
fnhum-15-668780 June 29, 2021 Time: 11:44 # 1

ORIGINAL RESEARCH
published: 29 June 2021

doi: 10.3389/fnhum.2021.668780

Edited by:
Yi-Yuan Tang,

Texas Tech University, United States

Reviewed by:
Meltem Izzetoglu,

Villanova University, United States
Hsiang-Yuan Lin,

University of Toronto, Canada

*Correspondence:
Benjamin Ultan Cowley
ben.cowley@helsinki.fi

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cognitive Neuroscience,
a section of the journal

Frontiers in Human Neuroscience

Received: 17 February 2021
Accepted: 02 June 2021
Published: 29 June 2021

Citation:
Veilahti AVP, Kovarskis L and

Cowley BU (2021) Neurofeedback
Learning Is Skill Acquisition but Does

Not Guarantee Treatment Benefit:
Continuous-Time Analysis of

Learning-Curves From a Clinical Trial
for ADHD.

Front. Hum. Neurosci. 15:668780.
doi: 10.3389/fnhum.2021.668780

Neurofeedback Learning Is Skill
Acquisition but Does Not Guarantee
Treatment Benefit: Continuous-Time
Analysis of Learning-Curves From a
Clinical Trial for ADHD
Antti Veikko Petteri Veilahti1†, Levas Kovarskis2 and Benjamin Ultan Cowley3,4,5*†

1 Department of Communication, Faculty of Humanities, University of Copenhagen Research Unit, Social Insurance
Institution of Finland (Kela), Helsinki, Finland, 2 NewPsy Institute, Helsinki, Finland, 3 Faculty of Educational Sciences,
University of Helsinki, Helsinki, Finland, 4 Cognitive Science, Department of Digital Humanities, Faculty of Arts, University
of Helsinki, Helsinki, Finland, 5 Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of
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Neurofeedback for attention deficit/hyperactivity disorder (ADHD) has long been studied
as an alternative to medication, promising non-invasive treatment with minimal side-
effects and sustained outcome. However, debate continues over the efficacy of
neurofeedback, partly because existing evidence for efficacy is mixed and often non-
specific, with unclear relationships between prognostic variables, patient performance
when learning to self-regulate, and treatment outcomes. We report an extensive
analysis on the understudied area of neurofeedback learning. Our data comes
from a randomised controlled clinical trial in adults with ADHD (registered trial
ISRCTN13915109; N = 23; 13:10 female:male; age 25–57). Patients were treated with
either theta-beta ratio or sensorimotor-rhythm regimes for 40 one-hour sessions. We
classify 11 learners vs 12 non-learners by the significance of random slopes in a linear
mixed growth-curve model. We then analyse the predictors, outcomes, and processes
of learners vs non-learners, using these groups as mutual controls. Significant predictive
relationships were found in anxiety disorder (GAD), dissociative experience (DES), and
behavioural inhibition (BIS) scores obtained during screening. Low DES, but high GAD
and BIS, predicted positive learning. Patterns of behavioural outcomes from Test Of
Variables of Attention, and symptoms from adult ADHD Self-Report Scale, suggested
that learning itself is not required for positive outcomes. Finally, the learning process was
analysed using structural-equations modelling with continuous-time data, estimating the
short-term and sustained impact of each session on learning. A key finding is that our
results support the conceptualisation of neurofeedback learning as skill acquisition, and
not merely operant conditioning as originally proposed in the literature.

Keywords: ADHD, adult ADHD, neurofeedback, EEG, clinical trial, learning, classification, continuous-time
modelling

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition with symptoms
which begin in childhood and often continue into adulthood, and is currently estimated to
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affect 2.5–3.4% of the adult population (Kessler et al., 2006).
Here, we report exploratory analyses of a randomised controlled
clinical trial of neurofeedback treatment in adults with ADHD
(registered trial ISRCTN13915109; Cowley et al., 2016), focusing
on the understudied area of neurofeedback learning, and its
implications for treatment.

In current diagnostic practice ADHD refers to substantial
disability, of neurodevelopmental origin, in several dimensions
of executive function: a “lack of persistence in activities that
require cognitive involvement, and a tendency to move from
one activity to another without completing any one, together
with disorganised, ill-regulated, and excessive activity” (APA:
DSM5, WHO ICD-10). Given the heterogeneous and comorbid
profile of ADHD, psychostimulant treatments are not always
specific or sustained (Monastra et al., 2002); and seem to have
no effect for about a third of all ADHD patients (Hermens et al.,
2006). In this context, neurofeedback (NFB) has been proposed
as a complementary option for treatment of ADHD, with a rich
literature and history of clinical application (Arns et al., 2014). In
NFB, patients train self-regulation of certain features of their own
neural activity, with the aim of reducing task-related attention
deficits, and/or hyperactivity-impulsivity.

The clinical trial (Cowley et al., 2016) analysed in this study
followed one of the most established approaches: patients must
train to regulate the power (decibels) in specific bands of the
electroencephalograph (EEG) frequency spectrum—e.g., theta-
beta ratio (TBR) and sensorimotor rhythm (SMR) regimes
target theta (4–8 Hz) and beta (13–30 Hz) bands. Other
common approaches focus not on frequency bands but, e.g.,
on “slow” potentials of the EEG waveform (Strehl et al., 2017),
or peripheral nervous system signals (Calderon and Thompson,
2004). It must be noted that in each case, the exact mechanism
of the affected neural process is not fully understood. For
example, in a recent study EEG spectral features were able to
classify adult ADHD patients from controls, but TBR was not
(Kiiski et al., 2020).

In summary, NFB refers to multiple regimes, which each have
different partially understood effects, each potentially interacting
in different ways with the subtypes of ADHD and the wide range
of possible comorbidities; and delivered with limited treatment
standardisation (Cortese et al., 2016). Therefore, the question “is
NFB efficacious for ADHD?” is possibly ill-posed, as suggested by
recent work promoting standardisation of NFB (Arns et al., 2020;
Ros et al., 2020). The gold standard for efficacy assessment is a
randomised controlled trial (RCT) with pre- vs post-treatment
comparison of ADHD symptoms, but analysis at this level of
detail has not provided a definitive conclusion. We must narrow
down the broad question of efficacy to dig deeper into the
component parts of the treatment. One neglected area of study,
which is peculiar to NFB, is how well patients learn to perform
the regulation task and how the quality of learning affects efficacy.

Thus far, most efficacy studies have failed to address the
variability in NFB learning; that is, to distinguish between the
“performers” and “non-performers” (Alkoby et al., 2017). This
distinction is crucial because pooling data from subgroups of
ADHD patients who benefit differently from NFB treatment,
not only diminishes individual effect sizes (cf. Sonuga-Barke

et al., 2013; Micoulaud-Franchi et al., 2014; Cortese et al., 2016),
but also hides any qualitatively different effects manifested in
different subgroups. Moreover, finding reliable ways of identifying
the performers would enhance prognosis and the allocation of
clinical resources.

We here report a novel, exploratory analysis of a clinical trial
of NFB for adults with ADHD, focused on their learning and its
predictors, correlates, and outcome effects. Our original research
(e.g., sample size based on statistical power analysis, as detailed
in section 2.5 of Cowley et al., 2016) was designed to test the
efficacy of NFB training in the entire training group. We found
no such general effect; however, (unlike data in most RCTs),
our data includes detailed measurements from each training
session, allowing us to distinguish between two groups of patients
based on training progress. These data (and the consequent
analysis approach which takes the session as the primary unit of
observation, N ' 920) are sufficient to explore NFB learning:
to characterise the learning process by linear mixed models and
by continuous-time structural equations modelling of session-
scores in a multilevel setting; and to test predictors and outcomes
of learning. Despite the low sample size at the patient level,
this study pioneers a demonstration of the complexity of NFB
modelling, and makes a necessary and important contribution to
guide the design of future NFB-related research.

Aims
Our main aim is to analyse NFB learning, its predictors, and
effects on ADHD behavioural outcomes. Part of the complexity
of understanding NFB lies in the debate over what type of
learning it represents and from what aspects of treatment the
effects actually emerge. Traditionally, NFB training was viewed as
operant conditioning aimed at “normalising” EEG and “repairing”
some neurophysiological dysfunction (Gevensleben et al., 2009a).
However, some recent research views NFB as skill learning
(Strehl, 2014), aimed at learning a “tool for enhancing specific
cognitive or attentional states in certain situations” (Gevensleben
et al., 2009b: 781). The latter requires conscious processing, and
there is evidence that skill-learning does not occur similarly in
all patients in NFB training (Doehnert et al., 2008; Wan et al.,
2014). Therefore, NFB cannot take place without a behavioural
component [as noted in Schönenberg et al. (2017)], suggesting
that it could be a form of behavioural therapy (Strehl, 2014). This
has methodological implications for studying the efficacy of NFB
training (Gevensleben et al., 2014), making it crucial to identify
in advance those that can benefit (e.g., Truant, 1998).

Recent work has called for closer examination of NFB
learning, both during training and in the long-term (Gevensleben
et al., 2014; Zuberer et al., 2015). To our knowledge, the results
presented here are the first to comprehensively analyse NFB
learning in adults with ADHD.

Our prior paper (Cowley et al., 2016) focused on the protocol,
and reported only the pre- to post-treatment ADHD symptom
change compared to a wait-list control group. We found a
treatment effect in placebo-confounded self-reports, but not in
attention test scores. In this paper, we study NFB learning from
the same data, exploiting three features of the trial’s design to help
control for confounds due to the unclear mechanism of NFB.
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First, the trial data was collected through all sessions,
and self-reported symptom scores were collected four times
for each patient.

Second, we used personalised NFB protocol assignment:
after treatment-randomisation, patients were split between TBR
and SMR training regimes, based on a ratio of theta to beta
power greater than 1.

Third, we included “inverse training” trials in the set of
sessions from halfway to the end of training. Inverse trials use
feedback based on the inverse of the standard training target, e.g.,
regulating theta power up and beta power down.

Research Questions
We address three overarching research questions (RQs).

First, RQ1: how can we identify and characterize the
learning observed in TBR and SMR regimes? We model the
magnitude of gain in performance scores, and classify patients into
learner and non-learner groups based on model coefficient. To
account for treatment scheduling variation, we also model how
performance changes over continuous time during NFB training.
Each model of the learning processes is examined for differences
between TBR and SMR regimes.

Second, RQ2: what clinically-relevant variables are
predictive of likelihood-to-learn? Prediction of NFB learning
considers factors clinically-relevant but non-specific to ADHD.
These factors include confounders of ADHD aetiology, such as
trauma (Szymanski et al., 2011); and variance in biopsychological
traits, such as behavioural inhibition, which have been shown to
affect success in biofeedback training in a non-clinical sample
(Kosunen et al., 2018). Finally, the relative band power ratio
(BPR) is examined, as it was used as a basis of dividing patients
into the two training groups.

Third, RQ3: how do NFB learners differ from non-learners
in terms of treatment outcomes for ADHD-related symptoms?
We examine whether outcome variables from self-report and
behavioural ADHD-symptom tests differ between learner vs non-
learner groups. Though it is not a research question of this
paper, for illustrative purposes we include in Supplementary
Material a contrast of learner and non-learner outcomes with the
“untreated reference level” provided by wait-list controls (who
recorded the same outcome data). No prior study has addressed
whether positive NFB learning is a sufficient, let alone a necessary,
condition for improvement of ADHD-related symptoms. We
also examine whether any learning-predictive variables from RQ2
modified the effects of learning on outcome variables, contrasting
learners and non-learners.

MATERIALS AND METHODS

Below we describe all methods used in this paper, but see Cowley
et al. (2016) for details on the design and implementation of
clinical trial ISRCTN13915109.

Participants
Data here analysed come from 23 adults treated with NFB (13
females, 10 males; aged 25–57, m = 35.7, sd = 9.7). From an initial

cohort of 54 screened volunteers, 26 patients were randomly
selected for treatment: one dropped out during NFB training,
and two (1 female, 1 male) were excluded from analysis due to
insufficient data.

Inclusion criteria for the ADHD group were: (1) pre-existing
diagnosis of ADHD/ADD, (2) no neurological diagnoses, (3) age
between 18 and 60, (4) scores on Adult ADHD Self Report Scale
(ASRS; Kessler et al., 2005) and Brown ADHD scale (BADDS;
Brown, 1996) indicating the presence of ADHD, and (5) an IQ
score of at least 80 using WAIS IV measured by a qualified
psychologist (Wechsler, 2008). No strict cut-off values were used
for ASRS and BADDS to indicate the presence of ADHD/ADD.
Instead, exclusion was decided by the consulting psychiatrist,
who conducted structured clinical interviews with participants
using the Diagnostic Interview for ADHD in Adults (DIVA 2.0;
Kooij, 2012). Comorbidities were evaluated during the clinical
interview, and exclusion criteria included outlier scores in scores
of Generalised Anxiety Disorder (GAD; Spitzer et al., 2006),
Beck Depression Inventory (BDI; Beck et al., 1996), Alcohol Use
Disorders Identification Test (AUDIT; Saunders et al., 1993), the
Mood Disorder Questionnaire (MDQ; Hirschfeld et al., 2000),
test of prodromal symptoms of psychosis (PROD; Heinimaa et al.,
2003), and the Dissociative Experiences Scale (DES; Liebowitz,
1992). The psychiatrist followed DIVA guidelines to confirm
the existing ADHD/ADD diagnosis, or not. All participants had
normal or corrected-to-normal vision.

All patients were fully briefed about all study components,
gave written informed consent for participation, and had access
to a qualified psychiatrist. The study protocol followed guidelines
of the Declaration of Helsinki for participants’ rights and study
procedures. Approval was granted by the Ethical Committee
of the Hospital District of Helsinki and Uusimaa, 28/03/2012,
621/1999, 24 \S. Participants were not remunerated.

Procedure
Before NFB started, patients underwent eyes-open and eyes-
closed baseline measurement of high-resolution 128-channel
EEG in a shielded room. During this session we also obtained
baseline behavioural and self-reported tests of ADHD symptoms
(see section “Measures”). A similar session was applied after NFB
treatment. Pre and post-treatment sessions had about 1 hour of
task recordings each.

From the baseline EEG data, we computed individual
spectrographs per condition and subtracted eyes-open from eyes-
closed in order to determine the individual alpha peak frequency
(IAPF; as per Lansbergen et al., 2011). We multiplied the
canonical frequency band thresholds (e.g., 8 and 12 Hz for alpha)
by the IAPF frequency to obtain individual frequency bands, and
thus an individual theta/beta-ratio for assignment to TBR or SMR
regimes, and individualised targets during NFB training. Among
the 23 patients included in this study, 8 patients (3 female, 5 male)
with theta/beta-ratio exceeding 1 were placed in the TBR training
group. The other 15 patients (10 female, 5 male) received SMR
training. SMR feedback was based on electrode C4 in the 10/20
system, whereas TBR feedback was based either on Fz electrode.

For the clinical trial (Cowley et al., 2016), we used automated
constrained randomisation to assign patients to treatment or
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control group, so that groups had closely matched background
variables such as age, IQ, diagnosis (ADHD/ADD), education, or
gender. However, assignment to NFB regimes was not similarly
controlled, so for the study reported here, background variables
were tested between regime groups. The two groups did not
significantly differ in any variables, although average age in the
TBR group was 32.6 years, to 38.6 years in the SMR group,
consistent with the finding that theta-beta ratio tends to decline
with age (cf. Bresnahan et al., 1999).

NFB training was conducted in a professional clinical setting
using an Enobio ambulatory EEG amplifier (Neuroelectrics SL,
Barcelona). NFB treatment consisted of 40 training sessions
(4 participants recorded only 39 usable sessions, and 1 only
38, due to technical issues), according to the design illustrated
in Figure 1.

There were two to five sessions per week (max 1 session per
day). Each lasted about an hour and typically consisted of 5–7
trials of NFB training. At the “tutorial” stage, that is, during the
first two sessions, participants were given NFB trials that were
made easier by adjusting baseline thresholds. During the first half
of sessions (“Beginner” stage), only normal training trials were
used. After this there was a mid-training break lasting up to two
weeks. Following the break, during the second half of training
(“Intermediate” stage), inverse training trials were introduced.
Finally, in the last quarter of training (“Expert” stage), normal and
inverse trials were accompanied by transfer trials (no immediate
feedback given). As inverse and transfer trials were introduced,
the number of normal trials was decreased to accommodate.
Names given to stages are only descriptive, and not meant to
imply a real level of skill—that would vary by individual.

Measures
Measures fall into two types: study-level—calculated once per
patient, e.g., learning curve slope; and session-level—calculated
once per session, e.g., NFB performance averaged across
trials in a session.

RQ1—Learning
To address RQ1 and estimate learning from performance data,
during each session we recorded the average scores of normal,
inverse, and transfer trials. The score of a trial was based on the
percentage of time a patient achieved positive classification in
the NFB task (e.g., in a normal TBR trial, this would be when
theta band power is below and beta band power is above their
respective baseline values). The scores were adjusted post-hoc to
account for variance in baseline band powers, i.e., each trial score
was multiplied by the baseline theta:beta ratio (or theta:SMR
ratio) of that session. Inverse trials were baseline-adjusted by the
reverse ratio. We used normal trial scores from the first 30 sessions
to classify NFB learning, thereby excluding transfer trials.

RQ2—Prediction
To study the prediction of learning and address RQ2, two scales
from the set of exclusion criteria (measured at screening) were
used as “clinically-relevant” variables: Generalised Anxiety
Disorder (GAD), and Dissociative Experiences Scale (DES).
In addition, the Behavioural Inhibition Scale/Behavioural

Activation Scale (BIS/BAS; Carver and White, 1994) was
measured during the post-treatment lab session.

In addition, we calculated the BPR for each protocol.
Specifically, for TBR patients the ratio was based on relative band
power of theta vs full-spectrum beta at a frontal electrode. For
SMR patients the band powers were recorded at central sites on
a reduced bandwidth (12–15 Hz). Therefore, despite the different
meaning of BPR under the two regimes, in both cases it still serves
as a neurological marker targeted by NFB training, helping us to
examine the pertinence of the operant conditioning framework.

RQ3—Outcome
To study the effect of learning on outcomes and address RQ3,
we collected Test of Variability of Attention (TOVA, Greenberg
et al., 2007) scores at pre- and post-NFB training; and Adult
ADHD Self Report Scale (ASRS, Kessler et al., 2005) scores at
pre-treatment and at sessions 10, 30, and 40. ASRS consists
of 18 items tapping the frequency of recent DSM-IV criterion
symptoms of adult ADHD, with sub-factors for Inattention
(IA) and Hyperactivity-Impulsivity (HI). Also, TOVA provides
measures of response time (RT), response time variability (RTV),
omission errors (OM), commission errors (COM), the D-prime
index of sensitivity to target vs. non-target stimuli, an index of
symptom exaggeration, and an overall “attention performance
index.” It has been argued that the set of behavioural TOVA
scores provides an objective measure to indicate effectiveness of
NFB training in terms of specific attentional properties such as
impulse control and variability of response (Kaiser and Othmer,
2000). The internal consistency of TOVA scores has been verified
(see e.g., Leark et al., 2004).

Study Design
Statistical analyses were conducted by STATA version 14.2 except
for continuous time structural equations modelling (Oud and
Jansen, 2000), which was conducted by R version 3.4.1 and
“ctsem”-package version 2.4.0 (Driver et al., 2015). In Results,
we report all effects with exact p-values (where known), since
our approach is exploratory and based on small sample sizes.
Note that, as with measures, tests are defined either at study-level
or session-level.

RQ1—Modelling NFB Learning
To address RQ1, we tackled three difficulties of modelling
learning. First, the model of learning is unknown: literature
currently cannot tell us which curve family or model, e.g.,
power law, exponential, or piecewise, would best apply to
clinical NFB learning data. We addressed this by comparing
the heteroscedasticity of different models. Following Wan et al.
(2014)’s suggestion that the logarithmic curve family could be
suitable to model non-clinical NFB learning, we applied linear
mixed models (LMMs) to the logarithm of the training score,
with patients as random-factor predictors, expressed as the
following growth curve model:

log
(
normalscore

)
= βxx+ βs × sessionnumber + u+ error

where level-two was formed by patients x and level-one by
the session number s. Higher level variance component u was
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FIGURE 1 | Schematic of the NFB treatment design, showing (from bottom to top) four phases containing 40 sessions with 5–7 trials each session. Each phase
prescribes a different session-protocol, aiming to support patients learning to self-regulate.

constant for each patient. We thereby obtained a model that
was homoscedastic, i.e., error distribution of the model was
independent of predicted score (see Supplementary Material for
details). This log-transformed data also slightly improved the
fitness of the model and helped to compress upper outliers.

The second difficulty is how to characterise the chosen
components of learning: in our case, performance gain. Our
estimate of gain is based on the absolute difference between
intercept of the logarithmic LMM and value of the model at
treatment end:

gain =
∣∣Intercept − yt= 30

∣∣
Then, we classified as “learners” those patients whose individual
growth curve slope (βx) in the LMM was positive and statistically
significant. This was tested by the Wald-test measure of the null
hypothesis βx ≤ 0; patients for whom this null could not be
invalidated were classified as “non-learners.”

Third, there can be substantial variation in the learning
effect across individuals. Variance in scores is handled using
hierarchical models, as described; more difficult to manage is
variance in the temporal distribution of training sessions. Despite
starting with a uniform regular schedule, patients varied in
how many sessions they had each week (due to cancellations
or rescheduling for technical or personal reasons), and thus
the amount of time between sessions varied. Since this is an
unavoidable risk for clinical NFB trials (because even if sessions
are strictly scheduled they might still fail due to uncontrollable
factors), it is interesting to note that modelling such temporal
variability has never before been attempted. Here, we analysed
scores in context of the continuous actual times they occurred.

To do this, we studied the role of BPR and learning within
each NFB regime, TBR and SMR, separately by a session-
to-session process analysis of the evolution of group-means,
based on structural equations modelling with continuous time
data (CTSEM), using the R package “ctsem” (Driver et al.,
2015). We particularly define it as a two-level model, where
structural equations modelling is used to analyse the progression
of different scores between sessions (level 1), clustered by patients
(level 2). It should be noted that, in terms of statistical power,
the number of level 1 units is more important and level 2

units are only used to account to between patient variance and
differences in model coefficients. This is because the model is
not used to identify between-patient differences or predictors,
except for a comparison between TBR and SMR protocols. See the
Supplementary Material for a technical description of the model.

The CTSEM models had three outcome variables: the BPR
value, and the session averages for normal and inverse training
scores. Moreover, because each training session has a specific
impact on training scores, each session was incorporated as
an exogenous predictor in two ways in order to estimate
both its short-term impact (impulse) and its sustained effect
(level change). The distinction between these two scenarios is
important from the point of view of the learning process, because
the consolidation of learning can be assumed to effectuate
level change, whereas a short-term effect without long-term
acquisition of skills would count as an impulse.

RQ2—Predict NFB Learning
RQ2 was tested using one-tailed t-tests of the difference between
learner vs non-learners in scores from DES, GAD, and BIS/BAS.
Because variables DES and GAD are highly correlated, their
predictive value for identifying NFB learners was further assessed
by forming three different linear probability models where either
one of DES or GAD, or both, served as predictors of the
classification of learners.

P
(
learner

)
= βDESDES+ cD

P
(
learner

)
= βGADGAD+ cG

P
(
learner

)
= β′DESDES+ β′GADGAD+ cDG

At the within-subjects level, we tested the difference of learner
vs non-learner BPR using one-tailed t-test. For this test each
patient was ascribed with a variable dBPR that measures the
change of the average BPR between sessions 1 to 5 and sessions
30 to 34. Further, we constructed a correlation table to test the
mutual relevance of the variables: classification of learners, dBPR,
DES, GAD and BIS.
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Self-report variables collected at each session (e.g., effort,
hours slept) were tested by a linear mixed model seeking to
explain the logarithm of the normal session score:

log
(
normalscore

)
= βxx+ βs × session+ βinteraction

×session× x+ u+ error

where level-two was formed by patients and level-one by sessions
(training days). Higher level variance component u was constant
for each patient. The interaction coefficient βinteraction was then
tested for whether the specific predictor variable (e.g., mood or
sleep) affected the slope of the learning curve. Moreover, other
LMMs were built to address whether these variables affected
scores at individual sessions:

log
(
normalscore

)
= βxx+ u+ error

RQ3—Outcomes of NFB
To address RQ3, again we used one-tailed t-tests of outcome
variables between learners and non-learners at single time points,
or within-groups between two time points. For each TOVA
variable, we calculated the differences of the pre- and post-
training measures. For ASRS, we used the difference between the
scores at the 30th session and before training.

Regarding the relationship of predictors with outcomes, and
given the relevance of trauma in ADHD, we also classified
patients by below median (<25) or above median (>=25) DES

score before NFB training. Differences in the change of TOVA
and ASRS scores were tested also for the high and low DES
groups by using one-tailed t-tests. Moreover, in order to address
the specific contribution of learning classification, DES, and BIS,
we developed linear regression models with the specific TOVA
measures as the outcome variables and three variables as the
predictors (BIS, DES, and learner/non-learner status).

RESULTS

RQ1
Identification of “Learners” and “Non-learners”
Based on the gain of the LMM of log-transformed session-
wise NFB performance scores, we observed a robust learning
effect across patients. We used standardised slopes of the LMM
to split the sample between 11 learners and 12 non-learners.
This classification is presented in Table 1, along with the main
study-level variables such as clinical self-reports.

Figure 2 (top) shows the distribution of key learning-
related variables (slope of linear learning curves for normal
and inverse scores, gain of normal scores, BPR, DES, BIS) for
each combination of learning status and NFB regime. Figure 2
(bottom) shows the group means and bootstrapped 95% CIs of
normal trial scores, smoothed, across all training sessions 3–
40. At least in TBR regime, the last 10 trials show a downward
trend which may relate to the reduced number of normal trials

TABLE 1 | Columns left-to-right: NFB regime; classification of learning; gain derived from the growth curve model of logarithmic scores over session numbers;
z-transformed slopes of growth curve model; p-value of the model effect; patient’s BIS, DES, and BPR change values; classification of learning over sessions
with inverse trials.

NFB regime Age Status Gain (yt = 30-) Standardised Wald BIS DES Change in Inverse slope,

intercept) slope (z-score) p-value BPR standardised

TBR 31 Learner 13.7 6.0 <0.001 19 9 0.16 1.0

TBR 32 Learner 8.8 4.5 <0.001 14 40 0.12 −0.8

TBR 37 Learner 14.0 3.6 <0.001 17 16 0.27 2.5

TBR 30 Learner 10.3 3.1 0.002 18 25 0.31 −1.3

TBR 33 Learner 6.4 2.3 0.02 14 12 0.12 0.1

TBR 30 Non-Learner 8.1 1.9 0.06 12 28 0.20 1.43

TBR 32 Non-Learner 0.1 1.6 0.12 16 64 0.04 3.3

TBR 37 Non-Learner −1.2 −1.4 0.16 9 58 0.06 0.0

SMR 46 Learner 10.4 3.6 <0.001 16 4 0.08 −0.4

SMR 27 Learner 5.7 3.3 0.001 11 19 0.05 −0.3

SMR 29 Learner 12.1 2.7 0.007 11 59 0.10 1.7

SMR 55 Learner 5.5 2.5 0.01 15 44 0.13 0.4

SMR 31 Learner 6.4 2.3 0.02 16 51 −0.01 0.1

SMR 57 Learner 7.0 2.2 0.03 19 13 0.11 0.7

SMR 25 Non-Learner 10.0 1.3 0.19 8 7 0.12 0.3

SMR 38 Non-Learner 4.8 1.2 0.22 17 46 −0.17 1.2

SMR 46 Non-Learner 5.4 0.7 0.47 12 23 −0.13 −0.7

SMR 37 Non-Learner 2.7 0.6 0.55 14 22 0.22 1.0

SMR 28 Non-Learner 8.3 0.6 0.55 15 82 −0.04 −0.2

SMR 26 Non-Learner 2.2 0.3 0.73 13 91 −0.06 −2.0

SMR 37 Non-Learner 6.2 −0.7 0.49 7 118 0.03 −0.4

SMR 55 Non-Learner −1.2 −1.4 0.17 16 22 −0.08 0.0

SMR 43 Non-Learner 9.0 −1.8 0.08 14 26 0.10 1.3
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FIGURE 2 | (A–F) Ridge plots of six learning-relevant variables (x-axes), grouped by categories of learning status and NFB regime (y-axes). (A) Slope of the growth
model of normal-trial NFB performance, i.e., learning. (B) Slope of the growth model of inverse-trial NFB performance. (C) Gain in scores across NFB performance.
(D) Change in baseline Band Power Ratio across treatment. (E) Behavioural Inhibition scale. (F) Dissociative Experiences scale. (G) Normal-trial performance scores
at each session, grouped by learning status under TBR and SMR regimes. Lines are session-wise mean of all participant scores, bands are bootstrapped 95% CIs
of the mean. Means and CI-edges are smoothed for visualisation with a running median of width 3. (H) Theta-Beta Ratio across sessions grouped by learning status
and regime, as panel (G).
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FIGURE 3 | Cross-lagged effects (i.e., components of the drift matrix A) among learners under each NFB regime. Left panel: for TBR, cross-lagged effects indicate
negative effect of inverse training scores on normal session scores. Right panel: for SMR, cross-lagged effects indicate positive effect of inverse training scores on
normal training scores.

FIGURE 4 | Slopes of patient-wise linear learning curves plotted against self-reports BIS (A), DES (B), and GAD (C). Each panel shows separate linear regressions
for NFB regime subgroups, annotated with equations and r2 values. The TBR regime subgroup shows strong positive relationship (r = 0.7) between BIS and learning
curve (A), and a negative relationship (r = −0.9) between DES and learning curve (B).

in per session averages, and/or a cross-over influence from the
transfer trials.

Learning Over Continuous Time
The CTSEM approach was used to specify how individual normal
and inverse training trials affected NFB scores over continuous
time. Figure 3 shows model outcomes among the learner group,
demonstrating that NFB learning appeared to take place between
four to eight days after a given training session. In other words,
in the hypothetical situation that training was interrupted after a
given session, it would be expected to take about one week before
the full effect of past training sessions was visible.

Moreover, the cross-lagged effect of normal training scores
on the BPR was visible among the learners under both NFB
regimes (Figure 3), suggesting the possibility that the effects of
NFB training are partly mediated by BPR changes.

When it comes to differences between regimes, inverse scores
in the SMR regime also had a positive effect on the BPR,
which means that inverse training is not necessarily harmful
under the SMR regime. Under the TBR regime, by contrast,
inverse training had a quick negative impact on normal training
scores. The BPR itself did not have a notable negative effect on

normal or inverse session scores. In particular, BPR is a lagging
indicator whereas the normal and inverse training scores lead
it. Comparing learning groups, for learners under both regimes
the cumulative number of normal training trials appeared to
have a positive learning effect on the normal score, whereas the
non-learning groups did not demonstrate such effects.

RQ2—Prediction of Learning
The effect of DES, BIS, and GAD self-report scores on the
learning slope is illustrated in Figure 4. DES has a negative
correlation with the slopes of patient-wise learning curves
(r =−0.35, p = 0.099), which appears to be driven entirely by the
TBR group (Panel B), similarly as for BIS scores (though weaker
with the opposite relation).

BAS scores of learners and non-learners did not differ
significantly, but BIS scores did (BIS 15.4 [CI: 13.3–17.5] vs 12.8
[CI: 10.7–14.9], t(20) =−1.89, p = 0.04)—see Figure 4A.

Dissociative Experiences and Anxiety
Scores on the dissociative experiences scale (DES) were lower
among the learner group (24.1 [CI 11.3–36.9]) than among
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the non-learners (46.3 [CI: 25.7–67.0], t(21) = 1.92, p = 0.04).
The effect of DES scores on NFB learning was confirmed by
a linear growth curve model, separately for both regimes (see
Supplementary Material, Tables I.1, I.2).

Scores on the generalised anxiety disorder scale (GAD)
were higher among the learners (7.1 [CI: 4.8–9.6]) than the
non-learners (mean 4.8 [CI: 2.6–7.1]), though not statistically
significant [t(21) =−1.46, p = 0.08]. GAD is also highly correlated
with DES. Yet DES and GAD scores appear to have opposite
effects on the learning status: it is those patients who score
high on anxiety but have low dissociative experiences score that
seem the most likely to be able to learn to self-regulate. When
seeking to explain who were classified as learners, the model
which combined both DES and GAD scores (Table 2) had higher
F-score, and explained over twice the variance, compared to
models with either DES or GAD as the only predictor.

Baseline Band Power Ratio and Its Interactions
The learner/non-learner classification was not related to the
initial BPR, but instead to the change between pre- and post-
training BPR values. In particular, BPR was enhanced in the
learner group (0.127 [CI: 0.064–0.191]), with no change among
the non-learners (0.028 [CI:−0.050–0.107]), and the groups were
significantly different [t(21) =−2.15, p = 0.02]. This suggests that
changes in the BPR could serve as one mechanism mediating
the effects of NFB learning. Thus we looked at its interactions
with the aforementioned predictors of NFB learning—BIS, DES,
and GAD scores. According to the following correlation table
(Table 3), changes in the BPR (i.e., dBPR) were correlated
particularly with DES scores (r = −0.35), whereas BIS values
and GAD scores appeared to be associated with other learning
mechanisms not directly associated with the BPR.

RQ3—Outcomes of Learning
TOVA Behavioural Scores
Analysing the pre- to post-training change in behavioural scores
from TOVA test, Cowley et al. (2016) found no statistical
differences between the whole NFB treatment group and
wait-list control group. In contrast, we found several effects
comparing TOVA scores between learners and non-learners. The
relationship between the three groups was typically that learners
and non-learners changed in opposite directions, while wait list
changed little, i.e., their scores lay between the other two groups.

Learner vs non-learner effects were: first, the gains in normal
session scores were negatively correlated with the baseline
measurement of omission errors, i.e., before NFB, learners
made fewer omission errors than non-learners (learners 1.1
[CI: 0–2.55] vs non-learners 5 [CI: 0.16–9.83], t(20) = 1.568,
p = 0.07). We compared the change of TOVA scores
after training among the learners and non-learners. The
omission errors appeared to become more common among
the learner group [1.1 → 22.2, t(9) = 1.98, p = 0.04]
while the effect was insignificant among non-learners [5
→ 9, t(11) = 0.56, p = 0.30]. The wait-list group had
approximately the same small degree of change as the
non-learners (see Supplementary Material). Therefore, it is

TABLE 2 | Linear probability models of the learning status as a function of DES,
GAD or both, N = 23.

Model I (DES) Model II (GAD) Model III (DES + GAD)

DES β-coefficients −0.07* −0.10**

GAD β-coefficients 0.035 0.065*

Intercept β-coef. 0.71*** 0.25 0.45*

R2 0.157 0.065 0.351

F(1, 20) 3.72 1.40 5.14

*p < 0.05; **p < 0.01; ***p < 0.001.
Learning status: non-learner = 0, learner = 1.

TABLE 3 | Correlation table of different patient-level measures, N = 23.

Learner Change in BPR BIS DES

Change in BPR 0.42*

BIS 0.39* 0.14

DES −0.40* −0.35* −0.42*

GAD 0.26 −0.10 0.038 0.38*

*p < 0.05.

TABLE 4 | Average change of several TOVA values for learners and non-learners
and t-values for testing differences learners and non-learners in relation
to these changes.

Non-learners Learners t df p

Change of standard score
of D prime

0.77 −0.79 2.24 20 0.02

Change of response time
variability

−16.7 24.4 −2.33 20 0.01

Change of omission errors 4 21.1 −1.48 20 0.08

not obvious that NFB learning itself automatically leads to
improvement in ADHD symptoms.

Learners also had higher pre-training D’ scores (i.e., the
subject’s ability to discriminate the target stimulus from the non-
target stimulus) than non-learners (learners 5.65 [CI: 4.81–6.49]
vs. non-learners 4.74 [CI: 3.96–5.51], t(20) = 1.77, p = 0.05).
Non-learners then scored higher after NFB training, though not
significantly different to learners. In particular, the D’ score of
learners declined from 5.65 to 4.86 [t(9) = –2.06, p = 0.03]; by
contrast, the D’ scores of non-learners increased from 4.74 to 5.51
[t(11) = 1.5, p = 0.08].

The third difference between the learners and non-learners
occurred in the change of response time variability, which
increased among the learners [89.0 → 113.4, t(9) = 1.92,
p = 0.04], but decreased among the non-learners [101.6→ 84.9,
t(11) = 1.38, p = 0.10]. The group difference results are presented
in Table 4. For both D’ and RTV, the wait list group experienced
almost no change from intake to outtake, thus lying between
learner and non-learner and not significantly different to either
(see Supplementary Material).

ASRS Self-Report Scores
Cowley et al. (2016) reported a significant decline in both
ASRS factors—inattention and hyperactivity-impulsivity—for
the treatment group compared with the control group. Within
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FIGURE 5 | ASRS sub-factor scores (hyperactivity and inattention) before training at session 0 and at session 30. Panel (A) shows grouping by learners and
non-learners, Panel (B) by DES < 25 and DES ≥ 25. Statistically significant differences between sessions 0 and 30 are indicated by asterisks (∗p < 0.05,
∗∗p < 0.01). Point-colouring by NFB regime reveals little difference.

TABLE 5 | Linear models of the change in several TOVA scores as outcomes, N = 23.

Symptom Attention D′ Omission errors Response time Response time

exaggeration index performance index variability

BIS −0.9 −0.19 0.66 −2.14* −2.08* −0.69

DES −2.13 1.75+ 1.52 0.06 0.35 1.45

Learner −0.23 −1.72+ −1.76+ −0.24 0.19 −1.28

Constant 10.48 −0.07 −0.63 1.58 1.58 0.33

+p < 0.10; *p < 0.05.

the treatment group, there was no difference between the learners
and non-learners for hyperactivity [−1 vs −1.09, t(20) = 0.09,
p = 0.93], whereas for inattention the difference between the
two groups was just shy of statistical significance [−2.09 vs
−0.55, t(20) = −1.65, p = 0.06]. This was driven by the fact that
inattention scores from the non-learners started higher and fell
significantly, as illustrated in Figure 5. The wait list group showed
the opposite pattern, and had a significant increase of inattention
scores compared to non-learners, but not compared to learners
(see Supplementary Material).

By contrast, when it comes to confounding variables, the ASRS
hyperactivity scores fell among those with DES value lower than
25 [5.82 → 3.80, t(9) = −1.95, p = 0.04], whereas there was
no change in hyperactivity scores in the group with higher DES
values [6.29→ 5.71, t(13) =−1.07, p = 0.15].

This is so even though the pre-training hyperactivity
scores were uncorrelated with DES scores and the change in
hyperactivity scores was independent of the improvement in NFB
scores (which was a strong correlate of DES). The inattention
scores, by contrast, fell more among those with DES values above
25 [7.79 → 5.93, t(13) = 3.36, p = 0.003], and not significantly
among those with low DES scores [7.5 → 6.5, t(9) = 1.2048,
p = 0.13].

Predictive Clinical Scores Modify Behavioural Effects
When controlling for the DES, BIS and GAD scores, which
are strongly correlated with the classification of learners, it

appears that those classified as non-learners still seemed to
improve more than the learners in terms of D’—i.e., the ability
to distinguish target and non-target stimuli—and response
time variability, yet the effect was no longer statistically
significant after control.

The effect of NFB learning on omission errors was virtually
absent when BIS scores were controlled for. Higher scores in the
dissociative experiences scale (DES), in contrast, seem to predict
improvement in the attention performance index and D’ scores,
despite the negative effect of high DES score on the learning
status. In fact, D’ scores did not improve for those with DES
values lower than 25 (−21.8 among low DES vs. 24.1 among high
DES trainees, t(20) = 2.24, p = 0.02) and neither did the attention
performance index [−2.9 low DES to 2.6 high DES, t(20) =−2.67,
p = 0.01]. The effect of training on TOVA scores thus appears to
have been very different depending on whether the patient initially
had low or high DES score (see Table 5).

DISCUSSION

While the question of efficacy of NFB training has been
extensively studied, few articles have dealt with the heterogeneity
of NFB learning and whether NFB efficacy is dependent on NFB
learning—despite that NFB is a treatment that is supposed to be
learned! Such work is vital to identify how clinical background
and NFB learning interact to produce beneficial treatment

Frontiers in Human Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 668780

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-668780 June 29, 2021 Time: 11:44 # 11

Veilahti et al. Neurofeedback Learning Is Skill Acquisition

outcomes. Indeed, if some patients benefit more than others, the
predominant focus of previous studies in the general effect of
NFB on all ADHD patients, particularly when sample sizes are
low, could be the reason why many meta-analyses have failed to
identify a statistically significant effect (cf. Sonuga-Barke et al.,
2013; Micoulaud-Franchi et al., 2014; Cortese et al., 2016).

This is the first study (that we are aware) to focus specifically
on (a) how learning unfolds over the course of NFB training
as modelled in uniform and in continuous time (RQ1), (b)
whether there exist markers to identify in advance those patients
who learn to self-regulate during NFB training (RQ2), and (c)
how learners differ from non-learners in terms of the outcome
effects of NFB training (RQ3). We have found substantive
evidence regarding these questions and their interactions. Based
on the learning process analysis using structural-equations
modelling with continuous-time data, estimating the short-term
and sustained impact of each session on learning, a key finding is
that our results support the conceptualisation of neurofeedback
learning as skill acquisition; not merely operant conditioning as
originally proposed in the literature.

Significant predictive relationships were found in anxiety
disorder (GAD), dissociative experience (DES), and behavioural
inhibition (BIS) scores obtained during screening. Low DES,
but high GAD and BIS, predicted positive learning. These
results provide another source of evidence supporting the claim
that NFB learning is skill acquisition, at least among those
patients with higher BIS scores, because BIS scores were not
strongly associated with changes in the BPR so that higher BIS
scores might enable participants to self-regulate pertinent bands
in situ. Finally, patterns of behavioural outcomes from Test Of
Variables of Attention, and symptoms from adult ADHD Self-
Report Scale, suggested that learning itself is not required for
positive outcomes.

Though our work is exploratory and the sample size
unfortunately small, if the results are supported by further
studies, the implications are profound. In therapy research it
is recognised that not all patients automatically benefit from
a given type of therapy; treatment response is regulated by
various factors due to both patient and therapist (Norcross
and Wampold, 2011). High DES scores, for example, could
indicate that patients suffer from trauma related symptoms
rather than ADHD and thus might benefit less from NFB
training. Even if the ADHD diagnosis is genuine, if NFB is
not driven only by operant conditioning, then there could
also be non-neural reasons why some patients fail to learn to
self-regulate. These include psychological factors like “subjects”
beliefs regarding their ability to gain control over technological
devices,” or the lack of suitable mental strategies used in the
learning process (Kober et al., 2013). For instance, a large portion
of child ADHD patients exaggerate self-efficacy and ability
(Owens et al., 2007), whereas low self-esteem seems to make
learning slightly more effective (Newark and Stieglitz, 2010).
Thus, psychoeducation of different strategies of processing NFB
data could also be important, though challenging. The idea that
NFB learning is skill acquisition also implies that motivational,
attributional, and personality factors might play a stronger role
(Gevensleben et al., 2014). Finally, increased knowledge of NFB

learning not only benefits clinical applications but could also
improve our understanding of neuroregulation and plasticity
(Van Doren et al., 2017).

RQ1—NFB Learning Modelled
Based on our growth-curve model of learning, we classified
roughly half the patients as learners—this is exactly in line with
previous studies of NFB learning (Doehnert et al., 2008; Wan
et al., 2014). We also demonstrated the far more technically-
challenging model of learning in continuous time, discussed
in detail below.

One methodological consequence of our study, regarding
modelling learning, is that linear growth curve models could lead
to heteroscedasticity; instead, using the logarithm of the training
score ensured homoscedasticity. Classification of learners and
non-learners must be based on well-formed models; this is
particularly important in designs like ours where the classification
itself serves as a basis for further analyses.

The transformed data corresponds to a log-lin space
(logarithm-transformed DV and linear IV), meaning the linear
regression line of the model is an exponential curve in linear
space—yet this result does not generalise. A thorough analysis of
model fitting across all available NFB clinical trial data is called
for, to establish if any general learning curve for NFB exists.

The CTSEM method revealed two key findings. First, under
both TBR and SMR regimes, the BPR appeared to be affected
by normal and inverse session scores, but inverse scores had a
negative impact on the BPR only under the TBR regime. This
suggests that the ability to up-regulate theta activity as indicated
by high inverse session scores could have a negative impact on the
TBR ratio in the following sessions. Second, under both regimes
the BPR appears to be a lagging indicator whereas the normal and
inverse training scores lead it, suggesting that our choice to use
training scores rather than pre-session BPR scores as the basis of
classifying learners is coherent with the data.

We also looked at the impact and sustained learning effects of
individual training trials. Peculiarly, the non-learners appeared
to receive an initially higher but non-lasting effect on normal
scores under the TBR regime. A similar phenomenon was not
observed under the SMR regime by using the CTSEM approach.
Moreover, in both regimes the negative effect of inverse training
on normal scores appeared to occur only among the learners,
while inverse training appeared to be neutral among the non-
learners. Inverse scores in our design were not independent of
normal scores, which precluded their use as a predictor in other
models; however, as a cross-lagged model, the CTSEM is capable
of handling the effect of different training types on each other,
and thus provides a valuable insight into the processes during
training. Table 6 shows a summary.

RQ2—NFB Learning Predicted
Learners and non-learners did not differ in most background
variables: age, gender, verbal comprehension, perceptual
processing or the initial band power ratio. They also did not
differ in terms of motivation, mood or excitement measured
before training.
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TABLE 6 | Effects visible among learners and non-learners under the two regimes
based on CTSEM models.

TBR SMR

Non-learners Learners Non-learners Learners

Normal
training

Higher but
non-lasting
effect on
normal scores

Long-lasting
effect on
normal scores

No visible
short- or
long-term effect
on normal
scores

Long-lasting
effect on
normal scores

Inverse
training

No visible effect
on normal
scores

A negative
effect on
normal scores

No visible effect
on normal
scores

A negative
effect on
normal scores

The strongest finding is that DES scores are negatively
related to learning (despite the fact that exceptional DES
scores were used as an exclusion criteria for recruitment).
Therefore, some patients with higher DES scores might have
comorbid dissociative symptoms or they might even have been
misdiagnosed with ADHD, their hyperarousal and inattention
in fact stemming from trauma (cf. Szymanski et al., 2011). The
results give tentative evidence that the studied NFB protocols
are less efficient for dissociative patients. Interestingly, BIS scores
also strongly and positively related to learning, indicating that
variation of sensitivity in the aversion-regulation system might
influence NFB learning.

These findings together show that TBR patients’ capacity
to learn self-regulation was mediated by stronger aversion-
regulation and less dissociative experience. The fact that we
deliberately selected the TBR group by their baseline prognostic
EEG features should imply that this group consisted of
individuals for whom the TBR therapy would be more effective.
However, the results of Kiiski et al. (2020) suggest that it is not so
clear, since in their study TBR did not classify ADHD patients
from controls, whereas EEG spectral features did. Kiiski and
colleagues did not investigate their sample’s prognostic variables,
thus the combined implication of our result and theirs might
be that elevated TBR, a well-established finding among children
with ADHD, is subject to maturation effects mediated by trait
dissociation and/or aversion response.

RQ3—NFB Learning Outcomes
We investigated the effects of NFB training, finding substantial
but not uniform differences between learners and non-learners.

In terms of behavioural outcomes of NFB training, the results
contrast interestingly with the initial assumption that the learner
group would benefit more from NFB training than the non-
learners. This result is somewhat counterintuitive and contrary
to what we expected, demonstrating a positive effect of NFB
training specific to the so-called “non-learners.” Unfortunately,
the existing data does not allow us to speculate on the actual
mechanism to explain this observation. However, it demonstrates
that non-learners, too, are likely to make an effort during NFB
training, with possibly different behavioural implications.

In effect, the behavioural outcomes of NFB training are not
reducible to changes in NFB scores or the BPR, and the effect

of training can be different in different patient groups. Part, but
not all, of the effect on changes in the attention performance
index and D′ scores are explained by higher DES scores. At the
same time, BIS scores explained almost entirely the reduction
of omission errors and response time among the learners.
Therefore, it is interesting that NFB learning as such appeared to
have no direct, general effect on behavioural scores but that they
appeared to be mediated by correlates like DES, BIS etc.

In terms of self-report scores, there occurred a qualitative
difference between the learners and non-learners; the latter
group demonstrated a decline in inattention scores. Hyperactivity
scores, though, declined for those patients with low DES scores
(see Figure 5). The interaction of DES and learning status means
it is not possible to tell whether improvement in NFB scores as
such plays a part or whether, instead, it is the different bases of
symptoms of the patients that explain the ASRS-related effects.

The most straightforward interpretation for why DES scores
matter is that higher DES scores make participants less
susceptible to changes in the BPR. In contrast, other predictors
of training success like BIS and GAD appear to act through other
mechanisms less related to changes in the BPR. Therefore, it is
those patients who have lower DES scores that are susceptible to
alterations in the BPR and react well to NFB training. In particular,
the low-DES patients improved in ASRS hyperactivity scores.

Contributions and Conceptual
Implications
This study has made the following novel contributions:

1. This study identified a central role for the behavioural
inhibition system and dissociative experiences in NFB
training of ADHD patients, and supported the model of
NFB learning as skill acquisition.

2. Several studies proposing a distinction between learners
and non-learners have assumed that those classified
as learners should benefit from NFB training (a view
sympathetic toward the operant conditioning model), but
our study has shown that also non-learners might benefit
from NFB training.

Therefore, even if our results are far from being exhaustive in
regard to the specificity of NFB training on ADHD patients, the
observed differences between learners and non-learners provide
a clear indication that previous NFB research, which has mainly
focused on studying the difference in pre- and post-training
group averages, is limited in two regards. First, learning takes
place over the sessions and it is not tied to the improvement of
training scores or the BPR measurements as would be assumed by
the operant conditioning model. The fact that the learners were
slower to adapt to NFB training but that the effects were sustained
in comparison to the non-learners suggests that there are possibly
multiple neural networks involved in NFB training and multiple
overlapping ways to conceptualise NFB learning. NFB learning
is thus a complex question, mirroring also the complexity of
the concepts of hyperactivity and inattention. These results also
reinforce the view that NFB training should be viewed as a form
of behavioural therapy (Strehl, 2014).

Frontiers in Human Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 668780

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-668780 June 29, 2021 Time: 11:44 # 13

Veilahti et al. Neurofeedback Learning Is Skill Acquisition

Limitations and Future Work
The small sample size—though comparable with most NFB
studies, due to their resource intensive nature—is the main
limitation of this study, meaning many results are necessarily
tentative. Also, the study populations under the two NFB regimes
differed depending on their initial TBR-value, although this was
a clinically necessary feature and for the sake of (most of)
our statistical analyses, was considered as a single, personalised
protocol. Moreover, in our study, inverse and the so-called
transfer trials were introduced in the latter half of the study,
and while we have not included the data except for inverse
trials when developing the CTSEM models, the trials themselves
could have affected also the outcomes measures, e.g., the strong
decline in performance observed at least in TBR learners (cf.
Kleinnijenhuis, 2007). However, despite these limitations, it is
safe to conclude that the benefits of NFB training vary across
different patient groups.

Methodologically, we chose to use a dichotomy of learning,
instead of using the standardised model slopes directly in our
analyses, though the latter have more information. This was due
to the small sample size: future work on large samples would be
free of these constraints. This methodological choice also allowed
us to render the discussion of results in terms of learners vs
non-learners, to provide clearer statements.

Future research must also assess whether observed differences
are due to different techniques by which patients approach NFB
training, or whether variables like DES and BIS reflect differences
in patients’ neural capabilities and deficits. In particular, the link
between BIS and NFB learning, observed now in Kosunen et al.
(2018) and out study, should be further explored. Also, future
research should compare the neurological bases of inverse and
normal training across the NFB regimes.

As mentioned in the Introduction, the appropriate model of
learning to use for NFB is not known—NFB is not a visuomotor
task that can be assumed to follow power law curves. Large scale
modelling of learning is thus required to establish an empirical
picture of the shape of NFB learning. Although not a clinical
study, Kovacevic et al. (2015) performed an interesting analysis
of a suitably large sample (N > 500) of NFB learners, albeit in
a single recording (not longitudinal). Their study complements
our results in the sense that both hint at what can be achieved
by learning analyses. Future work should examine the records of
prior clinical trials of NFB for ADHD, thus to combine large N
with longitudinal data.

This point also bears on the popular notion that sham NFB
would provide a gold standard of control. While more studies
should be conducted using sham NFB to test the question of
efficacy (though see Pigott et al., 2021), it is not so clear when
it comes to learning. In the sham control condition itself, patients
would not exhibit real NFB performance, and so an artificial
performance learning curve would have to be “programmed in”
to the condition. All comparisons to a real treatment would then
depend on this programmed learning curve.

CONCLUSION

Existing evidence for the efficacy of NFB training on reducing
ADHD core symptoms is mixed and non-specific, with differing

effect strengths for different NFB regimes and even the different
sub-types of ADHD. The results of this study have shown that
important predictors of NFB learning, at least in the context of
TBR training, are low dissociative experiences score and high
behavioural inhibition score. At the same time, the likelihood
of NFB learning is enhanced by elevated generalised anxiety
disorder score. In addition, the gains in NFB scores do not
appear to be a necessary condition for positive behavioural or
self-reported effects, which could instead derive from the mere
attempt to self-regulate. Our sample size was limited, so more
research must be done to understand the apparently different
neurological mechanisms of NFB training among the learners
and non-learners, and the connection of these mechanisms to its
qualitatively different effects on inattention and hyperactivity.
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