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Abstract—The current explosion of video traffic compels service providers to deploy caches at edge networks. Nowadays, most
caching systems store data with a high programming voltage corresponding to the largest possible ‘expiry date’, typically on the order
of years, which maximizes the cache damage. However, popular videos rarely exhibit lifecycles longer than a couple of months.
Consequently, the programming voltage can instead be adapted to fit the lifecycle and mitigate the cache damage accordingly.
In this paper, we propose LiA-cache, a Lifecycle-Aware caching policy for online videos. LiA-cache finds both near-optimal caching
retention times and cache eviction policies by optimizing traffic delivery cost and cache damage cost conjointly. We first investigate
temporal patterns of video access from a real-world dataset covering 10 million online videos collected by one of the largest mobile
network operators in the world. We next cluster the videos based on their access lifecycles and integrate the clustering into a general
model of the caching system. Specifically, LiA-cache analyzes videos and caches them depending on their cluster label. Compared to
other popular policies in real-world scenarios, LiA-cache can reduce cache damage up to 90%, while keeping a cache hit ratio close to
a policy purely relying on video popularity.
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1 INTRODUCTION

1.1 Motivation

E VERY second, thousands of videos are transmitted
across mobile networks from servers to enormous num-

bers of mobile devices. According to Cisco, video traffic
accounted for 75% of data traffic in 2017 and will reach 82%
by 2022 [1]. This soaring demand for online video services
is pushing network operators and service providers to bring
content caches closer to the edge of the network, e.g., base
stations, to lessen the traffic burden in the core network
while reducing content delivery latency [2], [3].

Nowadays, although most network caches rely on flash
memory [4], [5], the adoption of flash memory is still hin-
dered by the high rate of wear out called cache damage,
which is directly proportional to the programmed data re-
tention time [6], [7]. The relationship between data retention
time and cache damage can be briefly described as follows.
Flash memory has multiple flash cells [8]. Data is stored in
flash memory by programming the voltage of each flash
cell higher than a threshold. The threshold of voltage is
called the programming voltage [9]. Additionally, before a
flash cell is programmed, the existing data has to be erased
using an equal but opposite programming voltage. Each
program/erase cycle will harm flash cells and reduce the
flash lifetime [10]. We refer to the flash cell damage caused
by program/erase cycles as cache damage. Generally, a high
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programming voltage guarantees that flash cells will retain
data for a long duration, known as the data retention time.
Current flash technology writes all files by applying a high
programming voltage to ensure a specific data retention
time, typically from one to ten years. However, such a high
programming voltage will also cause severe cache damage
and significantly reduce the memory lifetime [8]–[12].

On the other hand, as many new videos appear every
day, the popularity of a given video decays quickly over
time [13]. The average lifecycle of such videos is on the day
or month level, rather than the year level. Thus, program-
ming the cache at voltages high enough to store all video
content for years is wasteful. Moreover, if flash cells are pro-
grammed with a high positive voltage, the corresponding
erasing operation requires an equally high negative voltage.
Hence, each program/erase cycle will cause more extensive
damage to the cache and decrease the life expectancy of
the memory. Even though the cost of memory itself is
affordable, changing the caches scattered around the world
becomes costly, when considering transportation, human
labor, etc. A practical approach to solve this problem is to
set a dynamic programmed retention time to reduce cache
damage by leveraging video lifecycles.

The content retention time in caches also profoundly
affects the performance of the cache system. When a user
requests content, i.e., an online video, the service provider
first checks whether it is available in the edge cache. If so,
the edge cache transmits the content; otherwise, a cache
miss happens, and the content has to be streamed from a
remote data center, causing traffic delivery cost [14]. If the
retention time of content is set too short for the sake of
lower cache damage, many cache misses may occur even
though the cache is not fully occupied. When the cached
content expires, i.e., exceeds its programmed retention time,
the content is ‘invalid’ because its integrity cannot be guar-
anteed due to the low residual voltage of the flash cells.
In this case, severe traffic delivery and high network latency
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will arise between end devices and remote data centers from
the large number of cache misses. Consequently, the optimal
data retention time is the result of a trade-off between traffic
delivery cost and cache damage cost.

Currently, most cache policies are user-oriented and
focus on improving the user experience. For instance, the
conventional cache policies, e.g., random (RND), first in first
out (FIFO), and least recently used (LRU), aim at improv-
ing the cache hit ratio. State-of-the-art cache policies take
popularity features into account [15]–[20], and the cached
content has a high probability of being requested by users
in the future, which reduces transmission delays. However,
the existing research lacks a service provider viewpoint and
does not reduce operating expenses by lowering the cache
damage cost.

1.2 Methodology and Contributions
In this paper, we investigate the optimal cache policy from
both service providers’ and mobile users’ perspectives to
jointly minimize cache damage cost and traffic delivery cost
by exploring the lifecycles of online videos. In summary, we
focus on three questions. Do online videos have lifecycles? If
so, what kinds of lifecycle patterns do they have? Can their
lifecycle patterns provide useful information to improve the
cache system and reduce cache damage?

To explore the lifecycles of online videos, we analyze
a large-scale real-world dataset of online video access over
two months from one of the largest network operators in the
world. The dataset consists of 269 million viewing requests
from 9,517,339 users watching over 9,055,188 videos. We
first discover two kinds of temporal video access patterns,
i.e., pulse and noise shapes, and define the concept of the
lifecycles for online videos of the pulse shape. To extract
the typical lifecycle of the pulse shape videos, we use the
K-Medoids clustering algorithm to separate the content into
two clusters: long-lived videos of one-month lifecycle and
short-lived videos of one-week lifecycle. We next obtain the
typical temporal pattern for each cluster.

We then model the cache system and formulate an
optimization problem to jointly minimize traffic delivery
cost and cache damage cost, considering nightly content
eviction operations. The optimization problem is an integer
programming problem. To solve this NP-Hard problem, we
separate it into two sub-problems: retention time optimiza-
tion and cache eviction policy design. We then devise opti-
mal algorithms for the two sub-problems with the assistance
of video lifecycle analysis and prediction.

The contributions of our work can be summarized as
follows.

• Lifecycle modeling for video contents. We analyze the
access patterns of various videos and extract two
video clusters with different lifecycles, i.e., long-lived
videos and short-lived videos. For these two clusters,
we build an exponential temporal pattern and a
power-law temporal pattern respectively and devise
their closed-form expressions.

• LiA-cache policy. We propose a novel lifecycle-aware
cache policy that jointly minimizes cache damage
cost and traffic delivery cost by leveraging our mod-
eled lifecycle patterns. To the best of our knowledge,

TABLE 1
Table of notations.

Notation Description
T set of time slots
N set of contents

Ψdel
n traffic delivery cost caused by content n

Ψdam
n cache damage cost caused by content n

Pn(t) daily view temporal function of content n
δn(t) indicating whether content n is cached at time slot t
ε weight of cache damage cost
tn time slot when content n starts to be cached
τn programmed cache retention time of content n
B cache capacity
Tn time slot when Pn(t) is at its maximum value

PMAX
n maximum value of Pn(t)

TC typical lifecycle for the contents in cluster C
∆p threshold of daily views to determine video lifecycles

this is the first study to introduce the consideration
of cache damage into the cache system.

• Extensive evaluations via a large-scale real-world dataset.
We evaluate the effectiveness of our LiA-cache policy
in comparison with other popular policies, like FIFO,
RND, LRU, and other policies relying on popularity
patterns. We demonstrate that LiA-cache policy can
decrease the cache damage cost by 30 times, i.e.,
extending cache lifetime 30 times, while providing
close to an optimal cache hit ratio.

The rest of this paper is organized as follows. In sec-
tion 2, we focus on identifying and extracting the typical
lifecycle patterns of online videos and describe our real-
world dataset in detail. We then present the cache system
model in section 3, as well as the optimization problem
formulation. In section 4, we give a two-step heuristic cache
policy relying on extracted lifecycle patterns. In section 5,
we evaluate the caching performance of the proposed LiA-
cache policy by comparing it with other popular policies.
Before presenting our conclusions, we discuss previous
works related to both cache policies and cache damage.

We summarize the notation and the corresponding de-
scription of the main symbols in Table 1.

2 TEMPORAL PATTERNS OF ONLINE VIDEOS

In this section, we empirically characterize online video
lifecycles by leveraging a large-scale real-world dataset.
We first study the temporal patterns and notice that the
daily views of a video over time exhibit either a pulse
or noise shape. We next investigate pulse shape patterns
and measure the similarity of such patterns by lifecycles
instead of popularity. We finally extract the typical lifecycles
of online videos using the K-Medoids clustering algorithm
and model the obtained temporal patterns.

2.1 Dataset Overview
We extract the temporal patterns from a dataset of online
videos collected by one of the largest network operators
(fixed and mobile) in China. The dataset consists of online
video viewing requests from November 1st to December
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TABLE 2
Sample of collected real-world dataset

Time Video ID User ID
2014-11-01 00:00:00 6b67093ebe07a3312e1a2d6ee154194ccd081 fb1bd0cd99f1f3ff037a314e5252bf79df8dd
2014-11-01 00:00:01 26e7f3b71721bf6a31f86b80ff4ed12072bd6e72 84deafc6428de551205f5049f1375eb24e70edc9
2014-11-01 00:00:01 8e7d3cec3dab2f0e687d3c5dc67a4fe0c1b7b7 6692d1e9364a5afa175d42316b168f023c0ebf

31st, 2014. Deep packet inspection appliances at the gate-
ways of the operator collect video viewing requests to the
most extensive video content providers in China, such as
Youku, Tencent, Iqiyi, etc. In total, our dataset contains 269
million requests from 9,517,339 devices/users who watched
over 9,055,188 unique online videos. The operator has 85%
of the market share for network access in mainland China,
and the dataset covers most major video providers. Thus,
our data provide a highly comprehensive representation of
the video viewing behavior on the Internet in China. A
sample of the collected real-world dataset is shown in Table
2.

We collect the resulting records approximately every
half-hour. Each record consists of:

• Time stamp: the time at which the viewing request
was issued.

• Video content ID: the unique identity of online video
content. The operator provides a hash table to map
the ID to its name.

• User ID: the unique identity of the user device. The
operator produces user IDs based on device-level
(not IP) information and anonymizes user IDs for
security and privacy reasons.

2.2 Temporal Patterns of Different Shapes
We begin our analysis by visualizing the daily views of
content. Similar to prior work [21], [22], we discover two
kinds of temporal patterns: pulse shape patterns and noise
shape patterns. Fig. 1 shows the daily views of the series
episode ‘The Originals Season 2 Episode 7’ and the movie
‘G.I. Joe: Retaliation’ in our dataset. The temporal pattern
of the first video belongs to the pulse shape class, while the
second one belongs to the noise shape class.

For the pulse shape, the time-varying curves can be split
into two phases, a sudden burst of views and a relaxation
tail, making it similar to a pulse signal. Regarding the noise
shape, content requests are primarily driven by fluctuations
instead of bursts of activities. The time series can be viewed
as a noise process. Most of the content with the noise pattern
is either of overall low popularity or classic videos. Users
access this content irregularly over time, and therefore, we
cannot extract clear patterns.

Since noise shape patterns are irregular and do not
have clear lifecycles, in this work, we only focus on pulse
shape patterns and explore their lifecycles. Note that al-
though noise-shaped videos do not have lifecycles, existing
popularity-based cache policies [18], [20] can still be applied
to them. In the data cleaning process, we first remove
content with less than 200 cumulative views over the two
months. After this step, 20,582 popular videos remain. This
reduced dataset contains both noise shape patterns and
pulse shape patterns. To filter out the videos with noise
shape patterns, we employ an existing metric proposed by

 

(a) Pulse shape

 

(b) Noise shape

Fig. 1. Examples of the two classes of video temporal patterns. On the
left, a video that displays a pulse shape after the content releases. On
the right, an older video with fairly random accesses over time.

  

Fig. 2. Two examples of pulse shape patterns. Both videos display a
similar sudden increase in popularity, but two different relaxation parts.

Crane et al. [21] using peak fraction. For a given video
the peak fraction is the fraction of views observed on the
peak day compared to the total cumulative views. When
the peak fraction is higher than 0.2, the temporal pattern
is regarded as pulse-shaped. Therefore, we next remove
the videos, whose peak fraction is less than 0.2. We thus
obtain 17,572 popular videos with pulse shape patterns.
We also remove the content still active/popular on the last
day of the dataset, i.e., December 31st, 2014. After all these
data cleaning operations, our dataset contains 16,433 online
videos. Moreover, we note that in terms of our real-world
dataset, noise-shaped videos account for only 14% of the
20,582 popular videos, which is a clear minority. Therefore,
although we ignore noise-shaped videos, our work is still of
significant value for online video cache systems.

2.3 Measurement of Temporal Patterns’ Similarity

Fig. 2 shows two examples of pulse shape temporal varia-
tion in the number of daily views. During the burst part,
the number of daily views increases suddenly and rises
to the maximum value within a few days, i.e., one or two
days. Due to this steep increase, it is difficult to differentiate
videos purely from the burst part. In other words, the
relaxation part contains most of the unique features of the
curve. Fig. 2 shows that two key features characterize the
relaxation part: the initial value, i.e., the maximum number
of daily views, and the lifecycle.



IEEE TRANSACTIONS ON MOBILE COMPUTING 4

5 10 15 20 25 30

Time domain

0

20

40

60

80

100

120

V
a
lu

e

N1

N2

N3

N4

N5

Fig. 3. Examples of time series with different lifecycles: various peak
value and relaxation length.

Definition 1 (Lifecycle of Online Videos). Given a small
threshold ∆p, a video is inactive when the number of daily
views is lower than ∆p. The lifecycle of a video is the period
from the time slot when the number of daily views is at
its maximum value to the first time slot when the video
becomes inactive. Note that ∆p should be an integer because
it represents the number of daily views. To fully capture the
relaxation part of temporal patterns, in practice, we usually
set ∆p as 1.

In Fig. 2, for ∆p = 1, the lifecycle of videos ‘Red
Sorghum Episode 16’ and ‘Arrow Season 3 Episode 6’ are
54 days and 16 days, respectively.

Currently, existing works on videos’ temporal patterns
mainly focus on the popularity of videos [21], [23], [24]
rather than their lifecycles. In this study, we show that the
lifecycle and the peak value contain enough information to
estimate the temporal curve of a video.

In practice, the peak value of daily views can be de-
termined by two methods, i.e., a proactive method and
a reactive method. The proactive method means using a
prediction algorithm to infer the value in advance in terms
of video’s attributes and has been investigated in many
video popularity prediction papers. On the other hand, the
reactive method is more straightforward. As the peak value
is a maximum, as soon as the number of daily video views
decreases, we can estimate the prior value is the peak value.
However, in this case there is a one-time slot latency to
determine the peak value. Because determining the peak
value is not the main research problem in this work, in the
following analysis, we instead concentrate on investigating
the lifecycles of online videos and measuring the similarity
of the lifecycles.

Various online videos have different lifecycles. However,
characterizing the exact lifecycles for individual videos is
difficult. Therefore, we cluster videos of similar lifecycles
together to obtain the typical lifecycles. Next, we can use
these typical lifecycles to approximate the exact lifecycles
of videos. However, as shown in Fig. 2, temporal patterns
with totally different lifecycles may appear similar. Hence,
we perform the analysis in the frequency domain instead of
the time domain, thanks to the Fast Fourier Transformation
(FFT), which has successfully been used, for example, to
analyze pulse waves in medicine [25] to differentiate the

cardiac cycle.
Fig. 3 and Fig. 4 show the relationship between the

lifecycle of temporal popularity curves and their Fourier
Transform. Given ∆p = 1, the lifecycle of N1 is 2 days, the
lifecycle of both N2 and N3 is 21 days, and the lifecycle
of N4 and N5 is 6 days. In the frequency domain, we
identify three different shapes that respectively correspond
to N1, N2 and N3, and N4 and N5. Also, we notice that
the frequency domain representation of video views is ‘U’-
shaped for longer lifecycles and tends to a ’V’-shaped for
shorter lifecycles.

In this way, we decompose the one-dimensional clus-
tering problem in the time domain into a two-dimensional
clustering problem in the frequency domain. We then cluster
the lifecycle patterns with similar shapes in the frequency
domain instead of the time domain.

2.4 Shape-based Clustering

As we intend to cluster videos of similar shapes, we ignore
differences in absolute volumes. In other words, if two
curves have a similar shape but different volumes, we still
consider them to be similar and put them in the same cluster.

Before clustering, we first normalize and scale curves
using the min-max normalization method. Given a series
x = {x1, x2, ..., xi}, the normalization of x is given as
follows,

xi =
xi −min (x)

max(x)−min(x)
, (1)

where min(x) and max(x) are the minimum and maximum
values in series x, respectively.

Algorithm 1 Modified K-Medoids Clustering Algorithm
Input: Daily view series of video n, i.e. Pn, n = 1, 2, ..., N .

Number of clusters K . Initial cluster assignments C =
C1, C2, ..., Ck.

1: Fn = ‖FFT (Pn)‖ , n = 1, 2, ..., N , where ‖·‖ is the l2
norm.

2: Normalize Fn, n = 1, 2, ..., N .
3: Randomly select initial cluster medoids µ =
{µ1, µ2, ..., µk} from Fn, n = 1, 2, ..., N .

4: repeat
5: µ̂← µ.
6: for n = 1, 2, ..., N do
7: d(Fn, µi) = ‖Fn − µi‖, where ‖·‖ is the l2

norm.
8: λn ← arg min

i∈{1,2,...,k}
d(Fn, µi).

9: Cλn = Cλn ∪ {Fn}.
10: end for
11: for i = 1, 2, ..., k do
12: µi ← arg min

µi∈Ci

∑
Fn∈Ci

d (Fn, µi)

13: end for
14: until µ̂ = µ
Output: C, µ

For the actual clustering step we use the K-Medoids
clustering algorithm. Compared with K-means, K-Medoids
is more robust to noise as it uses the real data-points in the
dataset as medoids instead of the calculated centers [26].
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Fig. 4. The corresponding Fourier Transform of the times series in Fig. 3. The longer the lifecycle, the more U-shaped the frequency domain
transformation.

  

Fig. 5. Clustering quality versus the number of clusters. According to
both Calinski-Harabasz criterion (higher is better) and Davies-Bouldin
index (lower is better), the optimal clustering has two clusters.

Algorithm 1 summarizes the modified K-Medoids cluster-
ing algorithm. The algorithm performs clustering in three
steps: initialization, assignment of objects to medoids, and
updating of medoids. In the initialization step, we first take
the Fourier Transform of daily view series and perform
the min-max normalization. We then choose the medoids
randomly. In the assignment step, we calculate the matrix of
the distances between objects and medoids. We next assign
each object to the nearest medoid and obtain the cluster
results. In the update step, we find the a new (updated)
medoid for each cluster, which is the object minimizing the
total distance to other objects in the cluster.

2.5 Finding Typical Temporal Patterns
Like all the other variants of K-means, the K-Medoids
clustering algorithm requires us to specify the number of
clusters in advance. Although determining the most appro-
priate number of clusters remains an open issue, we can
approach the problem empirically by measuring how the
quality of clustering varies with the number of clusters in
terms of multiple metrics.

We run the clustering algorithm with different num-
bers of clusters ranging from 2 to 10 and compute the
Calinski-Harabasz criterion [27] and the Davies-Bouldin
index [28] which evaluate both the intra-cluster similarity
and the inter-cluster differences. For the Calinski-Harabasz
criterion, the higher the value, the better the clustering.
Conversely, the clustering quality decreases with an increase
in the Davies-Bouldin index.

Fig. 5 shows the values of the two metrics relative to
the number of clusters. Both metrics suggest the optimal
number of clusters is two. Therefore, based on the collected
large-scale and real-world dataset, we empirically discover
two typical lifecycle patterns of online videos.

The daily view curves of the medoids of the two clusters
are depicted in Fig. 6. C1 denotes the set of the first cluster
and C2 denotes the set of the second cluster. Note that the
value of the typical lifecycle is related to ∆p. Generally, the
larger the ∆p, the shorter the lifecycle. To fully capture the

 

(a) The medoid of C1

 

(b) The medoid of C2

Fig. 6. The daily view curves of medoids. The medoid of C1 is char-
acterized by a sudden increase and an immediate decrease, while the
medoid of C2 has a longer relaxation part.

TABLE 3
Preference statistics of different functions

The number of preferred videos C1 C2

Exponential function 7493 (78.5%) 1222 (17.8%)
Power-law function 2057 (21.5%) 5661 (82.2%)

relaxation part of temporal patterns, in our case, we set ∆p
as 1. Therefore, the typical lifecycle of cluster C1, i.e., the
lifecycle of the medoid of C1, is 7 days, T

C1
= 7. The typical

lifecycle of cluster C2 is 26 days, T
C2

= 26. Consequently,
we discover two typical lifecycles of online videos, averag-
ing around one week and one month, respectively.

According to existing studies [21], [29]–[32], human ac-
tivities usually follow one of two distributions: an expo-
nential or power-law distribution, which is consistent with
the temporal patterns of the discovered medoids. The light
tail in the medoid of C1 is characteristic of an exponential
distribution, while the heavy tail in the medoid of C2

is characteristic of a power-law distribution. Hence, we
perform curve fitting for both exponential functions and
power-law functions to the online videos and compute the
mean squared errors (MSE).

To determine the better distribution function for each
video, we define the ‘preference’ of each video. If the MSE
of the exponential function fitting for video n is lower than
the power-law function fitting, then the ‘preference’ of video
n is an exponential function and vice versa. We calculate the
preference percentages and illustrate the values in Table 3.

In terms of Table 3, 78.5% of the videos in C1 prefer the
exponential function, while 82.2% of videos in C2 prefer the
power-law function. Therefore, for a video in cluster one,
i.e., C1, with a the short lifecycle, its daily view function
should be exponential. Alternatively, for a video in cluster
two, i.e., C2, with a long lifecycle, the daily view function
should follow a power-law. Indeed, for content with a short
lifecycle, the temporal curve is not heavy-tailed, which
matches the exponential function and vice-versa.

Consequently, for an online video n, we denote its peak
value, i.e., the initial value of the relaxation part, as P

MAX

n ,
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Fig. 7. A simple example to demonstrate how the cache system benefits
from the information of videos’ lifecycles.

and the time slot when the relaxation starts as Tn. If the
video n belongs to cluster one, i.e., n ∈ C1, its daily view
temporal pattern can be modeled as,

Pn(t) = P
MAX

n · exp

− (t− Tn) · ln
(
P

MAX

n /∆p
)

TC1

 , n ∈ C1. (2)

On the other hand, if the video n belongs to cluster two, i.e.,
n ∈ C2, its daily view temporal pattern can be modeled as,

Pn(t) = P
MAX

n · (t− Tn + 1)

−
ln

(
P

MAX
n /∆p

)

ln

(
T
C2

+1

)
, n ∈ C2. (3)

As K-Medoids is a hard clustering algorithm, a video n will
belong to either C1 or C2. As shown in (2) and (3), in each
cluster, we apply the typical lifecycle to approximate the
exact lifecycle of the video n. In this study, based on our
collected real-world dataset, we discover only two typical
lifecycles of online videos. Nonetheless, even when new
typical lifecycle patterns do appear, we can still apply a sim-
ilar clustering approach to model the daily view temporal
patterns of videos.

3 CACHE SYSTEM MODEL AND PROBLEM FOR-
MULATION

To improve the Quality of Experience (QoE) for end-users,
network operators and video service providers deploy edge
caches to bring content closer to end devices. Since the cache
system does not have unlimited capacity, they can only store
a fraction of videos at the edge of networks. Therefore, cache
operators have to make decisions regarding which videos to
cache and how long to keep these videos in memory.

In this section, we define the system model and formu-
late a joint optimization problem to minimize the traffic
delivery cost and cache damage cost subject to the cache
capacity. The traffic delivery cost is caused by cache miss
and refers to the amount of content which is transmitted
from a remote data center instead of edge caches. The cache
damage cost is directly proportional to the cache retention
time of videos according to literature [6], [7], [10].

We first present a simple example to demonstrate how
the cache system benefits from the information of videos’
lifecycles. We assume that there are two online videos, i.e.,
video one and video two. Their daily view curves are shown
in Fig.7. Video one and video two achieve the same peak
on the tenth day but have different lifecycles. Assuming

the cache size is one, if we adopt a popularity-based cache
policy, on the tenth day, there is no difference between
caching video one or video two because of their identical
popularity. If the system caches video one on the tenth day,
the cached video one will be evicted by video two at point A,
causing extra traffic delivery costs, because the popularity of
video two will be higher than video one. However, if we can
estimate the lifecycle information in advance, then on the
tenth day, we will know that caching video two can save on
traffic delivery costs, as shown by the blue shaded area in
Fig.7. In this way, the lifecycle information helps to improve
the user experience of viewing videos.

It is worth noting that if we predict the popularity of
videos instead, we can make a similar caching decision.
However, predicting lifecycle and predicting popularity are
two different tasks. Popularity prediction is more compli-
cated since it is a regression problem. Also, if we want
to make a similar decision, we need to predict the file’s
popularity over multiple future time slots, which may cause
severe error accumulation. Nevertheless, the task of lifecycle
prediction is a binary classification problem, thus less diffi-
cult. Moreover, lifecycle as a single parameter will not cause
the issue of error accumulation for the prediction task.

Next, we start to model the cache system by considering
both traffic delivery and cache damage costs. For practicality
reasons, we adopt a daily caching procedure and divide the
timescale into a set of time slots as follows: T = {1, 2, ..., T}.
We assume that the network consists of N videos and
denote the set of videos as N. We simplify the system by
estimating these videos to be unit size. Let Pn(t) denote the
temporal variation of daily views for video n. We define the
traffic delivery cost for video n as,

Ψdel
n

∆
=

T∑
t=1

Pn (t) [1− δn (t)] ,∀n ∈ N, (4)

where δn (t) is an 1-0 indicator variable to indicate whether
video n is cached at time slot t or not. For an arbitrary video
n, each cache miss leads to a unit traffic delivery cost since
each video is unit sized.

Let τn be the cache retention time of video n. The cache
damage cost is directly proportional to τn [6], [7], [10]. We
can, therefore, define Ψdam

n as the cache damage cost for
caching video n, relative to τn,

Ψdam
n

∆
= f (τn) ,∀n ∈ N, (5)

where f(·) is the function of cache damage cost.
Assuming the local cache is storage-limited, we formu-

late the following optimization problem to minimize the
sum of the traffic delivery cost and weighted cache damage
cost for all videos,

min
δn(t)

∑
n∈N

(
Ψdel
n + ε ·Ψdam

n

)
. (6)

s.t.
ε ≥ 0, (7)

δn (t) =

{
1 t ∈ {tn, ..., tn + τn}
0 otherwise ,∀n ∈ N, (8)
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τn ∈ {0, 1, 2, ..., T} ,∀n ∈ N, (9)

∑
n∈N

δn (t) ≤ B, ∀t ∈ T, (10)

ε is the weight of the cache damage cost relative to the traffic
delivery cost, which is always greater than or equal to 0.
With the increase in ε, the cache damage cost will take a
more critical part of the optimization objective. On the other
hand, if we set ε to 0, the cache system will be degraded to
a conventional cache system neglecting the cache damage
cost. tn is the time slot at which video n starts to be cached.
As the cache retention time of video n is τn, during the time
slots from tn to tn + τn, video n will be cached, as shown
in (8). B is the cache capacity. (10) guarantees the cached
videos will not exceed the capacity of caches.

4 LIFECYCLE-AWARE CACHE POLICY

We model the optimization problem as an integer program-
ming problem. The problem is NP-Hard [33]. To solve this
problem, we propose a two-step heuristic algorithm called
LiA-cache policy. In the first step, we relax the constraint
(10) and compute the optimal retention time τn for each
content. Second, based on the computed τn, we design a
cache eviction policy and propose a caching algorithm to
minimize the overall cost function.

4.1 Retention Time Optimization

In this step, we relax the capacity limitation of the cache and
minimize the cost for each video.

min
δn(t)

Ψn, (11)

where Ψn is the sum of traffic delivery cost and weighted
cache damage cost of video n. Ψn can be written as follows,

Ψn = Ψdel
n + ε ·Ψdam

n . (12)

Substituting (4) and (5), we obtain

Ψn =

T∑
t=1

Pn (t) [1− δn (t)] + ε · f (τn) . (13)

Using the integral to replace summation, we have,

Ψn =

∫ T

t=1

Pn (t) dt−
∫ tn+τn

t=tn

Pn (t) dt+ ε · f (τn) . (14)

Taking the derivative of Ψn with respect to τn gives,

dΨn

dτn
= −Pn (tn + τn) + ε · df (τn)

dτn
. (15)

In terms of [8], the cache damage cost function f(·) is a
convex increasing polynomial of degree m,m ≥ 1 and can
be given by f(τn) = am(τn)m + am−1(τn)m−1 + ... + a1τn
with coefficients ai ≥ 0,∀i ≥ 1. We have

df (τn)

dτn
=
(
m · am · (τn)m−1 + ...+ a1

)
. (16)

df(τn)
dτn

is a monotone increasing function. Recalling (2) and
(3), −Pn (tn + τn) is monotone decreasing function. There-
fore, in (15), Ψn is at a minimum when dΨn

dτn
equals 0, namely

ε · df (τn)

dτn
= Pn (tn + τn) . (17)

Substituting (16), we have

ε ·
(
m · am · (τn)m−1 + ...+ a1

)
= Pn (tn + τn) . (18)

Since the function Pn(·) is either exponential or a power-
law function, the above equation is a transcendental equa-
tion and the closed-form expression of τn cannot be ob-
tained apart from when m = 1.

When m = 1, i.e., f(τn) = a1τn, we can get the closed-
form expression of τn. For the video n that belongs to the
cluster one (C1), the optimal τn can be expressed as

τn =

Tn − tn − ln
(
a1 · ε

/
P

MAX

n

)
ln
(
PMAX
n

/
∆p
) TC1

 , (19)

where b·c is the rounding down operation.
For the video n which belongs to the cluster two (C2),

the optimal τn can be calculated as

τn =

exp

− ln
(
a1ε
/
P

MAX

n

)
ln
(
TC2

+ 1
)

ln
(
PMAX
n

/
∆p
)

+ Tn − tn − 1

 .
(20)

We have therefore defined the optimal retention time for
caching a video. We still note that the parameter ε, as the
weight of cache damage cost, will affect the optimal reten-
tion time. As shown in (19) and (20), the optimal retention
time will decrease with an increase in ε. Due to the rise in ε,
the cache damage cost accounts for a more significant part
of the sum cost and should be strongly mitigated. Therefore,
shorter retention time is preferred because cache damage is
proportional to the data retention time.

4.2 Cache Eviction Policy

In this step, we take the cache capacity limitation into
account and design the cache eviction policy. We consider
the time-slotted caching operation with one-day long time
slots, and the cache operations are performed nightly.

We first define a cache gain function for each video. For
a video before time slot t̂, it must be in one of two states,
already in the cache or not yet cached. If video n is in the
cache before time slot t̂, its cache gain can be expressed as,

gn =

tn+τn∑
t=t̂

Pn (t) + ε ·
[
f
(
t̂− tn

)
− f (τn)

]
, (21)

where
tn+τn∑
t=t̂

Pn (t) stands for the cache hit gain and

f
(
t̂− tn

)
is the storage gain for video n.

Alternatively, if video n has not been cached, the cache
gain function is

gn =

t̂+τn∑
t=t̂

Pn (t)− ε · f (τn) . (22)
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At the beginning of the time slot t̂, we compute the
cache gain for all videos, obtaining the gain set G =
{g1, g2, ..., gn}, and select the topB videos in set G to cache.

The detailed steps and above operations are summarized
in Algorithm 2. For a given time slot t̂, we first identify
cluster ID for all videos, including the newly released
videos, and model their temporal patterns in terms of (2)
and (3). For each video by solving (18), we obtain their
optimal retention time τ . We then compute their cache gain
concerning (21) and (22) and cache the top B videos with
the highest gain.

Algorithm 2 LiA-cache
Input: The set of cached online videos Vt̂ before the time

slot t̂ and |Vt̂| = B.
1: Identify cluster ID for all videos.
2: for n = 1, 2, ..., N do
3: Compute the optimal τ for video n in terms of (18).
4: if the video n is in Vt̂ then

5: gn =
tn+τn∑
t=t̂

Pn (t) + ε ·
[
f
(
t̂− tn

)
− f (τn)

]
6: else

7: gn =
t̂+τn∑
t=t̂

Pn (t)− ε · f (τn)

8: end if
9: end for

10: G = {g1, g2, ..., gn}, sorting G in descending order.
11: Put the top B contents in set G into the set Vt̂+1.
Output: Vt̂+1

5 EVALUATION AND DISCUSSION

In this section, we evaluate the performance of our proposed
cache policy. For the sake of authenticity, we apply our cache
policy to the real-world online video dataset presented in
Section 2 and a synthetic video view dataset. In our case,
we assume that the cache is already aware of cluster labels.

5.1 Fixed Cache Size

We first look at the performance of our LiA-cache policy,
compared with other well-known policies on the real-world
online video dataset. Table 4 illustrates the traffic delivery
cost (TDC) and the cache damage cost (CDC) of five caching
policies and the following two extreme cases, (i) unlimited
cache size and (ii) zero cache size. We set the cache capacity
B to 100. Thus, up to 100 videos can be in the cache
simultaneously. Besides, we set the ε (see (6)) empirically
to 5. We will discuss the impact of varying ε on both cache
hit and cache damage in subsection 5.3.

RND is the random policy: the file is evicted from the
cache uniformly at random. FIFO means the first in first out
policy: the first file stored in the cache is evicted. Popularity
represents the popularity-based cache policy in which at
each iteration, the B most popular videos are cached. Niche
is a state-of-the-art cache policy proposed by Vasilakos et
al. [20]. Niche method adopts a dynamic popularity decay
mechanism and user mobility predictions to improve cache
hits by jointly exploring locality in time and space. However,
due to the lack of mobility information in our real-world

dataset1, in practice, we implement Niche without mobility
prediction information. Capturing only the temporal pop-
ularity in time will limit Niche’s performance with respect
to the cache hit ratio and probably to the cache damage
as well. For RND, FIFO, Popularity, and Niche policies, we
necessarily set the retention time for each caching operation
to 60 days as it corresponds to the duration of the dataset.

No cache miss and Without cache are the two extreme
cases, and their traffic delivery costs represent the lower
and upper bounds of the system’s traffic delivery cost,
respectively. Note that the traffic delivery cost of No cache
miss case is not equal to 0. Since we do not consider prefetch
mechanisms in our system, each video has to be missed at
least once before being put into the cache.

In Table 4, we notice that the performance of our pro-
posed algorithm is better than other cache policies in terms
of both traffic delivery cost and cache damage cost. That
is because, apart from the popularity, our algorithm can
also draw upon the useful information from videos’ life-
cycles. Niche benefits from its dynamic popularity decay
mechanism and has a lower cache damage cost, compared
to RND, FIFO, and Popularity policies. We also depict the
cache damage reduction for LiA-cache compared to other
policies. As our proposed algorithm is the only solution
taking cache damage into account, it unsurprisingly shows
ten times lower cache damage cost.

5.2 Variable Cache Size

Fig. 8(a) and Fig. 8(b) respectively display how the traffic
delivery cost and the cache damage cost change with the
cache capacity. As illustrated in Fig. 8(a), the traffic delivery
cost decreases linearly with the cache size for both RND
and FIFO policies. The delivery costs for Niche, Popularity,
and LiA-cache policies decrease logarithmically and quickly
reach values extremely close to the lower limit. Although
Niche policy has a higher traffic delivery cost when the
cache size is small, its performance is similar to the Popular-
ity policy under large cache sizes. In comparing Popularity
and LiA-cache policies, although both solutions show simi-
lar results, using only Popularity as a metric shows slightly
lower delivery costs. This is because the aim of our cache
policy is to minimize the sum cost of traffic delivery and
weighted cache damage instead of the traffic delivery cost
alone. However, in the case of Popularity based caching
with 15 days of retention time, the delivery cost is actually
higher than LiA-cache due to the presence of videos whose
lifecycle is longer than 15 days.

The cache damage cost remains close to constant over the
cache capacity for LiA-cache policy. In this case, lowering
the programming voltage for shorter retention times leads
to a tremendous decrease in cache damage. The popularity
based algorithms also display lower cache damage cost as
a side effect of caching the most popular videos, which
would remain longer in the cache. Moreover, compared
to Popularity, Niche benefits from its dynamic popularity
decay mechanism and has lower cache damage cost under
small cache size scenarios. However, as cache size increases

1. The synthetic traces are difficult to reveal temporal locality varia-
tions.
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TABLE 4
Traffic delivery cost and Cache damage cost for caching policies in which B = 100 and ε = 5. Traffic delivery cost and Cache damage cost are

computed by (4) and (5) respectively.

Cost RND FIFO Popularity Niche LiA-cache No cache miss Without cache
Traffic delivery cost 17168106 17163779 14594113 14955151 14507138 12412830 17502887
Cache damage cost 344760 358080 285840 199440 30986 NA 0

Cache damage reduction (%) 91% 91% 89% 84% NA NA NA
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(a) Traffic delivery cost versus the cache capacity.
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(b) Cache damage cost versus the cache capacity.

Fig. 8. Costs versus the cache capacity, with ε = 5. ‘60 ds.’ indicates
that the video retention time of each caching operation for that caching
policy is 60 days and ‘15 ds.’ means that the retention time is 15 days.

the benefits brought by the dynamic popularity decay mech-
anism are degraded. Also, both FIFO and RND’s cache
damage costs increase linearly with the cache capacity. FIFO
suffers from the highest cache damage cost compared to
the others, due to the largest number of cache evictions.
This increase in the cache damage cost is expected because
the bigger the cache, the more videos are cached, and the
higher the cache damage. On average, LiA-cache policy has
damage costs 84% to 98% smaller than all other solutions,
as shown in Table 4.

We then analyze the cache damage per cache unit as a
function of cache size. The cache damage per cache unit is
calculated as the entire cache damage cost divided by the
cache size. The results are presented in Fig. 9. The cache
damage per cache unit remains nearly constant up to a
high cache size for FIFO while decreasing with cache size
for both RND, Niche, and Popularity policies. Regarding
video retention time, the popularity policy with 15 days
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Fig. 9. Cache damage per cache unit versus cache size, where ε = 5.
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Fig. 10. Cache hit ratio versus cache size, where ε = 5.

retention time has overall lower cache damage than with
60 day retention time. That is because the cache damage
for each program/erase operation is directly proportional to
the retention time. Since we take cache damage into account
in our caching decision, our algorithm’s cache damage per
unit also decreases although less steeply. In other words,
LiA-cache policy outperforms other conventional policies,
especially with lower cache capacities.

Cache hit ratio is also a critical metric in evaluating a
cache policy. In Fig. 10, we notice that FIFO and RND have
similar results, the hit ratio grows linearly with cache size
and barely reaches about 0.5 for a cache size of 1000. LiA-
cache displays cache hit ratios between 0.59 and 0.87, while
the popularity based caching policy is between 0.57 and
0.92. Similar to the traffic delivery cost in Fig. 8(a), the cache
hit ratio is slightly lower for LiA-cache than the popularity
and Niche algorithms for large cache sizes. This is because
LiA-cache policy makes a trade-off between cache damage
cost and traffic delivery cost by minimizing the sum cost,
referring to (6). In other words, the lower cache damage
will sacrifice some cache hits. By comparing the results of
Fig. 8(b) and Fig. 10, we observe that LiA-cache does not
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Fig. 11. Performance of traffic delivery cost (TDC) and cache damage
cost (CDC) versus the cache damage weight (ε), where the cache size
B is 500.

fully explore the benefits of a large cache to improve the
cache hit ratio because LiA-cache keeps a low cache damage
cost to achieve the minimum sum cost. It is worth noting
that the importance of cache damage in the sum cost can be
adjusted by parameter ε. The impact of ε will be discussed
in section 5.3 in detail.

Indeed, LiA-cache tries to increase the cache hit ratio by
predicting videos’ future popularity using video lifecycles
instead of purely using the popularity of previous time
slots. This prediction is then mediated by the cache damage
cost to make the final caching decision. We also note that
the cache hit ratio of popularity-based caching is related to
the predefined retention time. The popularity-based caching
policy with a lower retention time experiences slightly a
lower cache hit ratio since a 15 days retention time is too
short for long-lived videos.

5.3 Influence of the Cache Damage Weight
To illustrate the impact of cache damage weight ε, in Fig. 11,
we present the traffic delivery cost (TDC) and the cache
delivery costs (CDC) of LiA-cache versus the weight given
to cache damage in (6). Naturally, with a rise in ε, the
traffic delivery cost increases while the cache damage cost
decreases. Due to the rise in ε, the cache damage cost
accounts for a more significant part of the sum cost and
thus should be strongly mitigated. On the other hand, when
reducing ε, the cache damage cost rises. Overall, setting
ε = 5 gives a good trade-off between both costs and still
allows us to provide cache damage cost and traffic delivery
cost significantly lower than popularity based methods.

5.4 Influence of Temporal Patterns of Videos
In previous evaluations, we evaluated our policy on the
collected real-world online video dataset. However, as the
view patterns of videos are fixed, we cannot explore how the
temporal patterns of videos affect the performance of Li-A
cache. Therefore, we generate a four-month synthetic video
view dataset. In the synthetic dataset, there are 10,000 videos
of pulse shape temporal patterns and three types of typical
lifecycles, i.e., T

C1
= 7, T

C2
= 30, T

C3
= 60. For a video

n, the video is randomly assigned to a typical lifecycle,
and its exact lifecycle Tn follows a log-normal distribution,
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Fig. 12. Performance of traffic delivery cost (TDC) and cache damage
cost (CDC) versus different σ, where the cache size B is 100, ε = 5,
and ∆p = 1.
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Fig. 13. Performance of traffic delivery cost (TDC) and cache damage
cost (CDC) versus different ∆p, where the cache size B is 100, ε = 5,
and σ = 0.1.

log(Tn) ∼ N (log(T
C

), σ2) where T
C

is the assigned typical
lifecycle of video n and σ is the standard deviation of the
Gaussian distribution. In terms of prior observations [34],
we adopt 0.75 as the default value of the Zipf distribution
exponent parameter used for video popularity.

We first investigate how the LiA-cache policy is affected
by σ, the standard deviation of videos’ lifecycles from
typical lifecycles. In other words, σ reflects the accuracy of
using typical lifecycles to approximate the exact lifecycles of
videos. The higher the σ, the lower the accuracy. In Fig.12,
we present the traffic delivery cost and the cache damage
cost of LiA-cache, Popularity, and Niche policies. Both Pop-
ularity and Niche policies are not sensitive to changes in σ.
However, for LiA-cache, with the increase in σ, its traffic
delivery cost increases, and the performance is degraded
lower than Popularity policy when σ is equal to 0.5. There-
fore, determining the typical lifecycles of videos is critical
to LiA-cache. As performed in our work, collecting real-
world data and applying pattern recognition algorithms to
discover typical lifecycles empirically is an applicable and
effective method. Also, we still note that the cache damage
cost of LiA-cache will not vary under different σ.

Next, we delve into the impact of ∆p, the parameter to
determine the typical lifecycles in Definition 1. In Fig.13,
we present how the traffic delivery cost and the cache
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damage cost change with different ∆p. Since we fix the
typical lifecycles, increasing ∆p will increase the number of
video viewing requests. Therefore, the traffic delivery costs
of Popularity, Niche, and LiA-cache policies increase simul-
taneously. Nevertheless, for LiA-cache, its growth trend is
sharper because it cannot fully capture the relaxation part
with large ∆p, causing extra costs. Meanwhile, in terms of
the cache damage cost, although LiA-cache is tolerant of a
larger ∆p, the performance will start to degrade when ∆p
is greater than 5.

5.5 Discussion

In this section, we analyzed the influence of various param-
eters on the cache performance, regarding traffic delivery
cost (the most common cache evaluation metric) and cache
damage cost (the subject of this study). We showed that
keeping both metrics at an optimal level was essentially
a question of a trade-off between different cache sizes as
well as the weight attributed to the cache damage cost.
Among the various scenarios, LiA-cache significantly out-
performed them when taking cache damage into account
and performed similarly to popularity based solutions in
terms of delivery cost.

6 RELATED WORK

The work presented in the paper falls within the research
areas of video and content request pattern analysis and edge
caching systems for improving user experience. Thus, we
next discuss related work in these two domains.

6.1 Content Request Patterns

Many studies have investigated content request patterns
and discovered general characteristics based on real-world
datasets. Breslau et al. [34] investigated a web page request
distribution and found the requests follow a Zipf-like distri-
bution with varying exponents. Newman [35] made a com-
prehensive study of power-law distributions and illustrated
that power laws appear widely in web hits, copies of books
sold, telephone calls, etc. Cha et al. [36] monitored YouTube’s
list of the daily 100 most popular videos and discovered
the shape of the video popularity distribution is power-law.
Also Finley et al. [37] studied the usage popularity of apps
across smartphones, tablets and PCs from a USA-based user
group and found that log-normal and stretched-exponential
distributions were typically the best fits. However, the above
studies only examined static snapshots and did not consider
temporal varying in the popularity of individual content.
Oka et al. crawled social media data from Twitter and
showed that the popularity of one topic in social media
undergoes stages of burst and decay. Moreover, Crane et
al. [21] studied the time series of daily views for nearly 5
million videos on YouTube. They observed that hundreds
of thousands of videos have a burst of activity following a
power-law relaxation, which corresponds with our findings
in section 2.

6.2 Cache at Edge
Initially, the concept of a cache comes from computer sys-
tems and was designed to fill the throughput gap between
the main memory and registers [38]. The idea of caching was
later introduced in mobile networks and now permeates to
the edge of networks, including base stations and end de-
vices [39], [40]. By exploring the spatiotemporal redundancy
of users’ requests, caching popular content at network edges
can reduce transmission delays and traffic burdens [41].

Bacstug et al. [42] used a stochastic geometry method
to model cache-enabled small cell networks and theoret-
ically demonstrated that employing cache units in small
cells indeed is beneficial in terms of average delivery rate.
Li et al. [18] proposed a popularity-driven content cache
(PopCaching) policy that learns the popularity of contents
and applies the policy to determine what to store. Dernbach
et al. [43] investigated distinct regional tastes when selecting
caching content to improve the cache hit ratio and showed
that the bigger the inter-region distance, the better a local
caching policy can perform. Also, some scholars explored
the potential for using user mobility patterns to improve
cache hit ratio in edge networks. For instance, Siris et al.
[44] combined mobility prediction and proactive caching
to support seamless mobility with low transmission delays.
Guan et al. [45] assumed that users’ preferences for content
and mobility patterns are prior information. They then
formulated an optimization problem with the objective of
maximizing the utility of caching and devised a heuristic
caching strategy.

Since the popularity of content varies with time, it is
critical to update caches at intervals. In [46], Blasco et al.
divided time into periods. Within each period, there is a
cache replacement phase when the content with the lowest
popularity is discarded. Instead of focusing on popular
content, Vasilakos et al. [20] proposed a distributed solution
targeting less popular personalized content requests. They
adopted a dynamic pricing replacement approach and an
adaptable popularity decay mechanism to optimize content
transmission delays. Moreover, some scholars modeled the
cache replacement problem as a Markov decision process
and applied machine learning algorithms, like Q-learning
[47] and deep reinforcement learning [48] to obtain the
optimal cache replacement strategy.

However, no prior work, including the above-mentioned
work, has proposed a solution with a service provider
viewpoint that enhances expected memory life while max-
imizing the cache hit ratio. In a nutshell, to the best of
our knowledge, this is the first study to take cache damage
into account and exploit the content’s lifecycle pattern from
a real dataset to minimize the cache damage cost while
keeping a high cache hit ratio.

7 DISCUSSION AND CONCLUSION

This paper investigated the lifecycles of popular online
videos and linked them to cache damages. Specifically,
given the high voltages currently used for program/erase
operations, the ‘expiry date’ of cached videos is on the order
of years, while video lifecycles are usually less than a couple
of weeks. Therefore, we proposed a novel caching policy
that takes into account the cache damage caused by these
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high voltages and thus increases the physical memory’s life
expectancy while keeping a high cache hit ratio compared
to other popular solutions.

Based on a large-scale and real-world dataset of online
video access collected by a major operator in China over
a duration of two months, we distinguished several pop-
ularity patterns for videos and classified them into two
distinct clusters, short-lived videos with an exponential
relaxation tail and long-lived videos whose popularity pat-
tern follows a power-law distribution. We then proposed a
heuristic algorithm using these lifecycle patterns to improve
the cache hit ratio and reduce the cache damage. This
algorithm matches videos to a given cluster and estimates
its lifecycle to determine the retention time in which the
video will be in the cache. We showed that our solution
performs similarly to a pure popularity-based cache policy
both regarding traffic delivery cost and cache hit ratio,
while significantly reducing memory damages over time.
Even popularity-based solutions with lower retention time,
i.e., lower programming voltage, yield significantly higher
damage to the cache, while providing a lower cache hit ratio
due to the presence of videos with popularity exceeding the
fixed retention time. Although our solution displays slightly
higher traffic delivery costs compared to a pure popularity-
based caching policy in a high retention time context, the
impact is negligible considering the enormous gain in cache
damage costs.

In the future, we plan to focus on the relationships
between video lifecycles and their attributes, such as video
type, size, quality, and release time, to quickly identify to
which cluster the video content belongs. We also plan to
propose some stochastic analysis of videos presenting noise-
shaped popularity functions and design guidelines on how
to cache them. Finally, we wish to proceed to a cross-media
analysis to determine which video may experience high
popularity before its release, and proactively place it in the
cache as soon as it is published. For instance, analyzing the
growing hype around movies or series on movie database
websites would permit us to prioritize some videos based
on their expected popularity.
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