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ABSTRACT 
 
GPU has been considered as one of the next-generation platforms 
for real-time query processing databases. In this paper we 
empirically demonstrate that the representative GPU databases 
(e.g., MapD[1]) may be much slower than another representative 
in-memory databases (e.g., Hyper[2]) with typical OLAP 

workloads (with Star Schema Benchmark) even if the actual dataset 
size of each query can completely fit in GPU memory. Therefore, 
we argue that GPU database designs should not be ONE-SIZE-
FITS-ALL; a general-purpose GPU database engine may not be 
well-suited for OLAP workloads without tailored GPU memory 
assignment and GPU computing locality. In order to customize 
GPU OLAP, we need to re-organize OLAP operators and re-
optimize OLAP model.  

    In particular, we first propose the vector grouping operator to 

achieve the maximal performance for AGGREGATION processing 
on top of query plan tree, and then we use vector referencing 
oriented star-join operator to serve for the upper vector grouping 
operation. The GROUPING operation is pushed down to the 
bottom dimension table scan nodes as group mapping operation to 
enable the optimal star-join and vector grouping operation in upper 
level of query processing tree. The inverted TOP-DOWN query 
plan tree optimization guarantees the optimal operation in final step 

and pushes the respective optimizations to the lower layers to make 
global optimization gains. Our experimental results show that the 
vector grouping operation achieves 2.7-15.55 times speedup over 
MapD CPU version and 1.39-5.81 times speedup over MapD GPU 
version with various grouping cardinalities. Further, the overall 
OLAP performance of proposed approaches is 2.23 times faster 
than MapD CPU version and 3.58 times faster than MapD GPU 
version for the Star Schema Benchmark (SSB) with scale factor 100.  

 

1. INTRODUCTION 
Nowadays in-memory databases are extensively adopted for high 
performance query processing as RAM sizes grow and prices are 
dropping dramatically. While the requirements of significant 

performance improvements are dominated by the low increasing of 
integrated core numbers, GPU databases are considered as another 
trend of high performance query processing engines with large 
amount of CUDA cores, high bandwidth device memory and 
scalability, e.g., the HGX-2[3] server can support 16 NVIDIA 
Tesla V100 GPU with total 0.5TB device memory and 300GB/s 
NVLink switch. The rapid developments of GPU push the 
developments of GPU databases. MapD, Kinetica[4], SQREAM[5], 
Zilliz[6], PG-Strom[7] are the representative GPU databases.  

With the rapid developments of GPU databases, the following 
questions naturally arise.  

● First, can GPU databases beat in-memory databases with 

necessary optimization techniques and big enough memory size? 

In-memory databases, e.g., MonetDB, Actian Vector, Hyper are 
carefully optimized for memory hierarchy, cache and register. The 
column-at-a-time, vector-at-a-time and JIT compliant 
optimizations have been widely adopted as high performance 
database characteristics. However GPU databases have no 
revolutionary processing model or optimization techniques. 
Moreover, the limited GPU memory size and PCIe bandwidth also 

add additional overhead over in-memory databases.  

● Second, is the relational query processing model well-suited 
for GPU databases? The Volcano iterative processing model is 
designed for pipeline processing on CPU platform assuming that 
the processing thread has enough private memory to cache 
intermediator materializations. CPU is designed with less cores but 
large L1-L2-L3 cache hierarchy to achieve high cache locality, 
while GPU is designed with massive cores but very small shared 

cache (shared memory). In other words, the GPU hardware can 
hardly match the traditional query processing model. Actually, 
GPU prefers to the small input/output and dense computing 
workloads instead of traditional query processing model of 
distributing sparse computing among a long query plan with large 
data stream. 

 ● Third, is the hybrid CPU-GPU database architecture or 

layered database architecture adaptive to GPU database design? 

The core idea of GPU databases is to offload computationally 
intensive operations to the GPU cores by keeping the remainder of 
the operations running on the CPU cores [4]. State-of-the-art GPU 
databases commonly assign workloads among the equal CPU and 
GPU according to cost model as a fine-grained operation 
distribution optimization which may produce additional 
materialization overhead between CPU and GPU. As GPU 
databases are commonly used for data warehousing workloads [5], 

relational processing model is not the unique choice for GPU 
analytical processing. A different roadmap is to develop a layered 
database framework for CPU and GPU platforms with hybrid 
processing models. Ideally, we may divide the tight coupled 
relational processing model into different layers, organizing and 
offloading computing intensive workloads to GPU computing layer, 
remaining management intensive and data intensive workloads in 
different types of database layers. By layered framework, a coarse-

grained strategy can be adopted for distributing workloads 
according to different characteristics of CPU and GPU platforms. 
Moreover, the GPU computing layer can be independently 
designed and implemented as GPU acceleration engine with loose 
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coupled relation to database engine, so that GPU acceleration 
engine can be considered as plug-in acceleration engine for 
databases and it can also employ different processing model or 
optimization techniques for GPU computing.  

     Therefore, although the GPU databases come to be industrial 

implementations, we still need a comprehensive evaluation for 
GPU databases on how well GPU databases perform for analytical 
workloads and exploiting how to design GPU acceleration engine 
to develop a layered databases. 

    In this paper, we focus on evaluating OLAP performance with 
the leading GPU database MapD and in-memory database Hyper, 
from which we can comprehensively evaluate the dominated 
relational operation performance and the whole query processing 

performance for MapD and Hyper. State-of-the-art researches 
focused on join algorithm optimizations [8-11] from multicore 
CPU platform to the emerging MIC Phi[12,13], GPU[14-16] and 
FPGA[17,18] platforms. The main-stream opinion is exploiting 
specified hardware features to improve join performance. At the 
same time, the industrial GPU databases show significant 
performance improvements against traditional databases with CPU, 
and MapD also contributes the open-source system to provide 

researchers a GPU database testbed. MapD supports both CPU 
mode as in-memory database and GPU mode as GPU database. The 
vectorizing query execution and JIT (Just-In-Time) compilation 
framework built on LLVM[19] combines the advantages of two 
leading in-memory databases Actian Vector[20] and Hyper, the 
GPU mode prefers to maximize GPU memory locality for hot data 
with a GPU memory resident style query processing. These 
optimization strategies enable MapD to be a high-performance in-

memory database as well as GPU database. It is an intriguing topic 
to discover how MapD performs compared with the leading in-
memory database Hyper. With a typical OLAP workload and GPU 
memory suitable dataset size, the expected result is that MapD wins, 
but the real situation is that MapD does lose the game. 

In relational operation performance experiments, we find that 
both MapD CPU mode and GPU mode outperform Hyper with join 
and star-join operations, and MapD GPU mode also outperforms 
Hyper in grouping & aggregation operation. In another word, for 

two major operations in OLAP workloads, MapD beats Hyper, 
while Hyper outperforms MapD in the whole query processing 
performance. Paper [11] discovered that the join time may only be 
a 10%–15% share of the total runtime of a TPC-H query, the 
volcano query processing model and enhanced vectorized query 
processing model mix the join overhead among the whole query 
processing, so that improvements of join performance doesn’t 
improve the whole query processing performance dramatically. We 

can partially conclude that the GPU database is well-suited for 
OLAP operation rather than OLAP query processing. 

Due to the small GPU device memory size and low PCIe 
channel bandwidth, improving the GPU memory data locality is the 
key optimization during query processing. Paper [21] announced 
that on average only about 5% of execution time is spent on the 
GPU, we find that MapD only outperforms Hyper with simple 
queries. However, MapD is much lower than Hyper for complex 

queries with similar dataset size (under the GPU memory size). We 
develop a layered GPU database framework to combine 
multidimensional computing and relational processing by 
offloading the computing intensive star-join operation of OLAP to 
GPU acceleration engine. The layered GPU database framework 
with GPU acceleration implementation maximizes the data locality 
for both CPU and GPU. We also find that a simple GPU side star-

join acceleration with CPU side aggregation proves to be more 
efficient than MapD. 

The main contributions of this paper are summarized as follows:  

1) We argue that GPU database performance is dominated 
by not only GPU memory size but also GPU memory 

utilization efficiency. The commonly adopted operator-
at-a-time model in GPU databases suffers from high 
intermediate materialization overhead. Improving GPU 
memory utilization efficiency is as important as to 
improve performance. 

2) We present the GPU OLAP acceleration model to 
customize GPU OLAP workload processing. The 
layered GPU database framework follows the divide-

and-conquer rule to divide the whole query processing 
into three workloads with different processing features. 
By efficient vector grouping and star-join operations, the 
computing-intensive workload can be GPU memory 
resident and the data-intensive workload can be 
optimally assigned to CPU to minimize PCIe transfer 
overhead. 

3) We design the top-down optimization instead of bottom-

up query tree optimization. The normalized vector 
grouping operation first defines the optimal upper 
operation, then the lower operations are customized to 
support the upper vector grouping operation. By pushing 
early materialized grouping operation to the bottom, we 
can use vector index as shared intermediate 
materialization to improve GPU memory utilization 
efficiency in GPU side and improve grouping and 

aggregation operation in CPU side. 

4) We design the star-join experiments with SSB workload 
to evaluate the join performance of leading in-memory 
and GPU database. Compared with MapD, our 
experimental results show that the vector grouping 
operation achieves 2.7-15.55 times speedup over MapD 
CPU version and 1.39-5.81 times speedup over MapD 
GPU version with various grouping cardinalities. In 
addition, for the Star Schema Benchmark (SSB) with 

scale factor 100, the whole OLAP performance is 2.23 
times faster than MapD CPU version and 3.58 times 
faster than MapD GPU version.  

Organization  In Section 2, we briefly summarize in-memory 
databases and GPU databases. In Section 3, we discuss the layered 
database framework for hybrid CPU-GPU platforms. In Section 4, 
we describe the design of GPU star-join acceleration and vector 
grouping operation, which is used as GPU acceleration design 

opposite to GPU database design. We present the experiments in 
section 5. Section 6 reviews the related work and Section 7 
concludes this paper.  

2. BACKGROUND 
In this section, we briefly describe and analyze in-memory 

databases and GPU databases. 

2.1 In-memory Databases 
MonetDB[22] is the pioneer column-store in-memory analytical 
database. The operator(column)-at-a-time processing model is 
much efficient than traditional tuple-at-a-time processing model, 

and the operator-at-a-time processing model is widely adopted by 
GPU databases[23]. MonetDB/X100[24] adopts the vector-at-a-
time processing model to reduce materialization overhead against 
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column-at-a-time execution model. The vectorized processing 
model is now widely adopted by column-store in-memory 
databases, e.g., Actian Vector and MapD CPU mode. Hyper 
compiles queries into machine code using the optimizing LLVM 
compiler to achieve high query processing efficiency, and the 

register level optimizations enables Hyper to be high performance 
in data-centric workloads.  

For in-memory databases, in-memory join algorithms are the 
dominated relational operation. Many previous works have studied 
the designs and implementations of different join algorithms facing 
state-of-the-art CPU architectures. As shown in Figure 1(A), 
multicore CPUs are commonly designed with L1-L2-L3 cache 
hierarchy, and improving cache locality is the core optimization for 

in-memory join algorithms. In the previous work [8], we have 
verified that NPO (no-partitioning hash join) is faster than PRO 
(Radix partitioning hash join) when the shared hash table is smaller 
than LLC(last level cache) size, while bigger table should employ 
PRO to partition both tables into cache fit partitions to perform in 
cache hash joins. Each core of CPU has its private L1 and L2 cache, 
and L3 cache is shared for all cores and threads. The hardware level 
auto cache replacement policy simplifies the multiple-threading 

programming for in-memory algorithm designs. 
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Figure 1. Architectures of CPU and GPU. 

2.2 GPU Databases 
As shown in Figure 1(B), GPU has different architecture from CPU. 
The on-board global memory is high bandwidth memory (HBM), 

the bandwidth is much higher than DRAM. GPU comprises with 
streaming multiprocessor(SM), and each SM comprises with many 
cuda cores. L1 cache/shared memory is shared for all cores inside 
SM. L2 cache is shared for all SMs. The L1 and L2 cache sizes are 
both much smaller than CPU’s.  

Programming on GPU uses a hierarchy of parallel threads, 
which are grouped into a wrap. Threads inside warp can efficiently 
synchronize with each other through shared memory. Programmers 

should manage to have each thread of a warp following the same 
control flow to improve GPU code efficiency. The global memory 
size of GPU is much smaller than DRAM size, e.g., the latest 
NVIDIA V100 GPU’s memory size is 32 GB[3]. Memory transfer 
cost between DRAM and GPU through PCIe channel is the most 
critical bottleneck of GPU programming. 

In a nutshell, GPU databases can be considered as extended 
in-memory databases, where the storage is DRAM and GPU’s 
device memory, using both CPUs and GPUs as hybrid processors. 

The GPU end models are designed and optimized based on GPU 
architecture and cuda programming. The CPU end is used as host 
and schedules for GPU workloads. GPU databases need 
fundamental algorithm designs for GPU platform to make the 
maximal performance gains. The major in-memory relational 
operation algorithms should be re-designed for GPU platforms. 

Moreover, many mature cache-centric optimizations of in-memory 
databases are not adaptive to GPUs. 

The general conclusion [23] of GPU researches is that GPUs 
prefer computing-intensive workloads with heavy computation on 
small dataset such as joins, and GPUs are not well-suited for data-

intensive workloads with light computation on large dataset such 
as selections. The core idea is to hold computing-intensive data in 
GPU memory as much as possible. The limited GPU memory size 
also adds additional algorithm evaluation perspectives of memory 
efficiency, e.g., CPU platform prefers PRO join algorithms for 
higher performance at the cost of double memory consumption, 
while the similar join algorithm in GPU platform will decrease 
GPU memory utilization rate to support 50% less dataset. 

    MapD is the representative GPU database that can execute 
queries on either CPU or GPU platforms. It is designed with 
operator-at-a-time processing model with columnar storage. MapD 
tries to keep hot data in GPU memory as much as possible to 
improve GPU computing locality, and the typical configuration 
with multiple GPU cards (16 at most) can support 0.5 TB GPU 
memory for high performance GPU memory resident query 
processing. However, MapD applies a streaming mechanism for 

processing assuming that input data are not always fit in GPU’ 
memory, the optimizer splits queries into chunks and assigns them 
to CPU or GPU according to the cost model. 

As a summary, to achieve better query processing 
performance than in-memory databases, GPU databases should 
develop higher performance relational operations and minimize 
memory transfer cost. 

3. Layered database framework 
The hardware accelerators such as GPU, Phi, FPGA etc. come to 
be the first-class instruments for high performance computing 
architectures. The heterogeneous hardware devices are naturally 
divided into multiple layers, so that an ideal database architecture 
should also be divided into multiple layers to match hardware 
layers. In this section, we discuss how to design a layered database 

with OLAP domain knowledge. 

3.1 Methodologies 
Most GPU database systems focus on data warehouse workloads, 
we limit our research respective in OLAP database 
implementations. 

For relational OLAP engine, the query processing is executed 
through query plan tree nodes as equal relational operations. From 
the multidimensional OLAP perspective, the tables and columns 
inside the queries are not equal for data locality and computing 
density. When we map ROLAP model to MOLAP model, the 
dimension tables are defined as dimensions and metadata for OLAP 
dataset, the foreign key columns are used as maps between 
dimensions and fact data to identify which fact tuple attends the 

following grouping & aggregation operation. As shown in Figure 
2, the number of dimension tuples commonly increases slowly as 
data volume increases. The workloads on dimensions are 
management-intensive which includes updating dimensions and 
transforming SQL statements to multidimensional operations. The 
moderate workloads on dimensions are defined as warm workloads. 
Star-join is the performance dominated operation in OLAP, which 
is defined as Map operation in Figure 2 between dimensions and 

fact data. Star-join is in charge of mapping OLAP queries to fact 
data retrievals, which are commonly sparse computing on big data 
volume. Therefore, we define star-join workload as hot workload 
and define fact data retrieval workload as cool workload. 
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[25] discovered that in typical OLAP dataset the size of 
dimensions amounts to 1%  the size of foreign key columns is about 
19%, and the fact data size is more than 80% while the computing 
on foreign key occupies more than 80% of total execution time. 
Hence the OLAP workloads can be divided into 3 layers according 

to computing density. Moreover, the 3-layer workloads can match 
the typical database system architectures.  

 For hybrid processor systems, the dimension 
management workloads can be assigned to CPU, the 
map computing can be assigned to CPU, GPU or FPGA 
to accelerate for dense star-join computing, the fact data 
retrieval workloads can also assigned to CPU, GPU or 
FPGA with optimal storage and computation efficiency.  

 As GPUs are widely deployed as high performance 
cloud resources, we can also extend the 3-layer OLAP 
model in cloud computing platform. To achieve the 
optimal Total Cost of Ownership (TCO), GPU databases 
need not hold all the data in limited GPU memory, and 
the heterogeneous cloud resources can cooperate 
together. The dimension management workloads can be 
deployed in database cloud, and the map computing can 

be accelerated by GPU cloud and the fact data retrieval 
workloads can be deployed either on database cloud or 
data cloud for distributed and parallel computing. 

 For database machine systems such as Oracle Exadata 
or IBM Netezza, the 3-layer OLAP model is also 
adaptive to the asymmetrical hardware architectures. 
The central database nodes are in charge of dimension 
management, the accelerator nodes do the performance 

dominated map computing and the scalable storage 
nodes are used for fact data retrieval workloads. 
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Figure 2. Example for layered OLAP database. 

As a summary, the 3-layer OLAP model, which motivates the 

workloads distribution strategy from OLAP model perspective, 
shows that the computing density and data volume features are key 
considerations to assign layered workloads on heterogeneous 
computing platforms.  

3.2 Star-join model 
In 3-layer OLAP model, the hot workload is the mapping operation 
which is represented as star-join. However, traditional star-join is 
not well-suited for GPU acceleration for commonly adopted 
operation-at-a-time model which consumes too much intermediator 
materialization overhead for limited GPU memory. In the 
following section, we discuss two star-join models to illustrate how 
to perform a memory efficient star-join for GPU. 

The invisible-join [32] model is a representative operation-at-

a-time model for OLAP with late-materialization strategy, the 
OLAP processing can be divided into 3 stages. The invisible-join 
model first creates hash tables for dimension tables with keys to 
server for the following star-join operation. The star-join generates 

a bitmap to identify how to perform the fact data retrieval with 
computed positions. As the bitmap has no information of GROUP-
BY attributes from dimension tables, the additional joins are 
executed to materialize join results for the following aggregation. 
For typical operation-at-a-time model, the materialization cost is 

expensive especially for limited GPU memory size. 

As shown in figure 3, AIR algorithm [25] presented a similar 
3 stage processing model. The major differences laid out as follows: 
1) in dimension computing stage, the dimension tables produce 
dimension vector instead of traditional hash tables; 2) in star-join 
stage, the AIR (array index referencing) algorithm performs the 
efficient star-join operation instead of hash based pipelining 
multiple table joins; 3) in fact data retrieval stage, the join result 

vector directly performs positional lookup on fact columns and 
aggregation cube based aggregation. 
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Figure 3. Example for two OLAP implementations. 

AIR algorithm is designed with OLAP domain knowledge to 
fuse MOLAP model and ROLAP model together, how to maintain 
MOLAP features during updates and how to use the Fusion OLAP 
model is discussed in [26].  

Without Fusion OLAP model constraints, the traditional SQL 
engine can also perform a similar layered processing model with 

trivial tricks. For a general purpose relational engine, the OLAP 
processing can be implemented with 3 alternatives with vector 
index grouping. 

Figure 4 shows the hash based vector index grouping method. 
The traditional hash joins between fact table and dimension tables 
are performed, at the end of star-join stage, the GROUP-BY 
attributes are used to produce vector index instead of hash 
aggregation. The Group ID generator is employed to assign 
consecutive IDs for each group member with latch structure to 

guarantee assigning unique incremental ID for each new GROUP-

BY hash tuple. A hash table is used to generate vector index, the 
GROUP-BY attributes in each join result is probed in hash table, if 
the GROUP-BY attributes are not matched in the hash table, the 
new hash tuple is created with a Group ID assigned from Group ID 
generator, at the same time the Group ID is written to the 

corresponding vector index cell and the GROUP-BY attributes are 
recorded in group vector cell mapping by Group ID; if the GROUP-
BY attributes are matched in the hash table, just write the matched 
Group ID in the corresponding vector index cell. Finally, we get a 
vector index and a group vector as join results. The vector index 
can be further compressed with [FID, GID] tuples to eliminate null 
cells in vector index when selectivity is low. Now, we can perform 
a vector index based aggregation on fact table. We can perform a 

positional lookup on measure columns with address from non-
NULL vector index cell or FID from compressed vector index, the 
measure column values are directly mapped to vector aggregator 
cell by vector index cell value or GID for aggregation. By merging 
group vector in star-join stage and vector aggregator in fact data 
retrieval stage, we get the final OLAP results. 
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Figure 4. Hash based vector index grouping. 

Hash based vector index grouping uses hash table to produce 

vector index, the low cardinality GROUP-BY attributes have to be 
repeatedly computed for hash keys. 

Figure 5 shows a cube based vector index grouping method. 
The filtered and projected attributes in dimension table processing 
stage are compressed with dictionary compression, the dictionary 
vector index are used as Group ID for current dimension table. For 
multiple GROUP-BY attributes in single dimension table, each 
distinct GROUP-BY attributes pair is compressed as single Group 
ID. So that, the join results are Group IDs instead original long 

GROUP-BY attributes. Furthermore, the dictionary vectors of each 
dimension table construct a multiple dimensional array with each 
Group ID mapping to one sub-dimension array index. During star-

join stage, the Group IDs are directly mapping to cell of group cube, 

the cube cell address is transformed as 1-dimension array index and 
the array index is written to the corresponding vector index cell. 
The 1-dimension array is used as group vector for aggregation with 
vector index or compressed vector index oriented positional lookup 
and aggregation on measure columns. When we get the final group 
vector, each non-null cell index is transformed into 
multidimensional address, and each dimension address is mapped 
to corresponding dimension dictionary vector to access the original 
GROUP-BY attributes, the combination produces the final OLAP 

results. 

The cube based vector index grouping method is efficient 
because the multidimensional mapping takes the place of CPU 
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cycle consuming hash probing. General OLAP queries use small 
cardinality groups for interactive analytical processing, the group 
cube is commonly small and dense for cell utilization. If OLAP 

query produces a big cube while the cube is sparse in use, we can 
further optimize the group cube by mapping the non-null cells to a 
dense vector. 
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Figure 5. Cube based vector index grouping. 

Figure 6 illustrates a vector based vector index grouping 
method. As the group cube is big and sparse, we employ a group 

vector to map final GROUP-BY attributes member. We also use 
Group ID generator to assign the unique ID as GID, so that we can 
get a dense vector instead of the sparse cube. As illustration, the 
group cube is mapped to a 1-dimension group vector, if the 
corresponding cell is null, getting an ID from the Group ID 
generator and writing the ID in the corresponding position of vector 
index, if the corresponding cell is already assigned an ID, just 
writing the ID into corresponding vector index cell. When we get 
the final vector index, we also get the maximal ID from Group ID 

generator, and we create a vector aggregator with the length equal 
to the maximal Group ID as aggregator for measure column 

computing. During the vector index or compressed vector index 
oriented scan on measure columns, the corresponding measure 

column attributes are mapped to vector aggregator cells for 
aggregating. Finally, the OLAP results are obtained by dual 
mapping with group vector. The non-null cells in group vector are 
mapped to dimension dictionary vectors with vector address to get 
the original GROUP-BY attributes, then the non-null values are 
mapped to vector aggregator cell to get the aggregation results, the 
combination of these two mapping results produces the final OLAP 
results.  

The vector based vector index grouping method generates the 

minimal vector aggregator size during aggregation computing. 



7 
 

...

2 0 946

3 2 176

1 3 626

1 2 829

0 2 590

2 1 413

0 0 158

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Lineorder

L_CK L_SK L_REVENUE

2 0

3 2

1 3

3 2

0 2

2 1

0 2

L_CK L_SK

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer 

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

0

1

2

3

2 1

1 0

Canada

Brazil

1

2 S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier 

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

0

1

2

3

Japan

China

Korea

0

1

3

0 0

3 2

1 1

 

0

L_SK C_nation

1

 

...

C_nation

1

S_nation

0

...

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0]

[0]

0

1

2

VecInx

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

2

5

FID

0

1

2

GID

946

176

626

829

590

413

158

L_REVENUE

1

[0]

[1]

[2]

Canada

Brazil

[0]

[1]

Japan

China

Korea

[0]

[1]

[2]

[0]

[1]

[0] [1] [2]

2

0[3]

[4]

[5]

626Korea

413China

946Japan

Canada

Brazil

Brazil

2 latch

946

626

413

[0]

[1]

[2]

Foreign key columns

Group 

vector

Group ID 

generator

Vector index Compressed Vector index Measure columns

Vector aggregator

Grouping&aggregation results

Group cube

 

Figure 6. Vector based vector index grouping.

With the three vector index grouping methods, the traditional 
pipeline based query processing model can also be optimized as 3 
stage processing on dimension processing, star-join and 
aggregation. The vector index is used as an intermediator between 
star-join and aggregation stages to divide the pipeline processing 
into independent processing stages. In another word, traditional 
SQL engines can also support 3-layer OLAP model like AIR by 
adding additional modules for dictionary compression, vector index, 
group vector, etc.  

The three processing stages can be matched with 3-layer 
OLAP model, the different stage can be assigned to corresponding 
processing stage with different platforms. For example, the 
dimension table processing stage can be assigned to a full-fledged 
database engine as query scheduler, the star-join stage can be 
assigned to acceleration layer with GPUs with moderate dataset 
size and dense computation, and the fact data retrieval stage can be 
assigned to CPU or FPGA platforms with simple computation on 

large dataset. The layered OLAP model simplifies the database 
optimizer engine, the dimension table size, foreign key column size 
and fact data size are fixed or predicted for given OLAP workloads, 
the computation feature for the different datasets can be predicted, 
and the data transfer between each layer is fixed or predicted, the 
optimizer engine can give a simple optimization for hybrid CPU 
and GPU platform. The layered OLAP model also makes database 
flexible for heterogeneous platforms. The dimension table 

processing stage and fact data retrieval stage can be performed with 
database engine, and the star-join stage can be accelerated by CPU 
or high performance and scalable hardware accelerators like GPUs 
or FPGAs.   

In next section, we focus on CPU-GPU hybrid platforms and 
compare GPU acceleration implementation based on 3-layer OLAP 
model and state-of-the-art GPU databases.  

4. GPU Acceleration 
GPU databases are commonly used for data warehousing and 
OLAP scenarios, besides GPU hardware-conscious optimizations 

for relational operation implementations, we can further accelerate 
GPU OLAP performance with a multidimensional perspective.  

4.1 Multidimensional query plan tree 
A typical OLAP query is to join fact table with filtered multiple 
dimension tables together and group the joined tuples for 

aggregation, e.g., Q4.1 in SSB: 

Select  

d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit  

From date, customer, supplier, part, lineorder  

Where lo_custkey = c_custkey  

and lo_suppkey = s_suppkey  

and lo_partkey = p_partkey  

and lo_orderdate = d_datekey  

and c_region = 'AMERICA'  

and s_region = 'AMERICA'  

and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')  

group by d_year, c_nation; 



8 
 

The relational query plan tree is shown in Figure 7(A), εd_year, 

c_nation∑ denotes grouping&aggregation operation. During query 

processing, the upper operator iteratively “pull” tuples from the 
lower operator, the pipelined processing model eliminates the 

materialization overhead between operators. However, this pipeline 
query processing model involves much function call overhead and 
sacrifices the data locality of upper operator. One improvement is 
using vectorized processing model to process vectors instead of 
single tuple. The L1 cache fit vectors are processed as a batch to 
share the function call overhead, and the L1 cache level 
materialization overhead is trivial for the whole query processing. 
The vectorized processing model is adaptive to CPU architecture in 
which each core has its private L1, L2 cache. The other 

improvement is to employ JIT compliant technique to transform the 
“pull” mode to “push” mode. This effort uses Just-In-Time 
compiled low level machine code to improve code efficiency and 
the register level optimization improves the data locality.  

GPU databases commonly adopt operator-at-a-time 
processing model, the materialization overhead is even critical than 
in-memory databases due to the limited GPU memory size. We find 
in the experiments that even if the original dataset size can be held 

in GPU memory, MapD doesn’t prove high performance as GPU 
resident processing.  

Based on the GPU’s limited memory size, we revise the 
relational query plan tree as multidimensional query plan tree 
which is shown in Figure 3(B). First of all, multidimensional query 
plan tree follows an OLAP domain knowledge customized design 
to divide the whole OLAP query processing into 3 computing 
stages over specified dataset.  

Stage 1 is assigned to dimension tables, the OLAP query is 
rewritten as mapping selection and grouping operations to 
dimension vector, the group-by clause is used to generate a 
grouping vector which can be considered as pushing the grouping 
operator in relational query plan tree into bottom node. This change 
eliminates iteratively pulling grouping attributes from the bottom 
nodes and the materialization overhead during column-wise 
processing, the vector grouping in the upper node also transforms 

hashing overhead on the massive grouping attributes as efficient 
vector grouping operation.  

Stage 2 limits the star-join of OLAP within foreign key 
columns of fact table and involved dimension vectors. The OLAP 
schema dominates that star-join is the central and fundamental 
operation of OLAP, [25] discovered that the star-join operation 
shares average the 86% total runtime of SSB queries over about 20% 
total size of all 5 tables, and the following grouping&aggregation 
operation involves large fact columns with only 6.5% share of total 

runtime. The relational query plan tree pipes join and 
grouping&aggregation operations to GPU processor which will 
reduce GPU memory utilization rate for computing-intensive star-
join workload and underutilize GPU’s computing power. 
Furthermore, the join algorithm on GPU is simplified from hash 
join to vector referencing[26], this revision dramatically reduces 
the redundant hashing overhead for the many-to-1 mapping 
between foreign key and referenced primary key. In Figure 7(B), 

ψdenotes mapping selection and grouping operations to dimension 

vectors; Ω denotes pre-generate vector for grouping;  denotes 

vector referencing operation;  denotes vector grouping operation. 

Stage 3 binds the vector grouping operation to large fact 
columns which are accessed in queries. As the 

grouping&aggregation operation is simplified as vector grouping, 
it should be carefully evaluated which platform is better.  

The 3-stage-computing model of multidimensional query plan 
tree groups the multiple relational operators into 3 OLAP 
operations: dimension maping, star-join and vector grouping, the 

GPU OLAP cost model is simplified as assigning the 3 stage to 
proper platform. 
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Figure 7. Relational query plan tree vs. multidimensional 

query plan tree. 

4.2 Star-join acceleration 
For star-join with operator-at-a-time processing model, the critical 
issue is to reduce materialization overhead. In this paper, we reuse 
vector index as the shared materialization for star-join, the shared 

vector index column is used as template vector index for all OLAP 
queries with different value distributions. 

As shown in Figure 8, an example OLAP query invokes fact 
table joining with 3 dimension tables with 3 grouping attribute from 
the 3 dimension tables. In stage 1, the query is rewritten to generate 
3 dimension vector named DimVectorIndexi, the group-by attribute 
are projected and organized as a 3-D cube for aggregation, the 
indexes of the cube is encoded into corresponding dimension vector. 

In stage 2, the foreign key is mapped to dimension vector index, the 
traditional hash join is simplified as vector referencing operation, 
the VectorIndex is used to store join result for each foreign key item, 
the cell is either NULL or incremental multidimensional address of 
current tuple. So that, each pass of star-join shares and 
incrementally updates the VectorIndex.  
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Figure 8. Example for star-join implementation. 

For GPU star-join acceleration, we assign the available GPU 
memory to store foreign key columns and VectorIndex, the small 
size DimVectorIndex vectors are on-the-fly transferred to GPU 
memory. Let GMS denote GPU memory size, FKWi denote foreign 
key column width, VIW denote VectorIndex width, DVWj denote 
DimVectorIndex vector width, DVLj denote DimVectorIndex vector 

length, the rows R of GPU memory store can be calculated as: 

𝑅 =
𝐺𝑀𝑆 − ∑ (𝐷𝑉𝑊𝑗 × 𝐷𝑉𝐿𝑗)𝑚

𝑗

(∑ 𝐹𝐾𝑊𝑖 + 𝑉𝐼𝑊)𝑛
𝑖=1

 

So, for given OLAP dataset, we can accurately know how 
many GPU cards we need. The GPU star-join acceleration design 
only accelerates computing workloads on 20% dataset size which 
dramatically relaxes the constraints for processing large dataset on 
GPUs.  

The GPU programming for star-join is straightforward, the 
foreign key columns are parallel accessed by GPU threads, the 

DimVectorIndex vector is random accessed by parallel threads, and 
the results are written to corresponding VectorIndex cells by each 
thread without synchronization overhead. Current GPU star-join 
implementation uses fixed length as star-join template for queries 
with various selectivities. For low selectivity queries, the 
dynamically allocated VectorIndex may be more efficient due to we 
can only store (OID, VALUE) pairs to reduce scan cost on 
VectorIndex. The optimization adds GPU memory allocating 

overhead and synchronization overhead during dynamically 
assigning VectorIndex cells for parallel threads. Moreover, OLAP 
queries commonly involves a group of queries with selectivities 
from low to high or high to low as rollup or drill-down operations, 
the fixed length VectorIndex implementation is adaptive to 
maintain overall GPU memory utilization. 

4.3 Vector grouping 
OLAP queries commonly produce limited groups for interactive 
analysis, and the hash aggregation is typical implementation. For 
small groups, each thread can maintain private hash table for local 
aggregation, for large groups, threads can use shared hash table for 
global aggregation, which is well-suited for multicore CPU’ 
architecture with L1-L2-L3 cache hierarchy and low 

synchronization overhead. On the contrary, GPUs share small 
shared memory for massive threads inside SM, and the 
synchronization overhead between threads is also high.  

Most important of all, aggregation operation commonly 
involves large fact dataset with low selectivities, the memory 
transfer cost may be higher than GPU aggregation performance 
gains. 

In this paper, we experimentally study the vector grouping 

performance for OLAP workloads of SSB to exploit how MapD, 
Hyper, vector grouping behaves for different workloads, and 
evaluate how to assign grouping workloads between CPU and GPU. 

thread

thread

thread

thread

thread

thread

A. vector grouping B. compressed vector grouping  

Figure 9. Vector grouping. 

With the vector index, the fact columns can be logically 
partitioned into chunks and each chunk is assigned to one thread. 
The threads parallel scan the vector index, accessing the fact 
column cells according to non-NULL cells in vector index, and 
aggregating them in private aggregation cubes. Finally, the private 
aggregation cubes are merged together for global aggregation cube. 

Shown as figure 9, when aggregation cube is larger than 
private cache size of CPU core, threads can concurrently update the 
shared aggregation cube for global aggregation with concurrent 
control mechanism. 

For queries with very low selectivity, the vector index can be 
compressed with non-NULL OID and value pairs, the sequential 
scan on vector index is optimized as efficient positional scan. 

Aggregation cube is customized data structure for OLAP by 
organizing group-by clause as multidimensional cube. For 

relational model, the mechanism can be implemented by pushing 
grouping operation down to dimension table scan node and 
compressing grouping attributes with dictionary compression by 
assigning each grouping attribute one consecutive number as 
dimension index. In star-join stage, the multidimensional cube 
address can be iteratively computed as one dimension vector for 
grouping and aggregation.                                                                                        

4.4 GPU OLAP acceleration model 
The ideal scenario of GPU databases is GPU memory resident 
processing without data transfer cost for the maximal GPU 
computing efficiency. The general solution is to employ a cost 
model to decide whether an operation should be executed on GPU 
or CPU to achieve better performance. From the relational 

perspective, operators have various cost in different queries, it’s 
hard to make a global processing model for different queries. From 
the multidimensional perspective, the OLAP dataset is a simple big 
table(fact table) with meta data(dimension tables) and 
multidimensional relations(foreign key columns in fact table). The 
eventual OLAP query plan is retrieving tuples from fact table and 
pushing them to cube for aggregation, which can be translated as 
performing aggregation with vector grouping operation in 

relational database. The star-join operation can be defined as 
mapping query parameters to vector index, and can be accelerated 
by GPU.  

 

Figure 10. GPU OLAP acceleration. 

Figure 10 illustrates the GPU OLAP acceleration model, in 
which the dataset is organized as combination of relational model 

and multidimensional model. The GPU star-join acceleration 
represents the multidimensional computing, and the processing on 

Dimension Table

Dimension Table

Dimension Table

Fact Table
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dimension tables and fact table are performed by traditional 
relational database engine.  

The GPU OLAP model can accurately define the data 
distribution between CPU and GPU memory, the computing 
workloads for CPU and GPU, the maximal utilization rate of GPU 

memory, and it can also guarantee the GPU memory resident 
dataset performing an in-GPU-memory computing without 
additional materialization overhead as operator-at-a-time 
processing engine. 

5. EXPERIMENTAL EVALUATIONS 
The purpose of the following empirical experiments focuses on 
three issues: (1) How well the GPU databases perform when 
compared with in-memory databases? (2) How well the GPU 
operations perform when compared with in-memory database 
operations? (3) Can GPU acceleration be superior to GPU database 
for OLAP workloads? 

5.1 Experimental setting 
The experiments were performed on a Supermicro Super 
Workstation 7047GR-TPRF with one Intel Xeon E5-2699 
v4@2.2GHz CPU and 256 GB DDR4 RAM. The CPU has 22 cores 
and 44 physical threads. The OS is CentOS 7, and the Linux kernel 
version is 3.10.0-514.16.1.el7.x86_64. The GCC compiler version 
is 4.8.5. The server equips with a NVIDIA K80 GPU with two 

GK210 GPUs. K80 GPU comprises with 4992 CUDA cores and 24 
GB GDDR5 on-board memory. The bandwidth of GPU memory is 
around 480 GB/s. 

Hyper is downloaded from [27], the Actian Vector 5.0 is 
download from the action website (http://esd.actian.com/), and 
MonetDB is downloaded from MonetDB website 
(https://www.monetdb.org/downloads/). Hyper, Vector, MonetDB 
are used as representative in-memory databases. We use MapD[28] 

as representative GPU database from Github, and MapD is 
configured as GPU version, we can use “/GPU” or “/CPU” 
commands to switch to CPU mode or GPU mode. By 
“/memory_summary” command, we can see MapD uses two GPUs 
of K80 with total more than 20 GB GPU memory. PG-Strom is 
used as another representative GPU database downloaded from 
[29], we configured 4 modes as CPU-only, with GPU, CPU-only 
with in-memory mode, with GPU and in-memory mode. The vector 
referencing based join and star-join algorithms are employed from 

[25] and [26], we also develop the vector grouping algorithm in the 
open source code from [8] with the same latch mechanism for 
shared vector updating. 

5.2 OLAP workloads 
In our experiments, we used Star Schema Benchmark (SSB) as 

OLAP workloads. SSB is the denormalization design for TPC-H, 
the star schema is compatible with multidimensional model for 
OLAP analysis. The grouped queries vary from high selectivity to 
low selectivity to simulate drilldown or rollup operations, the 
group-by clauses simulate interactive OLAP queries with group 
amount various from 1 to 800. MapD doesn’t support complex 
queries like subquery in TPC-H, the common query is with standard 
SPJGA operations like SSB. 

   We use SF=100 as experimental dataset, the numbers of rows of 
tables are 2555 (Date table), 200,000 (Supplier table), 1,400,000 
(part), 3,000,000 (customer), 600,038,144 (lineorder), the detailed 
query parameters are shown in Table 1. We calculate the column 
sizes for each query, and we repeatedly execute the query 3-5 times 
in MapD to make columns that are accessed in query stay in GPU 

memory. The actual column sizes of 13 queries with dataset of 
SF=100 are no more than 20GB which can be held within MapD’s 
GPU memory allocated from K80’s 24GB memory. 

5.3 Benchmark performance of In-memory 

and GPU databases 
We first evaluate the Benchmark performance of PG-Strom. As 

PostgreSQL is a disk-resident database engine, we test the original 
Benchmark performance of PostgreSQL, then test for PG-Strom 

Table 1. Query parameters for SSB 
Queries Join tables Selectivity Groups Size(MB) 

Q1.1 LO⋈D 0.019 1 9156 

Q1.2 LO⋈D 0.00065 1 9156 

Q1.3 LO⋈D 0.000075 1 9156 

Q2.1 LO⋈D⋈P⋈S 0.008 280 9254 

Q2.2 LO⋈D⋈P⋈S 0.0016 56 9211 

Q2.3 LO⋈D⋈P⋈S 0.0002 7 9211 

Q3.1 LO⋈D⋈S⋈C 0.034 150 9363 

Q3.2 LO⋈D⋈S⋈C 0.0014 600 9363 

Q3.3 LO⋈D⋈S⋈C 0.000055 24 9266 

Q3.4 LO⋈D⋈S⋈C 0.00000076 4 9266 

Q4.1 LO⋈D⋈S⋈P ⋈C 0.016 35 13892 

Q4.2 LO⋈D⋈S⋈P ⋈C 0.0046 100 13989 

Q4.3 LO⋈D⋈S⋈P ⋈C 0.000091 800 13941 

LO: lineorder, D: date, S: supplier, P: part, C: customer 

 

Figure 11. PG-Strom Query Execution Time for SSB(SF=100). 

 

Figure 12. Query Execution Time for SSB(SF=100). 
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with GPU. We find that PG-Strom can accelerate query processing 
performance, the average query execution time of PostgreSQL is 
2.66 times of PG-Strom. Consequently, we use tmpfs to simulate 
in-memory PostgreSQL and PG-Strom performance by loading 
data in tmpfs. As shown in Figure 11, we find that the performance 
gains of PG-Strom is lost when compared with in-memory 
PostgreSQL mode, the average query execution time of PG-Strom 
is even a little longer than PostgreSQL. The results show that GPUs 

in PG-Strom offload computing workloads from PostgreSQL 
engine so that PG-Strom can process the data access and query 
processing workloads in parallel to reduce query execution time. 
However, when we use tmpfs to eliminate the I/O bottleneck of 
PostgreSQL, the PG-Strom still faces the PCIe bottleneck by 
transferring data from main-memory to GPU’s device memory for 
processing. With sufficient memory, the in-memory PostgreSQL is 
superior to PG-Strom with GPUs. If the memory size is not large 
enough to hold all the data, PG-Strom with GPUs can achieve well 

performance improvements from disk-oriented PostgreSQL. 

When we compared PG-Strom with typical in-memory 
databases and GPU database, we find that the performance of PG-
Strom is dramatically lower than MonetDB, Actian Vector, Hyper 
and MapD(GPU mode) as shown in Figure 12. Although all the 
candidate databases are memory resident, the column-store, 
vectorized processing, JIT compilation and other specified 
optimizations of MonetDB, Actian Vector, Hyper and MapD beat 

the original row-wise PostgreSQL engine.  

Among in-memory databases, Hyper achieves the highest 
performance in SSB experiments for the JIT compilation and 
register level optimizations. We use Hyper to represent state-of-
the-art in-memory databases to detailed analyze the performance 
between Hyper and MapD in the following sections. 

5.4 CPU and GPU mode of MapD  
In SSB testing, Hyper occurs the numeric overflow error for sum() 
function, we alter the aggregate function with count(), the average 
execution time of MapD is about tens milliseconds(3% less for 
CPU mode and 10% less for GPU mode) less than original 
execution time. 

For MapD GPU mode, the first time to run query is very slow 

with memory transfer cost through PCIe channel. We repeatedly 
run the test query 3-5 times to get the shortest time as MapD GPU 
mode execution time. Within the 13 queries, MapD fails to run 
Q2.2 due to “Cast from dictionary-encoded string to none-encoded 
would be slow” error both for CPU and GPU modes. So we neglect 
the Q2.2 execution time.  

In Figure 13, the average execution time of MapD GPU mode 
is 1037 ms, MapD CPU mode is 774 ms, and the average execution 
time of Hyper is 346 ms. Hyper outperforms MapD both for CPU 
mode and GPU mode. Additionally, the average execution time of 
MonetDB and Actian Vector are 1052 ms and 837 ms. MapD 

adopts vectorized processing technique like Actian Vector, and the 
performance is also similar, and MapD outperforms MonetDB with 
operator-at-a-time model. 

K80 GPU has 24 GB device memory, and MapD allocates 
more than 20GB, the size of query involving columns for each 
query is also smaller than 20GB, the repeatedly executed query 
enables MapD keep dataset in GPU memory, but MapD GPU mode 
is still slower than Hyper and MapD CPU mode. 

We analyze the query execution time and column size in 
Figure 14. For Q1.x-Q3.x, the column sizes are similar, but MapD 
GPU mode outperforms Hyper with Q1.x query group and spends 
longer time for Q2.x and Q3.x query groups. The hot data size in 
GPU memory is not the only dominate factor. 

The performance difference lies in the amount of joins. MapD 
GPU mode uses operator-at-a-time model like MonetDB, this 
processing model suffers from materialization overhead especially 

for multiple join operations. Q2.x-Q4.x involves star-join with 4 to 
5 tables, and may produce large intermediate memory consumption 
that exceeds the GPU memory size. 

According to the experimental results, MapD seems to be 
adaptive to queries with less joins, but MapD also seems to be non-
sensitive to selectivity with similar execution time for different 
selectivity queries in Q1.x. 

5.5 Relational operation performance  
For detailed performance analysis, we focus on the major relational 
operations in OLAP workloads. We study the performance of join, 
star-join and grouping&aggregation operations which majorly 
dominate the OLAP performance. 

(1) Join performance 

For MapD and Hyper, we use SQL commands to simulate 

joins between fact table and specified dimension table, a sample 
SQL command is shown as: 

select count(*) from lineorder inner join date on lo_orderdate 
= d_datekey; 

We also use AIR algorithm from [25], NPO and PRO 
algorithms from [8] as candidate join algorithms.  

 

Figure 13. Performance comparison of 

MapD(CPU/GPU) and Hyper with SSB(SF=100). 
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Figure 14. Performance comparison with column size. 
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MapD’s join performance is higher than Hyper for both CPU 
mode and GPU mode. The execution time of lineorder⋈customer is 
somehow strange with unreasonable short time than joins with 
smaller table. The MapD GPU mode takes only 1/3 to 1/2 time of 
Hyper spend. The MapD CPU mode is also superior to Hyper. 

From state-of-the-art researches of in-memory join algorithms, 
we compare the representative join algorithms of AIR, NPO and 
PRO. NPO outperforms PRO because Intel Xeon E5-2699 v4 has 
55 MB L3 cache while the biggest hash table size of customer table 

is smaller than L3 cache size, so that NPO can perform an in-cache 
hash join with higher performance than PRO. AIR uses the efficient 
vector and vector referencing operation to take the places of hash 
table and hash probing, both cache locality and code efficiency are 
improved. For K80 GPU, the join inputs can be horizontally 
partitioned to two GPU kernels for parallel processing, the 
performance is similar to the 44-core CPU. We use a hardware-
oblivious design for AIR GPU algorithm by referencing vector 

from global memory no matter whether the vector size is smaller 
than shared memory size. Actually, the hash tables of date and 
supplier tables can be held in K80’s 128KB shared memory. MapD 
GPU mode proves higher performance than other joins in 
lineorder⋈date and lineorder⋈supplier.  

(2) Star-join performance 

For MapD and Hyper, we use the following SQL commands 
to simulate star-join. 

select count(*) from lineorder inner join linedate on 
lo_orderdate=d_datekey; 

select count(*) from lineorder inner join linedate on 
lo_orderdate=d_datekey inner join supplier on 
lo_suppkey=s_suppkey; 

select count(*) from lineorder inner join linedate on 
lo_orderdate=d_datekey inner join supplier on 
lo_suppkey=s_suppkey inner join part on lo_partkey=p_partkey; 

select count(*) from lineorder inner join linedate on 
lo_orderdate=d_datekey inner join supplier on 
lo_suppkey=s_suppkey inner join part on lo_partkey=p_partkey 
inner join customer on lo_custkey=c_custkey; 

For AIR algorithm, we use an additional vector index column 
as shared filter and result column. The AIR GPU algorithm simply 
uses global memory for vector referencing without further 
optimizations such as loading vector in shared memory, we hope 
the hardware-oblivious algorithm design can simplify database 
implementation with satisfied performance. 

Figure 15 shows the star-join performance with SSB 
dataset(SF=100) for candidate join algorithms. MapD CPU mode 

outperforms Hyper in all 4 cases, and Hyper’s star-join 
performance decreases as amount of joined tables increases while 
MapD CPU mode increase much slower. MapD GPU mode 
outperforms MapD CPU mode and Hyper dramatically, the 

experimental results show that the GPU mode achieves higher 
performance improvements than CPU mode. The AIR GPU star-
join algorithm slightly outperforms MapD GPU mode, which 
indicates two conclusions: first, deeply optimized join algorithm of 

MapD GPU mode achieves significant performance gains; second, 
by using simple hardware-oblivious join algorithm design and 
OLAP domain knowledge customized AIR algorithm, the GPU 
star-join can also achieve good performance. 

(3) Grouping and aggregation performance 

The grouping and aggregation operation is the last operation 
in OLAP query plan tree. Vector grouping in Figure 9 can be 
modeled as ideal implementation for grouping and aggregation 

operation by compressing multiple grouping attributes into single 
vector. 

We simulate vector grouping with one vector index column 
and two measure columns for aggregation. For MapD, we use the 
following SQL template command to simulate vector grouping 
operation. lo_ordertotalprice column is used to produce various 
cardinality groups by mod() function, and we alter the group value 
to simulate different grouping cardinalities. We add “limit 1” clause 

to minimize results printing time. 

select sum(lo_quantity*lo_tax), mod(lo_ordertotalprice, 512)  

from lineorder  

group by mod(lo_ordertotalprice, 512) limit 1; 

For Hyper, we use “%” instead of mod() function to generate 
specified groups. We also use “top 1” clause to minimize results 
printing time. 

select top 1 sum(lo_quantity*lo_tax), lo_ordertotalprice%512 

from lineorder  

group by lo_ordertotalprice%512; 

The grouping&aggregation benchmark(G&AB) of SQL 
operation can be defined as: 

select sum(Agg_expression), mod(seed_column, cardinality)  

from T  

group by mod(seed_column, cardinality) limit 1; 

The seed_column is a large cardinality integer column which 
is used to produce group IDs according to specified cardinality of 
GROUP-BY clause, the Agg_expression clause is manually set to 

simulation specified aggregation expressions. The G&AB can 
evaluate how the SQL engine perform grouping&aggregation 
operation with different grouping cardinalities, and the evaluation 

Table 2. Join performance for SSB. 
Join/ms LO⋈D LO⋈ S LO⋈ P LO⋈C 

MapD CPU mode 92 271 290 296 

MapD GPU mode 48 107 203 87 

Hyper 158 349 452 567 

AIR 79 81 141 145 

AIR GPU 77 122 127 180 

NPO 205 276 292 445 

PRO 843 849 849 856 

 
 

Figure 15. Star-join performance with SSB(SF=100). 
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results can further discover the relationship of cardinality, cache 
size and performance. 

We also develop vector grouping algorithm family to evaluate 
the grouping&aggregation performance. We develop algorithms 
inside the open-source code of [8], using the same programming 
style and latch mechanism to illustrate the benchmark performance. 

The VecGroup() function is designed for vector grouping algorithm 
with private vector in each aggregation thread, the SVecGroup() 
function uses shard vector for all the parallel aggregation threads 
with concurrent control mechanism.  

We vary the groups from 25(32) to 226(67108864), the 
execution time is shown in Table 3. The underlined value in each 
row is the shortest execution time for all the candidate operations. 
We first focus on MapD and Hyper, and we find that MapD CPU 

mode is 2-4 times slower than MapD GPU mode, MapD CPU mode 
is also dramatically slower than Hyper especially for very small and 
very large groups (up to 8-9 times slower than Hyper), MapD GPU 
mode outperforms Hyper for moderate groups(256 to 4194304) and 
is slower than Hyper for very small(smaller than 128) and very 
large(larger than 8388608) groups. 

For vector grouping algorithms, the performance is dominated 
by ratio of private vector size to cache size. VecGroup function 

outperforms SVecGroup function for cache fit vectors, e.g., the 
vector size of 262144 groups is about 1MB which is close to 1/2 L3 
cache slice(L3 cache slice size is 2.5 MB) of each thread(one core 
has two physical threads). When private vector size exceeds thread 
share of L3 cache slice, the SVecGroup function with shared vector 
begins to outperform VecGroup function. Moreover, VecGroup 
algorithm spends more memory for private vectors of each thread 

than single shared vector in SVecGroup function, the memory runs 
out for 67108864 groups. SVecGroup function is extremely slow 
for small groups smaller than 1024 due to heavy concurrent 
updating on shared vector. As vector size grows, the concurrent 
conflict reduces and the execution time keeps reducing to the 
minimal execution time with 2097152 groups. When vector size 

keeps growing, the execution time of SVecGroup function 
increases for large vector size and produces more cache misses. 

Therefore, the vector grouping algorithm family outperforms 
the leading databases both on CPU and GPU platforms. The 
performance improvements achieve 695% and 481% against Hyper 
and MapD. The average grouping and aggregation execution time 
of MapD CPU mode is 9.9 times of vector grouping algorithm. The 
average grouping and aggregation execution time of MapD GPU 

mode is 3.77 times of vector grouping algorithm. The average 
grouping and aggregation execution time of Hyper is 4.29 times of 
vector grouping algorithm. Against MapD, the vector grouping 
operation achieves 2.7-15.55 times speedup over CPU mode and 
1.39-5.81 times speedup over GPU mode. 

As real-time OLAP is commonly applied for interactive 
analysis processing with moderate groups to be understand by users, 
performance of moderate group size is more representative. For 

general scenarios, VecGroup function is the best choice for lower 
than 256 K groups, for even more groups, SVecGroup function can 
also provide good performance. 

For MapD GPU aggregation, we consecutively run the SQL 
statements several times and select the minimal run times as GPU 
resident aggregation time. For benchmark evaluation, the GPU 
mode may transfer measure columns through PCIe channel to GPU 

Table 3. Grouping&aggregation performance (ms) 

Groups 
MapD  

CPU mode 

MapD  

GPU mode 
Hyper 

Vecor Grouping Throughput(GB/s) 

VecGroup SVecGroup VecGroup SVecGroup 

32 1699 625 177 122 32730 55.0 0.2 

64 1678 602 176 121 13307 55.4 0.5 

128 1817 609 359 122 8329 55.0 0.8 

256 1756 609 722 123 5406 54.5 1.2 

512 1806 631 804 122 3433 55.0 2.0 

1024 1790 642 946 123 2500 54.5 2.7 

2048 1850 666 964 123 1739 54.5 3.9 

4096 1870 705 978 123 1297 54.5 5.2 

8192 1981 755 988 130 1011 51.6 6.6 

16384 2208 818 991 142 891 47.2 7.5 

32768 2360 870 1315 180 852 37.3 7.9 

65536 2400 886 1429 199 830 33.7 8.1 

131072 2725 946 1444 256 796 26.2 8.4 

262144 2881 993 1449 680 787 9.9 8.5 

524288 3230 1035 1433 1139 743 5.9 9.0 

1048576 3818 1107 1451 1268 704 5.3 9.5 

2097152 4225 1258 1504 1567 689 4.3 9.7 

4194304 5346 1561 1673 1888 834 3.6 8.0 

8388608 7015 1789 1785 2468 1391 2.7 4.8 

16777216 10530 2604 1888 3456 1743 1.9 3.8 

33554432 16658 3968 1961 5295 1927 1.3 3.5 

67108864 17406 4292 1978 -- 2102  3.2 
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memory for aggregation, the total time includes data transfer time 
and aggregation time. For example, the PCIe transfer time of 3 
columns under SSB with SF=100 needs 450 ms, and MapD GPU 
mode has to spend more time than Hyper in all grouping cardinality 
evaluations. We design a baseline rule for GPU database optimizer 

on whether grouping&aggregation operation should be assigned to 
GPU in this paper. The rule is dominated by PCIe bandwidth and 
grouping&aggregation operation throughput: 

platform = {
𝐺𝑃𝑈   𝑖𝑓 𝐵𝑎𝑛𝑑𝑊𝑖𝑡ℎ𝑃𝐶𝐼𝑒 > 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑃𝑢𝑡𝐺&𝐴

𝐶𝑃𝑈   𝑖𝑓 𝐵𝑎𝑛𝑑𝑊𝑖𝑡ℎ𝑃𝐶𝐼𝑒 < 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑃𝑢𝑡𝐺&𝐴
 

In table 2, we calculate the throughput (GB/s) of 
grouping&aggregation operation VecGroup() and SVecGroup() 

functions, we see that VecGroup() function with cardinalities under 
131072 is higher than PCIe 3.0 transfer bandwidth(16GB/s for 
single direction), and we can draw conclusion that 
grouping&aggregation operation with moderate cardinalities 
should be assigned to CPU instead of GPU. 

5.6 Vector grouping performance 
To comprehensively evaluate the vector grouping performance, we 
design the cache-conscious and selectivity-aware experiments. For 
cache-conscious experiments, we compare the private vector 
grouping and shared vector grouping algorithms to discover how 
cache size influences the vector grouping performance. For 
selectivity-aware experiments, we use fixed length vector and 
compressed vector for grouping with different selectivities. 

(1) Cache-conscious vector grouping evaluations 

We use an INT type vector as aggregator, the vector size is 
used as parameter to set vector sizes which equal to different 
proportions of L1 cache size, L2 cache size, L3 cache slice and LLC 
size.  

We develop the vector grouping algorithm in the open-source 
code from [8], and use the same latch mechanism for shared vector 
aggregation. The CYPER-PER-TUPLE is used for performance 

evaluation, the lower CYPER-PER-TUPLE is the faster the vector 
grouping algorithm runs. 

Figure 16 shows the vector grouping performance with private 
vector and shared vector, the vector size varies from 10% of L1 
cache size(32KB, 819 groups) to 200% L1 cache size(64KB, 16384 
groups). We can see that private vector grouping outperforms shard 
vector grouping dramatically, shared vector grouping suffers from 
concurrent aggregation updating overhead while private vector 

grouping is much efficient with updating on independent private 
vectors. The maximal performance gap between them is 22 times 
large. As the shared vector size increases, the concurrent conflicts 
on each cell is reduced and the performance gradually increases. 

Figure 17 illustrates that the private vector grouping still 
outperforms shared vector grouping within L2 cache size boundary. 
As group member grows, the performance of private vector 
gradually drops while the shared vector increases. However, as 
vector size increases large enough, the private vector grouping 

gradually runs slower than shared vector grouping. When vector 
size exceeds 60% of L3 cache slice(2.5MB, 393216 groups), shared 
vector grouping begins outperforming private vector grouping as 
shown in figure 18. For this threshold, two threads of one core 
shares the whole L3 cache slice, more cache misses are produced 
as vector size grows beyond this threshold. As we increase the 
vector size in figure 19 from 100% L3 cache slice size to 2000% 
L3 cache slice size, we find that the CYCLE-PER-TUPLE of 

shared vector and private vector both keep increasing for big vector 

size produces more cache misses. Figure 20 shows that the 
performance gap between shared vector grouping and private 
vector grouping becomes larger when vector size exceeds the whole 
LLC size(55MB) because more threads and larger vector size of 
private vector grouping produces more cache misses than single 
shared vector with concurrent updating. 

(2) Selectivity-aware vector grouping evaluations 

When query selectivity is low, the vector is sparse with many 

NULL cells. The compressed vector grouping algorithm uses 
compressed vector instead of fixed length vector with (OID, 
VAULE) pairs, the scan overhead on vector is minimized. 

Figure 21 shows the performance of vector grouping and 
compressed vector grouping performance. For compressed vector 
grouping, the CYCLE-PER-TUPLE drops linearly as selectivity 
drops. For high selectivity, compressed vector is bigger than non-
compress vector, and compressed vector grouping is faster than 

non-compress vector grouping when selectivity is lower than 80%. 
The execution time of non-compress vector grouping doesn’t drop 
linear like compressed vector grouping, the run time of moderate 
selectivity drops slower than high or low selectivity because the 
hardware branch prediction mechanism works better in high or low 
selectivity scenarios. 

When selectivity varies from 70% to 30%, the vector grouping 
run time drops from 20% to 60%, when selectivity is 1%, run time 

drops about 250%, when selectivity drops from 0.1% to 0.001%, 
run time drops about 10 times. The selectivity of SSB various from 
3.4% to 0. 000076%, the compressed vector grouping is well-suited 
for SSB. 

5.7 GPU OLAP acceleration 
MapD outperforms Hyper for major OLAP operators such as 

join, star-join and grouping&aggregation, while Hyper outperforms 
MapD for the benchmark evaluation. Considering the query 
involving columns size and the weakness of operator-at-a-time 
processing model, we owe to performance decreasing to 
materialization overhead which causes memory transfer cost 
between main-memory and GPU memory through low bandwidth 
PCIe channel. How to improve MapD’s performance in Benchmark 
testing to what MapD should be is an important issue in this paper. 

Vectorized processing model can optimize materialization 
overhead by materialize intermediate columns inside L1 cache. The 
vector length can be modeled as: 

 

Figure 16. L1 cache size aware vector grouping 
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𝑉𝑒𝑐𝑙𝑒𝑛 =
𝐿1 𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑙𝑢𝑚𝑛𝑠
 

For CPU architecture, each core has private 64KB L1 cache, 
so each thread can perform vectorized processing independently. 
For GPU architecture, each SMX has hundreds of core(e.g. 192 
core inside one SMX in K80) with the single shared memory(e.g., 

128 KB shared memory in K80), the vectorized processing model 
is more difficult to be implemented for GPUs than commonly 
adopted operator-at-a-time processing model. 

To minimize materialization overhead is important for 
operator-at-a-time processing model in GPUs. The AIR star-join 
and vector grouping are designed to minimize materialization 
overhead by pre-compressing grouping attributes into small 
encoding values and use the multidimensional cube model to 
integrate multiple grouping codes into single shared vector index 

column. So that, an additional vector index column is used as 
shared intermediate materialization column for all the OLAP 
queries. Moreover, the vector grouping is also efficient for using 
vector offset address instead of long grouping attributes for 
aggregation without hash probing overhead. 

Considering the OLAP workloads e.g., SSB, we can further 
evaluate the efficiency of GPU database or GPU acceleration 
mechanisms. Consequently, we further evaluate GPU acceleration 

mechanism with SSB workload features. 

Table 4 illustrates how to accelerate OLAP performance with 
OLAP domain knowledge customized implementations. Q1.x 
majorly involves selection operation in big fact table, we mainly 
focus on acceleration star-join in this paper and neglect Q1.x group. 
We use fixed length vector index as shared intermediate 
materialization column for all the queries, the vector index is 
defined as short type with 2 bytes, the transfer time through PCIe 

3.0 channel(16GB/s) is about 73 ms. For low selectivities queries, 
the vector index can be further compressed. As compressing vector 
index needs more optimizations for dynamically allocating GPU 
memory, we will study it in our future work and in this paper simply 
assumed that the compressed vector index transfer time is at most 
73 ms. With compressed vector grouping described in Figure 4, the 
CVecGroup operation is very efficient for the low selectivities.  

The GPU OLAP acceleration need an additional module to 

rewritten OLAP query to dimension vectors. We have studied how 
to generate dimension vectors by customized function with average 
time 30 ms for SSB(SF=100)[25], and how to generate dimension 
vectors by SQL statements with average time 68 ms for 

 

Figure 17. L2 cache size aware vector grouping performance. 

 

Figure 18. L3 cache slice size aware vector grouping 

performance. 

 

Figure 19. L3 cache slice size aware vector grouping 

performance. 

 

Figure 20. LLC size aware vector grouping performance. 
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Figure 21. Selectivity aware vector grouping 

performance. 
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SSB(SF=100) in Hyper. Considering the latest NVLink 
technique[3], the vector index transfer time with NVLink’s 
300GB/s bandwidth can decrease average 73 ms to 4 ms. So we 
summarize the possible GPU OLAP acceleration techniques in 
Table 5 to evaluate how to achieve the best performance gains with 

GPUs. 

In Table 5, we focus on the queries with star-join operations. 
We find that MapD CPU mode has close performance to Actian 
Vector with similar vectorized processing optimization, MapD 
GPU mode also has close performance to MonetDB with similar 
operator-at-a-time processing model, and Hyper proves to be 2 or 
3 times faster than other databases. A straightforward issue is how 
to further accelerate OLAP performance with GPUs against the 
Hyper’s high performance. 

In “OLAP acceleration model” part of Table 5, we layout the 
candidate star-join, vector transfer, vector grouping, Dim vector 
generating execution time to evaluate current and ideal OLAP 
acceleration model performance. Current OLAP acceleration 
model uses PCIe 3.0 transfer time and SQL Dim vector generating 
time, the GPU acceleration execution time is equal to Hyper and 
CPU acceleration execution is faster than Hyper. The ideal OLAP 

acceleration model simulates using NVLink transfer time and 
customized function for Dim vector generating, both OLAP 
acceleration by CPU and GPU are faster than Hyper, and GPU 
OLAP acceleration is even faster for the star-join performance 
improvements by GPUs. The experimental results show that a 

general-purpose relational engine accelerated by GPUs like MapD 
may not bring significant performance gains even when the 
working data can be completely held in GPU memory. However, 
an OLAP domain knowledge customized GPU OLAP acceleration 
can efficiently improve OLAP performance by simply accelerating 
star-join with GPUs and using efficient vector grouping with CPUs. 
Therefore, the proposed OLAP acceleration approach can achieve 
2.23 times faster than MapD CPU mode and 3.58 times faster than 

MapD GPU mode with SSB workload (SF=100). 

Nowadays GPU servers are commonly configured with 8-16 
GPUs for scale-out computing, so that the GPU OLAP acceleration 
model performance can be further improved by partitioning star-
join workloads to more GPUs for parallel computing. As GPU 
OLAP acceleration spend around 83% execution time in GPU star-
join stage, the scalability of GPUs can dramatically speedup OLAP 
performance with near linear speedup ratio of GPU star-join. 

Finally, we summarize the main empirical findings as follows: 

(1) State-of-the-art GPU databases (e.g. MapD) suffer from 
data movement overhead and low GPU memory 

utilization.  
(2) The grouping and aggregation operation differs 

remarkably with different implementations. The 
proposed vector grouping algorithm achieves 2.7-15.55 
times speedup over MapD CPU version and 1.39-5.81 
times speedup over MapD GPU version with various 
grouping cardinalities. 

(3) The overall OLAP performance of proposed approaches 

may be 2.23 times faster than MapD CPU version and 
3.58 times faster than MapD GPU version for the Star 
Schema Benchmark (SSB) with scale factor 100. 

6. RELATED WORK 
GPU databases emerge to become main-stream high performance 

databases in recent years. In the latest TOP 500 list[30], there are 5 
systems are configured with GPUs in top 7 systems. The industrial 
also pushed forward GPU databases like MapD[1], Kinetica[4], 

Table 4. OLAP acceleration for SSB. 

Query/

ms 

AIR 

star-

join for 

CPU 

AIR 

star-

join for 

GPU 

Vector 

index 

transfer 

CVec 

Group 

OLAP 

accelera

tion for 

CPU 

OLAP 

accelera

tion for 

GPU 

Q2.1 284 226 73 14 298 313 

Q2.2 268 198 73 5 273 276 

Q2.3 234 217 73 2 236 292 

Q3.1 385 267 73 72 457 412 

Q3.2 289 251 73 5 294 329 

Q3.3 199 193 73 2 201 268 

Q3.4 174 198 73 2 176 274 

Q4.1 422 314 73 46 468 433 

Q4.2 376 307 73 9 385 389 

Q4.3 360 276 73 2 362 351 

Average 

time 
299 245 73 16 315 334 

 

Table 5. GPU OLAP acceleration for SSB. 

Query/

ms 

MapD 

CPU 

MapD 

GPU 
Hyper 

Monet

DB 
Vector 

OLAP Acceleration model 

CPU 

star-

join 

GPU 

star-

join 

vector 

index 

trans. 

by PCIe 

vector 

index 

trans. 

by 

NVLink 

CVec

Group 

GenDi

m by 

SQL 

GenDi

m by 

function 

OLAP 

accelera

tion by 

CPU 

OLAP 

accelera

tion by 

GPU 

Ideal 

OLAP 

accelera

tion by 

CPU 

Ideal 

OLAP 

accelera

tion by 

GPU 

Q2.1 732 1210 583 1200 775 284 226 76 4 14 54 24 352 370 323 269 

Q2.2   331 1100 547 268 198 76 4 5 59 24 332 338 297 231 

Q2.3 728 1136 134 649 342 234 217 76 4 2 26 8 262 321 245 232 

Q3.1 842 1098 1187 1300 1615 385 267 76 4 72 85 63 542 500 520 406 

Q3.2 822 1021 281 1000 996 289 251 76 4 5 91 28 385 423 322 288 

Q3.3 810 883 207 574 540 199 193 76 4 2 73 20 274 344 221 219 

Q3.4 889 925 206 535 495 174 198 76 4 2 73 22 249 350 197 226 

Q4.1 962 1577 432 1900 1795 422 314 76 4 46 81 44 549 517 513 408 

Q4.2 950 1614 375 1500 1462 376 307 76 4 9 65 51 450 457 436 371 

Q4.3 1836 2704 308 1000 981 360 276 76 4 2 69 15 431 424 377 297 

Aver 

time 
952 1352 404 1076 955 299 245 76 4 16 68 30 383 404 345 295 
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SQREAM[5], Zilliz[6] and BlazingDB[31]. Due to the significant 
difference between CPU and GPU, the sophisticated optimization 
techniques of in-memory databases cannot be directly implemented 
by GPU databases, and also cannot guarantee to be more efficient 
in GPU than in CPU.  

The GPU database’s performance is dominated by multiple 
factors, e.g., making hot data GPU memory resident, evaluating 
GPU friendly operators from CPU friendly operators, using cost 
model to distribute operations between GPU and CPU[23]. The 
common GPU database query processing model is operator-at-a-
time model[22] which is proved to be less efficient than vectorized 
processing model[24] and JIT compilation model[20] for in-
memory databases. Moreover, operator-at-a-time model suffers 

from large materialization overhead which can be even worse in 
GPU databases for the limited GPU memory size. MapD is the 
representative GPU database with vectorized processing, JIT 
compilation and optimization of keeping hot data in GPU memory 
as much as possible, but we still find that MapD are not proved to 
be superior to in-memory database Hyper with OLAP benchmark 
(SSB) even when hot data size is smaller than GPU memory size. 
So that, GPU databases may not be the only answer to acceleration 

OLAP performance. 

The general-purpose relational processing model is not the 
best-suited solution for OLAP workloads. The pipelined processing 
model mixes computing-intensive and data-intensive workloads 
together which causes the most costly join overhead only occupy 
10%–15% share of the total runtime[11] which decrease the 
efficiency of GPU acceleration. [25] proposed a tailored array-store 
model to simplify query processing model in which traditional joins 

are replaced by array index referencing (AIR) from foreign key to 
dimension vector. The group-by clause is also modeled as 
multidimensional array aggregation instead of hash aggregation. 
By these optimizations, the star-join is limited in moderate foreign 
key columns with more than 80% execution time. 

[26] generalized the customized OLAP model as fusing 
MOLAP and ROLAP model together. The OLAP is clearly defined 
with 3 stages: dimension mapping, multidimensional filtering and 
aggregation. The vector index is proposed to implement MOLAP 

model inside ROLAP model, the vector index maintenance 
mechanism is also discussed for updating.  

This paper studied GPU database MapD’s performance 
characteristics for OLAP workloads, discovering the advantages 
and disadvantages aspects of MapD to locate critical bottleneck of 
MapD. Combined with MapD’s performance features and 
customized OLAP model, we also discussed the GPU OLAP 
acceleration model as OLAP domain knowledge customized model 

for GPU OLAP engine. 

7. CONCLUSIONS 
 

In this paper we have studied how to optimize GPU database 
framework by analyzing and optimizing the dominated OLAP 
operations and developing the platform-adaptive operations. 

In particular, we first designed the 3-stage-computing model 
as tailored OLAP framework. The tailored OLAP framework 
separates the computing-intensive workload and data-intensive 
workload from the tightly coupled query processing workload, and 

each stage can be assigned to specified processing model, which 
makes OLAP scalable for the emerging hybrid processing platform. 
Moreover, the 3-stage-computing model extends the relational 
engine to be an open computing framework, and each stage can be 

accelerated by specified technique using vector index as loose 
coupled intermediator data structure. The vector oriented algorithm 
designs simplify the star-join and grouping algorithms by using 
simple vector instead of hash table. Our experimental results show 
that the tailored vector grouping optimization minimizes the costly 

transfer overhead to achieve better performance. In our future work, 
we plan to develop the asynchronous hybrid CPU-GPU platform 
query processing model for concurrent queries to maximize 
utilizations for both CPUs and GPUs. 
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