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Abstract
1.	 Caves and other subterranean habitats fulfill the requirements of experimen-

tal model systems to address general questions in ecology and evolution. Yet, 
the harsh working conditions of these environments and the uniqueness of the 
subterranean organisms have challenged most attempts to pursuit standardized 
research.

2.	 Two main obstacles have synergistically hampered previous attempts. First, there 
is a habitat impediment related to the objective difficulties of exploring subterra-
nean habitats and our inability to access the network of fissures that represents 
the elective habitat for the so-called “cave species.” Second, there is a biological 
impediment illustrated by the rarity of most subterranean species and their low 
physiological tolerance, often limiting sample size and complicating laboratory 
experiments.

3.	 We explore the advantages and disadvantages of four general experimental set-
ups (in situ, quasi in situ, ex situ, and in silico) in the light of habitat and biological 
impediments. We also discuss the potential of indirect approaches to research. 
Furthermore, using bibliometric data, we provide a quantitative overview of the 
model organisms that scientists have exploited in the study of subterranean life.

4.	 Our over-arching goal is to promote caves as model systems where one can per-
form standardized scientific research. This is important not only to achieve an 
in-depth understanding of the functioning of subterranean ecosystems but also 
to fully exploit their long-discussed potential in addressing general scientific ques-
tions with implications beyond the boundaries of this discipline.

K E Y W O R D S

anchialine, Asellus aquaticus, Astyanax, cave laboratory, computer simulations, experimental 
design, groundwater, model system, natural laboratory, nonmodel organisms, sampling 
strategy, stygobite, troglobite

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-4471-9055
https://orcid.org/0000-0002-4228-2750
https://orcid.org/0000-0001-8119-9960
https://orcid.org/0000-0002-3221-9512
https://orcid.org/0000-0002-9735-2488
mailto:﻿
https://orcid.org/0000-0003-0073-3688
http://creativecommons.org/licenses/by/4.0/
mailto:stefano.mammola@helsinki.fi
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.7556&domain=pdf&date_stamp=2021-05-01


5912  |     MAMMOLA et al.

1  | INTRODUC TION

For a Homo sapiens—a clumsy vertebrate inhabiting a primarily 
lighted world—to enter a cave is enterprising. As the sunlight fades, 
the air becomes moist, and a maze of passages opens in front of us, 
our first instinct as humans is to dismiss the subsurface world as 
one of the most inhospitable environments on Earth. Mentions to 
this apparent extremeness emerge in most caving stories (MacNeil 
& Brcic,  2017) insofar as speleology is indeed physically demand-
ing and potentially hazardous (Zagmajster et al., 2010). However, by 
over-emphasizing this anthropocentric view of caves, we tend to dis-
miss a different reality: Caves are not so extreme from the perspec-
tive of the eyeless and depigmented organisms that have adapted 
to living in darkness, which in contrast experience the exposure to 
sunlight and the wide climatic fluctuation of the outside world as 
harmful threats (Mammola,  2020). Interestingly, this dichotomous 
interpretation has framed the two main approaches followed by re-
searchers over recent years: Those who have studied subterranean 
habitats as unique entities versus those who have used them as 
model to answer general scientific questions beyond the boundaries 
of subterranean biology (Martínez & Mammola, 2020).

Scientists across several generations have been aware of the 
potential of subterranean ecosystems (Box  1) as eco-evolutionary 
models (Poulson & White,  1969), developing innovative method-
ologies and creative experimental designs to face the challenges 
associated with subterranean exploration. Thanks to these ef-
forts, we have been able to tackle important subjects in ecology 
(Mammola,  2019), ethology (Parzefall,  1982), and evolution (Juan 
et al., 2010), ultimately reaching conclusions relevant to disciplines 
as diverse as medicine (Riddle et  al.,  2018; Stockdale et  al.,  2018; 
Yoshizawa et al., 2018), engineering (Lepore et al., 2012), and exo-
biology (Northup et al., 2011). Under this perspective, and despite 
the numerous obstacles to research, subterranean habitats may 
well qualify as frontiers for modern scientific research (Mammola 
et al., 2020).

In this work, we discuss the main impediments that we must 
address to standardize research in subterranean ecosystems and, 
subsequently, we illustrate old solutions, recommend best prac-
tices, and advance new frontiers to approach subterranean-based 
studies (Figure 1). By further elaborating on the established model 
organisms in subterranean biology, we seek to promote caves and 
other subterranean habitats as experimental arenas for asking gen-
eral questions in ecology, ethology, evolution, and beyond. In other 
words, we call for moving caves from the niche of an exotic, under-
studied environment to the forefront of biological science. The gain 

in doing so lies in the controlled conditions they offer, since they 
are little exposed to influences that one would have to control for in 
other environments.

BOX 1 A modern definition of subterranean 
habitats and implications for research.

The term “subterranean habitat/ecosystem” is often used 
as a synonym for “cave” (Mammola,  2019; Poulson & 
White, 1969). However, scientists have become aware that 
caves represent only a small fraction of the total habitat 
available to the subterranean fauna. More precisely, sub-
terranean habitats comprise the breadth of underground 
voids of different sizes, either dry or filled with water, shar-
ing two main ecological features: darkness and buffered 
climatic conditions (Culver & Pipan,  2019). These voids 
may open a few centimeters below ground level (Culver & 
Pipan, 2014) or descend several kilometers toward areas 
where the environmental conditions exceed the limits of 
life (Fišer et al., 2014). They are widespread on all conti-
nents, having been documented from different geological 
substrates, including carbonates (limestone and dolomite), 
sandstones, gypsum, granites, lava fields, iron ores, and 
even unconsolidated sediments (Keith et al., 2020). In sum-
mary, the cavities that we can access and explore by enter-
ing them represent just the tip of the iceberg of what lies 
below our feet (Ficetola et al., 2019; Mammola, Cardoso, 
et al., 2019).
Even though subterranean habitats are more widespread 
and diversified than it is usually recognized, subterra-
nean research started with field observations in human-
accessible habitats (different types of terrestrial caves, 
artificial subterranean habitats such as mines and bun-
kers, lava tubes, cenotes, etc.), later encompassed pumped 
water (e.g., from drinking water wells), and only then ex-
tended to other difficult-to-access voids. Even today, there 
is still a significant research bias toward human-accessible 
habitats, which should always be kept in mind. In a nut-
shell, it implies that we may have to relativize part of the 
information available to date, that is, being aware that we 
have mostly documented how animals behave in cave-like 
environments, rather than in the extended network of 
fissures.
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2  | R ATIONALE FOR THIS WORK AND 
COMPLEMENTARY RE VIE WS

It is impossible to cover all methods in subterranean biology 
while keeping this review tight and comprehensible. Therefore, 
we decided to focus on the main challenges related to subter-
ranean research and the philosophy underlying the different ex-
perimental designs suited to overcome these: Two aspects only 
marginally discussed in the recent literature. Readers interested 
in other aspects of research in subterranean biology are referred 
to the classic review on biomonitoring (Culver & Sket,  2002) 
and published syntheses on sampling approaches (Dole-Olivier 

et  al.,  2009; Lunghi, Corti, et  al.,  2020; Oliveira et  al.,  2019; 
Weinstein & Slaney,  1995; Wynne et  al., 2018, 2019), species 
distribution modeling (Mammola & Leroy, 2018), and best prac-
tices in experimental trials with subterranean organisms (Di 
Lorenzo et  al.,  2019). Sampling techniques in non cave subter-
ranean habitats (Box  1) have also been reviewed elsewhere—
for example, boreholes (Hancock & Boulton,  2009), epikarst 
(Brancelj,  2004), subaquatic caves (Humphreys et  al.,  1999; 
Iliffe,  2018; Iliffe & Bowen,  2001), Milieu Souterrain Superficiel 
(Mammola et  al.,  2016), hyporheic (Fraser & Williams,  1997), 
and interstitial habitats in coastal marine and lotic environments 
(Schmidt-Rhaesa, 2020).

F I G U R E  1   Challenges of subterranean research and experimental designs to avoid these. Schematic representation of the main 
challenges of subterranean research (coded with capital letters), and main experimental approaches that can be adopted to overcome these

(a) (b) (c) (d)
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3  | CHALLENGES TO SUBTERR ANE AN 
RESE ARCH

3.1 | Habitat impediment

Whereas different habitats have been categorized as subterranean 
(Box 1), most in-field research takes place in caves, mines, and other 
human-accessible voids (Mammola,  2019). These are always dark, 
often muddy and humid, and sometimes even very cold, hence not 
offering favorable conditions to perform extensive, standardized 
observations (MacNeil & Brcic, 2017). There are often high ceilings, 
narrow fissures, and other geomorphological features that hamper 
the task of approaching and observing target animals without them 
being disturbed by light or by the presence of the researcher (CO2, 
heat, vibrations, or even diver's bubbles in the case of submerged 
passages). Furthermore, cave exploration requires well-trained re-
searchers mastering the use of speleological equipment (Zagmajster 
et al., 2010). Even more challenging, in this sense, are those stud-
ies set in submerged passages of freshwater and marine caves 
(Exley, 1983; Iliffe & Bowen, 2001), as testified by the frequent fa-
talities associated with cave diving (Buzzacott et al., 2009).

Given our human size, we can directly access only a small frac-
tion of the habitats available to the subterranean fauna. As noted by 
Howarth (1983) (p. 380), this is a significant obstacle to scientific re-
search because, more often than not, we cannot directly inspect the 
extended network of fissures “[...] where probably the major drama 
in the cave ecosystem occurs”. In a way, caves and other human-
accessible habitats may act as surrogates of the subterranean world 
in its entirety, windows allowing us to glimpse what usually hap-
pens away from human sight (Mammola et al., 2016; Polak, 1997; 
Uéno,  1987; Wilkens et  al.,  1986). Yet, in this case the existence 
of a habitat bias should be clearly acknowledged. For instance, we 
must be aware that the foraging behavior of a centipede that we 
have observed in a large chamber of a cave may not replicate in the 
same way—or may not even take place at all!—when the exact same 
centipede is dwelling in the millimetric fissures connected with 
the chamber. Not to mention certain typically benthic aquatic ani-
mals that have been spotted in the water column of flooded caves 
only after the disturbance produced by the divers (Humphreys 
et al., 1999).

As a corollary, however, it must be noted that a number of organ-
isms primarily belong to human-accessible cavities (Moseley, 2009) 
and ipso facto are more readily studied (Mammola, 2019). Classic ex-
amples are vertebrates with a centimetric body size, such as different 
species of cave-roosting bats and groundwater fishes, but also the 
parasites and commensals associated with them (Lunghi, Ficetola, 
et al., 2018) or the scavengers that feed upon their carcasses and 
feces (Ferreira & Martins, 1999). There are also subterranean inver-
tebrates constrained to human-sized voids by their extended pheno-
types; notably, different species of orb spiders needing larger voids 
for web construction (Mammola & Isaia, 2017) or aquatic suspension 
feeders adapted to drift in the still water column of anchialine caves 
(Koenemann et al., 2007; Martínez et al., 2017).

Finally, in specific subterranean systems, there may be health 
risks related to biological diseases or toxic gases, potentially ham-
pering or complicating explorations and studies. Examples include 
fungi [Histoplasma capsulatum (Eurotiomycetes: Ajellomycetaceae) 
causing histoplasmosis; Hunt et  al.,  1984; Diaz,  2018; Staffolani 
et al., 2018], and viruses, such as Marburg virus associated with fruit 
bats roosting in caves (Kuzmin et al., 2010) and the potential pres-
ence of SARS-CoV-2 coronavirus in touristic caves (Barton, 2020). 
Furthermore, cave-roosting bats may be vectors of rabies and a 
number of other emerging diseases (Calisher et  al.,  2006; Kuzmin 
et  al.,  2011)—amidst the COVID-19 pandemic in 2020, these po-
tential zoonotic health risks have unfortunately resulted in perse-
cutions of bats (MacFarlane & Rocha,  2020; Rocha et  al.,  2020). 
Another human health threat may come from contaminated air due 
to the accumulation of hazardous gases including CO, CO2, and sul-
fur exhalations. Also, the concentration of radon (a radioactive gas) 
may be elevated in the subterranean realm (Cigna, 2005; Gillmore 
et  al.,  2000)—in certain caves its levels can exceed recommended 
doses 20-fold.

3.2 | Biological impediment

In several cases, the biology of subterranean species represents a 
further impediment to research. In general, food-deprived subter-
ranean environments select for long-lived species with low metabo-
lism and small numbers of offspring. As a consequence, the density 
of individuals of subterranean adapted species is often low—it is 
not unusual that such species were observed once at the time of 
their description, and never recorded thereafter (Delić & Sket, 2015; 
Manenti et  al.,  2018; Martínez et  al.,  2013). Also, specialized sub-
terranean species are often unevenly distributed in space and time, 
mostly because they aggregate around the scarce and heteroge-
neously distributed food sources (Culver & Sket, 2002). These dif-
ficulties in finding sufficient individuals for experiments or in situ 
observations may result in studies with a reduced sample size and 
less robust data. This may explain why the ecology and behavior of 
many subterranean organisms is documented, at best, anecdotally 
thanks to casual observations.

Furthermore, many specialized subterranean organisms live in 
environments showing constant and buffered conditions and, over 
evolutionary time, have reduced their resilience against environmen-
tal fluctuations. For example, some terrestrial subterranean species 
are threatened by the smallest variations in air moisture content 
(Howarth, 1983), whereas aquatic animals may perish upon changes in 
pH driven by the water exposure to the air (Carpenter, 1999). Similarly, 
many terrestrial and aquatic obligate subterranean species survive 
only within narrow temperature ranges (Mammola, Piano, et al., 2019; 
Mermillod-Blondin et al., 2013; Pallarés, Colado, et al., 2020; Pallarés, 
Sanchez-Hernandez, et  al.,  2020). This limited physiological plas-
ticity may pose a real challenge when a researcher is aiming to con-
duct experiments in the unnatural conditions of a typical laboratory. 
Maintaining living individuals of most of these animals is not a trivial 
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task: breeding them requires skill and experience, in-depth knowledge 
of their biology and, often, none negligible doses of luck.

In some cases, an additional impediment may be our lack of 
knowledge on the taxonomy of subterranean organisms (e.g., 
Asmyhr & Cooper, 2012; Camacho et al., 2018). This impediment 
(also known as 'Linnean shortfall'; Hortal et al., 2015) is especially 
problematic in studies focusing on community structure and func-
tioning. It is particularly severe for tropical areas, whose subterra-
nean fauna were largely unknown until very recently (e.g., Alvarenga 
et  al.,  2021; Trajano & Bichuette,  2010; Trajano et  al.,  2016), as 
well as for certain small-sized animal groups which have been 
traditionally neglected despite being relatively abundant in sub-
terranean habitats, such as diplurans (Sendra, Antić, et al., 2020; 
Sendra, Palero, et  al.,  2020), proturans (Galli et  al.,  2021), palpi-
grades (Mammola et al., 2021), nematodes (Du Preez et al., 2017), 
gastrotrichs (Kolicka et  al.,  2017), and other meiofaunal lineages 
(Martínez et al., 2019; Sánchez & Martínez, 2019). The lack of tax-
onomists for many groups surely hampers the conduction of more 
concise studies on cave communities in many regions; a situation 
that is further aggravated by the existence of often high cryptic 
diversity within most subterranean taxa (Delić et  al.,  2017; Eme 
et  al.,  2018; Esposito et  al.,  2015; Fišer et  al.,  2018; Gonzalez 
et al., 2017; Niemiller et al., 2012).

4  | E XPERIMENTAL SETUPS

The most classical and intuitive way to learn about subterranean 
organisms lies in quantitative observational studies, either in the 
field (in situ), under laboratory conditions (ex situ) or, when avail-
able, in laboratories set within caves (here termed quasi in- situ). An 
experimental setup entirely based on simulations (in silico) could 
also be adopted. The choice among these setups is not always 

straightforward. In general, choosing between alternative options is 
a trade-off between the biological realism of the observations and 
either the ease or the extensiveness of the study (Figure 2). More 
detailed pros and cons of each setup are discussed in the following 
sections.

4.1 | In situ

The in-situ approach provides the least artefactual representa-
tion of the ecology, physiology, and behavior of the target species. 
Yet, this approach forces the researcher to comply with both the 
habitat (harsh working conditions and impossibility of exploring in-
accessible habitats) and the biological (low density of most subter-
ranean species) impediments. To minimize these impediments, a 
careful selection of the study site is critical. If possible, one should 
favor cavities with a linear development and reduced habitat com-
plexity, thereby facilitating standardized observations (Lunghi, 
Corti, et al., 2020; Mammola & Isaia, 2018; Smithers, 2005) while 
maximizing detectability of the animals (Lunghi,  2018). In the 
same vein, studying aquatic target species in a semi-submerged 
or shallow passageway not only increases permanence times and 
minimizes decompression procedures, but also maximizes safety 
(Iliffe, 2018).

It must be noted that in-situ studies can be carried out exclu-
sively in cavities the researcher can enter herself or at least insert 
instruments into. There are different types of traps and sampling de-
vices that allow us to indirectly collect the fauna in inaccessible and 
interstitial habitats or even tools for detecting the presence of a spe-
cies indirectly (see section “Indirect means of research”). Conversely, 
in-situ observations are virtually impossible for porous groundwater, 
forcing researchers to heavily rely on laboratory studies (e.g., Di 
Lorenzo et al., 2014).

F I G U R E  2   A theoretical trade-off between the ease of study and biological realism of the observations in different experimental setups. 
On the one hand, exploring a cave is physically demanding and requires specific speleological equipment, whereas it is possible to run a 
simulation sitting at home in front of a computer in a pyjama—and even during a COVID-19 pandemic! Running a simulation or conducting 
an experiment in the laboratory also allows us to control for a number of confounding factors. On the other hand, the result obtained in the 
field is often less artefactual, requiring no abstraction or formulation of a priori assumptions. At some point, when studying phenomena in 
the laboratory or with simulations, one will want to get back to the field to corroborate results using real-world observations
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4.2 | Ex-situ

The use of a meso- or microcosmos replicating the species' natu-
ral habitat allows us to bypass the habitat impediment in its en-
tirety. In general, obtaining standardized observations in controlled 
conditions enhance a greater replicability of the results, and po-
tentially allow researchers to perform long-lasting experiments 
and observations—see Carpenter (2021) for a recent example. 
Furthermore, ex-situ approaches permit to explore the life history 
of those animals that prefer inaccessible habitat, or that are too 
small to be observed with the naked eye. Yet, by choosing an ex-
situ approach, the researcher needs to comply with the biological 
impediment of maintaining specialized and delicate organisms in the 
laboratory (Di Lorenzo et al., 2019), as well as with the local conser-
vation policies for endangered species. This can be circumvented by 
selecting certain model organisms, often not legally protected and 
relatively easy to keep in the laboratory (see section “Model organ-
isms in subterranean biology”).

As a drawback, laboratory observations may not accurately re-
flect the natural traits, especially behavioral and physiological, as 
shown in the cave (Silva et al., 2018). Although laboratory studies 
are useful, the ex-situ conditions rarely resemble those found in the 
natural habitat (e.g., higher density, different environmental con-
ditions). For well-established model organisms, a prolonged ex-situ 
breeding may even produce unwelcome effects such as artificial se-
lection or adaptation to the laboratory conditions (Ross et al., 2019). 
This is why observations obtained from studies in the laboratory 
must be carefully interpreted and preferably confirmed by in situ 
approaches (Blin et  al.,  2020). For example, by surveying semi-
natural replicas of the sheltered reproductive sites of Hydromantes 
salamanders (Amphibia: Plethodontidae) with infrared cameras, 
Oneto et  al.  (2010) were able to provide some of the first obser-
vational data on their complex reproductive behavior and parental 
care. Subsequent observations performed under natural conditions 
(Lunghi, Corti, et al., 2018; Lunghi et al., 2014, 2015) confirmed the 
validity of these observations.

4.3 | Quasi in-situ

The history of subterranean biology teaches us that a quasi in-situ 
approach—that is, to bring the laboratory into the target species’ 
natural habitat—eases many of the problems associated with experi-
mental studies in the laboratory. Establishing an experimental facility 
within the cave itself not only spare living animals from long trans-
portation away from the cave, but also facilitates fine-regulation of 
ambient parameters within a microcosmos. The most famous exam-
ple is probably the Laboratoire Souterrain de Moulis (Centre national de 
la recherche scientifique; CNRS), a cave-based laboratory established 
in the French Pyrenees by René Jeannel (1879–1965) and Albert 
Vandel (1894–1980). Since its foundation in 1948, this semi-natural 
experimental setting has aided generations of subterranean biolo-
gists in the challenging task of shedding light on the natural history 

and behavior of a wide range of elusive subterranean life forms 
(Clergue-Gazeau,  1974; Durand,  1970; Juberthie,  1985; Juberthie 
et al., 1996; Manenti et al., 2020). For aquifers, the equivalent would 
be to lower sediment, substrate cages, bags into groundwater wells 
(Schmidt et  al.,  2004), which, however, would still have to be re-
trieved every time to study the organisms.

As a corollary, it must be noted that establishing an experimen-
tal facility inside a given cave may have a significant local impact in 
terms of destruction of certain microhabitats and/or alterations of 
the microclimate. Therefore, the establishment of similar infrastruc-
tures should be evaluated on a case-by-case basis and supported by 
an environmental risk assessment.

4.4 | In-silico

As a consequence of the habitat and biological impediments, stud-
ies in subterranean habitats often rely on data that is far from ideal. 
In a complex subterranean setting, we may lack information on en-
vironmental seasonal fluctuations, species abundances across space 
or time, their physiological rates and life-history traits, or the species 
they interact with. Not to mention the dependency between obser-
vations and the correlation among traits (body size and trophic guild, 
fecundity with longevity, etc.), which often confounds with putative 
drivers for the process that we aim to disentangle. In those scenar-
ios, simulations, such as agent-based models and cellular automata, 
are increasingly used to explore the dynamics of natural ecosystems 
and trigger novel ideas for further exploration in real-world settings 
(DeAngelis & Grimm, 2014). These mechanistic models rely on the so-
called “first principles,” such as energy budgets, physiology, or fitness 
seeking (Grimm & Berger, 2016), which define the initial conditions of 
the simulation so that behavior and interactions emerge rather than 
being imposed by the modeler. Given robust enough assumptions, 
simulations are thus able to realistically replicate sets of empirical 
patterns without restricting them to a single deterministic scenario 
(Grimm et al., 2005). For example, the use of eco-evolutionary agent-
based models, which include heritable traits and the use of genetic al-
gorithms, provides insights on the evolution of certain morphological, 
physiological, and behavioral traits (Ayllón et al., 2018).

Surprisingly, however, simulations have rarely been applied in 
subterranean biology. Applications to subsurface systems so far 
have been restricted to porous groundwater, with the focus being 
mainly on contaminant degradation (Benioug et  al., 2015, 2017; 
Schmidt et  al.,  2018; Tang et  al.,  2013), and to soils (e.g., Banitz 
et al., 2013; Borer et al., 2019; Kim & Or, 2016). It is easy to see 
how the simulation of a virtual cave would be an interesting aid 
to research. Caves may represent ideal model systems for in-silico 
studies due to their constant environmental conditions, which can 
be easily and predictably simulated, and their simple community 
structure with few species and limited interactions. For example, 
these models would allow us to achieve a mechanistic under-
standing of the processes behind interactions between species 
within a typical subterranean community, to explore pathways of 
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subterranean evolution, and even to elucidate the impact of cli-
mate change on subterranean biodiversity.

The applicability of these theoretical models to the real biological 
world, however, still depends on the quality and availability of data. 
Parametrization of simulations might be relatively simple for broad 
questions in spatial or temporal scope, but quite complex for very spe-
cific systems, often implying the need for possessing detailed infor-
mation. Thus, and this is true for other methods as well, the necessity 
to parametrize theoretical models with the real-world biological ob-
servations may require combining simulation approaches with actual 
fieldwork. Importantly, models may single out those parameters that 
warrant the most attention and may thus steer experiments toward 
focussing on sensitive and critical parameters. A complementary av-
enue is combining qualitative observations, for example, that state 
changes are confined within a certain interval, for parameterization. 
Even if a single observation does not contain much information, a 
combination of several qualitative observations can be as distinctive 
as a single high-precision observation. This inverse, “pattern-oriented” 
parameterization (Grimm et al., 2005; Wiegand et al., 2004), has been 
proven to be a powerful approach and overlaps with the more formal 
approximate Bayesian computing approach (Hartig et al., 2011).

4.5 | Indirect means of research

A plethora of indirect methodologies can be used to overcome both 
the habitat and the biological impediments (Figure  1). These ap-
proaches are mostly species- and system-specific, and it is impos-
sible to provide widely general recommendations. Therefore, we 
here discuss examples chosen to illustrate the concept of “indirect 
research.”

Information about the ecology and behavior of large-sized ani-
mals can be acquired via infrared video surveillance. This represents 
a low-cost and low-personnel effort methodology, which has a 
long tradition in ethological research and biomonitoring (Swann 
et al., 2004). In caves, thermal-infrared imaging and laser scanning 
have been extensively applied to study the swarming and roosting 
behaviors of bats (Azmy et al., 2012; Elliott et al., 2005), but could 
potentially be used for other vertebrates, such as cave salamanders 
(Lunghi, Manenti, et al., 2020). In at least one case, camera trapping 
has even been used to quantifying wildlife use of cave entrances 
(Baker, 2015).

Recently, there has also been a great deal of discussion on the use 
of molecular tools to obtain indirect evidence of the presence and 
behavior of species, especially in difficult-to-access habitats, as well 
as to overcome prevalent taxonomic biases (Malard et  al.,  2020). 
For example, environmental DNA was successfully used to detect 
the presence of focal subterranean species, such as amphibians 
(Gorički et al., 2017) and crustaceans (Boyd et al., 2020; DiStefano 
et al., 2020; Niemiller et al., 2018). The analysis of gut or stomach 
content of species inhabiting both human-accessible and intersti-
tial environments provides information on dietary requirements 
and trophic behaviors taking place in both these compartments 

(Lunghi, Cianferoni, et al., 2018; Lunghi, Manenti, et al., 2020), but 
also trophic web studies with aquatic subterranean species (Saccò 
et al., 2019). These analyses can be done visually, but also through 
massive sequencing techniques, allowing the identification of the 
gut content using DNA (Rastorgueff et al., 2015). Similarly, stable 
isotopes proved useful to understand species interactions and 
niche partitioning (Chávez-Solís et al., 2020), as well as identifying 
potential carbon sources through space (Brankovits et al., 2017) and 
time (Saccò et al., 2020).

In some circumstances, the species' extended phenotype also 
informs indirectly on specific behaviors and ecological needs. The 
web in web-building spiders, for example, can be viewed as an ex-
tended phenotype that enlarges the sensory world of its builder 
in interaction with the environment (Blamires,  2010). The web 
also provides a record frozen in time of the spider's foraging be-
havior, as spiders modify their webs in response to a large range 
of biotic and abiotic stimuli, including previous prey experiences, 
climatic variables, and the structural complexity of the habitat 
(Hesselberg, 2015; Vollrath & Selden, 2007). The easily quantifiable 
two-dimensional orb-web, in particular, is highly suitable for behav-
ioral studies, as orb spiders can easily be maintained in the labora-
tory (Zschokke & Herberstein, 2005) or their webs measured in the 
field (Hesselberg, 2010). The ubiquity of orb-web spiders near the 
entrance of temperate caves makes this approach especially promis-
ing (Hesselberg et al., 2019). Likewise, the calcified tubes of several 
hard-bodied aquatic organisms, such as tube-building polychaetes, 
bring us information on the evolution of aquatic caves communities 
and paleoclimate from past geological eras (Moldovan et al., 2011).

The living world has long been used as a source for developing 
biologically inspired robots using biomimetics design principles to 
provide innovative technical solutions (Lenau et  al.,  2018; Pfeifer 
et al., 2007; Vincent et al., 2006). In recent years, the use of bioro-
botic models to test and generate biological hypotheses has been 
gaining ground (Gravish & Lauder, 2018). Following this recent trend, 
we propose that the use of small, agile biorobots to explore, record, 
and interact with subterranean animals in their natural habitats 
might overcome many of the habitat and biological impediments 
previously discussed (Woodward & Sitti, 2014). For example, the use 
of a simple biomimetic robot fish has been successfully used to high-
light similarities and differences in social behavior between surface 
and cave-dwelling populations of Poecilia mexicana (Actinopterygii: 
Poeciliidae) (Bierbach et al., 2018).

5  | MODEL ORGANISMS IN 
SUBTERR ANE AN BIOLOGY

Model organisms represent only a small part of Earth's biodiversity 
and yet have largely contributed to our knowledge on many fields 
within the biological sciences (Hedges, 2002). The earliest models, 
such as flies, mice, or roundworms, were selected for the task sim-
ply because they were small, proliferative, and easy to culture and 
manipulate; they were, however, quite limiting in advancing many 
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aspects in ecology and evolution. Luckily, the growth of modern 
molecular methods, staining and imaging techniques, and gene 
editing, have facilitated choosing more appropriate models for the 
biological question at hand rather than enforcing the ones that can 
be easily grown and manipulated (Müller & Grossniklaus,  2010). 
Consequently, the number of model species has diversified along 
with the number scientific questions, and now includes representa-
tives of many animal phyla (as well as plants and fungi). This exciting 
transition in contemporary biology is embodied by the term “non-
model” organism, which reflects that the diversity of model species 
has grown nearly parallel with the diversity of problems addressed 
(Goldstein & King, 2016; Russell et al., 2017; Sullivan, 2015).

The trend of diversification of model systems and research ques-
tion is evident in cave biology as well. To comprehend it, we have 
compiled a list of those subterranean animals that can be considered 
as model organisms (Table S1). We selected models based on two 
criteria: (a) organisms/groups with accumulated at least 20 papers 
in the Web of Science (accessed on 25 November 2020); and (b) or-
ganisms/groups with at least two independent research laboratories 
focusing on them. Our list of model organisms includes species with 
different degrees of subterranean specialization across three phyla, 
but it is dominated by Teleostei fish and Crustacea (Figure 3). This 
reflects the traditional research bias in subterranean biology toward 
these groups, only partially justified by their dominance across sub-
terranean environments. Only a few of these species satisfy the tra-
ditional requirement of a model—successful culturing in the lab and 
keeping long-standing laboratory breeds [e.g., Astyanax mexicanus 
(Actinopterygii: Characidae), Asellus aquaticus (Isopoda: Asellidae), 
and Poecillia mexicana]. By far, the most famous and studied among 
these is the cavefish Astyanax mexicanus (Jeffery,  2020; Keene 
et  al.,  2016; Torres-Paz et  al.,  2018), which has been kept in cap-
tivity for many generations (Wilkens, 1971) and is increasingly used 
and recognized as suitable for tackling problems beyond the typical 
subterranean biology realm (Maher,  2009; McGaugh et  al.,  2020). 
Other models thrive in laboratory conditions, but are unable to 
complete their life cycle therein [e.g., Gammarus minus (Amphipoda: 
Gammaridae), Australian calcrete Dytiscidae insects]. Most models 
in subterranean biology are lineages with both surface and subter-
ranean populations, or species whose populations exhibit different 
degrees of subterranean specialization. Among those, Astyanax 
mexicanus and Asellus aquaticus are even able to form hybrid off-
spring between cave and surface morphs in laboratory conditions 
(Jeffery, 2020; Protas & Jeffery, 2012).

Alongside every other biological discipline, cave biology re-
search has entered the genomics era (Friedrich, 2013; Pérez-Moreno 

et al., 2016). Already half of cave models listed in Table S1 have been 
included in genome (transcriptome) sequencing projects, becoming 
windows into the molecular basis of adaptation (Barbosa et al., 2017; 
Berning et al., 2019). With the decreasing prices and the develop-
ment of more user friendly bioinformatic recourses, so-called -omics 
tools will soon be at the forefront of cave research and exploited 
in the remaining model systems. Such tools may enable overcoming 
traditional restrictions on the use of subterranean species as mod-
els and we predict that the peculiar, and even bizarre, traits of sub-
terranean animals are going to draw attention from an increasingly 
wider audience, and possibly attract new researchers into the field 
(Mammola et al., 2020).

In subterranean biology, the concept of model organism has also 
been applied to supra-specific lineages widely used to investigate evo-
lutionary processes associated with cave colonization or to answer 
biogeographic and macroecological questions. Similar studies typically 
rely on comparative methods within explicit phylogenetic frameworks, 
allowing us to distinguish the role played by ecological adaptations 
and evolutionary history on the observed ecological and distribu-
tion patterns (Juan et al., 2010; Mammola et al., 2020). Some of these 
models account for lineages including both surface and subterranean 
species exhibiting different degrees of adaptations and ecological pref-
erences, such as Asellus (Verovnik et al., 2004), Niphargus (Amphipoda: 
Niphargidae) (Fišer,  2009), Trechus (Coleoptera: Carabidae) (Möst 
et al., 2020), and Dysdera (Araneae: Dysderidae) (Arnedo et al., 2007). 
Others exclusively consist of subterranean species, such as atyd shrimps 
(Decapoda: Atyidae) of the genera Typhlatya, Stygiocaris, Speleocaris, and 
Troglocaris (Jurado-Rivera et al., 2017; Zakšek et al., 2009). While lin-
eages in the first group are useful to understand different mechanisms 
for ecological speciation and habitat shift, subterranean-exclusive lin-
eages allow us to understand the role of historical stochastic processes 
in subterranean diversity and biogeography (Juan et al., 2010). In addi-
tion, subterranean-exclusive lineages have been studied in comparison 
with distantly surface-dwelling relatives to understand the adaptation 
processes related to the colonization of the subterranean environment 
[e.g., Phreatichthys andruzzii (Actinopterygii: Cyprinidae)]. Although in-
tuitively less ideal, this approach has yielded some important insights, 
such as the impacts of life in darkness on the circadian clock or DNA 
repair mechanisms (Cavallari et al., 2011).

Finally, some subterranean species with unique features have 
been established as models to investigate scientific questions not 
necessarily related to the classic subterranean research agenda. 
This is the case of the carnivorous sponge Lycopodina hypogea 
(Demospongiae: Cladorhizidae), used as a model for early ner-
vous system evolution and developmental biology (Godefroy 

F I G U R E  3   Diversity of model organisms in subterranean biology across the animal Tree of Life. The branch Cambaridae refers to 
the genera Cambarus, Orconectes, Procambarus, and Troglocambarus. Atyidae refers to the exclusively subterranean genera Speleocaris, 
Stygiocaris, Troglocaris, and Typhlatya. Dytiscidae indicates the Australian diving beetles of the genera Limbodesus, Nirridesus, Nirripirti, 
and Paroster. Amblyopsidae indicates the North American cave fish in the genera Amblyopsis, Chologaster, Forbesichthys, Speleoplatyrhinus, 
and Typhichthys. WoS entries: Number of papers focusing on the species in Web of Science (accessed on 25 November 2020). (1–3): 
The information refers to the genera (1) Speleocaris, Stygiocaris, Troglocaris, and Typhlatya; (2) Cambarus, Orconectes, Procambarus, and 
Troglocambarus; (3) Paroster, Limbodesus, Nirridesus, and Nirripirti
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et al., 2019); the crustaceans in the class Remipedia, key to under-
standing the evolution of terrestrial arthropods (Lozano-Fernandez 
et  al.,  2016), the evolution of the nervous system (Stemme 
et al., 2013), and venoms toxins (von Reumont et al., 2014); or the 
“forever young” aquatic salamander Proteus anguinus (Amphibia: 
Proteidae), whose progenetic origin and long lifespan has triggered 
fruitful research on the molecular mechanisms of aging (Voituron 
et al., 2011). Also, A. mexicanus have been increasingly used as a 
model organism in various areas of biomedical research, such as 
diabetes (Riddle et al., 2018), insomnia (Jaggard et al., 2018), autism 
(Yoshizawa et al., 2018), and regeneration (Stockdale et al., 2018). 
While those are not the questions that have inspired most cave-
based researchers over the years, they have recently attracted con-
siderable interest and funding, thereby illustrating the general idea 
of our review here: Caves, in their uniqueness for humans, still hold 
the secrets for understanding broad scientific questions (Martínez 
& Mammola, 2020).

6  | CONCLUSIONS

In this work, we discussed best practices and novel ideas for perform-
ing standardized research in subterranean ecosystems, by focusing on 
key impediments, experimental ideas, and model systems. The main 
take-home messages that emerge from this exercise are as follows:

1.	 Be aware of the many options out there. Insofar as each subter-
ranean system and organism is unique to some extent, and in 
light of the impediments to subterranean research, scientists 
must be creative in designing their experiments. Research in 
subterranean biology often implies combining traditional in situ 
field observations with standardized studies in a laboratory 
setting, either within a cave (quasi in-situ) or outside the cave 
(ex-situ). It is also important to be aware of the potential of 
novel tools, especially simulations, artificial intelligence methods, 
and biorobotics (Figure  1).

2.	 Choose the right model. Many impediments to subterranean re-
search can be overcome by focusing on model organisms, which 
have been established owing to their specific traits and/or their 
broad availability in subterranean environments. Whereas model 
systems in subterranean biology are probably not as developed as 
in other disciplines, there are options across the animal tree of life 
offering great potential for tackling specific research questions 
(Figure 3). Since a major challenge before fully exploiting a given 
model is to breed it in the laboratory, it would be worthwhile en-
deavor to run a wider screening among candidate organisms. In 
this way, a model suitable to answer a given set of questions and 
able to complete its lifecycle in the laboratory can be identified.

3.	 Be aware of the taxonomic bias. As a corollary of the previous point, 
it is important to remember that our knowledge of subterranean 
species is still strongly biased in its taxonomical coverage. Even 
today, the natural history information on subterranean species 

remains largely fragmented, rarely standardized, and often biased 
toward a few well-studied model organisms and temperate re-
gions. We stress the importance of broadening eco-evolutionary 
studies to incorporate a larger range of organisms and subter-
ranean habitats, to explore hypotheses about the emergence 
of convergent traits and behaviors across distant taxa while ac-
counting for phylogenetic effects.

4.	 Embrace multidisciplinarity. In light of the habitat and biological 
impediments, combining ecological and behavioral observations 
with evolutionary approaches, genetic tools, and simulations 
are a critical premise. In the -omics era, integrative studies are 
expected to grow, allowing us to understand which molecu-
lar adjustments (including epigenetic effects) occur during the 
surface-subterranean transitions. This is required, for example, 
to disentangle the role of standing genetic variation and pheno-
typic plasticity in driving the evolution of subterranean popula-
tions (Bilandžija et al., 2020).
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