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Abstract 
Organic Light Emitting Dioides (OLED )devices were fabricated with blue emission based on azatrioxa[8]circulene 

and 4,4-N,N′-Dicarbazolyl-1,1′-biphenyl (CBP) with maximum brightness of 840 kd/m2 at 12 V and the starting 

voltage of 3.5 V. The vibronic emission spectrum was analyzed by the promotive modes calculation method. The 

electroluminescence of fabricated OLED device is caused by the 0-0 electronic transition and single excitations of 

1473 cm-1 and 1673 cm-1 modes and combinations thereof.  
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Introduction 

At present, organic light-emitting diode (OLED) technology is starting to dominate the 

market of displays for consumer electronics. This is due to the fact that manufacturing 

technology of OLED displays is cheaper than that of liquid crystal display (LCD) matrices [1]. 

Usually, OLED displays utilize classical (red, green, and blue) scheme. While the technology of 

red and green OLEDs is almost brought to perfection, the development of stable and efficient 

blue-emitting OLEDs is still problematic [1]. Hence, the search of thermally and chemically 

stable substances emitting in the blue region of the spectrum is an urgent challenge for OLED 

technology. 

Among organic compounds suitable for use as OLED materials, hetero[8]circulenes have 

emerged in the past decade as a promising choice [2]. They exhibit high thermal and chemical 

stability and emit blue light. In 2016, we predicted theoretically the photophysical properties of a 

series of hetero[8]circulenes [3]. Azatrioxa[8]circulene (ATOC), which exhibits a high 



fluorescence quantum yield (0.9) was found to be among the most promising candidates for use 

as the blue component in OLEDs. Its structure is shown in Figure 1. The synthesis of ATOC was 

reported in 2015 [4], and in 2017 year it was used in circulene-based hybrid OLEDs [5]. It was 

noted that the fluorescence of solid ATOC was due to its own blue emission as well as excimer 

emission. Therefore, the fluorescence of pure ATOC is not pure blue.  

 
Figure 1. The equilibrium geometry of electronic ground state of ATOC. 

  

In this work we present an OLED based on ATOC and 4,4-N,N′-Dicarbazolyl-1,1′-

biphenyl (CBP) fabricated by physical vapor deposition. The device efficiently emits blue light. 

In addition, we present the brightness-voltage and current-voltage curves of the fabricated OLED 

and estimated its charge carrier mobility. We also present the simulated vibronic emission 

spectrum of ATOC within the Franck-Condon approximation.  

 

Experimental and Computational Details 

Fabrication of OLED and measurement of its properties 

To study the electroluminescence characteristics, we fabricated the following OLED 

device: ITO/PEDOT:PSS (30 nm)/CBP (10 nm)/CBP:ATOC (20 nm)/BCP (10 nm)/LiF (1 

nm)/Al (100 nm). Here 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as hole-

blocking layer. Glass substrates with profiled ITO layer with resistance 12 Ohm/square were 

successively washed in hydrogen peroxide–ammonia solution with ultrasonication, acetone, and 

twice-distilled water, flushed with dry nitrogen, and treated with oxygen plasma. All the 

subsequent operations were performed in a glove box in dry nitrogen atmosphere. An aqueous 

suspension of PEDOT:PSS (Al4083 Ossila) was spin-coated at 2000 rpm for 30 s and dried for 

30 min at 110°C. The organic layers of CBP, ATOC, BCP, as well as LiF and Al were vapor 



deposited using the Auto 306 vacuum coater (BOC Edwards). ATOC was co-deposited with 

CBP at a ratio of 1 ATOC : 10 CBP. The deposition rate was below 0.3 Å/s for all organic 

layers. To prevent the exposure to atmosphere, the device was sealed with glass using UV-

curable Encapsulation Epoxy (Ossila). The current-voltage and brightness-voltage curves as well 

as spectra were measured using an automated complex with the Keithley 237 source-measure 

unit and the AvaSpec-2048x64 CCD spectrometer (Avantes) with radiance calibration sphere 

AvaSphere-50-LS-HAL-CAL. The thicknesses of the deposited layers were measured with the 

MicroXAM-100 interferometer-based optical profiler (KLA Tenkor) using satellite substrates 

placed in an evaporation chamber holder together with the main sample. 

The ATOC compound was synthesized according to the previously described procedure 

[4], and was purified by repeated column chromatography. 

The charge carrier mobility was measured by transient electroluminescence method using 

the procedure described in detail in [6] with an apparatus consisting of the TDS224 oscillograph 

(Tektronix), an AWG-4105 arbitrary waveform oscillator (Aktakom), the FEU-35 

photomultiplier, and an amplifier. 

The equilibrium geometries of the electronic ground (S0) and the first excited singlet (S1) 

states of the molecule in this study were optimized at the time-dependent density functional 

theory (TDDFT) level [7] using B3LYP hybrid functional [8, 9] and the 6-31G(d,p) basis set 

[10].  

The vibronic spectra were simulated within linear approximation, where the vibrational 

frequencies of the S0 and S1 states are assumed to be the same [11 - 19]. In this case, the activity 

of each mode can be characterized with its Huang-Rhys factors (y). The latter can be found from 

the hessian of the initial state and the gradient of the final electronic state: 
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In this case we neglect the temperature effect and consider the limit of T = 0K.  

 

Results and Discussion 

The characteristic of OLED Devices 

Figure 2 shows the current-voltage and brightness-voltage curves of the fabricated OLED 

device, as well as the electroluminescence spectrum of the device at 10 V. 
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Figure 2. Current-voltage and brightness-voltage curves of the OLED and its 

electroluminescence spectrum at 10 V. 

 

At 10 V the brightness of the OLED device is 610 cd/m2, which is acceptable for displays [20]. 

The maximum brightness at 12 V is 840 cd/m2. The current efficiency is 0.133 cd/A. The starting 

voltage is 3.8 V. The electroluminescence exhibits a pronounced vibronic progression, while the 

excimer band observed in devices fabricated in [5] is absent. Figure 3 shows the color 

temperature diagram. One can see from Figure 3 that x = 0.168 and y = 0.101 is near blue color 

approaching dark blue.  



 
Figure 3. Color temperature diagram. 

  

Figure 4 shows the charge carrier mobilities μ0.01 and μ0.5 as functions of the square root 

of the electric field E measured by transient electroluminescence by the rise of the signal by 1% 

and 50%, respectively. The mobility measured at 1% signal level corresponds to fast carriers that 

recombine first, and the mobility μ0.5 corresponds to the main body of the recombined charge 

carriers. Hence, the charge carrier mobility μ measured by transient electroluminescence is 10-

6 cm2V-1s-1. This value is much lower than those observed in tetrathio- and 

tetraseleno[8]circulene derivatives, where the charge carrier mobility reaches 9×10-3 cm2V-1s-1 

[21]. However, this agrees with the study of G.V. Baryshnikov [5] that low charge carrier 

mobility of azatrioxa[8]circulenes has only slight effect on the OLED device efficiency. 

Generally we conclude the parameters of the present OLED are comparable to the previously 

fabricated one based on the π-extended tetraoxa[8]circulenes, but the electroluminescence band 

is narrower and therefore it is more promising in blue OLED technology [22].  
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Figure 4. Charge carrier mobilities μ0.01 and μ0.5 as functions of the square root of the 

electric field E.  

 

Vibronic spectrum 

Figure 5 shows the simulated vibronic emission spectra of ATOC, and Figure 6 shows 

the promoting modes. One can see from Figure 6 that the modes 1673 cm-1 with y = 0.14 and 

1473 cm-1 with y = 0.07 are promoting. The mode 1673 cm-1 is partially localized on the inner 8-

carbon cycle. In pure tetraoxa[8]circulene and azaoxa[8]circulene such mode with the frequency 

of ~1700 cm-1 and y > 0.5 is fully localized on the inner 8-carbon cycle [12, 19, 23]. Whereas in 

azatrioxa[8]circulene substituted with naphthalene moieties the intensity of this mode decreases 

since it is not fully localized anymore on the inner [8]-carbon cycle anymore. Refs. [12, 19] also 

mention that the presence of a vibration with the frequency of ~1700 cm-1 and y > 0.5 results in a 

large internal conversion rate constant (kIC).  

 
Figure 5. The experimental electroluminescence spectrum of the fabricated device of 

ATOC and the positions (nm) and intensities (a.u.) of calculated vibronic bands.  
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Figure 6. Promoting modes (in cm-1). The y values are given in parenthesis.   

 

Therefore, reducing the y value of this mode may reduce kIC as one of the nonradiative relaxation 

channels and, consequently, increase the fluorescence quantum yield. Table 1 gives the emission 

intensities jI  for excitations to these particular modes and to the pure electronic transition (0-0).  

 

Table 1. The calculated excitation of modes (cm-1) and position of lines in the emission spectrum 

of ATOC.  

The type of excitation Wavelength in nm; intensity in a.u.  

0-0 431 nm;0.85 

14731 460 nm; 0.05 

16731 464 nm; 0.11 

1673+1473 498 nm; 0.01 

1673+1673 503 nm; 0.01 

 

One can see from Table 1 that the first peak is a pure electronic 0-0 transition, and it is 

the most intense. The second peak is produced by single excitations of the two modes, 1473 cm-1 

and 1673 cm-1. A small shoulder at 498-500 nm is determined by overtones: single excitations of 

the modes 1473 cm-1 and 1673 cm-1 and a double excitation of mode 1673 cm-1. Hence, the 

electroluminescence of the fabricated OLEDs based on ATOC and CBP originates from the 0-0 

transition of ATOC and its vibronic progression. The ATOC itself in a solid phase produces a 

strong excimer shoulder at 550 nm; as a consequence solid ATOC can not provide blue 

emission. But if the ATOC is introduced into the matrix – excimers are not formed and the 

device produces the proper blur color. The absence of the excimer band in the 



electroluminescence spectrum at 600 nm [5], which was observed in the case of pure ATOC-

based OLED, results finally in a desirable blue emission. Therefore, we have identified the origin 

of electroluminescence of the fabricated OLED device.  

 

Conclusions 

 Efficient OLED devices have been fabricated with blue emission based on 

azatrioxa[8]circulene and CBP. The maximum brightness is 840 kd/m2 at 12 V and the starting 

voltage is of 3.5 V. It can be used in the fabrication of B layer in RGB display for the gadgets 

due to the high chemical and thermal stability of azatrioxa[8]circulene [2]. It was shown that the 

electroluminescence of fabricated OLED device is caused by the 0-0 electronic transition and 

single excitations of 1473 cm-1 and 1673 cm-1 modes and their combination. Although the 

electroluminescence color is not pure dark blue, further structural modification by substitution 

will make it possible to reduce the intensity of the 1673 cm-1 vibronic peak, because it is 

localized mainly inside the ATOC macrocycle [3]. This may result in a narrower 

electroluminescence band originating from the 0-0 electronic transition at 431 nm. One can note 

that present study supports the general trend about photophysical properties of hetero[8]circulene 

being correlate with their aromaticity [2-5,24]. 
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