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Abstract This article introduces AI2D-RST, a multimodal corpus of 1000 English-

language diagrams that represent topics in primary school natural sciences, such as

food webs, life cycles, moon phases and human physiology. The corpus is based on

the Allen Institute for Artificial Intelligence Diagrams (AI2D) dataset, a collection

of diagrams with crowdsourced descriptions, which was originally developed to

support research on automatic diagram understanding and visual question answer-

ing. Building on the segmentation of diagram layouts in AI2D, the AI2D-RST

corpus presents a new multi-layer annotation schema that provides a rich description

of their multimodal structure. Annotated by trained experts, the layers describe (1)

the grouping of diagram elements into perceptual units, (2) the connections set up

by diagrammatic elements such as arrows and lines, and (3) the discourse relations

between diagram elements, which are described using Rhetorical Structure Theory

(RST). Each annotation layer in AI2D-RST is represented using a graph. The corpus

is freely available for research and teaching.
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1 Introduction

Diagrams are a common feature of many everyday media: they can be found

everywhere from scientific publications and instruction manuals to newspapers and

school textbooks. Barbara Tversky, a cognitive psychologist who has made

pioneering contributions to the study of diagrams, observes that their generic

purpose is ‘‘to structure information to enable comprehension, inference and

discovery’’ (Tversky 2017, p. 350). Due to their widespread use, diagrams have

been studied from various perspectives. Previous research has examined their visual

perception (Hegarty and Just 1993; Ware 2012), structure and functions (Engelhardt

2002; Purchase 2014; Engelhardt and Richards 2018) and their role as a tool for

supporting thinking and reasoning (Tversky 2015) and use in education and

instruction (Tippett 2016), to name but a few examples.

In this article, we make a novel contribution to the study of diagrams by

presenting AI2D-RST, a corpus of 1000 English-language diagrams that represent

topics in primary school natural sciences. The diagrams are described using a new

multi-layer annotation schema that seeks to capture their multimodal structure. Our

approach to multimodality is linguistically-inspired and semiotically-oriented, that

is, we seek to systematically describe how expressive resources such as natural

language, illustrations, line art, photographs, lines, arrows and layout are combined

in diagrams to make and exchange meanings. To do so, we build on the general

framework for multimodal communication proposed in Bateman et al. (2017) and

its application to diagrams as set out in Hiippala and Bateman (2020).

The current work is situated within the emerging field of multimodality research,

which studies how appropriate combinations of expressive resources emerge in

communicative situations (see e.g. Wildfeuer et al. 2020). Despite their growing

influence in various fields of study broadly concernedwith human communication, many

approaches to multimodality remain without adequate empirical support. Although

buildingmultimodal corpora is often presented as a solution to this shortcoming due to the

success of corpus-based methods in linguistics, developing and applying complex

multimodal annotation frameworks requires ample time and resources, and consequently

the resulting corpora remain small (Waller 2017; Huang 2020).

AI2D-RST seeks to reduce the need for time and resources and to scale up the volume

of data by building multimodally-informed expert annotations on top of pre-existing

crowdsourced annotations from the Allen Institute for Artificial Intelligence Diagrams

(AI2D) dataset (Kembhavi et al. 2016). The second part of the name, RST, refers to

Rhetorical StructureTheory, a theory of discourse structurewhichweuse to describe how

diagrams combine multiple expressive resources to fulfil their communicative goals

(Mann and Thompson 1988; Taboada and Mann 2006; Hiippala and Orekhova 2018).

Overall, the AI2D-RST corpus is intended to serve a dual purpose: to support empirical

research on the multimodality of diagrams and their computational processing.
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2 Developing multimodal resources for diagrams research

There is a long-standing interest in the computational processing and generation of

diagrammatic representations (André and Rist 1995; Watanabe and Nagao 1998;

Bateman et al. 2001; Carberry et al. 2003; Bateman and Henschel 2007), which is

now resurfacing as recent advances in computer vision and natural language

processing are brought to bear on diagrammatic representations (Seo et al. 2015;

Sachan et al. 2018, 2019; Choi et al. 2018; Kim et al. 2019; Haehn et al. 2019).

Much of this work is driven by research on well-defined tasks such as information

retrieval and question answering, whose scope is increasingly extended beyond

natural language to cover other modes of expression as well.

Just how these other modes of expression and their combinations should be

described in order to create multimodal resources that can support further research

on multimodality remains an open question. This requires an empirical approach, as

creating multimodal resources for modes of expression beyond natural language

raises questions about fundamental issues such as segmentation: how to decompose

modes of expression such as diagrams into their constituent parts? We have recently

argued in Hiippala and Bateman (2020) that any attempt at a systematic description

of diagrams must acknowledge the specific characteristics of the diagrammatic
mode—an abstract system capable of instantiating various types of diagrams

appropriate for their context of occurrence (cf. e.g. Bateman and Henschel 2007).

Previous research points at two key characteristics of the diagrammatic mode that

need to be accounted for: the use of layout space (Watanabe and Nagao 1998) and

their multimodal discourse structure (Carberry et al. 2003), which are often strongly

intertwined in multimodal artefacts with a 2D spatial extent, such as entire page-

based documents (Hiippala 2013). Firstly, diagrams have a spatial organisation in

the form of a layout, which can be used to set up discourse relations between

instances of expressive resources, including natural language, arrows, lines,

illustrations, photographs, line drawings and potentially any resource that may be

realised in 2D space (Watanabe and Nagao 1998). How these expressive resources

are organised in the layout space can also serve as a strong signal about the purpose

and structure of the diagram by generating expectations towards its discourse

structure (Holsanova et al. 2009).

This brings us to the second point: diagrams combine expressive resources into

discourse structures, which must be resolved to make sense of what the diagram in

question attempts to communicate. For this reason, Carberry et al. (2003) argue that

understanding diagrams should be framed a discourse-level problem, a view that has

found support in our recent work on the diagrammatic mode (Hiippala and Bateman

2020). This, however, raises another issue related to segmentation: many theories of

discourse assume that discourse segments are identified before determining their

interrelations (Grosz and Sidner 1986; Mann and Thompson 1988).

Establishing an inventory of discourse segments for diagrams is a particularly

challenging task, as the level of detail needed for segmentation varies from one

diagram to another, depending on the combination of expressive resources present

and the discourse structures they participate in. To exemplify, a 2D cross-section of
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an object, whose structure is picked out and described using textual labels, must be

decomposed into analytical units to provide a sufficiently accurate description of its

multimodal structure, whereas an illustration of an entire object does not need to be

decomposed to the same extent (for a detailed discussion of challenges related to

diagram segmentation, see Hiippala and Bateman 2020).

Keeping the role of layout and discourse structure in mind, the following sections

explicate how we built a new, multimodally-informed annotation schema with

multiple layers of description on top of existing crowdsourced annotations for

expressive resources and their placement in the diagram layout. To do so, we start

by introducing the AI2D dataset, which provided the crowdsourced annotations. We

then address certain issues with the AI2D annotation schema before motivating our

decision to adopt Rhetorical Structure Theory for describing the discourse structure

of diagrams in AI2D-RST.

3 The Allen Institute for Artificial Intelligence Diagrams (AI2D) dataset

The AI2D dataset (Kembhavi et al. 2016)1 was developed to support research on

computational tasks such as automatic diagram understanding and visual question

answering (see e.g. Kim et al. 2018). The dataset contains 4903 English-language

diagrams that represent topics in primary school natural sciences, such as life cycles,

food webs and circuits. Each diagram is assigned to one of 17 semantic categories

that correspond to topics in this domain.

2. Layout segmentation 3. Diagram Parse Graph (DPG)

1. Original image
Diagram elements are 
mapped to nodes in the

Graph edges encode information about
relationships between nodes, such as
inter-object linkage between B2 & A10.

Fig. 1 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation (converted into greyscale to bring out the annotation) and (3) a Diagram Parse Graph (DPG)
for diagram #274 in AI2D. Diagram element types are coded using same colours in both layout
segmentation and DPG: text blocks (blue), blobs (red), arrows (green), arrowheads (orange) and image
constant (Navajo white)

1 The AI2D dataset is publicly available from the Allen Institute for Artificial Intelligence at https://

allenai.org/plato/diagram-understanding/ (Accessed September 3, 2020).
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Building on Engelhardt’s (2002) framework for describing diagrammatic

representations, Kembhavi et al. (2016, p. 239) model four types of diagram

elements: ‘blobs’ (e.g. illustrations, line art, photographs and other visual expressive

resources), written text, arrows and arrowheads. In addition, Kembhavi et al. (2016)

define ten potential relationships that can hold between individual diagram

elements, which are also drawn from the framework proposed by Engelhardt

(2002). These include, among others, relations such as INTRA-OBJECT LABEL, INTRA-

OBJECT LINKAGE and ARROW DESCRIPTOR, which seek to capture how diagram elements

relate to each other (for a full list of relations, see Kembhavi et al. 2016, p. 239)

AI2D represents diagram structure using a Diagram Parse Graph (DPG), in which

the nodes stand for diagram elements whereas the edges encode information about

the relations that hold between them. For computational tasks, the node features can

be populated using word embeddings or visual features extracted using object

detectors, depending on the diagram element type in question.

Figure 1 shows the crowdsourced layout segmentation and DPG for diagram 274

in the AI2D dataset. The diagrams were scraped from Google Image Search by

using chapter titles in primary school science textbooks (for ages 6–11) as search

terms. The annotations were crowdsourced using Amazon Mechanical Turk by

breaking down the process of segmenting the layout and constructing a DPG into

piecemeal annotation tasks. These tasks involved identifying diagram elements,

categorising them and defining their interrelations (Kembhavi et al. 2016, p. 243).

Kembhavi et al. (2016, p. 242) report that the 4903 diagrams in AI2D contain

approximately 118,000 diagram elements and 53,000 relationships.

Previous research using the AI2D dataset has shown that inferring the meaning of

arrows and lines is context-dependent, and the viewers consistently map the arrows

to real-world processes (Alikhani and Stone 2018). Hiippala and Orekhova (2018),

in turn, consider the AI2D annotation schema from the perspective of multimodality

research and argue that DPGs conflate the description of various multimodal

Fig. 2 Layout segmentation (left) and Diagram Parse Graph (DPG, right) for diagram #2728. The
numerous disconnections in the DPG result from the lack of relation definitions for describing how
groups of diagram elements, such as those formed by illustrations of moon phases and their verbal
descriptions (e.g. illustration B3 and the text ‘waning gibbous’ in T13), relate to each other as a part of the
global discourse structure of the diagram
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structures, such as the visual grouping of diagram elements and connections

expressed using arrows and lines. Pulling these structures apart could help

understand how diagrams operate multimodally, e.g. whether discourse relations are

typically signalled explicitly using arrows and lines or implicitly using the layout

space (Watanabe and Nagao 1998; Carberry et al. 2003).

Moreover, the relation definitions drawn from Engelhardt (2002) cover mainly

local relations between diagram elements, as exemplified by relations such as INTRA-

OBJECT LABEL, which is used to describe instances in which one diagram element acts

as a label for another. The focus on such local relations between individual diagram

elements causes the AI2D annotation schema to fall short in describing the global
organisation of a diagram, or how larger units formed by multiple diagram elements

relate to each other (see Fig. 2).

To summarise, the motivation for developing AI2D-RST can be traced back to

two observations. First, the limited scope of relation definitions drawn from

Engelhardt (2002) in AI2D led us to consider Rhetorical Structure Theory (RST) as

an alternative for describing discourse relations in diagrams, given its previous

successful applications to multimodal discourse (see e.g. Taboada and Habel 2013;

Thomas 2014; Hiippala 2015). However, during the exploratory work reported in

Hiippala and Orekhova (2018), it became evident that a direct conversion to RST

was not feasible, but required introducing additional annotation layers to establish

the units of analysis, as proposed in Bateman (2008).

Second, combining a theory of discourse structure with local and global reach,

such as RST, with a multi-layer annotation schema that captures the combinations

of expressive resources and their spatial organisation could be used to study whether

diagrams signal discourse relations explicitly e.g. using arrows and lines, or whether

they are implicit and require the viewers to draw on world knowledge (see also

Hiippala and Bateman 2020). Furthermore, access to crowdsourced layout

segmentations allows scaling up corpus size. With these two observations in mind,

we now turn to describe the AI2D-RST annotation schema and its application to the

AI2D diagrams.

4 Developing the AI2D-RST corpus

4.1 The AI2D-RST annotation schema

The AI2D-RST annotation schema describes the multimodal structure of diagrams

using four annotation layers. These layers, named grouping, macro-grouping,
connectivity and discourse structure, are introduced in the following sections. The

annotation layers are represented using graphs, which are populated using diagram

elements from the AI2D layout segmentation (see Fig. 1). The unique identifiers for

diagram elements are also carried over from the AI2D layout segmentation to the

AI2D-RST graphs, in order to enable cross-references across annotation layers. This

kind of stand-off approach to annotation separates the description of different

multimodal structures, but allows combining them as necessary using the unique

identifiers, which are shared across annotation layers.

T. Hiippala et al.
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4.1.1 Grouping

The grouping layer describes which diagram elements form visual groups, that is,

which elements are likely to be perceived as belonging together. The principles

behind the grouping layer correspond loosely to Gestalt principles of perception,

which often guide the design of diagrams and other visualisations (Ware 2012, p.

179). To exemplify, the principle of proximity states that elements close to each

other are considered to belong together. A brief introduction to Gestalt principles of

pattern perception and how they influence the process of interpretation is provided

in Bateman (2008, pp. 58–61).

In AI2D-RST, the grouping annotation is represented using an undirected,

acyclic tree graph, such as the one shown on the right-hand side in Fig. 3. In Fig. 3,

the root node of the graph is the image constant I0, which stands for the entire

diagram. In contrast to AI2D, the AI2D-RST grouping layer includes nodes for only

three types of diagram elements, namely blobs, text and arrows, but introduces

another node type: groups. Diagram elements that form a visual unit in the layout

are placed under the same parent node in the grouping graph. These nodes have the

prefix G in their identifier, which stands for a group.

Conversely, besides grouping elements together, the grouping graph also

represents which elements are considered independent, or in other words, do not

belong to any visual groups. In Fig. 3, such independent units include the arrows

A0–15 that set up the network of connections between the groups of illustrations and

2. AI2D layout segmentation 3. AI2D-RST grouping graph

1. Original image
Diagram elements that are likely to be perceived
as belonging together are placed under the same
parent node in the grouping graph.

Fig. 3 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation (converted into greyscale to bring out the annotation) and (3) the AI2D-RST grouping graph
for diagram #274. The grouping graph organises diagram elements that are likely to be perceived as
belonging together into groups. These groups are added to the grouping graph as parent nodes for the
diagram elements that belong together. For an example, see the illustration of a wolf (B2) and the text
‘Gray wolf’ (T3) in the layout segmentation and their corresponding nodes in the AI2D-RST grouping
graph). Both B2 and T3 are children of the grouping node G7, which can be used to refer to both diagram
elements in the annotation layers for connectivity and discourse structure

AI2D-RST: a multimodal corpus of 1000 primary school science diagrams

123



their labels G2–13. These connections are described in the connectivity layer in

order to avoid making arbitrary decisions about whether arrows should be grouped

with their sources or targets (see Sect. 4.1.3).

To summarise, the grouping graph provides a foundation for the subsequent

annotation layers, namely macro-grouping, connectivity and discourse structure by
providing the necessary units of analysis. In practice, the grouping graph allows

diagram elements that form visual groups to be picked up for description in other

annotation layers by referring to the identifiers of their grouping nodes.

4.1.2 Macro-grouping

Macro-grouping captures the generic principles that govern diagram structure above

the level of visual groups identified in the grouping layer, in order to describe why

such visual groupings of expressive resources exist in the first place. To draw on an

example, the grouping graph shown in Fig. 3 consists of the groups G2–G13, which
combine an illustration and a written label, and the arrows A0–15. Both groups and

arrows form a single visual group, G14, which may be appropriately characterised

as a network. We term such constellations of visual groups macro-groups, because
they combine multiple visual groups and diagram elements into larger structures.

Due to its close relation to the grouping layer, macro-grouping annotation is

incorporated into the grouping graph. If the diagram consists of a single macro-

group, macro-grouping information is assigned to the root node of the grouping

table
(49, 4.3%)

horizontal
(82, 7.2%)

vertical
(39, 3.4%)

depiction

3D

2D cross-section
(196, 17.3%)

cut-out
(105, 9.3%)

exploded
(2, 0.1%)

pictorial

diagrammatic
(22, 1.9%)

photograph
(19, 1.7%)

illustration
(293, 25.8%)

network
(140, 12.3%)

cycle
(187, 16.5%)

Fig. 4 A typology of macro-groups. The numbers in parentheses give the raw count for each macro-
group and their proportion of the AI2D-RST corpus (N ¼ 1134)
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graph (the image constant I0), but if the diagram features multiple macro-groups,

this information may be assigned to grouping nodes as well. Figure 3 exemplifies a

diagram with multiple macro-groups. The food web under grouping node G14 is

assigned the macro-group network, whereas the categories on the left under the

grouping node G1 form a vertical organisation, whose function is to provide labels

for visual groups that constitute the network.

Figure 4 shows a typology of macro-groups developed on the basis of our initial

analysis of diagram types in the AI2D-RST corpus. As such, the scope of the

typology is not intended to cover the space of possibilities within the entire

diagrammatic mode, but is limited to the domain represented by the diagrams in

AI2D-RST. In addition to describing the larger organisations of visual groups,

macro-groups are intended to provide a set of structural categories that correspond

to different diagram types, in contrast to the semantic categories in AI2D, which are

based on the subject matter of the diagram. In this way, the macro-groups can also

be used as target labels for training classifiers.

4.1.3 Connectivity

The connectivity layer describes connections between diagram elements and their

groups, which are signalled visually using arrows, lines and other diagrammatic

elements capable of expressing connectivity (Tversky et al. 2000). In AI2D-RST,

the connectivity annotation covers visually explicit connections between diagram

elements only, that is, the arrows and lines must have a clear source and a target, in

order to allow the connections to be represented using graphs (cf. Alikhani and

Stone 2018, p. 3554). The AI2D-RST annotation schema defines three types of

connections based on directionality: undirected, directed and bidirectional.

The connectivity annotation is represented using a cyclic mixed graph, which

means that the graph may feature both undirected and directed edges. Figure 5

exemplifies a connectivity graph, whose visualization has been enhanced with edges

from the grouping graph (for the original grouping graph, see Fig. 3), because the

connections in Fig. 5 are likely to be perceived to hold between visual groups of

elements, rather than individual elements, such as labels or illustrations. Annotating

connectivity according to visually explicit connections between individual

elements, which originate and terminate in both labels and illustrations, as

exemplified by the directed connection between the text block T3 (‘Gray wolf’) and

the illustration of a hare in B9, results in an incomplete representation of

connectivity. This shows why visual groups are needed as basic units of analysis for

a graph-based representation of connectivity, which also illustrates how the

grouping layer supports other annotation layers by providing the necessary units of

analysis.

4.1.4 Discourse structure

Whereas the grouping and connectivity layers seek to capture diagrammatic

structures that are explicitly available for visual inspection, the discourse structure

AI2D-RST: a multimodal corpus of 1000 primary school science diagrams

123



2. AI2D layout segmentation 3. AI2D-RST discourse structure graph

1. Original image
Edges encode information

satellite.

Rhetorical relations are
added to the graph as

Fig. 6 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation (converted into greyscale to bring out the annotation) and (3) the AI2D-RST discourse
structure graph for diagram #0. The multinuclear JOINT relation R1 joins together the labels T0–2 and T4–
5, which serve a similar communicative purpose in the diagram, that is, pick out parts of the illustration
B0 for description. Part-whole relations are described using the ELABORATION relation R2, in which the
JOINT relation R1 acts as a satellite and the illustration B0 as the nucleus. Another relation on the highest
level of the hierarchy is drawn between the illustration B0 and the text T3 (‘FACE’) that describes the
entire diagram, which is annotated as PREPARATION (R3). The edge labels ‘n’ and ‘s’ stand for nucleus and
satellite, respectively

2. AI2D layout segmentation 3. AI2D-RST connectivity graph

Connections are drawn 
between visual groups 
that consist of an 
illustration and a label.

Edges with solid lines
represent visual con-
nections in the diagram.

Fig. 5 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation (converted into greyscale to bring out the annotation) and (3) the AI2D-RST connectivity
graph for diagram #274. In the connectivity graph, the edges with solid lines correspond to arrows in the
layout segmentation, whereas edges with dashed lines represent edges in the grouping graph, which join
diagram elements into visual groups

T. Hiippala et al.

123



layer attempts to describe the implicit discourse relations that hold between diagram

elements and their groups, which viewers may recover from the diagram structure.

As such, the discourse structure layer provides the crucial link between multimodal

structure and communicative intentions in the AI2D-RST corpus.

For describing the discourse structure of diagrams, AI2D-RST uses Rhetorical

Structure Theory (RST; see e.g. Mann and Thompson 1988; Taboada and Mann

2006), a theory of textual organisation and coherence which has been previously

extended to diagrams in natural language generation (André and Rist 1995;

Bateman et al. 2001; Bateman and Henschel 2007) and for describing discourse

relations in research on multimodal documents and other artefacts (Bateman 2008;

Thomas 2009; Taboada and Habel 2013; Hiippala 2015). This extension of RST,

which may be described as multimodal RST, provides the foundation for discourse

structure annotation in AI2D-RST, as exemplified in Fig. 6.

Both ‘classical’ and multimodal RST provide a set of discourse relations with

criteria for their application (Mann and Thompson 1988; Bateman 2008). For

annotating discourse relations in the AI2D-RST corpus, we used the relation

definitions presented in Hiippala (2015, pp. 221–223) which combines the classical

RST relations from Mann and Thompson (1988) with the multimodal extension

proposed in Bateman (2008). We also introduced an additional relation, CYCLIC

SEQUENCE, which is used to describe repeating sequences (see the example in Fig. 7).

Our application of RST relations is described in great detail in the annotation guide

that accompanies the AI2D-RST corpus (see Sect. 4.4).

We drew on these relation definitions to describe how elementary discourse

units—which in AI2D-RST correspond to diagram elements or their groups—relate

2. AI2D layout segmentation 3. AI2D-RST discourse structure graph

1. Original image Diagram elements that form
visual groups often participate
in local discourse structures.

RST provides abstract relations
needed for describing the global 
discourse structure.

Fig. 7 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation (converted into greyscale to bring out the annotation) and (3) the AI2D-RST discourse
structure graph for diagram #2185. The diagram features three distinct types of rhetorical relations.
Whereas the IDENTIFICATION relations (R1–6) are mainly local in the sense that the participating diagram
elements form visual groups, the CYCLIC SEQUENCE (R7) and PREPARATION (R8) describe the global discourse
organisation of the diagram, or how larger formations of discourse units relate to each other
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to each other. Depending on the relation, one discourse unit may be considered

nuclear, or more important, whereas other units act as satellites that play a

secondary role. RST terms such relations asymmetric. Symmetric relations, in turn,

may have multiple nuclei, indicating equal status among discourse units. The

example in Fig. 6 exemplifies both symmetric (R2, R3) and asymmetric (R1)
relations and illustrates how RST relations are represented in the discourse structure

graph. Relations are added to the graph as nodes whose identifier has the prefix R,

whereas the edges between these nodes carry information on nuclearity, that is,

whether the participating diagram elements act as nuclei or satellites.

Figure 7 shows a more complex example, which illustrates the benefit of

adopting RST for describing the discourse structure of diagrams. As pointed out

above in Sect. 3, the relation definitions in the AI2D annotation schema are largely

constrained to local relations between adjacent elements. RST, in turn, provides

abstract relations that can handle the description of global discourse organisation as

well, or how larger constellations of diagram elements relate to each other.

RST analyses are commonly represented using recursive tree diagrams, although

this is not a requirement set by the theory (Taboada and Mann 2006, p. 435). Wolf

and Gibson (2005) have argued that tree structures are too constrained for an

accurate representation of discourse structure, because a single discourse unit may

be picked up as a part of multiple discourse relations. They propose using graphs as

an alternative data structure, which would allow discourse units to participate in

multiple relations and abolish the hierarchical tree structure.

2. AI2D layout segmentation 3. AI2D-RST discourse structure graph

1. Original image
The label Perianth (T7) is used to describe two 
other labels, T10 and T11. To maintain tree 
structure in the graph, the node is split into 
two nodes in the discourse structure graph.

Fig. 8 (1) A thumbnail of the original diagram image scraped from the web, (2) its crowdsourced layout
segmentation and (3) the AI2D-RST discourse structure graph for diagram #3194. The diagram features
three distinct types of rhetorical relations: IDENTIFICATION (R1–5, R8–11), ELABORATION (R7, R13) and JOINT

(R6, R12). To preserve the tree structure of the graph, several diagram elements are represented by
multiple nodes in the discourse structure graph, as these elements participate in multiple rhetorical
relations. To exemplify, the label Perianth (T7) describes two other labels, Petal (Corolla) (T10) and
Sepal (Calyx) (T11). We describe this relation as IDENTIFICATION, as the label T7 identifies that the labels
T10 and T11 collectively form a part named Perianth. In the discourse structure graph, the IDENTIFICATION

relations (R10 and R11) both feature a copy of T7 as a satellite to preserve the tree structure
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The discourse structure layer, however, preserves the hierarchical structure and

uses a directed acyclic tree graph to represent RST analyses. This decision is

motivated by the use of layout space in diagrams, which is regularly used to set up

discourse relations between diagram elements (Waller 2012; Watanabe and Nagao

1998). The inherently spatial organisation of diagrams makes constraining the

application of discourse relations difficult, particularly in terms of spatial adjacency,

that is, limiting relations to elements that are positioned close to each other (cf.

Bateman 2008, p. 158). We argue that preserving the tree structure imposes

additional control on the application of RST relations.

We do, however, acknowledge that like multimodal documents, diagrams can

‘re-use’ discourse units in different rhetorical relations (Bateman 2008, p. 159). To

account for diagram elements that take on the role of satellites or nuclei in multiple

rhetorical relations, we split the diagram elements to preserve the hierarchical

structure, as shown in Fig. 8. This involves creating copies of a node in the graph,

which are identified using a decimal in the node name, such as T7.1 or T7.2. Each
copy of the node may be then picked up in the RST analysis while preserving the

tree structure. Because the original identifiers are preserved as attributes of the split

nodes in the discourse structure graph, the acyclic tree graphs can be easily

converted into cyclic graphs favoured by Wolf and Gibson (2005), if necessary.

4.2 Annotators and training

The AI2D-RST diagrams were annotated by five students pursuing BA or MA

degrees in English, who received approximately 10 h of initial training in the form

of introductory sessions covering each annotation layer. They also received detailed

feedback on their initial work and could pose questions about the application of the

annotation schema using an online tool for team collaboration. The annotators were

also supported by a document that provided guidelines and preferred solutions to

common annotation problems, which is available in the repository associated with

this article. We return to discuss the impact that the collaborative annotation process

may have had on the reproducibility of the annotation framework at the end of Sect.

5. Annotating the corpus took approximately 6 months and cost 50,000€.

4.3 The annotation tool

We developed an in-house tool to annotate the diagrams. The tool provides a

command line interface for building graphs, which are initially populated by nodes

from the original AI2D layout segmentation. The tool is written in Python 3.6 and

makes extensive use of the matplotlib (Hunter 2007), NetworkX (Hagberg et al.

2008), OpenCV (Bradski and Kaehler 2013) and pandas (McKinney 2010) libraries.

The tool and its source code are available with an open license at https://doi.org/10.

5281/zenodo.3384751.
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4.4 Acquiring the corpus

The AI2D-RST corpus is available for download as JSON files in the Language

Bank of Finland: http://urn.fi/urn:nbn:fi:lb-2020060101. Python functions for

loading and processing the corpus are provided separately at https://doi.org/10.

5281/zenodo.3384751.

5 Measuring the reliability of the annotation

We measured inter-annotator agreement when 355 diagrams had been annotated. At

this stage, the annotators were assumed to have familiarised themselves with the

annotation schema. Because the data was annotated by five annotators, we used

Fleiss’ kappa (j) as implemented in the statsmodels Python library (Seabold and

Perktold 2010) as the metric for measuring inter-annotator agreement. We report

both the original j statistic, as proposed by Fleiss (1971), which is calculated using

marginal probabilities for each category, and the free-marginal j proposed by

Randolph (2005), which assumes a uniform distribution over all categories. We

refer to Fleiss’ original definition as marginal j and Randolph’s alternative as

uniform j. In addition, we used the irr library (Gamer et al. 2019) for the R

programming language (R Core Team 2019) to calculate class-wise marginal j
scores for grouping, macro-grouping, connectivity and discourse structure annota-

tions. The results are reported in Sects. 5.1, 5.2, 5.3 and 5.4. Finally, in Sect. 5.5 we

model annotator reliability using MACE (Hovy et al. 2013). The raw annotations

are provided as CSV files at https://doi.org/10.5281/zenodo.3384751.

5.1 Grouping

To evaluate the reliability of grouping layer annotation introduced in Sect. 4.1.1, we

sampled the 355 diagrams without replacement for 10% of visual groups composed

of diagram elements only, excluding groups whose child nodes included other

grouping nodes. This amounted to 256 groups, whose elements were highlighted in

the AI2D layout segmentation and presented to the annotators. The annotators were

then asked whether the elements form a visual group, as defined in the AI2D-RST

annotation schema. If the annotators considered the grouping valid, a follow-up

question requested the annotators to name Gestalt principle or annotation guideline

that justified their choice. If multiple principles or guidelines were applicable, the

annotators were asked to choose the most prominent one. For inter-annotator

agreement between five annotators and 256 groups, the marginal j was 0.836, while

the uniform j was 0.894.

Table 1 shows class-wise agreement for Gestalt principles and annotation

guidelines, which are sorted in descending order based on their marginal j values.

The results suggest that the annotation guide supported the consistent description of

the data. Most cases in the guideline category consisted of label—line combinations,

such as those shown in Fig. 6. In principle, such combinations could be grouped

together based on several Gestalt principles, such as proximity, continuity and
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connectedness, but explicating annotation patterns for common diagrammatic

structures such as labels and their connecting lines seems to make the decisions less

arbitrary. In addition, common spatial- and attribute-based relations that build on

Gestalt principles such as proximity, closure and similarity (Engelhardt 2002, p.

30), are annotated consistently in the AI2D-RST corpus.

5.2 Macro-grouping

For measuring inter-annotator agreement on the macro-groups introduced in Sect.

4.1.2, we sampled the 355 diagrams without replacement for 33% of macro-groups,

which amounted to 119 macro-groups. The annotators were presented with the

AI2D layout segmentation and the AI2D-RST grouping graph, which highlighted

the node that had been assigned with macro-grouping information. The annotators

were then asked which macro-group they would assign to the node in question. For

inter-annotator agreement on macro-groups, the marginal j was 0.784 and the

uniform j was 0.800.

Table 2 gives class-wise marginal j values for macro-groups in descending order.

Agreement is particularly high for visually distinctive macro-groups such as

networks, cycles and cut-outs, which occur frequently in the AI2D-RST corpus (see

also Fig. 4). The values are considerably lower for less common macro-groups such

as tables and photographs. Photographs, in particular, are rarely preferred as the

main visual expressive resource in the AI2D-RST corpus, as diagrams in the corpus

favour illustrations, cut-outs and cross-sections for depiction. For these prominent

macro-groups, agreement remains substantial.

5.3 Connectivity

For connectivity annotation (see Sect. 4.1.3), we sampled the 355 diagrams without

replacement for 10% of connections holding between diagram elements or their

groups, which resulted in 239 connections. The source and target of each connection

were highlighted in the AI2D layout segmentation and presented to the annotators,

who were then asked to place the connection into one of four categories: directed,

Table 2 Class-wise marginal j
scores for macro-groups

Macro-group j z-score p-value Frequency in corpus

Network 0.884 30.480 \0:001 0.123

Cycle 0.876 30.204 \0:001 0.165

Cut-out 0.849 29.271 \0:001 0.093

Slice 0.754 25.996 \0:001 0.173

Horizontal 0.726 25.031 \0:001 0.072

Diagrammatic 0.718 24.785 \0:001 0.019

Illustration 0.709 24.458 \0:001 0.258

Vertical 0.702 24.228 \0:001 0.034

Table 0.247 8.537 \0:001 0.043

Photograph 0.162 5.604 \0:001 0.017
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undirected, bidirectional or no connection. Measuring inter-annotator agreement

returned a marginal j of 0.878 and uniform j of 0.916. Table 3 gives class-wise

marginal j values for each connection type. Apart from no connection, agreement is

high across all types of connectivity, as might be expected with a low number of

categories, which are also visually distinctive and whose structural features are

relatively easy to formalise (see Alikhani and Stone 2018, p. 3554).

5.4 Discourse structure

For evaluating inter-annotator agreement on the discourse structure layer introduced

in Sect. 4.1.4, we sampled the 355 diagrams without replacement for 10% of the

relations, amounting to a total of 227 RST relations. The AI2D layout segmentation

Table 3 Class-wise marginal j
scores for connectivity

Connection j z-score p-value Frequency in corpus

Directed 0.910 44.512 \0:001 0.511

Bidirectional 0.908 44.402 \0:001 0.004

Undirected 0.900 44.003 \0:001 0.485

No connection 0.192 9.392 \0:001 N/A

Table 4 Class-wise marginal j scores for discourse relations

Discourse relation j z-score p-value Frequency in corpus

CYCLIC SEQUENCE 0.924 44.029 < 0.001 0.033

PREPARATION 0.870 41.471 < 0.001 0.054

PROPERTY-ASCRIPTION 0.870 41.468 < 0.001 0.070

JOINT 0.827 39.419 < 0.001 0.109

IDENTIFICATION 0.798 37.998 < 0.001 0.439

CONNECTED 0.766 36.492 < 0.001 0.030

SEQUENCE 0.689 32.844 < 0.001 0.015

ELABORATION 0.620 29.540 < 0.001 0.134

CIRCUMSTANCE 0.449 21.388 < 0.001 0.029

CONTRAST 0.308 14.656 < 0.001 0.024

CLASS-ASCRIPTION 0.266 12.680 < 0.001 0.028

CONJUNCTION 0.249 11.848 < 0.001 0.003

DISJUNCTION 0.249 11.848 < 0.001 0.003

LIST 0.182 8.659 < 0.001 0.007

NONVOLITIONAL CAUSE 0.138 6.553 < 0.001 0.004

NONVOLITIONAL RESULT 0.078 3.738 < 0.001 0.006

MEANS 0.066 3.129 0.002 0.003

CONDITION - 0.001 - 0.042 0.966 0.001

PURPOSE - 0.001 - 0.042 0.966 N/A

RESTATEMENT - 0.003 - 0.126 0.900 0.004
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and the AI2D-RST discourse structure graph were presented side-by-side to the

annotators, highlighting the RST relation node to be annotated in the discourse

structure graph. Measuring overall agreement on the RST relations returned a

marginal j of 0.733 and a uniform j of 0.783.

Table 4 provides class-wise marginal j scores for RST relations that the

annotators used during the inter-annotator agreement experiment in a descending

order. The results show that annotators consistently agree on common RST relations

such as CYCLIC SEQUENCE, which is used to annotate recurring cycles formed by

diagram elements, and PREPARATION, which is used to describe the relationship

between a title and an entire diagram. These RST relations are associated with

visually distinctive macro-groups (cycles) and relatively fixed diagram elements

(titles), which is likely to increase agreement. The same applies to frequently

occurring relations defined between a label and an object or its part, such as

PROPERTY-ASCRIPTION, IDENTIFICATION and ELABORATION, whose specific use cases were

defined in the annotation guide. In short, the development of an annotation guide

seemed to support the consistent annotation of RST relations. Compared to previous

studies of inter-annotator agreement using multimodal RST (e.g. Taboada and

Habel 2013), the j scores for the AI2D-RST discourse structure layer are promising,

as relations with a j[ 0:62 cover 88.4% of RST relations in the corpus.

Figure 9 provides an alternative view to the reliability of the discourse structure

annotation by measuring inter-annotator agreement at different depths of the RST

tree graph. Not surprisingly, agreement is highest at the leaves of the tree graph (hop

0) with a marginal k of 0.767 and a uniform k of 0.832. These consistently annotated

relations mainly cover local discourse structures illustrated in Fig. 7, as exemplified

by IDENTIFICATION (N ¼ 81), JOINT (N ¼ 21) and PROPERTY-ASCRIPTION (N ¼ 21). As

the j values for hops 1–3 show, agreement decreases for relations that are

positioned up the tree, which represent the more abstract relations that hold between

larger discourse units. Surprisingly, annotators consistently agree on how the

Starting from relation R7, 
four hops are needed to 
reach the furthermost 
relations below, R3 or R5.

1

2

3

4 4

3

Fig. 9 Fleiss’ marginal and uniform j for RST relations at different depths of the RST tree. We
measured the position of RST nodes in the tree by calculating the number of hops needed to reach the
furthermost RST node in the subtree below, as illustrated on the left-hand side. On the right-hand side, the
balloons give the number of samples observed for each hop. The X-axis gives the number of hops: a value
of zero indicates that the RST relation is close to the edge of the tree

T. Hiippala et al.

123



relations closest to the root (hop 4) should be annotated. It should be noted,

however, that sample sizes are very small for hops 3 and 4 and therefore warrant

caution.

5.5 Modelling annotator reliability

In addition to measuring inter-annotator agreement, we estimated annotator

reliability using MACE (Hovy et al. 2013). MACE, which stands for Multi-

Annotator Competence Estimation, models the annotation process by treating the

labels as latent variables and uses unsupervised learning to estimate the model

parameters. The model seeks to predict whether the annotator is answering dutifully

or choosing the answers at random. Hovy et al. (2013, p. 1124) show that MACE

reliability estimates correlate strongly with annotator proficiency. Table 5 shows

MACE reliability estimates using default settings, which suggests dutiful annotation

with slightly varying competences between annotators.

5.6 On the reliability and reproducibility of the AI2D-RST annotation
schema

Overall, the inter-annotator agreement measures suggest that the AI2D-RST

annotation is applied consistently to the diagrams. The results are particularly

promising given that inter-annotator agreement was measured between five

annotators. However, it is important to acknowledge that measuring inter-annotator

agreement using metrics such as Fleiss’ j often involve compromises. In the case of

RST, for instance, measuring agreement over a single relation in a given context is

very different from constructing entire RST trees and comparing them between

annotators. To improve the evaluation of annotation reliability, future studies

applying multimodal RST should follow up on recent developments in research on

the automatic comparison of RST trees (see e.g. Wan et al. 2019). Alternatively, the

approach illustrated in Fig. 9 could be used sample relations along the depth of the

RST tree in a balanced manner, in order to ensure that agreement is evaluated for

both local and global discourse structures.

In terms of the annotation schema, it should be noted that the expert annotators

helped to develop the AI2D-RST annotation schema by discussing specific

examples with each other, which were then documented in the annotation guide.

This violates several principles of reproducibility set out for content analysis in

Krippendorff (2013). However, as Artstein and Poesio (2008, p. 575) point out,

content analysis treats the annotation process as an experiment about whether some

Table 5 MACE reliability

estimates for annotators and

specific tasks

Task Ann. 1 Ann. 2 Ann. 3 Ann. 4 Ann. 5

Grouping 0.9133 0.9378 0.9040 0.9601 0.9430

Macro-grouping 0.8851 0.8052 0.9351 0.8574 0.8954

Connectivity 0.9478 0.9382 0.9531 0.9364 0.9631

Discourse structure 0.8452 0.8698 0.8912 0.8021 0.9249
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properties may be consistently detected in a text, whose success is determined by

reproducibility of the annotation. In computational linguistics, annotation serves

different purposes, such as creating resources for training and evaluating algorithms,

which differs from the goals set for content analysis (Reidsma and Carletta 2007).

Riezler (2014, p. 240), however, also calls for attention to the consequences of

violating the requirement of independence, that is, allowing the annotators to

discuss annotation tasks. This is likely to generate implicit knowledge among the

annotators, which increases agreement among annotators but hinders reproducibil-

ity. This kind of implicit knowledge gives rise to circularity in annotation, which

has been acknowledged as a problem in multimodality research (Thomas 2014).

Given the collaborative annotation procedure, it is likely that the AI2D-RST

annotations exhibit a degree of circularity.

To evaluate and improve the reproducibility of the AI2D-RST framework, future

work should employ naive annotators, who are assigned tasks that do not build on

concepts introduced in the annotation framework (see e.g. Asheghi et al. 2016).

This kind of non-theoretical grounding (Riezler 2014) could help to break

circularity by evaluating, for instance, whether naive annotators perceive diagram

elements to form visual groups (grouping) or whether arrows and lines are

considered to signal connections between individual diagram elements or visual

groups (connectivity). For discourse structure annotation, Yung et al. (2019)

introduce a multi-step procedure for sourcing descriptions of discourse relations

[-0.23, -0.45, -0.31, -0.44, -0.15, -0.04, -0.25,  2.46, -0.11, -0.47, -0.23,  3.65,  
  1.76,  1.42,  1.58,  1.24, -0.83, -0.67,  2.26, -0.25,  1.15, -0.44,  1.83, -0.33, 
  0.73, -0.34, -0.25, -0.21, -0.16, -0.1 , -0.13, -0.13, -0.07, -0.12, -0.1 , -0.07,
 -0.04, -0.03, -0.03, -0.03, -0.03,  1.53,  1.72, -0.61,   2.3, -0.05]

[ 0.12,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   1.0,   0.0,   0.0,   0.0,   1.0, 
  12.0,  16.0,  17.0,  14.0,   0.0,   0.0,  12.0,   0.0,   1.0,   0.0,   1.0,   0.0,  
   1.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,
   0.0,   0.0,   0.0,   0.0,   0.0,  26.0,  14.0,   0.0,  16.0,   0.0]

Z-score normalisation makes the counts 
comparable across the AI2D-RST corpus.

Network density is slightly 
below the average (= 0.0)

Network density: the 
proportion of actual 
connections out of all 
possible connections

Number of text 
blocks in the 
diagram

Number of 
 

relations

Number of  relations is Number of text blocks is 
above the mean (= 0.0)

value (0.12)  mean (0.157)

standard deviation (0.154)

Original diagram Connectivity
Grouping and

macro-grouping Discourse structure

Fig. 10 Extracting simple features from diagrams in the AI2D-RST corpus by counting the instances of
different features across the annotation layers. The features are then normalised to make them comparable
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from naive annotators. Adopting this approach in multimodal RST, however, would

require additional efforts to accommodate the presence of multiple expressive

resources.

6 Exploring the AI2D-RST corpus

In this section, we present a brief exploratory analysis of the AI2D-RST corpus. We

begin with a rather straightforward approach illustrated in Fig. 10, which makes

minimal use of the graph-based representations by simply counting instances of

diagram elements, macro-groups, rhetorical relations, nuclei and satellites, and

types of connections in each diagram. Finally, we also calculate network density for

the connectivity graph, which measures the proportion of actual edges present in the

graph out of all possible edges. We concatenate these values into a 46-dimensional

feature vector and use z-score normalization to scale the values of each dimension

to have a mean of 0 and a standard deviation of 1. This provides each diagram in the

AI2D-RST corpus with a normalised 46-dimensional feature vector that represents

its multimodal structure.

Figure 11 shows a visualisation that uses the Uniform Manifold Approximation

and Projection algorithm (UMAP; see McInnes et al. 2018) to reduce the 46-

dimensional feature vectors to two dimensions for a visual exploration of the AI2D-

RST corpus. When mapping points between high- and low-dimensional spaces,

UMAP seeks to preserve both local and global structure of the points across the two

Fig. 11 A visualization showing 2-dimensional UMAP embeddings learned from the 46-dimensional
feature vectors extracted using the technique in Fig. 10. Each point corresponds to a single diagram in the
AI2D corpus, which are coloured according to their macro-groups
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spaces. In other words, points that are close to each other in the 46-dimensional

space should be close to each other in the two-dimensional space, whereas points

that are distant from each other in the 46-dimensional space should remain distant in

the two-dimensional space as well.

The UMAP embeddings in Fig. 11 show distinct clusters that correspond to

specific macro-groups, such as cycles, cross-sections, cut-outs and networks, which

illustrate the space of structural variation among the AI2D-RST diagrams. It should

be noted, however, that the macro-grouping annotation is explicitly encoded into the

46-dimensional feature vector. This information is thus directly available to UMAP

for learning the 2-dimensional embeddings, which the algorithm leverages when

clustering points in the low-dimensional space.

Nevertheless, the visualisation in Fig. 11 can yield valuable insights into the

structural variation among the AI2D-RST diagrams. Firstly, diagrams that feature

several macro-groups (see Sect. 4.1.2) can be found within all major clusters, which

suggests that even simple count-based features can capture structural distinctions in

diagrams. The diagrams labelled as ‘mixed’ are particularly interesting, as they may

yield information on which macro-groups are readily combined with each other in

the AI2D-RST corpus. The clusters for individual macro-groups, in turn, appear to

capture variation within macro-groups, as exemplified by the clusters for networks

and cross-sections, which seem to form two parts. Whether such formations within

clusters reflect alternative structural configurations of expressive resources within

specific macro-groups warrants further analysis.

Secondly, diagrams that feature rigid layouts, such as tabular, horizontal and

vertical macro-groups, are not only positioned close to each other, but also form a

continuation of the cluster for illustrations. This is not surprising, as tabular, vertical

and horizontal macro-groups are typically used to organise multiple instances of

visual depictions and their verbal descriptions for presentation, in which the local

discourse structures are similar to individual illustrations (for examples of local

discourse structures, see Fig. 7). The clusters for cut-outs and cross-sections, in turn,

are distinct from illustrations, which may be traced back to differences in their

discourse structure. Whereas cut-outs and cross-sections typically use labels to pick

out parts or regions of a visual depiction, illustrations use labels to identify the entire

object. This distinction is captured by their discourse structure annotation.

Thirdly, the diagrammatic macro-group forms a tight cluster, which is clearly

separate from other macro-groups. Although the sample size for this macro-group is

fairly small (N ¼ 22), this is an interesting observation as the UMAP embeddings

seem to capture a fundamental difference between the diagrammatic macro-group

and other macro-groups in the corpus, which may be traced back to their discourse

structure. The diagrammatic macro-group features schematic diagrams such as

circuit diagrams, whose elements have fixed meanings, as exemplified by

standardised symbols for switches, connections, circuit breakers and the like.

Because their diagram elements have fixed meanings that do not need to be

recovered discursively from their context of occurrence, schematic diagrams resist

RST analysis. Put differently, there is no need for the viewer to resolve discourse

relations between diagram elements, as all the information needed for making sense

of the diagram is communicated using arrows and lines that signal connections
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between diagram elements with fixed meanings. Although these connections are

captured by the AI2D-RST connectivity layer, this raises questions about the need

to revise the AI2D-RST annotation schema, if it were to be extended to domains

featuring many types of schematic diagrams, in order to draw out their differences.

This brief exploratory analysis has illustrated how the AI2D-RST corpus can be

used to support empirical research on the multimodality of diagrams. As pointed out

above, the features extracted from the corpus made minimal use of the properties of

the graph-based representations (see Fig. 10). The properties of graphs could be

exploited to a much larger extent using algorithms such as graph neural networks,

which learn representations of graph-structured data by passing and receiving

features between neighbouring nodes (see e.g. Wu et al. 2019). Such methods could

be particularly useful for learning representations of discourse structure in diagrams,

allowing their computational representation to encode interactions between diagram

elements. However, learning these representations directly from the data can be

complicated by the relatively small number diagrams in AI2D-RST.

7 Discussion

Developing the AI2D-RST corpus showed that exploiting readily-available

annotations can be used to increase the size of richly-annotated multimodal

corpora, but this comes at a cost, particularly for annotating their discourse

structure. As explicated in Hiippala and Bateman (2020), identifying the elementary

discourse units required by RST and other discourse annotation frameworks is

particularly complicated for diagrams, because the extent to which diagrams need to

be decomposed to achieve a sufficient inventory of elementary discourse units

varies from one diagram to another. In short, the level of detail needed for

decomposition depends on the combination of expressive resources and the

discourse relations they participate in (see Sect. 2).

Because the AI2D layout segmentation does not provide this kind of discourse-

driven decomposition at various levels of detail, the AI2D-RST annotation schema

had to make compromises in the description of discourse structure. The example in

Fig. 6 illustrates this issue aptly: the written labels are used to pick out parts of the

illustration, and to achieve a maximally accurate RST analysis of the diagram, the

illustration should be decomposed into its component parts. However, as the

crowdsourced annotators were not instructed to decompose visual expressive

resources during layout segmentation, the elementary discourse units needed for a

maximally coherent representation of discourse structure within RST are not

available (for a discussion of similar problems in annotating comics, see Bateman

and Wildfeuer 2014).

This shortcoming also carries implications for crowdsourcing annotations for the

diagrammatic mode in any domain. Because the discourse structure determines to

what extent the diagram must be decomposed, defining crowdsourcing tasks

developed for the annotation of photographic images is unlikely to work for

identifying the ‘building blocks’ of diagrams (cf. Kovashka et al. 2016). Instead of

defining semantic object classes (i.e. what the diagram element represents), these
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building blocks should correspond to expressive resources available to the

diagrammatic mode, such as written language, arrows, lines and other diagrammatic

elements. Crucially, these expressive resources must be complemented by

sufficiently fine-grained descriptions of graphic expressive resources, such as line

drawings, coloured illustrations, cut-outs, cross-sections and exploded views, and

photographs, to name just a few examples. In short, pre-theoretical notions such as

‘language’ and ‘image’ are not sufficiently fine-grained to capture the motivated use

of distinctive graphic expressive resources in diagrams (cf. Bateman 2014).

Although the development of AI2D-RST revealed various challenges discussed

above, we argue that the corpus is still a valuable resource for studying how the

diagrammatic mode is used in the domain of primary school natural sciences and

beyond. In the study of multimodal discourse, the corpus could be used for

investigating whether discourse relations between diagram elements are signalled

visually using arrows and lines or spatially using layout (cf. Watanabe and Nagao

1998), thus complementing the linguistic research on signalling of discourse

relations by Das and Taboada (2018). Such empirically-backed insights could be

particularly valuable to educational research on the visual perception of diagram-

matic representations, and their role in constructing mental models and learning

more generally (Tippett 2016; Menendez et al. 2020). Another avenue of further

research involves the automatic annotation of diagram corpora. The AI2D-RST

corpus covers just over 20% of the AI2D dataset, which raises the question whether

the 1000 diagrams in AI2D-RST are sufficient for teaching algorithms to generate

AI2D-RST annotations for the remaining 3900 diagrams in AI2D.

8 Concluding remarks

In this article we introduced AI2D-RST, a new multimodal corpus of 1000 English-

language primary school science diagrams, which combines crowdsourced and

expert annotations to provide a rich description of their multimodal structure. The

multi-layered, stand-off annotation schema developed for AI2D-RST accounts for

(1) the visual grouping of diagram elements, (2) how their connections are signalled

using arrows and lines, and (3) the discourse relations between diagram elements

using Rhetorical Structure Theory. We measured agreement between five annota-

tors: the results suggest that the annotation schema may be reliably applied to

describe diagrams in the AI2D-RST corpus.

As our brief exploratory analysis of the AI2D-RST corpus showed, the

combination of multiple annotation layers and graph-based representations can

yield valuable insights into the multimodal structure of diagrams. As such, the

corpus can support empirical research on diagrams as a mode of expression and

their computational processing. In terms of methodology, developing the AI2D-RST

corpus illustrated how crowdsourcing low-level annotations and building expert

descriptions on top of them can be used to increase the size of corpora in the field of

multimodality research. Insights from linguistically-inspired multimodality

research, in turn, can also inform the creation of resources for research on the

computational processing and generation of diagrams.
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