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Parechoviruses belong to the genus Parechoviruswithin the family Picornavir-
idae and are non-enveloped icosahedral viruses with a single-stranded RNA
genome. Parechoviruses include human and animal pathogens classified
into six species. Those that infect humans belong to the Parechovirus A species
and can cause infections ranging from mild gastrointestinal or respiratory
illness to severe neonatal sepsis. There are no approved antivirals available
to treat parechovirus (nor any other picornavirus) infections. In this parecho-
virus review, we focus on the cleaved protein products resulting from the
polyprotein processing after translation comparing and contrasting their
known or predicted structures and functions to those of other picornaviruses.
The review also includes our original analysis from sequence and structure
prediction. This review highlights significant structural differences between
parechoviral and other picornaviral proteins, suggesting that parechovirus
drug development should specifically be directed to parechoviral targets.

provided by Helsingin yliopiston digitaalin
1. Introduction
Parechoviruses belong to a single genus within a large family, Picornaviridae,
which comprise small, icosahedral, non-enveloped, single-stranded RNA
(ssRNA) viruses approximately 30 nm in diameter. The Parechovirus genus is cur-
rently divided into six species Parechovirus A-F (PeV-A-F) (table 1) out of which
PeV-A contains human parechoviruses. Based on the region of the genome
coding for the capsid protein VP1 and VP1’s antigenicity, parechoviruses from
PeV-A have been divided into 19 types [7,13]. According to the national entero-
virus surveillance programs implemented in a number of countries, PeV-A1 is
the most prevalent human parechovirus type globally, followed by PeV-A3
and PeV-A4 [14]. Other human parechovirus types are less frequently reported,
mainly in Africa and South America. Human parechoviruses cause infections
ranging from asymptomatic or mild to severe illnesses, predominantly in neo-
nates and young children [14]. The most severe symptoms are frequently
associated with PeV-A3 infections in neonates, manifesting in sepsis-like disease
and central nervous system infections. PeV-A3 has caused three consecutive
epidemics in Australia [15]. As of yet, there are no treatments available for
parechoviral infections. Parechoviruses have also been detected in other ver-
tebrates, having been isolated from bank voles and gulls (PeV-B), rodents
(PeV-C), ferrets, bats (PeV-D) and falcons (PeV-E) [2–5,16,17]. Parechovirus in
geckos (PeV-F) has been identified in a large meta-transcriptomic survey [6].
There is very little information on parechoviruses that belong to PeV-B-F species.

Most of our understanding on picornavirus structure and infectious cycle
comes from the remarkable efforts put into research on poliovirus and other
enteroviruses [18,19]. The rest of the Picornaviridae family members, including
parechoviruses, have received much less attention. In this review, we summarize
current knowledge on the structure of the parechovirus virion as well as the
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Table 1. Protein sequences used for sequence analysis.

species virus name isolate/protein accession number reference

parechoviruses

Parechovirus A (PeV A) Human parechovirus 1 (HPeV1 or PeV-A1) Human parechovirus 1 strain Harris YP_009505617 [1]

Parechovirus B (PeV B) Ljungan virus 1 (LV1 or PeV-B1) Ljungan virus strain 87–012 NP_647602 [2]

Parechovirus C (PeV C) Sebokele virus 1 (SEBV1) An/B/1227/d YP_008083730 [3]

Parechovirus D (PeV D) ferret parechovirus 1 (FePeV1) ferret/MpPeV1/NL YP_009361997 [4]

Parechovirus E (PeV E) falcon parechovirus 1 (FaPeV) falcon/HA18_080/2014/HUN YP_009423853 [5]

Parechovirus F (PeV F) gecko parechovirus 1 (GPeV) Yili Teratoscincus roborowskii

picornavirus 2 strain LPWC210215

AVM87411 [6]

unassigned Rattus tanezumi parechovirus (RtPeV) rat/Wencheng-Rt386–3/China/2012 MF352429 unpubl., [7]

enteroviruses

Enterovirus A (EV A) coxsackievirus A16 (CVA16) CA16/GD09/24 AGC82916 [8]

Enterovirus C (EV C) poliovirus 1 (PV1) Mahoney (Ohio/41) CAA24461 [9]

aphthoviruses

Foot-and-mouth disease

virus (FMDV)

Foot-and-mouth disease virus C (FMDV C) rp99 CAB60265 [10]

cardioviruses

Cardiovirus A encephalomyocarditis virus 1 (EMCV1) Mengo Rz-pMwt ABB97066 [11]

human

Homo sapiens — PLAAT3 NP_001121675 [12]
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structure and function of the viral proteins, highlighting
similarities and differences with other picornaviruses. Cryo-
EM and X-ray data on the mature human parechoviruses
PeV-A1 and PeV-A3, as well as PeV-B1 enabled detailed
characterization of the viral capsid; however, there are no
structural data available for parechoviral non-structural pro-
teins [14,20–23]. For better understanding of the structure
and function of these proteins, we performed amino acid
sequence analysis and homology modelling. First, we aligned
amino acid sequences of non-structural proteins from six par-
echovirus isolates, each from different species, and from an
unassigned Rattus tanezumi parechovirus (RtPV) (table 1).
Then, these sequences were compared to the sequences of
the homologous proteins for which molecular models are
available in the Protein Data Bank (PDB). Homologous pro-
teins, of both viral and non-viral origin, were found using
the Basic Local Alignment Search Tool (BLAST) against pro-
teins deposited in the wwPDB and further verified by
multiple sequence alignments with the MUSCLE algorithm
in theUGENE software suite (table 2) [21,24–28]. The sequence
comparison, based on the reference sequences in table 1, was
used as the basis for structuring the review, going through
protein-by-protein. Parechoviruses exhibit at least six distinct
features at both structural and functional level which are
different from that of many other picornaviruses, which we
will discuss in detail later, but summarize here. (i) VP0 is not
cleaved nor myristoylated in parechoviruses [29,30]. (ii) A
lipid factor, present in the hydrophobic pocket in VP1 of
many enteroviruses, is absent from the parechovirus capsids
[20–23]. (iii) The interactions between multiple packaging sig-
nals in genomic ssRNA and capsid proteins occurs at different
sites in parechoviruses compared to enteroviruses [31,32].
(iv) The parechovirus 2A protein is homologous to eukaryotic
phospholipid-metabolizing enzymes [33]. (v) Parechoviruses
do not cause protein synthesis shut-off during virus replica-
tion described for enteroviruses [34]. (vi) As opposed to the
guanidine hydrochloride sensitive 2C protein from entero-
viruses, parechovirus infection is resistant to guanidine
hydrochloride, revealing a functional difference between
parechovirus and enterovirus 2C proteins [35].
2. Common features in parechoviruses and
other picornaviruses

Picornavirus genome organization and overall capsid structure
are conserved. They have apositive-sense, ssRNAgenomewith
a covalently linked genome-linked viral protein (VPg) at the 50-
untranslated region (UTR). The picornavirus genomic RNA
consists of a single open reading frame (ORF) flanked by 50-
and 30-UTRs. The start of the 50-UTR is predicted to fold into
aclover-leaf structure important for the replication,which is fol-
lowed by an internal ribosome entry site (IRES) controlling the
translation [36,37]. The 30-UTR contains a poly-A tail resem-
bling the messenger RNA in the host cell. The genome also
possesses a cis-active RNA element (CRE), which acts as a tem-
plate for VPg uridylylation, a key step in protein-primed RNA
replication and transcription [38,39]. The location of CRE sites
in the picornavirus genome varies, for example, poliovirus
CRE is in the 2C while human parechovirus CRE is found in
the VP0 coding sequence [40]. The picornavirus ORF is trans-
lated into a single polyprotein with the P1 region encoding
structural proteins, followed by the P2 and P3 regions encoding
non-structural proteins (figure 1). Thepolyprotein is cleaved by
viral encoded protease(s) yielding functional proteins. The
structural proteins form the protein capsid of the virion with
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T = 1, quasi T = 3 icosahedral symmetry. The major structural
proteins of picornaviruses have a common jelly-roll fold
formed by eight antiparallel β-strands arranged in two
four-stranded β-sheets (figure 2a, inset) [42].
ietypublishing.org/journal/rsob
Open

Biol.11:210008
3. Parechoviral structural proteins and
genomic ssRNA

3.1. Capsid structure
Icosahedral capsids of picornaviruses are composed of 60 pro-
tomers each made of 3 or 4 structural proteins. Five of the
protomers assemble into a pentamer, 12 ofwhich enclose geno-
mic ssRNA to form the complete capsid (figure 2a). Someof the
most prominent features of picornavirus capsids include star-
shaped protuberances at fivefold axes that are surrounded by
depressions and a propeller-like protrusions at the threefold
axes (figure 2b) [43]. Proteins forming the protomers in pare-
choviruses are VP0, VP1 and VP3 (289, 231 and 253 amino
acids in PeV-A1, respectively). In contrast with enteroviruses,
in parechoviruses VP0 is not cleaved into VP2 and VP4 [30].
Among other picornaviruses where VP0 has been shown to
remain uncleaved, only the Aichi virus (genus Kobuvirus)
capsid structure has been published [44,45]. In enteroviruses,
as the best-studied picornaviruses, VP0 cleavage into VP2
and VP4 is linked to N-terminal myristoylation of VP0,
which does not occur in parechoviruses [29]. It is unclear
whether VP0 from Aichi virus is myristoylated or not but it
possesses a classical myristoylation motif Gxxx(S/T), where
x stands for anyamino acid [45]. In the assembledparechovirus
virion, copies of structural protein VP1 are located around
the fivefold axes, whereas VP0 and VP3 alternate around
the threefold axes (figure 2a). The short helices from two VP0
molecules meet at each twofold axis [20–23].

As mentioned above, the capsid proteins of all picorna-
viruses possess eight-stranded β-barrels [42] (figure 2a). The
structural differences among different picornavirus capsids
are determined by the loops between the β-strands as well as
by the capsid proteins’ C- and N-termini. High-resolution
structures of parechoviruses solved by X-ray crystallography
and cryo-EM revealed structural differences with other
picornaviruses [20–23,46]. The surface exposed loops in pare-
chovirus capsid proteins are shorter compared to other
picornaviruses leading to the formation of a shallowdepression
around the fivefold axis, known as a ‘canyon’ in enteroviruses
[42]. Furthermore, in PeV-B1, the longer C-termini of VP1 (297
amino acids) make distinct protrusions on the surface around
the fivefold axes [2,21]. What is more, most enteroviruses
possess a ‘pocket’ within the VP1 β-barrel core, which is occu-
pied by a fatty acid molecule known as a pocket factor [42].
Thepocket factor canbedisplacedbysmall-molecule antivirals,
such as pleconaril or WIN compounds, which leads to capsid
stabilization and thereby inhibition of viral infectivity [42,47].
Parechoviruses are not able to bind the pocket factor because
the corresponding space is occupied by bulky amino acid
side chains [20,21,23].

3.2. Genomic ssRNA
Notably, in all parechovirus three-dimensional reconstructions
with icosahedral averaging, extensively ordered regions of
viral RNA (up to 20% of the genome) were identified in the
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Figure 1. Schematic representation of parechovirus genome. Genomic ssRNA has viral protein VPg attached to its 50 end. 50 UTR contains clover-leaf and IRES
elements necessary for RNA replication and protein synthesis initiation. The 30 UTR contains a stem-loop structure important for virus replication as well as a
polyA-tail. Virus protein-coding regions are highlighted with boxes. P1, P2 and P3 coding regions are delineated above. 2ANPGP protein region is shown in brackets
to indicate its presence in 0–2 non-identical copies.

VP1
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Figure 2. Structural details of parechovirus capsid. (a) Schematic view of parechovirus capsid down a twofold axis of symmetry. The icosahedral capsid consists of 60
protomers, each composed of structural proteins VP0 (orange), VP1 (green) and VP3 (light blue). The enlarged view presents modelled structural proteins for PeV-A3
(PDB ID: 6GV4). Pentagon, triangle and oval indicate fivefold, threefold and twofold symmetry axes, respectively. (b) Radially colour coded (steel blue, 130 Å; sky
blue, 135 Å; khaki, 140 Å; orange, 145 Å; firebrick, 150 Å) surface presentation of PeV-A3 capsid resolved by cryo-EM (EMD-0069), antibody fragment density
subtracted using UCSF Chimera [41]. Capsid view is the same as in panel (a). (c) Ordered ssRNA at the inner surface of the PeV-A3 capsid beneath the fivefold
vertices (EMD-0069). Radially colour coded inner surface of the capsid (blue, 100 Å; light blue, 115 Å; khaki, 130 Å; orange, 140 Å; firebrick, 150 Å) and modelled
ssRNA stretches (blue slabs for bases) in contact with VP3 N-terminal residues Leu16 to Arg26 (light blue) viewed down fivefold symmetry axis (PDB ID: 6GV4).
Boxed segment is enlarged and slightly rotated in (d ) to show RNA base stacking against VP3 Trp24 side chain (W24). (e) Comparison of atomic models of PeV-A3
(PDB ID: 6GV4) and coxsackievirus B3 (CVB3) (PDB ID: 1COV). Halves of central cross-sections of PeV-A3 and CVB3 atomic models are shown. Boxed areas show
ordered ssRNA in PeV-A3 (blue slabs for RNA bases) and myristoylated VP4 in CVB3 beneath the fivefold vertices. EV, enterovirus.
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capsid interior beneath the fivefold vertices, but not in any
other picornavirus (figure 2c) [20–23]. The longest stretch of
modelled viral RNA inside the parechovirus capsid is eight-
nucleotide long, resolved in the reconstruction of PeV-A3 in
complex with antibody fragments [22]. The stretch of ssRNA
is anchored to the capsid via stacking interactions between a
purine base and the side chain of Trp24 from VP3 (numbering
for PeV-A3 A308/99) (figure 2d ). Additional interactions of
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viral RNA with residues from VP1 and VP3, many of which
are aromatic or positively charged, stabilize the RNA-capsid
network at the inner surface of the viral capsid. Electron den-
sity attributed to viral RNA in cryo-EM structure of PeV-B1
(EMD-6394) superimpose with good agreement on the mod-
elled RNA stretches of PeV-A3 (PDB ID: 6GV4), along with
Trp15 at the N-terminus of VP3 in PeV-B structure aligning
with VP3 Trp24 in PeV-A3 [21,22]. In enteroviruses, there is
no conserved Trp at the position corresponding to the Trp24
in PeV-A3 VP3. Instead, structures of many enteroviruses
show from one to few nucleotides (or bases only) interacting
with the Trp38 side chain from the structural protein VP2
close to the twofold symmetry axes [43,48–50]. Structural com-
parison between parechovirus and enterovirus capsids reveals
that the site below the fivefold vertices where ordered ssRNA
resides in parechoviruses is largely occupied by VP4 in enter-
oviruses (figure 2e). This may also imply the differences in the
process of initial interactions between the capsid protomers
and the viral ssRNA as well as in subsequent steps of virus
assembly. The N-termini of capsid proteins VP1, VP2 (VP0)
and sometimes VP3 (for example in Aichi virus), which are
located in the virion interior, are often disordered and not
seen in high-resolution structures of many picornaviruses
[43,44,51]. Nevertheless, the RNA affinity purification and
peptide mass fingerprinting (RCAP) experiments on PeV-A1
indicate that these disordered N-termini of capsid proteins
can bind viral ssRNA in the assembled virion (VP0, VP1 and
VP3) and as recombinantly expressed proteins (VP0 and
VP1) [52].

Consistent with the structural data discussed above,
packaging signals were found throughout the parechovirus
genomic ssRNA [31]. RNA-based systematic evolution of
ligands by exponential enrichment (RNA SELEX) along with
bioinformatics analysis revealed multiple regions, termed
packaging signals, dispersed throughout the PeV-A1 RNA
genome. ssRNA sequences corresponding to these packaging
signals can fold into stem-loop structures, all presenting aGxU
motif in their loop essential for interactionwith the capsid pro-
teins. Virus assembly mediated by multiple packaging signals
implies sequence-specific binding of RNA to capsid proteins
promoting protein–protein interactions needed to build the
capsid [53]. Recently, similar experiments revealed the exist-
ence of packaging signals also in enteroviruses, but the
capsid-ssRNA contacts occur at VP2 Trp38 rather than at
VP3 Trp24 [32].
4. Parechoviral non-structural proteins
4.1. 2A proteins
In terms of functions, the picornavirus 2A proteins are themost
diverse proteins encoded by picornaviruses and can fall into
one of at least five categories, (i) proteases, (ii) H-NC box pro-
teins, (iii) short peptides mediating ‘self-cleavage’, (iv) unique
2A protein from hepatitis A virus with no functional motifs
recognized so far and (v) unique 2A protein from cardioviruses
possessing three functional motifs [54]. Many picornaviruses
(e.g. enteroviruses) have 2Apro protease that cleaves viral poly-
protein betweenVP1 and 2A [55] and plays a role in shut down
of host protein synthesis by cleaving several cellular proteins
including eIF4G [56–58]. The 2AH-NC proteins encoded by all
parechoviruses and members of some other picornavirus
genera including Kobuvirus, Avisivirus, Gallivirus, Avihepato-
virus and Passerivirus have a conserved H-NC box and
belong to the NlpC/P60 superfamily of proteins [54]. Proteins
of NlpC/P60 superfamily are widely found across all domains
of life (eukaryotes, bacteria and archaea) [59]. There are no
structural data on picornaviral 2AH-NC proteins, but there
are structures available for other H-NC box proteins. We ident-
ified human phospholipase A and acyltransferase 3 (PLAAT3)
(UniprotKB P53816), a member of NlpC/P60 superfamily, as
the closest homologue to parechoviral 2AH-NC in a BLAST
search against wwPDB database (accessed on 17 August
2020) [28]. Then, we compared sequences of PLAAT3 and
2AH-NC from isolates belonging to different parechovirus
species (table 1). This analysis led us to conclude that parecho-
virus 2AH-NC proteins are relatively conserved as non-human
parechovirus 2AH-NC proteins are 38–47% identical to human
parechovirus 2AH-NC, and they all are 16–22% identical
to PLAAT3 (table 2). PLAAT3 belongs to a group of phos-
pholipid-metabolizing enzymes together with PLAAT1
(UniprotKB Q9HDD0), PLAAT2 (UniprotKB Q9NWW9) and
PLAAT4 (UniprotKB Q9UL19) [60,61]. The X-ray structure of
PLAAT3 presents the active site of H-NC box proteins with
strictly conserved catalytic Cys113 and His23 serving as a gen-
eral base (PDB ID: 4DOT) [12]. The third amino acid stabilizing
the position of His23 in the catalytic reaction is His35, which is
not strictly conserved and replaced by Asn in PLAAT1 [12].
Parechovirus 2AH-NC proteins contain conserved Cys and His
corresponding to the positions of catalytic Cys113 and His23
in PLAAT3, respectively, making the H-NC box (figure 3a).
The parechovirus 2AH-NC proteins have either His, Asn or
Gln in the position corresponding to the PLAAT3 His35
(figure 3a). The enzymatic activity of parechovirus 2AH-NC,
however, remains to be tested. Interestingly, during enterovirus
infection, the enzymatic function of a host phospholipase
PLAAT3 is implicated in viral genome release into the cyto-
plasm [63]. The parechovirus 2AH-NC is a non-structural
protein and thus its involvement in the viral RNA exit into
the cytoplasm is questionable, unless a few copies of this
protein are present in the virion. The parechovirus 2AH-NC

could possibly work at later steps in the viral infectious cycle,
in line with data showing that human parechovirus 2AH-NC

protein binds to RNA with preferred specificity to human
parechovirus 30-UTR [64].

In the non-human parechoviruses, the 2AH-NC protein is
preceded in polyprotein sequence by one or more unrelated
2ANPGP proteins, and in these cases, 2Aproteins are designated
as 2A1, 2A2 and so forth (figure 1). The C-termini of parecho-
virus 2ANPGP proteins share the DxExNPGP ‘self-cleavage’
motif similar to cardio-, erbo-, tescho- and aphthovirus
2ANPGP peptides [2] (figure 3b). The DxExNPGP motif med-
iates so-called ‘ribosome skipping’, when the peptide bond
between theDxExNPG sequence and the first Pro of the follow-
ing protein is not formed during polyprotein translation [65].
Although the ‘ribosome skipping’ efficiencies of 2ANPGP

sequences from different viruses vary, this allows rapid release
of P1–2A part from the rest of the polyprotein (P2 and P3) [66].
Such self-cleavage motifs, first identified in picornaviruses, are
also found in other RNA viruses [67,68].

4.2. 2B proteins
The RNA replication of positive-sense ssRNA viruses occurs
in viral-induced compartmentalized membranes, called
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replication organelles, where viral replication complexes
assemble [69]. It has been shown in a well-established entero-
virus system that, upon infection, intracellular membrane
rearrangements are triggered by non-structural viral proteins
2B, 2C, their precursor 2BC and 3Awhich were shown to loca-
lize in intracellular membranes [70–73]. Similarly, 2B, 2C and
3A from human parechoviruses were found in cellular mem-
branes [74]. Enterovirus infection leads to disassembly of the
Golgi complex concurrently with the assembly of replication
organelles [75,76]. During enterovirus infection massive
rearrangements of intracellular membranes occur [75,77,78].
By contrast, parechovirus infection leads to relatively minor
changes in the intracellular membrane architecture [79]. This
mild rearrangement of intracellular membranes is possibly
reflected in the parechovirus insensitivity to itraconazole and
naturally occurring compound OSW-1, both blocking entero-
virus infection via oxysterol-binding protein 1 (UniprotKB
P22059) [80,81]. Oxysterol-binding protein 1 is a lipid transpor-
ter which shuttles sterols from the endoplasmic reticulum (ER)
to the Golgi complex in exchange to phosphatidylinositol 4-
phosphate (PI4P) [82]. The lipid composition of virus induced
organelles differs from the intracellular membranes as replica-
tion organelles are enriched in PI4P [76,83]. PI4P, a ubiquitous
small lipid with regulatory functions, produced by cellular
phosphatidylinositol 4-kinase beta (PI4Kbeta, UniprotKB
Q9UBF8) is found in membrane compartments of all eukary-
otic cells [84]. In uninfected cells, the PI4Kbeta is associated
with the Golgi complex [85].
To better understand parechoviral 2B protein functions, we
analysed 2B amino acid sequence conservation among selected
parechovirus and poliovirus isolates (table 1). The parechovirus
2B proteins comprising 122–142 amino acids are longer than
their counterparts in enteroviruses which are only 95–99
amino acids long. In pairwise amino acid sequence alignment,
the non-human parechovirus 2B proteins show 35–51%
sequence identity with PeV-A1 2B. When all parechovirus
species are similarly compared to prototype enterovirus polio-
virus 2B amino acid sequence, the parechovirus 2B proteins
show low sequence identity (10–16%) (table 2). It has been
shown that enterovirus 2B proteins have two transmembrane
helices which insert into the membranes and increase their per-
meability, a feature intrinsic to viroporins [86–88]. Using an
algorithm for transmembrane region predictions in parecho-
viral 2B proteins, we identified an extended transmembrane
region sufficient to form two transmembrane helices (figure 3c).
The predicted transmembrane helices in the case of PeV-A1 2B
protein (figure 3c) likely correspond to the hydrophobic regions
HR1 and HR2 in 2B from enteroviruses (poliovirus, CVB3 and
EV-A71) indicating that parechovirus 2B proteins may act as
viroporins, too [89]. In linewith this, the individually expressed
PeV-A1 2B protein was found to localize to the ER [74].

4.3. 2C proteins
The non-structural protein 2C is one of the most conserved
proteins within the Picornaviridae family [90]. These proteins
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bear an ATPase domain exhibiting features similar to helicase
superfamily 3 proteins and are involved in many vital pro-
cesses during the viral life cycle [91,92]. Our analysis shows
that 2C proteins in non-human parechoviruses are 41–51%
identical to PeV-A1 2C, and parechovirus 2C proteins (329–
330 amino acids long) are 23–25% identical to poliovirus 2C
(table 2). In the case of cells infected with PeV-A1, the 2C
protein is found in the trans-Golgi and altered ER membranes
[79]. Similarly to enterovirus 2C proteins, which comprise
322–330 amino acids and localize in Golgi-derived mem-
branes, PeV-A1 2C possesses enzymatic ATPase activity and
additionally AMP kinase activity [77,93–95]. Unlike entero-
virus 2C, the parechovirus 2C protein is resistant to
guanidine hydrochloride, as parechovirus infection is not
affected by this compound [35]. X-ray data are available for
a soluble domain of 2C from poliovirus and EV-A71
[96,97]. Amino acid sequence analysis of parechovirus 2C
shows a similar domain organization to that of 2C proteins
in enteroviruses (figure 3d ). The exception is a missing zinc
finger domain in parechovirus 2C. The ATPase domain
from both poliovirus and EV-A71 2C proteins includes cano-
nical Walker motifs A and B as well as helicase superfamily
3-specific motif C. Motif C is followed by an arginine finger
(R-finger) [96,97]. Walker motifs A, B and motif C are respon-
sible for nucleotide binding and the R-finger is involved in
modulating NTP binding or hydrolysis [91]. The zinc finger
composed of 3 or 4 Cys residues coordinating a zinc atom
is essential for correct overall folding of the enteroviral 2C
protein [97]. The pocket-binding domain located at the very
end of the 2C is thought to be important for protein oligomer-
ization [97]. Superfamily 3 helicases function as oligomers,
for example as hexamers or double hexamers [91,98]. Dis-
rupting self-oligomerization of 2C abolishes ATPase activity
[97]. Modelling has shown that in poliovirus 2C, as in numer-
ous other AAA+ATPases, the neighbouring protomer
contributes the R-finger to the active site, explaining why
2C oligomerization is key for ATPase activity [96,98].

Notably, the parechoviral 2C proteins contribute to the
severity of the symptoms of the viral infection, as shown for
PeV-A3. PeV-A3 variants carrying changes from polar to
basic amino acids at positions 317 and 324 in the C-terminus
of 2C are more frequently associated with severe symptoms
[15]. The mechanism of action related to this phenomenon is
not clear yet, though these changes are located in the pocket-
binding domain of 2C and thus might contribute to protein
oligomerization and in turn to its activity (figure 3d).

4.4. 3A proteins
Our sequence analysis shows that parechovirus 3A proteins
are significantly longer (117–130 amino acids) than their
enterovirus counterparts (77–89 amino acids). In addition,
the 3A proteins from non-human parechoviruses have rela-
tively low (16–26%) sequence identity to 3A from PeV-A1
in pairwise amino acid sequence comparison. Even lower
(10–12%) identity is detected between amino acid sequences
of 3A proteins if all parechoviruses are compared to polio-
virus (table 2). It has been shown that individually
expressed 3A proteins from PeV-A1 co-localize with Golgi
markers without causing large membrane alterations [74].
In addition, mammalian two-hybrid assay showed that 3A
from PeV-A1 binds to a Golgi resident protein GCP60 (Uni-
protKB Q9H3P7) [99]. This is similar to enterovirus 3A
proteins which were shown to localize in intracellular mem-
branes and to interact with various cellular factors, including
GCP60, leading to inhibition of the ER-to-Golgi vesicle trans-
port and disassembly of the Golgi complex [99,100]. In
uninfected cells GCP60, a non-integral membrane protein,
resides in the Golgi apparatus and its association with the
membranes is tightly controlled by the Golgi transmembrane
protein Golgin subfamily B member 1 (UniprotKB Q14789)
[101]. The important function of Golgi resident protein
GCP60 in the cells is the recruitment of PI4Kbeta to the Golgi
membranes, and stimulation of PI4P production [102]. As we
discussed in the 2B protein section above, the picornaviral
replication sites on the membranes are enriched in PI4P.

There are no structural data on parechovirus 3A protein,
but structural studies done with other picornaviral 3A shed
light on how PI4Kbeta is recruited to the viral replication
organelles [103,104]. Atomic structures and computational
simulations indicate that enteroviral 3A is anchored to the
membrane via a C-terminal alpha-helix whereas the cyto-
plasmic domain wraps around the GCP60 GOLD domain
[104]. This way the 3A protein recruits Golgi resident protein
GCP60 to the site of virus replication, which helps then to
recruit other cellular factors required for viral replication
machinery. Although showing limited identity to 3A
sequence from enteroviruses, parechoviral 3A protein may
recruit GCP60 via a similar mechanism through interaction
with the GOLD domain.

4.5. 3AB and 3B proteins
Similarly to 3A alone, individually expressed human parecho-
virus 3AB localizes in the Golgi membranes [74]. As shown for
enteroviruses, in 3AB, the 3B (also known as VPg) is respon-
sible for interaction with the 3Dpol polymerase [105]. To
serve as a primer for 3Dpol, however, VPg has to be released
from 3AB, which is done by 3CDpro, precursor for both viral
protease 3Cpro and polymerase 3Dpol [106,107]. VPg is a pep-
tide of 26–33 amino acids in parechoviruses (for comparison,
in poliovirus VPg is 22 amino acids long). The N-terminal
part, including Tyr3, is strictly conserved in all parechovirus
as well as other picornavirus VPg peptides. As shown for
enteroviruses, the side chain of Tyr3 in VPg is di-uridylylated
by the viral polymerase 3Dpol and VPg remains linked to the
50-end of the ssRNA genome in the virion [38,108,109]. A
two-moleculemodel for 3Dpol during picornavirus VPg uridy-
lylation was suggested, based on structural as well as
biochemical studies of enteroviruses and foot-and-mouth dis-
ease virus (FMDV) [108,110–112]. According to this
mechanism, one molecule of 3Dpol binds VPg via a noncataly-
tic site and presents Tyr at position 3 for the uridylylation by
another 3Dpol molecule [111,112]. There are no similar studies
reported for the parechovirus system so far.

4.6. 3Cpro and 3CDpro proteins
Parechoviruses possess only one protease 3Cpro. Parechovirus
3Cpro is a chymotrypsin-like cysteine protease, 194–198
amino acids in length, classified into the PA(C) clan of
peptidases together with proteases from other RNA viruses
including 2Apro and 3Cpro from picornaviruses [113]. The
parechovirus 3Cpro presumably processes all the junctions
between intermediate and mature peptides in the virus
polyprotein apart from ‘self-cleaved’ 2ANPGP sites. Our
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analysis shows that 3Cpro proteins from non-human parecho-
virus species have 32–51% sequence identity to PeV-A1 3Cpro,
while 3Cpro from different parechovirus species has just
17–23% sequence identity to poliovirus 3Cpro (table 2). To
date, there is no experimentally solved three-dimensional
structure of parechovirus 3Cpro although there are structures
from a number of enterovirus 3Cpro proteins. We used hom-
ology-based modelling to predict three-dimensional structure
of PeV-A1 3Cpro (figure 4a). As mentioned above, the 3Cpro

proteins from picornaviruses share a two β-barrel fold charac-
teristic for chymotrypsin (a serine protease secreted by a
pancreas as proenzyme) [116]. The active site of such pro-
teases consists of His, Asp (in parechoviruses) or Glu (in
enteroviruses), and Cys catalytic triad (figure 4a). The 3Cpro

uses the active site Cys as a nucleophile to break the peptide
bond in the polyprotein. The imidazole ring of the His works
as a general base, and Asp or Glu is important to keep the
imidazole ring in the proper position for interaction with
the catalytic Cys [116]. Comparison of cleavage site sequences
in PeV-A1 polyprotein reveals 3Cpro preference for Gln, Glu
or Asn in P1 position, and Gly or Ala in P10 position
(figure 4b). This implies relatively broad and diverse speci-
ficity of parechovirus 3Cpro in contrast with poliovirus
3Cpro which cleaves preferentially Gln–Gly bonds [117]. In
addition to the active site, picornavirus 3Cpro has an RNA-
binding site located on the opposite side of the protein mol-
ecule [118]. Importantly, picornavirus 3CDpro exhibits
protease activity and is known to specifically bind viral
RNA [119]. The 3Dpol domain within the 3CD precursor
modulates the protease specificity and binding to RNA
sequences [120,121].

Structure prediction algorithms suggest that the PeV-A1
3Cpro polypeptide adopts the enterovirus 3Cpro structure
fold (figure 4a). Interestingly, the predicted model features
three extended loops compared to poliovirus 3Cpro. Multiple
sequence alignment of prototypic parechovirus 3Cpro pro-
teins suggests that these loops are characteristic for all
parechovirus species (figure 4c). The loop between β3 and
β4 strands is adjacent to the His41 in the active site, the
loop between β8 and β9 strands is spatially close to the
active site, and the loop between β10 and β11 strands is
part of a putative RNA-binding domain [118]. Possibly,
these structural differences between enterovirus and parecho-
virus 3Cpro proteins contribute to peptide substrate and
RNA-binding specificity.

4.7. 3Dpol proteins
3Dpol protein is an RNA-dependent RNA polymerase (RdRP)
that replicates genomic viral RNAwithout a DNA intermedi-
ate. Parechovirus 3Dpol polymerase is 467–472 amino acids
long and is located at the very end of the full-length viral
polyprotein (figure 1). Our amino acid sequence comparisons
between 3Dpol proteins from non-human parechoviruses
show 37–50% identity to that of PeV-A1. In comparison,
amino acid sequences from all parechovirus 3Dpol proteins
have 24–30% identity to poliovirus 3Dpol (table 2). To date,
there are X-ray or cryo-EM three-dimensional structures of
RdRPs available for a plethora of positive-strand RNA
viruses, but not parechoviruses [122–124]. The structural
data available for positive-strand RNA virus RdRPs show a
high level of conservation. All DNA and RNA polymerases,
including viral RdRPs, possess canonical human right-hand
architecture with palm, finger and thumb domains originally
described in the structure of the DNA polymerase I Klenow
fragment [125,126] (figure 5a). A unique feature of the
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RdRPs is the finger domain loops, named fingertips, which
interconnect finger and thumb domains, thereby creating a
‘closed-hand’ architecture [123,124,129]. The ‘closed-hand’
architecture is not seen in other than RdRP type of poly-
merases [123,124,129]. The most conserved palm domain
accommodates the active site of the polymerase. The finger
and thumb domains interact with the template RNA
[122,124,130]. The RdRP is a dynamic structure, the palm
domain undergoes conformational changes upon NTP bind-
ing and the thumb domain accommodates movements
allowing translocation of the template RNA [131]. Poly-
merases use a two-metal catalytic mechanism, in which two
magnesium ions are coordinated by two aspartic acid resi-
dues located in the palm domain, the priming nucleotide 30

hydroxyl group and the NTP triphosphate [132]. The active
site closure mechanism used by the RdRP from (+)ssRNA
viruses differs from (−)ssRNA viruses and is related to the
high RNA replication rate and low fidelity, meaning that
picornavirus polymerases introduce a high number of
errors during replication (in the range of 10−4 per nucleotide
copied) [133,134]. Low replicative fidelity leads to a popu-
lation of virus variants known as quasispecies, which gives
the flexibility to adapt to the changing environment [135].

We performed three-dimensional structure prediction,
showing that the amino acid sequence of PeV-A1 3Dpol

likely folds into the characteristic ‘closed-hand’ architecture
found in all RdRPs (figure 5a). In comparison with the well-
characterized poliovirus RdRP, human parechovirus 3Dpol

potentially interacts with template and product RNAs through
different mechanisms. For example in poliovirus, the binding
pocket for +2 nucleotide base of template RNA is formed by
Pro20 and Lys24 which correspond to Asn15 and Gln19 in
human parechoviruses, respectively (figure 5b). Moreover,
we observed significant variation in these residues when
we compared 3Dpol sequences from different parechovirus
species. In non-human parechovirus 3Dpol sequences the
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binding residues for +2 nucleotide base of template RNA is
Pro15, which aligns well with poliovirus Pro20 but differs
from Asn15 in PeV-A1. In regard to the second residue in
the RNA template binding pocket corresponding to poliovirus
Lys24, there is much more variation in non-human parecho-
virus 3Dpol sequences (Lys19, Gln19, Ala19 or Ser19). In
addition, all parechovirus RdRPs have Glu426 (PeV-A1 num-
bering) to interact with the +3 nucleotide 20OH of the product
RNA, while in poliovirus 3Dpol this position corresponds to
Leu420, making a hydrophobic contact with the RNA ribose
cycle (figure 5c) [126]. Altogether human parechovirus
RdRPs tend to make more H-bonds and potentially bind
RNA with higher affinity. Apart from the conserved motifs,
RdRPs within the human parechovirus isolates may have con-
siderable variations in amino acid residues in certain
positions, mostly on the protein surface (figure 5d ). Further-
more, multiple sequence alignments of sequence motifs A–G
[128] in parechovirus RdRP with homologues from other
picornaviruses often reveal significant sequence variations
(figure 5e).
5. Perspectives
RNA viruses are present in great numbers and diversity in a
wide range of hosts, including vertebrates and invertebrates.
RNA viruses have a significant impact not only on human
health but also on agricultural industry, and they often
carry a zoonotic potential. Our knowledge on RNA viruses
is still growing as seen, for example, by a large number of
new genera recently defined in the Picornaviridae. Many
picornaviruses including parechoviruses were identified in
large metagenomics screens of diverse host species
[6,136,137]. In this review, we combined data on parecho-
viruses available through scientific reports and public
databases, such as GenBank and wwPDB. Detailed structural
information available on parechovirus virions show promi-
nent differences with enteroviruses, the best-studied group
of picornaviruses. The data on parechoviral non-structural
proteins is mostly limited to nucleotide or amino acid
sequences. The exception is PeV-A1, for which non-structural
protein localization and some functional studies have been
performed. Here, we show that in pairwise alignments to
PeV-A1 proteins parechovirus 2C is the most conserved
protein within Parechovirus genus, followed by 3Dpol, 2B,
3Cpro and 2AH-NC proteins (table 2). The parechoviral 3A is
least conserved among non-structural proteins (table 2).
When amino acid sequences of parechoviruses were com-
pared to the corresponding sequences of poliovirus, the
highest conservation was observed with 3Dpol, 2C and
3Cpro (table 2). Proteins 2B and 3A show limited conservation
to corresponding poliovirus amino acid sequences (table 2).
The parechovirus 2AH-NC protein has homologues in mem-
bers of numerous Picornaviridae genera but not in isolates
from the Enterovirus genus. We identified human phospho-
lipase PLAAT3, an H-NC protein, as the closest protein to
parechoviral 2AH-NC for which a three-dimensional structure
has been published.

Virus proteins critical for the virus infectious cycle can be
used as drug targets in the fight against the diseases caused
by these viruses. Nowadays, information about the three-
dimensional structure of the target proteins, in addition to
the knowledge of their functions, is extensively used in the
identification and optimization of candidate drug molecules.
Structure-based drug design became tightly integrated into
the therapeutic drug development platforms since the end
of the last century when X-ray crystallography, the main
structural method, has been established and led to the
accumulation of structural data on various biological mol-
ecules [138]. The structure-based approach has been
successfully used to develop antivirals against important
pathogens such as HIV and influenza virus, driving to
licensed drugs against HIV-1 protease (nelfinavir) and
against influenza neuraminidase (zanamivir) [139,140].
Regarding antivirals against picornaviruses, to date there
are no FDA-approved drugs to treat picornavirus infections
despite tremendous efforts exerted by academia and the
pharmaceutical industry. These efforts, however, helped to
identify a number of molecules that block picornavirus
(specifically enterovirus) replication [141]. Some of the
picornavirus replication inhibitors were evaluated in clinical
trials, among which also capsid binders, such as pleconaril,
and inhibitors of viral non-structural proteins acting on pro-
tease (rupintrivir and AG7404), polymerase (ribavirin), 2C
(fluoxetine), as well as IRES-dependent translation (amanta-
dine) [142]. In parallel to de novo drug development, drug
repurposing has been widely adopted for finding potential
FDA-approved drugs to treat other medical conditions.
For example nitazoxanide, a drug licensed as antiparasitic
therapy, shows broad-spectrum antiviral activity and has
been repurposed for influenza treatment [143]. Furthermore,
a clinical trial to evaluate the efficacy and safety of nitazoxa-
nide in the treatment of colds caused by the enterovirus and
rhinovirus infections has been recently completed, but results
have not yet been published (NCT03605862). Another
example is the FDA-approved anti-fungal drug itraconazole,
which was also found to inhibit enterovirus, but not PeV-A1,
infection [80]. Mutations that confer resistance to itraconazole
map to 3A protein involved in PI4Kbeta recruitment [144].

This review highlights that potential drug targets in
parechoviruses show considerable dissimilarity with their
homologues from well-studied picornavirus genera including
entero-, aphtho- and cardioviruses. This divergence in virus-
encoded proteins translates into parechovirus insensitivity
to known inhibitors of picornavirus infectious cycle, like
pleconaril, itraconazole and guanidine hydrochloride. While
structural data on parechovirus capsid proteins provides
remarkable insight into virus assembly and neutralization
by antibodies, the non-structural proteins remain to be
studied in more detail.
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