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Abstract 18 

In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting 19 

evidence indicate that the climatic impacts of forest loss can also vary considerably, depending on 20 

specific features of the affected areas. The size of the deforested patches, for instance, was shown 21 

to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different 22 

types of land use and management strategies on the magnitude of local climatic changes remains 23 

uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements 24 

on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in 25 

land-atmosphere coupling are induced not only by deforestation size, but also by land use type and 26 

management patterns inside the deforested areas. We provide evidence that, in comparison with 27 

rural settlements, deforestation caused by large-scale commodity agriculture is more likely to 28 

reduce convective rainfall and increase land surface temperature. We demonstrate that these 29 

differences are mainly caused by a more intensive management of the land, resulting in 30 

significantly lower vegetation cover throughout the year, reducing latent heat flux. Our findings 31 

indicate an urgent need for alternative agricultural practices, as well as forest restoration, for 32 

maintaining ecosystem processes and mitigating change in the local climates across the Amazon 33 

basin. 34 
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Significance Statement 36 

The southern Amazon is one of the fastest changing places on Earth. Deforestation is giving place 37 

to a dynamic and diverse landscape, comprising small-scale farmers and large-scale commercial 38 

agriculture with differing land uses. Understanding how these different land uses affect ecosystems 39 

and local climates is essential for promoting strategies to mitigate environmental changes. Here, 40 

we show that large-scale commercial agriculture leads to a higher increase in surface temperature, 41 

in comparison with small scale farms. We also found evidence that changes in land surface 42 

attributes over large commercial farms lead to a more prominent reduction in rainfall volumes. Our 43 

results provide compelling arguments indicating that changes in farming practices are needed to 44 

guaranty a sustainable future in the Amazon region. 45 

 46 

1. Introduction 47 

During the past 50 years, approximately 20% of the Amazon forest has been lost to deforestation 48 

(1, 2). These changes in the land surface have affected the functioning of ecosystems and the 49 

climate in ways we are only starting to understand. Deforestation size, for instance, is a potential 50 

factor defining the magnitude and characteristics of changes in local climate associated with forest 51 

loss (3, 4). There is also evidence that the different land uses that follow deforestation can regulate 52 

the magnitude of changes in surface energy balance and water cycle (5). Historically, there has 53 

been large variation in the characteristics and causes of deforestation (1, 6–9). In the area known 54 

as the “arc of deforestation”, two major processes have contributed to forest loss: government 55 

supported rural settlements and expansion of market-focused large-scale agriculture (hereinafter 56 

referred to as “commodity agriculture”) (10, 11). Deforestation caused by these two types of 57 

farming systems have distinct characteristics and each can have several variants. 58 

Rural settlements are generally associated with government colonization projects, migratory flow 59 

incentives, and the construction of new roads (7). In areas dominated by rural settlements, small 60 

properties with plots ranging from 25 ha to 100 ha are predominant (8, 9, 12). However, medium-61 

sized properties ranging from 250 ha to 1000 ha, and farms larger than 1000 ha may also occur. 62 

Activities inside these areas are characterized by livestock production (extensive pastures), small 63 

scale crop production and family farming (13). The establishment of small farms along main 64 

highways and secondary roads results in the well-known “fishbone” deforestation pattern. 65 

Forest areas taken by large-scale commodity agriculture represent a more recent stage of 66 

occupation, usually associated with spontaneous and economical migration but also to changes in 67 

land use policies and market conditions (14). Agricultural activities aimed at commodity crop 68 

plantation are in general productive and often technologically advanced. The most common 69 
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commodity crops in the Amazon region are soybean, maize, sorghum, and cotton. Nonetheless, 70 

forests are typically not converted directly into croplands, with pastures often used as a transitory 71 

land use. Permanent mid- to large-scale cattle-ranching also occur, although many of these areas 72 

are being rapidly converted into croplands (6, 14–16). Farm sizes can reach several thousand 73 

hectares. Properties are, therefore, bigger and more isolated, in comparison with rural settlements 74 

(13). 75 

Given the different characteristics of commodity agriculture and rural settlements, the spatio-76 

temporal patterns of land cover biophysical properties can also differ considerably. In general, 77 

commodity crops cultivation involves an intensive use of the land, sometimes with two or more 78 

harvests per year (17). Hence, rapid changes in the vegetation cover, albedo, and 79 

evapotranspiration can occur (5, 18). On the other hand, in areas where small-scale pastures and 80 

agriculture are prevalent, the biophysical properties of the land surface are expected to vary less, 81 

given the less intensive use of the land (e.g. associated with family farming and agroforestry). 82 

Furthermore, modelling studies suggest that the type of vegetation involved in land cover 83 

conversions is important in determining the sign of the land change impacts (19). However, 84 

empirical studies are crucially needed to better understand how different land uses across the 85 

Amazon region affect the local and regional climate. 86 

Tropical deforestation was shown to have deep impacts on environmental processes (1, 20–22), to 87 

amplify diurnal temperature variations (1.95 ± 0.08°C) and increase air temperature (~1°C) (23). 88 

The causes of increase in temperature are dominated by non-radiative mechanisms, in particular a 89 

decrease in latent heat flux (24). The cooling effects of albedo increase due to deforestation are in 90 

most cases outweighed by the warming effects of decreasing evapotranspiration, leading to net 91 

warming (23–25). 92 

The impacts of Amazon deforestation on rainfall patterns are not yet fully understood (4). In the 93 

initial phases of deforestation, vegetation loss was shown to increase regional cloudiness and 94 

precipitation (3). In comparison with deforested areas, the greater humidity over forests leads to 95 

more convective available potential energy, which makes the atmospheric boundary layer more 96 

unstable (26). Conversely, small deforestation patches showed more active shallow convection, 97 

explaining the higher frequency of shallow clouds over deforested areas (26). However, it is 98 

unclear how these mechanisms change as deforested areas increase and land cover becomes 99 

more uniform. One hypothesis is that convective lifting mechanisms will lose force, and shallow 100 

clouds over deforested areas will no longer be favored. Modelling studies indicate that this shift is 101 

already happening in some parts of the Amazon, where deforestation has reached a point in which 102 

thermally dominated regime has declined, leading to a more dynamically driven hydroclimatic 103 

regime (27). A dynamically driven regime becomes dominant when differences in surface 104 
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roughness between forest and forest clearings start to play a larger role in the atmospheric 105 

response, in comparison to the differences in the surface energy partitioning (28). 106 

As observational and modeling studies indicate that land use and management can play an 107 

important role in the climate system, overlooking these landscape heterogeneities can hinder an 108 

adequate response to the threats posed by human activities (29). Clarifying the climatic impacts of 109 

different land uses in the Amazon is crucial to foster informed plans for sustainable land 110 

management, in particular those aiming at strategies for climate change mitigation, maintenance of 111 

ecological functioning and guarantying provision of essential ecosystem services. Here, we 112 

hypothesize that forest conversion to large-scale commodity agriculture is more detrimental to local 113 

climate than conversion to rural settlements. To test this hypothesis, we first evaluated whether or 114 

not land uses associated with commodity agriculture and rural settlements lead to quantitatively 115 

distinguishable land cover spatio-temporal patterns in regions with similar deforestation rates 116 

(1985–2018) and total deforested area in 2018. Next, we collected empirical evidence on how 117 

forest clearing associated with these two causes have affected local rainfall, surface temperature, 118 

and latent heat flux (LE). 119 

 120 

2. Results 121 

2.1. Landscape patterns across rural settlements and commodity agriculture 122 

areas 123 

Our analysis focused on four areas (~110 km × 110 km each) in the Amazon basin (Figure 1). The 124 

criteria and procedures used to select the study areas are described in section 4.1. Two areas 125 

were located in the “arc of deforestation” (marked as A and C in Figure 1). Cell A was located in 126 

the State of Rondônia, over an area dominated by a fishbone deforestation pattern, formed by 127 

small farms distributed along main highways and secondary roads. Cell C was located in the north 128 

of Mato Grosso State, over an area where large-scale commodity farms are prevalent. The mean 129 

size of consolidated area per property in Cell A was 52 ha, while in Cell C, the mean size of 130 

consolidated area per property was 374 ha (See SI Appendix Fig. S2). In addition, two areas with 131 

similar size but not affected by deforestation were used as reference sites (marked as B and D in 132 

Figure 1).  133 

In both areas affected by land changes (Cells A and C), deforested area in the beginning of the 134 

1980’s accounted for less than 10% of the total area (Figure 1a). A step increase in forest loss 135 

occurred between 1990 and 2005, after which the total area deforested stabilized at approximately 136 

40%. Despite similar amount of total area deforested, the spatial patterns of the two regions could 137 

be distinguished visually and quantitatively (Figure 1). Until the late 1990’s, landscape in both 138 
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regions displayed similar core area (i.e. the total area of patches that have only neighboring 139 

patches from the same class). After the year 2000, the core area of forests in the area dominated 140 

by fishbone deforestation (“rural settlements”) increased at a higher rate in comparison with areas 141 

allocated for commodity agriculture. The shape complexity, expressed by the shape index (i.e. the 142 

ratio between the perimeter of the patch and the hypothetical minimum perimeter of the patch), 143 

was consistently higher (~10%) in the commodity agriculture areas in comparison to the rural 144 

settlements. 145 

Land use in rural settlement areas (Cell A) was largely dominated by pastures throughout the 146 

entire study period, with only small areas designated to croplands (<1%) (Figure 1 and SI 147 

Appendix Fig. S3). Other activities such as family farming and agroforestry, although present, are 148 

likely masked due to the small scale of these activities. Given that these land use types are not 149 

specifically accounted for in the dataset used for this analysis, they are often misclassified as 150 

pastures. In the commodity agriculture area (Cell C), a shift in land use patterns took place after 151 

the year 2000, with a steady increase in areas designated to croplands, reaching approximately 152 

25% of the entire area in 2018. The increase in croplands was accompanied by a decrease in 153 

areas destined to pastures, which decrease from 22%, in 2005, to 13%, in 2018 (Figure 1 and SI 154 

Appendix Fig. S3). 155 

 156 
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Figure 1. Geographical location of the study areas, each consisting of 1o×1o cells, where: A is 157 

dominated by rural settlements and C large scale commodity agriculture. Cell B and D were used 158 

as reference, as there has been no substantial forest loss in these areas during the study period. 159 

(a) Total forest loss, (b) mean core area of deforested areas and (c) the mean shape index of 160 

deforested areas. 161 

 162 

We further demonstrate that land cover temporal patterns differ between the two sites. Vegetation 163 

cover over deforested areas was assessed using satellite derived enhanced vegetation index 164 

(EVI). Areas of commodity agriculture had consistently and significantly (unpaired Welsch t-test, 165 

p<0.01) lower vegetation cover between May (DOY=120) and November (DOY=305) (Figure 2a). 166 

Between December and February, both areas had similar EVI values, indicating a comparable 167 

vegetation cover during this period. We also analyzed differences in the vegetation cover of 168 

dominant land use types in our study areas. In September, when vegetation cover was shown to 169 

be the lowest, croplands had approximately 20% lower EVI than pastures inside the same region 170 

(i.e. Cell C, mid- to large-scale cattle-ranching), and 30% lower than pastures located in the rural 171 

settlement area (Cell A). 172 

 173 

Figure 2. (a) Seasonal variability in vegetation cover inside deforested areas (solid lines) and in 174 

adjacent forests (dashed lines) measured using the Enhanced Vegetation Index (EVI). The 175 

adjacent forests represent intact forests located inside the same 1o×1o cell. Average values 176 

calculated using data from 2001–2018. DOY=Day of Year. Shaded areas represent mean ± 177 

standard deviation. (b) August average EVI values for dominant land use classes inside each cell. 178 

 179 

2.2. Changes in rainfall patterns 180 
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Changes in the seasonal patterns of rainfall were evaluated based on the average of two periods: 181 

from 1998 to 2005, and from 2005 to 2014 (Figure 3), thus comprising the entire time-series of the 182 

TRMM (Tropical Rainfall Measuring Mission) precipitation radar. These time intervals allowed the 183 

assessment of rainfall patterns from a period when deforestation process was only beginning, to a 184 

period when forest loss was relatively stable. The average forest cover percentage in Cells A and 185 

C, was at 83% from 1998 to 2005, and declined to 57% from 2005 to 2014. 186 

We observed decreasing rainfall rates in the commodity agriculture site (Figure 3 and Figure 4). 187 

The reduction occurred mostly during months with average monthly rainfall above 200 mm month-1 188 

(i.e. the period between October and March, hereinafter referred to as “wet season”), being 189 

particularly evident in February, March, October and November. The decrease was shown to be 190 

mainly caused by a reduction in convective rainfall, while changes in stratiform rain were less 191 

evident (Figure 3). When considering the annual mean, we observed significant differences in the 192 

mean total and convective rain (p=0.016 and 0.009, respectively, based on a Welsch t-test), while 193 

differences in the mean annual stratiform rain were not significant (p=0.279). A Mann-Kendall (M-194 

K) trend test indicated a strong and consistent decreasing trend in convective rainfall (p=0.006) 195 

during the wet season between 1998 and 2014, while the stratiform rainfall trend during the same 196 

period had a lower magnitude (p=0.012) (Figure 4). There were no significant trends in rainfall 197 

during the dry season (Apr–Sep) in the commodity agriculture site (Figure 4). 198 

In the rural settlements site, there were no clear changes in the seasonal patterns of rainfall 199 

between the two periods (Figure 3). Annual mean values were also not statistically different (based 200 

on a paired Welsch t-test). This result was confirmed by the M-K test, which did not indicate 201 

significant trends in convective or stratiform rainfall, independently of the season (Figure 4).  202 

To discard the influence of large-scale climatic signals in these results, we conducted the same 203 

analysis in two reference areas (i.e. Cell B, located between cells A and C in the northwest part of 204 

Mato Grosso State, and Cell D, located inside the Xingu National Park - both areas showed no 205 

forest loss during the same period of time) (Figure 1; Supplementary figures S1, S4 and S5). The 206 

results confirmed that significant trends were not observed in the regions unaffected by 207 

deforestation. 208 
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 209 

Figure 3. Mean seasonal patterns of rainfall between 1998–2005 (blue lines – average forest 210 

cover = 83%) and 2005-2014 (red lines – average forest cover = 57%).  211 
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 212 

Figure 4. Rainfall time-series trends from 1998 to 2014. The wet period (blue) is represented by 213 

average rainfall values from October to March, while the dry period (red) is represented by the 214 

period between April and September. We define wet period as the period when average monthly 215 

rainfall in our study areas were above 200 mm month-1. 216 

 217 

2.3. Changes in land surface temperature and latent heat flux 218 

Changes in land surface temperature (LST), latent heat flux (LE) and evapotranspiration (ET) 219 

caused by forest loss were assessed using a space-for-time substitution approach (30, 31). The 220 
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basic assumption in the space-for-time substitution is that spatial and temporal variation are 221 

equivalent (30). Hence, observations over deforested areas were compared with those obtained 222 

over adjacent forests. We observed that both sites showed significant differences in LST between 223 

forested and deforested areas (p<0.01) (Figure 5). These changes were present during all seasons 224 

of the year, although differences in the dry season had higher magnitude. Forest loss associated 225 

with rural settlements caused an average LST increase of 1.05 oC during the wet seasons and 226 

1.25 oC during the dry seasons (Figure 5a). The maximum average warming in rural settlement 227 

areas was observed in August (1.85 oC). In areas of commodity agriculture, warmings of 1.57 oC 228 

and 2.11 oC were observed in the wet and dry seasons, respectively. The maximum difference was 229 

also observed in August (3.06 oC). When untangling these results by land use type, we observed 230 

that, in August, croplands were on average approximately 1 oC warmer than pastures (Figure 5). 231 

Both pastures in Cell A and Cell C showed similar mean temperature for the same period (33.8  oC 232 

and 33.2 oC, respectively). 233 

 234 

 235 

Figure 5. Mean seasonal patterns of land surface temperature in (a) rural settlements and (b) 236 

commodity agriculture areas, with boxplots showing results for dominant land use classes within 237 

the region. Average values calculated using data from 2001–2018. Shaded areas represent mean 238 

± standard deviation.   239 

 240 

Changes in LE caused by forest loss were evident in both sites (Figure 6). The magnitude and 241 

seasonal patterns of the changes were, however, more pronounced in deforested areas caused by 242 

commodity agriculture. In rural settlement areas, the decline of LE (in relation to adjacent forests) 243 

was observed from June (DOY≈150) to the end of October (DOY≈300). In commodity agriculture 244 
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areas, the decline occurred from May (DOY≈125) to mid-November (DOY≈325) i.e. approximately 245 

50 days longer than the rural settlements area. In both areas, the strongest reduction in LE was 246 

observed around August–September. During this period, the LE decline in commodity agriculture 247 

areas was approximately two times larger than in fishbone areas (Figure 6). During August, 248 

croplands had 39% lower LE than pastures located in the same region (Cell C) and 60% lower LE 249 

than pastures located in rural settlement areas (Cell A). 250 

Changes in ET followed the same pattern (SI Appendix Fig. S7a). In commodity agriculture areas, 251 

the lowest ET values were around 1.2 mm day-1 (compared to 3–4 mm day-1 in adjacent forests), 252 

while the minimum ET in fishbone areas reached ~2.4 mm day-1. The contribution of transpiration 253 

to total ET (T/(E + T)) was consistently lower in commodity agriculture areas, in comparison with 254 

rural settlements (Figures S7b, S7c, S7d), confirming the key role of vegetation cover on the 255 

stronger reduction of LE and ET in commodity agriculture areas. During August–September, when 256 

the strongest reduction in LE was observed, T/(E+T) was approximately 60% in commodity 257 

agriculture areas, and 75% in rural settlements (Figures S7b).  258 

Contrasting differences were also observed in the rainy season, particularly from January to May 259 

(Figure 6 and S7). During this period, rural settlement areas showed similar or higher LE and ET in 260 

comparison to adjacent forest areas. On the other hand, in commodity agriculture areas, LE and 261 

ET values were lower than in the original land cover, in particular between February and April (i.e. 262 

same period when a reduction in convective rainfall was observed). This result is again explained 263 

by a lower contribution of T to total ET, which was as low as 75% between January and May in 264 

commodity agriculture areas (in comparison to 80% in rural settlements) (Figures S7b). 265 

 266 

 267 
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Figure 6. Mean seasonal patterns of latent heat flux in (a) rural settlements and (b) commodity 268 

agriculture areas, with boxplots showing results for dominant land use classes within the region. 269 

Average values calculated using data from 2001–2018. Shaded areas represent mean ± standard 270 

deviation. 271 

 272 

3. Discussion 273 

Our results demonstrate that taking into account the complex combination of matrix shape, land 274 

use, and land management is key to understanding the climate impacts caused by deforestation in 275 

the Amazon forest. We provided evidence that regions with similar history of total forest loss can 276 

have quantitatively distinguishable spatial patterns, depending on the original causes of 277 

deforestation, leading to different climate impacts.  278 

We report a significant decline in wet season rainfall volumes in areas dominated by large scale 279 

commodity agriculture. The same decline was not observed in an area where deforestation was 280 

mainly caused by rural settlements. Although the observed association between these two 281 

deforestation types and rainfall changes cannot prove a causal link, evidence from the causality 282 

can be deduced from the underlying physics driving the rainfall formation process.  Previously 283 

published research collected evidence that changes in land‐surface properties can influence 284 

energy and moisture fluxes within the planetary boundary layer, as well as convective available 285 

potential energy, strongly affecting the development of cumulus convective rainfall (32). Modelling 286 

studies demonstrated that, as deforested areas increase and land cover becomes more uniform, 287 

convective lifting mechanisms lose force and local surface roughness start to play a larger role in 288 

the regional climate dynamics (27). The decreasing rainfall in commodity agriculture areas could 289 

then be explained by the stronger reduction in LE in comparison with rural settlements, which leads 290 

to increasing aridity and weakening of convective lifting (33). This argument is confirmed by a 291 

stronger vapor pressure deficit (VPD) increase in the region dominated by commodity agriculture, 292 

in comparison with the rural settlement area (See SI Appendix Fig. S8). Within the commodity 293 

agriculture area, VPD in croplands was on average 5% higher than in pastures (and 10% higher 294 

than in pastures located in the rural settlement region). 295 

Although the decrease in ET had a higher magnitude during the dry season, the effects of reduced 296 

ET on convective rainfall seemed more evident at the end of the rainy season (February–April). 297 

These findings are in line with previous studies indicating that ET reduction and surface warming 298 

lead to the drying of the atmospheric boundary layer, hindering cloud formation and reducing 299 

rainfall (34). Studies have also demonstrated a large influence of forest loss on the ET patterns in 300 

the Southern Amazon, reinforcing the role of forests in recycling precipitation by returning soil 301 

moisture back into the atmosphere (35). 302 
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The lower LE in commodity agriculture areas are likely explained by land management and crop 303 

phenology. Given the long growing season in Southern Amazon, crop production cycles are more 304 

complex than traditional cropping cycles found in temperate regions. In Mato Grosso State, for 305 

instance, the agricultural calendar can consist of multiple harvesting and seeding seasons (36). 306 

Soybean and maize seeding usually takes place between September and November, and 307 

harvesting between January and May. This can be followed by another crop growing season 308 

(referred as “safrinha” in Portuguese), which occurs between February and September, usually 309 

consisting of maize or cotton.  310 

The harvesting and seeding cycles typical for commodity crops lead to abrupt changes in the land 311 

surface properties, given the reduction of vegetation cover and exposure of bare land (18, 37, 38). 312 

This pattern is confirmed by the analysis of the EVI patterns over our sites. EVI is strongly related 313 

to photosynthetically active vegetation biomass (39, 40), and was shown to be efficient in 314 

monitoring agricultural production cycles (17), being a good indicator for crop mapping in Southern 315 

Amazon (36). All these combined, contribute for lower plant transpiration, reduced soil moisture, 316 

and changes in the surface energy balance. Such abrupt changes in the land surface are less 317 

likely to occur in rural settlement areas, given the different land use dynamics in these regions. 318 

Rural settlements are mostly characterized by pastures. Family farming and agroforestry also 319 

occur at smaller scales, which result in a more stable vegetation cover of the land surface, as the 320 

soil is not tilled or exposed during harvest. 321 

When deforestation occurs, several factors contribute to changing the energy balance, which may 322 

lead either to the cooling or warming of the land surface. The resulting effects are mainly driven by 323 

two competing biophysical factors, ET and albedo (41). Forests appear darker than shorter 324 

vegetation (42, 43); consequently, forest loss often increase surface albedo (i.e. lower absorption 325 

of shortwave radiation), contributing for surface cooling. However, in tropical regions, non-radiative 326 

mechanisms (i.e. ET, surface roughness) are by far the dominant processes in energy budget 327 

changes caused by deforestation, leading to net warming (19, 24, 25, 41). Our results further refine 328 

these findings, demonstrating that land use and management patterns following deforestation are 329 

also critical for defining spatio-temporal patterns of surface energy balance. Overall, this is in line 330 

with previous studies indicating that forest-to-crop transitions have a more detrimental effect on ET, 331 

LE and net surface radiation, when compared to forest-to-pasture transitions (5, 19).  332 

However, the impacts of large-scale oscillations on the local climate trends observed in our study 333 

cannot be discarded, particularly the influence of atmospheric circulation patterns on the rainfall 334 

changes. Likewise, disentangling the effects of climate variability and land cover change on 335 

regional rainfall is challenging, as climate effects can mask deforestation-induced changes to the 336 

water budget (44). To improve our understanding of the ongoing climate changes in our study 337 
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areas, we analyzed a time series of mean vertically integrated moisture divergence, which 338 

represents the horizontal rate of moisture flow (SI Appendix Fig. S9). This parameter is positive for 339 

moisture that is spreading out, and negative for the opposite, for moisture that is concentrating. 340 

Therefore, it indicates whether atmospheric motions act to decrease (for divergence) or increase 341 

(for convergence) the vertical integral of moisture, over the time period. Interestingly, our results 342 

indicate a decreasing trend of moisture divergence (increasing convergence) during the wet 343 

season, over all our study sites (SI Appendix Fig. S9). These results are in line with previous 344 

research indicating that the Amazon basin has become substantially wetter since the 1990’s, 345 

mainly due to increasing atmospheric water vapor import from the warming tropical Atlantic (45). 346 

This trend coincides with the onset of an increasing trend in tropical Atlantic sea surface 347 

temperatures (45). Thus, given the increasing moisture convergence in all study areas, our results 348 

provide evidence that the decreasing precipitation trend observed in commodity agriculture areas 349 

can be caused by local changes in land surface biophysical attributes.   350 

The spatial (fishbone) patterns of deforestation caused by rural settlements have been known for 351 

decades. The higher shape index and core area of rural settlements demonstrate a greater overall 352 

landscape complexity in areas of rural settlement (46). The higher core area in rural settlements 353 

are initially counter intuitive, given that the region is characterized by smaller rural properties. The 354 

core area is defined as all cells that have no neighbor with a different class than themselves. 355 

Hence, our result in the rural settlement area is explained by a stronger connectivity between 356 

patches, which results in larger core areas, even though these areas may comprise several 357 

different rural properties.  358 

Previous studies have gathered compelling evidence that the size of deforested areas is also 359 

important in defining the characteristics of local climatic changes. Small scale forest loss was 360 

shown to increase regional cloudiness and precipitation frequency, due to enhanced mass and 361 

energy transfers between the land and the atmosphere (3, 26). On the other hand, this thermally 362 

triggered atmospheric circulation tends to get weaker as deforested areas size increases, reducing 363 

rainfall rates (4, 27). Our results demonstrate that changes in land-atmosphere coupling are 364 

defined not only by the size of deforested areas, but are strongly dependent on land use and 365 

management patterns inside those areas. 366 

These findings reinforce the argument that the impacts of modification and management of the 367 

land merit the same level of research and policy attention given to other anthropogenic 368 

contributions to climate change (47). We suggest that practices aiming to maximize vegetation 369 

cover should be further explored to mitigate changes in climate. These include, for instance, 370 

agroforestry or perennial crops cultivation (48). Agroforestry is a particularly attractive option, as it 371 

seeks to manage forest services and agriculture at the same time, improving soil fertility, 372 
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increasing water availability, while preserving vegetation cover and microclimate. Agroforestry 373 

systems are currently a very small element of the agricultural landscape in the Amazon, often at 374 

experimental scales or as a result of internationally funded initiatives (49).  375 

Integrated crop-livestock systems are seen as a potential pathway to increase low productivity and 376 

sustainability of cattle production in the Amazon. The integrated soybean-cattle systems can have 377 

higher productivity than continuously grazed areas, and hence, increased resilience under 378 

changing climate (50). In suitable areas, integrated crop-livestock systems can be also very 379 

profitable (51). However, both intercropping and rotation systems decrease vegetation cover in 380 

comparison to cattle grazing systems. Therefore, systems that include also trees (integrated 381 

crop−livestock−forestry systems) are recommended, considering our results. 382 

On the other hand, traditional commodity agriculture in the Southern Amazon is very productive, 383 

profitable and technologically advanced. It is therefore farfetched to assume that alternative 384 

methods will replace the current system in a short-term and at large scales. However, with 385 

increasing international awareness and consumers’ preference for more sustainable products, 386 

alternative production methods will start to become more attractive. Actions led by the food 387 

industry and civil society organizations have been proven useful to guide in the direction of more 388 

sustainable practices. For instance, Brazil’s soy moratorium, signed in 2006 by major soybean 389 

traders, limited the commercialization of soy grown on lands deforested after July 2006 in the 390 

Brazilian Amazon, having a positive impact on the reduction of deforestation rates, while not 391 

affecting agricultural production (52, 53). Furthermore, there is increasing evidence that public 392 

policies, in combination with international trade treaties and protocols, have positive effects on 393 

sustainable land use and thus the climate system (29). 394 

Finally, restoration of legal forest reserves is another important pathway to mitigate changes in the 395 

regional climate. The recently created Rural Environmental Registry of private properties (CAR) will 396 

provide an unprecedented tool to monitor the compliance with the Brazilian forest code, by linking 397 

a responsible land-holder to land use on a particular farm (52, 53). This will thus allow the 398 

identification of suitable areas for forest restoration, as well as the creation of more sustainable 399 

supply chains.  400 

 401 

4. Material and methods 402 

4.1. Study areas 403 

We selected four areas of ~110 km × 110 km each (1o x 1o) (Figure 1). As our aim was to compare 404 

areas dominated by commodity agriculture and rural settlements, we carried a search for regions 405 
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having similar total deforested area throughout the study period, but distinct land use and spatial 406 

patterns. To select the suitable regions, the study areas had to meet the following criteria: 407 

 Have similar total deforested area 408 

 Have similar temporal rates of deforestation within the analyzed time-window 409 

 Be big enough to provide a representative sampling, and contain enough pixels from the 410 

remotely sensed data that were being evaluated (e.g. TRMM data at 0.25 degrees) 411 

 Be small enough to avoid confounding factors such as climate variability due to latitudinal 412 

differences or regional variability 413 

 Have very distinct land use pattern i.e. one needed to be dominated by rural settlements, 414 

and the other need to be dominated by large-scale commodity agriculture 415 

 Be far away apart to avoid spatial-autocorrelation of rainfall data.  416 

To identify the regions meeting all the above criteria, we first divided the entire Amazon basin in a 417 

1o x 1o grid. This cell size (i.e. ~110 km × 110 km) was considered consistent with the spatial 418 

resolution of all remote sensing datasets used in the study. The total deforested areas inside each 419 

cell was calculated using land cover maps from MapBiomas project (https://mapbiomas.org/en) 420 

(see section 4.2 for details). After identifying cells with similar total deforestation trajectories, we 421 

selected regions with distinct land use patterns based on: a) visual interpretation of spatial 422 

deforestation patterns; b) size of rural properties according to the CAR and c) predominance of 423 

commodity crops, as identified in by land use maps from MapBiomas project. The CAR is a 424 

mandatory and self-declaratory electronic registry for rural properties, in which owners must 425 

provide georeferenced data on the boundaries of the properties, as well as other information such 426 

as legal reserve areas, and areas deforested. 427 

We were also careful to select cells that were far away apart to avoid spatial-autocorrelation in the 428 

analysis of rainfall data. Rainfall patterns are defined not only by local land surface properties, but 429 

also by boundary conditions (e.g. synoptic conditions, atmospheric circulation). A study using more 430 

than 800 meteorological stations, showed that the correlation coefficients of rainfall occurrence 431 

measured by stations distanced by less than 100 km were mostly above 0.8, decreasing to 0.4 or 432 

less, for stations distanced by more than 500 km (54). The selected commodity agriculture and 433 

rural settlement regions are approximately 550 km apart, thus avoiding major issues with spatial-434 

autocorrelation. 435 

 436 

4.2. Land use and land cover data 437 

https://mapbiomas.org/en


17 
 

Land use and land cover data were obtained from the MapBiomas project1. We used the Collection 438 

4, released in August 2019, covering the period from 1985 to 2018. This product offers land use 439 

and land cover maps at a 30 m spatial resolution. The maps are produced annually, based on the 440 

classification of Landsat imagery mosaics. The mosaics are formed by a composition of the best 441 

quality pixels in each set of images for a certain time period. The mosaics are then used to 442 

produce a map with land cover classes (forest, agriculture, pasture, urban area, water, etc.) using 443 

random forest algorithm. All data are public and free for non-commercial use or general interest 444 

purposes. In this study, we re-classified the maps into four classes: forest, pasture, cropland, and 445 

mixed-use. These four classes accounted for more than 99% of the total area in our study sites, 446 

during the entire study period. The forest class aggregated all the natural vegetation areas that did 447 

not suffer any conversion during the study period.  448 

 449 

4.3. Landscape metrics 450 

To describe landscape patterns in the study areas affected by deforestation (marked as A and C in 451 

Figure 1), we calculated landscape metrics for forest and non-forest land cover classes using 452 

FRAGSTATS 4.2 (46). Due to redundancy of the information provided by the various landscape 453 

metrics, we used Pearson correlation test to discard highly correlated metrics (r ≥ 0.80). From the 454 

remaining eight metrics, we selected two that were less correlated with total forest loss (i.e. were 455 

more sensitive to landscape patterns/complexity and less sensitive to the class total area): mean 456 

shape index and mean core area (55). The shape index is the ratio between the perimeter of the 457 

patch and the hypothetical minimum perimeter of the patch. It equals zero if all patches have an 458 

identical shape index and increases, without limit, as the shapes of patches become more 459 

complex. The core area is defined by the cells that have only neighbouring cells from the same 460 

class, and the mean core area equals the mean of core areas of all patches belonging to a certain 461 

class (46). 462 

 463 

4.4. Enhanced vegetation index (EVI) 464 

Vegetation cover over deforested areas was assessed using satellite derived enhanced vegetation 465 

index (EVI), which is calculated based on the reflectance (ρ) of red, blue and near-infrared (NIR) 466 

(40) following equation 1: 467 

                                                        
1 "MapBiomas Project - Collection 4 of the Annual Land Use Land Cover Maps of Brazil, accessed through the link: 
https://mapbiomas.org ". MapBiomas Project is a multi-institutional initiative to generate annual land use land cover 
maps based on automatic classification processes applied to satellite images. The complete project description can be 
found at http://mapbiomas.org" 
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𝐸𝑉𝐼 = 𝐺 ×  
(𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝐶1 ×𝜌𝑅𝑒𝑑−𝐶2×𝜌𝐵𝑙𝑢𝑒+𝐿)
    (1) 468 

where ρNIR is the near infrared reflectance factor, ρRed is the red reflectance factor, ρBlue is the blue 469 

reflectance factor, and the coefficients adopted were: L=1, C1 = 6, C2 = 7.5, and G= 2.5. 470 

The imagery were obtained from the MODIS Multi-Angle Implementation of Atmospheric 471 

Correction (MAIAC) product (MCD19A1) (56), at 1 km spatial resolution, which was downloaded 472 

from NASA’s Level 1 and Atmosphere Archive and Distribution System (LAADS). We used MODIS 473 

Collection 6 Level 1B (calibrated and geometrically corrected) observations, which removed major 474 

sensor calibration degradation effects present in earlier collections. Observations collected 475 

between 2001 and 2018 were used in this study. MAIAC uses an adaptive time series analysis and 476 

processing of groups of pixels for advanced cloud detection, aerosol retrieval and atmospheric 477 

correction. The data are corrected for sun-sensor-target geometry effects inherent of the image 478 

acquisition process. All the images are normalized to an apparent nadir view zenith angle (0°) and 479 

45° of solar zenith angle using a bidirectional reflectance distribution function (BRDF) and Ross-480 

Thick Li-Sparse (RTLS) model (56). 481 

4.5. Rainfall data 482 

Rainfall data were obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite, which 483 

was launched in November 1997 (57), and shut down in 2015. The product used was the 3A25, 484 

which consists of monthly statistics of the precipitation radar (PR) measurements (58). We used 485 

the 0.5° x 0.5° resolution grid, with monthly mean values of surface rainfall rate, which are 486 

classified between stratiform and convective types. The rain type classification in TRMM PR 487 

products is done using two methods: the vertical profile method (59) and the horizontal pattern 488 

method (60). The vertical profile method is largely based on the detection of the bright band (BB), 489 

which indicates a melting layer, where the solid particles melt and change into rain drops. In the 490 

case of stratiform rain, the BB appears as a strong signal of radar echo when the radar frequency 491 

is between 15 to 20 GHz (59). This dataset and other TRMM data can be obtained through NASA’s 492 

EARTHDATA search portal (https://search.earthdata.nasa.gov/search). 493 

4.6. Land surface temperature 494 

Land surface temperature (LST) data were obtained from the Moderate Resolution Imaging 495 

Spectroradiometer (MODIS). The product used was the MOD11C2 Version 6, which provides LST 496 

imagery in a 0.05° x 0.05° latitude/longitude grid. The LST values in the MOD11C2 imagery are 497 

provided as composites, with pixel values representing the average of clear-sky LST during an 8-498 

day period (61). All 8-day composites from 2001 to 2018 were used in this study. 499 

https://search.earthdata.nasa.gov/search
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The LST represents the radiometric temperature related to the thermal infrared radiation emitted 500 

from the land surface observed by an instantaneous MODIS observation. In this study, we used 501 

the daytime LST, corresponding to measurements obtained around 10:30 a.m. (local solar time). 502 

The MODIS LST products have been validated over a broad range of representative conditions 503 

and extensively tested using comparisons with in-situ values and radiance-based validation. The 504 

product uncertainties are well defined, with LST errors estimated to be lower than 1 K in most 505 

cases (62).  506 

In land areas, MODIS LST is only calculated for pixels at clear-sky conditions at 95% confidence 507 

for regions below 2000 m a.s.l. and 66% confidence for regions above 2000 m a.s.l. (61). In our 508 

study, a quality control was undertaken using the quality assurance (QA) layers provided with the 509 

MOD11C2 product. The QA layer was used to exclude pixels in which LST was not produced due 510 

to atmospheric interference or not processed due to poor quality. Pixels with average LST error 511 

higher than 1 K were also excluded.  512 

LST is known to be strongly affected by land cover characteristics (63–65). Given the different 513 

spatial resolutions between the LST data and the land cover maps, we carried out an additional 514 

analysis using high resolution LST to exclude the influence of pixel mixture on our results. For that, 515 

we used a Landsat 8 based LST product with 30 m spatial resolution (66) (SI Appendix Fig. S6). 516 

This product was shown to have an overall RMSE of 1.52 oC, based on a comparison against two 517 

independently produced reference datasets. All cloud free scenes obtained in dry seasons from 518 

2013 to 2018 were considered, resulting in the five suitable images. The results obtained using the 519 

30 m Landsat 8 LST product concurred with the conclusions based on the MODIS data, showing 520 

that areas occupied by commodity agriculture present significantly higher LST in comparison with 521 

areas occupied by rural settlements (SI Appendix Fig. S6).  522 

4.7. Vapor pressure deficit (VPD) 523 

Vapor pressure deficit (VPD) was assessed using a remote sensing approach proposed by 524 

Hashimoto et al (2008) (67). This method uses linear models to predict VPD using saturated vapor 525 

pressure calculated from MODIS LST. The saturation vapor pressure was calculated as follow 526 

(67): 527 

𝑒∗(𝑇) = 0.6107𝑒(17.38𝑇)/(239+𝑇)           (2) 528 

where e⁎(T) is given in kPa and T is the LST estimated by the MODIS sensor at around 10:30 a.m. 529 

VPD was then calculated using the following linear model (67): 530 

𝑉𝑃𝐷 = 0.353𝑒∗(𝑇) + 0.154         (3) 531 
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Hashimoto et al (2008) (67) tested this model in Porto Velho, in the Brazilian Amazon, reporting a 532 

root-mean-squared-error (RMSE) of 0.35 and a mean absolute error (MAE) of 0.27.  533 

 534 

4.8. Latent heat flux, Evaporation and Transpiration  535 

Latent heat flux (LE) and Evapotranspiration (ET) 8-day composite data, produced at 500 m spatial 536 

resolution, were obtained from the MODIS MOD16A2 product (68). LE is an important component 537 

of Earth's surface energy budget. It describes flux of energy from the land surface to the 538 

atmosphere that is associated with evaporation and transpiration of water (i.e. ET). The MOD16 LE 539 

and ET are estimated by a modified Penman–Monteith ET method, which uses ground-based 540 

meteorological observations and remote sensing data from MODIS (e.g., LAI, albedo, and land 541 

cover). Compared with eddy flux measurement, MODIS ET was shown to have a mean absolute 542 

error of approximately 0.3 mm day–1 (68). All 8-day composites from 2001 to 2018 were used in this 543 

study. 544 

ET partition between physical evaporation (E) and transpiration was assessed using the method 545 

proposed by Wei et al (2017) (69). This approach presents a ET partitioning algorithm based on 546 

the relationships between leaf area index (LAI) and T/(E + T) for different vegetation types. The 547 

partition was done as follow: 548 

𝑇

𝐸+𝑇
= 0.66 × 𝐿𝐴𝐼0.18 (𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠)    (4) 549 

𝑇

𝐸+𝑇
= 0.69 × 𝐿𝐴𝐼0.28 (𝑝𝑎𝑠𝑡𝑢𝑟𝑒𝑠)    (5) 550 

where LAI is the leaf area index, obtained from MOD15A2H collection 6, MODIS LAI product. This 551 

is an 8-day composite dataset at 500 m resolution. 552 

 553 

4.9. Statistical analysis of changes in the climate variables 554 

Temporal changes in rainfall patterns were analyzed using two approaches. First, we analyzed 555 

rainfall seasonal patterns in two periods: 1985-2005 representing a period marked by an 556 

intensification of forest loss in our study areas, while the percent forest loss in both areas were still 557 

below 40%; in the second period between 2005 and 2014, forest loss continued at a lower rate, 558 

with the percent forest loss being close to 50%. This assessment was done at monthly time-scale, 559 

and considering total rainfall, convective rainfall fraction and stratiform rainfall fraction, separately. 560 

Changes in the mean annual rainfall values between these two periods were assessed, and 561 

statistical significance was checked using a Welsch t-test. Next, rainfall temporal trends were 562 

assessed using a modified version of the Mann-Kendall trend test (70). This modified version of the 563 
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Mann-Kendall trend test reduces the chances of false positives by accounting for serial correlation, 564 

often present in time-series data due to subsequent observations. The magnitude of the trends 565 

were assessed using the Sen’s slope (71), which is less vulnerable to errors in comparison with 566 

least squares estimator of a regression coefficient β, as well as less sensitive to non-normality of 567 

the parent distribution and outliers. 568 

Changes in EVI, LST, LE and ET associated with forest loss were assessed using a space-for-time 569 

substitution approach (SFT) (30, 31). The basic assumption in the SFT is that spatial and temporal 570 

variation are equivalent (30). Hence, observations of LST, LE and ET over deforested areas were 571 

compared with those obtained over adjacent forests (i.e. intact forests located inside the same 1o × 572 

1o cell). Deforested areas were identified using the land cover maps. Only areas that were 573 

deforested during the entire period of the MODIS time-series used in this study (2001–2018) were 574 

used in the analysis. Given the coarser spatial resolution of MODIS data (500 m for LE and ET, ~5 575 

km for LST) in comparison with the land cover data (30 m), the influence of pixel mixing on LST, 576 

LE and ET retrievals were minimized by eliminating MODIS pixels with more than 10% forest 577 

cover. Our analysis did not require re-sampling or pixel aggregation to resize the climate data (i.e. 578 

rainfall, LST, ET and LE). Each climatic variable was analyzed independently and, therefore, using 579 

the original resolution. 580 

The SFT substitution is broadly used to infer temporal changes in ecological and biophysical 581 

systems using contemporary spatial patterns (24, 30, 31, 72). This approach is considered an 582 

alternative to long-term assessments, particularly in situations when long time-series observations 583 

are not available. This is the case of our study, given that the MODIS time-series used in our 584 

analysis is available starting from the year 2001.  585 
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