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Metabarcoding analyses of bacterial and eukaryotic communities have been proposed
as efficient tools for environmental impact assessment. It has been unclear, however,
to which extent these analyses can provide similar or differing information on the
ecological status of the environment. Here, we used 16S and 18S rRNA gene
metabarcoding to compare eutrophication-induced shifts in sediment bacterial and
eukaryotic community structure in relation to a range of porewater, sediment and
bottom-water geochemical variables, using data obtained from six stations near a former
rainbow trout farm in the Archipelago Sea (Baltic Sea). Shifts in the structure of both
community types were correlated with a shared set of variables, including porewater
ammonium concentrations and the sediment depth-integrated oxygen consumption
rate. Distance-based redundancy analyses showed that variables typically employed
in impact assessments, such as bottom water nutrient concentrations, explained less of
the variance in community structure than alternative variables (e.g., porewater NH4

+

inventories and sediment depth-integrated O2 consumption rates) selected due to
their low collinearity (up to 40 vs. 58% of the variance explained, respectively). In
monitoring surveys where analyses of both bacterial and eukaryotic communities may be
impossible, either 16S or 18S rRNA gene metabarcoding can serve as reliable indicators
of wider ecological impacts of eutrophication.

Keywords: aquaculture, bacteria, eDNA, eukaryotes, eutrophication, metabarcoding, sediment

INTRODUCTION

Assessing the ecological integrity of benthic habitats is crucial to marine ecosystem management
(Fernandes et al., 2001), with seafloor monitoring efforts having traditionally relied on
morphological inventories of macrofauna (≥0.5 mm size fraction) and associated indices
(Lejzerowicz et al., 2015; Pawlowski et al., 2016). While producing such inventories requires
considerable time, taxonomic expertise and finances, environmental DNA (eDNA) metabarcoding
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has emerged as a high-throughput and low-cost option for
characterizing the structure and composition of sediment
communities (Pawlowski et al., 2018). Comparisons of
morphology-based and metabarcoding approaches for the
characterization of sediment macrobenthos have demonstrated
that the latter can function as a promising complement to
traditional surveying methods (Aylagas et al., 2014, 2016;
Cordier et al., 2017; Lobo et al., 2017; Cahill et al., 2018; Stoeck
et al., 2018; Clark et al., 2020; Frontalini et al., 2020). By relying
on total DNA extraction from samples, eDNA metabarcoding
also enables investigations of microbial and meiofaunal
(≤0.5 mm) communities that are extremely challenging to study
by traditional means, providing a more comprehensive snapshot
of ecosystem health than macrofaunal surveys alone (Chariton
et al., 2015; Pawlowski et al., 2016; Stoeck et al., 2018; Frontalini
et al., 2020).

Efforts to explore the use of metabarcoding in benthic
ecosystem monitoring have involved analyses of both sediment
eukaryotic (18S rRNA gene) and bacterial (16S rRNA gene)
communities (reviewed in Pawlowski et al., 2018). In the
context of aquaculture-induced organic enrichment, this work
has focused on foraminifera (Pawlowski et al., 2014, 2016; He
et al., 2019) and ciliates (Forster et al., 2018), as well as general
analyses of eukaryotic (Chariton et al., 2015) and bacterial
communities (Dowle et al., 2015; Fodelianakis et al., 2015; Stoeck
et al., 2018; Verhoeven et al., 2018; Moncada et al., 2019). The
use of metabarcoding as a monitoring tool has also been explored
with reference to localized disturbances caused by dredging
(Zhang et al., 2017) and off-shore drilling (Lanzén et al., 2016;
Laroche et al., 2017; Frontalini et al., 2020). These studies have
shown that bacterial and eukaryotic metabarcoding analyses can
serve as sensitive methods to detect anthropogenic impacts on
sediment habitats, including both short-term responses and long-
term effects on community resilience and stability. A recent
cross-laboratory comparison of eDNA metabarcoding results
produced using a standardized protocol has also demonstrated a
high degree of reproducibility between individual metabarcoding
data sets, which is essential to the successful deployment of
eDNA-based monitoring methods (Dully et al., 2021).

Despite the promising results reported in previous studies
and the increasing affordability of large-scale sequencing surveys,
neither 16S nor 18S rRNA gene metabarcoding have yet been
adopted as a routine component of monitoring programs (but
see Lefrançois et al., 2018). While using both techniques in
tandem would provide particularly comprehensive data on the
status of sediment communities, this is likely to be unfeasible
due to monitoring programs being subject to strict time and
financial limitations (Borja and Elliott, 2013; Borja et al., 2016).
It also remains unclear to what extent these methods can offer
similar or contrasting information on the status of seafloor
habitats, particularly with reference to identifying physical and
chemical variables that are likely to drive community shifts at
multiple trophic levels. Although several studies have correlated
water column and/or sediment geochemical variables with
metabarcoding data (Pawlowski et al., 2014; Chariton et al., 2015;
Dowle et al., 2015; Fodelianakis et al., 2015; Lanzén et al., 2016;
Forster et al., 2018; He et al., 2019; Moncada et al., 2019), there

is a lack of research on this topic involving cross-comparisons
of prokaryotic and eukaryotic communities. In cases where both
types of metabarcoding analyses have been employed, shifts
in community structure have either not been correlated with
geochemical data or only a limited set of measurements has
been used (La Rosa et al., 2001; Zhang et al., 2017; Keeley et al.,
2018; Stoeck et al., 2018). Addressing this absence of information,
therefore, is essential to establishing a full understanding of
how metabarcoding can be best employed as a tool for marine
ecosystem monitoring.

Here we used a field transect approach to compare 16S
and 18S rRNA gene metabarcoding as tools to obtain insights
into the impacts of aquaculture-induced eutrophication on
the structure and composition of sediment communities in
the coastal Archipelago Sea (Baltic Sea, Finland). In addition,
we determined whether shifts in the structure of these
communities were correlated with a shared or divergent set
of environmental variables, and whether variables routinely
included in benthic monitoring programs could reliably predict
community responses to eutrophication. The data show that
eutrophication-associated shifts in bacterial and eukaryote
community structure are to a large extent linked to a common
set of variables, suggesting that community changes detected by
16S or 18S rRNA gene metabarcoding are likely to reflect wider
ecological responses to increased organic loading. Our findings
additionally demonstrate that the sensitivity of monitoring
approaches could be improved through more carefully designed
protocols for the collection of environmental metadata, especially
with reference to understanding the impacts of eutrophication at
multiple levels of biological organization.

MATERIALS AND METHODS

Study Location and Sampling Strategy
Six stations (S1–S6) were sampled in the vicinity of a former
rainbow trout farm adjacent to Haverö Island, Archipelago Sea,
Baltic Sea (Figure 1 and Supplementary Table 1). The farm
was operational between 1987 and 2008 (Jokinen et al., 2018),
after which it has been intermittently used for storing live fish.
Sites S1–S3 were situated within a basin where the farm was
located, S4 on a sill, S5 on the seaward side of the sill and
S6 was included as a reference site outside the direct influence
of the farm (Figure 1). At each site, water column variables
were measured with a conductivity-temperature-depth (CTD)
profiler (SBE 19 SEACAT, Sea-Bird Electronics Inc., Washington,
United States), and sediment cores were collected with a GEMAX
twin corer (internal ∅ 9 cm) in September 2017. Separate cores
were collected for geochemical analyses (of porewater and bulk
sediment), and for microbiological analyses.

Porewater Sampling and Analysis
Porewater samples for geochemical analyses were taken
immediately upon retrieval of sediment cores at 2-cm depth
intervals from 0 to 20 cm depth, using Rhizon samplers
(Rhizosphere Research Products, Wageningen, Netherlands)
(Seeberg-Elverfeldt et al., 2005). Two cores were taken for Rhizon
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FIGURE 1 | Locations of field sites used for sediment sampling near a former
rainbow trout farming site in the Archipelago Sea (Baltic Sea, Finland).

samples, one for nutrient analysis and the other for analysis
of hydrogen sulfide (H2S). From the first core, subsamples for
analysis of dissolved nitrogen species were stored at –20◦C, while
subsamples for inductively coupled plasma mass spectrometry
(ICP-MS) analysis of phosphorus were immediately acidified
with 1M nitric acid (HNO3) and stored at 4◦C. Samples for H2S
(from the second column) were prepared as described in Jilbert
et al. (2018) with pre-addition of 1 ml of 2 M zinc acetate to the
sampling syringe. A third core was subsampled with mini-cores
(internal ∅ 2.3 cm; n = 1 for site S1 and n = 3 for S2–S6) for
determination of the porewater oxygen profile.

Porewater nitrate (NO3
−), nitrite (NO2

−), and ammonium
(NH4

+), concentrations were measured at Tvärminne Zoological
Station, Hanko, Finland. NO3

− and NO2
− concentrations

were measured using an autoanalyser equipped with a
cadmium reduction column (AquakemTM 250, Thermo
Fisher ScientificTM, Waltham, MA, United States; detection limit
of 0.2 µM), according to standard methods (Finnish Standards
Association methods SFS 3030 and 3032). NH4

+ concentrations
were measured manually with a detection limit of 0.14 µM,
according to methods described in Koistinen et al. (2018). Total
porewater phosphorus (P) concentrations were determined
at Geo Lab, Utrecht University, the Netherlands, using a
Thermo ScientificTM Element 2TM ICP-MS (P determined as
31P). Replicate analyses with reference to in-house standards
indicated that the relative error for analyses of porewater nutrient
concentrations was <5% in all cases.

Porewater H2S concentrations were determined by
spectrophotometry as described in Jilbert et al. (2018). An
acidic solution of ferric chloride (FeCl3) and N,N-dimethyl-p-
phenylenediamine was added directly to sample vials. The zinc
sulfide (ZnS) precipitate formed during sampling complexes
S as methylene blue, allowing spectrophotometric analysis at
670 nm (Cline, 1969; Reese et al., 2011). H2S concentrations
were calibrated against a series of standard solutions of sodium
sulfide (Na2S·3H2O), whose S concentrations were determined
by iodometric titration.

Inventories of porewater NH4
+, dissolved P and H2S were

calculated for the uppermost 20 cm of the sediment column,
including bottom water concentrations. Depth-integrated
concentrations are likely to provide more detailed information
on biogeochemical processes taking place in the sediment
than spot measurements of bottom water or surface sediment
concentrations. The concentrations (µmol cm−2) are expressed
as depth-integrated values (Invx):

Invx = 8

∫ 20

−1
Conc(x)dx,

Where 8 is the sediment porosity and Conc. (x) is the porewater
concentration of NH4

+, P, or H2S at each sediment depth interval
or in bottom water (represented by a value of –1 in the above
equation). The equation is modified from Canfield (1989).

Porewater oxygen profiles were measured with an oxygen
microsensor (OX-100; Unisense A/S, Aarhus, Denmark). The
microsensor was two-point calibrated in 100% air-saturated
filtered seawater, collected from the study site, and in anoxic
solution containing sodium ascorbate and NaOH (both at 0.1M).
Measurements were carried out at depth intervals of 100 µm.
Depth-integrated sediment pore water oxygen consumption
rates were calculated from oxygen microprofile data using a
least squares fitting routine in the PROFILE software package1

(Berg et al., 1998).

DNA Isolation, PCR and Sequencing of
16S and 18S rRNA Genes
DNA was isolated from 0.25 g of surface sediment (top 1 cm;
five biological replicates for each sampling site, each from a
separate core) using a Powersoil R© DNA isolation kit (MO BIO,
Carlsbad, CA, United States) according to the manufacturer’s
instructions. A kit control (n = 1) with no added sediment was
prepared. PCR was used to amplify 16S rRNA gene (V1–V3
regions) and 18S rRNA (V4 region) gene sequences (Table 1).
Each PCR contained 0.5 µl of template DNA, 1× PhusionTM

Flash High-Fidelity PCR Master Mix (Thermo Fisher Scientific,
Waltham, MA, United States), and 0.5 µM of forward and reverse
primer mixes, made up to a total volume of 25 µl with sterile
ultrapure water. Technical duplicates and no-template controls
were included in each PCR run. Cycling conditions were 98◦C
for 10 s, followed by 20–22 or 28–32 cycles (16S and 18S rRNA
gene, respectively) of 98◦C for 10 s and 72◦C for 15 s, and a final
extension step at 72◦C for 1 min. PCR products were visualized
following electrophoresis on 1% (w/v) agarose gels, after which
the duplicates were pooled. Further sample processing was
carried out by the DNA Sequencing and Genomics Laboratory,
Institute of Biotechnology, University of Helsinki2. Custom
barcodes for sample demultiplexing (Somervuo et al., 2018) were
attached in a second PCR step and the obtained PCR products
were purified using Agencourt R© AMPure R© XP magnetic beads
(Beckman Coulter, CA, United States), quantified and pooled
in iso-molecular quantities (Salava et al., 2017), followed by
sequencing on the Illumina MiSeq platform.

1https://berg.evsc.virginia.edu/modeling-and-profile/
2http://www.biocenter.helsinki.fi/bi/dnagen/
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TABLE 1 | Primers and primer mixes used for the PCR amplification of 16S rRNA and 18S rRNA genes from DNA extracted from sediments collected from the
Archipelago Sea (Baltic Sea).

Primer Nucleotide sequence including overhang (5′–3′)* Primer mix References

27F1 ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
AGAGTTTGATCMTGGCTCAG

PCR targeting 16S rRNA gene V1–V3 regions:
27F1–3 and 518R1–3 mixed in 1:1:1 ratio

Lane (1991); Muyzer et al. (1993) and
Salava et al. (2017)

27F2 ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
TAGAGAGTTTGATCMTGGCTCAG

27F3 ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
CTCTAGAGTTTGATCMTGGCTCAG

518R1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
GTATTACCGCGGCTGCTG

518R2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
CGTATTACCGCGGCTGCTG

518R3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
TAGTATTACCGCGGCTGCTG

E572F1 ACACTCTTTCCCTACACGACGCTCTTCCGATCT
CYGCGGTAATTCCAGCTC

PCR targeting 18S rRNA gene V4 region:
E572F1–4 and 897R1–4 mixed in 1:1:1:1 ratio

Comeau et al. (2011) and Hugerth et al.
(2014)

E572F2 ACACTCTTTCCCTACACGACGCTCTTCCGATCT
GCYGCGGTAATTCCAGCTC

E572F3 ACACTCTTTCCCTACACGACGCTCTTCCGATCT
TGMCYGCGGTAATTCCAGCTC

E572F4 ACACTCTTTCCCTACACGACGCTCTTCCGATCT
ARTTACYGCGGTAATTCCAGCTC

897R1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
TCYDAGAATTYCACCTCT

897R2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
AGTCYDAGAATTYCACCTCT

897R3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
CAATTCYDAGAATTYCACCTCT

897R4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
GTRAGTTTCYDAGAATTYCACCTCT

*Overhang indicated with italics and primer sequence indicated in bold.

Sequence Processing and
Bioinformatics
Following the removal of MiSeq adapter and barcode sequences,
further sequence processing was carried out using micca v. 1.6.23

(Albanese et al., 2015). Paired-end reads were merged using
“micca mergepairs” (Table 2; Rognes et al., 2016) and primer
sequences were trimmed using “micca trim” (Martin, 2011).
Quality filtering was performed using “micca filter” (filtering
parameters in Table 2; Rognes et al., 2016). The command “micca
otu” was used for chimera filtering and OTU clustering, with the
clustering step employing a de novo greedy clustering algorithm
with a 97% similarity threshold (parameters -d 0.97 -c) (Westcott
and Schloss, 2015; Rognes et al., 2016). Taxonomic assignments
were carried out using “micca classify” and RDP Classifier v.
2.11 (16S rRNA gene sequences; Wang et al., 2007) or the SILVA
132 database (18S rRNA gene sequences, majority taxonomy
mapping file with seven taxonomic levels; Quast et al., 2013).

Additional data processing was carried out using R v. 4.0.2 (R
Core Team, 2020). To improve between-sample comparability,
two replicates that markedly deviated from other replicates
in terms of sequencing depth or observed OTU counts were
omitted from the 18S rRNA gene sequence data set. Further
replicates were randomly discarded to obtain a balanced design

3https://compmetagen.github.io/micca/

for statistical analysis, with the final 18S rRNA gene sequence
data set retaining four replicates for each site. For the 16S rRNA
gene sequence data set, five replicates were retained for each site.
Rarefaction curves for the resulting data sets are provided in
Supplementary Figure 1. Unclassified phyla and 16S rRNA gene
sequences annotated as Chloroplast (class level) or Mitochondria
(family level) were removed. Within-station relative abundances
of sequences unclassified at the domain level were <0.001% for
the 16S rRNA gene sequence data set and <0.01% for the 18S
rRNA gene sequence data set, respectively, with similar values
observed for each sampling station. Removing unclassified,
chloroplast and/or mitochondrial sequences had no major
influence on sample clustering, as indicated by comparisons
of non-metric multidimensional scaling (nMDS) ordinations

TABLE 2 | Data processing parameters for 16S rRNA and 18S rRNA gene
sequences (implemented in micca v. 1.6.2; https://compmetagen.github.io/
micca/).

Command 16S rRNA gene
sequences

18S rRNA gene
sequences

micca mergepairs -l 50 -d 15 -l 250 -d 85

micca filter -e 0.25 -m 465
(71.3% of reads retained)

-e 0.25 -m 315
(92% of reads retained)
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(Supplementary Figure 2). Prior to statistical analysis, both data
sets were subjected to a denoising step using a 5% prevalence
threshold (Callahan et al., 2016; Supplementary Figure 3).
Prevalence is defined as the number of samples in which a taxon
appears at least once (Callahan et al., 2016).

Statistical Analysis
Statistical analyses were performed using R v. 4.0.2 (R Core
Team, 2020). Diversity values (observed OTU frequencies, Chao1
indices and Shannon’s diversity) (Shannon, 1948; Chao, 1984)
were calculated for untrimmed sequence data using phyloseq
v. 1.34.0 (McMurdie and Holmes, 2013). Shannon’s diversity
values for Metazoa were compared between sites S1–S3 vs. S4–
S6 using a two-sample Wilcoxon rank sum test. Bacterial and
eukaryotic OTU counts were subjected to a centered log-ratio
(CLR) transformation with a pseudocount of 1 using microbiome
v. 1.12.04, with nMDS ordinations derived using Aitchison
distance matrices (Gloor et al., 2017) calculated using phyloseq
(McMurdie and Holmes, 2013). Aitchison distances were used to
account for the compositional nature of sequencing data (Gloor
et al., 2017). As a complementary approach, OTU counts were
converted to relative abundances (%) for qualitative comparisons
of inter-site taxon composition.

The Aitchison distance matrices were used to conduct
one-way permutational analyses of variance (PERMANOVA)
with “sampling site” as the factor, using vegan v. 2.5-7 (999
permutations; Oksanen et al., 2020). Post hoc pairwise
comparisons (999 permutations) including a Benjamini-
Hochberg correction (Benjamini and Hochberg, 1995) were
performed using RVAideMemoire v. 0.9–78 (Hervé, 2020). Tests
for the homogeneity of multivariate dispersions (PERMDISP;
Anderson, 2006) were performed with vegan (999 permutations;
Oksanen et al., 2020).

To explore correlations between community structure and
sediment, sediment porewater and water column geochemical
variables (Table 3), linear dependencies between variables
were first identified by a principal component analysis (PCA)
using centered and scaled data (Figure 2), and by inspecting
variance inflation factors (VIFs). Two sets of up to five
explanatory variables (Table 4) were then selected for distance-
based redundancy analyses (db-RDA; Legendre and Anderson,
1999; Ramette, 2007) performed with vegan (Oksanen et al.,
2020). Distance-based redundancy analyses were selected as the
ordination method based on the inspection of primary axis
lengths using detrended correspondence analyses (Lepš and
Šmilauer, 2003). Variables in the first model (Model 1) were
selected due to their minimal multicollinearity (VIFs of ≤6),
while the second model (Model 2) was limited to variables similar
to those often measured during environmental monitoring
surveys (see e.g., the HELCOM Monitoring Manual5) and had
VIFs of ≤13.7 (Table 4). Both models were run using CLR-
transformed 16S or 18S rRNA gene sequence data, resulting in a
total of four model runs. Environmental variables were projected
onto the ordination space using the envfit() function in vegan

4http://microbiome.github.io/
5http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-
manual/

TABLE 3 | Environmental properties corresponding to six sampling stations in
Haverö, Archipelago Sea (Baltic Sea, Finland).

Sampling station

Variable S1 S2 S3 S4 S5 S6

Distance to farm (km) 0.38 0.79 0.47 0.94 1.2 2.48

Water column temperature (◦C) 10.1 14.4 14.4 15.2 14.7 13

Water column depth (m) 23 16.2 17.5 12.1 18.9 24.2

Water column salinity (no unit) 5.87 6.07 6.05 6.03 6.09 6.18

Bottom water O2 concentration
(µmol L−1)

80.1 163.3 133.2 173.1 184.2 151.9

Bottom water NOx*
concentration (µmol L−1)

14.3 6.4 6.8 10.1 3.4 6.2

Bottom water P concentration
(µmol L−1)

42.3 6.3 4.1 3.2 2.3 3.7

Sediment O2 penetration depth
(mm)

1.5 2.1 1.4 3.9 3.5 4

Sediment depth-integrated O2

consumption rate
(µmol−1 cm−2 s−1)

0.0119 0.0119 0.0156 0.003 0.006 0.005

Sediment median grain size
(µm)

3.1 3.4 3.1 93.6 13.1 3.6

Sediment Corg content, top
1 cm (% dry mass)

4.9 4.1 4.1 1.2 2.9 3.2

Sediment δ13Corg, top 1 cm (1
PDB)

–24 –22.8 –23.6 –24.6 –23.7 –23.8

Sediment Corg:Ntot ratio, top
1 cm (mol:mol)

8.36 8.65 8.37 8.14 8.34 8.33

Porewater H2S inventory (µmol
cm−2)

6.7 0.5 0.8 0 0.5 0.7

Porewater P inventory (µmol
cm−2)

4.45 2.47 1.59 0.76 0.73 0.98

Porewater NH4
+ inventory

(µmol cm−2)
18.65 5.33 4.48 1.3 1.86 1.79

Porewater NOx inventory (µmol
cm−2)

0.2 0.34 0.16 0.07 0.03 0.03

Porewater NO2
− inventory

(µmol cm−2)
0.001 0.002 0.001 0.003 0.003 0.003

*NO2
− and NO3

−.
Inventory calculations were performed for the top 20 cm of sediment cores
(“Materials and Methods” section).

(Oksanen et al., 2020), with fitting performed on linear scores
of the ordination axes. Following global significance tests for
the ordinations, the variance explained by each variable was
compared using permutation tests with the remaining variables
included as covariates, using the anova() function in vegan (999
permutations; Oksanen et al., 2020).

RESULTS

Bacterial Community Structure and
Composition
Good’s coverage estimates of 96.13–98.70% were obtained for
the raw 16S rRNA gene sequence data set (see Supplementary
Figure 1A for rarefaction curves). Following quality filtering and
denoising, a total of 1,089,217 reads (clustered into 4,499 OTUs)
were retained in the data set. Sediment bacterial community
structure differed between sampling stations, as demonstrated by
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FIGURE 2 | Principal component analysis showing linear dependencies between a total of 18 sediment, sediment porewater, and water column variables (centered
and scaled data). The data correspond to measurements determined for a total of six field sampling sites in the Archipelago Sea (Baltic Sea, Finland).

metabarcoding analysis of a total of 30 microbial communities
(1-way global PERMANOVA using Aitchison distances: pseudo-
F5,24 = 6.559, p < 0.001) (Figure 3A). Post hoc pairwise
comparisons showed that all six stations were distinct in terms of
bacterial community structure (PERMANOVA with Benjamini-
Hochberg correction: p = 0.014 for all tests). A comparison
of inter-site variation in multivariate dispersions showed these
differences to be due to a location effect rather than a dispersion
effect (PERMDISP: pseudo-F5,24 = 1.628, p = 0.203).

Comparing OTU relative abundances showed sediments from
all sites to be dominated by 16S rRNA gene sequences from the
phylum Proteobacteria, followed by Bacteroidetes (Figure 4A; for
class-level relative abundances, see Supplementary Figure 4).
The relative abundances of Proteobacteria were comparatively
stable along the transect (S1–S5; values of 34–47%), with slightly
lower values (30–32%) within the reference site (S6) (Figure 4A).
However, there were up to three-fold differences in the relative
abundances of the four next most dominant phyla, including
members of the Bacteroidetes, Acidobacteria, Chloroflexi, and

TABLE 4 | Physical and chemical variables used for db-RDA model construction.

Model Variable Variance inflation
factor

Model 1 Porewater NH4
+ inventory (µmol cm−2) 2.08

Distance to farm (km) 5.35

Sediment depth-integrated O2 consumption
rate (µmol−1 cm−2 s−1)

6.04

Sediment median grain size (µm) 5.48

Sediment Corg:Ntot ratio, top 1 cm (mol:mol) 2.31

Model 2 Sediment Corg content, top 1 cm (% dry mass) 7.33

Bottom water NOx* concentration (µmol L−1) 11.54

Bottom water P concentration (µmol L−1) 8.49

Bottom water O2 concentration (mg L−1) 13.71

*NO2
− and NO3

−.

Ignavibacteriae (Figure 5A). For example, sediments within the
site nearest to the fish farm (S1) showed a high relative abundance
(>25%) of sequences from the phylum Bacteroidetes (classes
Flavobacteriia and Bacteroidia; Supplementary Figure 4) with
low relative abundances of Acidobacteria and Chloroflexi in
comparison with sites farther from the farm (S4–S6) (Figure 5A).
The relative abundances of Ignavibacteriae were lower in S1 in
comparison with other sites while in stations within the basin in
the vicinity of the fish farm (i.e., S2 and S3), relative abundances
of Acidobacteria were also lower than in S4–S6 (Figure 5A). In
contrast with this variation in relative abundances, no clear inter-
site variation in bacterial diversity was observed along the study
transect (S1–S5) or when comparing sites to reference station S6,
with mean Shannon’s diversity ranging from 6.25 (S6) to 7.13
(S4) (Table 5).

Eukaryotic Community Structure and
Composition
Good’s coverage estimates of 99.98–100% were obtained for
the raw 18S rRNA gene sequence data set (see Supplementary
Figure 1B for rarefaction curves). A total of 6,902,650
reads (clustered into 548 OTUs) were retained in the data
set following quality filtering. Similar to the bacterial data,
metabarcoding analysis of 24 sediment eukaryote communities
demonstrated significant differences between stations (1-way
global PERMANOVA: pseudo-F5,18 = 2.415, p < 0.001;
Figure 3B). Each station had a distinct eukaryote community
structure (post hoc pairwise PERMANOVA with Benjamini-
Hochberg correction: p = 0.036 for all tests). In contrast with
the bacterial data, significant inter-site variation in multivariate
dispersion was observed (PERMDISP: pseudo-F5,18 = 9.260,
p < 0.001). Sediment eukaryote communities at site S4 exhibited
a higher degree of multivariate dispersion than communities at
S1, S3, and S5, as shown by a post hoc Tukey’s HSD test (Figure 6).
However, no significant differences in multivariate dispersion
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FIGURE 3 | Non-metric multidimensional scaling (nMDS) ordinations of sediment communities in field sites sampled along a eutrophication gradient in the
Archipelago Sea (Baltic Sea, Finland). The ordinations were derived from Aitchison resemblance matrices calculated from Illumina MiSeq OTU abundance data. Data
are shown for (A) bacterial communities (stress = 0.04) and (B) eukaryotic communities (stress = 0.16).

(p > 0.05) were detected between site S6 and sites along the study
transect (S1–S5; see Figure 6).

Comparing OTU relative abundances showed sediments
from all sampling stations to be dominated by unicellular
eukaryotic taxa (Dinoflagellata followed by Protalveolata and
Ochrophyta) (Figure 4B). While the relative abundances of
Dinoflagellata appeared comparable between stations, nearly
two-fold differences in overall eukaryotic diversity (Shannon’s
diversity) were observed between sites (site-specific means
of 1.00–1.88; Table 5). For example, Metazoa (Figure 5B)
exhibited a significant decline in Shannon’s diversity in sites
near the fish farm (S1–S3; x̄ = 1.17 ± 0.08) compared
to sites farther from the farm (S4–S6; x̄ = 1.89 ± 0.11)
(two-sample Wilcoxon rank sum test, W = 11, p < 0.001).
Metazoa detected in sediments from site S1 included copepods
(Calanoida) and nematodes (Monhysterida), with these taxa
also detected in other sites (Figure 5B). Examples of taxa
encountered in sites S4–S6 but either absent or present
at low relative abundances (<0.2%) from S1–S3 included
Enoplida (nematodes), Haplotaxida (annelids), Homalorhagida
(kinorhynchs), and Macrostomida (flatworms) (Figure 5B).

Correlations Between Community
Structure and Environmental Variables
Sediment depth-integrated O2 consumption rates were two
orders of magnitude higher in the basin (sites S1–S3; rates up
to 0.016 µmol−1 cm−2 s−1) than within other sites (rates up
to 0.006 µmol−1 cm−2 s−1) (Table 3). Oxygen concentrations
in the bottom water were also up to two times lower in sites
near the farm than in other sites (minimum of 80.1 µmol L−1

in S1). Concentrations of porewater nutrients (NH4
+, NOx,

and P) and sediment organic carbon (Corg) were high in S1–
S3, with the NH4

+ inventory in S1 (18.7 µmol cm−2) being

approximately an order of magnitude higher than those in S4–
S6. Differences in bottom water nutrient concentrations were
also observed. Bottom water P concentrations were relatively low
in sites S2–S6 (2.3–6.3 µmol L−1), with a high concentration
detected at S1 (42.3 µmol L−1). Variation in bottom water
NOx concentrations was less pronounced, with the highest
concentration (14.3 µmol L−1) observed at S1. While the
sediment within site S4 consisted of fine sand (median grain
size of 93.6 µm), all other sites were muddy (median grain
sizes of 3.1–13.1 µm). Further information on the environmental
conditions within each sampling station is given in Table 3.

Correlations between site-specific environmental conditions
and sediment bacterial or eukaryotic community structure were
explored using distance-based redundancy analyses (db-RDA;
see Table 6) performed using two separate sets of up to five
environmental variables (Models 1 and 2; details on model
construction in Statistical Analysis and Table 4). The first db-
RDA model (Model 1) explained 58% (global permutation test:
pseudo-F5,24 = 6.559, p < 0.001) and 40% (global permutation
test: pseudo-F5,18 = 2.415, p < 0.001) of the variance in sediment
bacterial and eukaryotic community structure, respectively
(Figures 7A,B). As shown by permutation tests for individual
db-RDA explanatory variables (with the remaining variables used
as covariates), in Model 1 the observed variation in bacterial
community structure was strongly correlated with porewater
NH4

+ concentrations (pseudo-F = 7.230, pB−H = 0.005),
followed by sediment depth-integrated O2 consumption rates
and distance to the farm (Table 6). A near-significant correlation
between bacterial community structure and the sediment
Corg :Ntot ratio was observed (pseudo-F = 1.924, pB−H = 0.065),
while the weakest correlation (pseudo-F = 1.685, pB−H = 0.09)
corresponded to sediment grain size (Table 6). In contrast with
bacterial communities, all variables included in Model 1 were
significantly correlated with variation in eukaryotic community
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FIGURE 4 | Overall relative abundances (%) of (A) bacterial and (B) eukaryotic operational taxonomic units (OTUs) within sediment samples collected from a total of
six sampling sites in the Archipelago Sea (Baltic Sea). Bacterial data are shown at the phylum level. Eukaryotic data are shown at the Rank 4 level of the SILVA 132
majority taxonomy mapping file with seven taxonomic levels (comprising multiple levels of taxonomic classification).
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FIGURE 5 | Operational taxonomic unit relative abundances (%) corresponding to subsets of (A) bacterial and (B) eukaryotic communities within sediments
collected from a total of six sampling sites in the Archipelago Sea (Baltic Sea, Finland). The bacterial community subset corresponds to the top four most abundant
phyla, aside from members of the Proteobacteria. The eukaryotic community subset corresponds to metazoa.

structure (Table 6). The environmental variables most strongly
correlated with variation in eukaryotic community structure
corresponded to the sediment Corg :Ntot ratio, porewater NH4

+

concentrations and sediment depth-integrated O2 consumption
rates, followed by distance to the farm (Table 6).

The second db-RDA (Model 2) had less explanatory power
compared with Model 1, explaining 48% (global permutation test:
pseudo-F4,25 = 5.679, p < 0.001) and 32% (global permutation
test: pseudo-F4,19 = 2.276, p < 0.001) of the variance in sediment
bacterial and eukaryotic community structure, respectively
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TABLE 5 | Observed bacterial and eukaryotic OTU frequencies and diversity indices (Chao1 and Shannon’s diversity) for sediment samples collected from six sampling
stations in Haverö, Archipelago Sea (Baltic Sea, Finland).

Bacterial OTUs Eukaryotic OTUs

Site Observed Chao1 Shannon’s
diversity

Observed Chao1 Shannon’s
diversity

S1 5,310 ± 162 7,341 ± 176 6.60 ± 0.14 232 ± 13 260 ± 15 1.00 ± 0.09

S2 6,634 ± 239 9,113 ± 221 7.03 ± 0.05 241 ± 14 267 ± 13 1.88 ± 0.07

S3 6,919 ± 114 9,465 ± 94 7.08 ± 0.03 257 ± 7 286 ± 8 1.49 ± 0.08

S4 6,528 ± 167 8,440 ± 146 7.13 ± 0.02 217 ± 7 238 ± 7 1.69 ± 0.09

S5 6,030 ± 138 8,493 ± 112 6.87 ± 0.02 269 ± 5 296 ± 11 1.05 ± 0.01

S6 4,071 ± 290 5,538 ± 487 6.25 ± 0.04 252 ± 4 296 ± 12 1.74 ± 0.03

The values are given as means ± standard error (n = 5 for bacteria, n = 4 for eukaryotes).

(Figures 7C,D). Significance values of all tested variables for both
models and effect sizes (pseudo-F values) are shown in Table 6.
In contrast to Corg :Ntot (in Model 1), significant correlations
(pB−H < 0.05) were observed between the sediment Corg content
and both bacterial and eukaryotic community structure. Shifts in
the structure of both community types were also correlated with
bottom water NOx, P, and O2 concentrations. Effect sizes within
the bacterial data set often exceeded those in the eukaryotic data
set. For example, an over fourfold difference in effect sizes was
observed in relation to sediment porewater NH4

+ inventories
(see Table 6).

DISCUSSION

16S and 18S rRNA gene metabarcoding have been proposed
as alternatives to morphology-based macrofaunal inventories

FIGURE 6 | Distances to the group centroid for CLR-transformed eukaryotic
OTU abundance data. Data are shown for a total of six sampling sites in the
Archipelago Sea (Baltic Sea, Finland). Different letters above the boxes
indicate significant differences between sampling sites (Tukey’s HSD test,
p < 0.05).

that have been traditionally used in benthic monitoring
surveys (reviewed by Pawlowski et al., 2018). To date, little
information has been available concerning the ability of these
methods to provide similar versus contrasting information on
ecosystem health. Here, we employed a field transect study
to compare shifts in bacterial and eukaryotic community
structure in relation to 18 sediment and water column variables
along an aquaculture-induced eutrophication gradient near a
former rainbow trout farm (active during 1987–2008; Jokinen
et al., 2018) in the Archipelago Sea (Baltic Sea, Finland).
Correlations between community structure and environmental
variables were explored using two separate models including
environmental variables selected either on account of their low
multicollinearity or because they are often measured during
monitoring surveys.

A key feature of the data was that the site nearest to the
farm (S1) showed high relative abundances of taxa belonging
to the phylum Bacteroidetes in parallel with a reduction in
the abundance of other bacterial taxa (members of the phyla
Acidobacteria and Chloroflexi), compared with other stations.
Relative abundances of Ignavibacteriae were also low in site S1
compared to other sites. Moreover, Acidobacteria in sediments
from sites S2 and S3 exhibited low abundances in comparison
with sites farther from the farm (S4–S6). These shifts in bacterial
community structure are in agreement with findings reported
by Quero et al. (2020), who conducted a 10-months study into
the effects of on-going sea bass and sea bream farming on
the structure of sediment bacterial communities in Southern
Sicily. Similar to our study, the authors reported increased
relative abundances of Bacteroidetes in fish farming-impacted
sediments, while the relative abundances of Acidobacteria and
Chloroflexi were higher in non-impacted sediment. High relative
abundances of Bacteroidetes (class Bacteroidia) have been found
to occur in flocculent matter and microbial mat samples
within a hard-bottom salmonid farm in the Hermitage Bay
area (Newfoundland, Canada), which at the time of sampling
had been inactive for 3 months (Verhoeven et al., 2016).
Flocculates sampled near salmonid farming cages exhibited
higher abundances of Bacteroidetes than samples collected from
less disturbed sites (Verhoeven et al., 2018). Since our community
analyses focused on the surficial centimeter of the sediment
and the samples typically consisted of fine mud, they likely
included materials that had originally remained suspended in

Frontiers in Marine Science | www.frontiersin.org 10 July 2021 | Volume 8 | Article 708716

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-708716 June 29, 2021 Time: 18:33 # 11

Harrison et al. Sediment Community Responses to Eutrophication

FIGURE 7 | Distance-based redundancy analyses (db-RDA) of sediment bacterial and eukaryotic communities, based on two types of models (see Table 4 for
details). Data are shown for (A) bacterial communities (Model 1), (B) eukaryotic communities (Model 1), (C) bacterial communities (Model 2) and (D) eukaryotic
communities (Model 2). Environmental variables were projected onto the ordination space using the R function envfit() fitted on linear scores of the ordination axes.

the water column (Milligan and Law, 2005). With the shifts in
bacterial taxon composition detected in our study bearing many
similarities to those reported in relation to active fish farming
activities (despite our study site not being actively used for
farming since 2008), the results point toward the possibility of
a legacy impact of aquaculture-associated organic loading on the
structure and composition of sediment bacterial communities.

In contrast with our results and those reported in Quero
et al. (2020), Moncada et al. (2019) reported an increased
abundance of Chloroflexi near fish farming cages. While we
did not find evidence for a similar increase in the relative
abundance of Chloroflexi, this could be due to site-specific
factors. The decline we observed in the diversity of sediment
metazoa near the farm was, however, in agreement with general
evidence for a shift toward a microbially-dominated state within

areas impacted by aquaculture (La Rosa et al., 2001; Mirto
et al., 2012). Interestingly, members of the class Flavobacteriia
were detected even in sites with comparatively high sediment
depth-integrated O2 consumption rates and low bottom water
O2 concentrations (Table 3), despite this class often being
regarded as aerobic (Kirchman, 2002; Kumagai et al., 2018).
The physiological mechanisms enabling this class to persist in
low-oxygen environments have been extensively characterized by
Kumagai et al. (2018).

Our data showed distinct correlations between bacterial
and eukaryotic community structure in relation to the
sedimentological and water column variables that were examined
(Tables 3, 6). The results further indicated that shifts in the
structure of both community types were correlated to a shared
subset of environmental variables, including sediment porewater
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TABLE 6 | Permutation test results for db-RDA explanatory variables (999 permutations).

Model Variable 16S rRNA gene metabarcoding 18S rRNA gene metabarcoding

Pseudo-F pB−H Pseudo-F pB−H

Model 1 Porewater NH4
+ inventory (µmol cm−2) 7.230 0.005 1.691 0.012

Sediment depth-integrated O2 consumption rate
(µmol−1 cm−2 s−1)

3.226 0.013 1.715 0.012

Distance to farm (km) 3.014 0.018 1.470 0.025

Sediment Corg:Ntot ratio, top 1 cm (mol:mol) 1.924 0.065 1.887 0.005

Sediment median grain size (µm) 1.685 0.090 1.597 0.016

Model 2 Sediment Corg content, top 1 cm (% dry mass) 4.912 0.004 2.263 0.004

Bottom water NOx* concentration (µmol L−1) 3.323 0.010 1.832 0.004

Bottom water P concentration (µmol L−1) 3.070 0.010 1.715 0.007

Bottom water O2 concentration (mg L−1) 2.605 0.010 1.832 0.004

*NO2
− and NO3

−.
The variance explained by each environmental property was tested using the remaining variables as covariates. For details on model construction, see section
“Materials and Methods”.

NH4
+ concentrations and the sediment depth-integrated

oxygen consumption rate. While these and other variables
have been previously related to variation in either prokaryotic
(bacterial and archaeal) or eukaryotic community structure
within eutrophic sediments (Edlund et al., 2006; Chariton
et al., 2015; Dowle et al., 2015; Fodelianakis et al., 2015), our
cross-comparison of 16S and 18S rRNA metabarcoding data
provides simultaneous information about both domains. The net
intensity of organic matter remineralization, as recorded by the
porewater NH4

+ inventory and rate of O2 consumption, appears
to be a key predictor of both bacterial and eukaryotic community
structure in the studied locations. Intensity of remineralization is
strongly coupled to microbial activity and hence the measured
environmental variables.

Considered together, our data support the use of both 16S
and 18S rRNA gene metabarcoding analyses as efficient tools to
detect anthropogenic impacts such as eutrophication on marine
ecosystems (Pawlowski et al., 2018; Stoeck et al., 2018). The
overlap in bacterial and eukaryotic community responses to
nutrient enrichment and oxygen depletion suggests that either
method can provide useful insights into the overall impacts
of eutrophication on ecosystem health. Where the variable of
interest is known to be associated with shifts in the structure
of both bacterial and eukaryotic communities (such as in the
case of NH4

+), 16S rRNA metabarcoding can provide a highly
sensitive measure of ecosystem-level responses to eutrophication.
The bacterial community data also exhibited less within-station
variation than the eukaryote community data (with significant
variation in multivariate dispersions only observed for the
eukaryote data set; Figure 6). While it remains possible that
such differences are partially influenced by the use of small
sediment volumes (per-replicate mass of 0.25 g; “Materials and
Methods” section) (Nascimento et al., 2018), rarefaction analysis
and Good’s coverage estimates for OTUs were indicative of
sufficient sampling depth in both the 16S and 18S rRNA gene
data sets in our study (Supplementary Figure 1 and Results).
Ultimately the choice of which metabarcoding approach to use

will depend on the overall goals of the monitoring survey, as
well as the available resources. Sediment grain size, for example,
was found to have a stronger influence on eukaryotic community
structure than on bacterial community structure (Table 6), which
could be of relevance to interpreting the ecological impacts of
activities that can disturb the surrounding sediment grain size
composition, such as drilling and dredging (Smit et al., 2008) as
well as offshore wind farms (Floeter et al., 2017). The sediment
Corg :Ntot ratio was also more strongly associated with eukaryotic
than bacterial community shifts, while variation in bacterial
community structure was particularly tightly coupled to sediment
porewater NH4

+ concentrations.
The results of this study further suggest that the selection of

environmental metadata variables to measure can have wide-
ranging consequences for interpreting the results of marine
impact assessments. For both the bacterial and eukaryotic data
sets, db-RDAs using variables based on their low collinearity
explained a greater proportion of the variance in community
structure than the second set of db-RDAs employing alternative
variables (Tables 4, 6). This implies that, although measurements
performed using bottom water samples did correlate with the
structure of sediment bacterial and eukaryotic communities,
the sensitivity of environmental monitoring protocols could
be improved by substituting these variables with appropriate
sedimentological data (such as sediment porewater nutrient
inventories and/or depth-integrated O2 consumption rates).
The practical feasibility of such modifications is expected to
depend on the availability of field equipment, including sediment
coring devices and oxygen microelectrodes, and the depth
resolution of porewater sampling, which impacts on overall
sample processing time. Analytical approaches for porewater
nutrient determinations are comparable to those of bottom water
samples and hence do not introduce new technical requirements
in the laboratory.

The current study focused on a single field transect with
samples collected during a single month (see “Materials and
Methods” section). Therefore, to ascertain the generality of our
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findings and to identify sets of low-collinearity variables that
could be efficiently used for monitoring purposes across a broad
range of settings (including several types of habitat and different
seasons), the conceptual approach presented herein could be
extended to alternative locations and studies conducted over
longer timescales. To further improve our ability to devise the
best possible tools and strategies for benthic marine impact
assessments, the types of comparisons performed in our study
could also be applied to functional gene expression data.
Moncada et al. (2019) showed a reduction in the abundance
of dissimilatory sulfate reductase and nitrite reductase genes in
mariculture-impacted sediments. While the authors were able
to establish correlations between gene expression data and the
abundances of selected microbial taxa, they noted that in certain
instances this was impossible, likely because we only have a
limited understanding of the ecological functions performed by
many of the OTUs within sequencing data sets (Moncada et al.,
2019). While rRNA gene metabarcoding analyses do not yield
direct information on functional gene expression, the choice of
which metabarcoding approach to use (and what environmental
variables to measure) could nevertheless be greatly aided by the
availability of such data.

In summary, our results show that rRNA gene metabarcoding
analyses targeting bacterial or eukaryotic communities provide
congruent information on the impacts of aquaculture-associated
eutrophication on sediment communities, with shifts in the
structure of both community types being correlated with a
common set of sedimentological and water column variables.
Ultimately the choice between 16S and 18S rRNA gene
metabarcoding as a tool for monitoring the health of natural
ecosystems should be guided by the aims of the study in
question and the environmental variable(s) of interest. In this
context, our findings clearly demonstrate how the usefulness
of both metabarcoding methods is directly dependent on the
types of environmental metadata that have been collected.
To facilitate the adoption of eDNA metabarcoding as a tool
for marine impact assessment, a major challenge will be
to determine how diverse physical and chemical variables
correlate with microbial versus macrobial community shifts not
only locally, but regionally, seasonally and with reference to
multiple habitats.
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Supplementary Figure 1 | Rarefaction curves for (A) bacterial and (B) eukaryotic
Illumina MiSeq metabarcoding data. The data were generated following PCR
amplification of bacterial 16S rRNA genes and eukaryotic 18S rRNA genes
amplified from eDNA isolated from sediments from six sampling sites in the
Archipelago Sea (Baltic Sea, Finland). Curves are shown for OTUs based on a
similarity cut-off threshold of 97%, following removal of chimeric sequences.

Supplementary Figure 2 | Non-metric multidimensional scaling (nMDS)
ordinations of sediment communities in field sites sampled along a eutrophication
gradient in the Archipelago Sea (Baltic Sea, Finland). The ordinations were derived
from Aitchison resemblance matrices calculated from Illumina MiSeq OTU
abundance data. Data for bacterial communities are shown (A) prior to filtering out
sequences assigned as NA, Chloroplast (class level) or Mitochondria (family level),
(B) after filtering out NA sequences, and (C) after filtering out NA, chloroplast and
mitochondrial sequences. Data for eukaryotic communities are shown (D) prior to
filtering out NA sequences and (E) after filtering out NA sequences.

Supplementary Figure 3 | Phylum-level prevalences (given as fractions) versus
total read counts for a) bacterial and b) eukaryotic community Illumina MiSeq data.

Supplementary Figure 4 | Relative abundances (%) of bacterial classes within
sediment samples collected from a total of six sampling sites in the Archipelago
Sea (Baltic Sea).
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