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Abstract
The diversity of lichen photobionts is not fully known.We studied here the diversity of the photobionts associated withCladonia,
a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic
diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of
Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether
545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia
was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana, and A. mediterranea.
Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of
the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity
and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the
different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In
addition, the specificity and the selectivity were studied for 18 species ofCladonia. Potentially specialist and generalist species of
Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of
certain Asterochloris OTUs. Some Asterochloris lineages co-occur with higher frequency than randomly expected in the
Cladonia species.
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Introduction

A lichen has been traditionally considered as a stable symbi-
otic association between a fungus (mycobiont) and at least a
green alga or a Cyanobacterium (photobiont) [1]. However, a
recent study considered a lichen to be a self-sustaining eco-
system constituted by a mycobiont, one or more photobionts,
and a number of other microorganisms [2]. The photobionts

transfer to the mycobiont, in form of polyols or glucose, the
carbon they have fixed during photosynthesis. The mycobiont
uses these compounds for its nutrition and for synthesizing
secondary metabolites. For its part, the mycobiont provides
the photobiont with adequate light, humidity, and gas ex-
change, which allows it to carry out the photosynthesis [3,
4]. This intimate relationship between the fungus and the alga
is ecologically very successful, allowing lichens to inhabit the
most extreme environments on the planet, where vascular
plants have difficulties to grow. The adaptation of lichens to
these environments depends, in part, on the photobiont and its
photosynthetic ability under different conditions of light and
temperature [5, 6]. Therefore, it is a very relevant task to study
the diversity of photobionts, and likewise the mycobiont-
photobiont association patterns, in order to understand the
adaptations of lichens to environmental changes.

The diversity of the lichenizing fungi and that of the
lichenizing algae are asymmetric. To date, nearly 19,000
lichenized species of fungi have been recognized [7], while
the variety of algae and cyanobacteria acting as photobionts is
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much lower, around 120 species described, distributed in 40
genera [8]. Moreover, most authors agree that this diversity is
underestimated [9–11]. Most of the green algae photobionts
belong to the family Trebouxiaceae. Altogether 81 species
have been described in this family [12], and these are either
lichenizing or free-living [13]. Asterochloris is a genus of
Trebouxiophyceae rather common as lichen photobiont [11,
14–16]. To date, 18 species of Asterochloris have been de-
scribed [17, 18]. Asterochloris is mainly associated with spe-
cies of the families Cladoniaceae [15] and Sterocaulaceae
[19], although it can also associate with the families
Verrucariaceae [20, 21], Psoraceae [17, 22], Lecideaceae
[23], Parmeliaceae [24], and Thelotremataceae [25]. These
lichens exhibit various growth forms and inhabit disparate
environments, but most of them are terricolous. The taxonomy
of the genus Asterochloris is very challenging, since the char-
acters useful for distinguishing the species are those linked to
the chloroplast morphology and the ultrastructure of the pyre-
noid. In order to observe these traits, it is necessary to use
confocal microscopy and transmission electron microscopy
[17]. These difficulties, added to the necessity of isolating
and culturing the specimens, have limited the studies on the
diversity of lichenizing algae. However, the use of DNA se-
quences has allowed progress in the knowledge of the
photobiont biodiversity and has made it possible to infer their
phylogenetic relationships. Based on molecular studies, the
results of several authors suggest that Asterochloris diversity
is underestimated [15, 26, 27].

The genus Cladonia, comprising ca. 475 species, is one of
the main host genera for Asterochloris. Up to 14 species of
Asterochloris, along with some other phylogenetic lineages,
have been found in symbiosis with species of Cladonia [17,
18, 28]. Cladonia has a sub-cosmopolitan distribution; many
of its species are conspicuous, being part of the dominant veg-
etation in ecosystems such as the tundra, the boreal and
antiboreal forests, bogs, temperate forests, various pioneer hab-
itats (e.g., bank roads), tropical highlands, and even the sandy
tropical lowlands of the Amazonia [29]. Though several studies
have addressed the subject of the photobionts associated with
the genusCladonia, no exhaustive research has yet been carried
out. Some of these works examined the associations mycobiont-
photobiont in search of coevolutionary patterns, only to reject
them and to find evidence of horizontal algal switching [30, 31].
The interactions between symbionts in lichens are described in
terms of specificity and selectivity. Following the concepts
adopted by Rambold et al. [32] and Yahr et al. [33], the term
“specificity” refers to the range of compatible photobionts that
can be associated with one species of mycobiont, while “selec-
tivity” means the frequency of associations between the com-
patible symbionts. Some researches have focused on the speci-
ficity and selectivity of some species of Cladonia toward the
photobiont and the population structure [34–37], finding differ-
ent association patterns and showing that selectivity is dynamic

and depends on the environmental conditions. The influence of
the photobiont on the phenotype of lichen thalli has also been
studied, but no correlation has been found [37]. The reproduc-
tion type has been identified as a key factor to explain the
photobiont diversity in a small group of species of Cladonia
[38]. Recently, the diversity of photobionts on Cladonia was
examined in poorly explored regions, such as Nepal and India
[26]. However, all these studies were based on a limited number
of species (ca. 8% of all the described species of Cladonia). In
order to reach a more complete view of the diversity of
photobionts associated withCladonia, a further, more extensive
study of the photobionts of the genus Cladonia becomes neces-
sary, including a wider taxon sampling and an extension of the
geographic scope of the survey that embraces not much ex-
plored regions such as Africa, Asia, or Australasia.

The aims of the present study are (1) exploring the biodi-
versity of the photobionts associated with the genus of lichen-
forming fungi Cladonia and (2) determining the factors that
account for the diversity patterns of the photobionts, as well as
for the specificity and selectivity of the mycobionts.

Material and Methods

Sampling

A total of 223 specimens ofCladonia, representing 135 species,
were selected for studying the biodiversity of photobionts asso-
ciated with this genus (supplementary material). The specimens
are collected all over the world (Fig. 1), including specimens
from 28 countries and 20 Köppen-Geiger bioclimatic regions
[39]. The sampling represents the eleven major phylogenetic
lineages of Cladonia [40]. The specimens are deposited at H
andMACBherbaria (supplementarymaterial). To complete the
sampling, sequences from GenBank generated in the previous
studies [15, 17, 18, 26–28, 30, 33–38, 41–43] were downloaded
and included in our dataset. Only the sequences with associated
species identification and adequate locality data were included
(the latter for classifying the specimens in Köppen-Geiger’s
ecoregions without ambiguity). The final ITS rDNA dataset
included 545 sequences representing 172 Cladonia species
and 24 ecoregions, while the actin type I dataset included 241
sequences representing 115 Cladonia species.

Amplification and Sequencing

In this study, Sanger sequencing technology has been used to
determine the biodiversity of photobionts associated with
Cladonia. Although some studies have showed that more than
one photobiont can coexist in a lichen thallus [44–46], other
studies have proved that most of thalli contain only a single
photobiont and Sanger approach is suitable to study the diver-
sity of photobionts [47].
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Two loci were chosen to study the genetic diversity of
Asterochloris, namely, ITS rDNA and a fragment of actin type
I locus containing an intron. These loci were chosen according
to previous results [15–17, 36] and the Asterochloris se-
quences available in GeneBank. Additionally, the locus rbcL
was amplified in a selection of samples representing different
lineages. The PCRs were carried out using Biotaq polymerase
(Bioline), with 25 μl of final volume, 1 μl of each primer at
10 μM concentration, and 1 μl of DNA. The primers used
were ITS1T/ITS4T or SSU-1780A/ITS4 [30, 48, 49] to am-
plify ITS rDNA; ActinF2 Astero/ActinR2 Astero [15] to am-
plify actin locus; and PRASF1/PRASR1 [50] to amplify rbcL.
The PCRs were performed using an Eppendorf Mastercycler
ep Gradient S thermal cycler with the following programs: 95
°C 2min; 5 cycles of 30 s at 95 °C, 30 s at 54 °C, 60 s at 72 °C;
30 cycles of 30 s at 95 °C, 30 s at 48 °C, 60 s at 72 °C; 7 min at
72 °C for ITS rDNA; 95 °C 2 min; 30 cycles of 30 s at 95 °C,
30 s at 62 °C, 60 s at 72 °C; 10 min at 72 °C for actin; and 95
°C 2min; 35 cyles of 45 s at 95 °C, 40 s at 52 °C, 90 s at 72 °C;
10 min at 72 °C for rbcL. PCR products were cleaned with
Illustra ExoProStar TM 1-step (GE Healthcare). The sequenc-
ing was performed at Macrogen Spain service (www.
macrogen.com) with the same primers used for the PCRs.

ITS rDNA sequences of mycobiont were generated previ-
ously by the authors [40, 51–53].

Alignments, OTUs Delimitation, and Phylogenetic
Reconstructions

The sequences were assembled and edited using Sequencher
4.1.4 software (Gene Codes Corporation, Inc., Ann Arbor,
MI, USA). The alignment for each region was conducted with
MAFFT [54] with default parameters. Then, the alignments
were improved manually in BIOEDIT 7.0 [55]. Gblock 0.91b
[56] with the less stringent option was used to remove the
ambiguous regions of actin alignment.

The diversity of Asterochloris is not well-known, and the
species boundaries are not well-established [11, 17].
Therefore in this study, the sequences were clustered in opera-
tional taxonomic units (OTUs). Automatic Barcode Gap
Discovery method (ABGD) was used to delimit the OTUs,
following Leavitt et al. [57]. These analyses were conducted
in the webserver (https://bioinfo.mnhn.fr/abi/public/abgd/
abgdweb.html) using Jukes-Cantor (JC69) model to calculate
the genetic distances, Pmin = 0.001, Pmax = 0.01, step = 10, and
Nb bins = 20, and several values of Xwere used, 0.5, 0.8, 1, and
1.5. This method as applied to ITS rDNA and actin datasets.
Then, comparisons of the OTUs inferred with each value of X
with both regions were done to assess the consistence of results.

Reference sequences of Asterochloris species [17, 18, 27,
28] were downloaded from GeneBank and included in our
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Fig. 1 Geographical location of specimens newly sequenced in this
study, represented by a dot. The colors of the map represent climatic
classification of Köppen-Geiger. Af = equatorial rainforest, fully humid;
Am = equatorial monsoon; Aw = equatorial savannah with dry Winter;
BS = steppe climate; BW = desert climate; Cs = warm temperate climate

with dry summer; Cw = warm temperate climate with dry winter; Cf =
warm temperate climate, fully humid; Ds = snow climate with dry
summer; Dw = snow climate with dry Winter; Df = snow climate, fully
humid; ET = tundra climate; RF = frost climate
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alignments. Maximum likelihood (ML) analyses were imple-
mented using RAxML 7.0.3 [58] assuming the GTRGAMMA
model for each alignment. The node support was estimated
with rapid bootstrap algorithm, using 1000 pseudoreplicates.
Congruence between the loci was tested manually, checking
the clades with at least 75% bootstrap support. In order to re-
duce the computation time of concatenated analyses, a subset of
299 samples were selected for these analyses, removing se-
quences from the large OTUs and prioritizing samples with
sequences for two and three loci. The concatenated dataset
was analyzed by ML with the same conditions of that single-
locus alignments and Bayesian inference. JModeltest [59] using
the Akaike information criterion (AIC) was used to select the
optimal substitution model for each locus. The models selected
were: TrNef+I+G for actin, TrNef+G for ITS rDNA, and K80+
I+G for rbcL. Bayesian analysis was run in MrBayes 3.2[60] in
CIPRES portal [61] with three partitions and the substitution
models selected by jModeltest. Two simultaneous runs with 20
000 000 generations, each starting with a random tree and
employing four simultaneous chains, were executed. Every
1000th tree was saved into a file. The first 5, 000, 000 genera-
tions (i.e., the first 5000 trees) were deleted as the “burn-in” of
the chain. The convergence of the chains was assessed with
average standard deviation of split frequencies < 0.05 and plot-
ting the likelihood versus generation number in Tracer v. 1.7
[62]. The different OTUs of Asterochloris were named using
the reference sequences, and a number was assigned to the
OTUs without species name.

Statistical Analyses

All the analyses were conducted in R 3.6.3 (http://www.r-
project.org/). Redundancy (RDA) and partial redundancy
analyses (pRDA) were done using the Vegan package [63]
to determine the relative contribution of climate, geography,
phylogeny of the mycobiont, and identity of the mycobiont on
the genetic diversity of the photobiont. The genetic distances
of photobionts were used to run a principal component anal-
ysis (PCA), and the three first components (explained 99% of
the variance) were used as response matrix. Four explanatory
matrices were used. Three of them were binary matrices con-
taining the geographical origin (Europe, North America,
South America, Africa, Asia, Australasia), the climatic region
[39], and the phylogenetic clade of Cladonia [40]. The ITS
rDNA sequences of the mycobiont were used to construct the
fourth explanatory matrix. The genetic distances of the
mycobiont were calculated under JC69 model, and the seven
first components of a PCA (explained 95% of variance) were
used as explanatory matrix. The variation explained by each
variable group was estimated using adjusted R2, and the sta-
tistical significance was assessed using a permutation-based
ANOVA test with 2000 permutations. Two different analyses
were conducted using different dependent matrices, the ITS

rDNA, and the actin type I locus alignments. Venn diagrams
were generated in R, using the package Euler [64].

The specificity and selectivity were studied in a selection of
Cladonia species for which more than four sequences of
photobionts were available (Table 1). Given that numerous
groups of Cladonia present taxonomical problems and the
limits between species are not clear [40, 53], our analyses were
restricted to include only those species of Cladonia whose bor-
ders are clear. Thus, all the following species were excluded:
C. arbuscula, C. capitellata, C. cenotea, C. chlorophaea,
C. coccifera, C. confusa, C. deformis, C. didyma, C. diversa,
C. fimbriata, C. furcata, C. gracilis, C. grayi, C. macilenta,
C. pleurota, C. pocillum, C. pyxidata, C. subsubulata, and
C. veriticillata. In total, 150 ITS rDNA photobiont sequences
were analyzed, associated with eighteen Cladonia species.

Generalized linear models (GLM) with Poisson error distri-
bution and log-link function were used to examine whether the
frequency of OTUs was different among Cladonia species,
climatic regions, geographic regions, type of asexual reproduc-
tion, and frequencies of sexual reproduction. The same catego-
ries used in the RDA analyses for geographic and climatic
regions were used here. The type of asexual reproduction was
categorized in soredia or other (the latter including thallus frag-
ments, plates or schizidia). Based on our knowledge of species
and on literature, e.g. [29], the frequency of sexual reproduction
was split in two categories, frequent (for species with > 20% of
specimens with apothecia) and rare (for species with < 20% of
specimens with apothecia). The haplotypes, the haplotype di-
versity, and the nucleotide diversity (π) of the photobiont in
each Cladonia species were calculated using DNAsp v6 [65].
T student analyses were used to compare the nucleotide diver-
sity between sorediate and non-sorediate species and between
species with frequent apothecia and with rare apothecia.

A bipartition network was used to visualize the association
patterns between the 18 mycobionts and the OTUs of the
photobiont. This network was constructed using the bipartite
network analysis webservice (https://aaronecology.shinyapps.
io/Network/).

The co-occurrence of AsterochlorisOTUs withinCladonia
species was tested statistically using co-occurrence analyses.
The dataset contained 16 photobiont OTUs and 18 Cladonia
species. This analysis constructs pair links of OTUs that co-
occurred in the same Cladonia species. All possible pairwise
Spearman’s rank correlations between OTUs were calculated.
Only robust and statistically significant correlations (|ρ| > 0.65
and P value < 0.05) were selected. This analysis was imple-
mented with Hmisc package [66] for R. One thousand random
networks with the same number of edges and nodes, but as-
suming random connections, were generated using Erdös-
Rényi model [67]. The networks properties, modularity, clus-
tering coefficient, average degree, and graft density, were cal-
culated. A GML network was generated using igraph package
[68] for R and visualized with Gephi 0.9.2 [69].
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Results

In total, 418 sequences of Asterochloris associated with
Cladonia were generated (225 ITS rDNA, 162 actin type I,
and 31 rbcL) and deposited in GenBank with accession num-
bers MW043487-MW043711 and MW073562-MW073754.
Less than 1% of the sequences showed electropherograms
with two peaks on some positions; for two samples, two dif-
ferent sequences of ITS rDNA were obtained (one for
C. rappii, from Australia, and another for C. leprocephala,
from Bolivia). In both cases, the two sequences from the same
sample were grouped in the same OTU.

The ABGD analyses for ITS rDNA estimated 44 groups
for values of maximal genetic distance of P = 0.002783–
0.003594 for X = 0.5; P = 0.002154–0.003594 for X = 0.8;
and P = 0.002154 for X = 1. Altogether, 154 groups were
obtained using X = 1.5. The actin analyses generated 37
groups. They were generated with gap width X = 0.5 and
maximal distance P = 0.005995; X = 0.8 and P = 0.005995;
X = 1 and P = 0.003594; and X = 1.5 and P = 0.002154–
0.004642. Some of the groups obtained with ITS were divided
in several groups by the actin analyses. For example, the ITS
OTU1 was divided in 3 OTUs in the actin analyses, and these
3 OTUs correspond with the species A. irregularis,
A. glomerata, and A. pseudoirregularis. Therefore, the delim-
itation of the OTUs is based on the actin type I results, shown

in Fig. 2. In total, 15 OTUs are represented by one only se-
quence (Fig. 2).

The ML analysis of the concatenated matrix ITS rDNA,
actin type I, and rbcL generated a tree with – Lnl = 17756.02,
while the Bayesian analysis generated a tree with an average
value – LnL = 17886.61. The topologies of both trees are
similar, whence only the tree for the Bayesian analysis is
shown in Fig. 2. Twenty-six clades are well-supported, twelve
of them represent described species and fourteen OTUs (Fig.
2). Most of the phylogenetic relationships among the clades
were not supported. The commonest lineage of photobiont in
Cladonia corresponds to Asterochloris glomerata
(representing 16.5% of the photobionts). Other frequent
photobionts were A. italiana (13.8%), A. mediterranea
(12%), and an unnamed clade, the OTU23 (11.4%), that was
earlier found [26, 30, 33, 70]. Many OTUs have a wide dis-
tribution and are found in specimens collected in different
continents (Fig. 3). But different frequencies of OTUs in dif-
ferent geographical regions were found.Asterochloris italiana
was the lineage most frequent in Australasia; OTU23 was the
most frequent in Africa and South America; A. glomeratawas
the most frequent in North America; A. mediterranea was the
most frequent in the Macaronesia; OTU23 and OTU10 were
very frequent in Asia; four OTUs were found in similar fre-
quency in Europe, A. glomerata , A. irregularis ,
A. mediterranea and OTU33. Few OTUs showed a restricted

Table 1 Genetic diversity of photobionts associated with Cladonia species, frequency of sexual reproduction, asexual reproduction type, and
distribution

Taxa N OTUs H Hd π Frequency of apothecia Reproduction type Distribution

C. coniocraea 8 4 5 0.857 0.01948 Frequent Soredia Subcosmopolitan

C. conista 9 6 6 0.917 0.00990 Rare Soredia Subcosmopolitan

C. corsicana 4 2 2 0.500 0.00092 Frequent Thallus fragments Mediterranea

C. cristatella 4 2 2 0.500 0.00806 Frequent Thallus fragments N America

C. evansii 4 1 3 0.833 0.00202 Rare Thallus fragments N & S America

C. foliacea 39 4 4 0.282 0.00269 Rare Thallus fragments W Eurasia, N Africa & Macaronesia

C. fruticulosa 4 3 2 0.500 0.01042 Rare Soredia Africa, Asia, Australasia

C. leporina 4 3 3 0.833 0.01610 Frequent Thallus fragments N & N America

C. portentosa 4 1 2 0.667 0.00115 Rare Thallus fragments W Europe, Macaronesia & N America

C. pachycladodes 5 2 3 0.800 0.00322 Rare Thallus fragments N America

C. ramulosa 4 3 3 0.833 0.00700 Frequent Granulose Europe

C. rangiferina 10 4 5 0.756 0.00727 Frequent Thallus fragments Eurasia, N America & S America

C. rangiformis 18 4 5 0.484 0.00412 Rare Thallus fragments W Eurasia, N Africa & Macaronesia

C. rei 15 4 8 0.867 0.00938 Frequent Soredia Circumpolar

C. strepsilis 9 2 6 0.889 0.00306 Rare Thallus fragments W Europe, E Asia, E N America
& S America

C. subtenuis 18 5 16 0.987 0.01757 Rare Thallus fragments N & C America

C. subulata 6 5 6 1.000 0.01663 Rare Soredia Subcosmopolitan

C. uncialis 4 2 3 0.833 0.0000016 Rare Thallus fragments Circumpolar

N number of sequences; H number of haplotypes; Hd haplotype diversity; π nucleotive diversity

177Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia...



from C. pocillum, Kotelko 885

0.97/44

0.97/59

0.87/81

0,63

0,84

from C. alinii, CL111
from C. labradorica, CL167
from C. uncialis, CL204
from C. kanewskii, CL244
from C. botrytes, CL261

from C. crispata, CL302
from C. botrytes, CL306
from C. uliginosa, CL327
from C. macrophylla, CL328
from C. albonigra, CL335
from C. ecmocyna subsp. occidentalis, CL414

A. irregularis
from C. granulans, CL120
from C. amaurocraea, CL252

from C. vulcani, CL137
from C. amaurocraea, CL251
from Pycnothelia papillaria, CL329

from C. gracilis subsp. vulnerata, CL256

from C. cornuta, 10CORN

from C. hondoensis, CL103
from C. krogiana, CL121
from C. piedmontensis, CL126
from C. phyllophora, CL142
from C. submitis, CL223
from C. caroliniana, CL226
from C. uncialis, CL246
from C. deformis, CL258
from C. pleurota, CL303
from C. monomorpha, CL313
from C. piedmontensis, CL314
from C. monomorpha, CL315

from C. mitis, CL333
from C. subulata, CL336
from C. oricola, CL417

A. pseudoirregularis

A. glomerata

A. erici

from C. decorticata, CL150
from C. chlorophaea, CL307 A. magna

from C. fenestralis, CL234

from C. scotteri, CL249

from C. leprocephala, CL266
from C. isabellina, CL347

from C. isabellina, CL282
from C. leprocephala, CL289

from C. melanopoda, CL288

from C. rappii, CL183
from C. ramulosa, CL345

from C. pachyclados, CL190

A. leprarii

A. gaertneri
A. stereocaulonica

A. mediterranea

from C. corsicana, SP2
from C. corsicana, SP1

from C. corsicana, SP5

from C. corsicana, SP3

from C. rei, 7REI

from C. rangiformis,18RANG

from C. glauca, CL214
from C. cryptochlorophaea, CL228
from C. crispata, CL229
from C. diversa, CL231

from C. ramulosa, CL196
from C. ramulosa, CL195

from C. foliacea, CL811
from C. conista, 13HUMILfrom C. conista, 1CONIST
from C. conista, 4CONIST
from C. apodocarpa, CL86

from C. santensis, CL133
from C. conista, 2CONIST
from C. conista, 3CONIST

from C. subturgida, 1SUBT

from C. furcata, Oksanen 505

from C. cristatella, UTEX910
from C. cristatella, UTEX912

from C. cristatella, UTEX911

from C. furcata, Ridka IH26
from C. furcata, Ridka IH23
from C. coniocraea, Ridka IH4

from C. furcata, Ridka IH27
from C. pyxidata, Ridka IH29
from C. furcata, Ridka IH30
from C. corymbescens, Ridka IH31
from C. corymbescens, Ridka IH31a

from C. rangiferina, Ridka IH6

from C. coniocraea, Ridka IH15

from C. foliacea, MACB 90533
from C. foliacea, MACB 91687
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from C. foliacea, MACB 90565

from C. foliacea, MACB 90506
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distribution, i.e., OTU14 (N = 4) in Australasia, OTU31(N =
7) in Europe, OTU35 (N = 3) in North America, and OTU39
(N = 7) in Asia.

Some OTUs are clearly dominant in one or several climatic
regions (Fig. 3a). For instance, OTU14 is dominant in subpo-
lar oceanic climate (Cfc), OTU3 in subtropical highland cli-
mate (Cwb), and A. mediterranea in cold semi-arid climate
(BsK), hot-summer Mediterranean climate (Csa), and warm-
summer Mediterranean climate (Csb).

Figure 3c shows the OTUs associated with species belong-
ing to different Cladonia lineages. In most of the Cladonia
lineages, several OTUs occurred in similar proportion. The
most diverse lineages were the clades Cladonia and
Erythrocarpae (for clades, see [40]). But both gather together
most of the specimens (53.1% and 23.1%, respectively).

The variation partitioning analyses explained between
0.37 and 0.67 of the genetic variation of the photobiont
(Fig. 4). In the ITS rDNA dataset, the mycobiont explained
the large proportion of the variation (0.635). The second
factor that explained more variation was the climatic region
(0.126). However, the effect of the climatic region alone is
low (Fig. 4a). In the actin type I dataset, the factor that
explained more variation was the climatic region (0.28) fol-
lowing by the identity of mycobiont (0.14). However, the
proportion of variation explained by the climatic region and
the identity of mycobiont are low after controlling the effect
of the other factors (Fig. 4b). The phylogeny of the
mycobiont was the factor that explained the smallest propor-
tion of the variation in both analyses (0.03 in ITS rDNA and
0.05 in Actin type I).

Table 1 summarizes the genetic diversity of the
photobionts found in different Cladonia species. The nucleo-
tide diversity ranked from 0.0000016 inC. uncialis to 0.01948
in C. coniocraea. The haplotype diversity ranked from 0.282
in C. foliacea to 1.0 in C. subulata. The T student analyses
indicated that there is not a significant difference in the nucle-
otide diversity between species with frequent and rare sexual
reproduction (t = 1.1037, P value = 0.2860). However, signif-
icant differences were found between species with soredia and
without soredia (t = 2.6075, P value = 0.0198). The nucleotide
diversity was bigger in non-sorediate species.

The results of GLM analysis are shown in Table 2. The
interaction between the photobiont OTUs and the frequency
of apothecia was significant, indicating that the frequency of
different OTUs is different amongCladonia species that differ
in the frequency of sexual reproduction.

Figure 5a shows the association between photobiont OTUs
and Cladonia species. The nestedness index was 26.97452.
Most of the OTUs were associated with more than one
Cladonia species; for instance, OTU1 (= A. glomerata) was
found in 4Cladonia species, OTU11 was found in 8Cladonia
species, and OTU20was found in 4Cladonia species.Most of
Cladonia species are associated with more than one OTU of
photobiont, but most of them have high selectivity (Fig. 5).

Co-occurrence analyses are conducted to assess the corre-
lations of photobiont OTUs in 18 Cladonia species (Fig. 5b).
The network contained 6 nodes and 3 edges. Only three sig-
nificant positive correlations were found and no negative cor-
relation. The properties of the network were modularity =
0.666, clustering coefficient = NA, average degree = 1, and
graft density = 0.2, while the values corresponding to the
random networks were modularity = 0.205 ± 0.289, clustering
coefficient = 0, average degree = 1, and graft density = 0.2.
The modularity was higher than in the random networks, in-
dicating that some OTUs interact more frequently with each
other.

Discussion

Recent studies agree in that our knowledge on lichen
photobiont diversity is still limited, and much more work
using integrative approaches will be necessary in order to
characterize that diversity [11, 57]. The present study com-
piles all the information currently available on the diversity of
Asterochloris associated with Cladonia, along with new data
coming from 223 specimens, contributing to achieve a more
comprehensive and realistic view, as well as the interaction
patterns of mycobiont-photobiont.

Biodiversity of Asterochloris Associated with Cladonia

A number of Asterochloris lineages associated with Cladonia
have been found in this study (Fig. 2). These results agree with
previous results that pointed out to a high diversity of
Asterochloris associated withCladonia [15, 17, 26]. The rich-
ness in species ofCladonia [7, 39], added to the cosmopolitan
distribution of the genus, occupying disparate habitats, con-
tributes indeed to the high diversity of photobionts. Some
lineages are reported for the first time (OTU14, OTU19,
OTU24, OUT37, CL190, and CL8), while others, already
known, had never been found associated with Cladonia.
This is the case of OTU3 that corresponds to a lineage recently
reported of the genus Stereocaulon [71]. These results support
that Asterochloris diversity is still under-sampled.

The most frequent lineage of Asterochloris in Cladonia
was the one identified as A. glomerata. Previous studies had
already found a high frequency of photobionts of this lineage
[30, 38, 42], not only inCladonia but also in other genera such

�Fig. 2 Phylogeny of Asterochloris based on ITS rDNA, actin type I, and
rbcL. The 50% consensus majority tree of the Bayesian analysis. Bold
branches were supported by ≥ 0.95 of posterior probability fromBayesian
analysis and ≥ 75% of bootstrap values from ML analysis. Specimens
sequenced in this study are in bold
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as Stereocaulon [17, 71]. Other common lineages found are
A. italiana, A. mediterranea, and OTU23. For most of them,
the range of associated host species becomes widened (Fig. 2).

To date, the greatest diversity of Asterochloris had been
found in the Holarctic region [17, 26, 71], and our results
show a similar pattern. Europe is the region gathering the
greatest number of lineages of Asterochloris associated with
Cladonia (Fig. 4), but it is also the most sampled region. On
the other hand, our results indicate that the climatic regions
with the greatest diversity ofAsterochloris are the tundra (ET),
with long and cold winters and short, cold summers; the re-
gion Cfb, with a humid climate, short and dry summers; and
the region Dfc, with a subarctic climate, and rainfall spread
throughout the year. Similar results are reported by Steinová

et al. [38], who found a great concentration of Asterochloris
lineages in Central Europe, namely, in Austria and the
Czech Republic, territories that fundamentally belong to these
climates (Fig. 1). The warm regions AF, Csc and Cwb, were
the least rich in Asterochloris lineages. This could be an indi-
cation of the Asterochloris diversity increasing with the lati-
tude and the altitude. This agrees with the niche characteriza-
tion of Asterochloris lineages proposed by Vančurová et al.
[71], who found that most of the lineages appear in areas
where the average annual temperature remains below 5 °C.
This pattern is contrary to that found inmost organisms, where
diversity increases toward the tropic [72–74]. But the pattern
agrees with the one found in other lichens, for example
Protoparmelia, where no significant differences were found

0% 20% 40% 60% 80% 100%

Af
Aw
Bsk
Cfa
Cfb
Cfc
Csa
Csb
Csc

Cwa
Cwb
Dfa
Dfb
Dfc
ET

A. irregularis

OTU3
OTU10

OTU11
OTU14

OTU18

OTU20

OTU21
OTU23

OTU24

OTU25
OTU29

OTU31

OTU37

OTU39
OTU38

0% 20% 40% 60% 80% 100%

Africa

Asia

Australasia

Europe

Macaronesia

North America

South America

0% 20% 40% 60% 80% 100%

Cladonia

Erythrocarpae

Perviae

Impexae

Crustaceae

Arbusculae

Ochroleucae

Borya
Cladonia

Borya
Crustaceae
Arbusculae

Impexae

Erythrocarpae

Perviae

Ochroleucae

a b

c

A. glomerata A. mediterranea

A. pseudoirregularisA. italiana

A. woessiae

A. sejongensis

A. magna

A. lobophora

A. friedii

Main OTUs
OTU36

OTU35 OTU56

OTU32

OTU19
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between the number of photobionts from tropical or boreal
zones [75]. It would be worthwhile to note, however, that
the new lineages of Asterochloris identified here come from
poorly studied tropical regions as New Caledonia, South
Africa, Costa Rica, and Bolivia; the diversity patterns current-
ly known could change when territories such as Africa, Asia,
and the Neotropic are better explored.

An accurate knowledge of species distribution is pivotal to
understand their evolutionary history, abiotic tolerances, dis-
persion ability, and biotic interactions. The distribution ranges
of lichen photobionts are still incomplete [26, 76, 77]. Our
study reveals more accurately the distribution of the different
lineages of Asterochloris. For example, OTU3 was only
known for Faroe Island [71], but we have found it in Bolivia
and Costa Rica. To date, it was thought that this lineage had a
very restricted ecological niche, but our results indicate that it
is tolerant to a wider range of environmental conditions. We
corroborate that A. mediterranea is the more frequent lineage

in the Mediterranean Basin [27], extending its distribution to
Turkey, Iran, and Greece. The distribution of OTU23 is ex-
tended to Africa and New Zealand, previously found in India,
North America, and South America [26, 30, 33, 41].
Asterochloris irregularis has been found in specimens restrict-
ed to cold areas of the Northern Hemisphere such as the
Kamchatka Peninsula, Finland, or Canada. Prior studies had
hypothesized that A. irregulariswas not present in the tropical
regions [70], and our results point in the same direction.

Drivers of Genetic Patterns of Asterochloris

On a large geographic scale, climate is considered the most
decisive factor in determining the distribution of species [78].
Several researches have proved that climatic variables are rel-
evant predictors to explain the genetic variation of photobionts
[10, 31, 77, 79, 80]. In the present study, we find that the
climate explains a considerable part of the genetic variation

Table 2 Summary of GLM analysis to assess the effect ofCladonia species, geographic region, climatic region, reproduction strategy on the frequency
of photobiont OTUs, and probability of the associated Chi-square

Df Deviance Resid.Df Resd. Dev P value

NULL 77 140.468

OTU 1 2.1811 76 138.286 0.1397147

Mycobiont species 1 0.0982 75 138.188 0.7540270

Climate 1 18.2673 74 119.921 1.920e-05 **

Geography 1 16.3660 73 103.555 5.221e-05 **

Soredia 1 11.0486 72 92.506 0.0008875 **

Apothecia 1 0.4931 71 92.013 0.4825596

OTU:species 1 0.2326 70 91.781 0.6295981

OTU:climate 1 3.3898 69 88.391 0.0656006

OTU:geography 1 0.4967 67 78.149 0.4809586

OTU:soredia 1 1.0753 64 73.695 0.2997566

OTU:apothecia 1 4.2523 60 67.448 0.0391970 *

Df degrees of freedom. Only the two-term interaction in which the OTU is envolved is shown; all of them were not significant. *< 0.05, **< 0.01
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Fig. 4 Venn diagrams showing
the variation partitioning of the
genetic variation of photobiont
explained by each group of
explanatory variables (climatic
region, geographical region,
phylogeny of mycobiont, and
identity of mycobiont) and the
variation shared by groups of
variables. The explained variation
indicated is the adjusted R2

values. The significance was
tested with 2000 permutations, *P
< 0.05; **P < 0.01. a ITS rDNA.
b Actin type I
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of the photobionts associated with Cladonia. In fact, different
AsterochlorisOTUs show a clear prevalence in certain climat-
ic regions, despite the fact that numerous OTUs are shared
among climatic regions (Fig. 3a). However, most of the vari-
ation explained by the climate is shared with other factors
(Fig. 4). The identity of the mycobiont was the main driver
of the photobiont’s genetic variation on the ITS rDNA analy-
sis, which agrees with the results found in many other lichens
[57, 71, 81, 82]. This is expected in lichens with dominant
asexual reproduction [80]. In spite of many Cladonia species
frequently developing apothecia, they usually produce few
ascospores, and the reproduction is largely based on vegeta-
tive propagules [29]. Geographic region explained a small
amount of the variance, which was expected since most of
the lineages of Asterochloris have a broad geographic distri-
bution [17]. Host phylogeny was the factor with the least
influence on the photobiont’s genetic variation patterns, thus
corroborating the lack of phylogenetic congruence between
mycobiont and photobiont found in Cladonia [30, 31].

The RDA analyses based on the actin type I gene explained
much less genetic variation than the ITS rDNA analysis. This
is probably due to the fact that actin genetic variation of
Asterochloris is much greater than that of ITS rDNA [17,
70]. As the patterns of both loci were also somewhat different
(since the mycobiont was not the factor that explained most of
the variance in actin type I), the ITS rDNA analysis was re-
peated for a subset of samples, the same ones included in the

actin analysis. The ITS result is similar to that found for the
actin (Table S2). The factor explaining the greatest amount of
variance was the climate. This indicates that the two loci do
not show different results, but that the differences in the pat-
terns are due to the number of mycobiont species analyzed.
When the sampling is reduced to a fewer mycobiont species,
climate is the factor that most variation explains. This result
emphasizes the importance of mycobiont-photobiont studies
being carried out on a large scale, including most of the
mycobiont species of the genera under study.

The results suggest that the diversity patterns of the
photobionts associated with Cladonia are complex, with nu-
merous factors intervening and acting jointly, as found in oth-
er genera [71, 82]. Biotic and abiotic factors shaped the dis-
tribution of Asterochloris diversity associated with the genus
Cladonia across the landscape. However, the results of
Table 2 indicate that other biotic factors such as the frequency
of sexual reproduction are also relevant in the distribution of
photobiont diversity at lower taxonomic scale.

Specificity and Selectivity of Cladonia species for the
Photobiont

The association patterns of the mycobiont-photobiont are here
analyzed for 18 species of Cladonia, either monophyletic or
with a reviewed taxonomy. Cladonia is morphologically very
variable, whose taxonomy at species level is one of the most

Fig. 5 a Interactions network
between Asterochloris OTUs and
Cladonia species. The width of
the lines is proportional to the
frequency of the association. b
Significant co-occurrence of
Asterochloris OTUs in Cladonia.
Each circle represents an OTU,
and the size is proportional to the
abundance.
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complicated among macrolichens. Recent molecular studies
have demonstrated that numerous species are polyphyletic
and need a taxonomic revision [40]. The lack of clarity in
the taxonomy of the mycobiont could show non-real associa-
tion patterns, which has led us to limit our study.

In this study, we find mycobionts with different specificity,
from specialist species to generalist ones. Cladonia evansii
and C. portentosa associate with only one OTU and could
be considered specialist species. Nevertheless, the number of
specimens sampled of these species makes it difficult to es-
tablish unequivocally whether the species are specialists or
not. Most of the species studied associate with more than
one AsterochlorisOTUs (Fig. 5, Table 1). The most generalist
species are C. conista and C. subulata that associate with 6
and 5 OTUs, respectively. These species have also a medium
or low selectivity. Different degrees of specificity and selec-
tivity have been previously found in Cladonia [32, 33, 42].
Numerous studies have reported the ability of the mycobionts
to establish associations with several photobionts much more
frequently than the specificity toward one single lineage of
photobiont, and the rarity of the reciprocal specificity between
symbionts [83]. This is commonly considered an adaptive
strategy of the mycobiont in order to tolerate a wider range
of environmental conditions, selecting the photobiont best
adapted to the local conditions or searching to extend the
geographic range [33, 36, 80, 84].

In general, species with broad distributions are associatedwith
awide photobiont range [76, 85, 86], while the specieswithmore
restricted distributions are more specific [10, 77, 83, 87]. A high
number of species of Cladonia have broad distribution ranges,
embracing several continents and tolerating a vast range of envi-
ronmental conditions [29]. Therefore, the association with sever-
al lineages of photobionts was expected in C. subulata,
C. conista, andC. coniocraea, with a sub-cosmopolitan distribu-
tion [29], whileC. corsicana andC. evansii, with a more restrict-
ed distribution [29, 88], were expected to be more specific.
However, the differences in distribution range do not completely
explain by themselves the differences found in specificity and
selectivity, since some widely distributed species such as
C. strepsilis associate with only two Asterochloris OTUs. The
reproduction mode, sexual or asexual, has been strongly corre-
lated with different specificity and selectivity of the mycobionts
[76, 89]. Co-dispersion of the mycobiont and the photobiont
occurs during asexual reproduction in lichens, and the species
with predominant asexual reproduction tend to be more specific,
while the species that reproduce sexually are expected to be
generalist, since the mycobiont has to seek a new compatible
photobiont. Evidences of the relevance of the reproduction strat-
egy in the specificity and selectivity have been found inCladonia
[34, 38]. We did find differences in the frequency of OTUs
between the species that commonly reproduce sexually and those
who only rarely do (Table 2). For instance, OTUs 11, 23, and 33
are more frequently found in species where sexual reproduction

is rare. Additionally, we find that the species having specialized
asexual reproduction structures, such as soredia, have lower
values of nucleotide diversity than those whose asexual repro-
duction is carried out by thallus fragments. These results support
the hypothesis put forward by Steinová et al. [38], proposing that
the specificity of the mycobiont toward the photobiont could be
attributed to differences in size of the vegetative propagules and
to the amount of them.

Alternative explanations of the differences in specificity and
selectivity in Cladonia are the strategy of colonization and the
morphological pattern of the thalli [34, 42]. Common habitats for
many species of this genus are bare soils, rock banks, and postfire
successional stages [29], of which these species are considered
pioneer in the early stages. Previous studies found that these
species had a lower selectivity [41], which would permit them
to increase their fitness in these habitats. Most of the pioneer
species studied here, C. conista, C. foliacea, C. rangiformis,
C. subulata, and C. strepsilis (though they can live in other
habitats too), showed a low specificity; besides, C. conista and
C. subulata showed lesser selectivity.

Piercey-Normore [34] pointed out that the branching patterns
of the species of Cladonia could be too an important factor to
explain the association pattens with the photobionts, since the
different thallus architecture influences the water contents and
the gas exchange. Also in Parmeliaceae, some evidence of the
influence of the growth forms on the selectivity of the
mycobionts have been found, the fruticose genera being themost
selective [57]. The species studied here have different morphol-
ogy, from species whose thallus is basically formed by dominant
squamulose primary thallus (C. corsicana, C. foliacea, and
C. strepsilis) to species with richly branched thalli, lacking cortex
(C. rangiferina, C. evansii, C. portentosa, and C. subtenuis) or
corticate (C. rangiformis). But no clear pattern has been found,
probably due to our data being insufficient. It will be necessary to
examine more species of the different morphologies.

In summary, our results show that the specificity and selec-
tivity in Cladonia may be influenced by a combination of
factors, the reproduction mode (sexual or asexual), the type
of asexual reproduction, the distribution of the mycobiont, and
the habitat.

Our results suggest that some Asterochloris lineages co-
occur not randomly in the species ofCladonia. Three clusters,
formed by two OTUs each, are identified (Fig. 5). OTUs 9 and
31; 20 and 10; and 39 and 30 co-occur with higher frequency
that randomly expected. Up to date, no test of this kind had
been made, though some authors’ results seemed to suggest
that some photobiont OTUs co-existed with high frequency
[37]. Phylogenetically OTUs 9 and 31 are closely related (Fig.
2), and the co-occurrence can be due to habitat filtering.
Closely related taxa tend to share certain traits that can facil-
itate their adaptation to a habitat. These OTUs appear with
high frequency in the Mediterranean region and can be better
adapted to withstand prolonged periods of water deficit. The
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two other clusters are formed by OTUs phylogenetically more
distant, whereby it is expected that they differ in physiological
and ecological adaptations and the mycobiont probably selects
the photobiont best adapted to local conditions. The co-
occurrence patterns can offer a new outlook on the interac-
tions between the symbionts in lichens, helping us to answer
ecological questions.
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