
1

One Size Does Not Fit All:

Accelerating OLAP Workloads with GPUs

Yansong Zhang1,2 Yu Zhang3 Jiaheng Lu4 Shan Wang1,2

1DEKE Lab at Renmin University of China 2School of Information in Renmin University of China
3 National Satellite Meteorological Center of China 4 Department of Computer Science, University of Helsinki, Finland

zhangys_ruc@hotmail.com, yuzhang@cma.gov.cn, jiahenglu@gmail.com, swang@ruc.edu.cn

ABSTRACT

GPU has been considered as one of the next-generation platforms
for real-time query processing databases. In this paper we
empirically demonstrate that the representative GPU databases
(e.g., MapD[1]) may be much slower than another representative
in-memory databases (e.g., Hyper[2]) with typical OLAP

workloads (with Star Schema Benchmark) even if the actual dataset
size of each query can completely fit in GPU memory. Therefore,
we argue that GPU database designs should not be ONE-SIZE-
FITS-ALL; a general-purpose GPU database engine may not be
well-suited for OLAP workloads without tailored GPU memory
assignment and GPU computing locality. In order to customize
GPU OLAP, we need to re-organize OLAP operators and re-
optimize OLAP model.

 In particular, we first propose the vector grouping operator to

achieve the maximal performance for AGGREGATION processing
on top of query plan tree, and then we use vector referencing
oriented star-join operator to serve for the upper vector grouping
operation. The GROUPING operation is pushed down to the
bottom dimension table scan nodes as group mapping operation to
enable the optimal star-join and vector grouping operation in upper
level of query processing tree. The inverted TOP-DOWN query
plan tree optimization guarantees the optimal operation in final step

and pushes the respective optimizations to the lower layers to make
global optimization gains. Our experimental results show that the
vector grouping operation achieves 2.7-15.55 times speedup over
MapD CPU version and 1.39-5.81 times speedup over MapD GPU
version with various grouping cardinalities. Further, the overall
OLAP performance of proposed approaches is 2.23 times faster
than MapD CPU version and 3.58 times faster than MapD GPU
version for the Star Schema Benchmark (SSB) with scale factor 100.

1. INTRODUCTION
Nowadays in-memory databases are extensively adopted for high
performance query processing as RAM sizes grow and prices are
dropping dramatically. While the requirements of significant

performance improvements are dominated by the low increasing of
integrated core numbers, GPU databases are considered as another
trend of high performance query processing engines with large
amount of CUDA cores, high bandwidth device memory and
scalability, e.g., the HGX-2[3] server can support 16 NVIDIA
Tesla V100 GPU with total 0.5TB device memory and 300GB/s
NVLink switch. The rapid developments of GPU push the
developments of GPU databases. MapD, Kinetica[4], SQREAM[5],
Zilliz[6], PG-Strom[7] are the representative GPU databases.

With the rapid developments of GPU databases, the following
questions naturally arise.

● First, can GPU databases beat in-memory databases with

necessary optimization techniques and big enough memory size?

In-memory databases, e.g., MonetDB, Actian Vector, Hyper are
carefully optimized for memory hierarchy, cache and register. The
column-at-a-time, vector-at-a-time and JIT compliant
optimizations have been widely adopted as high performance
database characteristics. However GPU databases have no
revolutionary processing model or optimization techniques.
Moreover, the limited GPU memory size and PCIe bandwidth also

add additional overhead over in-memory databases.

● Second, is the relational query processing model well-suited
for GPU databases? The Volcano iterative processing model is
designed for pipeline processing on CPU platform assuming that
the processing thread has enough private memory to cache
intermediator materializations. CPU is designed with less cores but
large L1-L2-L3 cache hierarchy to achieve high cache locality,
while GPU is designed with massive cores but very small shared

cache (shared memory). In other words, the GPU hardware can
hardly match the traditional query processing model. Actually,
GPU prefers to the small input/output and dense computing
workloads instead of traditional query processing model of
distributing sparse computing among a long query plan with large
data stream.

 ● Third, is the hybrid CPU-GPU database architecture or

layered database architecture adaptive to GPU database design?

The core idea of GPU databases is to offload computationally
intensive operations to the GPU cores by keeping the remainder of
the operations running on the CPU cores [4]. State-of-the-art GPU
databases commonly assign workloads among the equal CPU and
GPU according to cost model as a fine-grained operation
distribution optimization which may produce additional
materialization overhead between CPU and GPU. As GPU
databases are commonly used for data warehousing workloads [5],

relational processing model is not the unique choice for GPU
analytical processing. A different roadmap is to develop a layered
database framework for CPU and GPU platforms with hybrid
processing models. Ideally, we may divide the tight coupled
relational processing model into different layers, organizing and
offloading computing intensive workloads to GPU computing layer,
remaining management intensive and data intensive workloads in
different types of database layers. By layered framework, a coarse-

grained strategy can be adopted for distributing workloads
according to different characteristics of CPU and GPU platforms.
Moreover, the GPU computing layer can be independently
designed and implemented as GPU acceleration engine with loose

Author's version

2

coupled relation to database engine, so that GPU acceleration
engine can be considered as plug-in acceleration engine for
databases and it can also employ different processing model or
optimization techniques for GPU computing.

 Therefore, although the GPU databases come to be industrial

implementations, we still need a comprehensive evaluation for
GPU databases on how well GPU databases perform for analytical
workloads and exploiting how to design GPU acceleration engine
to develop a layered databases.

 In this paper, we focus on evaluating OLAP performance with
the leading GPU database MapD and in-memory database Hyper,
from which we can comprehensively evaluate the dominated
relational operation performance and the whole query processing

performance for MapD and Hyper. State-of-the-art researches
focused on join algorithm optimizations [8-11] from multicore
CPU platform to the emerging MIC Phi[12,13], GPU[14-16] and
FPGA[17,18] platforms. The main-stream opinion is exploiting
specified hardware features to improve join performance. At the
same time, the industrial GPU databases show significant
performance improvements against traditional databases with CPU,
and MapD also contributes the open-source system to provide

researchers a GPU database testbed. MapD supports both CPU
mode as in-memory database and GPU mode as GPU database. The
vectorizing query execution and JIT (Just-In-Time) compilation
framework built on LLVM[19] combines the advantages of two
leading in-memory databases Actian Vector[20] and Hyper, the
GPU mode prefers to maximize GPU memory locality for hot data
with a GPU memory resident style query processing. These
optimization strategies enable MapD to be a high-performance in-

memory database as well as GPU database. It is an intriguing topic
to discover how MapD performs compared with the leading in-
memory database Hyper. With a typical OLAP workload and GPU
memory suitable dataset size, the expected result is that MapD wins,
but the real situation is that MapD does lose the game.

In relational operation performance experiments, we find that
both MapD CPU mode and GPU mode outperform Hyper with join
and star-join operations, and MapD GPU mode also outperforms
Hyper in grouping & aggregation operation. In another word, for

two major operations in OLAP workloads, MapD beats Hyper,
while Hyper outperforms MapD in the whole query processing
performance. Paper [11] discovered that the join time may only be
a 10%–15% share of the total runtime of a TPC-H query, the
volcano query processing model and enhanced vectorized query
processing model mix the join overhead among the whole query
processing, so that improvements of join performance doesn’t
improve the whole query processing performance dramatically. We

can partially conclude that the GPU database is well-suited for
OLAP operation rather than OLAP query processing.

Due to the small GPU device memory size and low PCIe
channel bandwidth, improving the GPU memory data locality is the
key optimization during query processing. Paper [21] announced
that on average only about 5% of execution time is spent on the
GPU, we find that MapD only outperforms Hyper with simple
queries. However, MapD is much lower than Hyper for complex

queries with similar dataset size (under the GPU memory size). We
develop a layered GPU database framework to combine
multidimensional computing and relational processing by
offloading the computing intensive star-join operation of OLAP to
GPU acceleration engine. The layered GPU database framework
with GPU acceleration implementation maximizes the data locality
for both CPU and GPU. We also find that a simple GPU side star-

join acceleration with CPU side aggregation proves to be more
efficient than MapD.

The main contributions of this paper are summarized as follows:

1) We argue that GPU database performance is dominated
by not only GPU memory size but also GPU memory

utilization efficiency. The commonly adopted operator-
at-a-time model in GPU databases suffers from high
intermediate materialization overhead. Improving GPU
memory utilization efficiency is as important as to
improve performance.

2) We present the GPU OLAP acceleration model to
customize GPU OLAP workload processing. The
layered GPU database framework follows the divide-

and-conquer rule to divide the whole query processing
into three workloads with different processing features.
By efficient vector grouping and star-join operations, the
computing-intensive workload can be GPU memory
resident and the data-intensive workload can be
optimally assigned to CPU to minimize PCIe transfer
overhead.

3) We design the top-down optimization instead of bottom-

up query tree optimization. The normalized vector
grouping operation first defines the optimal upper
operation, then the lower operations are customized to
support the upper vector grouping operation. By pushing
early materialized grouping operation to the bottom, we
can use vector index as shared intermediate
materialization to improve GPU memory utilization
efficiency in GPU side and improve grouping and

aggregation operation in CPU side.

4) We design the star-join experiments with SSB workload
to evaluate the join performance of leading in-memory
and GPU database. Compared with MapD, our
experimental results show that the vector grouping
operation achieves 2.7-15.55 times speedup over MapD
CPU version and 1.39-5.81 times speedup over MapD
GPU version with various grouping cardinalities. In
addition, for the Star Schema Benchmark (SSB) with

scale factor 100, the whole OLAP performance is 2.23
times faster than MapD CPU version and 3.58 times
faster than MapD GPU version.

Organization In Section 2, we briefly summarize in-memory
databases and GPU databases. In Section 3, we discuss the layered
database framework for hybrid CPU-GPU platforms. In Section 4,
we describe the design of GPU star-join acceleration and vector
grouping operation, which is used as GPU acceleration design

opposite to GPU database design. We present the experiments in
section 5. Section 6 reviews the related work and Section 7
concludes this paper.

2. BACKGROUND
In this section, we briefly describe and analyze in-memory

databases and GPU databases.

2.1 In-memory Databases
MonetDB[22] is the pioneer column-store in-memory analytical
database. The operator(column)-at-a-time processing model is
much efficient than traditional tuple-at-a-time processing model,

and the operator-at-a-time processing model is widely adopted by
GPU databases[23]. MonetDB/X100[24] adopts the vector-at-a-
time processing model to reduce materialization overhead against

3

column-at-a-time execution model. The vectorized processing
model is now widely adopted by column-store in-memory
databases, e.g., Actian Vector and MapD CPU mode. Hyper
compiles queries into machine code using the optimizing LLVM
compiler to achieve high query processing efficiency, and the

register level optimizations enables Hyper to be high performance
in data-centric workloads.

For in-memory databases, in-memory join algorithms are the
dominated relational operation. Many previous works have studied
the designs and implementations of different join algorithms facing
state-of-the-art CPU architectures. As shown in Figure 1(A),
multicore CPUs are commonly designed with L1-L2-L3 cache
hierarchy, and improving cache locality is the core optimization for

in-memory join algorithms. In the previous work [8], we have
verified that NPO (no-partitioning hash join) is faster than PRO
(Radix partitioning hash join) when the shared hash table is smaller
than LLC(last level cache) size, while bigger table should employ
PRO to partition both tables into cache fit partitions to perform in
cache hash joins. Each core of CPU has its private L1 and L2 cache,
and L3 cache is shared for all cores and threads. The hardware level
auto cache replacement policy simplifies the multiple-threading

programming for in-memory algorithm designs.

Global Memory

L2 Cache

SM SM SM SM SMSM SM SM

Shared Memory
/ L1 Cache

Register File

core

core

core

core

...

core

core

core

core

...

SM SM SM SM SMSM SM SM

Main Memory

L3 Cache

A. CPU B. GPU

core

L1
L2

core

L1
L2

core

L1
L2

core

L1
L2

Figure 1. Architectures of CPU and GPU.

2.2 GPU Databases
As shown in Figure 1(B), GPU has different architecture from CPU.
The on-board global memory is high bandwidth memory (HBM),

the bandwidth is much higher than DRAM. GPU comprises with
streaming multiprocessor(SM), and each SM comprises with many
cuda cores. L1 cache/shared memory is shared for all cores inside
SM. L2 cache is shared for all SMs. The L1 and L2 cache sizes are
both much smaller than CPU’s.

Programming on GPU uses a hierarchy of parallel threads,
which are grouped into a wrap. Threads inside warp can efficiently
synchronize with each other through shared memory. Programmers

should manage to have each thread of a warp following the same
control flow to improve GPU code efficiency. The global memory
size of GPU is much smaller than DRAM size, e.g., the latest
NVIDIA V100 GPU’s memory size is 32 GB[3]. Memory transfer
cost between DRAM and GPU through PCIe channel is the most
critical bottleneck of GPU programming.

In a nutshell, GPU databases can be considered as extended
in-memory databases, where the storage is DRAM and GPU’s
device memory, using both CPUs and GPUs as hybrid processors.

The GPU end models are designed and optimized based on GPU
architecture and cuda programming. The CPU end is used as host
and schedules for GPU workloads. GPU databases need
fundamental algorithm designs for GPU platform to make the
maximal performance gains. The major in-memory relational
operation algorithms should be re-designed for GPU platforms.

Moreover, many mature cache-centric optimizations of in-memory
databases are not adaptive to GPUs.

The general conclusion [23] of GPU researches is that GPUs
prefer computing-intensive workloads with heavy computation on
small dataset such as joins, and GPUs are not well-suited for data-

intensive workloads with light computation on large dataset such
as selections. The core idea is to hold computing-intensive data in
GPU memory as much as possible. The limited GPU memory size
also adds additional algorithm evaluation perspectives of memory
efficiency, e.g., CPU platform prefers PRO join algorithms for
higher performance at the cost of double memory consumption,
while the similar join algorithm in GPU platform will decrease
GPU memory utilization rate to support 50% less dataset.

 MapD is the representative GPU database that can execute
queries on either CPU or GPU platforms. It is designed with
operator-at-a-time processing model with columnar storage. MapD
tries to keep hot data in GPU memory as much as possible to
improve GPU computing locality, and the typical configuration
with multiple GPU cards (16 at most) can support 0.5 TB GPU
memory for high performance GPU memory resident query
processing. However, MapD applies a streaming mechanism for

processing assuming that input data are not always fit in GPU’
memory, the optimizer splits queries into chunks and assigns them
to CPU or GPU according to the cost model.

As a summary, to achieve better query processing
performance than in-memory databases, GPU databases should
develop higher performance relational operations and minimize
memory transfer cost.

3. Layered database framework
The hardware accelerators such as GPU, Phi, FPGA etc. come to
be the first-class instruments for high performance computing
architectures. The heterogeneous hardware devices are naturally
divided into multiple layers, so that an ideal database architecture
should also be divided into multiple layers to match hardware
layers. In this section, we discuss how to design a layered database

with OLAP domain knowledge.

3.1 Methodologies
Most GPU database systems focus on data warehouse workloads,
we limit our research respective in OLAP database
implementations.

For relational OLAP engine, the query processing is executed
through query plan tree nodes as equal relational operations. From
the multidimensional OLAP perspective, the tables and columns
inside the queries are not equal for data locality and computing
density. When we map ROLAP model to MOLAP model, the
dimension tables are defined as dimensions and metadata for OLAP
dataset, the foreign key columns are used as maps between
dimensions and fact data to identify which fact tuple attends the

following grouping & aggregation operation. As shown in Figure
2, the number of dimension tuples commonly increases slowly as
data volume increases. The workloads on dimensions are
management-intensive which includes updating dimensions and
transforming SQL statements to multidimensional operations. The
moderate workloads on dimensions are defined as warm workloads.
Star-join is the performance dominated operation in OLAP, which
is defined as Map operation in Figure 2 between dimensions and

fact data. Star-join is in charge of mapping OLAP queries to fact
data retrievals, which are commonly sparse computing on big data
volume. Therefore, we define star-join workload as hot workload
and define fact data retrieval workload as cool workload.

4

[25] discovered that in typical OLAP dataset the size of
dimensions amounts to 1% the size of foreign key columns is about
19%, and the fact data size is more than 80% while the computing
on foreign key occupies more than 80% of total execution time.
Hence the OLAP workloads can be divided into 3 layers according

to computing density. Moreover, the 3-layer workloads can match
the typical database system architectures.

 For hybrid processor systems, the dimension
management workloads can be assigned to CPU, the
map computing can be assigned to CPU, GPU or FPGA
to accelerate for dense star-join computing, the fact data
retrieval workloads can also assigned to CPU, GPU or
FPGA with optimal storage and computation efficiency.

 As GPUs are widely deployed as high performance
cloud resources, we can also extend the 3-layer OLAP
model in cloud computing platform. To achieve the
optimal Total Cost of Ownership (TCO), GPU databases
need not hold all the data in limited GPU memory, and
the heterogeneous cloud resources can cooperate
together. The dimension management workloads can be
deployed in database cloud, and the map computing can

be accelerated by GPU cloud and the fact data retrieval
workloads can be deployed either on database cloud or
data cloud for distributed and parallel computing.

 For database machine systems such as Oracle Exadata
or IBM Netezza, the 3-layer OLAP model is also
adaptive to the asymmetrical hardware architectures.
The central database nodes are in charge of dimension
management, the accelerator nodes do the performance

dominated map computing and the scalable storage
nodes are used for fact data retrieval workloads.

CPU

CPU/GPU/

FPGA

CPU/GPU/

FPGA

DB

Cloud

GPU

Cloud

Data

Cloud

Database

Nodes

Accelerator

Nodes

Data Nodes

Workloads

WARM
Management-intensive

HOT

Computing-intensive

COOL

Data-intensive

Computing layers

Dimensions

Maps

Fact data

Figure 2. Example for layered OLAP database.

As a summary, the 3-layer OLAP model, which motivates the

workloads distribution strategy from OLAP model perspective,
shows that the computing density and data volume features are key
considerations to assign layered workloads on heterogeneous
computing platforms.

3.2 Star-join model
In 3-layer OLAP model, the hot workload is the mapping operation
which is represented as star-join. However, traditional star-join is
not well-suited for GPU acceleration for commonly adopted
operation-at-a-time model which consumes too much intermediator
materialization overhead for limited GPU memory. In the
following section, we discuss two star-join models to illustrate how
to perform a memory efficient star-join for GPU.

The invisible-join [32] model is a representative operation-at-

a-time model for OLAP with late-materialization strategy, the
OLAP processing can be divided into 3 stages. The invisible-join
model first creates hash tables for dimension tables with keys to
server for the following star-join operation. The star-join generates

a bitmap to identify how to perform the fact data retrieval with
computed positions. As the bitmap has no information of GROUP-
BY attributes from dimension tables, the additional joins are
executed to materialize join results for the following aggregation.
For typical operation-at-a-time model, the materialization cost is

expensive especially for limited GPU memory size.

As shown in figure 3, AIR algorithm [25] presented a similar
3 stage processing model. The major differences laid out as follows:
1) in dimension computing stage, the dimension tables produce
dimension vector instead of traditional hash tables; 2) in star-join
stage, the AIR (array index referencing) algorithm performs the
efficient star-join operation instead of hash based pipelining
multiple table joins; 3) in fact data retrieval stage, the join result

vector directly performs positional lookup on fact columns and
aggregation cube based aggregation.

custkey region nation

11 AsiaAsia ChinaChina

...

......

22 EuropeEurope FranceFrance

33 AsiaAsia IndiaIndia

suppkey region nation

11 AsiaAsia RussiaRussia

...

......

22 EuropeEurope SpainSpain

dateid year ...

0101999701019997 19971997

0102999701029997 19971997

0103999701039997 19971997

[1]

[2]

[3]

[1]

[2]

[3]

[1]

[2]

Hash table

With keys

1 and 3

Hash table

With key

1

Hash table with

keys 01011997,

01021997, and

01031997

custVec

11

00

22

GrpCode

ChinaChina

IndiaIndia

[1]

[2]

suppVec

11

GrpCode

RussiaRussia

00

[1]

dateVec

11

11

11

GrpCode

19971997[1]

[1]

[2]

[3]

[1]

[2]

[3]

[1]

[2]

Apply region=’Aisa’ Group by c.nation

Apply region=’Aisa’ Group by s.nation

Apply year in [1992,1997] Group by d.year

Dimension tables processing stage: Invisible-join AIR

A. dimension computing

orderkey

11

22

33

44

55

66

77

custkey

33

33

22

11

22

11

33

suppkey

11

22

11

11

22

22

22

orderdate

0101999701019997

0101999701019997

0102999701029997

0102999701029997

0102999701029997

0103999701039997

0103999701039997

revenue

4325643256

3333333333

1212112121

2323323233

4545645456

4325143251

3423534235

11

11

00

11

00

11

11

11

11

00

11

00

11

11

11

11

00

11

00

11

11

Hash table

With keys

1 and 3

Hash table

With key 1

Hash table with

keys 01011997,

01021997, and

01031997

probe probe probe

Matching fact

table bitmap for

cust. Dim. join

Bitwise

AND

11

00

00

11

00

00

00

Fact table

tuples that

satisfy all join

predicates

=

custkey

33

33

22

11

22

11

33

suppkey

11

22

11

11

22

22

22

orderdate

11

11

22

22

22

33

33

revenue

4325643256

3333333333

1212112121

2323323233

4545645456

4325143251

3423534235

custVec

11

00

22

dateVec

11

11

11

[1]

[2]

[3]

[1]

[2]

[3]

22

22

00

11

00

11

22

AIR

suppVec

11

00
[1]

[2]

AIR

22

00

00

11

00

00

00

AIR

2

0

0

1

0

0

0

Invisible-join AIR

B. star-join

Bitmap

value

extraction

custkey

33

33

22

11

22

11

33

suppkey

11

22

11

11

22

22

22

orderdate

0101999701019997

0101999701019997

0102999701029997

0102999701029997

0102999701029997

0103999701039997

0103999701039997

11

00

00

11

00

00

00

Bitmap

value

extraction

Bitmap

value

extraction

nation

ChinaChina

FranceFrance

IndiaIndia

33

11
=

Positional

lookup

Agg[2][1][1]

IndiaIndia

ChinaChina
=

11

11
=

Positional

lookuppositions

RussiaRussia

RussiaRussia
=

0101199701011997

0102199701021997
= join

values

19971997

19971997
=

nation

RussiaRussia

SpainSpain

dateid year

0101999701019997 19971997

0102999701029997 19971997

0103999701039997 19971997

revenue

4325643256

3333333333

1212112121

2323323233

4545645456

4325143251

3423534235

2

0

0

1

0

0

0

2323323233 4325643256

GrpCode

ChinaChina

IndiaIndia

[1]

[2]

GrpCode

RussiaRussia[1]

GrpCode

19971997[1]

ChinaChina RussiaRussia 19971997 2323323233

IndiaIndia RussiaRussia 19971997 4325643256

Decoding

Query results

Invisible-join AIR

C. fact data retrieval

5

Figure 3. Example for two OLAP implementations.

AIR algorithm is designed with OLAP domain knowledge to
fuse MOLAP model and ROLAP model together, how to maintain
MOLAP features during updates and how to use the Fusion OLAP
model is discussed in [26].

Without Fusion OLAP model constraints, the traditional SQL
engine can also perform a similar layered processing model with

trivial tricks. For a general purpose relational engine, the OLAP
processing can be implemented with 3 alternatives with vector
index grouping.

Figure 4 shows the hash based vector index grouping method.
The traditional hash joins between fact table and dimension tables
are performed, at the end of star-join stage, the GROUP-BY
attributes are used to produce vector index instead of hash
aggregation. The Group ID generator is employed to assign
consecutive IDs for each group member with latch structure to

guarantee assigning unique incremental ID for each new GROUP-

BY hash tuple. A hash table is used to generate vector index, the
GROUP-BY attributes in each join result is probed in hash table, if
the GROUP-BY attributes are not matched in the hash table, the
new hash tuple is created with a Group ID assigned from Group ID
generator, at the same time the Group ID is written to the

corresponding vector index cell and the GROUP-BY attributes are
recorded in group vector cell mapping by Group ID; if the GROUP-
BY attributes are matched in the hash table, just write the matched
Group ID in the corresponding vector index cell. Finally, we get a
vector index and a group vector as join results. The vector index
can be further compressed with [FID, GID] tuples to eliminate null
cells in vector index when selectivity is low. Now, we can perform
a vector index based aggregation on fact table. We can perform a

positional lookup on measure columns with address from non-
NULL vector index cell or FID from compressed vector index, the
measure column values are directly mapped to vector aggregator
cell by vector index cell value or GID for aggregation. By merging
group vector in star-join stage and vector aggregator in fact data
retrieval stage, we get the final OLAP results.

...

2 0 946

3 2 176

1 3 626

1 2 829

0 2 590

2 1 413

0 0 158

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Lineorder

L_CK L_SK L_REVENUE

2 0

3 2

1 3

3 2

0 2

2 1

0 2

L_CK L_SK

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

0

1

2

3

2 Brazil

1 Canada

Canada

Brazil

1

2 S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

0

1

2

3

Japan

China

Korea

0

1

3

0 Japan

3 Korea

1 China

0

L_SK C_nation

Brazil

...

C_nation

Brazil

S_nation

Japan

...

2Brail, China

1Canada,Korea

0Brazil, Japan

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0]

[0]

2 latch

0

1

2

VecInx

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

2

5

FID

0

1

2

GID

946

176

626

829

590

413

158

L_REVENUE

946

626

413

[0]

[1]

[2]

Canada,Korea

Brazil, China

Brazil, Japan[0]

[1]

[2]

626Canada, Korea

413Brazil, China

946Brazil, Japan[0]

[1]

[2]

Group ID

generator

Group

vector

Vector index Compressed Vector index

Foreign key columns

Measure columns

Vector aggregator

Grouping&aggregation results

Figure 4. Hash based vector index grouping.

Hash based vector index grouping uses hash table to produce

vector index, the low cardinality GROUP-BY attributes have to be
repeatedly computed for hash keys.

Figure 5 shows a cube based vector index grouping method.
The filtered and projected attributes in dimension table processing
stage are compressed with dictionary compression, the dictionary
vector index are used as Group ID for current dimension table. For
multiple GROUP-BY attributes in single dimension table, each
distinct GROUP-BY attributes pair is compressed as single Group
ID. So that, the join results are Group IDs instead original long

GROUP-BY attributes. Furthermore, the dictionary vectors of each
dimension table construct a multiple dimensional array with each
Group ID mapping to one sub-dimension array index. During star-

join stage, the Group IDs are directly mapping to cell of group cube,

the cube cell address is transformed as 1-dimension array index and
the array index is written to the corresponding vector index cell.
The 1-dimension array is used as group vector for aggregation with
vector index or compressed vector index oriented positional lookup
and aggregation on measure columns. When we get the final group
vector, each non-null cell index is transformed into
multidimensional address, and each dimension address is mapped
to corresponding dimension dictionary vector to access the original
GROUP-BY attributes, the combination produces the final OLAP

results.

The cube based vector index grouping method is efficient
because the multidimensional mapping takes the place of CPU

6

cycle consuming hash probing. General OLAP queries use small
cardinality groups for interactive analytical processing, the group
cube is commonly small and dense for cell utilization. If OLAP

query produces a big cube while the cube is sparse in use, we can
further optimize the group cube by mapping the non-null cells to a
dense vector.

...

2 0 946

3 2 176

1 3 626

1 2 829

0 2 590

2 1 413

0 0 158

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Lineorder

L_CK L_SK L_REVENUE

2 0

3 2

1 3

3 2

0 2

2 1

0 2

L_CK L_SK

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

0

1

2

3

2 1

1 0

Canada

Brazil

1

2 S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

0

1

2

3

Japan

China

Korea

0

1

3

0 0

3 2

1 1

0

L_SK C_nation

1

...

C_nation

1

S_nation

0

...

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0]

[0]

3

2

4

VecInx

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

2

5

FID

3

2

4

GID

946

176

626

829

590

413

158

L_REVENUE

626

[0]

[1]

[2]

Canada

Brazil

[0]

[1]

Japan

China

Korea

[0]

[1]

[2]

[0]

[1]

[0] [1] [2]

413

946[3]

[4]

[5]

626Korea

413China

946Japan

Canada

Brazil

Brazil

Foreign key columns

Grouping&aggregation results

Vector index Compressed Vector index Measure columns

Group

vector

Group cube

Figure 5. Cube based vector index grouping.

Figure 6 illustrates a vector based vector index grouping
method. As the group cube is big and sparse, we employ a group

vector to map final GROUP-BY attributes member. We also use
Group ID generator to assign the unique ID as GID, so that we can
get a dense vector instead of the sparse cube. As illustration, the
group cube is mapped to a 1-dimension group vector, if the
corresponding cell is null, getting an ID from the Group ID
generator and writing the ID in the corresponding position of vector
index, if the corresponding cell is already assigned an ID, just
writing the ID into corresponding vector index cell. When we get
the final vector index, we also get the maximal ID from Group ID

generator, and we create a vector aggregator with the length equal
to the maximal Group ID as aggregator for measure column

computing. During the vector index or compressed vector index
oriented scan on measure columns, the corresponding measure

column attributes are mapped to vector aggregator cells for
aggregating. Finally, the OLAP results are obtained by dual
mapping with group vector. The non-null cells in group vector are
mapped to dimension dictionary vectors with vector address to get
the original GROUP-BY attributes, then the non-null values are
mapped to vector aggregator cell to get the aggregation results, the
combination of these two mapping results produces the final OLAP
results.

The vector based vector index grouping method generates the

minimal vector aggregator size during aggregation computing.

7

...

2 0 946

3 2 176

1 3 626

1 2 829

0 2 590

2 1 413

0 0 158

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Lineorder

L_CK L_SK L_REVENUE

2 0

3 2

1 3

3 2

0 2

2 1

0 2

L_CK L_SK

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

0

1

2

3

2 1

1 0

Canada

Brazil

1

2 S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

0

1

2

3

Japan

China

Korea

0

1

3

0 0

3 2

1 1

0

L_SK C_nation

1

...

C_nation

1

S_nation

0

...

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0]

[0]

0

1

2

VecInx

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

2

5

FID

0

1

2

GID

946

176

626

829

590

413

158

L_REVENUE

1

[0]

[1]

[2]

Canada

Brazil

[0]

[1]

Japan

China

Korea

[0]

[1]

[2]

[0]

[1]

[0] [1] [2]

2

0[3]

[4]

[5]

626Korea

413China

946Japan

Canada

Brazil

Brazil

2 latch

946

626

413

[0]

[1]

[2]

Foreign key columns

Group

vector

Group ID

generator

Vector index Compressed Vector index Measure columns

Vector aggregator

Grouping&aggregation results

Group cube

Figure 6. Vector based vector index grouping.

With the three vector index grouping methods, the traditional
pipeline based query processing model can also be optimized as 3
stage processing on dimension processing, star-join and
aggregation. The vector index is used as an intermediator between
star-join and aggregation stages to divide the pipeline processing
into independent processing stages. In another word, traditional
SQL engines can also support 3-layer OLAP model like AIR by
adding additional modules for dictionary compression, vector index,
group vector, etc.

The three processing stages can be matched with 3-layer
OLAP model, the different stage can be assigned to corresponding
processing stage with different platforms. For example, the
dimension table processing stage can be assigned to a full-fledged
database engine as query scheduler, the star-join stage can be
assigned to acceleration layer with GPUs with moderate dataset
size and dense computation, and the fact data retrieval stage can be
assigned to CPU or FPGA platforms with simple computation on

large dataset. The layered OLAP model simplifies the database
optimizer engine, the dimension table size, foreign key column size
and fact data size are fixed or predicted for given OLAP workloads,
the computation feature for the different datasets can be predicted,
and the data transfer between each layer is fixed or predicted, the
optimizer engine can give a simple optimization for hybrid CPU
and GPU platform. The layered OLAP model also makes database
flexible for heterogeneous platforms. The dimension table

processing stage and fact data retrieval stage can be performed with
database engine, and the star-join stage can be accelerated by CPU
or high performance and scalable hardware accelerators like GPUs
or FPGAs.

In next section, we focus on CPU-GPU hybrid platforms and
compare GPU acceleration implementation based on 3-layer OLAP
model and state-of-the-art GPU databases.

4. GPU Acceleration
GPU databases are commonly used for data warehousing and
OLAP scenarios, besides GPU hardware-conscious optimizations

for relational operation implementations, we can further accelerate
GPU OLAP performance with a multidimensional perspective.

4.1 Multidimensional query plan tree
A typical OLAP query is to join fact table with filtered multiple
dimension tables together and group the joined tuples for

aggregation, e.g., Q4.1 in SSB:

Select

d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit

From date, customer, supplier, part, lineorder

Where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = 'AMERICA'

and s_region = 'AMERICA'

and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')

group by d_year, c_nation;

8

The relational query plan tree is shown in Figure 7(A), εd_year,

c_nation∑ denotes grouping&aggregation operation. During query

processing, the upper operator iteratively “pull” tuples from the
lower operator, the pipelined processing model eliminates the

materialization overhead between operators. However, this pipeline
query processing model involves much function call overhead and
sacrifices the data locality of upper operator. One improvement is
using vectorized processing model to process vectors instead of
single tuple. The L1 cache fit vectors are processed as a batch to
share the function call overhead, and the L1 cache level
materialization overhead is trivial for the whole query processing.
The vectorized processing model is adaptive to CPU architecture in
which each core has its private L1, L2 cache. The other

improvement is to employ JIT compliant technique to transform the
“pull” mode to “push” mode. This effort uses Just-In-Time
compiled low level machine code to improve code efficiency and
the register level optimization improves the data locality.

GPU databases commonly adopt operator-at-a-time
processing model, the materialization overhead is even critical than
in-memory databases due to the limited GPU memory size. We find
in the experiments that even if the original dataset size can be held

in GPU memory, MapD doesn’t prove high performance as GPU
resident processing.

Based on the GPU’s limited memory size, we revise the
relational query plan tree as multidimensional query plan tree
which is shown in Figure 3(B). First of all, multidimensional query
plan tree follows an OLAP domain knowledge customized design
to divide the whole OLAP query processing into 3 computing
stages over specified dataset.

Stage 1 is assigned to dimension tables, the OLAP query is
rewritten as mapping selection and grouping operations to
dimension vector, the group-by clause is used to generate a
grouping vector which can be considered as pushing the grouping
operator in relational query plan tree into bottom node. This change
eliminates iteratively pulling grouping attributes from the bottom
nodes and the materialization overhead during column-wise
processing, the vector grouping in the upper node also transforms

hashing overhead on the massive grouping attributes as efficient
vector grouping operation.

Stage 2 limits the star-join of OLAP within foreign key
columns of fact table and involved dimension vectors. The OLAP
schema dominates that star-join is the central and fundamental
operation of OLAP, [25] discovered that the star-join operation
shares average the 86% total runtime of SSB queries over about 20%
total size of all 5 tables, and the following grouping&aggregation
operation involves large fact columns with only 6.5% share of total

runtime. The relational query plan tree pipes join and
grouping&aggregation operations to GPU processor which will
reduce GPU memory utilization rate for computing-intensive star-
join workload and underutilize GPU’s computing power.
Furthermore, the join algorithm on GPU is simplified from hash
join to vector referencing[26], this revision dramatically reduces
the redundant hashing overhead for the many-to-1 mapping
between foreign key and referenced primary key. In Figure 7(B),

ψdenotes mapping selection and grouping operations to dimension

vectors; Ω denotes pre-generate vector for grouping; denotes

vector referencing operation; denotes vector grouping operation.

Stage 3 binds the vector grouping operation to large fact
columns which are accessed in queries. As the

grouping&aggregation operation is simplified as vector grouping,
it should be carefully evaluated which platform is better.

The 3-stage-computing model of multidimensional query plan
tree groups the multiple relational operators into 3 OLAP
operations: dimension maping, star-join and vector grouping, the

GPU OLAP cost model is simplified as assigning the 3 stage to
proper platform.

part

σp_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2'

lineorder

supplier

σs_region = 'AMERICA'

customer

σc_region = 'AMERICA'

date

πd_year

πc_nation

εd_year, c_nation Σ

part

σp_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2'

supplier

σs_region = 'AMERICA'

date

πd_year

ψp ψs

customer

σc_region = 'AMERICA'

πc_nation

ψc

ψd

π

lineorder

πlo_partkey, lo_suppkey,

lo_custkey, lo_orderdate

ψp

ψs

ψc

ψd

lineorder

πlo_revenue, lo_supplycost

A. relational query plan tree B. multidimensional query plan tree

Ω

Figure 7. Relational query plan tree vs. multidimensional

query plan tree.

4.2 Star-join acceleration
For star-join with operator-at-a-time processing model, the critical
issue is to reduce materialization overhead. In this paper, we reuse
vector index as the shared materialization for star-join, the shared

vector index column is used as template vector index for all OLAP
queries with different value distributions.

As shown in Figure 8, an example OLAP query invokes fact
table joining with 3 dimension tables with 3 grouping attribute from
the 3 dimension tables. In stage 1, the query is rewritten to generate
3 dimension vector named DimVectorIndexi, the group-by attribute
are projected and organized as a 3-D cube for aggregation, the
indexes of the cube is encoded into corresponding dimension vector.

In stage 2, the foreign key is mapped to dimension vector index, the
traditional hash join is simplified as vector referencing operation,
the VectorIndex is used to store join result for each foreign key item,
the cell is either NULL or incremental multidimensional address of
current tuple. So that, each pass of star-join shares and
incrementally updates the VectorIndex.

2

1

3

2

4

1

4

2

3

1

0

1

[0]

[1]

[2]

[3]

0

6

0

6

0

2

1

4

6

4

3

4

2

5

4

2

0

[0]

[1]

[2]

[3]

1 [4]

[5]

4

0

8

ASIA

EUROPE

AFRICA

AMERICA

ASIA

Vector

Index
FK1

Dim

Vector

Index1

FK2

Dim

Vector

Index2

Vector

Index

2

5

4

5

2

4

1

5

5

3

1 [0]

[1]

[2]

[3]

0 [4]

April

July

5

8

Vector

Index

[0]

[1]

[2]

[0]

[1]

[0]

[1]

FK3

Dim

Vector

Index3

9

Figure 8. Example for star-join implementation.

For GPU star-join acceleration, we assign the available GPU
memory to store foreign key columns and VectorIndex, the small
size DimVectorIndex vectors are on-the-fly transferred to GPU
memory. Let GMS denote GPU memory size, FKWi denote foreign
key column width, VIW denote VectorIndex width, DVWj denote
DimVectorIndex vector width, DVLj denote DimVectorIndex vector

length, the rows R of GPU memory store can be calculated as:

𝑅 =
𝐺𝑀𝑆 − ∑ (𝐷𝑉𝑊𝑗 × 𝐷𝑉𝐿𝑗)𝑚

𝑗

(∑ 𝐹𝐾𝑊𝑖 + 𝑉𝐼𝑊)𝑛
𝑖=1

So, for given OLAP dataset, we can accurately know how
many GPU cards we need. The GPU star-join acceleration design
only accelerates computing workloads on 20% dataset size which
dramatically relaxes the constraints for processing large dataset on
GPUs.

The GPU programming for star-join is straightforward, the
foreign key columns are parallel accessed by GPU threads, the

DimVectorIndex vector is random accessed by parallel threads, and
the results are written to corresponding VectorIndex cells by each
thread without synchronization overhead. Current GPU star-join
implementation uses fixed length as star-join template for queries
with various selectivities. For low selectivity queries, the
dynamically allocated VectorIndex may be more efficient due to we
can only store (OID, VALUE) pairs to reduce scan cost on
VectorIndex. The optimization adds GPU memory allocating

overhead and synchronization overhead during dynamically
assigning VectorIndex cells for parallel threads. Moreover, OLAP
queries commonly involves a group of queries with selectivities
from low to high or high to low as rollup or drill-down operations,
the fixed length VectorIndex implementation is adaptive to
maintain overall GPU memory utilization.

4.3 Vector grouping
OLAP queries commonly produce limited groups for interactive
analysis, and the hash aggregation is typical implementation. For
small groups, each thread can maintain private hash table for local
aggregation, for large groups, threads can use shared hash table for
global aggregation, which is well-suited for multicore CPU’
architecture with L1-L2-L3 cache hierarchy and low

synchronization overhead. On the contrary, GPUs share small
shared memory for massive threads inside SM, and the
synchronization overhead between threads is also high.

Most important of all, aggregation operation commonly
involves large fact dataset with low selectivities, the memory
transfer cost may be higher than GPU aggregation performance
gains.

In this paper, we experimentally study the vector grouping

performance for OLAP workloads of SSB to exploit how MapD,
Hyper, vector grouping behaves for different workloads, and
evaluate how to assign grouping workloads between CPU and GPU.

thread

thread

thread

thread

thread

thread

A. vector grouping B. compressed vector grouping

Figure 9. Vector grouping.

With the vector index, the fact columns can be logically
partitioned into chunks and each chunk is assigned to one thread.
The threads parallel scan the vector index, accessing the fact
column cells according to non-NULL cells in vector index, and
aggregating them in private aggregation cubes. Finally, the private
aggregation cubes are merged together for global aggregation cube.

Shown as figure 9, when aggregation cube is larger than
private cache size of CPU core, threads can concurrently update the
shared aggregation cube for global aggregation with concurrent
control mechanism.

For queries with very low selectivity, the vector index can be
compressed with non-NULL OID and value pairs, the sequential
scan on vector index is optimized as efficient positional scan.

Aggregation cube is customized data structure for OLAP by
organizing group-by clause as multidimensional cube. For

relational model, the mechanism can be implemented by pushing
grouping operation down to dimension table scan node and
compressing grouping attributes with dictionary compression by
assigning each grouping attribute one consecutive number as
dimension index. In star-join stage, the multidimensional cube
address can be iteratively computed as one dimension vector for
grouping and aggregation.

4.4 GPU OLAP acceleration model
The ideal scenario of GPU databases is GPU memory resident
processing without data transfer cost for the maximal GPU
computing efficiency. The general solution is to employ a cost
model to decide whether an operation should be executed on GPU
or CPU to achieve better performance. From the relational

perspective, operators have various cost in different queries, it’s
hard to make a global processing model for different queries. From
the multidimensional perspective, the OLAP dataset is a simple big
table(fact table) with meta data(dimension tables) and
multidimensional relations(foreign key columns in fact table). The
eventual OLAP query plan is retrieving tuples from fact table and
pushing them to cube for aggregation, which can be translated as
performing aggregation with vector grouping operation in

relational database. The star-join operation can be defined as
mapping query parameters to vector index, and can be accelerated
by GPU.

Figure 10. GPU OLAP acceleration.

Figure 10 illustrates the GPU OLAP acceleration model, in
which the dataset is organized as combination of relational model

and multidimensional model. The GPU star-join acceleration
represents the multidimensional computing, and the processing on

Dimension Table

Dimension Table

Dimension Table

Fact Table

10

dimension tables and fact table are performed by traditional
relational database engine.

The GPU OLAP model can accurately define the data
distribution between CPU and GPU memory, the computing
workloads for CPU and GPU, the maximal utilization rate of GPU

memory, and it can also guarantee the GPU memory resident
dataset performing an in-GPU-memory computing without
additional materialization overhead as operator-at-a-time
processing engine.

5. EXPERIMENTAL EVALUATIONS
The purpose of the following empirical experiments focuses on
three issues: (1) How well the GPU databases perform when
compared with in-memory databases? (2) How well the GPU
operations perform when compared with in-memory database
operations? (3) Can GPU acceleration be superior to GPU database
for OLAP workloads?

5.1 Experimental setting
The experiments were performed on a Supermicro Super
Workstation 7047GR-TPRF with one Intel Xeon E5-2699
v4@2.2GHz CPU and 256 GB DDR4 RAM. The CPU has 22 cores
and 44 physical threads. The OS is CentOS 7, and the Linux kernel
version is 3.10.0-514.16.1.el7.x86_64. The GCC compiler version
is 4.8.5. The server equips with a NVIDIA K80 GPU with two

GK210 GPUs. K80 GPU comprises with 4992 CUDA cores and 24
GB GDDR5 on-board memory. The bandwidth of GPU memory is
around 480 GB/s.

Hyper is downloaded from [27], the Actian Vector 5.0 is
download from the action website (http://esd.actian.com/), and
MonetDB is downloaded from MonetDB website
(https://www.monetdb.org/downloads/). Hyper, Vector, MonetDB
are used as representative in-memory databases. We use MapD[28]

as representative GPU database from Github, and MapD is
configured as GPU version, we can use “/GPU” or “/CPU”
commands to switch to CPU mode or GPU mode. By
“/memory_summary” command, we can see MapD uses two GPUs
of K80 with total more than 20 GB GPU memory. PG-Strom is
used as another representative GPU database downloaded from
[29], we configured 4 modes as CPU-only, with GPU, CPU-only
with in-memory mode, with GPU and in-memory mode. The vector
referencing based join and star-join algorithms are employed from

[25] and [26], we also develop the vector grouping algorithm in the
open source code from [8] with the same latch mechanism for
shared vector updating.

5.2 OLAP workloads
In our experiments, we used Star Schema Benchmark (SSB) as

OLAP workloads. SSB is the denormalization design for TPC-H,
the star schema is compatible with multidimensional model for
OLAP analysis. The grouped queries vary from high selectivity to
low selectivity to simulate drilldown or rollup operations, the
group-by clauses simulate interactive OLAP queries with group
amount various from 1 to 800. MapD doesn’t support complex
queries like subquery in TPC-H, the common query is with standard
SPJGA operations like SSB.

 We use SF=100 as experimental dataset, the numbers of rows of
tables are 2555 (Date table), 200,000 (Supplier table), 1,400,000
(part), 3,000,000 (customer), 600,038,144 (lineorder), the detailed
query parameters are shown in Table 1. We calculate the column
sizes for each query, and we repeatedly execute the query 3-5 times
in MapD to make columns that are accessed in query stay in GPU

memory. The actual column sizes of 13 queries with dataset of
SF=100 are no more than 20GB which can be held within MapD’s
GPU memory allocated from K80’s 24GB memory.

5.3 Benchmark performance of In-memory

and GPU databases
We first evaluate the Benchmark performance of PG-Strom. As

PostgreSQL is a disk-resident database engine, we test the original
Benchmark performance of PostgreSQL, then test for PG-Strom

Table 1. Query parameters for SSB
Queries Join tables Selectivity Groups Size(MB)

Q1.1 LO⋈D 0.019 1 9156

Q1.2 LO⋈D 0.00065 1 9156

Q1.3 LO⋈D 0.000075 1 9156

Q2.1 LO⋈D⋈P⋈S 0.008 280 9254

Q2.2 LO⋈D⋈P⋈S 0.0016 56 9211

Q2.3 LO⋈D⋈P⋈S 0.0002 7 9211

Q3.1 LO⋈D⋈S⋈C 0.034 150 9363

Q3.2 LO⋈D⋈S⋈C 0.0014 600 9363

Q3.3 LO⋈D⋈S⋈C 0.000055 24 9266

Q3.4 LO⋈D⋈S⋈C 0.00000076 4 9266

Q4.1 LO⋈D⋈S⋈P ⋈C 0.016 35 13892

Q4.2 LO⋈D⋈S⋈P ⋈C 0.0046 100 13989

Q4.3 LO⋈D⋈S⋈P ⋈C 0.000091 800 13941

LO: lineorder, D: date, S: supplier, P: part, C: customer

Figure 11. PG-Strom Query Execution Time for SSB(SF=100).

Figure 12. Query Execution Time for SSB(SF=100).

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

T
im

e(
m

s)

CPU GPU GPU+tmpfs CPU+tmpfs

0

5000

10000

15000

20000

25000

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

T
im

e(
m

s)

MonetDB Vector Hyper MapD PG-Strom

11

with GPU. We find that PG-Strom can accelerate query processing
performance, the average query execution time of PostgreSQL is
2.66 times of PG-Strom. Consequently, we use tmpfs to simulate
in-memory PostgreSQL and PG-Strom performance by loading
data in tmpfs. As shown in Figure 11, we find that the performance
gains of PG-Strom is lost when compared with in-memory
PostgreSQL mode, the average query execution time of PG-Strom
is even a little longer than PostgreSQL. The results show that GPUs

in PG-Strom offload computing workloads from PostgreSQL
engine so that PG-Strom can process the data access and query
processing workloads in parallel to reduce query execution time.
However, when we use tmpfs to eliminate the I/O bottleneck of
PostgreSQL, the PG-Strom still faces the PCIe bottleneck by
transferring data from main-memory to GPU’s device memory for
processing. With sufficient memory, the in-memory PostgreSQL is
superior to PG-Strom with GPUs. If the memory size is not large
enough to hold all the data, PG-Strom with GPUs can achieve well

performance improvements from disk-oriented PostgreSQL.

When we compared PG-Strom with typical in-memory
databases and GPU database, we find that the performance of PG-
Strom is dramatically lower than MonetDB, Actian Vector, Hyper
and MapD(GPU mode) as shown in Figure 12. Although all the
candidate databases are memory resident, the column-store,
vectorized processing, JIT compilation and other specified
optimizations of MonetDB, Actian Vector, Hyper and MapD beat

the original row-wise PostgreSQL engine.

Among in-memory databases, Hyper achieves the highest
performance in SSB experiments for the JIT compilation and
register level optimizations. We use Hyper to represent state-of-
the-art in-memory databases to detailed analyze the performance
between Hyper and MapD in the following sections.

5.4 CPU and GPU mode of MapD
In SSB testing, Hyper occurs the numeric overflow error for sum()
function, we alter the aggregate function with count(), the average
execution time of MapD is about tens milliseconds(3% less for
CPU mode and 10% less for GPU mode) less than original
execution time.

For MapD GPU mode, the first time to run query is very slow

with memory transfer cost through PCIe channel. We repeatedly
run the test query 3-5 times to get the shortest time as MapD GPU
mode execution time. Within the 13 queries, MapD fails to run
Q2.2 due to “Cast from dictionary-encoded string to none-encoded
would be slow” error both for CPU and GPU modes. So we neglect
the Q2.2 execution time.

In Figure 13, the average execution time of MapD GPU mode
is 1037 ms, MapD CPU mode is 774 ms, and the average execution
time of Hyper is 346 ms. Hyper outperforms MapD both for CPU
mode and GPU mode. Additionally, the average execution time of
MonetDB and Actian Vector are 1052 ms and 837 ms. MapD

adopts vectorized processing technique like Actian Vector, and the
performance is also similar, and MapD outperforms MonetDB with
operator-at-a-time model.

K80 GPU has 24 GB device memory, and MapD allocates
more than 20GB, the size of query involving columns for each
query is also smaller than 20GB, the repeatedly executed query
enables MapD keep dataset in GPU memory, but MapD GPU mode
is still slower than Hyper and MapD CPU mode.

We analyze the query execution time and column size in
Figure 14. For Q1.x-Q3.x, the column sizes are similar, but MapD
GPU mode outperforms Hyper with Q1.x query group and spends
longer time for Q2.x and Q3.x query groups. The hot data size in
GPU memory is not the only dominate factor.

The performance difference lies in the amount of joins. MapD
GPU mode uses operator-at-a-time model like MonetDB, this
processing model suffers from materialization overhead especially

for multiple join operations. Q2.x-Q4.x involves star-join with 4 to
5 tables, and may produce large intermediate memory consumption
that exceeds the GPU memory size.

According to the experimental results, MapD seems to be
adaptive to queries with less joins, but MapD also seems to be non-
sensitive to selectivity with similar execution time for different
selectivity queries in Q1.x.

5.5 Relational operation performance
For detailed performance analysis, we focus on the major relational
operations in OLAP workloads. We study the performance of join,
star-join and grouping&aggregation operations which majorly
dominate the OLAP performance.

(1) Join performance

For MapD and Hyper, we use SQL commands to simulate

joins between fact table and specified dimension table, a sample
SQL command is shown as:

select count(*) from lineorder inner join date on lo_orderdate
= d_datekey;

We also use AIR algorithm from [25], NPO and PRO
algorithms from [8] as candidate join algorithms.

Figure 13. Performance comparison of

MapD(CPU/GPU) and Hyper with SSB(SF=100).

0

500

1000

1500

2000

2500

3000

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

T
im

e(
m

s)
MapD_CPU MapD_GPU Hyper

Figure 14. Performance comparison with column size.

0

2000

4000

6000

8000

10000

12000

14000

16000

0

500

1000

1500

2000

2500

3000

C
o
lu

m
n
 s

iz
e(

M
B

)

T
im

e(
m

s)

MapD_GPU Hyper SIZE(MB)

12

MapD’s join performance is higher than Hyper for both CPU
mode and GPU mode. The execution time of lineorder⋈customer is
somehow strange with unreasonable short time than joins with
smaller table. The MapD GPU mode takes only 1/3 to 1/2 time of
Hyper spend. The MapD CPU mode is also superior to Hyper.

From state-of-the-art researches of in-memory join algorithms,
we compare the representative join algorithms of AIR, NPO and
PRO. NPO outperforms PRO because Intel Xeon E5-2699 v4 has
55 MB L3 cache while the biggest hash table size of customer table

is smaller than L3 cache size, so that NPO can perform an in-cache
hash join with higher performance than PRO. AIR uses the efficient
vector and vector referencing operation to take the places of hash
table and hash probing, both cache locality and code efficiency are
improved. For K80 GPU, the join inputs can be horizontally
partitioned to two GPU kernels for parallel processing, the
performance is similar to the 44-core CPU. We use a hardware-
oblivious design for AIR GPU algorithm by referencing vector

from global memory no matter whether the vector size is smaller
than shared memory size. Actually, the hash tables of date and
supplier tables can be held in K80’s 128KB shared memory. MapD
GPU mode proves higher performance than other joins in
lineorder⋈date and lineorder⋈supplier.

(2) Star-join performance

For MapD and Hyper, we use the following SQL commands
to simulate star-join.

select count(*) from lineorder inner join linedate on
lo_orderdate=d_datekey;

select count(*) from lineorder inner join linedate on
lo_orderdate=d_datekey inner join supplier on
lo_suppkey=s_suppkey;

select count(*) from lineorder inner join linedate on
lo_orderdate=d_datekey inner join supplier on
lo_suppkey=s_suppkey inner join part on lo_partkey=p_partkey;

select count(*) from lineorder inner join linedate on
lo_orderdate=d_datekey inner join supplier on
lo_suppkey=s_suppkey inner join part on lo_partkey=p_partkey
inner join customer on lo_custkey=c_custkey;

For AIR algorithm, we use an additional vector index column
as shared filter and result column. The AIR GPU algorithm simply
uses global memory for vector referencing without further
optimizations such as loading vector in shared memory, we hope
the hardware-oblivious algorithm design can simplify database
implementation with satisfied performance.

Figure 15 shows the star-join performance with SSB
dataset(SF=100) for candidate join algorithms. MapD CPU mode

outperforms Hyper in all 4 cases, and Hyper’s star-join
performance decreases as amount of joined tables increases while
MapD CPU mode increase much slower. MapD GPU mode
outperforms MapD CPU mode and Hyper dramatically, the

experimental results show that the GPU mode achieves higher
performance improvements than CPU mode. The AIR GPU star-
join algorithm slightly outperforms MapD GPU mode, which
indicates two conclusions: first, deeply optimized join algorithm of

MapD GPU mode achieves significant performance gains; second,
by using simple hardware-oblivious join algorithm design and
OLAP domain knowledge customized AIR algorithm, the GPU
star-join can also achieve good performance.

(3) Grouping and aggregation performance

The grouping and aggregation operation is the last operation
in OLAP query plan tree. Vector grouping in Figure 9 can be
modeled as ideal implementation for grouping and aggregation

operation by compressing multiple grouping attributes into single
vector.

We simulate vector grouping with one vector index column
and two measure columns for aggregation. For MapD, we use the
following SQL template command to simulate vector grouping
operation. lo_ordertotalprice column is used to produce various
cardinality groups by mod() function, and we alter the group value
to simulate different grouping cardinalities. We add “limit 1” clause

to minimize results printing time.

select sum(lo_quantity*lo_tax), mod(lo_ordertotalprice, 512)

from lineorder

group by mod(lo_ordertotalprice, 512) limit 1;

For Hyper, we use “%” instead of mod() function to generate
specified groups. We also use “top 1” clause to minimize results
printing time.

select top 1 sum(lo_quantity*lo_tax), lo_ordertotalprice%512

from lineorder

group by lo_ordertotalprice%512;

The grouping&aggregation benchmark(G&AB) of SQL
operation can be defined as:

select sum(Agg_expression), mod(seed_column, cardinality)

from T

group by mod(seed_column, cardinality) limit 1;

The seed_column is a large cardinality integer column which
is used to produce group IDs according to specified cardinality of
GROUP-BY clause, the Agg_expression clause is manually set to

simulation specified aggregation expressions. The G&AB can
evaluate how the SQL engine perform grouping&aggregation
operation with different grouping cardinalities, and the evaluation

Table 2. Join performance for SSB.
Join/ms LO⋈D LO⋈ S LO⋈ P LO⋈C

MapD CPU mode 92 271 290 296

MapD GPU mode 48 107 203 87

Hyper 158 349 452 567

AIR 79 81 141 145

AIR GPU 77 122 127 180

NPO 205 276 292 445

PRO 843 849 849 856

Figure 15. Star-join performance with SSB(SF=100).

0

500

1000

1500

2000

2500

LO⋈D LO⋈D⋈S LO⋈D⋈S⋈P LO⋈D⋈S⋈P⋈C

T
im

e(
m

s)

MapD_CPU MapD_GPU Hyper AIR AIR GPU

13

results can further discover the relationship of cardinality, cache
size and performance.

We also develop vector grouping algorithm family to evaluate
the grouping&aggregation performance. We develop algorithms
inside the open-source code of [8], using the same programming
style and latch mechanism to illustrate the benchmark performance.

The VecGroup() function is designed for vector grouping algorithm
with private vector in each aggregation thread, the SVecGroup()
function uses shard vector for all the parallel aggregation threads
with concurrent control mechanism.

We vary the groups from 25(32) to 226(67108864), the
execution time is shown in Table 3. The underlined value in each
row is the shortest execution time for all the candidate operations.
We first focus on MapD and Hyper, and we find that MapD CPU

mode is 2-4 times slower than MapD GPU mode, MapD CPU mode
is also dramatically slower than Hyper especially for very small and
very large groups (up to 8-9 times slower than Hyper), MapD GPU
mode outperforms Hyper for moderate groups(256 to 4194304) and
is slower than Hyper for very small(smaller than 128) and very
large(larger than 8388608) groups.

For vector grouping algorithms, the performance is dominated
by ratio of private vector size to cache size. VecGroup function

outperforms SVecGroup function for cache fit vectors, e.g., the
vector size of 262144 groups is about 1MB which is close to 1/2 L3
cache slice(L3 cache slice size is 2.5 MB) of each thread(one core
has two physical threads). When private vector size exceeds thread
share of L3 cache slice, the SVecGroup function with shared vector
begins to outperform VecGroup function. Moreover, VecGroup
algorithm spends more memory for private vectors of each thread

than single shared vector in SVecGroup function, the memory runs
out for 67108864 groups. SVecGroup function is extremely slow
for small groups smaller than 1024 due to heavy concurrent
updating on shared vector. As vector size grows, the concurrent
conflict reduces and the execution time keeps reducing to the
minimal execution time with 2097152 groups. When vector size

keeps growing, the execution time of SVecGroup function
increases for large vector size and produces more cache misses.

Therefore, the vector grouping algorithm family outperforms
the leading databases both on CPU and GPU platforms. The
performance improvements achieve 695% and 481% against Hyper
and MapD. The average grouping and aggregation execution time
of MapD CPU mode is 9.9 times of vector grouping algorithm. The
average grouping and aggregation execution time of MapD GPU

mode is 3.77 times of vector grouping algorithm. The average
grouping and aggregation execution time of Hyper is 4.29 times of
vector grouping algorithm. Against MapD, the vector grouping
operation achieves 2.7-15.55 times speedup over CPU mode and
1.39-5.81 times speedup over GPU mode.

As real-time OLAP is commonly applied for interactive
analysis processing with moderate groups to be understand by users,
performance of moderate group size is more representative. For

general scenarios, VecGroup function is the best choice for lower
than 256 K groups, for even more groups, SVecGroup function can
also provide good performance.

For MapD GPU aggregation, we consecutively run the SQL
statements several times and select the minimal run times as GPU
resident aggregation time. For benchmark evaluation, the GPU
mode may transfer measure columns through PCIe channel to GPU

Table 3. Grouping&aggregation performance (ms)

Groups
MapD

CPU mode

MapD

GPU mode
Hyper

Vecor Grouping Throughput(GB/s)

VecGroup SVecGroup VecGroup SVecGroup

32 1699 625 177 122 32730 55.0 0.2

64 1678 602 176 121 13307 55.4 0.5

128 1817 609 359 122 8329 55.0 0.8

256 1756 609 722 123 5406 54.5 1.2

512 1806 631 804 122 3433 55.0 2.0

1024 1790 642 946 123 2500 54.5 2.7

2048 1850 666 964 123 1739 54.5 3.9

4096 1870 705 978 123 1297 54.5 5.2

8192 1981 755 988 130 1011 51.6 6.6

16384 2208 818 991 142 891 47.2 7.5

32768 2360 870 1315 180 852 37.3 7.9

65536 2400 886 1429 199 830 33.7 8.1

131072 2725 946 1444 256 796 26.2 8.4

262144 2881 993 1449 680 787 9.9 8.5

524288 3230 1035 1433 1139 743 5.9 9.0

1048576 3818 1107 1451 1268 704 5.3 9.5

2097152 4225 1258 1504 1567 689 4.3 9.7

4194304 5346 1561 1673 1888 834 3.6 8.0

8388608 7015 1789 1785 2468 1391 2.7 4.8

16777216 10530 2604 1888 3456 1743 1.9 3.8

33554432 16658 3968 1961 5295 1927 1.3 3.5

67108864 17406 4292 1978 -- 2102 3.2

14

memory for aggregation, the total time includes data transfer time
and aggregation time. For example, the PCIe transfer time of 3
columns under SSB with SF=100 needs 450 ms, and MapD GPU
mode has to spend more time than Hyper in all grouping cardinality
evaluations. We design a baseline rule for GPU database optimizer

on whether grouping&aggregation operation should be assigned to
GPU in this paper. The rule is dominated by PCIe bandwidth and
grouping&aggregation operation throughput:

platform = {
𝐺𝑃𝑈 𝑖𝑓 𝐵𝑎𝑛𝑑𝑊𝑖𝑡ℎ𝑃𝐶𝐼𝑒 > 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑃𝑢𝑡𝐺&𝐴

𝐶𝑃𝑈 𝑖𝑓 𝐵𝑎𝑛𝑑𝑊𝑖𝑡ℎ𝑃𝐶𝐼𝑒 < 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑃𝑢𝑡𝐺&𝐴

In table 2, we calculate the throughput (GB/s) of
grouping&aggregation operation VecGroup() and SVecGroup()

functions, we see that VecGroup() function with cardinalities under
131072 is higher than PCIe 3.0 transfer bandwidth(16GB/s for
single direction), and we can draw conclusion that
grouping&aggregation operation with moderate cardinalities
should be assigned to CPU instead of GPU.

5.6 Vector grouping performance
To comprehensively evaluate the vector grouping performance, we
design the cache-conscious and selectivity-aware experiments. For
cache-conscious experiments, we compare the private vector
grouping and shared vector grouping algorithms to discover how
cache size influences the vector grouping performance. For
selectivity-aware experiments, we use fixed length vector and
compressed vector for grouping with different selectivities.

(1) Cache-conscious vector grouping evaluations

We use an INT type vector as aggregator, the vector size is
used as parameter to set vector sizes which equal to different
proportions of L1 cache size, L2 cache size, L3 cache slice and LLC
size.

We develop the vector grouping algorithm in the open-source
code from [8], and use the same latch mechanism for shared vector
aggregation. The CYPER-PER-TUPLE is used for performance

evaluation, the lower CYPER-PER-TUPLE is the faster the vector
grouping algorithm runs.

Figure 16 shows the vector grouping performance with private
vector and shared vector, the vector size varies from 10% of L1
cache size(32KB, 819 groups) to 200% L1 cache size(64KB, 16384
groups). We can see that private vector grouping outperforms shard
vector grouping dramatically, shared vector grouping suffers from
concurrent aggregation updating overhead while private vector

grouping is much efficient with updating on independent private
vectors. The maximal performance gap between them is 22 times
large. As the shared vector size increases, the concurrent conflicts
on each cell is reduced and the performance gradually increases.

Figure 17 illustrates that the private vector grouping still
outperforms shared vector grouping within L2 cache size boundary.
As group member grows, the performance of private vector
gradually drops while the shared vector increases. However, as
vector size increases large enough, the private vector grouping

gradually runs slower than shared vector grouping. When vector
size exceeds 60% of L3 cache slice(2.5MB, 393216 groups), shared
vector grouping begins outperforming private vector grouping as
shown in figure 18. For this threshold, two threads of one core
shares the whole L3 cache slice, more cache misses are produced
as vector size grows beyond this threshold. As we increase the
vector size in figure 19 from 100% L3 cache slice size to 2000%
L3 cache slice size, we find that the CYCLE-PER-TUPLE of

shared vector and private vector both keep increasing for big vector

size produces more cache misses. Figure 20 shows that the
performance gap between shared vector grouping and private
vector grouping becomes larger when vector size exceeds the whole
LLC size(55MB) because more threads and larger vector size of
private vector grouping produces more cache misses than single
shared vector with concurrent updating.

(2) Selectivity-aware vector grouping evaluations

When query selectivity is low, the vector is sparse with many

NULL cells. The compressed vector grouping algorithm uses
compressed vector instead of fixed length vector with (OID,
VAULE) pairs, the scan overhead on vector is minimized.

Figure 21 shows the performance of vector grouping and
compressed vector grouping performance. For compressed vector
grouping, the CYCLE-PER-TUPLE drops linearly as selectivity
drops. For high selectivity, compressed vector is bigger than non-
compress vector, and compressed vector grouping is faster than

non-compress vector grouping when selectivity is lower than 80%.
The execution time of non-compress vector grouping doesn’t drop
linear like compressed vector grouping, the run time of moderate
selectivity drops slower than high or low selectivity because the
hardware branch prediction mechanism works better in high or low
selectivity scenarios.

When selectivity varies from 70% to 30%, the vector grouping
run time drops from 20% to 60%, when selectivity is 1%, run time

drops about 250%, when selectivity drops from 0.1% to 0.001%,
run time drops about 10 times. The selectivity of SSB various from
3.4% to 0. 000076%, the compressed vector grouping is well-suited
for SSB.

5.7 GPU OLAP acceleration
MapD outperforms Hyper for major OLAP operators such as

join, star-join and grouping&aggregation, while Hyper outperforms
MapD for the benchmark evaluation. Considering the query
involving columns size and the weakness of operator-at-a-time
processing model, we owe to performance decreasing to
materialization overhead which causes memory transfer cost
between main-memory and GPU memory through low bandwidth
PCIe channel. How to improve MapD’s performance in Benchmark
testing to what MapD should be is an important issue in this paper.

Vectorized processing model can optimize materialization
overhead by materialize intermediate columns inside L1 cache. The
vector length can be modeled as:

Figure 16. L1 cache size aware vector grouping

performance.

0

2

4

6

8

10

12

C
Y

C
L

E
S

-P
E

R
-T

U
P

L
E

proportations of vector size to L1 cache size

L1 cache size aware performance

private vector shared vector

15

𝑉𝑒𝑐𝑙𝑒𝑛 =
𝐿1 𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑙𝑢𝑚𝑛𝑠

For CPU architecture, each core has private 64KB L1 cache,
so each thread can perform vectorized processing independently.
For GPU architecture, each SMX has hundreds of core(e.g. 192
core inside one SMX in K80) with the single shared memory(e.g.,

128 KB shared memory in K80), the vectorized processing model
is more difficult to be implemented for GPUs than commonly
adopted operator-at-a-time processing model.

To minimize materialization overhead is important for
operator-at-a-time processing model in GPUs. The AIR star-join
and vector grouping are designed to minimize materialization
overhead by pre-compressing grouping attributes into small
encoding values and use the multidimensional cube model to
integrate multiple grouping codes into single shared vector index

column. So that, an additional vector index column is used as
shared intermediate materialization column for all the OLAP
queries. Moreover, the vector grouping is also efficient for using
vector offset address instead of long grouping attributes for
aggregation without hash probing overhead.

Considering the OLAP workloads e.g., SSB, we can further
evaluate the efficiency of GPU database or GPU acceleration
mechanisms. Consequently, we further evaluate GPU acceleration

mechanism with SSB workload features.

Table 4 illustrates how to accelerate OLAP performance with
OLAP domain knowledge customized implementations. Q1.x
majorly involves selection operation in big fact table, we mainly
focus on acceleration star-join in this paper and neglect Q1.x group.
We use fixed length vector index as shared intermediate
materialization column for all the queries, the vector index is
defined as short type with 2 bytes, the transfer time through PCIe

3.0 channel(16GB/s) is about 73 ms. For low selectivities queries,
the vector index can be further compressed. As compressing vector
index needs more optimizations for dynamically allocating GPU
memory, we will study it in our future work and in this paper simply
assumed that the compressed vector index transfer time is at most
73 ms. With compressed vector grouping described in Figure 4, the
CVecGroup operation is very efficient for the low selectivities.

The GPU OLAP acceleration need an additional module to

rewritten OLAP query to dimension vectors. We have studied how
to generate dimension vectors by customized function with average
time 30 ms for SSB(SF=100)[25], and how to generate dimension
vectors by SQL statements with average time 68 ms for

Figure 17. L2 cache size aware vector grouping performance.

Figure 18. L3 cache slice size aware vector grouping

performance.

Figure 19. L3 cache slice size aware vector grouping

performance.

Figure 20. LLC size aware vector grouping performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
C

Y
C

L
E

S
-P

E
R

-T
U

P
L

E

proportations of vector size to L2 cache size

L2 cache size aware performance

private vector shared vector

0

1

2

3

4

5

6

C
Y

C
L

E
S

-P
E

R
-T

U
P

L
E

proportations of vector size to L3 cache slice size

L3 cache slice size aware performance

private vector shared vector

0

2

4

6

8

10

C
Y

C
L

E
S

-P
E

R
-T

U
P

L
E

proportations of vector size to L3 cache slice size

L3 cache slice size aware performance

private vector shared vector

0

2

4

6

8

10

12

14

16

100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200%

C
Y

C
L

E
S

-P
E

R
-T

U
P

L
E

proportations of vector size to LLC size

LLC size aware performance

private vector shared vector

Figure 21. Selectivity aware vector grouping

performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
Y

C
L

E
S

-P
E

R
-T

U
P

L
E

selectivities

selectivity aware performance

non-compress compress

16

SSB(SF=100) in Hyper. Considering the latest NVLink
technique[3], the vector index transfer time with NVLink’s
300GB/s bandwidth can decrease average 73 ms to 4 ms. So we
summarize the possible GPU OLAP acceleration techniques in
Table 5 to evaluate how to achieve the best performance gains with

GPUs.

In Table 5, we focus on the queries with star-join operations.
We find that MapD CPU mode has close performance to Actian
Vector with similar vectorized processing optimization, MapD
GPU mode also has close performance to MonetDB with similar
operator-at-a-time processing model, and Hyper proves to be 2 or
3 times faster than other databases. A straightforward issue is how
to further accelerate OLAP performance with GPUs against the
Hyper’s high performance.

In “OLAP acceleration model” part of Table 5, we layout the
candidate star-join, vector transfer, vector grouping, Dim vector
generating execution time to evaluate current and ideal OLAP
acceleration model performance. Current OLAP acceleration
model uses PCIe 3.0 transfer time and SQL Dim vector generating
time, the GPU acceleration execution time is equal to Hyper and
CPU acceleration execution is faster than Hyper. The ideal OLAP

acceleration model simulates using NVLink transfer time and
customized function for Dim vector generating, both OLAP
acceleration by CPU and GPU are faster than Hyper, and GPU
OLAP acceleration is even faster for the star-join performance
improvements by GPUs. The experimental results show that a

general-purpose relational engine accelerated by GPUs like MapD
may not bring significant performance gains even when the
working data can be completely held in GPU memory. However,
an OLAP domain knowledge customized GPU OLAP acceleration
can efficiently improve OLAP performance by simply accelerating
star-join with GPUs and using efficient vector grouping with CPUs.
Therefore, the proposed OLAP acceleration approach can achieve
2.23 times faster than MapD CPU mode and 3.58 times faster than

MapD GPU mode with SSB workload (SF=100).

Nowadays GPU servers are commonly configured with 8-16
GPUs for scale-out computing, so that the GPU OLAP acceleration
model performance can be further improved by partitioning star-
join workloads to more GPUs for parallel computing. As GPU
OLAP acceleration spend around 83% execution time in GPU star-
join stage, the scalability of GPUs can dramatically speedup OLAP
performance with near linear speedup ratio of GPU star-join.

Finally, we summarize the main empirical findings as follows:

(1) State-of-the-art GPU databases (e.g. MapD) suffer from
data movement overhead and low GPU memory

utilization.
(2) The grouping and aggregation operation differs

remarkably with different implementations. The
proposed vector grouping algorithm achieves 2.7-15.55
times speedup over MapD CPU version and 1.39-5.81
times speedup over MapD GPU version with various
grouping cardinalities.

(3) The overall OLAP performance of proposed approaches

may be 2.23 times faster than MapD CPU version and
3.58 times faster than MapD GPU version for the Star
Schema Benchmark (SSB) with scale factor 100.

6. RELATED WORK
GPU databases emerge to become main-stream high performance

databases in recent years. In the latest TOP 500 list[30], there are 5
systems are configured with GPUs in top 7 systems. The industrial
also pushed forward GPU databases like MapD[1], Kinetica[4],

Table 4. OLAP acceleration for SSB.

Query/

ms

AIR

star-

join for

CPU

AIR

star-

join for

GPU

Vector

index

transfer

CVec

Group

OLAP

accelera

tion for

CPU

OLAP

accelera

tion for

GPU

Q2.1 284 226 73 14 298 313

Q2.2 268 198 73 5 273 276

Q2.3 234 217 73 2 236 292

Q3.1 385 267 73 72 457 412

Q3.2 289 251 73 5 294 329

Q3.3 199 193 73 2 201 268

Q3.4 174 198 73 2 176 274

Q4.1 422 314 73 46 468 433

Q4.2 376 307 73 9 385 389

Q4.3 360 276 73 2 362 351

Average

time
299 245 73 16 315 334

Table 5. GPU OLAP acceleration for SSB.

Query/

ms

MapD

CPU

MapD

GPU
Hyper

Monet

DB
Vector

OLAP Acceleration model

CPU

star-

join

GPU

star-

join

vector

index

trans.

by PCIe

vector

index

trans.

by

NVLink

CVec

Group

GenDi

m by

SQL

GenDi

m by

function

OLAP

accelera

tion by

CPU

OLAP

accelera

tion by

GPU

Ideal

OLAP

accelera

tion by

CPU

Ideal

OLAP

accelera

tion by

GPU

Q2.1 732 1210 583 1200 775 284 226 76 4 14 54 24 352 370 323 269

Q2.2 331 1100 547 268 198 76 4 5 59 24 332 338 297 231

Q2.3 728 1136 134 649 342 234 217 76 4 2 26 8 262 321 245 232

Q3.1 842 1098 1187 1300 1615 385 267 76 4 72 85 63 542 500 520 406

Q3.2 822 1021 281 1000 996 289 251 76 4 5 91 28 385 423 322 288

Q3.3 810 883 207 574 540 199 193 76 4 2 73 20 274 344 221 219

Q3.4 889 925 206 535 495 174 198 76 4 2 73 22 249 350 197 226

Q4.1 962 1577 432 1900 1795 422 314 76 4 46 81 44 549 517 513 408

Q4.2 950 1614 375 1500 1462 376 307 76 4 9 65 51 450 457 436 371

Q4.3 1836 2704 308 1000 981 360 276 76 4 2 69 15 431 424 377 297

Aver

time
952 1352 404 1076 955 299 245 76 4 16 68 30 383 404 345 295

17

SQREAM[5], Zilliz[6] and BlazingDB[31]. Due to the significant
difference between CPU and GPU, the sophisticated optimization
techniques of in-memory databases cannot be directly implemented
by GPU databases, and also cannot guarantee to be more efficient
in GPU than in CPU.

The GPU database’s performance is dominated by multiple
factors, e.g., making hot data GPU memory resident, evaluating
GPU friendly operators from CPU friendly operators, using cost
model to distribute operations between GPU and CPU[23]. The
common GPU database query processing model is operator-at-a-
time model[22] which is proved to be less efficient than vectorized
processing model[24] and JIT compilation model[20] for in-
memory databases. Moreover, operator-at-a-time model suffers

from large materialization overhead which can be even worse in
GPU databases for the limited GPU memory size. MapD is the
representative GPU database with vectorized processing, JIT
compilation and optimization of keeping hot data in GPU memory
as much as possible, but we still find that MapD are not proved to
be superior to in-memory database Hyper with OLAP benchmark
(SSB) even when hot data size is smaller than GPU memory size.
So that, GPU databases may not be the only answer to acceleration

OLAP performance.

The general-purpose relational processing model is not the
best-suited solution for OLAP workloads. The pipelined processing
model mixes computing-intensive and data-intensive workloads
together which causes the most costly join overhead only occupy
10%–15% share of the total runtime[11] which decrease the
efficiency of GPU acceleration. [25] proposed a tailored array-store
model to simplify query processing model in which traditional joins

are replaced by array index referencing (AIR) from foreign key to
dimension vector. The group-by clause is also modeled as
multidimensional array aggregation instead of hash aggregation.
By these optimizations, the star-join is limited in moderate foreign
key columns with more than 80% execution time.

[26] generalized the customized OLAP model as fusing
MOLAP and ROLAP model together. The OLAP is clearly defined
with 3 stages: dimension mapping, multidimensional filtering and
aggregation. The vector index is proposed to implement MOLAP

model inside ROLAP model, the vector index maintenance
mechanism is also discussed for updating.

This paper studied GPU database MapD’s performance
characteristics for OLAP workloads, discovering the advantages
and disadvantages aspects of MapD to locate critical bottleneck of
MapD. Combined with MapD’s performance features and
customized OLAP model, we also discussed the GPU OLAP
acceleration model as OLAP domain knowledge customized model

for GPU OLAP engine.

7. CONCLUSIONS

In this paper we have studied how to optimize GPU database
framework by analyzing and optimizing the dominated OLAP
operations and developing the platform-adaptive operations.

In particular, we first designed the 3-stage-computing model
as tailored OLAP framework. The tailored OLAP framework
separates the computing-intensive workload and data-intensive
workload from the tightly coupled query processing workload, and

each stage can be assigned to specified processing model, which
makes OLAP scalable for the emerging hybrid processing platform.
Moreover, the 3-stage-computing model extends the relational
engine to be an open computing framework, and each stage can be

accelerated by specified technique using vector index as loose
coupled intermediator data structure. The vector oriented algorithm
designs simplify the star-join and grouping algorithms by using
simple vector instead of hash table. Our experimental results show
that the tailored vector grouping optimization minimizes the costly

transfer overhead to achieve better performance. In our future work,
we plan to develop the asynchronous hybrid CPU-GPU platform
query processing model for concurrent queries to maximize
utilizations for both CPUs and GPUs.

8. ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (61772533, 61732014), the Natural Science
Foundation of Beijing (4192066) and Academy of Finland, Finland
(310321).

9. REFERENCES
[1] MapD is the Extreme Analytics Platform. (2018, Feb.).

[Online]. Available: https://www.mapd.com/

[2] Thomas Neumann, Viktor Leis: Compiling Database Queries
into Machine Code. IEEE Data Eng. Bull. 37(1): 3-11 (2014)

[3] HGX-2 Fuses HPC and AI Computing Architectures. (2018,
Jun.). [Online]. Available: https://devblogs.nvidia.com/hgx-
2-fuses-ai-computing/

[4] Kinetica is the insight engine for the Extreme Data Economy.
(2018, Jan.). [Online]. Available: https://www.kinetica.com/

[5] SQream DB is the GPU Data Warehouse for massive data.
(2018, Feb.). [Online]. Available: https://sqream.com/

[6] FASTEST, SMARTEST-AI-Oriented Data Processing

Platform. (2018, Apr.). [Online]. Available: http://zilliz.com/

[7] PG-Strom - Master development repository. (2017, Sep.).

[Online]. Available: https://github.com/heterodb/pg-strom

[8] Cagri Balkesen, Jens Teubner, Gustavo Alonso, M. Tamer
Özsu: Main-memory hash joins on multi-core CPUs: Tuning

to the underlying hardware. ICDE 2013: 362-373

[9] Cagri Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer
Özsu: Multi-Core, Main-Memory Joins: Sort vs. Hash

Revisited. PVLDB 7(1): 85-96 (2013)

[10] Stefan Richter, Victor Alvarez, Jens Dittrich: A Seven-
Dimensional Analysis of Hashing Methods and its

Implications on Query Processing. PVLDB 9(3): 96-107
(2015)

[11] Stefan Schuh, Xiao Chen, Jens Dittrich: An Experimental
Comparison of Thirteen Relational Equi-Joins in Main
Memory. SIGMOD Conference 2016: 1961-1976

[12] Xuntao Cheng, Bingsheng He, Mian Lu, Chiew Tong Lau,
Huynh Phung Huynh, Rick Siow Mong Goh: Efficient Query
Processing on Many-core Architectures: A Case Study with
Intel Xeon Phi Processor. SIGMOD Conference 2016: 2081-
2084

[13] Xuntao Cheng, Bingsheng He, Xiaoli Du, Chiew Tong Lau:
A Study of Main-Memory Hash Joins on Many-core
Processor: A Case with Intel Knights Landing Architecture.
CIKM 2017: 657-666

18

[14] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K.
Govindaraju, Qiong Luo, Pedro V. Sander: Relational joins
on graphics processors. SIGMOD Conference 2008: 511-524

[15] Ran Rui, Hao Li, Yi-Cheng Tu: Join algorithms on GPUs: A
revisit after seven years. Big Data 2015: 2541-2550

[16] Jiong He, Mian Lu, Bingsheng He: Revisiting Co-Processing
for Hash Joins on the Coupled CPU-GPU Architecture.
PVLDB 6(10): 889-900 (2013)

[17] Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar,
Vassilis J. Tsotras: FPGA-based Multithreading for In-
Memory Hash Joins. CIDR 2015

[18] Kaan Kara, Jana Giceva, Gustavo Alonso:FPGA-based Data
Partitioning. SIGMOD Conference 2017: 433-445

[19] MapD Technical Whitepaper. The world’s fastest platform
for data exploration. (2018, Sep.). [Online]. Available:
http://go3.mapd.com/resources/whitepapers/mapd/lp

[20] Juliusz Sompolski, Marcin Zukowski, Peter A. Boncz:
Vectorization vs. compilation in query execution. DaMoN
2011: 33-40

[21] Emily Furst, Mark Oskin, Bill Howe: Profiling a GPU
database implementation: a holistic view of GPU resource
utilization on TPC-H queries. DaMoN 2017: 3:1-3:6

[22] Peter A. Boncz, Martin L. Kersten, Stefan Manegold:
Breaking the memory wall in MonetDB. Commun. ACM
51(12): 77-85 (2008)

[23] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel
Bellatreche, Gunter Saake: GPU-Accelerated Database

Systems: Survey and Open Challenges. Trans. Large-Scale
Data- and Knowledge-Centered Systems 15: 1-35 (2014)

[24] Marcin Zukowski, Peter A. Boncz, Niels Nes, Sándor
Héman: MonetDB/X100 - A DBMS In The CPU Cache.
IEEE Data Eng. Bull. 28(2): 17-22 (2005)

[25] Yansong Zhang, Xuan Zhou, Ying Zhang, Yu Zhang,
Mingchuan Su, Shan Wang: Virtual Denormalization via
Array Index Reference for Main Memory OLAP. IEEE
Trans. Knowl. Data Eng. 28(4): 1061-1074 (2016)

[26] Yansong Zhang, Yu Zhang, Shan Wang, Jiaheng Lu. Fusion
OLAP: Fusing the Pros of MOLAP and ROLAP Together
for In-memory OLAP. DOI: 10.1109/TKDE.2018.2867522.
[Online]. Available:

https://ieeexplore.ieee.org/document/8449096

[27] HyPer—A Hybrid OLTP&OLAP High Performance DBMS.
(2015, 1172 Feb.). [Online]. Available: http://hyper-db.com/

[28] (2017, Apr.). [Online]. Available: https://github.com/mapd

[29] (2016, Sep.). [Online]. Available:
https://github.com/heterodb/pg-strom

[30] JUNE 2018. (2018, Jun.). [Online]. Available:
https://www.top500.org/lists/2018/06/

[31] GPU-Accelerated Analytics on your Data Lake. (2018, Oct.).
[Online]. Available: https://blazingdb.com/

[32] Daniel J. Abadi, Samuel Madden, Nabil Hachem: Column-
stores vs. row-stores: how different are they really?
[C].SIGMOD Conference 2008: 967-980

https://blazingdb.com/

