2O 90:80:1 IPA:ACN:H2O 
 

AmFo, FoA 2017 [17] 
 

C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2017 [24]* 
 

C18 HSS T3 90:10 IPA:ACN 30:70 H2O:ACN 
 

AmFo 2017 [12] 
 

HILIC, BEH H2O 96:4 ACN:H2O 
 

AmAc 2017 [16] 
 

C8 BEH H2O 2:5 IPA:ACN 
 

AmFo, FoA 2017 [9] 
 

C18 BEH H2O 50:50 IPA:ACN 
 

- 2017 [19] 
 

C18** H2O 60:36:4 IPA:ACN:H2O 
 

AmFo 2017 [23]** 
 

C8 H2O 70:30 ACN:IPA 
 

AmAc, FoA 2017 [2] 
 

C18 BEH H2O ACN 90:10 IPA:ACN FoA 2017 [10] 
 

C18 HSS T3 H2O ACN 
 

FoA 2017 [13] 
 

C18 BEH H2O MeOH 
 

AmAc 2017 [5] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

 C18 CSH 40:60 ACN:H2O 90:10 IPA:ACN  AmFo, FoA 2018 [35]  
C18 45:55 ACN:H2O 

  
AcA 2018 [43]  

C18 BEH 60:40 ACN:H2O 81:10:9 IPA:ACN:H2O 
 

AmFo, FoA 2018 [40]  
C18 CSH 60:40 ACN:H2O 90:10 ACN:IPA 

 
AmFo, FoA 2018 [39]  

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2018 [33]  
C18 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmAc 2018 [38] 

Yes C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [25]  
C18 HSS 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmFo 2018 [26] 

Yes C18* 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [45]* 

Yes C18*** 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [45]***  
C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmAc 2018 [30]  

C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2018 [30]  
C18 BEH 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmFo 2018 [28]  

C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O 
 

AmFo, FoA 2018 [46] 

Yes C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2018 [41]* 

Yes C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2018 [42]*  
C18 SB H2O 90:10 ACN:H2O 

 
AmAc, AcA 2018 [29]  

C18** H2O ACN 
 

FoA 2018 [44]**  
C18 BEH H2O ACN 90:10 IPA:ACN FoA 2018 [32]  
C18 BEH H2O ACN 

 
AcA 2018 [37]  

C18 HSS H2O ACN 
 

FoA 2018 [27]  
Amide H2O MeOH 

 
AmHCO3 2018 [31]  

Amide H2O MeOH 
 

AmFo 2018 [31]  
C18 BEH H2O MeOH 

 
PFPA, FoA 2018 [31]  

C18 BEH H2O MeOH 
 

PFPA, FoA 2018 [31]  
C18 CSH H2O MeOH 

 
FoA 2018 [34]  

C18 HSS H2O MeOH 
 

FoA 2018 [39] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent  (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

  C18 BEH* 10:90 H2O:ACN 20:20:60 MeOH:ACN:IPA   AmFo, NH3 2019 [71] 

  C18 CSH 40:60 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2019 [77] 
 

C18 50:50 ACN:H2O 20:80 IPA:MeOH 
 

AmAc 2019 [52] 

  C18 50:50 H2O:ACN 5:95 ACN:IPA   AmFo, FoA 2019 [50] 
 

C18 50:50 H2O:ACN 5:95 ACN:IPA 
 

AmFo, FoA 2019 [57] 

Yes C18 CSH 60:40 ACN:H2O 90:10 ACN:H2O   AmFo, FoA 2019 [55] 

  C18 HSS T3 60:40 ACN:H2O 90:10 ACN:IPA   AmFo, FoA 2019 [60] 
 

C18 CSH 60:40 ACN:H2O 90:10 ACN:IPA 
 

AmFo, FoA 2019 [60] 

Yes C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [66] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [74] 
 

C8 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2019 [56] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [65] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2019 [79] 

  C18 60:40 ACN:H2O 90:10 IPA:ACN   AmFo 2019 [78] 

  C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2019 [69] 

 C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN  AmFo 2019 [62] 

 C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN  AmAc 2020 [64] 

  C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2020 [64] 

Yes C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O   AmFo, FoA 2019 [63] 

Yes C18 CSH 60:40 ACN:H2O 90:9:1 IPA:ACN:H2O   AmFo, FoA 2019 [75] 

Yes C18 CSH 60:40 ACN:H2O 90:9:1 IPA:ACN:H2O   AmFo, FoA 2019 [76] 

 C18 CSH 60:40 H2O:ACN 90:10 IPA:ACN  AmFo, FoA 2019 [58] 

 HILIC 70:30 ACN:H2O 90:10 ACN:acetone  AmFo, FoA 2019 [47] 

  HILIC** 70:30 ACN:H2O 90:10 ACN:acetone   AmFo, FoA 2019 [47]** 

 C18 BEH ACN:H2O IPA:ACN  AmFo 2019 [67] 

  C18 CSH H2O 16:3 ACN:MeOH   AcA 2019 [68] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent  (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

Yes C8 H2O 55:40:5 ACN:IPA:H2O  AmAc 2019 [68] 

  C18 H2O 75:25 IPA:ACN   AmFo 2019 [59] 

 C18 H2O 75:25 IPA:ACN  AmAc 2019 [59] 

  C18 BEH H2O ACN   FoA 2019 [67] 

  F5 H2O IPA   AmFo, FoA 2019 [51] 

  C18 H2O MeOH   AmAc, FoA 2019 [53] 

 C18 H2O MeOH  AmAc, FoA 2019 [53] 

Yes Phenyl H2O MeOH   AmAc 2019 [49] 

  C8 BEH H2O MeOH   AmFo, FoA 2019 [48] 

 C18 BEH MeOH 2:5 ACN:IPA  AmAc, FoA 2019 [54] 

  C18 HSS N/A N/A   N/A 2019 [61] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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• Method development and application enhancements in lipidomics 

• The review sums up chemometric and statistical methods for current lipidomics 

• State of the art data collection and evaluation is discussed 

• Identification/quantitation of biological lipids 

• Tandem MS data-independent and data-dependent analysis 

Abbreviations 

ACP acyl carrier protein, AF4 asymmetric flow field flow fractionation, ANOVA analysis of 

variance, AUC area under curve, CARS coherent anti-Stokes Raman scattering, CCS collision 

cross-section, CN total carbon, CRS coherent Raman scattering, DB double bond, DDA data 

dependent acquisition, DESI desorption electrospray ionization, DG diacylglycerol, DIA data 

independent acquisition, DIMS direct infusion MS, FDR false discovery rate, FA fatty acyl, 

FFA free fatty acid, GC gas chromatography, GL glycerolipid, GP glycerophospholipid, HCA 

hierarchical cluster analysis, i.d. internal diameter, IMS ion mobility spectrometry, HPLC 

liquid chromatography, LESA liquid extraction surface analysis, m/z mass-to-charge [ratio], 

LSI Lipidomic Standards Initiative, HR/LRMS high/low resolution mass spectrometry, MSE 

all ions scans, MS/MS tandem mass spectrometry, MS/MS/MS second-generation 

fragmentation mass spectrometry MSn  on-line coupled mass spectrometry system, MSI mass 

spectrometric imaging, m/z mass-to-charge ratio, NP normal phase, NSI nano-electrospray 

ionization,  nESI negative ion mode in electrospray ionization, OPLS-DA orthogonal 

projections to latent structures discriminant analysis, (L)PA (lyso-)phosphatidic acid, (L)PC 

(lyso-)phosphatidylcholine, (L)PE lyso-phosphatidylethanolamine, pESI positive ion mode in 

electrospray ionization, (L)PG (lyso-) phospatidylglycerol, (L)PI (lyso-)phosphatidylinositol, 

NP-HPLC normal phase liquid chromatography, PIS precursor ion scan, PLS-DA partial least 

squares discriminant analysis, PRM parallel reaction monitoring, (L)PS (lyso-
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)phosphatidylserine, QqQ triple quadrupole mass analyzer, QTOF quadrupole - time of flight, 

ROC receiver operating characteristics curve, RP-HPLC reversed phase liquid 

chromatography, RT retention time, SP sphingolipid, SFC supercritical fluid chromatography, 

SWATH sequential window acquisition of all theoretical fragment ion mass spectra, SWARM 

sliding window adduct removal method, TG triacylglycerol, TOF time of flight mass analyzer, 

UHPLC ultra-high performance liquid chromatography, VIP variable importance projection 

1. Introduction 

Recent lipid research has emerged due to improved multidimensional computer algorithms and 

highly efficient commercial, open-source and in-house software platforms. Furthermore, data 

libraries for automated routine searching of mass spectra is adopted for lipid identification. 

International organizations have started together to harmonize knowledge about lipidomics. 

Especially, the Lipidomics Standard Initiative (LSI, https://lipidomics-standards-

initiative.org/) found under the International Lipidomic Society 

(https://lipidomicssociety.org/about/) and Lipid Home (https://www.lipidhome.co.uk/) strive 

to standardize lipidomic information with the globally acknowledged platform Lipid MAPS 

(https://www.lipidmaps.org/). Furthermore, Sumner et al. [1] have stated minimal requirements 

for retraceable lipid analyses, [1] which are important for integrated research in lipidomics. 

This review on lipid investigatios encompasses research conducted with ultra-high 

performance mass spectrometry (UHPLC-MS) during 2017-2019 [2-79]. To clarify, this 

review uses the term high performance liquid chromatography (HPLC) to describe both 

conventional HPLC and UHPLC. However, blindspots of exclusive UHPLC-research are 

attempted to be covered in the Discussion-section.  

Particularly, half of the reviewed studies deal with computerized platforms to identify lipid 

species of several classes. These computerized platforms have successfully enabled data 

handling with in silico analyses, commonly generalized as machine learning algorithms. After 

https://lipidomics-standards-initiative.org/
https://lipidomics-standards-initiative.org/
https://lipidomicssociety.org/about/
https://www.lipidhome.co.uk/
https://www.lipidmaps.org/
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all, the most popular means of comprehensive identification in -omics research is on-line 

coupled mass spectrometry systems (MSn, e.g. tandem mass spectrometry [MS/MS]), which 

demand extensive and thorough data-handling. In the field of lipidomics, MSn is often divided 

into data-dependent acquisition (DDA) and data-independent acquisition (DIA). Here, DDA is 

typically defined as fragmentation of only targeted precursors, as is the case in parallel reaction 

monitoring (PRM) [15], [44], [45]. It is a technique, in which all fragments of the chosen lipid 

precursors are measured. In DIA, all available lipid precursors are fragmented and measured 

in a full scan with a set of collision energy (CE) or energies, detecting a substantial amount of 

lipid adducts fragmentation patterns, e.g. in an all ions scan (MSE) [9-15], [32-34], [55-61], 

[68], [74]. 

Recent DIA research were applied in a novel MS technique called sequential window 

acquisition of all theoretical fragment ions spectra (SWATH MS) [6], [44], [73-76] and 

similarly, with QTOF-specific SONAR technology [69]. The consecutive fragmentation or 

scan of precursors (i.e. PRM for DDA and SWATH or SONAR for DIA) and their product ions 

provide cleaner MS spectra in favour of library searches, an improved detection rate, broadened 

range, and expanded specificity in any given fragmentation frame compared to other methods 

[34], [44], [73], [69]. Different MS and MS/MS techniques are compiled in Table 1. When 

significant, instrumental and experimental conditions for glycero-, glycerophospho- and 

sphingolipids are focused on and referred to [80-88]. 

2 Fatty acids, lipids and metabolites of the survey 

Fatty acids are synthetized in cells and their cell membranes, endoplasmatic reticulum, Golgi 

apparatus, and mitochondria [89], [90]. Most lipids are products of free fatty acids in presence 

of coenzyme A and NADPH [91]. This literature survey deals with a short area of lipidomics 

and contains commonly studied lipids, e.g. glycerolipids (GLs) like mono- (MG), di- (diacyl-, 

DG), and triacylsubstituted (triacyl-, TG) glycerols. [91] To look the structural challenges of 
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lipids in analytics, Figure 1 illustrates the functionalities of TG lipids. Glycerophospholipids 

(GPs) from GLs are also included, since they are frequently detected like the most abundant 

lipids in eukaryotic cells, i.e. phosphatidylcholine (PC) and phosphatidylethanolamine (PE) 

[92]. Other GPs dealt in this review include phosphatidic acid (PA), phosphatidylserine (PS), 

phosphatidylinositol (PI), phosphatidylglycerols (PGs), and PG-derived cardiolipins (CLs). 

[92] To observe the challenges of separation and identification issues some glycerolipids and 

glycerophospholipids are illustrated in Figure 2.  

GPs may appear with fatty acids which both are bound with ester or ether groups, the latter 

being defined as plasmalogens (PLs) [92]. PLs are detected and identified either by an alkenyl 

linker with an oxygen (e.g. PI[O-18:0/17:0]) or with a phosphorous (e.g. PI[P-18:0/17:0]) [92]. 

Those structural hetero atoms help mass spectrometric detection, although there may not be 

improvements in chromatographic separation.  

An interesting group of surveyed lipids is sphingolipids (SPs, Figure 3, [28]). They have a 

basic backbone with various kinds of lipids. The backbone is formed from serine amino acid 

and a long-chain fatty acyl catalyzed by coenzyme A in mammals [92]. The analytics is focused 

to ceramides (Cer), which have amine-bonds with fatty acids.  To sum up, interest is focused 

on esterified fatty acids with glycerol head groups (glycerolipids, glycerophospholipids) or a 

sphingosine headgroup (sphingolipids), but not a sugar backbone (saccharolipids, a topic of 

worth its own review). Other groups left out are defined by characteristic hydrocarbon 

structures, i.e. fatty acyls, prenol lipids, sterols and polyketides [94]. More analysis on lipid 

classes and metabolism is discussed elsewhere [101]  

3 Instrumentation 

In lipidomics, a wide range of articles introduce new or improved methods which are validated 

with UHPLC-MS, capillary-UHPLC-MS (nUHPLC-MS or nano-UHPLC-MS) instruments 

(Table 2). Most of these studies concentrate on sample preparation [14], [20], [46], [66], 
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development of chromatographic methods [9], [22], [27], [45], MS/MS identification [7], [16], 

[23], [27], computational methods for improvement of measurement performance [17], and 

data analysis [21], [25], [96]. Recent challenges in HPLC-MS seem to be fluctuation 

(repeatability) of analysis [97], [98] results, which hinder reliable identification and inter-

laboratory tests of lipids. Since in chromatographic environments elution of different lipid 

types and their species may differ [98], deconvolution of data via manual or computational 

analysis may be the only reasonable compromise. 

The reviewed papers show that all lipid analyses have fluctuation of lipid composition and 

intensity based on the fingerprint profiles of different biological matrices. These observations 

can be explained by distinctive matrix effects, which in turn inform that there is a specific need 

of sample preparation before analyses. Usually, lipidome studies are done with simplified 

sample preparation to avoid recovery losses in clean-up steps. [99] Mostly, the clean-up steps 

are protein precipitation and extraction of solid matrix compounds (e.g. biological tissues) and 

fluids (e.g. plasma, serum, lavages, cell suspensions and supernatants).[99] Furthermore, solid 

materials may trap internal standards and analytes, which increases variation of results in 

quantification and leads to less accuracy and precision of the methods. [100] Sample 

preparation of biological and clinical samples is discussed more elsewhere [101].  

Though reconstitution with the most used polar acetonitrile - water mixture (60:40, v/v) and 

organic isopropanol - acetonitrile (90:10, v/v) eluents is practical, none of these dissolve lipids 

comprehensively. For instance, acetonitrile - water at 60:40 (v/v) recovers STs and TGs 

incompletely. [45] Furthermore, Danne-Rasche et al. [45] observed a distortion or even loss of 

lipids with i-propanol - acetonitrile mixture (9:1, v/v),  when the eluent was used in nano-

UHPLC. Thus, lipids need to  be reconstituted into a standardized mixture such as butanol - i-

propanol - water (8:23:69, v/v/v) [45] prior to injection. The solvent composition is important 

for lipid solubility. Due to high solvent volumes from pretreatment processes at the end of 
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sample preparation, all lipid samples need to be dried for getting concentrates of HPLC-MS 

research. Furthermore, concentrates are needed to measure multidimensional MS spectra to 

obtain accurate identification and algorithm-based data handling of features.  

To reduce systematic noise and other disadvantages (e.g. adsorption, peak broadening, adduct 

formation) in chromatographic data has been attempted via computational methods, i.e. with 

the sliding window adduct removal method (SWARM). [102] SWARM is based on the 

systematic interference caused by multiple adduct ions of the same analyte. The interference 

induces systematic noise patterns that may be excluded to enhance accurate mass acquisition 

for metabolites. Then, the adduct signal overlap correction for low-to-moderate resolution mass 

spectra could be utilized. 

Modern instrumental separation and detection methodologies are still on-going needed to avoid 

frequent appearance of false negative lipid identifications and to establish sufficiently reliable 

and label-free (i.e. standard-free) methods. Identification of lipids showed to be improved by 

multiply usability of analytical variables and by using more independent properties, such as 

chromatographic retention times (RT) and mass spectrometric mass-to-charge ratios (m/z) of 

lipid ions/adducts, fragmentation/isotope patterns, and collision reactions. Reliability for 

targeted lipid species identified by internal standards and calibrants have made lipid analyses 

possible in quite many case, but especially non-targeted lipid analyses demand the super power 

and speed of computers with algorithm-based libraries.[96], [103], [104] Thus, the analyses 

can be independently conducted without potent analytes. Evidently, the computerized methods 

have utilized automated systems when internal standards for normalization are neglected. [2], 

[3], [10], [11], [13], [14], [16], [17], [20], [21], [22], [24], [26], [30], [32-36], [38], [44], [4 6], 

[47], [59], [63], [66], [73]. 

3.1 UHPLC 
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HPLC techniques are preferred for their ability to enhance identification by predictable 

retention time patterns [98], [105] and reduced mass ambiguity [106]. In lipid research, the 

sub-method UHPLC is preferred over HPLC due to its lower dispersion, substantial decrease 

in solvent usage, shorter analysis times without compromising resolution, higher resolution 

performance due to smaller (sub-2 µm) fully porous particles or (sub-3 µm) core-shell material 

[73] in columns (enabled by higher pressure capabilities) and enhanced retention precision. 

[107] 

Our dataset [2-79], [108] informs current lipidomic UHPLC-MS separations to be primarily 

done with additive-assisted reversed phase liquid chromatography (RP-HPLC) hyphenated 

with separate experiments on positive electrospray ionization (pESI) and negative electrospray 

ionization (nESI). Though ESI was predominantly used for UHPLC-MS, some atmospheric 

pressure chemical ionization (APCI) studies were also conducted. [23], [44], [47]. ESI as a 

‘soft’ and APCI as a ‘hard’ ionization technique, respectively, are suitable for supporting lipid 

identification. [23] In respect of that, Beccaria et al. [23] developed a method suitable for both 

detection approaches with no need to change HPLC parameters.  

Elution of lipids in HPLC is done in many elution models (e.g. isocratic elution, curved 

gradient following an exponential or logarithmic function, stepped gradient, linear gradient, 

etc.). The suitable stationary and mobile phases with methods are also found in Table 1. More 

detailed information on stationary and mobile phases as well as lipid adduct concentrations is 

in Supplementary (Table S1). 

3.1.1 Reversed phase separation in HPLC 

In lipidomics the commonly used RP-HPLC separation methods are based on the interaction 

of a nonpolar stationary phase with nonpolar lipid analytes. Nonlinear or second-degree curves 

between the retention times and total carbon (CN) double bonds (DB) are used for quantitative 

calculations. [9], [16], [98], [105] For example, they help to differentiate possible sodium 
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adducts from similar exact masses (e.g. [PC(38:4)+Na]+ and [PC(40:7)+H]+ [9]). However, 

retention time prediction can be complicated due to pH dependent speciation [109], 

experimentally made validation and multi-step liquid gradients [23].  Separation of polar 

components (i.e. early retaining lipids) can be affected by the mobile phase gradient. When 

elution is started with high percentage of organic mixture, polar compounds are longer 

adsorbed and retained on RP-HPLC phases. [110] However, changes of eluent polarity are 

interlinked with the ionization rate of polar lipids, which in turn can have an impact on elution. 

[110] RP-HPLC with polar solvents (i.e. non-aqueous RP-HPLC) is enabled by polymer-based 

columns which are end-capped by a methyl or hydrogen group. [110] Some column materials 

are based on modified silica, which when not shielded are short-periodically used with water 

modified organic solvents due to free silanol groups having the attractive functions. [110] 

In contrast to phenomena in reversed phases, normal phases in HPLC (NP-HPLC) typically 

separates analytes containing polar  functionalities having silanol, amino- or diol groups. [111] 

NP-HPLC is excluded from the review, since only a single article on NP-HPLC with amide 

column was observed during 2017-2019 on lipid separation [31]. 

Since even the variation among lipid class species can be substantial, it is not surprising that 

the polarity of their classes varies a lot. Tumanov and Kamphorst [85] (Figure 4) demonstrated 

the lipid-subclass range of four distinct chromatographic approaches, which are divided to two 

groups (one a RP, one a NP separation strategy in each group). The subclasses in (A) include 

lipids of the nonpolar kind, whereas the separations of (B) are modelled to the polar lipid 

subclasses. Particularly, polar (lyso-forms, MGs, sphingosine-related compounds, FAs, acyl 

carnitines and acetyl coenzyme A) and mid-polar (PS, PG, PI, Cer) lipids seem to be species 

often analysed with the negative ionization mode, though more species are primarily found 

with positive ionization. From the GLs only MGs have FA chains with 16 counts, i.e. they are 

small enough to be rather polar. As a thumb rule, SPs are on the mid-polar lipid spectrum, when 
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they have amide-bound FA chains. [85] Thus for reliable research data, accurate UHPLC-MS 

methods are needed to identify the individual lipid class species.  

3.1.2 HILIC 

Essentially, hydrophilic interaction liquid chromatography (HILIC) columns are micro-bore 

columns with stationary phases of mixed hydrophilic interactions for nonpolar compounds and 

hydrophobic interactions for polar compounds. However, nonpolar lipids (e.g. CEs, TGs) and 

lipids with only one hydroxyl group (e.g. Cer, DG, MG, and cholesterol) are often barely 

retained. [16] Nevertheless, HILIC is a well-established subclass of NP chromatography that 

allows usage of water as the eluent (5-40%, >2% needed) as in contrast to conventional NP. 

[112] HILIC platforms are ideal for quantitation, since lipid class species co-elute with their 

respective calibrants. [109]  

PAs and PSs species are known to have broad or barely detectable peaks in RP-HPLC, thus, 

HILIC is used. [112] Furthermore, as PAs and LPAs co-elute among major lipid components 

(e.g. PCs, PEs, SMs) in RP-HPLC. Because of that the comparatively lower abundance of lipids 

in this class, PAs and LPAs have no selective fragment to differentiate from other lipid classes. 

Thus, proper methods for PA/LPA separation have been specifically approached with HILIC. 

[113], [109]  

Though being a well-established technique for HPLC-MS quantitation, not many UHPLC 

analyses have used HILIC-columns for separation. [16], [47] Thus, HILIC applications are also 

excluded from the scope of this review. 

3.1.3 Nano-UHPLC 

In nano-HPLC [112] columns of sub-millimetre internal diameter (i.d.) are filled with 

conventional column packing materials. Published papers [41], [71], [24], [45], [42] inform 

only about using a loaded capillary (i.d.: 1-0.001 mm [114]) or a nanobore column (i.d.: 0.1-

0.025 mm [114]). For comparison, a large majority of the lipid studies are done with the 
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smallest possible narrow bore columns (2.1-4 mm). Surprisingly, along with nano-HPLC a 

low-resolution triple-quadrupole mass spectrometer was unequivocally preferred.  

In contrast to a faster UHPLC separation, in nano-HPLC the “loading time” followed by the 

sample elution was extended due to the low flow rate restrictions (0.3-0.35 μl/min). [71]  

Nano-HPLC methods show a great capacity for lipid identification with a low-resolution mass 

analyser, since then both an extremely broad identification range and high sensitivity at the low 

fmol-scale are gained using a low throughput (analysis time: 40-60 min). [41], [45] The result 

was that the low fmol range for almost every GLs, GPs, SPs and their lipid derivatives was 

reached in the positive ionization electrospray mode (pESI). For example, the calibration curve 

for a specific PE (17:0/14:1) demonstrated a linear relationship between 16-10000 fmol by 

pESI-MS detection and 0.64-2000 fmol by nESI-MS detection [41] By contrast, with HPLC-

ESI-MS the linear dynamic range for the same analyte reached around 80-10000 fmol by pESI-

MS and 16-2000 fmol by nESI-MS. [45] Similarly, Kim et al. [115] achieved a LOD-range 

from 59 fmol (LPC(17:0)) to 507 fmol (LPG(14:0)) with untargeted nano-UHPLC-ESI-

MS/MS of lipoprotein by pESI and nESI ionization, respectively. [115] 

3.1.4 Mobile phases in hyphenation of HPLC with MS 

Mobile phases in HPLC are usually modified to help in lipid detection and their separation with 

HPLC. [112] As the sensitivity issues are concerned, composition of eluents is important to 

obtain stabile adduct ions in MS. [23] Volatile buffers (e.g. formic acid, acetic acid, or their 

ammonium salts [116]) are used in lipidomics methods. [113] However, earlier studies report 

lipid results with 5 µM phosphate buffer (nanoelectrospray ionization) [9] and 5 mM 

phosphoric acid [45]  

In some cases, additives in HPLC eluents may cause analytes to become undetectable due to 

signal suppression. Cajka and Fiehn [117] studied the effects of five different modifiers in both 

pESI and nESI mode with two different HPLC columns filled with ethylene bridged hybrid 
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(BEH) particles and the slightly better charged surface hybrid (CSH) particles. [117] Whereas 

the experiments could be concluded by choosing the optimal mobile phase modifier to be 

formic acid or formic acid/ammonium acetate for pESI and ammonium acetate for nESI. Using 

a CSH C18 column with HPLC-pESI-MS studies Monnin et al. [118] reported about a further 

enhanced ionization efficiency by choosing 0.02% acetic acid as the additive in eluent. 

Whereas the signal for LPLs (except LSM) and GPs certainly increased by manifold, Cer and 

PCs experienced a decrease in peak area when compared with analyses data with 10 mM 

ammonium acetate. [118] However, specific to PCs their carbonate ion adducts showed 20-

fold stronger signals compared to their ammonium adducts with CID-MS/MS. [119] 

3.2 Importance of mass spectrometry detection in lipid research 

Formation of adducts is dependent on the molecular structure and functional groups of a lipid 

(e.g. deprotonation of carboxyl groups in fatty acid with nESI). Lists of exact masses in MS 

and MS/MS, non-protonated adducts, possible collision energies and lipid classes/topics are 

listed in Table 3. Furthermore, sources like Lipid maps providing a free MS/MS prediction 

tool (http://lipidmaps.org/resources/tools/index.php) and a structure database library 

(http://lipidmaps.org/data/classification/LM_classification_exp.php) allow data handling in 

lipidomics. 

MS advancements, such as a quadrupole Orbitrap mass analyzer (Q-Orbitrap) [9], [17], [20], 

[22], [27], [31], [46], [49], [51], [55], [56], [62-65], [77], [79], and NSI [24], [45], [71] have 

extremely increased resolution capabilities (theoretical plate number in HPLC >35 000 /m) for 

lipid identification. However, compromises need to be done before the analyses, since either 

mass accuracy or ion resolution is emphasized depending on whether identification or 

quantitation is preferred. Furthermore, identification is improved with the help of orthogonal 

measurements, such as collisional cross-section (CCS) values with ion mobility spectrometry 

(IMS), achieved with a drift tube coupled with MS instruments, such as a quadrupole time of 

http://lipidmaps.org/resources/tools/index.php
http://lipidmaps.org/data/classification/LM_classification_exp.php
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flight (QTOF) [6], [16], [25], [68]. Furthermore, the inclusion of trapped IMS (TIMS) 

combined with parallel accumulation serial fragmentation (PASEF) has emerged to enhance 

complementary MS/MS and IMS data. [126] 

For high-resolution MS, an Orbitrap [2], [5], [34], QTOF [4], [6], [10-16], [21], [25], [28], 

[30], [32], [33], [36-40], [43], [44], [53], [54], [59-61], [66], [68-71], [71], AA073, [74], [75], 

AA076, [78] and QOrbitrap [3], [5], [9], [17-20], [22],  [26],  [27],  [31], [34], [35], [46], [47], 

[49-51], [55-58], [60], [62-65], [72], [77], [79] were used. However, some studies settled for 

low-resolution MS, mostly with a triple quadrupole instrument [7], [8], [23], [24], [30], [41-

43]. Most rarely, pseudotargeted methods [21], [30], [54] (i.e. lipid identification with an in 

silico library), polarity switching [5], [17], [23], [41], [49], standalone nESI mode in MS [29], 

[43], [68], NSI [45], [71] and atmospheric pressure chemical ionization (APCI) [23], [44], [47] 

were used.  

3.3 Data acquisition and processing 

Identification and determination of lipids and their metabolites need commercial, open-source, 

and sophisticated tailor-made tools [127]. The statistical tools, analysis software, and 

algorithms enable visualization and perceiving of patterns from large datasets and raw data 

[103]. Metabolic profiling of MS data is done with multi-variant programs, such as 

Metaboanalyst, [10], [11], [17], [27], [32], [34], [37], [40], [46], [59], [63], [77] or MeV [3], 

[30], [65], [61], [79], [103],. All in all, reported software environments for data processing 

constitute mostly of R and SPSS languages.  

Manual programming from the ground up or with borrowed code demands more computational 

expertise. Koelmel et al. [96] compared identification algorithms with the commercial R-based 

LipidMatch-tool, which is tailored for lipid identification softwares. [96] For a deeper 

understanding of differences in program functionalities, the article on “LipidMatch: an 
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automated workflow for rule-based lipid identification using untargeted high-resolution 

tandem mass spectrometry data“ gives excellent information [96].  

4 Analysis 

4.1 Identification of lipids  

Lipid identification can be enhanced by using information about the individual lipid itself, e.g. 

by increasing orthogonal information via “polarity switching” [5], [17], [23], [41], [49] instead 

of only using one ionization mode in the measurements or by the introduction of supporting 

measurements or (lipid class) expanding methods. Identification demands are partly already 

mentioned in Introduction and chapters, where chromatographic parameters are discussed 

referenced to resolution and sensitivity. 

In lipid studies, absolute retention time (RT) variation during sample analyses is easily 

increased by small differences in experimental conditions (preparatory, chromatographic, and 

instrumental parameters). However, more repeatable separation techniques along with feature 

alignment enables more reliable identification with RTs in inter-laboratory studies in the future. 

[128] Since measurements of m/z ratio are significantly less deviant (parameters affecting m/z: 

ionization efficiency and mass spectrometric setup), single m/z, feature, and low-resolution 

spectra matching are the most used means for quick identification. [7] If needed, high 

resolution precursor and product ion spectra are usually obtained to achieve accurate 

identification between highly similar species. For further optimization of mass spectrometric 

identification, adduct formation and control of collision energy should also be studied and used. 

It is commonly agreed that adduct ions are formed mostly during ionization [9], [73], which is 

why lipid species appear at the same retention time in both pESI-MS and nESI-MS. Apart from 

protonated and deprotonated species, adding of millimolar concentrations of salts can be 

harnessed for signal enhancement [129]. Though at too high concentrations lipid signals can 

drastically be inhibited due to background noise caused by ion clusters [129]. Common ligand 
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ions are acetate (CH3COO-) [56], [68], formate (HCOO-) [48], [50], [57], [58], [60], [75-77], 

and ammonium (NH4
+) [48], [50], [56-58], [60], [74-76]. Sodium (Na+) and potassium (K+) 

adducts are also commonly observed, though no controlled addition of such salts was noticed 

[92]. 

High resolution RP-HPLC separates structural isomers of lipid classes, [9] up to the point of 

carbon chain regioisomers (i.e. sn-positions of lipids). However, comprehensive identification 

of isobars and isomers could not be achieved by solely using MS/MS. For example, Lisa et al. 

[16] and Blaženović et al. [25] reported unresolved isomers and isobars with identical CNs and 

DBs but different fatty acyl composition. Adducts with same nominal mass can be separated 

with MS/MS [23], but specific information like sn-position of DBs needs other methods, like 

derivatizing of free fatty acids to form 4-iodobenzyl esters [130]. The reaction is made to 

esterified fatty acids into distinguishable epoxides via  ketone dioxide catalyst and oxidant 

[131] or to oxetane-adducts via the Paternó-Büchi photochemical reaction. [132], [133], [134] 

Mass spectrometric solutions include second-generation fragmentation (MS/MS/MS) by dual 

stage collision-induced dissociation (CID) [135] or CID and ozone-induced dissociation 

combined, or silver-ion chromatography (currently achieved only with TGs) [81], [112], [136]. 

Recently, Zhao et al. [119] also mentioned electron impact excitation of ions from organics 

(EIEIO) and photo-ultraviolet dissociation (PUVD, photodissociation [130]) in the list of non-

CID methods for sn and DB position.  Since lyso-forms of GPs, i.e. sn-2 acyl lipids retain less 

in a HPLC column than their sn-1 isomers, they can be identified as separated double peaks. 

[9]  

4.2 Quantification of lipids 

Burla et al. [99] (a statement of the global lipidome community) compiled guideline 

recommendations for quantitative analysis in clinical sample matrices, specifically absolute 

quantification of lipids in plasma and serum. For the quick comparison of absolute 
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quantification results, lipid concentrations should be reported in the SI-units mol/L or molar 

percentages whenever possible. [99] 

In comparison to lipid identification, quantitative analysis is increasingly dependent on control 

samples as well as the quality and concentration of included standards, i.e. internal standards 

and calibrants. Common control samples include blanks and quality control (QC): Blanks are 

included for standard impurity monitoring and validation purposes, whereas QC samples (a 

pooled sample of all study samples in a batch) serves to monitor and correct batch-related 

uncertainty, instrumental errors and evaluate the performance of lipid analytes for validation 

purposes. [99]  

Absolute quantitative calibration of lipids is either conducted via spiked QC samples (surrogate 

calibration) or by direct introduction of standards in the study sample as is often done in single-

point and standard addition calibration. [75] However, single-point calibrations are reported to 

overestimate target lipid concentrations due to inherent flaws in the regression. [75] An ideal 

calibrant for complex matrices has an identical response factor, ionization efficiency and 

experiences comparable matrix effects as the analyte. [137]  

For better understanding quantitative UHPLC-MS, some differences between HPLC-MS and 

DIMS should be pointed out. Though DIMS is more robust at the high-concentration lipids 

(µmol/L-mmol/L) of a sample, HPLC-MS is advantageous for the identification and 

quantification of low- and very low-abundance lipids (<nmol/L-mmol/L). [137], [99] Anyway, 

lipid class coverage and sensitivity are considerably improved in HPLC-MS experiments. [99] 

As an inherent disadvantage in HPLC-MS, the risk of lipid-lipid interaction increases due to 

the enrichment of same lipid species occurring in the column, though hetero-interaction 

between different lipid species decreases. [137] HPLC-MS uses peak areas in contrast to 

DIMS, where more stable ionization conditions enable quantification via peak intensity. [82]  
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Moreover, the fluctuating quality and quantity of molecular species in the ion source is a 

recurring problem for lipid quantifications. These issues are amplified by the increasing 

complexity of experimental setups, such as chromatographic gradients affecting electrical 

properties (i.e. ionization efficiency) of the eluent. This has implications not only for the 

ionization efficiency, but also for the MS instrument’s response factor: alongside solvent 

composition, Drotleff et al. [75] reports post-acquisition MSn procedures like SWATH or 

multiple reaction monitoring (MRM) to further deviate the detector’s response values from one 

unit per molecule. Drotleff et al. [75] proposed “post-acquisition recalibration” as a reasonable 

compromise, if not enough sample is available for using the standard addition method. Then, 

sensitivities of analytes can be determined via a certified reference material. For lipids, only 

the NIST CRM 1950 plasma reference is currently acknowledged. [75] Standard mixtures, such 

as the Splash® Lipidomix® mixture (Avanti Polar Lipids Inc., Alabaster, AL, USA) have been 

used for mimicking corresponding lipid concentrations in experiments as in biological fluids, 

e.g. human plasma, and for normalization of the analyses [14], [28], [66]. Since lipidome 

isotope labelling of yeast (LILY, complete lipidome carbon labelling with C13 isotope [138]) 

technology is discovered very recently, studies on using it in practice could not be considered 

in this review. 

Furthermore, solvent-system dependent lipid concentrations of >10-100 mmol/L are reported 

to form significant amounts of poorly ionic lipid aggregates (results found in a DIMS 

experiment). [137] The formation of aggregates like dimer, oligomer and micellar structures is 

further increased by the hydrophobicity of the lipid analyte and polarity of the mobile phase. 

[137]  

Biological matrices include inherent variation in concentrations. UHPLC-MS experiments 

mostly revolve relative quantification and study changes in the lipidome of biological systems. 

However, in general HPLC-MS lipidomics has grown enough to advance further in absolute 
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quantification of targeted lipids. [99] Main limitations of absolute quantification in HPLC-MS 

concern ambiguities preceding calibration, i.e. the structural versatility of lipid species, lipid 

concentrations at the lower (or upper) border of their linearity range, and various matrix effects 

such as ion suppression and enhancement. [99] Whereas polar lipid species quantification 

reaches a ~5% accuracy (due to the polar headgroup predominantly explains their MS 

sensitivity) [137]. Mid- to nonpolar lipids like TGs and cholesteric esters are more effected by 

their specific structure in ESI-MS. [104] Thus, these lipids need more attention in standard 

representation. More details on quantitative and validation in lipid analyses are informed in 

Refs. [99] and [104].  

5 Data analysis of lipids 

According to the lipidome community, experimentally acquired raw data should be available 

for result-validation purposes and study re-analysis, whereas analytical details and results 

should be included in a file with acknowledged “XML[-based] or structured tabular format”. 

[99] Corresponding raw data information can be taken from the proteomic field, which has 

practical formats for efficient data sharing. [99] 

5.1 Normalization 

Normalization of raw data is used to reduce systematic fluctuation concerning an accurate 

measurement. For example, Boysen et al. [139] developed the best matched internal standard 

normalization (B-MIS), an algorithm-driven solution for correcting non-biological variation of 

raw data (i.e. ion suppression by matrix effects, chromatographic quality and analytical drift). 

Obscuring variation, i.e. changes of peak area as a function of concentration, is compared 

between an unrestricted set of internal standards and analyte peaks in a QC sample. As a result, 

the algorithm chooses a suitable standard for normalization if the relative standard deviation of 

the peak area is improved by 40%. [139] Furthermore, Drotleff et al. [76] considered B-MIS 

to be the best normalization model for reducing intragroup variation between the coefficient of 
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variation, median absolute deviation and variance. His team observed a small difference in real 

positives favouring this normalization, but also noted that normalization models may work in 

a complementary fashion with their respective strengths and weaknesses. [76] Though not yet 

applied in absolute quantification experiments, B-MIS appears as a good alternative for model-

based peak area normalization in relative quantification methods. [139], [76]  

Normalization is done with single standards representing the whole range of lipid classes. 

Suitable internal calibration standards with the same head groups and similar, but not identical 

fatty acids (e.g. odd-numbered <1% abundant in higher organisms [104]), or isotope-labeled 

fatty acids are preferred for normalization [104]. The most used internal standards are 

deuterated at the carbon chain of their FA end to have either 7 or 9 deuterium atoms. [75] 

Internal standards included in QC samples are used for post-correction of systematic errors (i.e. 

drift and other batch-biases) [104], [99] like changes in peak shapes influencing the peak areas 

and for monitoring carry over [112].  

5.2 Data libraries  

Typically, lipid metabolite features in untargeted analyses are compared to available library 

spectra. [66], [118] Therefore, acquired data is represented by a “closest-match” for the m/z or 

total ion spectrum that is compared, typically accompanied by a score from 1-100%. Evidently, 

this approach may lead to false positive results, when the database used is incomplete or when 

the reference data is noisy [128]. 

Along with home-made databases [30], [32], [33], [36], [51], [54], [68], [78], commercial and 

open-source libraries have gained popularity and variety both for monitoring the lipid range 

with MS by characterizing fragmentation patterns for selective identity searching of lipids. 

Information about individual libraries and their respective types are compiled in Table 4. 

Specific tools like open-source softwares are mentioned in Table 5, whereas chemometric and 

statistical concepts are introduced in the next chapters. Additional information can be found 
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from the LSI document (https://lipidomics-standards-initiative.org/links) and LIPID MAPS 

pages (http://lipidmaps.org/resources/tools/index.php). 

5.3 Chemometric tools 

Typically, metabolic correlation and significance analyses of lipids is conducted with a set of 

visual chemometric analyses and statistical methods. Chemometric methods provide an 

overview on analyte trends and outliers in relationship to their observations (features, spectra, 

etc.) with principal component analysis (PCA) [5], [7], [13], [16], [17-19], [27], [30], [31], [33-

36], [38-40], [43], [47-49], [51], [52], [54], [56-60], [62-64], [66], [68], [69], [72], [73], [75-

79], [124], systematic but hidden/uncorrelated variation between lipidome states with partial 

least-squares regression – discriminant analysis (PLS-DA) [3], [7], [10], [11], [26], [32], [34], 

[35], [48], [59], [60], [64], [76], [79], or orthogonal projection of latent structures – 

discriminant analysis (OPLS-DA) [4], [6], [9], [19], [27], [33], [36], [37], [49], [50], [52], [54], 

[57], [60], [69], [78], [79], (relative or exact) concentration evaluation with boxplots [10], [18], 

[19], [32], [34], [37], [40], [44], [45], [48], [58], [60], [61], [67], [69], [73], [76] or a heatmap 

[3], [5], [7], [10], [11], [17], [26-28], [30-32], [34-38], [40-42], [45], [47], [48], [52], [56-58], 

[62], [68], [69], [73], [77], [79] visualizations for significant outlier detection such as the 

Bland-Altman plot [16], [40], [43-45], [55], analyte interaction or metabolic interlinkage of 

lipid species via hierarchical cluster analysis (HCA, often included with heatmap analysis) [3], 

[5], [7], [10], [17], [26], [27], [34], [37], [39], [40], [47-49], [68], [69], [73], [77], [79], 

interactive network [3], [26], [47] or pathway analysis [3], [7], [11], [26], [27], [37], [60], and 

diagnostic tools such as importance testing of PLS-DA variables  with variable importance 

projection (VIP) [3], [10], [26], [33-37], [48], [50], [52], [57], [64], [79], OPLS-DA variable 

reliability and importance evaluation via S-plots [6], [27], [50], [57], [69], [79] or volcano plots 

[11], [31], [41], [42], [48], [60], [63], [67], [74], [77], [78], and method or sample comparisons 

with Venn diagrams [11], [17], [27], [30], [45], [49], [60], [66], [76]. 

https://lipidomics-standards-initiative.org/links
http://lipidmaps.org/resources/tools/index.php
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PCA [140] pursues to flatten a large dataset with multiple variables to find the most important 

two sources of variation, i.e. principal components. This is done by comparing the transitions 

between all variables and flattening them into two dimensions with matrix operations. Thus, 

the most important information about multivariate data is found. This reduction process may 

help to divide the studied compounds into different groups and characterize them. [141] 

Similarly, PLS-DA seeks to flatten multivariate data to find the most fitting parallel two-

dimensional plane representing the whole dataset, [140] whereas OPLS-DA reduces the dataset 

to an orthogonal plane found with the partial least square plateau of the dataset. [142] Briefly, 

HCA clusters and categorizes sample components according to their apparent covariant 

relationship. [143]  

Before actual multivariate data-analysis, the data needs often to be transformed, i.e. cleaned, 

scaled and re-centered, as is often done with e.g. statistical noise corrections or discarding of 

noisy data/spectra/outliers, unit variance or Pareto scaling and mean centering for PCA. [144] 

Chemometric methods, such as PCA, PLS-DA and OPLS-DA have kept their positions as the 

most common tools for visualizing analyte groupings (PCA) and metabolic changes (PLS-DA, 

OPLS-DA). Furthermore, VIP has emerged as an emphasis estimator of PLS-DA variables [3], 

[8], [26], [32], [34], [37], [64], [79] emphasizing the importance (i.e. magnitude) of each 

variable. In this context, lipids in the projection plot with VIP scores >1 are most accountable 

to predict changes in metabolism. More extensive analyses can be found in Ref. [88] 

5.4 Statistical tools 

In lipidomic research, statistical methods have developed into a broad variety of numerical tests 

and visualization techniques. Targeted and untargeted methods are two distinctively different 

approaches, as well as the means of data processing. Gorrochategui et al. [103] divided the 

targeted processing of metabolites into five phases: (1) the acquisition of raw data, (2) the 

contemplation of which database should be used when considering the research question and 
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analytes, (3) the pre-processing and identification of these metabolites, (4) the normalization 

and quantification of the identified species, and (5) the reflection of the results on the 

biochemical/physiological context of metabolic pathways. [103] In contrast to targeted 

approaches, untargeted approaches need more careful experimental MS data processing, data 

modification, and evaluation for pre-processing to attain sufficient data quality. By this way, 

relevant biomarkers can be identified from the totality of detected features/peaks. The data 

quality is directly affected by the sensitivity and resolving power of the applied 

instrumentation. The non-targeted steps include the same pathway elucidation as in the targeted 

analyses, however, with respective appropriate tools. [103] 

Statistical methods include a null hypothesis to test similarities by using one dataset. However, 

the p-value parameter in the Student’s t-test [2],  [10], [14], [15], [18], [19], [26], [27], [32], 

[37-39], [42], [50], [52], [54], [56], [57], [60], [61], [63], [67], [72], [79],  the non-parametric 

Mann-Whitney U-test, [15], [31], [35], [41], [50], [57], [58], [74], [77], and the analysis of 

variance test (ANOVA) [2], [7], [10], [17], [22], [27], [32], [33], [46], [64], [69], [79] are for 

comparison of two or more datasets. These methods are often used for validation of analytical 

data and for detection of changes (e.g. analyte concentrations) between a control sample and 

authentic samples. Together with statistical tests, correction methods such as the Benjamini-

Hochberg test [145] are used to calculate the false discovery rate (FDR), i.e. minimizing false 

positive data in the dataset [56-58], [60], [74], [76]. 

The t-test designed for comparing two independent variables (e.g. patient versus control group 

lipidome data and that before and after drug intake) may be unreliable, when the sample size 

number is small (n<30) or when other kinds than normal distributions arise through the data 

processing [63]. This is the case for most sample number described in the articles reviewed for 

this paper. The average number of real samples studied was around 10-20 with the excluded 

outliers of 283 [36] and 10115 [94] test subjects. As to analyse control samples, there was a 
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clear split of 7-16 and ~30 in the number of controls used in the individual studies [30], [34]. 

Some cases of statistical testing of the datasets may be questionable, since e.g. t-tests were not 

reliable, when variances between populations were different.  [146] For these kinds of cases, 

an unequal variance test like the Storey [74], [115] or Welch [48] t-test may be used instead 

[48], [74].    

The Mann-Whitney U-test [147] (also known as the Wilcoxon rank-sum test) is used in 

mathematical data handling, when there are not any fixed parameters, which can be used to 

evaluate similarities of two independent dataset medians with a null hypothesis. For two sets 

with same or different sample sizes, the values of both datasets are sorted from the smallest to 

the largest one. The ranking integer is divided, if two values are identical: for instance, when 

two datapoints have the value 2, they will be both noted as 1.5 [147]. Then, the separately 

ranked sample value sets are individually summed. When any of the sums reaches the critical 

value range of the U-test, the null hypothesis can be rejected.  Akin to the Student´s t-test [63], 

the U-test is evaluated by determining the z-score (𝑧 =
𝑥𝑖−𝜇

𝑆𝐷
, where xi is a value of a single 

datapoint, µ the population mean and SD the population standard deviation) from a normal 

distribution, suitable for a large number of studied samples (>30) [147]. In essence, the z-score 

is a distance-measurement of a single datapoint in relation to a normal distribution’s standard 

deviation, determining the distance between its mean and single measurement. 

A Mann-Whitney U-test [147] can be fitted for non-Gaussian distribution data. It is typically 

combined with a Benjamini-Hochberg (or Bonferroni-Holm [63]) test to exclude false positive 

values, thus providing the FDR. These methods were applied in multiple studies to limit 

uncertainty in the results of lipids. Furthermore, Paepe et al. [27] and Gong et al. [60] used 

cross-validated ANOVA test (CV-ANOVA) to improve reliability of the identified analytes. 

The reviewed papers also gave information that Mann-Whitney U-tests and FDR corrections 
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with the Benjamini-Hochberg test [145] were used to discover the real positive results from 

analysed MS datasets.   

In the Benjamini-Hochberg method [145] p-values of two sample sets (between the control and 

the test groups) are inflated mathematically to reveal possible false positive results. Since 

affected and unaffected lipids represent two distinct normal distributions, false positive values 

can be ideally seen to differentiate a distribution from the normal when using a big sample 

number in the study. In the data analysis of lipid species, the original p-values are inflated and 

excluded by their significance desired for the p-values (e.g. p=0.1, 10% significance). The p-

values are then ranked from the smallest to the largest, after which the individual p-values are 

converted to a largest-to-smallest sequence. The largest p-value is kept, but the second largest 

p-value is determined as the smaller value of the two options. Therefore, either it is the same 

value preceding it, or it is the value calculated with a separate equation [145]. 

Lately, Tietz-Bogert et al. [31] calculated the FDR value in a lipido-metabolomic study by 

searching significant biomarkers of primary sclerosing cholangitis [31], which is a disorder of 

lipids in the bile duct of unknown origin. The concentrations of lipid species in control samples 

of healthy individual’s and the clinical samples of sick patient’s blood and bile were compared 

to find changes with a statistical significance of p=0.01 [31]. Simpler classical methods like 

ANOVA for multiple variables [2], [32], [46] were only occasionally used.  

Machine learning and software advancements for multi-ionic identification have allowed to 

evaluate MS spectra produced with UHPLC-MS in silico, which is only demonstrated in a few 

recent articles within our scope [3], [18], [21], [25], [33], [67]. Due to machine learning 

techniques and their discovered use in omics, automated lipidomic analyses, receiver operating 

characteristic curve/area under curve (ROC/AUC) cross-validation analyses [3], [60], [67], 

[76] random forest studies [18], [32], [59], [67], neural network applications [67], [96], in silico 

spectra evaluation [21], and CCS value generation algorithms [25] have become in use. 
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6 Discussion 

UHPLC-MS lipidomics is divided into isotope-labelled standard methods and fully 

standardless algorithm-based analyses. Furthermore, the separation and acquisition of highly 

abundant lipid classes (mmol/L) from mid- (µmol/L) and low-abundance (≤nmol/L) classes 

and their species is a challenge. [113] This is especially the case when (semi-)quantitative 

analysis is conducted for all quantifiable lipids in the sample, which can be the case for in-

depth studies on biological materials.  

When comparing matrix effects in pharmacokinetic analysis made with HPLC and supercritical 

fluid chromatography (SFC) coupled with ESI-MS/MS, Svan et al. [148] observed a higher 

amount of ion suppression in SFC than in HPLC due to more ion enhancement. Is this general 

notion also applicable to HPLC-MS in lipidomics? Further information may be obtained from 

matrix effects via post-column infusion [148] as demonstrated by Drotleff et al. [75] or 

observations from more laborious (though more informative) post-extraction process. [149] 

Both of these tools may be important for improving the understanding of lipidome analysis in 

the future, as sightings of such matrix effect analysis is rare in recent lipid papers. 

For practical reasons, a limitation of the comprehensive lipidome analysis is caused by the 

lipids without reasonable sensitivity. [9] Thus, the solution in that case is the Pareto principle, 

i.e. a limited number of biomolecules (lipid species) can be explained and measured using the 

main part of the studied biomass. [9] This is especially understandable in studies, where all the 

components are not relevant to the scientific question proposed. For example, metabolic lipid 

profiling with uncorrelated variation analysis (PLS-DA, OPLS-DA) in combination with 

metabolic knowledge highlight certain lipids from others to determine the most viable 

biomarkers. These biomarkers may form a conjoint array, which can already explain the 

changes in metabolism. 
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The studies reviewed revealed a constant change, which affect retention time and peak focusing 

in a HPLC method: flow rate, gradient and oven temperature. Apart from an isocratic [43] and 

three-solvent eluents [10], [32], using aqueous - organic solvent gradients by increasing organic 

solvent percentage appeared in stepped (two [21], [40], [48] to three [25], [29], [38], [39] 

plateau steps or two [6], [69] to three [51] inclined steps), curved (exponential, [8], [37], [45], 

[67] logarithmic, [2], [19], [24], [41], [42], [50], [71] or s-curve [20], [27], [39], [49], [59], 

[63], [66]) and most popularly in linear [3], [9], [12], [13], [16], [17], [18], [22], [26], [28], 

[33], [34], [47], [52-54], [56], [67], [78] form. Modifications and combinations such as an 

inverted (i.e. increase in polar solvent percentage) linear [60], [79] or logarithmic [11] gradient, 

pyramidic [57], [77], pit-like [15], modified S-curve [5], [7], [45], [64] linear/isocratic [19], 

[23], exponential/linear [62], [68], [75], exponential/exponential [65], S-curve/exponential [64] 

and S-curve/isocratic [5] gradient were also used.  

In particular, it was observed that the lipid studies were done under various column heating 

temperatures, from room temperature to 65 ˚C. [65] Instrumentation for keeping the oven 

temperature stabile is very important in lipids analysis standardization. Furthermore, the 

research was done under various mobile phase temperatures, i.e. lipid analytes experienced 

significant temperature changes (up to 10-20 ˚C) from column inlet to outlet. [107], [150] In 

addition, as heat is propagated from the column walls to the centre, temperature gradients are 

evident. [107] Though this is partly considered by narrow bore packed columns and the pre-

equilibration of the analyses, the eluents flown from solvent units in room-temperature may 

cool down the column unevenly resulting in separation of lipids with low resolution.  

The choose of column properties in lipid analyses should be considered by sorbent chemistry 

[109], particle size, pore size [86], and particle technology [117]. The unanimously preferred 

column (i.d. 2.1 mm) is not necessarily optimal, since narrower columns are more prone to wall 

effects. [107], [144] This is due to a relatively more heterogeneous packing in comparison to 
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bigger columns (internal diameter larger, i.d.). Moreover, a bigger i.d. (3 mm) is argued to 

enhance column efficiency and allow higher flow rates. [107] However, this may be an 

insignificant issue compared to the current disparity in lipidome method standardization and 

validation. [97] 

Avanti Polar Lipids (https://avantilipids.com/tech-support/physical-properties/ionization-

constants) provides pKa-values of phospholipids to be closest to buffer pKa at 2.6 (PS 

phosphate group), 3 (PAs), 2.9-3.5 (PGs) and 5.5 (carboxyl group of PS) when compared to 

the pKa values of formic acid (3.74 [151]) and acetic acid (4.75 [151]). This means that when 

those organic acids are used PSs (and PAs/PGs at low pH) are never once charged ions. Further 

problems may arise for amines such as in sphingosine (pKa 9.1 [152]), PE (9.6 [153]) or PS 

(9.8 [153]) when ammonia (pKa 9.25 [151]) is used. Modifiers used as eluent additives may 

also lead to fluctuations of pH in non-buffered systems in on-line coupled HPLC-MS. [154] 

The phenomena are possible either in the eluent during electrochemical ionization due to 

charge-balancing redox reactions, and during droplet shrinkage, since it may cause structural 

perturbations and discrepancy in the ratios of ionization species. [154] 

In lipidome analytics, interdisciplinary analyses on multifunctional and computational methods 

will be crucial to effective and improved data processing. Furthermore, it is important to use 

the most practical parameters such as precursors, fragments, and CCS values in evaluation of 

data to get fast identification and determination of lipids. Multifunctional methods used are 

statistic and chemometric analyses, whereas computational methods include algorithms, data-

processing interfaces, specific software, and machine learning strategies. Both method 

categories were attempted to be refined with tailored software platforms for necessary data pre-

processing, pattern recognition, and for using large datasets with an immense amount of data-

processing interfaces. 

https://avantilipids.com/tech-support/physical-properties/ionization-constants
https://avantilipids.com/tech-support/physical-properties/ionization-constants
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Concerning common terminology, Aristizabal et al. [155] suggest names depending on the 

acquired structural information: brutto (e.g. PC 36:1), medio (e.g. PC(18:0/18:1), sn-position 

not known), genio (e.g. PC(18:0/18:1), sn-position known) and infinio (e.g. PC(18:0/18:1-9Z), 

sn-position not known). The same research group identified two distinct trends in lipidomics, 

which are the global analysis of lipids (coined macrolipidomics) and the specialized analyses 

for low-abundant lipids (microlipidomics). 

Finally, the recognition correlation of HCA analyses is derived from information often 

visualized in the Heatmaps. Since HCA sorts out (i.e. clusters) groups of similar analyte species 

with each other, similar tools can potentially be developed by means of identifying and 

distinguishing matrices from each other.  

As the scope of this review focuses mainly on UHPLC applications, it may limit some aspects 

of progress in HPLC-MS lipidomics as a whole. However, this was deemed necessary as 

publications on lipidomics have drastically increased. [156], [157] In our opinion -as may be 

representative for lipid studies in general- the most neglected topic mainly left out in the dataset 

was nutritional lipidomics [133] (mainly personalized nutrition [158] and nutritional 

intervention [159] studies). This is in tune with the main tendency of lipidomics towards life-

sciences and bioanalytical questions concerning physiology and pathology. Furthermore, 

UHPLC-IMS-MSn studies were rarer than might be expected from current trends in HPLC-

IMS-MSn lipidomics. Our dataset between the years 2017-2019 (topics discussed elsewhere 

[101]) included research on lipid method development, physiological profiling and metabolic 

changes via multicomponent analysis including drug development and biomarker studies. 

Sample matrices included plants, microbiota, mammals, fish and human patients. [101] 

As UHPLC instruments are less frequent in the total scheme of lipidomics compared to the 

commonly used HPLC instruments, limitations concerning this review’s scope on lipidome 

applications must be noted. For instance, the use of acetone in an eluent mixture was only used 
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by Castro-Gómez et al. [15] though some studies use a HPLC-MS ternary gradient separation 

in the fashion of Graeve et al. [160] ; acetone/ethyl acetate (v/v 2:1) and alkane:ethyl acetate 

(alkane: e.g. isooctane or n-heptane, v/v 99.8:0.2)  is applied. [161] The lipidome community 

has also gone out of its way to develop a comprehensive and high-throughput method for lipid 

analysis, which puts emphasis on simple and quick sample preparation, high 

resolution/sensitivity MSn analysis and data handling via extensively automated data 

processing. Consequently, a derivatization step for UHPLC-MS was used only once in our 

dataset [8] where TMSD methylation was applied for separate acidic lipid analysis; neutral and 

basic lipids were directly analysed after sample preparation. [8] Though derivatization may be 

necessary for very low-abundance lipids or to increase lipid class specificity, another reason 

for the reduction of sample preparation steps is the minimization of experimental errors. [137] 

A particularly important outlier in lipidome applications was the research on double bond 

position elucidation; for the absolute determination of double bond positions, other options 

than multiple collision MSn-experiments or spectral library matching have been developed.  

7 Conclusions 

Current challenges in lipidomics are closely related to the lack of uniform methods across the 

field. Compared with the lipid research generally made with RP-HPLC-MS, UHPLC-MS 

needs more focus on the chromatographic method parameters, such as stationary (e.g. column 

choice, oven temperature) and mobile phase properties (flow rate, pH, solvents, gradients, 

eluent modifiers).  

Normalization with representative or single internal standards has been widely adopted in the 

field. Since computational methods alongside chemometric and statistical methods have 

increased in both importance and usage in HPLC-MS technology for cross-validation and data-

analysis, lipidomics needs interdisciplinary studies to reach full potential with big and complex 

datasets. The process of typical data-analyses in lipidomics is suggested to be reduced into four 
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parts: Pre-processing, identification/quantitation, chemometric, and statistical analyses. A 

substantial amount of specific processing tools are provided, i.e. commercial and open-source 

ones, including self-made algorithms. Since ever, more lipid libraries have emerged as well for 

untargeted, relatively targeted and in silico methods. Currently, chemometric analyses appear 

to be popular in lipidomics, i.e. for developing methods, profiling lipids in samples, and 

evaluating metabolic relationships between lipid species. For accurate identification, ion 

mobility mass spectrometry has been applied with liquid chromatography, alongside 

chromatographic separation modes with mass-spectrometric ionization, or/and MSn systems. 

When chemometric methods shed light to the inter- and intra-analyte properties of typically 

biological medium, statistical analyses were used for data-validation (e.g. significance testing 

and filtering out of false positives) and detection of abonormal changes (e.g. metabolic 

profiling of diseases).  
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[83] Hyötyläinen, T., & Orešič, M. (2015). Optimizing the lipidomics workflow for clinical 

studies—practical considerations. Analytical and bioanalytical chemistry 407(17), 4973-

4993. 

[84] Jurowski, K., Kochan, K., Walczak, J., Barańska, M., Piekoszewski, W., & Buszewski, 

B. (2017). Comprehensive review of trends and analytical strategies applied for biological 

samples preparation and storage in modern medical lipidomics: State of the art. TrAC Trends 

in Analytical Chemistry 86, 276-289. 

[85] Tumanov, S., & Kamphorst, J. J. (2017). Recent advances in expanding the coverage of 

the lipidome. Current opinion in biotechnology 43, 127-133. 

[86] Criscuolo, A., Zeller, M., Cook, K., Angelidou, G., & Fedorova, M. (2019). Rational 

selection of reverse phase columns for high throughput LC–MS lipidomics. Chemistry and 

physics of lipids 221, 120-127. 

[87] Öztaş, Y., & Boşgelmez, İ. (2017). An Introduction to Lipidomics: From Laboratory to 

Clinic. Acta Medica 48(1), 14-23. 

[88] Checa, A., Bedia, C., & Jaumot, J. (2015). Lipidomic data analysis: tutorial, practical 

guidelines and applications. Analytica chimica acta 885, 1-16 



44 
 

 

[89] Wakil, S. J., Stoops, J. K., & Joshi, V. C. (1983). Fatty acid synthesis and its regulation. 

Regulation of Fatty Acid Synthesis Annual review of biochemistry 52(1), 537-579, p. 569. 

[90] Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they 

are and how they behave. Nature Reviews Molecular Cell Biology 9(2), 112-124.  

[91] Dennis, E. A.: “LIPID MAPS Lipid Metabolics Tutorial, Fatty Acid Biosynthesis”, 

Powerpoint, 2010, University of California, San Diego 

[92] LIPID MAPS: Tutorials and Lectures on Lipids, Categories of Lipids. 02.10.2018 

http://lipidmaps.org/resources/tutorials/lipid_tutorial.php#FA 

[93] Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill Jr, A. H., Murphy, R. C., 

... & Shimizu, T. (2005). A comprehensive classification system for lipids. European journal 

of lipid science and technology 107(5), 337-364. 

[94] LIPID MAPS: Classification, nomenclature and structure drawing. 20.11.2018 

https://www.lipidmaps.org/resources/tutorials/lipid_cns.html  

[95] Kim, H. S., Waqued, S. C., Nodurft, D. T., Devarenne, T. P., Yakovlev, V. V., & Han, 

A. (2017). Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis 

platform towards on-chip lipidomics. Analyst 142(7), 1054-1060. 

[96] Koelmel, J. P., Kroeger, N. M., Ulmer, C. Z., Bowden, J. A., Patterson, R. E., Cochran, 

J. A., Beecher, C. W. W., Garrett, T. J.& Yost, R. A. (2017). LipidMatch: an automated 

workflow for rule-based lipid identification using untargeted high-resolution tandem mass 

spectrometry data. BMC bioinformatics 18(1), 331, 1-11. 

[97] Lipidomics Standards Initiative Consortium. (2019). Lipidomics needs more 

standardization. Nature Metabolism 1(8), 745-747. 



45 
 

 

[98] Ovčačíková, M., Lísa, M., Cífková, E., & Holčapek, M. (2016). Retention behavior of 

lipids in reversed-phase ultrahigh-performance liquid chromatography–electrospray 

ionization mass spectrometry. Journal of Chromatography A 1450, 76-85. 

[99] Burla, B., Arita, M., Arita, M., Bendt, A. K., Cazenave-Gassiot, A., Dennis, E. A., 

Ekroos, K., Han, X., Ikeda, K., Liebisch, G., Lin, M. K., Loh, T. P., Meikle, P. J., Orešič, M., 

Quehenberger, O., Shevchenko, A., Torta, F., Wakelam, M. J. O., Wheelock, C. E., & Wenk, 

M. R. (2018). MS-based lipidomics of human blood plasma: a community-initiated position 

paper to develop accepted guidelines. Journal of lipid research 59(10), 2001-2017. 

[100] Rodriguez-Mozaz, S., de Alda, M. J. L., & Barceló, D. (2007). Advantages and 

limitations of on-line solid phase extraction coupled to liquid chromatography–mass 

spectrometry technologies versus biosensors for monitoring of emerging contaminants in 

water. Journal of chromatography A 1152(1-2), 97-115. 

[101] Avela, H. F. & Sirén, H. (2020) Advances in lipidomics, Clinica Chimica Acta. (in-print) 

[102] Kitov, P. I., Han, L., Kitova, E. N., & Klassen, J. S. (2019). Sliding window adduct 

removal method (SWARM) for enhanced electrospray ionization mass spectrometry binding 

data. Journal of The American Society for Mass Spectrometry 30(8), 1446-1454.  

[103] Gorrochategui, E., Jaumot, J., Lacorte, S., & Tauler, R. (2016). Data analysis strategies 

for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC 

Trends in Analytical Chemistry 82, 425-442. 

[104] Lam, S. M., Tian, H., & Shui, G. (2017). Lipidomics, en route to accurate quantitation. 

Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1862(8), 752-

761. 



46 
 

 

[105] Vu, N., Narvaez-Rivas, M., Chen, G. Y., Rewers, M. J., & Zhang, Q. (2019). Accurate 

mass and retention time library of serum lipids for type 1 diabetes research. Analytical and 

bioanalytical chemistry 411(23), 5937-5949. 

[106] Bielow, C., Mastrobuoni, G. Orioli, M., & Kempa, S. (2017). On mass ambiguities in 

high-resolution shotgun lipidomics. Analytical chemistry, 89(5), 2986-2994. 

[107] Dong, M. W. (2013), Myths in ultrahigh-pressure liquid chromatography, LCGC North 

America 31(10), 868-880 

[108] Avela, H. F. (2019). Recent Developments and Challenges in Chromatographic 

Lipidomics. Helsinki University, E-thesis 

[109] Cífková, E., Hájek, R., Lísa, M., & HolĿapek, M. (2016). Hydrophilic interaction 

liquid chromatography mass spectrometry of (lyso) phosphatidic acids,(lyso) 

phosphatidylserines and other lipid classes. Journal of Chromatography A 1439, 65-73. 

[110] Moldoveanu, S. C., & David, V. (2016). Selection of the HPLC method in chemical 

analysis. Elsevier, ISBN:978-0-12-803684-6, 40-42 

[111] Brouwers, J. F. (2011). Liquid chromatographic–mass spectrometric analysis of 

phospholipids. Chromatography, ionization and quantification. Biochimica et Biophysica 

Acta (BBA)-Molecular and Cell Biology of Lipids 1811(11), 763-775.  

[112] Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems 

by liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry 61, 192-

206. 

[113] Triebl, A., Trötzmüller, M., Eberl, A., Hanel, P., Hartler, J., & Köfeler, H. C. (2014). 

Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using 

hydrophilic interaction liquid chromatography coupled to electrospray ionization high 

resolution mass spectrometry. Journal of chromatography A 1347, 104-110. 



47 
 

 

[114] Rozing, G. (2003). Trends in HPLC column formats-Microbore, nanobore and smaller. 

LC GC EUROPE 16(6 A), 14-19. 

[115] Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the 

q-value. The Annals of Statistics 31(6), 2013-2035. 

[116] Mannur, V. S., Patel, D., Mastiholimath, V. S., & Shah, G. (2011). Selection of buffers 

in LC-MS/MS: an overview. International Journal of Pharmaceutical Science s Review and 

Research 6(1), Article-008, 35-37. 

[117] Cajka, T., & Fiehn, O. (2016). Toward merging untargeted and targeted methods in 

mass spectrometry-based metabolomics and lipidomics. Analytical chemistry 88(1), 524-545. 

[118] Monnin, C., Ramrup, P., Daigle‐Young, C., & Vuckovic, D. (2018). Improving 

negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis 

of human plasma using acetic acid as a mobile‐phase additive. Rapid Communications in 

Mass Spectrometry 32(3), 201-211. 

[119] Zhao, X., Zhang, W., Zhang, D., Liu, X., Cao, W., Chen, Q., Ouyang, Z., & Xia, Y. 

(2019). A lipidomic workflow capable of resolving sn-and C [double bond, length as m-dash] 

C location isomers of phosphatidylcholines. Chemical Science 10(46), 10740-10748. 

[120] Xiao, Y.J.; Schwartz, B.; Washington, M.; Kennedy, A.; Webster, K.; Belinson, J.; Xu, 

Y. (2001). Electrospray ionization mass spectrometry analysis of lysophospholipids in human 

ascitic fluids: Comparison of the lysophospholipid contents in malignant vs. nonmalignant 

ascitic fluids. Analytical Biochemistry 290, 302–313. 

[121] Lee, D. Y., Kind, T., Yoon, Y. R., Fiehn, O., & Liu, K. H. (2014). Comparative 

evaluation of extraction methods for simultaneous mass-spectrometric analysis of complex 



48 
 

 

lipids and primary metabolites from human blood plasma. Analytical and bioanalytical 

chemistry 406(28), 7275-7286. 

[122] Taylor, N., White, T., & Viant, M. (2017). Defining the baseline and oxidant perturbed 

lipidomic profiles of daphnia magna. Metabolites 7, 11, 1-14. 

[123] Byeon, S. K., Kim, J. Y., Lee, J. Y., Chung, B. C., Seo, H. S., & Moon, M. H. (2015). 

Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic 

conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass 

spectrometry. Journal of Chromatography A 1405, 140-148. 

[124] Zhang, J., Rector, J., Lin, J. Q., Young, J. H., Sans, M., Katta, N., Giese, N., Yu, W., 

Nagi, C., Suliburk, J., Liu, J., Bensussan, A.m DeHoog, R. J., Garza, K. Y., Ludolph, B., 

Sorace, A. G.,, Syed, A., Zahedivash, A., Milner, T. E., & Eberlin, L. S. (2017). 

Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld 

mass spectrometry system. Science translational medicine 9(406), eaan3968. 

[125] Law, K. P., & Zhang, C. L. (2019). Current Progress and Future Trends of Mass 

Spectrometry-based Archaeal Lipidomics. Organic geochemistry 134, 45-61. 

[126] Vasilopoulou, C. G., Sulek, K., Brunner, A. D., Meitei, N. S., Schweiger-Hufnagel, U., 

Meyer, S. W., Barsch, A., Mann, M. & Meier, F. (2020). Trapped ion mobility spectrometry 

and PASEF enable in-depth lipidomics from minimal sample amounts. Nature 

Communications, 11(1), 1-11. 

[127] Sethi, S., & Brietzke, E. (2017). Recent advances in lipidomics: Analytical and clinical 

perspectives. Prostaglandins & other lipid mediators 128, 8-16. 

[128] Smith, R., Mathis, A. D., Ventura, D., & Prince, J. T. (2014). Proteomics, lipidomics, 

metabolomics: a mass spectrometry tutorial from a computer scientist's point of view. BMC 

Bioinformatics 15(Suppl 7), S9, 1-14.  



49 
 

 

[129] Cech, N. B., & Enke, C. G. (2001). Practical implications of some recent studies in 

electrospray ionization fundamentals. Mass spectrometry reviews, 20(6), 362-387. 

[130] Pham, H. T., Trevitt, A. J., Mitchell, T. W., & Blanksby, S. J. (2013). Rapid 

differentiation of isomeric lipids by photodissociation mass spectrometry of fatty acid 

derivatives. Rapid Communications in Mass Spectrometry 27(7), 805-815. 

[131] Song, C., Gao, D., Li, S., Liu, L., Chen, X., & Jiang, Y. (2019). Determination and 

quantification of fatty acid C= C isomers by epoxidation reaction and liquid chromatography-

mass spectrometry. Analytica Chimica Acta 1086, 82-89. 

[132] Murphy, R. C., Okuno, T., Johnson, C. A., & Barkley, R. M. (2017). Determination of 

double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi 

reaction with acetone and tandem mass spectrometry. Analytical chemistry 89(16), 8545-

8553. 

[133] Smilowitz, J. T., Zivkovic, A. M., Wan, Y. J. Y., Watkins, S. M., Nording, M. L., 

Hammock, B. D., & German, J. B. (2013). Nutritional lipidomics: molecular metabolism, 

analytics, and diagnostics. Molecular nutrition & food research, 57(8), 1319-1335. 

[134] Deng, J., Yang, Y., Liu, Y., Fang, L., Lin, L., & Luan, T. (2019). Coupling Paternò-
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Supplementary Table S1. Experimental conditions for the solid and mobile phase in chromatography 

Precolumn Column Polar Solvent (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

Yes T3 C18 1:1 MeOH:H2O (pH 7.5) (PG;PS) 6:4 MeOH:ACN (GP;PS) 
 

AmFo, FoA 2017 [15] 
 

C18 HSS 19:19:2 ACN:MeOH:H2O IPA 
 

AmFo, FoA 2017 [8] 
 

C18 HSS T3 3:4:3 ACN:acetone:IPA (DG;TG) 3:7 ACN:IPA (DG;TG) 
 

AmOH 2017 [15] 
 

C18 BEH 40:60 ACN:H2O 90:10 IPA:ACN 
 

AmAc, AcA 2017 [19] 
 

N/A 40:60 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [18] 
 

C18 50:50 ACN:H2O 95:5 IPA:ACN 
 

AmFo, FoA 2017 [20] 
 

C18 CSH H2O  50:50 IPA:ACN 
 

AmFo, FoA 2017 [11] 
 

C18 60:40  MeOH/H2O 60:40 MeOH:IPA 
 

AmAc, AcA 2017 [7] 
 

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [22] 
 

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2017 [21] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

- 2017 [4] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc, FoA 2017 [6] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2017 [22] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2017 [14] 
 

C18 HSS 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2017 [3] 
 

C18 BEH 90:10 ACN:H2O 90:80:1 IPA:ACN:H2O 
 

AmFo, FoA 2017 [17] 
 

C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2017 [24]* 
 

C18 HSS T3 90:10 IPA:ACN 30:70 H2O:ACN 
 

AmFo 2017 [12] 
 

HILIC, BEH H2O 96:4 ACN:H2O 
 

AmAc 2017 [16] 
 

C8 BEH H2O 2:5 IPA:ACN 
 

AmFo, FoA 2017 [9] 
 

C18 BEH H2O 50:50 IPA:ACN 
 

- 2017 [19] 
 

C18** H2O 60:36:4 IPA:ACN:H2O 
 

AmFo 2017 [23]** 
 

C8 H2O 70:30 ACN:IPA 
 

AmAc, FoA 2017 [2] 
 

C18 BEH H2O ACN 90:10 IPA:ACN FoA 2017 [10] 
 

C18 HSS T3 H2O ACN 
 

FoA 2017 [13] 
 

C18 BEH H2O MeOH 
 

AmAc 2017 [5] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

 C18 CSH 40:60 ACN:H2O 90:10 IPA:ACN  AmFo, FoA 2018 [35]  
C18 45:55 ACN:H2O 

  
AcA 2018 [43]  

C18 BEH 60:40 ACN:H2O 81:10:9 IPA:ACN:H2O 
 

AmFo, FoA 2018 [40]  
C18 CSH 60:40 ACN:H2O 90:10 ACN:IPA 

 
AmFo, FoA 2018 [39]  

C18 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2018 [33]  
C18 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmAc 2018 [38] 

Yes C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [25]  
C18 HSS 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmFo 2018 [26] 

Yes C18* 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [45]* 

Yes C18*** 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2018 [45]***  
C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmAc 2018 [30]  

C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2018 [30]  
C18 BEH 60:40 ACN:H2O 90:10 IPA:ACN 

 
AmFo 2018 [28]  

C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O 
 

AmFo, FoA 2018 [46] 

Yes C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2018 [41]* 

Yes C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA 
 

AmFo, FoA 2018 [42]*  
C18 SB H2O 90:10 ACN:H2O 

 
AmAc, AcA 2018 [29]  

C18** H2O ACN 
 

FoA 2018 [44]**  
C18 BEH H2O ACN 90:10 IPA:ACN FoA 2018 [32]  
C18 BEH H2O ACN 

 
AcA 2018 [37]  

C18 HSS H2O ACN 
 

FoA 2018 [27]  
Amide H2O MeOH 

 
AmHCO3 2018 [31]  

Amide H2O MeOH 
 

AmFo 2018 [31]  
C18 BEH H2O MeOH 

 
PFPA, FoA 2018 [31]  

C18 BEH H2O MeOH 
 

PFPA, FoA 2018 [31]  
C18 CSH H2O MeOH 

 
FoA 2018 [34]  

C18 HSS H2O MeOH 
 

FoA 2018 [39] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent  (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

  C18 BEH* 10:90 H2O:ACN 20:20:60 MeOH:ACN:IPA   AmFo, NH3 2019 [71] 

  C18 CSH 40:60 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2019 [77] 
 

C18 50:50 ACN:H2O 20:80 IPA:MeOH 
 

AmAc 2019 [52] 

  C18 50:50 H2O:ACN 5:95 ACN:IPA   AmFo, FoA 2019 [50] 
 

C18 50:50 H2O:ACN 5:95 ACN:IPA 
 

AmFo, FoA 2019 [57] 

Yes C18 CSH 60:40 ACN:H2O 90:10 ACN:H2O   AmFo, FoA 2019 [55] 

  C18 HSS T3 60:40 ACN:H2O 90:10 ACN:IPA   AmFo, FoA 2019 [60] 
 

C18 CSH 60:40 ACN:H2O 90:10 ACN:IPA 
 

AmFo, FoA 2019 [60] 

Yes C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [66] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [74] 
 

C8 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmAc 2019 [56] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo, FoA 2019 [65] 
 

C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN 
 

AmFo 2019 [79] 

  C18 60:40 ACN:H2O 90:10 IPA:ACN   AmFo 2019 [78] 

  C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2019 [69] 

 C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN  AmFo 2019 [62] 

 C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN  AmAc 2020 [64] 

  C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2020 [64] 

Yes C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O   AmFo, FoA 2019 [63] 

Yes C18 CSH 60:40 ACN:H2O 90:9:1 IPA:ACN:H2O   AmFo, FoA 2019 [75] 

Yes C18 CSH 60:40 ACN:H2O 90:9:1 IPA:ACN:H2O   AmFo, FoA 2019 [76] 

 C18 CSH 60:40 H2O:ACN 90:10 IPA:ACN  AmFo, FoA 2019 [58] 

 HILIC 70:30 ACN:H2O 90:10 ACN:acetone  AmFo, FoA 2019 [47] 

  HILIC** 70:30 ACN:H2O 90:10 ACN:acetone   AmFo, FoA 2019 [47]** 

 C18 BEH ACN:H2O IPA:ACN  AmFo 2019 [67] 

  C18 CSH H2O 16:3 ACN:MeOH   AcA 2019 [68] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 
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Precolumn Column Polar Solvent  (v/v ratios) Organic Solvent (v/v ratios) Solvent C Additives Year Citation 

Yes C8 H2O 55:40:5 ACN:IPA:H2O  AmAc 2019 [68] 

  C18 H2O 75:25 IPA:ACN   AmFo 2019 [59] 

 C18 H2O 75:25 IPA:ACN  AmAc 2019 [59] 

  C18 BEH H2O ACN   FoA 2019 [67] 

  F5 H2O IPA   AmFo, FoA 2019 [51] 

  C18 H2O MeOH   AmAc, FoA 2019 [53] 

 C18 H2O MeOH  AmAc, FoA 2019 [53] 

Yes Phenyl H2O MeOH   AmAc 2019 [49] 

  C8 BEH H2O MeOH   AmFo, FoA 2019 [48] 

 C18 BEH MeOH 2:5 ACN:IPA  AmAc, FoA 2019 [54] 

  C18 HSS N/A N/A   N/A 2019 [61] 

*nano-LC, **APCI instead of ESI, ***narrow-bore UHPLC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica, SB: stable bond packing 

 











Tables: 

Table 1. Instrumental approaches and MS or MS/MS chromatographic methods. Ionization 

mode was done either in positive (pos), negative (neg) or polarity switch (Switch) ion mode. 

Approach Column ESI mode MS/MS Tandem mode Year Citation 

UHPLC-ESI-Orbitrap   Pos/Neg No - 2017  [2] 

UHPLC-ESI-QOrbitrap Silica Pos/Neg No - 2017  [3] 

UHPLC-ESI-QTOF CSH Pos No - 2017  [4] 

UHPLC-HESI-Orbitrap BEH Switch  No - 2017  [5] 

UHPLC-Zspray-IMS-QTOF CSH Pos/Neg No - 2017  [6] 

UHPLC-ESI-QqQ-MS/MS   
Pos (SPs)/Neg 
(SM) 

Yes MRM 2017  [7] 

UHPLC-ESI-QqQ-MS/MS Silica Pos/Neg Yes MRM 2017  [8] 

UHPLC-ESI-QOrbitrap-MS/MS C8 BEH Pos/Neg Yes MSE 2017  [9] 

UHPLC-ESI-QTOF-MS/MS BEH Pos/Neg Yes MSE 2017  [10] 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes MSE 2017  [11] 

UHPLC-ESI-QTOF-MS/MS HSS Pos/Neg Yes MSE 2017  [12] 

UHPLC-ESI-QTOF-MS/MS   Pos Yes MSE 2017  [13] 

UHPLC-ESI-QTOF-MSMS CSH Pos/Neg Yes MSE 2017  [14] 

UHPLC-ESI-QTOF-MS/MS HSS Pos/Neg Yes MSE, PRM 2017  [15] 

UHPLC-ESI-IMS-QTOF-MS/MS   Pos Yes N/A 2017  [16] 

UHPLC-ESI-QOrbitrap-MS/MS BEH Switch  Yes N/A 2017  [17] 

UHPLC-ESI-QOrbitrap-MS/MS   Pos/Neg Yes N/A 2017  [18] 

UHPLC-HESI-QOrbitrap-MS/MS BEH Pos/Neg Yes PIS 2017  [19] 

UHPLC-HESI-QOrbitrap-MS/MS   Pos/Neg Yes PIS 2017  [20] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes PIS? 2017  [21] 

UHPLC-HESI-QOrbitrap-MS/MS CSH Pos/Neg Yes product ion scan 2017  [22] 

UHPLC-ESI(/APCI)-QqQ-MS/MS ** Switch Yes SIM 2017  [23] 

AF4, nUHPLC-ESI-QqQ-MS/MS * Pos/Neg Yes SRM, PIS 2017  [24] 

UHPLC-ESI-IMS-QTOF CSH Pos No - 2018  [25] 

UHPLC-ESI-QOrbitrap Silica Pos/Neg No - 2018  [26] 

UHPLC-HESI-QOrbitrap HSS Switch No - 2018  [27] 

UHPLC-ESI-QTOF BEH Pos No? - 2018  [28] 

UHPLC-ESI-Qtrap-MS/MS SB Neg Yes 
enh. product ion 
scan, MRM 

2018  [29] 

UHPLC-ESI-QQQ-MS/MS C8 BEH Pos/Neg Yes MRM 2018  [30] 

UHPLC-HESI-QOrbitrap-MS/MS 
BEH, 
CSH, 
Amide 

Pos/Neg Yes MRM 2018  [31] 

UHPLC-ESI-QTOF-MS/MS BEH Pos/Neg Yes MSE 2018  [32] 

Enh.: enhanced, PIS: precursor ion scan, *nano-LC, **APCI instead of ESI, ***narrow-bore LC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica,  

SB: stable bond packing 

 



Approach Column ESI mode MS/MS Tandem mode Year Citation 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes MSE 2018  [33] 

UHPLC-ESI-QOrbitrap-MS/MS CSH Pos/Neg Yes MSE, MRM 2018  [34] 

UHPLC-HESI-QOrbitrap   Pos/Neg Yes N/A 2018  [35] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes PIS 2018  [36] 

UHPLC-QTOF-MS/MS BEH Pos/Neg Yes PIS 2018  [37] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes Targeted 2018  [38] 

UHPLC-QTOF-MS/MS 
CSH, 
HSS 

Pos/Neg Yes Targeted 2018  [39] 

UHPLC-ESI-QTOF-MS/MS BEH Pos/Neg Yes product ion scan 2018  [40] 

AF4, nUHPLC-ESI-QqQ-MS/MS * Switch Yes SRM 2018  [41] 

AF4, nUHPLC-ESI-QqQ-MS/MS * Pos/Neg Yes SRM 2018  [42] 

UHPLC-ESI-QQQ   Neg Yes SRM 2018  [43] 

UHPLC-ESI(neg: APCI)-QTOF-
MS/MS 

** Pos/Neg Yes SWATH, PRM 2018  [44] 

nUHPLC-NSI-QTOF-MS/MS */*** Pos/Neg Yes Top10 ddMS2, PRM 2018  [45] 

UHPLC-HESI-QOrbitrap-MS/MS BEH Pos/Neg Yes top10-ddMS2 2018  [46] 

UHPLC-APCI-QLIT-MS HILIC** Pos No - 2019  [47] 

UHPLC-ESI-TOF C8 BEH Pos No - 2019  [48] 

UHPLC-HESI-QOrbitrap Phenyl Switch No - 2019  [49] 

UHPLC-ESI-Orbitrap-MS/MS   Pos/Neg Yes autoMS 2019  [50] 

UHPLC-HESI-QOrbitrap-MS/MS F5 Pos/Neg Yes autoMS 2019 [51] 

UHPLC-ESI-Qtrap-MS/MS   Pos/Neg Yes MRM 2019  [52] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes 
MRM (GPs), 
product ion scan 
(FAs) 

2019  [53] 

UHPLC-ESI-QTOF-MS/MS BEH Pos Yes MRM, PIS 2019  [54] 

UHPLC-ESI-QOrbitrap-MS/MS CSH Pos/Neg Yes MSE 2019  [55] 

UHPLC-ESI-QOrbitrap-MS/MS C8 Pos/Neg Yes MSE 2019  [56] 

UHPLC-ESI-QOrbitrap-MS/MS   Pos/Neg Yes MSE 2019  [57] 

UHPLC-ESI-QOrbitrap-MS/MS CSH Pos/Neg Yes MSE 2019  [58] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes MSE 2019  [59] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes MSE 2019  [60] 

UHPLC-ESI-QTOF-MS/MS HSS Pos Yes MSE 2019 [61] 

UHPLC-ESI-QOrbitrap-MS/MS CSH Pos/Neg Yes Untargeted 2019 [62] 

UHPLC-ESI-QOrbitrap-MS/MS BEH Pos/Neg Yes N/A 2019  [63] 

UHPLC-ESI-QOrbitrap-MS/MS CSH** Pos/Neg Yes N/A 2020 [64] 

UHPLC-ESI-QOrbitrap-MS/MS CSH Pos/Neg Yes PIS 2019 [65] 

Enh.: enhanced, PIS: precursor ion scan, *nano-LC, **APCI instead of ESI, ***narrow-bore LC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica,  

SB: stable bond packing 

 



Approach Column ESI mode MS/MS Tandem mode Year Citation 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes PIS 2019  [66] 

UHPLC-ESI-QOrbitrap-MS/MS 
CSH, 
HSS 

Pos Yes Targeted 2019  [60] 

UHPLC-HESI-QOrbitrap-MS/MS HILIC** Neg Yes Targeted 2019  [47] 

UHPLC-ESI-QTOF-MS/MS BEH** Pos/Neg Yes 
Product ion scan, 
NLS 

2019 [67] 

UHPLC-ESI-IMS-QTOF-MS/MS CSH Neg Yes 
Product ion scan, 
PIS 

2019  [68] 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes SONAR 2019 [69] 

nUHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes SRM 2019  [70] 

nUHPLC-NSI-QTOF-MS/MS * Pos/Neg Yes SRM 2019  [71] 

AF4, nUHPLC-ESI-QOrbitrap-MS/MS   Pos/Neg Yes SRM, PIS 2019  [72] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes SWATH 2019  [73] 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes SWATH 2019  [74] 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes SWATH 2019  [75] 

UHPLC-ESI-QTOF-MS/MS CSH Pos/Neg Yes SWATH 2019  [76] 

UHPLC-HESI-QOrbitrap-MS/MS CSH Pos/Neg Yes Top10-ddMS2 2019  [77] 

UHPLC-ESI-QTOF-MS/MS   Pos/Neg Yes  N/A 2019 [78] 

UHPLC-HESI-QOrbitrap-MS/MS CSH Pos/Neg Yes Targeted 2019 [79] 
Enh.: enhanced, PIS: precursor ion scan, *nano-LC, **APCI instead of ESI, ***narrow-bore LC  

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica,  

SB: stable bond packing 

  



Table 2. New analytic method developments and application enhancements in lipidomics  

Year Citation Subtheme 

2017  [21] Improvement to in-silico fragmentation prediction 

2017  [9] Ultrahigh performance chromatography lipidomics 

2017  [14] Super absorbent polymer extraction chip testing 

2017  [95] Single-cell resolution, PDMS microfluid droplet chip Raman method 

2017  [96] LipidMatch comparison to other software 

2017  [23] Method development, low resolution MS identification 

2017  [19] in vitro computational data analysis method, excessive adipocyte lipolysis 

2017  [16] Comparison of LC/MS, SCF/MS and DIMS, kidney cancer patient analysis 

2017  [22] Bee pollen analysis, method validation 

2017  [20] Lipid extraction comparison with pancreatic cancer cell line 

2017  [17] Data processing improvements, nonalcoholic fatty liver disease analysis 

2018  [25] Machine learning algorithms for CCS values 

2018  [45] Reproducible nano-LC NSI method 

2018  [27] Multi-matrix platform validation 

2018  [46] Optimization of established extraction techniques 

2018  [30] Multimatrix method development, a mixture of untargeted/targeted  

2019  [66] Extraction comparison ("IPA-75", "IPA-90" vs “Bligh & Dyer”), MS-DIAL, 
SWATH 

2019  [68] Oxylipin, eicosanoid and FA identification method with IMS-MS/MS (DIA),  

2019  [76] Guide for choosing a suitable strategy for an ISTD-based untargeted 
approach 

2019 [51] Method for hepatotoxicity evaluation 

2019 [69] DIA method with rapid "SONAR" sequential ion feeding scan,  
sitaxentan (antihypertension drug) effects in animals 

 



Table 3. Mass-to-charge values for several lipid classes found during research. Ch: cholesterol and its derivatives, Hex: SPs hexosyl-derivatives 

Citation Table FA FFA GL GP LPL PL Ox Sulfo-
GP 

SP Hex ST Ch SL PK PR adduct m/z CE more 

 [120] S3 x x x x X X 
  

x x 
 

x 
   

x x 
 

  

  [121] A2 x x x x X 
   

x 
      

x x 
 

Metabolomic study 

 [5] S1 x x x x 
 

X 
  

x 
 

x x X x x x x 
 

Authentic standards 

 [49] S7 x x x x 
      

x x 
  

x 
 

x 
 

Metabolomic study 

 [7] S1, S2 x x 
 

x X X 
 

x x 
 

x 
 

X 
 

x x x 
 

Metabolomic study 

 [39] S6 x x 
 

x x 
       

X 
  

x x 
 

Protonated ions only 

  [122] S1, S4 x x 
 

x x 
          

x x 
 

Daphnia Magna baseline 

  [123] S1 x 
 

x x x 
   

x x 
      

x 
 

FA-chains, lipoproteins 

 [63] S2, S3 x 
  

x x X x 
        

x x 
 

Metabolomic study 

 [43] T2 x 
               

x x Prostaglandines 

 [23] S1, S2, 
S3 

 x x x x X 
 

x x 
  

x x 
  

x x 
 

  

 [30] T1, T2 
 

x x x x X 
  

x x 
     

x x 
 

part of the precursors 

  [86] S1 
 

x x x x X 
  

x 
 

x 
  

x 
 

x x 
 

Column comparison 

 [124] S1 
 

x x x x X 
  

x 
  

x 
   

x x 
 

  

 [58] S1-S4 
 

x x x x X 
         

x x 
 

  

 [75] S1 
 

x x x x 
   

x 
  

x 
   

x x 
 

Standards, SWATH 

 [22] T2, T3 
 

x x x x 
   

x 
      

x x 
 

Gene expression manipulation 

 [76] S1 
 

x x x x 
          

x 
  

  

 [66] S1 
 

x x x 
 

X 
  

x 
   

x 
  

x x 
 

  

 [73] A1, A5, 
A10 

 x 
 

x x 
          

x x x SWATH, exclusion list MS-DIAL 

 [37] T1 
 

x 
  

x X 
          

x 
 

PAF C-16 

 



Citation Table FA FFA GL GP LPL PL Ox Sulfo-
GP 

SP Hex ST Ch SL PK PR adduct m/z CE more 

 [19] S2 
 

x 
              

x 
 

  

 [42] S3 
  

x x x X 
 

x x x 
      

x 
 

  

 [41] S1, S2 
  

x x x X 
  

x x 
     

x x 
 

List for possible acyl chains (S3) 

 [8] T2 
  

x x x X 
  

x x 
      

x 
 

Abundances in 5 cancer types 

 [9] S7 
  

x x x X 
  

x x 
     

x x 
 

Adduct list 

 [14] S1, S2 
  

x x x X 
  

x 
  

x x 
  

x x 
 

APCI 

 [16] S2 
  

x x x X 
  

x 
  

x 
   

x x 
 

Adduct list, UHPLC/SFC/DIMS & tissue 
comparison, Des-lipids 

 [60] S1 
  

x x x X 
  

x 
  

x x 
   

x 
 

  

 [48] S3 
  

x x x X 
  

x 
  

x 
    

x 
 

  

 [11] S2, S3 
  

x x x X 
  

x 
      

x x 
 

  

[65] S1, S2, 
S3 

 
 

x x x X 
  

x 
      

x x 
 

PE(16:0/18:1)+H m/z fragments  

 [96] S1, S4 
  

x x x 
 

x 
    

x x 
  

x x 
 

Adduct list, Software comparison 

 [34] S1, S2 
  

x x x 
   

x 
  

x 
   

x x x MRM validation, methylated species 

 [25] S1, S2 
  

x x x 
   

x 
  

x 
   

x 
  

CCS 

 [52] A3 
  

x x x 
   

x 
  

x 
      

SWATH, standards only 

 [15] T1 
  

x x x 
   

x 
   

x 
   

x 
 

Saccharolipids 

 [45] S4, S6, 
S8 

 
 

x x x 
   

x 
   

x 
  

x x x PRM, sensitivity data 

 [72] S1 
  

x x x 
   

x 
      

x x x   

[79] S2, S3, 
S4 

 
 

x x x 
   

x 
      

x x 
 

  

 [83] T2 
  

x x x 
          

x x 
 

  

 [24] T2, S1, 
S2 

 
 

x x 
 

x 
  

x x 
     

x x x nUHPLC, adduct list 

 [12] S1, S2 
  

x x 
    

x 
      

x x 
 

  



 

Citation Table FA FFA GL GP LPL PL Ox Sulfo-
GP 

SP Hex ST Ch SL PK PR adduct m/z CE more 

[69] T1     x x         x             x x 
 

  

 [59] T2     x x             x     x   x x 
 

Plant flavonoids included 

[2] S1     x x                 x x   x 
  

Plant flavonoids included 

[125] S1, 
S2, S3 

   x x                 x   x x x 
 

archaeal isoprene-based and ether-linked 
lipid list (incl. fragment info) 

 [18] S3     x x                       x x 
 

  

 [50] T2, T5       x x       x             x x 
 

  

 [47] S1, S2       x         x             
 

x 
 

csv files (S2) 

 [4] T1       x                       
 

x 
 

  

[61] T1       x                       x x 
 

PC only 

 [29] S1             x                 
 

x x Oxylipins 

 [55] T2, S1                 x     x       x x 
 

SM and cholesterol 

 [40] S2                 x             x x 
 

protonated species only 

 [27] S1                     x         x x 
 

Metabolomic study 

 [44] A.144, 
A.155 

                   x         
   

SWATH 

 [54] S1                       x        
   

Math. model-assisted identification 

 

 

 



Table 4. Databases used for lipid identification 

Database Content Focus Used in Citation 

in-house Compound lists Lipids  [30], [32], [36], [51], [54], [68], [78] 

ChemSpider Structures, Library Comprehensive  [13], [127] 

Foodb Library Food constituents  [59] 

HMDB Various Metabolites  [4], [12], [19], [32], [34], [39], [40], [59], [60], [63], 
[127] 

KEGG Pathway maps Genes  [33], [34], [60], [79] 

LipidBlast Spectra Lipids  [6], [21], [25], [35], [76] 

LIPID MAPS Library Lipids  [4], [6], [9], [12], [16], [19], [26], [34], [39], [40], [54], 
[65], [69], [127] 

MassBank Mass spectra Comprehensive  [21] 

MetLin MS/MS Metabolites  [34], [39], [40], [63] 

NIST 11 Library Comprehensive  [60] 

Nist 14 Library Comprehensive  [25] 

PubChem Library Comprehensive  [13], [125] 

ChEBI* Library Metabolites  [125] 

Lipidbank Compound lists Lipids  [125] 

Reactome Library Pathways  [26] 

Home-made Various Various  [30], [32], [36], [54], [68] 



Table 5. Coding languages, possible packages and specific softwares for analysis of lipids 

typically under the m/z value of 1500. 

Availability Program A/IQ/S/V More Used in Citation 

MathWorks Matlab n/y/y/y Coding language  [49] 

DoubleClick Origin n/n/y/y Coding language  [44], [75], [76] 

Open-source Python n/y/y/y Coding language  [25] 

Open-source R n/y/y/y Coding language, 

statistics 

 [2], [3], [6], [7], [10], [18], [21], [32], [33], [36], 

[37], [39], [40], [46], [47], [55], [65], [67], [68], 

[74], [76], [78] 

    -Out of which CAMERA n/y/n/n Isotope screening  [6], [21], [37], [55] 

    -Out of which MeV n/y/y/y DB search, 

visualization 

 [3], [30] 

    -Out of which XCMS n/y/n/n Feature detection  [7], [10], [19], [32], [33], [36], [37], [39], [46], 

[47], [55], [61], [65], [76], [78] 

IBM SPSS n/y/y/y Coding language, 

statistics 

 [7], [26], [33], [42], [44], [50], [53], [54], [55], 

[57], [60], [61], [64], [72], [75], [79]  

Agilent Masshunter series y/y/n/n Multiple tools  [7], [25], [34], [40], [54], [68] 

GraphPad GraphPad Prism n/n/y/y Statistics, Data 

visualization 

 [56], [57] 

KBSI iLipid n/y/n/n In-house  [14] 

Molecular Discovery Lipostar n/y/y/y Identification 

only 

 [65] 

N/A LiPilot n/y/n/n In-house  [24], [42] 

Open-source CEU Mass Mediator n/y/n/n Adduct/s and RT, 

website 

 [32], [63] 

Open-source Cytoscape n/n/n/y Visualization  [79] 

Open-source MetaboAnalyst n/y/y/y Multipurpose, 

website 

 [10], [11], [17], [27], [32], [34], [37], [40], [46], 

[48], [59], [60], [61], [63], [65], [77], [79] 

Open-source Greazy n/y/y/y Chemometrics 

included 

 [96] 

Open-source KniMet n/n/y/n Visualization  [68] 

Open-source Lipid Data Analyzer n/y/y/y Standardization, 

statistics 

 [9] 

Open-source LipidFrag n/y/n/n In silico  [21] 

Open-source LipidMatch n/y/n/n In silico, 

fragmentation 

DBs 

 [3], [17], [63] 

A/IQ/S/V: Acquisition/Identification & Quantitation/Statistical analysis/data Visualization 

*According to Waters’ website, MassLynx is discontinued and replaced with Progenesis QI 

DB: database, KBSI: Korea Basic Science Institute 

 

 



Availability Program A/IQ/S/V More Used in Citation 

Open-source MassTRIX n/y/n/y KEGG/API 

pathway analysis 

 [21] 

Open-source MultiExperiment Viewer n/n/n/y Chemometric 

visualization 

 [56] 

Open-source MZmine n/y/n/n MS DB search  [63], [123] 

Open-source Skyline n/y/n/n MS/MS DB 

search 

 [7], [34], [45], [69] 

Premier Biosoft SimLipid n/y/n/n In silico structure 

MS/MS 

 [10], [32], [61] 

Riken Prime MS-DIAL n/y/n/n SWATH  [35], [58], [73], [75-77]  

Sartorius SIMCA n/n/y/y Statistics and 

visualization 

 [5], [26], [33], [35], [36], [68], [79], [124] 

Sartorius SIMCA-P n/n/y/y Same as SIMCA  [7], [19], [30], [37], [52], [54], [56], [62] 

Sartorius EZinfo n/n/n/y Chemometrics  [4], [13], [34], [60], [69] 

SAS JMP n/n/y/y    [56] 

SCIEX Analyst TF y/n/n/n    [44], [33], [36] 

SCIEX LipidView n/y/n/n Fragment DB 

search 

 [16], [38], [43] 

SCIEX MultiQuant n/y/n/n Quantitation tool  [75], [76] 

SCIEX PeakView n/y/n/n Peak comparison 

& analysis 

 [76] 

SCIEX MarkerView n/n/y/y    [38], [73], [76] 

Thermo Xcalibur y/n/n/n    [2], [3], [5], [18], [26], [45], [46], [50], [58], [60], 

[62], [65], [124] 

Thermo Compound Discoverer n/y/y/y Pathway analysis  [46] 

Thermo LipidSearch n/y/n/n Relative 

quantification 

 [22], [26], [30], [35], [46], [50], [57], [62], [65], 

[79], [124] 

Thermo SIEVE n/n/y/y Biomarkers, 

comparative 

analysis 

 [19] 

Thermo SIEVE n/n/y/n Biomarker 

discovery 

 [19] 

Thermo Chromeleon y/n/n/n    [65] 

Waters MassLynx MS y/y/n/n    [7], [13-15], [28], [34], [60], [61], [69] 

Waters MarkerLynx* n/n/n/y Chemometrics  [4], [6], [16], [34], [43], [67] 

Waters, Nonlinear 

Dynamics 

Progenesis QI n/y/n/n Small molecule 

protein/lipid 

analysis 

 [69] 

A/IQ/S/V: Acquisition/Identification & Quantitation/Statistical analysis/data Visualization 

*According to Waters’ website, MassLynx is discontinued and replaced with Progenesis QI 

DB: database, KBSI: Korea Basic Science Institute 



Figures: 

 

Figure 1. Simple triglyceride (TG) structure and shorthand notation. The stereospecific 

numbering (sn) of fatty acids on a glycerol-molecule are named sn1 (upper carbon of the 

glycerol body, if k>n), sn2 (middle carbon of the glycerol body) and sn3 (lower carbon of the 

glycerol body, if k>n) respectively, when the analyte can be stereoisomerically determined 

(i.e. on the stereo-molecular species level). If individual chain lengths (and their positions) 

cannot be determined, the number of the carbon atoms and double bonds are expressed as 

separate sums. 

Figure 2. (A) Glycero- and glycerophospholipid structure variations according to sub-class 

and (B) regular and plasmalogen structures (O- for plasmanyl and P- for plasmenyl, older 

notation e and p). The characteristic molecules of lipid classes are typically esterified to the 

sn3 position. Structures derived from ref. [93] 

Figure 3.  Typical sphingolipid structures. R1 is an amine that usually has a fatty acid linked 

to it with an amide bond. R2 on the other hand is either a free hydroxyl group as in ceramides 

but occupied with a characteristic phosporylated molecule in SMs. Some structures also  

Structures derived from ref. [93] 

Figure 4. ‘(a)’ Nonpolar and ‘(b)’ polar lipid subclass separation techniques. Reprinted from ref 

[85], DOI: 0958-1669/© 2016 S. Tumanov and JJ Kamphorst. Published by Elsevier Ltd, an 

open access article under the CC BY license. 
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