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1. INTRODUCTION

We use the quasihyperbolic metric to study geometric properties of bounded
domains in the Euclidean n-space Rn. Our main question is what are sufficient
conditions for the quasihyperbolic metric in a given domain so that a (q, p)-
Sobolev-Poincaré inequality holds there with some q and p. The question is
interesting because the Sobolev-Poincaré inequalities are significant tools for
the study of partial differential equations and their boundary problems.

The quasihyperbolic metric kd is a generalization of the hyperbolic metric
on an open disc or a half-plane in R2 to any proper subdomain in Rn. It was
defined by F. W. Gehring and B. P. Palka [3] as

kD(x, y) = inf
γ

∫
γ

ds

dist(u, ∂D)
,

where the infimum is taken over all rectifiable curves γ in D joining x ∈ D and
y ∈ D. Here dist(u, ∂D) denotes the distance between u ∈ D and the boundary
of D. A curve attaining this infimum exists and it is called the quasihyperbolic
geodesic, [2, Lemma 1, p. 53]. For every x, y ∈ D we fix such a geodesic and
denote it by γx,y.

Let ϕ : [0,∞)→ [0,∞) be a continuous, strictly increasing function such
that ϕ(0) = 0 and limt→∞ ϕ(t) = ∞ . We say that a bounded domain D
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satisfies a ϕ-quasihyperbolic boundary condition, if there exists a point x0 ∈ D
and if there are constants C1 , C2 > 0 such that

(1.1) kD(x0, x) 6 C1ϕ

(
1

dist(x, ∂D)

)
+ C2 for all x ∈ D .

This is a generalization of the quasihyperbolic boundary condition used by
Gehring and O. Martio [1] when ϕ(t) = log(1 + t). We say briefly that D is
a ϕ-QHBC domain, if (1.1) holds. If ϕ(t) = log(1 + t), we just say that D
is a QHBC domain. The quasihyperbolic metric cannot grow any slower than
this, [8, p. 190]. The fact that dist(x, ∂D) has an upper bound means that
the choice C2 = 0 is always possible in (1.1) if C1 is made large enough. Thus
we assume that C2 = 0. Whether a domain satisfies the QHBC condition or
the ϕ-QHBC condition is independent of the choice of the point x0, but the
constants may be different. For related conditions we refer to [8] , [10], and
[20]. Note that ϕ-QHBC domains are not to be confused with ϕ-uniform or
ψ-uniform domains in [8] , [9] , [12], and [20].

The properties of the classical QHBC are well studied. More information
about the QHBC domains can be found in [7], [11], and [14]. For example,
it was shown in [10, Remark 7.11, p. 27] that there is a p < n such that
the (p, p)-Sobolev-Poincaré inequality, see (2.1), holds when D is a QHBC
domain with a Whitney cube # -condition. We recall that a Whitney cube #
-condition means that the number of Whitney cubes Q in D with the diameter
of Q, dia(Q) = 2−jdia(D) is bounded by a constant times 2λj , with some λ,
n− 1 6 λ < n, see [15, p. 19]. Later it was shown that QHBC domains satisfy
the Whitney cube # -condition [18, Corollary 1, p. 352]. Thus for QHBC
domain we have p0 < n such that (p, p)-Sobolev-Poincaré inequality holds for
all p > p0.

We recall that if D satisfies a ϕ-quasihyperbolic boundary condition with
ϕ(t) = tα for some α and D satisfies the Whitney cube # -condition, then
the (p, p)-Sobolev-Poincaré inequality holds in D for all p > n, [10, Corollary
7.17]. A sharp bound for α which guarantees the validity of the (q, n)-Sobolev-
Poincaré inequality for some q > n without relying on the Whitney cube #
-condition was given in [13, Theorem 1.1, p. 184].

In the present paper we give a summation condition to a given ϕ which
guarantees that the (q, n)-Sobolev-Poincaré inequality holds in D for some
q ∈ [n, c(D)] where c(D) is a constant coming from the summation condition,
Theorem 3.5. In Section 4 we construct, by using the Cantor dust set, a
ϕ-QHBC domain F where the Whitney cube # -condition fails but the (q, n)-
Sobolev-Poincaré inequality holds for all q > n. In the last Section 5 we
construct a mushroom-type domain D that is a ϕ-QHBC domain and satisfies
a Whitney cube # -condition and the (q, p)-Sobolev-Poincaré inequality fails
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for all 1 6 q 6 p < n.
We point out the following two observations: If ϕ grows faster than loga-

rithmic, i.e. limt→∞
ϕ(t)
log(t) =∞, then ϕ-QHBC domain may or may not satisfy

the Whitney cube # -condition. Furthermore, the requirements of the Whitney
cube # -condition may be met and even the (1, p)-Sobolev-Poincaré inequality
needs not to hold for any p < n, refer to Section 5.

2. NOTATION AND WHITNEY DECOMPOSITION

We let C denote constants that appear in our estimates and may change
from expression to expression. To note that C depends on a, b, . . . , we write
C(a, b, . . . ). For a line segment with endpoints x and y, we use the notation
[x, y], and the length of a line segment is denoted by `[x, y]. The n-dimensional
Lebesgue measure of a set E in Rn is written as |E|. We use in the examples
the abbreviation δD(z) := dist(z, ∂D).

The inequality

(2.1)

(∫
D
|u(x)− uD|q dx

)1/q

6 C

(∫
D
|∇u(x)|p dx

)1/p

is called the (q, p)-Sobolev-Poincaré inequality. Here 1 6 q, p < ∞ and C is a
constant independent of u ∈W 1,p(D) and uD is the integral average of u over
D. If q = p, the inequality reduces to the well known Poincaré inequality. By
W 1,p(D) we denote the Sobolev space of functions u ∈ Lp(D) whose first weak
partial derivatives belong to Lp(D). A bounded domain D in Rn, n > 2, is said
to be a (q, p)-Sobolev-Poincaré domain, if there exists C such that inequality
(2.1) holds for all u ∈W 1,p(D).

We will use the following decomposition in our domains.

Definiton 2.2 ([19, Theorem 3, p. 16]). A familyW of closed dyadic cubes
Q whose interiors are pairwise disjoint is called the Whitney decomposition of
D, if the following three conditions hold:

(1) D =
⋃
Q∈W Q;

(2) 1 6 dist(Q,∂D)
dia(Q) 6 4;

(3) 1
4 6 dia(Q1)

dia(Q2)
6 4, when Q1 ∩Q2 6= ∅.

3. SOBOLEV-POINCARÉ INEQUALITY IN ϕ-QHBC DOMAINS

The next result characterizes Sobolev-Poincaré domains in terms of a
capacity-type estimate. The result is originally from V. Maz’ya’s book Sobolev
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Spaces [16]. P. Haj lasz and P. Koskela gave another proof for the result in [4,
Theorem 1, p. 429].

Theorem 3.1. Let D be a bounded domain in Rn, n > 2, and let 1 6
p 6 q < ∞. Then D is a (q, p)-Sobolev-Poincaré domain if and only if the
following holds: For a cube Q0 compactly contained in D there exists a constant
C = C(D,Q0, p, q) such that∫

D
|∇u(x)|pdx > C|A|p/q

whenever A is an admissible subset of D which is disjoint from Q0 and u ∈
C∞(D) satisfies u|A > 1 and u|Q0 = 0.

Here, a subset A ⊂ D is admissible if A is open and D ∩ ∂A is a smooth
submanifold.

Let us consider the Whitney decomposition W = W(D) and the quasi-
hyperbolic metric kD of a domain D in Rn. Let us denote by cQ the center
of a cube Q ∈ W. In addition, we fix a central cube Q0 with center point x0.
Following [13] we divide Whitney cubes to the sets

Wj := {Q ∈ W : j 6 kD(cQ, x0) < j + 1},
where j ∈ N. For Q ∈ W, let us set P (Q) := {Q′ ∈ W : Q′ ∩ γcQ,x0 6= ∅}, and
define the shadow of a cube Q ∈ W by

S(Q) :=
⋃
Q̃∈W
Q∈P (Q̃)

Q̃.

We need several lemmas. Let γ be a quasihyperbolic geodesic in D start-
ing at the central point x0 ∈ D. Then by [13, Lemma 2.1, p. 185] for each
j > 0, we have

(3.2) # {Q ∈ Wj : Q ∩ γ 6= ∅} 6 C(n).

The next lemma is a modification of [13, Lemma 2.4, p. 186].

Lemma 3.3. Let D in Rn be a ϕ-QHBC domain and j > 2. Then, there
exists a constant C > 0, independent of j, such that

dia(S(Q)) 6 C
∑
i>j−1

1

ϕ−1
(

i
C1

)
for each Whitney cube Q ∈ Wj. Here C1 is from (1.1).

Proof. We start with the observation: If Q is a cube in Wi, i > 1, then
by the properties of Wi and the definition of the ϕ-QHBC domain we have

dia(Q) 6 dist(Q, ∂D) 6 dist(cQ, ∂D) 6
1

ϕ−1
(
kD(cQ,x0)

C1

) 6
1

ϕ−1
(

i
C1

) .
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Next, fix j ∈ N, j > 2, and a cube Q in Wj . Let Q̃ ⊂ S(Q) and
let γ be the fixed geodesic joining x0 to cQ̃. Then, by the definition of the
shadow, there exists a point xQ ∈ γ ∩Q. Now if Q′ is a cube in W such that
Q′ ∩ γxQ,cQ̃ 6= ∅, then using the triangle inequality, properties of geodesic and

the Whitney decomposition we see that kD(cQ′ , x0) > j − 1. Thus Q′ belongs
to ∪i>j−1Wi.

By (3.2) the geodesic γ intersects a bounded number of cubes from each
Wi, i > j − 1. Therefore,

dist(cQ, cQ̃) 6 dist(cQ, xQ) + dist(xQ, cQ̃) 6 dia(Q) + dist(xQ, cQ̃)

6 dia(Q) +
∑
i>j−1

∑
Q′∈Wi

Q′∩γxQ,c
Q̃
6=∅

dia(Q′) 6 C
∑
i>j−1

1

ϕ−1
(

i
C1

) .
Now, the lemma is obtained as follows: Take the supremum over all cubes
Q̃ ⊂ S(Q) and use the triangle inequality to find out that the above is an upper
bound for the distance between the centers of any two cubes in S(Q).

Lemma 3.4 ([13, Lemma 2.3, p. 186]). Let D in Rn be a domain and
j > 0. Then, for each s > 1 and for every measurable subset E ⊂ D,∑

Q∈Wj

|S(Q) ∩ E|s 6 C(n, s)|E|s.

The next theorem is a generalization of [13, Theorem 3.1, p. 187].

Theorem 3.5. Let D be a bounded domain in Rn, n > 2. Let ϕ :
[0,∞)→ [0,∞) be a continuous strictly increasing function with the properties
ϕ(0) = 0, limt→∞ ϕ(t) =∞, and

∞∑
j=1

∑
i>j

1

ϕ−1
(

i
C1

)
ns

<∞

where 0 < s 6 1
n−1 is a constant and C1 is the constant in (1.1).

Suppose that D is a ϕ-QHBC domain. Then, the domain D is a (q, n)-
Sobolev-Poincaré domain, when

n 6 q 6
n

s(n− 1)
.

Proof. We use Theorem 3.1 and the idea of the proof of [13, Theorem 3.1,
p. 187]. Let Q0 be a Whitney cube so that it is disjoint from a set E ⊂ D,
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which is admissible in D. Assume that u ∈ C∞(D) satisfies u|E > 1 and
u|Q0 = 0. Let 0 < s 6 1

n−1 . Our aim is to show for q = n
s(n−1) that∫

D
|∇u|ndy > C|E|n/q.(3.6)

Let us first consider the set Eg := {x ∈ Q ∈ W, uQ 6 1
2} ∩ E. Now we

estimate, first using the inequality |a + b|n/q 6 |a|n/q + |b|n/q with n 6 q, and
then using the fact u|E > 1 and the definition of Eg,

|Eg|n/q =

∑
Q∈W

|Eg ∩Q|

n/q

6
∑
Q∈W

|Eg ∩Q|n/q

6
∑
Q∈W

Q∩Eg 6=∅

(∫
Q∩E

(
2 · 1

2

)q
dy

)n/q
6 2n

∑
Q∈W

Q∩Eg 6=∅

(∫
Q
|u− uQ|qdy

)n/q
.

Then, we apply the (q, n)-Sobolev-Poincaré inequality on cubes and obtain

|Eg|n/q 6 C
∑
Q∈W

Q∩Eg 6=∅

∫
Q
|∇u|ndy 6 C

∫
D
|∇u|ndy.

Hence inequality (3.6) holds for the set Eg.

Then we consider the set Eb := {x ∈ Q ∈ W, uQ > 1
2} ∩ E. Let x ∈ Eb,

and let Q(x) ∈ W be a cube for which x ∈ Q(x) and uQ(x) > 1/2. We apply
a chaining argument [17, Lemma 8, p. 81]. Let Q0, Q1, . . . , Qm = Q(x) be a
minimal chain of cubes in P (Q(x)) which joins Q0 to Q(x). Here, the word
’minimal’ means that we cannot remove any cube from the chain and still have
a chain from Q0 to Q(x). We obtain

1 6 2|uQ(x) − uQ0 | 6 2

m∑
i=1

|uQi − uQi−1 |

6 2

m∑
i=1

(
|uQi − uQi∪Qi−1 |+ |uQi∪Qi−1 − uQi−1 |

)
6 2

m∑
i=1

(∫
Qi

|u(y)− uQi∪Qi−1 |dy
|Qi|

+

∫
Qi−1

|uQi∪Qi−1 − u(y)|dy
|Qi−1|

)

6 C

m∑
i=1

1

|Qi ∪Qi−1|

∫
Qi∪Qi−1

|u(y)− uQi∪Qi−1 |dy.

Then we use (1, 1)-Sobolev-Poincaré inequality. Now, the constant C(Qi ∪
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Qi−1) is comparable to dia(Qi), [17, Lemma 6, p. 81]. We obtain

1 6 C

m∑
i=1

C(Qi ∪Qi−1)
|Qi ∪Qi−1|

∫
Qi∪Qi−1

|∇u(y)|dy

6 C

m∑
i=1

1

dia(Qi)n−1

∫
Qi∪Qi−1

|∇u(y)|dy 6 C
∑

Q∈P (Q(x))

dia(Q)−
∫
Q
|∇u(y)|dy.

Now we have

1 6 C
∑

Q∈P (Q(x))

dia(Q)−
∫
Q
|∇u(y)|dy,

which we then integrate over Eb and use Hölder’s inequality to obtain

|Eb| 6 C

∫
Eb

∑
Q∈P (Q(x))

dia(Q)

(
−
∫
Q
|∇u(y)|ndy

)1/n

dx.

Interchanging the order of summation and integration and applying Hölder’s

inequality with
(

n
n−1 , n

)
give

|Eb| 6 C
∑
Q∈W

∫
Eb

χS(Q)(x)

(∫
Q
|∇u(y)|ndy

)1/n

dx

6 C

∑
Q∈W

|S(Q) ∩ Eb|
n

n−1

n−1
n
∑
Q∈W

∫
Q
|∇u(y)|ndy

1/n

6 C

∑
Q∈W

|S(Q) ∩ Eb|
n

n−1

n−1
n (∫

D
|∇u(y)|ndy

)1/n

.(3.7)

Let us estimate the first part of product (3.7). Since 0 < s 6 1
n−1 , we use

Lemma 3.4 for n
n−1 − s > 1 to obtain

∑
Q∈W

|S(Q) ∩ Eb|
n

n−1 6
∞∑
j=0

max
Q∈Wj

(|S(Q) ∩ Eb|s)
∑
Q∈Wj

|S(Q) ∩ Eb|
n

n−1
−s

6 C|Eb|
n

n−1
−s
∞∑
j=0

max
Q∈Wj

(dia(S(Q))ns).
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Let us continue by using Lemma 3.3. We have by the assumption that

C|Eb|
n

n−1
−s
∞∑
j=1

max
Q∈Wj

(dia(S(Q))ns)

6 C|Eb|
n

n−1
−s

2dia(D)ns +
∞∑
j=2

∑
i>j

1

ϕ−1
(

i
C1

)
ns 6 C|Eb|

n
n−1
−s.

This and (3.7) yield

|Eb| 6 C|Eb|1−
s(n−1)

n

(∫
D
|∇u(y)|ndy

)1/n

,

and thus

|Eb|s(n−1) 6 C

∫
D
|∇u(y)|ndy.

So (3.6) holds for the set Eb. This follows by choosing s = n
q(n−1) .

Example 3.8. We apply Theorem 3.5 to the function ϕ(t) = tα logβ(1+t).

(a) The case α ∈ (0, 1), β = 0 is the one studied in [13]. Let us now look at
how our Theorem 3.5 reconstructs that result. Indeed, if ϕ(t) = tα, α ∈ (0, 1),
we have

∞∑
j=1

∑
i>j

1

ϕ−1
(

i
C1

)
ns

=
∞∑
j=1

∑
i>j

(
i

C1

)−1/αns

6 C
∞∑
j=1

(
j1−1/α

)ns
,

where the inside sum in the middle has been estimated by the Riemann integral.
The last sum converges, when

(
1− 1

α

)
ns < −1, in other words, when s >

α
n(1−α) . On the other hand, we require that s 6 1

n−1 , which implies α
n(1−α) <

1
n−1 , or, equivalently, α < n

2n−1 . This is the upper bound for α given by [13,
Theorem 3.4, p. 190]. Furthermore, according to our Theorem 3.5, the domain
is a (q, n)-Sobolev-Poincaré domain, when q is less than or equal to n

s(n−1) .

Since the convergence requires that s > α
n(1−α) , we obtain q < n2(1−α)

α(n−1) , which

is the upper bound for q in [13, Theorem 3.4, p. 190].

(b) Assume then that α = 0 and β > 1. Then, the domain D is a
(q, n)-Sobolev-Poincaré domain for all q > n. Namely, ϕ−1(t) = exp

(
t1/β

)
− 1.

Because the exponential growth is faster than the polynomial one, we estimate∑
i>j

1

ϕ−1
(

i
C1

) =
∑
i>j

1

exp

((
i
C1

)1/β)
− 1

6 C
∑
i>j

1

iτ
6 Cj1−τ ,
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where we can choose τ > 1 to be as large as we want to. Then,

∞∑
j=1

∑
i>j

1

ϕ−1
(

i
C1

)
ns

6 C

∞∑
j=1

jns(1−τ).

The last sum converges, when s > 1
n(τ−1) . Because τ can be made large, s can

be as close to zero as we want to. Considering Theorem 3.5, this means that
there will be no upper bound for q.

(c) Assume then that α > 0 and β > 0. It is essential to note that we can
choose ε > 0 as close to zero as we want to and have tα logβ(1 + t) 6 Ctα+ε,
provided that C is large enough. Therefore, we obtain an upper bound for q by
following the same procedure as in case (a), but this time with the exponent
α+ ε instead of α. The upper bound for q will be

q <
n2(1− α− ε)
(α+ ε)(n− 1)

ε→0+−−−−→ n2(1− α)

α(n− 1)
.

4. CANTOR DUST FRACTAL DOMAIN

In this section, we construct a bounded domain F in R2 that has the
following properties:

(a) F is a ϕ-QHBC domain with ϕ(t) = logk+1(1 + t), k > 1;

(b) F does not satisfy the Whitney cube # -condition;

(c) F supports a (q, n)-Sobolev-Poincaré inequality for all q > n.

QHBC domains satisfy the Whitney cube # -condition [18, Corollary 1,
p. 352]. Here we show that a ϕ-QHBC domain, in which the quasihyperbolic
metric has only slightly faster growth than in QHBC domains, does not neces-
sarily satisfy the Whitney cube # -condition. The domain will be a Cantor dust
fractal domain in R2 having a ϕ-QHBC property with ϕ(t) = logk+1(1 + t),
k > 1. In [10, Remark 7.18, p. 31] a special case has been studied. We gen-
eralize this and [7, Theorem 3.1, p. 3]. We need the following lemma, which
tells us the quasihyperbolic length of the Euclidean line segment [x, c].

Lemma 4.1 ([7, Lemma 2.5, p. 3]). Let G = Rn\{a, b} where a 6= b. Let
c = (a+ b)/2, the line l be the perpendicular bisector of [a, b], and x ∈ l. Then∫

[x,c]

ds

δG(z)
= log

(
2
(
|x− c|+

√
|a− b|2/4 + |x− c|2

))
− log |a− b|.
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Construction of the domain

Let Q0 be a closed square in the plane with side length 1 and centered
at the origin. We make a Cantor construction in Q0. Let yn be the width
of the strip taken away in the nth case and xn be the edge length of a cube
left in the nth case and En the union of cubes which are left in the nth case.
Define G := ∩∞j=1Ej ∩ Q0 and set F := B(0, 2)\G, where B(0, 2) is an open
ball centered at the origin and with a radius 2. Now F is a bounded domain
in R2. We choose

xn =
21−n

nk + 2
, yn =

2xn
(
nk − (n− 1)k

)
(n− 1)k + 2

,

where n, k > 1. A calculation shows that 2xn + yn = xn−1, as it should be.
Our choice for the fixed point of F is z0 = (0, 0). We let Qn denote the cube
which is left in the nth case and which lies in the upper right corner for every
step 1, 2, ..., n. Moreover, let zn be the midpoint of Qn.

(a) ϕ-QHBC property

By the geometry of F , it suffices to find an upper bound for the distance
kF (zn, z0). This is because every x, that lies in the strips taken away from Qn,
can be connected to zn by line segments. The case x ∈ B(0, 2)\Q0 leaves x
completely outside the Cantor construction, thus this situation is uninteresting
and does not need any closer study. We connect zn and z0 by a curve which

zn−1

zn

Fig. 1 – Cantor dust fractal domain. The left figure is from [7].

is partly presented in Figure 1. Note that there are circle arcs near the corner
points. We estimate kF (zn, z0) in several parts. Consider first the dotted part
of the curve in Qn−1. We write p1 = yn+1/2 and p2 = p1+ ē2 ·yn/2. By Lemma
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4.1, we obtain∫
[p1,p2]

ds

δF (z)
= log

(
yn +

√
y2n+1 + y2n

)
− log yn+1 6 log 3yn − log yn+1

6 log
6nk

(
(n+ 1)k + 2

)
(n− 1)k + 2

6 log
(

3nk
(

(n+ 1)k + 2
))

6 log
(

6(n+ 1)2k
)

= 2k log(n+ 1) + log 6.

There are two line segments inside the cube Qn−1. The longer line segment
has the length xn and the shorter one xn/2. In both parts the distance to the
boundary is at least yn/2. Hence, for the part of these line segments, we have
an upper bound

3
2xn
1
2yn

=
3
(
(n− 1)k + 2

)
2 (nk − (n− 1)k)

6 3
(

(n− 1)k + 2
)

for the quasihyperbolic length. For the quarter of the circle inside the cube
Qn−1, the radius is yn/2 and hence the quasihyperbolic length of this circle arc
is

π
2 ·

1
2yn

1
2yn

=
π

2
.

The first and the last part of our curve need extra attention. Inside the cube
Qn, there is the line segment which has the length xn/2. The quasihyperbolic
length of this part is less than

1
2xn

1
2yn+1

=
(n+ 1)k + 2

(n+ 1)k − nk
6 (n+ 1)k + 2.

On the other hand, close to z0 there is the line segment with the length 1/3.
Since the distance to the boundary is at least 1/6, this part of the curve has
the quasihyperbolic length less than 2.

Now we collect our piecewise results, put them together and derive a
sufficient estimate for kF (zn, z0). Two constants depending on k appear in the
following chain of inequalities. They are C1 = 21 + 4k+ 2k and C2 = C12

2k+2.
We obtain

kF (zn, z0) 6 2 + n(2k log(n+ 1) + log 6)

+ (n− 1)
(

3
(

(n− 1)k + 2
)

+ π/2
)

+ (n+ 1)k + 2

6 2nk(n+ 1) + 6n+ 3n
(

(n− 1)k + 2
)

+ 2n+ (n+ 1)k + 4

6 2n2k + 2nk + 3nk+1 + 14n+ 2knk + 4 6 C1n
k+1.

(4.2)
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We continue by estimating

(4.3) C1n
k+1 6 C1(2n− 1)k+1 = C22

−k−1
(
n− 1

2

)k+1

.

Let us then consider the distance of zn to the boundary. We have δF (zn) =√
2/2 · yn+1, and therefore

log
1

δF (zn)
= log

(
(n+ 1)k + 2

)
(nk + 2)

2
1
2
−n ((n+ 1)k − nk)

= log 2n−
1
2 + log

(
(n+ 1)k + 2

)
(nk + 2)

(n+ 1)k − nk
>

1

2

(
n− 1

2

)
.

(4.4)

Combining (4.2), (4.3) and (4.4) leads to the conclusion that

kF (zn, z0) 6 C2 logk+1 1

δF (zn)
.

Let us now consider an arbitrary point x in a strip. A line segment connects
x and w which is a point in the middle of the strip. Another line segment
connects w and zn. The calculations are as before. Thus F is a ϕ-QHBC
domain with ϕ(t) = logk+1(1 + t).

(b) Whitney cube # -condition fails, and (c) Sobolev-Poincaré
inequality holds.

The special case of this domain in [10, Remark 7.18, p. 31] does not
satisfy the Whitney cube # -condition. This follows from [15, Corollary 4.3,
p. 26] because the Hausdorff dimension of that domain is 2. Similar argument
applies also in this generalization: The Hausdorff dimension remains the same
because the exponential term still dominates in the edge length xn and the
number of cubes in the nth case is unchanged at 4n. Hence, F does not satisfy
the Whitney cube # -condition.

By Example 3.8 (b) F is a (q, n)-Sobolev-Poincaré domain for all q > n.

5. MUSHROOM DOMAIN

Let ϕ : [0,∞)→ [0,∞) be a continuous strictly increasing function with
the properties ϕ(0) = 0 and ϕ(t)/ log(1+t) is non-decreasing. In this section we
construct for every ϕ, that satisfies the previous properties, a bounded domain
D in Rn, n > 2, that has the following properties:

(a) D is a ϕ-QHBC domain;
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(b) D satisfies the Whitney cube # -condition;

(c) D does not support a (q, p)-Sobolev-Poincaré inequality for any 1 6 q <
∞ and 1 6 p < n.

Applying this construction to ϕ(t) := logβ(1 + t), β > 1, we obtain a con-
crete domain that satisfies (a), (b) and (c) and which supports (q, n)-Sobolev-
Poincaré inequality for all q > n by Example 3.8 (b). Examples of mushrooms
type domains can be found for example in [6], [5] , [14] , [16].

Construction of the domain

Let Q0 := [−1/2, 1/2]n and let rm = 2−m. For m = 1, 2, ..., let Qm
be a closed cube with side length 2rm and Pm a closed rectangle which has
side length 4 exp(−ϕ(r−1m )) for one side and 2 exp(−ϕ(r−1m )) for the remaining
n− 1 sides. We attach Qm and Pm together so that the bottom face of Pm is
contained in the boundary of Qm and the top face of Pm is contained in the
boundary of Q0 that lies in the hyperplane x2 = −1/2. All the cubes Qm and
Q0 have to be pairwise disjoint. Let Q∗m and P ∗m be the images of the sets Qm
and Pm, respectively, under a reflection across the hyperplane x2 = 0. We set

D := int

(
Q0 ∪

∞⋃
m=1

(Qm ∪ Pm ∪Q∗m ∪ P ∗m)

)
.

In other words, we have put similar “mushrooms” to the side of Q0 that lies
in the hyperplane x2 = 1/2, see Figure 2 for the planar case.

P1

Q1

Q0

P ∗1

Q∗1

Pm

Qm

Q0

zm

ym

cm

x

Fig. 2 – A mushroom domain. The left figure is from [5].
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(a) ϕ-QHBC property

Next we will show that D is a ϕ-QHBC domain. For this end let ym
and zm denote the midpoints of Qm ∩ Pm and Pm ∩ Q0, respectively, and let
cm denote the midpoint of Qm, see Figure 2. Our fixed point needed for the
definition of ϕ-QHBC domain is c0. By the triangle inequality, we have

kD(cm, c0) 6 kD(cm, ym) + kD(ym, zm) + kD(zm, c0).(5.1)

The line segment [ym, zm] is the optimal way to connect those points, and hence

kD(ym, zm) = 4 exp(−ϕ(r−1m )) · (exp(−ϕ(r−1m )))−1 = 4.(5.2)

To get the estimate for the distance kD(zm, c0), let a ∈ [zm, c0] so that |a−zm| =
δD(zm). Hence, |z − zm| 6 δD(zm) when z ∈ [zm, a]. We have

kD(zm, c0) 6
∫
[zm,c0]

ds

δD(z)
=

∫
[zm,a]

ds

δD(z)
+

∫
[a,c0]

ds

δD(z)
.

By elementary geometry, we see for the first term that∫
[zm,a]

ds

δD(z)
6
∫
[zm,a]

ds
1
2δD(zm)

=
2|a− zm|
δD(zm)

= 2,

and for the latter term∫
[a,c0]

ds

δD(z)
6
∫
[a,c0]

ds
1
2`([zm, z])

= 2

∫ |c0−zm|
|a−zm|

dt

t
= 2 log

|c0 − zm|
|a− zm|

6 2 log
2

δD(zm)
= 2 log

1

δD(zm)
+ 2 log 2.

Combining the upper bounds of the two terms we obtain

kD(zm, c0) 6 2 log
1

δD(zm)
+ 2 log 2 + 2

6 2ϕ(r−1m ) + 2 log 2 + 2.(5.3)

The calculations for kD(cm, ym) are similar. Since rm = δD(cm), estimates
(5.1)-(5.3) lead to the conclusion that

kD(cm, c0) 6 Cϕ

(
1

δD(cm)

)
+ C.

Next we will show that a growth condition like this holds for any point
x ∈ D. Since a cube is a QHBC domain and ϕ(t)/ log(1 + t) is non-decreasing,
the case x ∈ Q0∩D is already covered. Let x ∈ Qm∩D. Again, since cubes are
QHBC domains and thus kD(x, cm) satisfies a logarithmic growth condition,
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we have

kD(x, c0) 6 kD(x, cm) + kD(cm, c0) 6 kD(x, cm) + Cϕ

(
1

δD(cm)

)
+ C

6 C log
1

δD(x)
+ Cϕ

(
1

δD(x)

)
+ C 6 Cϕ

(
1

δD(x)

)
+ C.

Suppose then x ∈ Pm ∩ D. We connect x to the line segment [ym, zm] by
using the line segment [x, u] perpendicular to the line segment [ym, zm] so that
u ∈ [ym, zm]. Now, since kD(x, u) satisfies a logarithmic growth condition, we
have

kD(x, c0) 6 kD(x, u) + kD(u, c0) 6 kD(x, u) + kD(cm, c0)

6 kD(x, u) + Cϕ

(
1

δD(cm)

)
+ C

6 kD(x, u) + Cϕ

(
1

δD(x)

)
+ C 6 Cϕ

(
1

δD(x)

)
+ C.

By the symmetry, all the possible cases are covered, and thus the domain D is
a ϕ-QHBC domain.

(b) Whitney cube # -property

Let W be a Whitney decomposition of D. We need to estimate how
many cubes there are in the set Wj := {Q ∈ W : dia(Q) = 2−j}. In Q0

of the mushroom domain construction there are at most C(n)2j(n−1) of those
cubes. Here, it is good to notice that certain size cubes are in annulus defined
by property (2) of the Whitney decomposition. To the room Qm (or Q∗m)
that size cube can fit only if 2−j 6 rm = 2−m. So only when m 6 j it is
possible that cubes fromWj fit in the rooms. Thus in ∪mQm (and similarly in
∪mQ∗m) there are at most C(n)j2j(n−1) cubes from Wj . Since Pm’s and P ∗m’s
are even smaller, the same upper bound holds for them i.e. there are at most
C(n)j2j(n−1) cubes fromWj in ∪mPm (and similarly in ∪mP ∗m). Thus we have
Whitney cube # -property for D since

#Wj 6 C(n)j2j(n−1) 6 C(n, λ)2λj for any λ > n− 1.

(c) The Sobolev-Poincaré inequality does not hold.

Let us now show that D does not support a (q, p)-Sobolev-Poincaré in-
equality for any 1 6 p < n and 1 6 q < ∞ provided that ϕ grows faster than
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logarithm i.e ϕ(t)
log(t) → ∞ as t → ∞. For this end, we define a sequence of

piecewise linear continuous functions. For k = 1, 2, ..., we set

uk(x) :=


vk in Qk;
−vk in Q∗k;
0 in D\(Pk ∪Qk ∪ P ∗k ∪Q∗k),

where vk := 2
2p−n−2

p e
n−p
p
ϕ(r−1

k )
, and uk is defined linearly in sets Pk and P ∗k so

that it is continuous. We have∫
D
|∇uk(x)|pdx =

∫
Pk∪P ∗k

(
vk

4e−ϕ(r
−1
k )

)p
dx

= 2 · 4e−ϕ(r
−1
k ) ·

(
2e−ϕ(r

−1
k )
)n−1

· 22p−n−2e(n−p)ϕ(r
−1
k )

4pe−pϕ(r
−1
k )

= 1

for every k. In addition, since the integral average of uk over D is zero, we
estimate(∫

D
|uk(x)− (uk)D|qdx

)1/q

>

(∫
Qk

|uk(x)|qdx
)1/q

=
(

(2rk)
n ·
(

2
2p−n−2

p e
n−p
p
ϕ(r−1

k )
)q)1/q

= 2
2p−n−2

p
+n

q e
n−p
p
ϕ(r−1

k ) · rn/qk →∞,

as k →∞, whenever 1 6 p < n and 1 6 q <∞, since our assumption was that
ϕ(t) has faster growth than logarithm when t is large.
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