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Abstract

Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad 

of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention 

as vectors for RNAi due to their potential advantages, including improved safety, high 

delivery efficiency and economic feasibility. However, the complex natural process of 

RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular 

design principles and requirements for practical fabrication. Here, we summarize the 

requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. 

To address the delivery challenges, we discuss practical guidelines for materials 

selection and NP synthesis in order to maximize RNA encapsulation efficiency and 

protection against degradation, and to facilitate the cytosolic release of oligonucleotides. 

The current status of clinical translation of RNAi-based therapies and further 

perspectives for reducing the potential side effects are also reviewed.  
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1. Introduction

At the forefront of medicine, gene therapy is one of the most exciting therapeutic 

armamentarium developed during the past decade. U.S. Food & Drug Administration 

(FDA) defines gene therapy as a process of replacing a disease-causing gene with a 

healthy copy of the gene, inactivating a disease-causing gene that is not functioning 

properly or by introducing a new or modified gene into the body to help treat a particular 

disease [1]. The categories potentially leading to three general modalities for gene 

therapy are: (1) gene addition, where the nontoxic functional gene is transferred into 

human somatic or germline cells, and the process is usually achieved via vectors, such 

as, retroviruses and adeno-associated viruses capable of undergoing reverse 

transcription and deoxyribocucleic acid (DNA) integration but lacking replication 

potential; (2) gene edition, where a nuclease-induced double-stranded break is occurred 

on target DNA, followed by efficient creation of variable length insertion or deletion 

mutations at the break site – tools including early stages zinc finger nucleases, 

meganucleases and the sequentially discovered clustered regularly interspaced short 

palindromic repeat (CRISPR)–CRISPR associated 9 (Cas9) nucleases can be efficiently 

programmed to cleave DNA at sites of interest; and (3) gene intervention, where the 

target gene expression or translation is inhibited or sequestered by cognate genes. Gene 

intervention is a post-transcriptional gene silencing process, which is usually achieved 

by ribonucleic acid (RNA) interference (RNAi). 

RNAi in mammalian cells is firstly demonstrated by Elbashir et al. in 2001 [2], in which 

they showed the RNAi in mammalian cells is initiated by double-stranded RNA 
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(dsRNA) with homologous sequence to the silenced gene. This finding suggested that 

comparing to other two modalities, RNAi is more straightforward as the targeted 

silencing is governed via the specificity of Watson-Crick base pairing interactions. The 

ensuing advantage is a more broad application scenario, as the translation repression 

strategy is theoretically suitable for all types of gene-related diseases. Thus, efforts are 

sequentially made to develop corresponding delivery vehicles for RNAi, and 

comparing to viral-based vectors, non-viral vehicles have drawn increasing attention 

due to some favorable characters, including retained immunostimulatory effects, lack 

of risk for mutagenic events, feasible for extra modification, and potentially increased 

targeting capability and relatively low costs [3]. Thus, exploring non-viral materials as 

RNAi vectors has been extensively investigated in the pharmaceutical field.

However, different from fabricating delivery systems for other drugs (e.g., small 

molecules, peptides, and proteins), the vulnerability of RNA and meticulous RNAi 

process in cells render particular requirements for vehicles design and fabrication [4]. 

Therefore, in this review, we summarize the general principles for the design of RNAi 

vectors, discuss the practical issues that should be considered during these vectors 

fabrication, the critical aspects of the vehicle that affects the RNA encapsulation, 

targeting yield and successful cytosolic release of RNA, and finally reviewing recent 

advances in RNAi vectors and their further perspectives for resolving the therapeutic 

obstacles and promoting the clinical translations.
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2. General requirements for the delivery systems

In this section, we will briefly discuss the major modalities of RNAi and the detailed 

biological process for RNAi. Here, we aim to illustrate the RNAi’s subcellular sites of 

function, time of function, dosage of function and form of function, which are 

indispensable for understanding the basic requirements and potential challenges for 

RNAi vector fabrication.

2.1. Natural process and the gene silencing mechanism of RNAi

The dsRNA is thought to be the initiator for RNAi, as firstly purposed by Fire et al. in 

1998 [5]. In eukaryotic cells, dsRNAs exert the RNAi function by being sequentially 

processed into: (1) short interfering RNAs (siRNAs), which may recognize the 

targeting messenger RNA (mRNA) through complementary sequence and further guide 

cleavage of targeting mRNA; or (2) microRNAs (miRNAs), which mediate 

translational repression or cleavage of mRNA targets [2, 6]. Despite the initiator 

function of dsRNAs, delivering dsRNAs for RNAi may not be applicable for 

mammalian systems, as dsRNAs are strong interferon pathway agonists, promoting the 

activation of the nuclear factor κB, and both synthetic and viral dsRNAs were shown 

to potentially lead to cell death [7].

The dsRNA is produced by two main routines: (1) RNA-templated RNA 

polymerization process with the assistant from RNA-dependent RNA polymerase 

(RdRP); or (2) by through the overlapping transcripts to achieve RNA hybridization 

[6], whereas primary miRNA (pri-miRNA), also a type of dsRNA, is processed in 
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nucleus and transported to cytoplasm by nuclear export receptor, exportin-5 [6]. Once 

the dsRNA is formed or transported in the cytoplasm, it will be processed by dsRNA-

specific RNase-III-type endonucleases, or Dicer, which contain catalytic RNase III and 

dsRNA-binding domains (dsRBDs) [8]. dsRNA or miRNA precursor (pre-miRNA) is 

further cleaved into short segments miRNA/siRNA (typically about 21–25 nucleotides 

in length) by Dicer monomer [9]. Two complementary single-strand RNA segments are 

produced from Dicer cleavage, but only one (termed as guide strand) is integrated with 

Argonaute (Ago) protein [10]. Afterwards, the rearrangement of miRNA/siRNA-

duplex-containing ribonucleoprotein particles (RNP) is initiated to form into RNA 

induced silencing complex (RISC) [11]. After forming into RISC, the single-stranded 

siRNA in RISC binds to the complementary target mRNA in these complexes, and 

cleaves the target mRNA with the assistance from Ago-protein family to accomplish 

the RNAi, whereas miRNA, usually featured with imperfect complementarity, will 

inhibit the mRNA translation or induce a mRNA degradation (Figure 1) [11, 12].

An alternative method for generating siRNA is through short hairpin RNA (shRNA) 

[13]. Similar to pre-miRNA hairpin structure, the double-strand like structure from 

single-stranded shRNA is generated from the intramolecular base-pairing due to its 

inverted repeats [14]. Rather than a natural process, shRNA is most often produced 

through the use of transcription vectors [15]. After transfected by plasmid DNA or 

virus-derived constructs, the primary transcript shRNA (pri-shRNA) will be processed 

and transported to the cytoplasm, followed by integrating into RISC as delineated above 

(Figure 1) [13, 15]. 
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Figure 1. Graphic scheme of RNA interference. Primary micro-RNA (pri-miRNA) and 

short hairpin RNA (shRNA) is exported to cytoplasm via exportin-5. The enzyme, 

Dicer, will cleave the miRNA precursor (pre-miRNA), shRNA, or long double-

stranded RNA (dsRNA), into microRNA (miRNA) or small interfering RNA (siRNA), 

separately. Followed by strand separation and forming into the RNA-induced silencing 

complex (RISC), the guide strand will bind to complementary mRNA sequences to 

perform the RNAi process. Figure is generated using Biorender.com.

2.2. Nanoparticles based RNAi

Apart from the natural process and the gene silencing mechanism of RNAi, for non-

viral nanoparticles (NPs) based RNA delivery, three fundamental questions are 

concomitantly proposed: (1) considering the subcellular location for RNA interference 

machinery, when and how the RNA is released from the NPs and transferred to the 

cytosol? (2) how many RNA can successfully reach to the cytosol, and what is the RNA 
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concentration threshold for accomplishing their corresponding functions? and (3) 

whether the RNA should be in a fully free form to fulfill the RNAi?

Understanding the nanoparticles (NPs) transport across the cell membrane is the pre-

requisite for answering these questions. Cellular uptake pathways of NPs can be 

roughly divided into three categories: macropinocytosis, phagocytosis, receptor 

assisted endocytosis (e.g. clathrin-mediated, clathrin-caveolin independent, caveolae-

mediated or other receptors-mediated endocytosis) [12, 16, 17]. Despite various 

internalization processes described in the literature, once taken-up, the NPs are 

entrapped by several endocytic compartments, which are sequentially named as early 

endosomes, late endosomes and lysosomes [18]. A more detailed discussion regarding 

to the physiochemical properties of each compartments will be discussed in Section 6.1. 

Generally, each compartment has a specific time window and physiochemical 

properties [19], and it is important to understand from which compartments are RNA 

released and how efficient this process can be achieved.

So far, the machinery of siRNA delivery through NPs has been the most widely 

investigated. One of the first systematic work was conducted by Zerial et al., who 

adopted siRNA containing lipid NPs (LNPs) with the size ~60 nm for analyzing the 

intracellular trafficking of siRNA [19]. To visualize the siRNA transport process, they 

labelled the siRNAs (which knockdown the expression of destabilized green 

fluorescent protein, d1-eGFP) with fluorescein Alexa Fluor 647 (siRNA-AF647) or 

gold nanocrystals (6 nm, siRNA-gold). Three types of biomarkers, Rabankyrin-5 for 

cell membrane, early endosome antigen 1 (EEA1) for early endosomes and lysosomal-



9

associated membrane protein 1 (LAMP1) for lysosomes, were separately applied for 

identifying endocytic compartments from different stages of transport. Transmission 

electron microscopy (TEM) images first suggested the LNP-siRNA-gold NPs were 

mainly accumulated in the early and late endosomes but not in the lysosomes within 6 

h. Furthermore, time-lapse confocal fluorescent microscopy was applied to observe the 

release of siRNA-AF647 into the cytosol, and the results showed the number of LNPs 

containing endosomes were stable for over 12 min after they were uptake by different 

cells, suggesting the majority of siRNAs were still entrapped in the endosomes. Further 

quantitative evaluation of siRNA release efficacy was achieved by visualizing cytosolic 

siRNA-gold NPs. In line with the confocal results, an endosome release efficiency of 

1.3%, with only 250 siRNA-gold per HeLa cells was observed after 6 h NPs incubation, 

and for in vivo experiments (hepatocytes), the number was further reduced to 186 

siRNA-gold per cell (accounts for 1.7% of the overall siRNA-gold). To explore the 

siRNA intracellular escape time-window, and further understand from which 

endosomal compartment do the siRNAs escape from, the authors proposed two 

mathematical models: (1) a liner siRNA release kinetics, suggesting the release of 

siRNAs occurred at all endosomal stages under a zero-order manner; and (2) a 

sigmoidal siRNA release kinetics, suggesting siRNA is mainly released from a specific 

endosomal compartment. Quantifying the ratio of cytosolic siRNA were achieved by 

TEM through visualizing the siRNA-gold NPs, and the results showed the endosome 

escape of siRNA-gold was in a sigmoidal manner both in vitro (GFP-expressing HeLa 

cells) and in vivo (hepatocytes). Moreover, the data semi-quantitatively showed that 
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siRNA release occurred in a particular yet narrow time-window (< 30 min).

However, the major quantitative observation of the aforementioned work was achieved 

by siRNA-gold NPs, which may have distinct physiochemical properties comparing to 

pristine siRNA. Thus, a more detailed information regarding to the siRNA release 

amount and time-point is also elusive. To solve these problems, Lieberman et al. 

developed a high-dynamic-range (HDR) like confocal microscopy, which can 

maximally promote the bright/dark contrast to distinguish the cytosolic siRNA from 

the densely packed un-released siRNA in endosomes [20]. siRNA (labelled with Alexa 

Fluor 647, siRNA-AF647) was encapsulated by LNPs and the precise quantification of 

cytosolic siRNA was achieved by monitoring the fluctuation of fluorescent intensity, 

where an intra-endosome fluorescent signal increase suggests the partial LNP 

disintegration, yet an intra-endosome fluorescent signal decrease and cytosol 

fluorescent signal increase indicates the cytosolic siRNA release [20]. In this way, the 

authors found that the endosome siRNA escape was initiated at 5 min after maximal 

EEA1 expression on endosomes (early endosomes). Moreover, the endosome became 

EEA1- when the siRNA release occurred. As a biomarker for immature early endosome, 

the maximal appearance of Rab5 was 3 min earlier than cytosolic siRNA release, 

whereas Rab7+ endosome, a biomarker representing the maturation to late endosome, 

was almost coinciding with the cytosolic siRNA release. In contrast, Rab9 (late 

endosome) markers were observed simultaneously or shortly after the siRNA release, 

and LAMP1 (lysosome) markers became evident only after ~40 min post siRNA release. 

The overall duration of siRNA release only lasted for ~10 min with a burst release 
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duration for 1020 seconds. These results demonstrated a narrow yet particular time-

window for siRNAs endosome escape, and the siRNAs released from 

EEA1−Rab5+Rab7+Rab9±LAMP1– early endosomes within 5–15 min upon cell uptake 

(Figure 2).

Besides of the thoroughly delineated siRNA endosome escape time-point, the authors 

also suggested only few cytosolic copies of the siRNA (< 2000, ~ 2.5 ×10-9 pmol) are 

needed to achieve a maximal gene knockdown efficiency, which is in good line with 

previous results [19, 21]. Moreover, despite by increasing the siRNA concentration 

within the LNPs, one can linearly increase the cytosolic siRNA concentration, yet no 

significant difference was observed in terms of gene knockdown yield [20]. This may 

be mainly caused by the RISC components saturation [22, 23], and the excess siRNA 

that cannot form into RISC could potentially be degraded or excreted from the cell. 

Ultrahigh concentration of siRNA or miRNA may even conversely upregulate the gene 

expression as a result of competitive RISC binding [22, 24, 25], suggesting the 

concentration thresholds for efficient RNAi is low.

Regarding to whether siRNAs should be completely released from the NPs to fulfill the 

RNAi, Lieberman et al. suggested that free siRNA, rather than intact siRNA-LNPs, will 

perform the gene knockdown effects. It is plausible that free RNA will maximally 

perform the RNAi tasks as the steric hindrance may inhibit RNA to interact with the 

targeted genes or RISC. However, it also should be noted that siRNA conjugated or 

entangled with small molecules [26], peptides [27], proteins [28], polymers [29] or even 

NPs [30] may also exhibit gene knockdown potency. For example, Gilleron et al. 
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demonstrated that at the same siRNA concentration (20 nM), LNPs loaded with pristine 

siRNA or LNPs loaded with siRNA conjugated on gold NPs exhibited the same gene 

knockdown efficiency [19]. This is in good line with other reports, suggesting proper 

chemical conjugation, even with macromolecules or particles, may not interfere the 

RNAi efficiency [31-33]. However, chemical modification exhibits a positional effect 

on RNAi activity [34, 35], and readers may refer to more comprehensive reviews 

regarding to the chemical modification of oligonucleotides [36-38].

Overall, the previous machinery explorations of non-viral NPs based RNAi revealed 

the major challenges for the carrier design. These are: (1) NPs should provide robust 

encapsulation and protection towards pristine oligonucleotide for avoiding pre-mature 

degradation; (2) NPs with endosome escape capability are necessary as endosomal 

release is a discrete limiting step of gene knockdown; (3) NPs with responsive burst 

release manner is preferred for maximizing the cytosolic RNA delivery; however, this 

responsive release is not indispensable as only minimal oligonucleotide copied may 

achieve efficient RNAi; and (4) considering the ultrahigh sensitivity for RNAi, proper 

and precise targeting of the nanocarrier may reduce the off-target RNAi induced side 

effects. Therefore, in the following sections, we will sequentially highlight these four 

aspects by illustrating the principle of design of the NPs’ fabrication process for RNAi 

intracellular delivery.
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Figure 2. Endosome maturation process and the corresponding time window for siRNA 

endosome escape. After the primary endocytic vesicles formation, the NPs containing 

vesicles sequentially form into early endosomes (EE) featured with Rab5+. EEs are 

moving in perinuclear space along microtubules (MT), where the conversion of Rab5+ 

EE to Rab7+ EE take places. The endosome escape of siRNA will be initiated just before 

nascent late endosome (LE, Rab9+) undergo homotypic fusion reaction with 

Rab5+Rab7+ EE, where the majority of siRNA will be released within 10-20 seconds. 

The unreleased siRNA will accumulate in LE and lysosome (LAMP1+) for degradation. 

Reproduced and modified with permissions from ref. [39]; Copyright  2011, John 

Wiley & Sons.
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3. NPs synthesis conditions affecting the RNA stability

During the NPs’ synthesis, factors liks pH values, organic solvents, salt/metal ions and 

most importantly, the potentially existed ribonuclease (RNase), may potently affect the 

stability of RNAs and the efficiency of RNAi. Therefore, prior to introducing the 

specific design principles of NPs, we will first discuss about the influence of the 

commonly applied NPs’ synthesizing conditions on the stability of RNA.

3.1 RNase

RNase free environment is a particular requirement for synthesizing RNAi NPs. 

However, maintaining RNase-free condition is a vexing challenge not only because the 

universal existence of RNase, but also due to its ultra-stability. Common ways to 

remove enzymes, such as metal chelation, autoclaving, boiling or UV irradiation cannot 

fully deactivate RNase [40-43]. The commercialized RNase inhibitors are usually not 

broad-spectrum RNase inhibitor but rather inactivating certain RNases, and usually a 

reducing condition by adding at least 1 mM of dithiothreitol (DTT) is required [42]. 

Trivial steps during the NPs synthesis will make the situation more pernicious, therefore 

the best way to keep an RNase-free environment during NPs synthesis should be 

removing the RNase at the first step.

The de-RNase of containers (e.g., beakers and vials) for NPs synthesis can be achieved 

by baking the glassware in 200 ℃ (or higher) for at least 4 h [42, 44]. Although some 

reports suggest treating the glassware with 0.010.1% of diethyl pyrocarbonate (DEPC) 

at room temperature or 37 ℃ for overnight, further autoclave the container to remove 
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the residue DEPC [45, 46], yet, other sources indicate an incomplete DEPC 

decomposing by autoclaving, and the remaining DEPC will react with adenosine 

residues in the RNA to interfere the RNA stability [42, 47]. Therefore, for thermal 

tolerant materials, such as glassware or metal spatula, high temperature baking is the 

most convenient method. For plastics, de-RNase can be achieved by immersing the 

items with 0.1% of DEPC for overnight at room temperature. After rinsing the items 

several times with RNase free H2O, autoclaving them for 15 min at 15 psi (1.05 kg/cm2) 

on liquid cycle [48]. For microfluidic chips, which are also commonly applied for RNAi 

NPs fabrication, no detailed description regarding to the de-RNase process for 

microfluidic chip has been reported, but it has been shown that washing the microfluidic 

channel and equipment with DEPC water [49], the sequential removal of DEPC may 

be achieved by constant RNase-free water, N-2-hydroxyethylpiperazine-N-2-ethane 

sulfonic acid (HEPES) buffer or tris-(hydroxymethyl) aminomethane (Tris) buffer 

rinsing due to the DEPC hydrolysis [48]. Amine or amine derivative based buffer (e.g., 

HEPES and Tris buffer) will accelerate the DPEC hydrolysis, but it should be noted 

that the hydrolysis product, urethane, is a potent carcinogen, which needs further 

caution.

The solutions should be prepared with RNase-free water, and the organic solvent should 

be prepared via filtering through disposable ultrafiltration membrane [50, 51], as RNase 

may be more stable under neat organic solvent [52], and papers have suggested the 

effectiveness of ultrafiltration to avoid RNase contamination [51]. If possible, the 

solutions should be prepared as high concentrated stock solutions and be kept at 20 ℃ 
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[44]. All the solutions cannot be used for long time, therefore it is suggested their 

storing in small aliquots, and discard each aliquot after use [42, 44].

3.2. pH-Values

The pH value is in specific importance for NPs synthesis, as the fabrication process of 

some NPs, e.g. chitosan (CS) or ionizable lipid [53-55], will involve pH-value changes. 

Comparing to DNA linkages, RNA linkages have shown to be on average ~100,000-

fold less stable under physiological condition [56]. This is mainly because of the ribose 

sugar difference between DNA and RNA. Instead of the deoxyribose found in DNA 

(2’-hydride), ribonucleotides is composed by pentose sugar ribose (2’-hydroxyl group, 

Figure 3). The 2’-hydroxyl group is in favor of the nucleophilic attack, where a 

transesterification will take place upon the deprotonated 2’-oxygen attacking the 

adjacent 3’-phosphorus center [57, 58]. As a result, the 3’-5’ phosphodiester bonds are 

cleaved to produce fragments containing 2’,3’-cyclic phosphate and 5’-hydroxyl 

termini (Figure 3) [59, 60]. Thus, most of the RNA is not stable in alkaline pH-value 

due to the 2’-hydroxyl group deprotonation. However, experimental data suggested 

RNA hydrolysis can be both catalyzed by acidic and basic buffers [58, 59, 61]. For 

example, the 3’-5’ phosphodiester bonds cleavage and/or isomerization in acetic acid 

buffers (acetate/acetic acid) showed a buffer concentration dependent manner in a 

second-order kinetics [61]. The major catalytic activity was contributed by buffered 

acid, whereas non-buffer H+ species made minor contribution to the catalytic activity 

[61]. The mechanism for this reaction involves the hydrogen bond formation between 

acetic acid and phosphodiester, and the protonated phosphoryl oxygen is attacked by 
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the 2’-hydroxyl group with acetate functioning as catalyst (Figure 3) [61]. A detailed 

pH stability study was conducted by Lönnberg et al., who investigated the hydrolysis 

profile of 2’- Uracil RNA (3’-5’ UpU) under different pH-values at the temperature of 

363 K, and the pH was adjusted by adding hydrogen chloride or sodium hydroxide in 

acetic acid (0.045 mM)/sodium acetate (0.015 mM) buffer [62]. Results demonstrated 

that the major RNA hydrolysis was observed at the pH < 3 or pH > 7, suggesting RNA 

is still overall more stable in acidic-neutral like conditions compared to alkaline 

solutions. 

Figure 3. Chemical scheme of the RNA hydrolysis. RNA can be hydrolyzed under both 
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(A) alkaline and (B) acidic conditions. However, acid catalyzed RNA hydrolysis is 

mainly observed under acidic buffer instead of plain acid solution.

3.3. Organic solvents

A variety of NPs fabrication methods (e.g., nanoprecipitation, single/double emulsion 

and micellization) will inevitably involve organic solvents, and the solvents choice has 

impact on the RNA stability as RNA secondary and tertiary structure are governed by 

the RNA sequence-dependent interaction, including base stacking, hydrophobic 

bonding and hydrogen bonding, whereas the strength of these interactions is solvent-

dependent. RNA denaturation by organic solvents have long been observed [63, 64], 

however, there are also reports suggesting proper solvents choice may protect RNA 

from degradation [65-67]. Table 1 briefly summarizes the effects of commonly used 

organic solvents on RNA’s stability, which may provide guidance for readers to choose 

the solvent systems. Table 1 is divided into two categories, separately delineating the 

effects of organic solvent on the stability/integrity of RNA and the effects of organic 

solvents on the function of RNAi.
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Table I. Commonly used organic solvents for RNA-encapsulated NPs fabrication and 

the effects on RNA stability.a

Organic 

solvents

Solvent 

percentages a 

RNA Effects Referen

ce

Effects of the organic solvent on the stability/integrity of RNA

MeOH 0%-25% 58-nucleotide 

ribosomal RNA 

(rRNA) fragment

Addition of MeOH stabilizes tertiary 

structure of the RNA linearly correlated with 

methanol percentages

[67]

EtOH 96%-100% Total RNA, 

mRNA

Storage under 70 ℃  for several month 

showed no RNA degradation

[65, 66, 

68]

EtOH 100% Total RNA Some RNA with small segments failed in 

producing RT-PCR products, of note, this 

phenomenon is dependent on the source of 

RNA

[69, 70]

FA 100% Total RNA Formamide protect RNA against RNase 

catalyzed degradation

[71]

DMSO 0%-99.6% Synthetic 

polynucleotide 

rG:rC, double-

stranded 

bacteriophage 

RNA

Major denaturation of RNA was observed in 

DMSO solution with volume ratio higher 

than 40%

[63]

MeOH, EtOH, 

DMSO, DMF, 

ACN, THF, 

acetone, FA

20% Synthetic 11-

nucleotides RNA 

duplex which is 

the substrate of 

hammerhead 

ribozyme

The doublehelical structure of the RNA 

duplex remained stable as confirmed by the 

maintained circular dichroism spectrum of 

the RNA

[72]

Effects of organic solvents on functions of RNAi

Acetone 83% siRNA Preserved RNAi efficiency from siRNA in 

co-solvent

[73]

ACN 9% siRNA Preserved RNAi efficiency from siRNA in 

co-solvent

[74]

Chloroform 90% siRNA Preserved RNAi efficiency from siRNA in 

single emulsion

[75]

EtOH 22.5%-25% siRNA, sgRNA, 

mRNA

Preserved RNAi efficiency from siRNA in 

co-solvent

[1, 76-

79]

MeOH 5%-34% siRNA Preserved RNAi efficiency from siRNA in 

co-solvent

[80, 81]

DCM 4% siRNA Preserved RNAi efficiency from siRNA in 

single emulsion

[82]
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EA 83% siRNA Preserved RNAi efficiency from siRNA in 

single emulsion

[83, 84]

THF 95% siRNA Preserved RNAi efficiency from siRNA in 

co-solvent

[85]

THF/MeOH/ch

loroform co-

solvent

83% THF, 16%; 

MeOH, 45%; 

chloroform, 22%

siRNA Preserved RNAi efficiency from siRNA in 

co-solvent

[86]

aPercentages indicate the volumetric percentage of organic solvent in the organic solvent/water co-

solvent. ACN, acetonitrile; DCM, dichloromethane; DMSO, dimethyl sulfoxide; DMF, 

dimethylformamide; EA, ethyl acetate; EtOH, ethanol; THF, tetrahydrofuran; FA, formamide; MeOH, 

methanol.

3.3. Salt and metal ions

Various aqueous buffers are usually involved in the NPs’ production. However, the 

choice of the buffer may also hinder the stability and integrity of RNAs. Metal ions can 

induce the degradation of RNA under certain conditions, and RNAs are much more 

vulnerable than DNAs. At the zinc concentration of two Zn2+/nucleotide, about 5000 

breaks occur in adenine-containing polyribonucleotides (Poly(rA)) strand for one break 

in a DNA strand [87]. It should be noted that not all metal-binding events trigger RNA 

hydrolysis, and for long RNA strand, metal ion binding is even indispensable for 

preserving the function of RNA by inducing the RNA folding into stable tertiary 

structures [88, 89]. However, this is not the case for oligonucleotides that typically 

contain ~30 nucleotides. The accelerated RNA cleavage is mainly observed in divalent 

metal ions and some lanthanide ions, and the mechanism is similar to alkaline induced 

RNA hydrolysis, as described above (Figure 3) [42, 90], where the metal hydrate will 

interact with the phosphate oxygen, sequentially abstracting the proton from 2’-
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hydroxyl group to induce the phosphate rearrangement [91]. Therefore, the metal 

hydrates with low pKa value exhibit higher RNA cleavage efficiency [91, 92]. This is 

consistent with the results from investigating metal ions induced scission of 

oligonucleotides bearing an acridine [92], where RNA scission efficiency from 

different metal ions is: La3+ ≥ Eu3+ ≥ Lu3+ > Zn2+ ≥ Mg2+ ≥ Ca2+ > Mn2+ > 

Co2+ > Cu2+ > Ni2+; Na+ and K+ showed no obvious effect on RNA hydrolysis. 

Therefore, it is preferred to apply de-ionized water for preparing RNA solution, and to 

avoid metal ion catalyzed RNA scission, 0.1–1 mM of ethylenediaminetetraacetic acid 

(EDTA) can be applied for chelating potential metal contamination [42]. Other specific 

chelators, such as trinitriloacetate (TNA, for Zn2+) or 

ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA, for Ca2+), can also be applied 

based on the NPs synthesizing condition [42]. 

4. RNA encapsulation

The choice of proper materials to formulate and effectively encapsulate RNAs, and 

protect them from degradation is the foremost step for RNAi nanosystem fabrication. 

In this section, we discuss the general methodologies to formulate nanosystems for 

RNA encapsulation, a potential mechanism for effective RNA protection and 

encapsulation, and identify and describe parameters which play a key role in 

encapsulation efficiency and vehicle stability.

To identify recent changes in the materials used for RNAi nanosystem fabrication, we 

implemented a query on the retrievals “nano” + “RNA interfering”, using Scopus 
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Search application programming interface (API) in R software 

(https://github.com/christopherBelter/scopusAPI) [93]. After extracting the keywords 

from the 200 most relevant scientific articles (sorted by their number of citations), we 

manually cleaned the data and selected all relevant words associated with biomaterials 

that appeared in the database. The results suggest changes over time of most commonly 

applied biomaterials for RNA encapsulation. Figure 4 (left: bar plot, right: word cloud) 

provides an illustrative comparison of the frequency of the most relevant words 

associated with materials for two investigated periods (20162018 and 20192021). 

Figure 4. Visualization of the most frequent words related to the materials from 

keywords of scientific papers using Scopus Search “Nano” + “RNA interference” over 

two the periods 20152018 and 20192021. 

4.1. Lipid-based NPs
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Lipid-based NPs (LNPs) have been used to deliver various drug substances, including 

therapeutic RNAs [53, 54, 94, 95]. The majority of the fabricated LNPs consist of four 

main components that include an ionizable lipid, a phospholipid (e.g., 1,2-distearoyl-

sn-glycero-3-phosphocholine, DSPC), cholesterol, and a poly(ethylene glycol)-

conjugated lipid (PEG-lipid) [53]. The ionizable lipid, which is positively charged at 

low pH-values, allows the binding with the negatively charged RNA through 

electrostatic interactions. This ionization is also responsible for the RNA release inside 

endosomal compartments due to the low pH-derived protonation (pH ~ 5) [96], and a 

more detailed discussion regarding to the design of lipid for facilitating endosome 

escape will be presented in Section 6.4, whereas in this section we will mainly focus on 

delineating the mechanism and methodologies of RNA encapsulation by LNPs. One 

major advantages for LNPs is the simplicity of manufacturing – LNPs are usually 

prepared in a rather straightforward method. They can be both produced through the 

most basic bulk method, such as static mixing or pipet mixing [97-99], that is the lipid 

compositions are dissolved in water miscible organic solvents like ethanol or acetone, 

whereas the RNAs are dissolved in aqueous solution. Rapid mixing is then used for 

spontaneous formation of the RNAs containing LNPs. LNPs can be dialyzed in aqueous 

buffer (such as PBS) to remove the organic solvent and free RNAs, and the yielded 

product are diluted in aqueous buffer to achieve the desired final RNA concentration. 

Microfluidic methods have also been widely applied in RNAs containing LNPs 

fabrication due to its advantages in reducing the mixing time and batch-to-batch 

variation [76, 100, 101]. A proper control over the flow rate, flow ratio with the 
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microfluidic technology can also avoid post-treatment like in bulk methods, such as 

dialysis or direct dilution [76]. 

The effective protection from LNPs towards the encapsulated RNAs is generated from 

the structure of LNPs. The phospholipid and cholesterol are essential for the lipid 

structure, which may provide preliminary protection towards the encapsulated RNAs 

[102], where the PEG-lipid shields the RNA from degradation, while providing in 

tandem colloidal stability and stealth properties [102]. Leung et al. elaborated the 

potential mechanism of the RNAs encapsulation process by LNPs [103]. The cryo-

TEM images of a typical siRNA containing LNPs (constituted by 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC), cholesterol and an ionizable cationic lipid 

DLinKC2-DMA) showed that, in contrast with bilayer vesicle nanosystems, LNPs 

showed an electron-condensed core, which is further confirmed to be the encapsulated 

siRNA complexed composed by siRNA, cationic lipid and the cholesterol. Along with 

the increasing siRNA concentration, more cationic lipid will be transferred from 

external lipid monolayer to the cavity to form into complex with siRNA, and this 

lipid/siRNA complex renders effective protection towards siRNA. Sequential 

molecular modelling demonstrated that an aqueous compartment inside of the LNPs 

cavity, this periodic structure is composed by nucleic acids and the polar moiety of the 

lipid, which is further surrounded by cholesterol (Figure 5A), whereas the PEG layer 

was consistently presented in the outer layer to provide further shielding and protection. 

However, a different RNAs packing model was recently proposed by Kulkarni et al., 

who investigated the LNPs morphology changes during the siRNAs encapsulation 
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process with pH changes [104]. An improved cryo-TEM instrument with higher 

acceleration voltages (300 kV) and better detection was adopted for improving sample 

penetration to better image the LNPs core. The authors suggested a more detailed 

description regarding to the siRNA encapsulation process, which is initiated by the 

formation of small vesicles that contain siRNA between closely apposed lipid 

monolayers at lower pH value, under which the ionizable lipids are protonized to be 

cationic. With increased pH-value, the deprotonation of ionizable lipids will facilitate 

fusion of these small vesicles due to the reduced inter-vesicle electrostatic repulsion. 

Along with this process, siRNA is packed into a closely apposed lipid bilayer, which 

will further sandwiching the siRNA and segregate it from the outer layer of LNPs, and 

this process eventually halted by the phase separation of PEG-lipid (Figure 5B). This 

observation is consistent with a more recent study by the same group [98], where they 

showed the gradual absence of the amorphous solid lipid core with increasing siRNA 

loading concentration (Nitrogen/phosphorous ratio, N/P, decreasing from 3 to 1), 

indicated the encapsulation of siRNA converts associated ionizable lipid into a form of 

siRNA/lipid/cholesterol complex. It should be noted that, different from previous 

molecular-modelling results [103], these findings suggested the encapsulated siRNA 

will not disperse in a “currant bun” pattern inside of the LNPs (Figure 5A), but rather 

densely packed by the lipid bilayer, and at high N/P ratio, the redundant lipids will be 

enriched in the cavity center in amorphous oil-phase like state. 

Overall, these studies suggest that the potential mechanism for the RNAs encapsulation 

and protection by LNPs is due to the RNAs/ionizable cationic lipid/cholesterol complex 
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formation inside of the LNPs, where the surface lipid are transferred into the LNPs core 

along with RNAs loading.

Figure 5. (A) Molecular-modelling approach for illustrating the RNAs encapsulation 

process by LNPs. Ionizable cationic lipid is shown in yellow, cholesterol in pink, DSPC 

in gray, lipid polar moiety in cyan, PEG-lipid in violet, and nucleic acids (duplex DNA) 

in red; water not shown for clarity. (B) Different from the “currant bun” model as shown 

in (A), new model is purposed for describing the RNAs encapsulation process, where 

siRNA containing small vesicles are first formed under low pH value (pH =4). Along 

with the pH value increase, neutralized ionizable lipid start to fuse with each other and 

in the end, a “siRNA sandwich” structure is formed where siRNAs are tightly packed 

by closely apposed lipid monolayers, and the redundant lipid will accumulate in the 

cavity center in an oil-phase. Modified and reproduced with permission from (A) ref. 

[105]; Copyright  2012, American Chemical Society; and (B) ref. [104]; Copyright 

 2018, American Chemical Society.
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Considering the mechanism and process of RNA encapsulation by LNPs, 

corresponding parameters can be tailored to optimize the size, stability of LNPs and the 

encapsulation efficiency of RNAs. Formulation optimization majorly accounts for the 

satisfied physiochemical characterization of LNPs. However, conventional formulation 

optimization process is vastly dependent on phenomenological or empirical 

approaches, and further understanding of the RNAs encapsulation mechanism and 

process may provide an alternative practical guideline for promoting the LNPs 

performance. For example, considering the theoretical LNPs model established by 

previous studies [103-106], under higher N/P ratio (such as 3 or 6, which is the typical 

formulation applied clinically [107, 108]), the redundant bulk of the lipids will 

accumulate into a central oil phase [104], therefore the stability of corresponding LNPs 

may be affected by the solubility of the lipid components with one each other. Another 

example, in a typical LNPs formulation composed by ionizable cationic 

lipid/DSPC/cholesterol/PEG-lipid, the stability of the corresponding LNPs is 

dominated by the proportions of each components, especially the proportions of 

ionizable cationic lipid and cholesterol. As considering the solubility of cholesterol in 

ionizable lipid oil phase is only 8 mol-%, and an equimolar level of cholesterol is 

presented in the DSPC surface monolayer [109], with the formulation of ionizable 

lipid/DSPC/cholesterol/PEG-lipid = 50/10/38.5/1.5 (mol-%), only 14% of the total 

cholesterol can be dissolved and well dispersed in LNPs, whereas the surplus 
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cholesterol may be potentially precipitated into crystalline form and affect the stability 

of the LNPs. 

Understanding the RNAs loading process may also provide guideline for maximizing 

the encapsulation efficiency. As RNAs are densely packed by the ionizable lipid 

bilayer, which is stabilized by cholesterol, thus it is intuitively speculated that the ratio 

and contents of lipid and cholesterol may govern the RNA loading capacity of LNPs. 

Cullis et al. [98] demonstrated that with a fixed component of LNPs containing 2,2-

dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (KC2, ionizable lipid), DSPC 

(helper lipid), cholesterol and PEG-lipid, when the cholesterol proportion is lower than 

2.5 mol-%, the siRNA encapsulation efficiency is negligible (< 10%), whereas this 

number is increased to ~40% when cholesterol reaches to 10 mol-%, and the siRNA 

encapsulation efficiency is further progressively enhanced to over 80% at 20 mol-% of 

cholesterol. Simply enhancing the cationic lipid concentration (94 mol-%) showed 

reverse effects on siRNA encapsulation efficiency, confirming the stable formation of 

siRNA/ionizable lipid complex need the stabilization effects from cholesterol. Despite 

the addition of helper lipids (in the current case, DSPC) will not directly participate in 

the formation of siRNA/lipid complex [104-106, 110]; however, as we discussed above, 

due to the limited solubility of cholesterol in ionizable lipid oil-phase [104, 111], the 

addition of DSPC amplify the siRNA encapsulation efficiency by preventing crystalline 

cholesterol formation and stabilize the siRNA/lipid complex. 

The strategy by tailoring cholesterol to optimize the RNA encapsulation efficiency was 

also recently investigated by Patel et al. [112], who demonstrated the cholesterol 
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replacement with other analogs like betuline, lupeol, ursolic acid, and oleanolic acid 

significantly affects the RNAs encapsulation efficiency of LNPs. Results suggested that 

for those cholesterol analogs wherein the C-20 to C-27 tail is modified into a 5th ring 

structure (Figure 6), the RNAs encapsulation efficiency is dramatically reduced to < 

50%. This phenomenon can also be explained by the aforementioned mechanism that 

the existence of extra ring structure in the cholesterol analogs yields additional steric 

hindrance, which disturbs the regular organization of lipid component [113], and leads 

to poor encapsulation of RNAs.

Figure 6. Chemical structure of cholesterol and its corresponding analogues. The 

addition of 5th ring in cholesterol tail dramatically reduces the encapsulation efficiency 

of siRNAs. Modified and reproduced with permissions from ref. [96]; Copyright  

2020, Springer Nature.

The mechanism of RNAs encapsulation by LNPs can also be adapted in guiding and 

interpreting cationic lipid choice. Lou et al. [114] investigated the impact of the cationic 
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lipid selection on RNAs encapsulation and delivery. The authors used a variety of 

ionizable lipids, including 1,2-dioleoyl-3-trimethyl ammonium-propane (DOTAP), 

1,2-dimyristoyl-3-trimethyl ammonium-propane (DMTAP), dimethyl dioctadecyl 

ammonium (DDA) and 1,2-stearoyl-3-trimethyl ammonium-propane (DSTAP). The 

most obvious difference was observed between DOTAP and DSTAP. The only 

structural difference is that DSTAP contains two saturated aliphatic tails, while DOTAP 

contains a cis-double bond in each of its two aliphatic tails. Whereas the RNAs 

encapsulation efficiency from DSTAP based LNPs was dramatically reduced from 97% 

to 70%. Although the authors did not further elaborated the potential mechanism behind 

this phenomenon, previous studies demonstrated that the existence of double bond in 

the hydrophobic tail potentially increases the lipid fluidity, and contributed to the 

stabilization of lamellar phases of the lipid [115, 116]. This feature may further 

contribute to the maintenance the opposed bilayer structure of RNA/lipid complex, as 

such promote the encapsulation efficiency. Similar phenomenon was also observed by 

Ball et al. [97], who have noticed the increasing proportion of DOPE (contain cis-

double bond) along with decreasing the proportion of DSPC (saturated tails) 

progressively increased the encapsulation efficiency of both siRNAs and mRNAs.

4.2. Polymeric NPs

Polymer NPs constitute an alternative approach for the delivery of various 

oligonucleotides [117-119]. The precise control over their physicochemical properties 

and architecture, using bottom-up chemical approaches, provides a significant 

advantage over the lipid-based systems described above [120]. In fact, the various 
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chemistries allow for the fabrication of nanoparticles with tailor-made properties like 

control over the loading and release profiles, degradability, and stimuli-responsiveness 

[119, 121, 122]. The practical issues regarding to the particular cautions related to 

synthesizing conditions (organic solvents, pH, aqueous solutions etc.) are discussed in 

Section 3. Here, we will mainly focus on parameters which may affect the RNAs 

encapsulation by synthetic polymeric materials and the corresponding manipulating 

methods. Similarly, prior to introducing the detailed discussion regarding to the RNAs 

encapsulation and release from polymeric NPs, we first introduce the general RNAs 

encapsulation process in different polymeric materials. 

As we discussed previously, in LNPs, oligonucleotide binding is governed by two main 

contributing interactions, electrostatic and hydrophobic. The former are responsible for 

the RNA binding and indirectly control the loading efficiency, where the latter are 

responsible for nanoparticle stabilization and RNAs’ degradation protection. Evidently, 

the RNAs’ encapsulation efficiency and release profile, the degradation protection 

efficiency and the nanoparticle’s location where RNA resides in, are depending on the 

used polymer and the approach used for the nanoparticle synthesis. Hydrophobic ionic 

polymer, such as PLGA, can only encapsulate the RNA through double-emulsion 

method to load the siRNA in its interior for protecting it from exogenous factors [123], 

where a positively charged polymer will result in a more ‘exposed’ RNA binding [124]. 

In the case of a hydrophilic/hydrophobic co-polymer (Figure 7), the RNA’s residency 

and subsequently the protection efficiency will be determined by which interacting 

force prevails during nanoparticle synthesis. Finally, and as it is discussed later [125, 
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126], RNAs can also reside in the interspace of polymer brushes resulting in core-

independent oligonucleotide-delivery nanocarriers. Notably, another driving force for 

RNA binding that is not commonly used, but should be considered, is intercalation 

[127]. As Zhou et al. reported [127], the use of intercalating groups in siRNA-loaded 

nanocarriers enhances siRNA protection at physiological pH, over nanocarriers that 

present only hydrophobic groups. 

Besides the non-covalent approaches that are mainly used due to their simplicity in the 

fabrication of RNA-loaded nanoparticles, covalent binding has also been reported [128, 

129]. Although covalent binding improves stability and pharmacokinetic profiles, the 

higher complexity during nanoparticles’ formulation makes this approach less 

attractive compared to the ‘easy’ non-covalent binding.

Figure 7. RNAs encapsulation model by different materials including: (A) chitosan; (B) 

PEI; and (C) PLGA. Modified and reproduced with permissions from ref. [130]; 

Copyright  2017, Elsevier B.V.

As described above, the binding of the chosen RNA-therapeutics is mainly achieved 

through electrostatic interactions between the positively charged groups of specific 
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polymers (e.g., poly ethylene imine-PEI and poly amidoamine-PAMAM) and the 

negative charge of the oligonucleotides. Notably, the positively charged polymer amine 

groups (N = nitrogen) to the negatively charged nucleic acid phosphate groups (P) are 

among the most important physicochemical parameters determining properties like 

stability, surface charge, and size. As a result of the low charge of siRNA, high N/P 

ratios result in higher RNA complexation. However, the higher this ratio is, the higher 

the positive surface charge and the higher the toxicity. 

Therefore the optimization of N/P ratio is the preliminary step for efficient RNAs 

encapsulation, and a proper N/P ratio can improve complexation without increasing the 

cationic polymer. For example, Yu et al. [131] presented a strategy that involved the 

use of polymerized siRNA (multi-siRNA). This strategy resulted in increased charged 

density and chain flexibility in the multi-siRNA, leading to a higher complexation 

degree and improved biological stability even at a low N/P ratio. The multi-siRNA was 

complexed with PEI through a hybrid rolling circle amplification (RCA) co-carrier. As 

it was demonstrated, it could not be replaced by other high molecular weight polymers. 

Degradation studies of the PEIy-RCA18-siRNA (N/P = 2) showed no siRNA 

degradation, where the free RCA18-siRNA degraded in just thirty minutes. Different 

N/P ratios were tested, resulting in low cytotoxicity when N/P ≤ 6. However, a higher 

N/P ratio was necessary (N/P=10) for effective transfection, ranging from 24% to 58%, 

depending on the used formulation (Figure 8).
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Figure 8. Illustration of the direct complexation of naked siRNA by PEI and the 

complexation utilizing RCA product as a co-carrier for siRNA transfection. 

Reproduced with permission form ref [131]; Copyright 2019, American Chemical 

Society.

The optimized N/P ratio can also be affected by the length of RNAs. In a different study 

performed by Zhang et al. [132], PEI was conjugated with β-cyclodextrin to deliver 

single guide RNA (sgRNA). For N/P ≥ 20, all plasmids ranging from 3487 to 8506 

base pairs formed large but loose complexes with cyclodextrin. When N/P reached 60, 

all plasmids was fully condensed into nanocomplexes with the size ~200 nm. When 

higher N/P ratios were used (≥ 60), induced apoptosis was observed.

Besides of the amine density, other factors like the backbone structure of the polymer 

also affects the encapsulation and release for RNAs. Blersch et al. [133] created a 

library of light-responsive nanoparticles (160 formulations) exhibiting 
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physicochemical diversity, aiming at studying their ability to act as nucleotide-delivery 

systems for siRNAs or miRNAs. Polymers with structural diversities were produced by 

Michael-type addition chemistry, which was based on the reaction between a photo-

cleavable moiety [(2-nitro-1,3-phenylene)bis(methylene) diacrylate] with a set of 

bisacrylamide and amine monomers. Among which, only 14 types of the polymer 

exhibited siRNA encapsulation efficiency higher than 80%, and the authors suggested 

that the encapsulation efficiency of siRNA was rather not solely dependent on positive 

zeta-potential of the polymer, but also correlated to existence and type of aliphatic 

moieties in the polymer backbone. As the polymers prepared by bisacrylamide and 

amine monomers containing linear hydrophobic chains showed better chances for 

higher siRNA binding efficiency, whereas the polymers containing aromatic rings may 

interfere the siRNA encapsulation process.

It should be noted that RNAi vectors are usually composed as “hybrid materials”, where 

different type of materials are adapted simultaneously for achieving different purposes. 

For example, the biocompatible anionic polymer PLGA has been applied in 

encapsulating siRNA/cationic lipid complex to reduce the toxicity of the cationic lipids 

and further protect the siRNA from degradation with robust polymeric matrix [73]. The 

potential mechanism of LNPs encapsulation by hydrophobic PLGA was investigated 

previously by Jiang et al. [134]. Dissipative particle dynamics (DPD) simulations were 

carried out to simulate the dynamical behavior between PLGA and lipids on the 

molecular scale. As a result of the surface tension, the lipids will form into a reverse 

micelles on the surface of water. Upon the addition of PLGA, PLGA molecules will 
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shrink under the interfacial tension between PLGA and water, along with the 

encapsulated small reverse micelles fusing to one bigger micelle (Figure 9A).

Polymers can also be conjugated with other materials for efficient RNA encapsulation. 

For example, Zhang et al. conjugated PAMAM with PEG2k-DOPE and mPEG2k-

DOPE, creating mixed dendrimer micelles (MDMs) [135]. Subsequently, the MDMs 

were coated with HA-conjugated DOPE aiming at ‘hiding’ the positive charge and 

provide targeting towards CD44+ cancer cells. When HA-DOPE to MDMs ratio was 

higher than 0.5, then a negative surface charge, followed by a complete complexation, 

was observed. The HA-DOPE/MDMs prevented siMDR-1 degradation in vitro, 

improved serum stability, and demonstrated decreased cytotoxicity compared to 

PAMAM alone.

Besides of that, several studies also focus on core-independent approaches by using 

polymer brushes. Polymer brushes constitute macromolecular structures with polymer 

chains densely tethered to another polymer chain or the surface of various structures 

(e.g., NPs) through covalent or non-covalent binding [136-139]. These brushes cover 

the NPs’ core or the surface they are applied to and allow the complexation of various 

therapeutics, including RNAs in the interspace, and the size and stability can be feasibly 

tailored by manipulating the characters of NPs core [125]. Polymer brushes reduce 

protein adsorption while in parallel enhance the oligonucleotide complexation due to 

an entropic stabilization, leading to stable oligonucleotide retention.

An example of the use of polymer brushes for RNA delivery was reported by Li et al. 

[125], where poly (dimethyl amino ethyl methacrylate) (PDMAEMA) was used for the 
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delivery of oligonucleotides with 22 base pairs. The PDMAEMA polymerization 

process is initiated on the silica NPs surface, and copolymer, poly (dimethyl amino 

ethyl methacrylate-b-oligo ethylene glycol methacrylate (PDMAEMA-b-OEGMA) 

brushes can further conjugated on the NPs surface. The existence of robust silica NPs 

core could yield a better control over size and NPs stability, whereas the existence of 

dense polymer brush (0.5 polymer chain/nm2) will facilitate the RNAs encapsulation. 

The authors noticed that the polymer density increase can only enhance the 

encapsulation efficiency for the nucleic acids smaller than 100 base pairs. To further 

understand the encapsulation mechanism by such method, the authors applied surface 

plasmon resonance (SPR) chips whose surface is covered by PDMAEMA-b-OEGMA, 

then 0.5 μg oligonucleotides was injected in the chip for evaluating the interactions 

between polymer brushes and nucleic acids. The results suggested the nucleic acid 

encapsulation process is kinetically limited by molecular crowding, and the entropic 

drive for the adsorption of nucleic acids is related to the molecular size, where 

oligonucleotides (RNAs with the size of 22 base pairs) could penetrate into the core of 

the polymer brushes to show the best entropic stabilization, whereas large DNA plasmid 

are mainly anchored on the surface of polymer brush (Figure 9B-C). The main reason 

for the oligonucleotides penetration may be due to the frustrated conformation of 

polymer chains upon binding with RNAs [140], as when some hydrophobic groups of 

polymers are inserted in water molecules, the entropic effect leads to a rearrangement 

of water molecules around the non-polar groups of polymers to stabilize the structure 

[141].
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Figure 9. (A) Snapshots of DPD simulation to understand the lipids encapsulation 

process by PLGA. Water is shown in green, lipid head in red, lipid tail in yellow, and 

PLGA in magenta. (B) Quantitatively evaluation of nucleic acid encapsulation 

efficiency by brushes polymers with different polymer density. (C) Schematic 

illustration of the interaction between nucleic acid molecules with different base pair 

with PDMAEMA brushes. Reproduced with permission form (A) ref. [134]; Copyright 

 2015, Wiley-VCH; and (B-C), ref. [125]; Copyright 2018, American Chemical 

Society.

4.3. Biomacromolecules

Biomacromolecules constitute another class of material used for oligonucleotide 

delivery [142-145]. Although the term includes various sub-classes like carbohydrates, 
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proteins, and nucleic acids, due to the brevity concern, we will only focus on 

carbohydrates in this section. Among these, polysaccharides (e.g., chitosan and 

dextran) and glycosaminoglycans (e.g., hyaluronic acid) are the most studied 

carbohydrates for RNA delivery. As in lipid and polymer NPs, the various RNAs are 

complexed with the biomacromolecules through electrostatic interactions. Therefore 

the general guideline for optimizing the RNAs encapsulation also fits the principles 

described above. For example, cationic polysaccharides chitosan has long been 

investigated for oligonucleotides encapsulation, and previous studies suggested the 

molecular weight, degree of deacetylation, the chitosan salt form used, and N/P ratio 

could affect the RNA encapsulation efficiency [146, 147], however the underlying 

mechanism can be potentially attributed to the altered electrostatic interactions. For 

example, the work conducted by Holzerny et al. measured the binding thermodynamics 

between siRNAs and chitosan with different molecular weight (44 kDa, 63 kDa, 93 

kDa and 143 kDa) and deacetylation degree (ranging from 78% to 86%) [148]. The 

results suggested, albeit the different molecular weight and deacetylation degree, the 

chitosan siRNA binding enthalpies (ΔHbind) showed no significant difference among 

the tested chitosans (Figure 10), suggesting the binding type is the same for all types 

of chitosans. However, experimental molar binding stoichiometry (Nsat) was 

significantly lower than theoretical value, and this phenomenon was more obvious for 

chitosan with larger molecular weight, as the relative differences between experimental 

and calculated theoretical values between 44 kDa chitosan was only 86%, whereas this 

number reduced to 69% for 143 kDa chitosan (Figure 10). The difference can also be 
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explained as previously [149], larger chitosan with higher viscosity will hinder the 

electrostatic interactions. This phenomenon was also consistent with the saturated N/P 

ratio (N/Psat) and binding constant (kD), whose values are progressively increased with 

higher Mw and lower deacetylation degree. 

Figure 10. Representative examples of binding isotherms of interactions of chitosans 

with molecular weight (Mw) of 44 kDa (up-left), 63 kDa (up-right), 93 kDa (down-left) 

and 143 kDa (down-right) with siRNA, and the corresponding quantitative data. 

Reproduced with permission form ref [148]; Copyright  2012, Elsevier B.V.
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Practically, two parameters are mainly involved in optimizing the encapsulation 

efficiency of oligonucleotides by macromolecules. First one is the N/P ratio. Different 

from lipids based materials, where the N/P ratio is rather low. For polysaccharides, 

despite the theoretical saturated N/P ratio is around 1 [148], the actually applied N/P 

ratio usually ranges from 20 to 300 [147, 148]. As results suggested low N/P ratio will 

yield physically unstable complexes. Previous study showed that for chitosan/siRNA 

complex with the N/P ratio of 5, a severe aggregation can already be observed only 

after 15 min post complexation even under high ionic condition (150 mM NaCl) [150]. 

The RNA encapsulation efficiency and the colloidal stability will increase along with 

increased N/P ratio [147, 150]; however, this may result in a limitation in the release of 

the encapsulated RNA [151, 152]. 

The pH-value during RNAs encapsulation process also heavily impact the 

encapsulation efficiency, as their surface charge is closely dependent on the pKa value 

[153]. For example, Alameh et al. showed the effect of chitosan’s deacetylation degree, 

molecular weight, and N/P ratio on the siRNA encapsulation efficiency at two different 

pH levels. Under pH 6.5, the siRNA encapsulation efficiency was almost independent 

of any of these parameters, whereas a sharp contrast was observed under pH 8, that an 

efficient siRNA encapsulation can only be achieved with high N/P ratio, high chitosan 

molecular weight and high deacetylation degree (Figure 11) [150]. As under high pH-

value, chitosan glucosamine units become deprotonated, and their interaction with 

siRNA phosphate groups decreases to promote payload release [153]. The general pKa 

values for commonly used carbohydrates are, hyaluronic acid ~3.0 [154, 155], dextran 
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~ 6.0 to 7.1 [156, 157], and chitosan 6.4 to 6.6 [158, 159]. These values allow an optimal 

design for siRNA encapsulation/complexation since below a certain pH the elctrostatic 

interactions between the positively charged biomacromolecule and the RNA 

therapeutic are enhanced.

Figure 11. Synthesizing NPs under the pH value above the pKa shows a significant 

impact on the encapsulation efficiency of siRNA. Figures are modified and reproduced 

with the permission from ref [150]; Copyright  2018, American Chemical Society.

The complexation between anionic carbohydrates, such as dextran or hyaluronic acid, 

and oligonucleotides is challenging, and the common way to solve this issue is through 

chemical modification with cationic moieties [160, 161]. The chemical modification 

can simultaneously be achieved by on-demand linkages to further promote the release 



43

behavior of loaded RNAs. As an example, Chen et al. [162] developed acid-degradable 

dextran NPs (conjugation of dextran with amine-containing molecules through acetal 

bonds) cleaved at low pH, allowing the encapsulated siRNA to be released 

intracellularly. Similar example by Qu et al. conjugated two different molecular weight 

dextran with two other peptides creating four independent systems that were tested for 

their knockdown efficiency on Proprotein convertase subtilisin/kexin type 9 (PCSK9) 

expression on HepG2 cells. The used peptides were composed of arginine (R) and 

lysine (K) that provided the nucleic acid binding domain, histidine (H) as the RNA 

binding moiety as well as facilitating endosome escape, and cysteine as a linker 

between dextran and short peptides [156]. These results showed that higher arginine 

content demonstrated better RNAs encapsulation as well as transfection efficiency.

4.4. Inorganic NPs

Major advantages from biocompatible inorganic NPs come from their ultrahigh 

stability and highly advanced physiochemical properties, such as electro, optical, 

thermal and magnetic capabilities, making them not only suitable for loading various 

type of cargos, but also highly efficient for imaging and diagnosis [163-165]. Different 

RNA encapsulation methods are adapted based on the morphology of inorganic NPs 

(dense, porous or hallow). For NPs with dense core, such as gold NPs or quantum dots, 

the efficient oligonucleotides loading can be achieved by simply covalent conjugation. 

Firstly proposed in 1996 [166], the most commonly applied covalent conjugation 

method is achieved by utilizing NPs with thiolated surface to stably form disulfide 

bonds with thiol-terminated synthetic RNAs, and the disulfide bonds can further be 
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cleaved by glutathione (GSH) to steadily release the RNAs [167, 168]. Besides of the 

disulfide bonds, other chemical groups such as maleimide, haloacetyl and pyridyl 

disulfide are also widely applied in NPs functionalization to form into RNAs-NPs 

conjugates [169, 170]. The RNAs loading or conjugation efficiency by this method is 

vastly dependent on the morphology of the NPs and the conjugation method. For 

example, Lei et al. demonstrated how the size of NPs affect the siRNA conjugation 

capacity [170]. Gold nanoclusters with the size of 2.6 nm exhibited near 100-fold higher 

siRNA conjugation efficiency (226 µmol siRNA per g of gold cluster) comparing to 

gold NPs with the size of 13 nm (2.62 µmol siRNA per g of gold NPs), and the authors 

attributed the difference to the smaller size induced larger specific surface area [170]. 

Besides of direct conjugation, the other commonly applied method is by modifying the 

NPs with cationic polymers, either by covalent conjugation or layer-by-layer deposition 

[167, 171], to facilitate the electrostatic binding of RNA, as we discussed in Section 

4.2.

RNAs can also feasibly resides in inorganic NPs with porous or hollow cavity (porous 

silica/silicon NPs, carbon based NPs) [164, 172-174]. However, the issue of burst 

release has emerged as a major obstacle for directly loading the RNAs in porous or 

hollow nanostructures, and the engineering strategy by creating a core/shell structure 

has been extensively investigated to solve this issue [175]. The shell formation process 

can be further roughly divided into post-shell formation, where the RNAs are first 

loaded into the porous/hollow nanostructure, and the NPs are sequentially encapsulated 

by a shell structure [165, 176]; and in-situ shell formation, where the RNAs are 
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simultaneously co-encapsulated along with the shell deposition [177, 178]. For the 

post-shell formation protocol, the RNAs loading capacity is highly dependent on the 

porosity of the core inorganic materials. Based on the equation proposed by Sang et al. 

to describe absorption isotherm of biomolecules at their isoelectric point on nanoporous 

materials [179], using Equation (1):

(1)Γinternal = (NporeM
NAδ

)(Vt

Ap
)

where, Γinternal indicates the totally absorbed materials in the pores per mass of porous 

NPs, M is the molar mass of the biomolecules, NA stands for Avogadro’s number, δ 

stands for the dimension of the biomolecules, Vt is the total pore volume, Ap is average 

cross-sectional pore area, and Npore stands for the theoretical number of biomolecules 

that can reside in a single pore, which is correlated with the dimension of the 

biomolecules and pores. 

Considering the typical hydrodynamic dimension of siRNA with 20 base pairs is 6 nm 

× 3 nm [180, 181], the degree of cationic groups functionalization may only exhibit 

low-to-no effect on increasing the siRNA loading capacity in mesoporous materials 

with the pore diameter lower than 3 nm. This hypothesis was confirmed by Steinbacher 

et al. [182], who demonstrated for mesoporous silica NPs with pore diameter of 4 nm, 

degree of surface functionalization by cationic diethylenetriamine (DETA) showed 

minimal effects on siRNA loading degree. As with the increasing amounts of amine 

functionalization (pristine silica NPs treated with 0.5%, 2.5%, 15% DETA), the 

maximum specific adsorption of siRNA only marginally increased from 14 μg 
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(siRNA)/mg (silica NPs) to 18 μg/mg. However, a sharp contrast was observed for 

mesoporous silica NPs with pore diameter of 8 nm and 15 nm, where a ~3-fold 

maximum siRNA adsorption was observed (13 μg/mg vs. 36 μg/mg) [182]. It should 

be noted that, large pore size will conversely result in a weaker siRNA interaction at 

higher siRNA loadings, as the dissociation constant, Kd, increased with increasing 

amounts of amine functionalization. As a result, in a typical amine-functionalized 

mesoporous silica NPs with pore diameter ranging from 4 nm to 15 nm, 2040% of 

loaded siRNAs will be immediately released once upon re-dispersing into aqueous 

solution [182]. Thus, one potential issue for post-shell formation method is the potently 

reduced encapsulation efficiency due to the burst release of RNAs during shell 

formation process.

Typical in-situ shell formation process is usually achieved by adapting calcium ions. 

Calcium ions chelate and condense RNAs through the Ca2+/P binding, and the Ca–RNA 

complexes can be reversely disintegrated by competitive Ca2+ chelating agent or acidic 

condition [183, 184]. Taking advantages of the RNAs capturing capability, an in-situ 

shell formation process was developed for sealing the porous silicon NPs. As a result 

of the fast silicon backbone degradation, a high local concentration orthosilicic acid 

will be generated at the pore site. Upon the addition of solutions containing high 

concentrations of Ca2+ and siRNA, the porous structure will be sealed by the in-situ 

formed Ca2SiO4 shell structure and siRNA will be simultaneously entrapped in the shell 

structure [177, 178]. Similarly, calcium can also anchor and mineralize lipid or polymer 

layer to stabilize the nanostructure or generate a responsive RNAs release manner [185-
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187]. Comparing to directly adapting shell materials for loading RNAs, the core/shell 

formation is featured with self-limiting growth behavior, therefore can feasibly control 

the physiochemical characters of the nanocomplex by altering the core structure, and 

inorganic NPs core supported shell structure may also promote the stability of 

nanocomplex.

5. Targeting strategies

Efficient and precise targeting capability of NPs are of particular importance for NPs 

based RNAi due to the ultrahigh sensitivity of RNAi. However, in the field of NPs-

based RNAi, targeting methods showed no major difference with other NPs based 

targeting modalities, and readers may refer to more specific reviews regarding to the 

NPs targeting [188, 189]. In this section, however, we will only discuss the tendency 

of the recent studies, and highlight their outcomes in detail.

We identified recent changes over time on the target of NPs based RNAi by 

investigating changes in keywords from the top 200 most relevant scientific papers that 

include “nano” and “RNA interfering” over the periods 20162018 and 20192021. 

We manually selected relevant words associated with organs, tissue, and cells to focus 

on the target of NPs based RNAi. Our results (Figure 12) suggest that cancer targeting 

remains the hottest topic for NPs based RNAi throughout the two investigated periods. 

However, while NPs based RNAi have been applied into broader diseases criteria, we 

observed an increasing tendency in research works focused on manipulating the 

immune responses or navigating the NPs interaction with immune cells, as reflected by 
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an increase over time of the frequency of keywords, including “Immunity”, 

“Inflammation”, “Vaccine”, “Cytokine”, “Macrophages”, and “Lymphocytes”. Table 

2 lists typical studies that conducted RNAi for immune cells during the recent years. 

Immune responses are pervasively involved in multiple diseases and can even be main 

pathogenesis regulator [190, 191]. Massive immune cells infiltration and accumulation 

is usually a key feature for lesional tissue [192, 193], therefore the targeting efficiency 

for organ or cells, such as heart and brain, which are conventionally thought to be 

difficult for targeting, can also be potentially increased by manipulating the NPs 

interactions with immune cells, and thus, are also drawing more attention for 

investigation (Figure 12).

Figure 12. Visualization of the most frequent words related to the organ/tissue/cells 

from keywords of scientific papers using Scopus Search “Nano” + “RNA interference” 

over two time periods: 20162018 and 20192021.
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Table 2. Recent examples of navigating NPs through targeting to immune cells.

Organ Targeted immune cell 

subsets

Targeting method Refer

ence

Microglia Radiation therapy facilitate macrophages recruitment + iRGD peptide 

modification for recognizing αvβ3 and αvβ5 integrins

[194]

Brain

Microglia Surface modification of mannose [195]

Macrophages Altering the size of NPs [196]

Macrophages Surface modification of S2P peptide for targeting stabilin-2 receptor [73]

Macrophages Surface modification of mannose [197]

Macrophages Surface modification of CD36 antibody [198]

Heart

Macrophages Passive targeting by chitosan based NPs [158]

Tumor associated 

macrophages

Passively uptake by tumor associated macrophages [199]

M2 macrophages Surface modification of mannose [200]
Solid tumor

Circulating monocytes Changing the surface zeta potential from neutral to cationic [201]

Spleen and 

lymph nodes

CD4/8+ T cells Surface modification of anti-integrin β7 monoclonal antibodies [202] 

Spleen T cells High throughput-screen to select the splenic tropism ionizable lipid [203]

Liver and 

epididymal 

white 

adipose 

tissue 

Neutrophils Decreasing the PEG percentage on NPs surface and enhance the surface 

zeta-potential

[204]

Macrophages Surface modification of fluorinated helical polypeptides [205]

Macrophages Surface modification of cyclic peptide CRV (sequence CRVLRSGSC) [206]

T cells Surface modification of cell-penetrating peptide dNP2 [207]
Lung

Macrophages Altering sizes of NPs [208]

Colon Ly-6C+ leucocytes Surface conjugation of Ly-6C antibodies [209]

Bone 

marrow

Haematopoietic stem-cell 

niche to affect leukocytes 

behavior

Altering molecular weight and surface density of the PEG, altering the 

length of the lipid chain that anchors PEG, as a result, the formulation 

with lipid tail length C18, PEG Mw 5000 and PEG percentage of 10 

mol-% showed the highest targeting capability

[210]

Not 

specified

Blood resident 

macrophages

In situ light irradiation to switch the surface charge of NPs from 

negative to positive

[211]

For example, Bejerano et al. [196] developed a system able to target the macrophages 

recruited to the heart after myocardial infraction (MI) by taking advantage of the leaky 

vasculature and their accumulation in the site of inflammation. It is known that in the 
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infarcted myocardium the vasculature is leakier and allows the accumulation of 

particles with size comprised between 20 and 200 nm [212, 213]. Based on that, the 

authors developed a siRNA loaded NPs composed by hyaluronan-sulfate, Ca2+ and 

miRNA. The spontaneously formed nanocomplex obtain the size of 130 nm with 

surface zeta-potential of 10 mV. The cardiac targeting capability of the NPs was 

evaluated on mice with MI, which is established by left anterior descending (LAD) 

coronary artery ligation. NPs were injected intravenously and the heart of mice was 

collected five hour post NPs injection, and the authors found the highest cardiac 

accumulation was observed at 3 days post MI. Comparing to health mice, the cardiac 

NPs accumulation in MI mice was increased for over 25% [196]. Similar work was 

recently conducted by Tao et al., who specifically targeted lesional macrophages to 

improve atherosclerotic plaque stability [73]. siRNAs targeting Ca2+/calmodulin-

dependent protein kinase (CaMKIIγ) was loaded in cationic lipid–like material G0-C14, 

and the siRNA complex was further encapsulated by PLGA to better protect the siRNA 

core. Furthermore, a peptide called S2P, which recognizes the macrophage receptor 

stabilin-2, was conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamineN-

[maleimide(polyethylene glycol)] (DSPE-PEG-Mal), and the yielded DSPE-PEG-S2P 

was applied for coating the siRNA encapsulated PLGA NPs. Murine atherosclerosis 

model was established by feeding low density lipoprotein receptor deficient (Ldlr-/-) 

mice with adjusted calories diet (21.2% fat) for 12 weeks, followed with intravenous 

injection of NPs. In vivo results showed the specific macrophages targeting by S2P 

significantly increased the percentages of NPs containing macrophages in aortas 
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harvested from atherosclerotic mice 24 h after injection comparing to the non-targeted 

ones (14.4% vs. 5.7%), which resulted in lower plaque necrosis and increased lesional 

efferocytosis.

The immune cells targeting strategies are also adopted for targeting lungs. Kim et al. 

modified the siRNA containing fusogenic liposomes with a nine-amino peptide named 

CRV (sequence CRVLRSGSC) for targeting macrophages and further applied for 

Staphylococcus aureus lung infections [206]. CRV was selected in a phage library 

screen for cultured J774A.1 murine macrophages with selective macrophages targeting 

capability, and the CRV modification of fusogenic liposomes increased the lung 

accumulation of fusogenic liposomes to over 20% after 1 h of injection, which is mainly 

due to the specific NPs accumulation in macrophages after pulmonary Staphylococcus 

aureus infection (Figure 13A).

Besides of the direct targeting towards immune cells, other works by taking advantages 

of immune cells as RNAi vectors are also investigated. Wayne et al. cultured 

macrophages (C57BL/6 murine macrophages IC21) with siRNA loaded a 

commercially available lipoplex transfection reagent (geneSilencer, Genlantis) in vitro, 

and the adoptively transferred macrophages were further injected to mice for targeting 

breast cancer (xenograft model with MDA-MB-468 breast cancer cells) [214]. After 

injection, the macrophages infiltrated into solid tumor, with 2% of the total tumor cells 

were siRNA+. And the siRNA can be further excreted to the tumor microenvironments 

through Rab27a recycling pathway, sequentially exerting the gene knockdown function 

to cancer cells (Figure 13B).
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Figure 13. (A) Confocal microscope images of fluorescein (DiI) loaded fusogenic (F-

DiI-CRV) and non-fusogenic nanoparticles (NF-DiI-CRV) homed to infected lung with 

macrophages targeting moiety CRV. Different NPs are injected intravenously under 

healthy (1) or Staphylococcus aureus infection (2-4) conditions. Green, macrophages; 

red, DiI from NPs. (B) Schematic of horizontal RNA transfer facilitated by 

macrophages and corresponding exosomal secretory pathway. Modified and 

reproduced with permissions from (A) ref. [206]  Copyright 2018, Springer Nature; 

and (B) ref. [214]; Copyright  2019, Wiley-VCH.

From a technical point of view, for the targeting methods, the most commonly applied 

method is through the “targeting ligands functionalization” approach. However, 

chemical conjugation of targeting ligands may involve extra chemical reactions, which 

may be limited by complex procedures and high batch-to-batch variation. A recently 

developed biosynthetic method allow a customized routine to physically coat all types 
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of antibodies on the surface of NPs [78], which are further applied for targeting different 

leukocytes. A specific lipoprotein (anchored secondary scFv enabling targeting, 

ASSET) was biosynthesized and purified from Escherichia coli [215]. Composed by 

two critical segment: (1) N-terminal signal sequence followed by a peptide which will 

undertake lipidation in the membrane of Escherichia coli; and (2) single chain antibody 

fragment (ScFv) of a monoclonal antibody (clone RG7/1.30) to bind with crystallizable 

fragment (Fc) constant region of Rat IgG antibodies. This lipoprotein can effectively 

bind with a different types of antibodies with the dissociation constant Kd of ~22.7 nM, 

and the lipidized part can spontaneously inserted into LNPs which encapsulate siRNA. 

The ASSET-loaded LNPs can be coated with diverse antibodies to target different 

leukocytes including CD25+ T regulatory cells, CD3/4+ T cells, CD9+ B cells and 

CD11b+ monocytes in vivo.

Besides of the conventional “targeting ligands functionalization” approach, other 

efforts have also been made to achieve a targeting-ligands free manner for RNAs 

delivery towards specific leukocytes subsets. Among which, typical methods like 

tailoring the NPs’ surface property to alter the organ or cellular accumulation has been 

extensively investigated. The fundamental mechanism for the cell tropism from 

different NPs is speculated to be influenced by changes in their surface potentials and/or 

internal charges [216]. Generally, NPs with neutral surface charges exhibited longest 

circulation behavior, whereas anionic NPs (surface zeta-potential < 20 mV) strongly 

interact with reticuloendothelial system (RES), such as scavenging endothelial cells or 

blood resident macrophages, and cationic NPs are preferably uptake by virtually all cell 
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types, and they can be rapidly interact with the anionic surface of the blood vessel walls, 

and sequentially cleared via RES [217, 218]. Therefore, based on specific 

haemodynamics and resident cell type in different organs, the control over the internal 

and external charge of the NPs may subsequently resulted in organ or cellular tropism 

[219]. For example, Cheng et al. generated a strategy named as Selective Organ 

Targeting (SORT) which enabled the LNPs targeting of lung, liver and spleen [220]. 

Despite the paper aimed to deliver mRNA, Cas9 mRNA/ single guide RNA (sgRNA) 

and Cas9 ribonucleoprotein (RNP) complexes but not for RNAi, yet the detailed 

targeting strategy may be also transferred for RNAi based NPs design. In this work, 

different cationic, anionic, and zwitterionic molecules were added in different molar 

ratios to LNPs of pre-determined composition. The results found that with the 

increasing ratio of permanent cationic lipid SORT molecules (e.g., 1,2-dioleoyl-3-

trimethylammonium-propane, DOTAP; dimethyldioctadecylammonium, DDAB; 1,2-

dimyristoyl-sn-glycero-3-ethylphosphocholine, EPC) in the formulation, the major 

LNPs accumulation gradually transferred from the liver to the spleen and eventually to 

the lung. With the addition of 50% of DOTAP, 80% of the LNPs accumulated in lung 

and transfected ~40% of all epithelial cells, ~65% of all endothelial cells and ~20% of 

immune cells. Whereas the addition of anionic lipid SORT molecules (1,2-dioleoyl-sn-

glycero-3-phosphate, 18PA) enhanced the LNPs’ accumulation in spleen, which 

transfected ~12% of all B cells, ~10% of all T cells, and ~20% of all macrophages. 

Interestingly, addition of ionizable cationic lipid (1,2-dioleoyl-3-dimethylammonium-

propane, DODAP) significantly avoid the interaction with phagocytes, as rather than 
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Kupffer, 93% hepatocytes were transfected by the injected LNPs. Similarly, other 

reports suggested by reducing the surface PEG density and enhancing the surface 

charge could promote the NPs interaction with circulating monocytes and neutrophils, 

as such enhancing the siRNA delivery efficiency (Figure 14A,B) [201, 204]. The 

results suggested the critical function in manipulating the external/internal charges for 

altering the NPs interaction with immune cells.

However, this phenomenological approach to understand the “structure-tropism” is 

usually achieved with 1-by-1 in vivo analysis, which needs extensive lab work and 

animal numbers. A high throughput approach method is recently developed for 

screening T cells targeting NPs [203]. In this work, the authors adapted a phage-library-

like strategy, and formulated over 100 types of LNPs with different lipid composition. 

Each type of LNPs will co-encapsulate a unique type of DNA sequence, as the function 

of “barcode” to identify the LNPs, and siRNA to knockdown GFP as RNAi readout. 

Then different LNPs were mixed, and the “LNPs cocktail” was injected to GFP 

expressing mice. After 3 days, the GFPlow cells were isolated and the “barcode DNAs” 

were deep sequenced for determining the LNPs that are preferably colocalized in 

GFPlow cells (Figure 14C). In this manner, the authors screened out an ionizable lipids 

which endows the LNPs massive accumulation in splenic T cells, and concluded that 

helper lipid DSPC containing LNPs will facilitate the splenic T cells targeting whereas 

DOPE containing LNPs will conversely reduce the ability. 
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Figure 14. (A) Increasing the neutrophil targeting capability of NPs can be achieved 

by increasing the percentage of cationic lipid (N,N-bis(2-hydroxyethyl)eN-methyl-N-

(2-cholesteryoxycarbonyl-aminoethyl) ammonium bromide, BHEM-Chol), or reducing 

the PEG density on NPs’ surface. As a result, the formulation with the term CLAN45 

exhibits best neutrophils interaction capability. (B) Increasing the surface charge can 

also promote the targeting capability of siRNA loaded NPs towards monocytes. (C) 

Scheme for high throughput screen to select ionizable lipids which can potentially 

enhance the targeting capability of LNPs towards T cells. Modified and reproduced 

with permissions from (A) ref. [204]; Copyright  2018, Elsevier B.V.; (B) ref. [201]; 

Copyright  2018, American Chemical Society; and (C) ref. [155]; Copyright  2019, 

Wiley-VCH.
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6. Endosome escape

Endosome escape is the last, but a critical step, for successful NPs based RNAi [19, 

20]. During the past decades, there has been significant progress in endocytosis 

mechanism and endosomal environment research. Such knowledge provides the basis 

of endosomal escape strategies, and the related endosomal escape mechanism studies. 

In the following sections, we first introduce the endosomal environment. Then we 

explain the current understanding of different endosomal escape mechanisms, and 

introduce the common reagents and materials used for siRNA endosomal escape. 

Specifically, we highlight prototypical examples of siRNA endosomal escape systems, 

and analyze the advantages/disadvantages of the material designs. Finally, we discuss 

the critical challenges and unresolved issues in the endosomal escape progress for 

future development.

6.1. Physiological environment for different endosome compartment

As we discussed in Section 2.2., endosome escape of siRNA will exclusively occur in 

specific endosome compartment. Therefore, understanding the physiological properties 

for each compartment is important for guiding the design and choose of endosome 

escape materials. Despite the different uptake mechanisms, most uptake vesicles fuse 

with early endosomes (EE). EE plays a very important role in the endocytosis process, 

because it acts as a “sorting center” of the endocytosed substances [39], similar to the 

sorting center of parcels in real life. The housekeeping membrane proteins, such as 
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transferrin receptors, are recycled to the plasma membrane surface, while those proteins 

to be downregulated go through the endosomal maturation process and degraded in 

lysosomes eventually. The different fate of endocytozed vesicles are regulated mainly 

by the Rab family of GTPases [221]. There are 70 Rab encoded in human’s genome 

and more than 40 Rab are involved in the endocytic pathway regulations [222]. For 

example, Rab5 is enriched on EE membranes, and subsequently switch to Rab9 on late 

endosomes (LE, also named as multivescular body, MVB) membranes [221]. These 

Rab GTPases on the endosomal surface are similar to the barcode stick to the parcels, 

which direct the endosomal vesicles to different destinies. The directed transport relies 

on the binding of endosomal vesicles to actin filament- and microtubule-associated 

motors [221]. For example, Rab11 is a critical protein on the recycling endosomal 

surface [223]. By binding with actin filament-motor MYO5B, Rab11coated endosomes 

are exclusively transported back to plasma membranes [224]. Such delicate regulation 

of endosomal vesicles in the intracellular trafficking suggests the critical role of 

endocytosis for cell metabolism. Thus, the potential damage to the endocytosis 

machinery may lead to the metabolic disorder within the cell, or even cell death.

Regarding the endosomal environment, the membrane-bounded endocytic vesicles are 

very dynamic, with continuous ions and substances exchange with cytoplasm, Golgi 

apparatus and endoplasmic reticulum (ER) [39]. Specifically, endosomal environments 

have several characteristics distinguishable from cytoplasmic and extracellular 

environments. The most prominent character is the acidic lumens. The pH continuously 

decreases from early endosomes (pH 6.16.8) to late endosomes (pH 4.86.0), and 
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finally to lysosomes (pH around 4.5) [39]. The unique acidity is because of the 

continuous proton influx by vacuolar H(+)-ATPases (V-ATPases) [225]. The 

acidification of endosomal lumens is crucial for endosomal function, because it allows 

for the uncoupling of receptors and the binding ligands, and for maintaining the 

enzymatic activities within lysosomes. The acidic endosomal lumens also inactivates 

toxins and pathogens uptake by endocytosis, and protects cells from foreign invasions. 

Other acidity, endosomal lumens also have identical ion concentrations compared with 

extracellular fluids. For example, Na+ concentration decreases along the endosomal 

pathways from 120 mM (in extracellular fluids) to 20 mM (in lysosomes), while K+ 

concentration gradually increases from approximately 5 mM to 60 mM [226]. Like Na+, 

Ca2+ concentration has been found much lower in endosomal vesicles [227]. Regarding 

anions such as Cl-, the concentration in EE is lower than extracellular environment, but 

during endosomes maturation, Cl- concentration showed an increased trend probably 

due to the ion exchanges through intracellular chloride channels [228]. Similar to pH 

homeostasis, ion balance is important for endosomal function, including luminal 

osmolality maintenance, pH regulation, protein activation or even endosomal 

membrane curvature [226]. 

Besides the luminal contents, endosomal membranes have attracted significant 

attention because of their characteristic lipid compositions [229]. Although EE shares 

the similar membrane composition as plasma membranes, LE has a unique lipid, 

lysobisphosphatidic acid (LBPA) (or bis(monoacyl glycero)phosphate, BMP) [230]. 

Despite the continuous membrane flow and vesicle fissions/fusions, LBPA is 
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exclusively presented on EE membranes, and the membranes of intraluminal vesicles 

inside EE [229]. 

Based on the unique characters of endosomal lumens and membranes, there are several 

strategies developed for the endosomal escape, by entire endosomal rupture, or 

endosomal membrane destabilization or membrane fusion [231]. It is critical to ensure 

that all these strategies use endosomal environmental components, such as protons, 

enzymes and lipids, as triggers to ensure that the membrane disruption is limited to 

endosomes and lysosomes. Otherwise, the universal disruption on cellular membranes 

will lead to undesirable toxicity. In the following sessions, we will explain these 

endosomal escape strategies and discuss specific delivery systems applying these 

strategies.

6.2. Endosomal escape by rupture

Endosomal rupture is the first and most prominent endosomal escape strategy proposed 

[232]. Different types of endosomal rupture mechanisms are summarized in Figure 15. 

Endosomal rupture can originate from imbalanced osmotic pressure between the 

endosomal lumen and cytoplasm (Figure 15A). As V-ATPases import protons to 

endosomes, the counter ions Cl- are also imported to balance the charge [233]. The 

chloride ion influx is accompanied by water influx, which increases the osmotic 

pressure inside endosomes [234]. In the presence of a buffering polymer, excessive 

protons are supposed to flow inside the endosomes, because the buffering polymer 

inhibit the endosomal acidification. The excessive protons, Cl- and water intensify the 
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endosomal swelling and eventually lead to endosomal rupture [235]. 

This so-called “proton-sponge” hypothesis has been proposed to explain the endosomal 

escape mechanism of several cationic macromolecules, such as PEI, PDMAEMA, 

chitosan and PAMAM [232]. These polymers have ionizable primary, secondary, 

tertiary amine groups with buffering capacities within endo/lysosomal pH ranges [235]. 

However, evidence has shown that the buffering capacity alone does not make polymers 

escape from endosomes [236]. It was found that on model lipid membranes and plasma 

membranes, cationic PEI and PAMAM interact anionic membrane lipids via 

electrostatic interactions, and destabilize local membranes to create nanoscale pores 

[237]. This is supported by the real-time confocal microscopy images, confirming that 

PEI polyplexes induced transient membrane pores, where the payloads were burst 

released to the cytoplasm [238]. These results indicate that the “proton sponge” effects 

did not cause complete endosome lysis. Instead, after endosomal swelling, cargos 

escape from endosomes by the membrane defects caused by cationic polymer carriers 

(Figure 15A).

However, recent evidence argues the role of membrane defects during endosomal 

escape. Vermeulen et al. found that the membrane defects may prevent endosomal 

escape of macromolecular cargos [239]. In their study, similar burst release of 

oligonucleotides from endosomes enabled by PEI carriers was observed, but the release 

only happened to <10% polyplexes containing endosomes. Despite the unsuccessful 

escape, the majority of endosomes showed membrane leakiness, evidenced by the 

release of a small fluorescent molecule. The authors hypothesized that the membrane 
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leakiness prevented effective buildup of the osmotic pressure, thus preventing the 

cargos from burst release. The authors also found that endosomes with smaller sizes 

were more prone to the burst release than those larger ones, indicating both the size and 

membrane leakiness played a role in the final endosomal escape.

While the exact mechanism of “proton sponge” is still under debate, other approaches 

to induce endosomal rupture are being investigated. For example, vapor nanobubbles 

are proposed to break the endosomal vesicles, triggered by ultrasound or laser (Figure 

15B). The bubble liposomes filled with perfluoropropane gas were applied to cells pre-

treated with pDNA encapsulated liposomes [240, 241]. Then the cells were exposed to 

ultrasound, inducing transient pores for endosomal escape [242]. In terms of laser-

triggered nanobubble generation, plasmonic nanoparticles (typically gold NPs) are 

applied to cells, exposed to high energy pulsed laser. The energy of the laser pulse (<10 

ns) is transferred to heat by the gold NPs and vaporizes the surrounding water, 

generating nanobubbles, which quickly expand from the gold NP’s surface and collapse 

[243]. The mechanical energy of the shock wave can generate transient pores on 

endosomal vesicles, allowing for endosomal escape of protein, siRNA and pDNA [244]. 

It was found that the endosomal escape enabled by laser-induced nanobubbles is 

efficient, and independent of cell type [245]. Moreover, with optimized laser energy 

and exposure time, this technique was non-cytotoxic, without any long-lasting effects 

on cell hemostasis [245]. 

Finally, some carriers can induce endosomal membrane rupture simply by physically 

piercing the membrane. For example, some NPs have sharp or prickly surfaces, which 
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enables much better cytoplasmic delivery than the round counterparts. This has been 

evidenced by prickly nanodiamonds, zinc-doped copper oxide nanoparticles, and star-

shaped gold NPs [246, 247]. Another example reported a liquid metal NP, which has 

light-induced morphology transformation from nanospheres to nanorods [248]. The 

high aspect ratio nanorods led to physical disruption of endosomal membranes, 

visualized by confocal and electron microscopies [248]. Despite the endosomal escape 

capability, prickly nanocarriers should be used with caution, due to the potential 

damage to plasma membranes and the toxicity related to endosome impairment.

Figure 15. Schematic showing of different mechanisms of endosomal rupture. (A) 

“Proton sponge” hypothesis mediated by cationic buffering polymers. Endosomal 

rupture is induced by osmotic pressure between the endosomal lumen and the 

cytoplasm. (B) Nanobubble strategy induced by laser or ultrasound triggers. Endosomal 
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rupture is induced by the mechanical force when nanobubbles expand and collapse. (C) 

Physical disruption of endosomal membranes by prickly carriers. Endosomal rupture is 

induced by the mechanical force from the sharp surface piercing membranes. Created 

with BioRender.com.

6.3. Endosomal escape by membrane destabilization and membrane fusion

Endosomal escape by membrane destabilization and membrane fusion represents 

another strategy widely used, especially by virus and bacteria [249]. As indicated in the 

nomination, membrane destabilization carriers interact with endosomal membranes 

directly, and cause membrane defects or even pores to allow for the escape (Figure 

16A). Membrane fusion inducer may penetrate inside the endosomal membrane and 

induce fusion to release the cargo (Figure 16B). Therefore, the tendency of carriers to 

associate with endosomal membranes and the capability to disrupt the lipid bilayers are 

crucial factors for successful endosomal escape. In the following paragraphs, we 

introduce three typical carriers for membrane destabilization and fusion, including cell 

penetrating peptides, amphiphilic endosomolytic polymers and fusogenic lipids, and 

discuss how the structure, charge and amphiphilicity affect the membrane 

destabilization and the escape.
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Figure 16. Schematic showing of different mechanisms of endosomal membrane 

destabilization by (A) endosomolytic molecules (CPPs, small molecules or polymers) 

and (B) fusion with lipid-based delivery systems. Created with BioRender.com.

6.3.1. Cell penetrating peptides (CPPs)

Although some CPPs translocate through cell membranes to deliver cargos directly to 

cytoplasm, the endocytic uptake and the following endosomal escape is still the major 

internalization route for CPP-cargo complexes [250]. Considering the great diversity in 

CPP structure, physiochemical properties of CPP-cargo complexes, and endocytosis 

pathways, the membrane destabilization mechanisms vary [250]. For example, 

amphiphilic CPPs, such as hemagglutinin-2 (HA2), INF7 (the N-terminal domain of 

HA2) and GALA (a synthetic peptide with a glutamic acid-alanine-leucine-alanine 

repeat), have pH-responsive conformational changes [251, 252]. At acidic endosomal 

pH, the protonation of glutamic acid (Glu) transformed the CPPs into α-helix structure, 

which enables the CPPs to penetrate into the endosomal membranes, and induce pore 

formation (Figure 16A) [253]. Arginine-rich CPPs (such as TAT, penetratin, 

oligoarginine), however, induce membrane-destabilization by electrostatic interaction 
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and hydrogen bonding with negatively charged membrane lipids and polysaccharides 

from membrane proteoglycans [254]. Recent studies found that the guanidinium groups 

from arginine residues have strong affinity towards negatively charged lipids in the LE, 

especially BMP [255]. The association with BMP led to membrane fusion between the 

intraluminal vesicles in the LE, and with LE outer membranes to allow the cargo escape 

(Figure 17) [256]. 

Figure 17. Schematic showing of BMP-dependent endosomal escape from LE. The 

guanidinium groups from arginine residues interact with BMP head groups. The 

interaction results in membrane fusion and leakage. Inside late endosomes, the arginine-

rich CPP (a dimerized TAT, denoted as dfTAT) and the macromolecular cargos 

translocate into the cytosol by leaky fusion events (two non-mutually exclusive 

scenarios involving intraluminal vesicles and the limiting membrane of the organelle 

are represented). The introduction of anti-BMP monoclonal antibody blocks the fusion 

and subsequent leakage, confirming the endosomal escape mechanism. Modified and 

reproduced with the permission from ref. [256]; Copyright  2016, Elsevier B.V. 
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Along with increased understanding of CPP endosomal escape mechanisms, significant 

efforts have been made to balance the endosomal escape capability and cytotoxicity, by 

modification of the natural CPP structure [257]. Although arginine-rich CPPs like TAT 

and oligoarginine are the prototypical examples for intracellular delivery applications, 

the naïve form of these CPPs are mostly trapped in endosomes [258]. Therefore, many 

studies dedicated to find out how to increase the endosomal escape property by 

changing characteristic parameters of a peptide, such as amino acid sequence, length 

and the topological structure [257, 258]. To this end, Pellois’ lab has systemically 

investigated TAT variants with different guanidinium density, branching structure and 

chirality. They found a typical threshold of at least 10 arginine is essential for 

endosomal escape [259]. This is consistent with other reports with oligoarginine 

peptides with different lengths [260]. Dimerization or trimerization of TAT 

significantly improved the endosomal escape efficiency, despite the increased 

cytotoxicity of TAT multimers [261]. The multivalent effects derived from branching 

structure increase the membrane interaction, thus facilitating the escape but also 

increased the toxicity unfortunately [260]. Furthermore, the endosomal escape 

efficiency is affected by the chirality of the CPPs. Although cells have preferable uptake 

of natural L-amino acid peptides, peptides synthesized by artificial D-amino acids have 

longer half-lives because of the slower degradation by proteolytic enzymes [262]. The 

longer half-life is however, multifaceted. On one hand, it is beneficial for endosomal 

escape because of the long-lasting endosomolytic activity [263]. One the other hand, it 

is also associated with pronounced cytotoxicity because of the prevalent membrane-
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lytic effects to organelles in the cytoplasm [263]. Other than changing the parameters 

from peptide synthesis, chemical ligation on natural CPP structure is another approach 

to enhance the endosomolytic activity. The conjugation of hydrophobic moieties (e.g., 

stearyl, phenyl, and aromatic indole rings) promotes the endosomal escape [252, 264]. 

Both experimental data on model lipid membranes and computational simulations 

prove that hydrophobic groups facilitate the insertion inside the lipid bilayers, which 

contributes to the membrane association and the potential to create membrane leakiness 

[265]. 

Another approach to find optimal CPPs for endosomal escape, is to convert highly 

membrane-lytic cationic amphiphilic peptides into pH-dependent variants [266]. 

Instead of enhancing the membrane destabilization activity from those weak endosomal 

escape peptides, this approach selects the strong membrane-lytic candidates derived 

from venoms or antimicrobial peptides, and attenuates the their membrane-lytic activity 

at physiological pH by introducing anionic Glu residues or aspartic acid (Asp) residues 

[267]. The negative charge from both Glu and Asp decreases the interaction of these 

peptides with cell membranes, and thus, decreases the cytotoxicity. At endosomal pH, 

the protonation of Glu and Asp helps to recover the membrane-lytic activity to realize 

the endosomal escape. This strategy mimics the amphiphilic viral peptides HA2, which 

only initiates the endosomolytic activity upon acidification [253]. With Glu or Asp 

substitution, toxic and hemolytic peptides, such as M-lycotoxin, melittin, δ ‐

hemolysin, chrysophsin and ponericin-W3, could be converted to attenuated variants 

with endosomolytic activity [267, 268]. The replacement position of Glu is critical to 
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manipulate the variant’s cytotoxicity and endosomolytic activity [268]. It is optimal to 

substitute Glu on the boarder of the hydrophobic and hydrophilic face within the α-

helical structure, because the substitution on the hydrophobic face diminished the 

membrane interaction capability completely, while the substitution on the hydrophilic 

face had little effects on the cytotoxicity [268]. 

Alternatively, the toxic CPPs could be masked by acid-cleavable protective groups and 

pH-responsive micelles [269]. By reacting with dimethylmaleic anhydride, the amine 

groups on cationic lysine and arginine residues could be converted into carboxylic acid 

groups with negative charges at physiological pH [269]. The charge conversion 

significantly reduced the cytotoxicity and hemolytic activity of melittin, and the 

membrane-lytic activity was restored after acid-induced cleavage of masking groups 

[270].

6.3.2. Endosomolytic polymers

Endosomolytic polymers have been developed mimicking the structure of CPPs. 

Inspired by arginine-rich CPPs, guanidinium-containing polymers with different 

backbones, molecular weights and topological structures have been synthesized for 

intracellular delivery [271-274]. Noticeably, the polymer backbone played an important 

role in membrane destabilization. For example, guanidinium-containing 

poly(disulfide)s have unique disulfide exchange with proteins on the plasma membrane, 

thus facilitating the association and translocation capacity of the polymers [275]. 
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Regarding the topological structure, branching and dendritic structures generally have 

higher potency in endosomal escape [272], despite sometimes associated with higher 

cytotoxicity [271]. Regarding molecular weights, guanidinium-containing 

homopolymers and their analogues with longer chains (degree of polymerization, DP = 

89) displayed higher siRNA transfection efficiency than shorter analogues (DP = 8, 22 

and 43) at the same mass concentration (Figure 18) [276]. This was attributed to the 

charge distribution within the molecule by the authors [276]. Polymers with higher 

molecular weights displayed a densely charged coil, focusing on the membrane to 

induce destabilization. Although the higher transfection efficiency was also observed 

on other long chain polymers with different compositions [277], this charge-density 

membrane-destabilization hypothesis needs further investigation and validation. 

Similarly, higher molecular weight polymers are associated with higher cytotoxicity 

(Figure 18), possibly due to the non-biodegradability and accumulation in cells [278]. 

Thus, biodegradable monomers or linkers could be applied to achieve high molecular 

weight with lower cytotoxicity [279].
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Figure 18. The molecular effects on guanidinium-containing homopolymers and their 

analogues. (A) The structures of polymers and (B) their transfection efficiency and 

cytotoxicity in HEK293T cells. Reproduced with the permission from ref. [276]; 

Copyright  2020, Royal Society of Chemistry.

In addition to guanidinium-containing polymers, pH-responsive fusogenic amphiphilic 

polymers are intensively explored, for endosomal escape purposes. The pH-induced 

protonation of Glu and Asp on fusogenic CPPs, is mimicked by various carboxylic acid 

containing amphiphilic polymers [280, 281]. It is noticed that the balance of 

hydrophobic and hydrophilic monomers is important for their function. For example, 

adding a small portion of hydrophobic units (i.e., 2% cholesteryl methacrylate or 10% 

lauryl methacrylate) on poly(methacrylic acid) significantly increased its membrane 

association capability [280]. However, excessive hydrophobic units (i.e., 8% 

cholesteryl methacrylate or 40% lauryl methacrylate) compromised the polymer 
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solubility and decreased the membrane interaction, because of the enhanced association 

between polymer chains [280].

The mechanisms of most endosomolytic polymers remain inconclusive, partially due 

to the abundant structural diversity and the general focus in the field. Most studies focus 

more on the delivery efficiency and the overall therapeutic efficacy rather than the 

detailed mechanism inside the cells. Another difficulty may come from the polymer 

synthesis. Despite the huge achievements in polymerization techniques, it is still 

difficult to achieve complete control over the polymer sequence, at least not on 

monomer level. Therefore, it is not possible to study the subtle change on a single 

polymer chain (e.g., the addition or substitution of one or two residues). Unlike the 

small molecules or peptides synthesized with identical structure, synthetic polymers 

may have monomers distributed statistically along the chain. Thus, their membrane 

destabilization behavior should be interpreted as the average potency from the whole 

polymer population with the same monomer composition.

6.4. Lipids

In Section 4.1, we discuss the general methodology and mechanism of efficient RNAs 

encapsulation by LNPs, whereas in this section, we will mainly focus on the other 

critical aspect of LNPs design: commonly used method and the potential mechanism 

for enhancing endosome escape capability of LNPs. Of course, lipid NPs may directly 

fuse with plasma membrane and translocate payloads into cytoplasm without 

endocytosis. However, endosomal escape remains to be the main internalization route 
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for lipid-based gene delivery systems [238]. The functional lipids for endosomal escape 

could be categorized according to their physiochemical properties: cationic lipids (e.g., 

DOTAP), neutral phase transition inducer lipids (so-called “helper lipids”, e.g., DOPE) 

and pH-dependent conformation switchable lipids [104]. Because LNPs and liposomes 

are usually formulated as a mixture of different lipids, the lipids for endosomal escape 

purposes usually only constitute a small portion, with the majority composed of PC, 

cholesterol, PEGylated lipids, etc., to stabilize the final NPs [102]. Therefore, the final 

endosomal escape properties resulted from combinational effects of the whole lipid 

formulation, instead of single membrane-destabilization moieties. 

The endosomal escape mechanism of LNP and liposome are generally attributed to the 

fusion with endosomal membranes (Figure 16B). As endosomal membranes are rich 

in anionic lipids, the cationic lipids enhance the membrane interaction by electrostatic 

interactions [97, 282]. Once located on the endosomal membrane, the fusogenic lipids 

(DOPE) transformed the lipid phase from lamellar to inverted hexagonal, thus 

promoting the membrane fusion [283]. This theoretical explanation is as popular as the 

“proton-sponge effect”, and has long been accepted in the field [282]. However, recent 

evidence suggest the translocation could happen by a transient pore model rather than 

fusion [238]. The authors found the endosome release of oligonucleotides by LNPs was 

in a gradual manner, which fits better to the “pore forming” mechanism, where a more 

subtle endosomal membrane destabilization, rather than a burst membrane fusion, can 

achieve (Figure 19A-C) [238]. In this new hypothesis, after interaction with endosomal 

membranes, the lipids from endosomal membranes could be taken away by LNPs, thus 
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creating transient pores for payload to escape, which is similar to membrane 

destabilization created by CPPs and endosomolytic polymers discussed in the previous 

sections (Figure 19D) [284]. This is evidenced by the endosomal damage markers and 

small cytosolic Ca2+ transients [20]. Despite the emerging evidence, more studies are 

needed to elucidate this new hypothesis.

Figure 19. (A) HeLa cells incubated with Lipofectamine2000 carrying FITC-ODNs 

and monitored by confocal microscopy. White arrows indicated two NPs successively 

released parts of the ODN content, revealing a stepwise decrease in ODN fluorescence 

within the endosome, and a concomitant increase in ODN fluorescence within the 

nucleus. (B) Rhodamine-labeled Lipofectamine2000 (red) was complexed with FITC-

ODNs (green) and added to HeLa cells. Three lipoplex-containing endosomes that 

initially appear yellow (due to colocalization of carrier (red) and contents (green)) 

gradually turn red while releasing ODNs into the cytoplasm. (C) The fluorescence of 

the particles (labelled with white arrows) and the nucleus showing in (A). (D) The 

schematic showing of the transient “pore-forming” mechanism induced by lipid-based 

delivery system. Modified and reproduced with the permission from (A-C) ref. [238]; 
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Copyright  2013 American Chemical Society; and (D) ref. [284]; Copyright  2019 

American Chemical Society.

Despite the successful delivery mediated by cationic lipids, the associated toxicity and 

immunogenicity was still a concern [285]. To solve this problem, pH-sensitive lipids 

have been developed. Typically, these lipids have ionizable head groups, which are 

protonated only in acidic endosomes [53]. Through high-throughput screening, several 

ionizable lipid candidates have been identified [99, 286], and the related formulations 

showed pKa, phase transition temperature, number of hydrophobic tails and the tail 

saturation state are key factors in the design [287, 288]. A pKa within EE pH range, 

lower transition temperature and unsaturated branched tails are beneficial to enhance 

endosomal escape properties [287, 288]. Furthermore, the conformational change of the 

ionizable lipid at molecular level with head-tail orientation switch could also facilitate 

the escape [289].

6.5. Small molecules facilitate endosome escape

A group of small molecules, termed as cationic amphiphilic drugs (CADs), have been 

shown to obtain the membrane-destabilizing properties [290, 291]. These drugs all had 

protonable secondary or tertiary amine groups. At physiological pH, these groups are 

not protonated, and the drugs can diffuse into the lysosomal lumen, where they are 

protonated upon acidification. The positive charge and the increased hydrophilicity 

prevents them from diffusing out of phagocytic compartments. Therefore, the drugs 
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retain in endosome/lysosomes, and inhibit lipid hydrolyzing enzymes especially acid 

sphingomyelinase [291]. Therefore, a hypothesis has been proposed to facilitate the 

RNA endosome escape due to the membrane disruption [290, 292]. Recent studies tried 

to develop endosomolytic molecules with better efficacy by repurposing FDA-

approved cationic amphiphilic drugs, such as carvedilol, desloratadine, nortriptyline 

and salmeterol, and when co-administrated with siRNA carriers, the drugs, acting as 

“endosomal escape adjuvants”, may enhance siRNA delivery efficiency both in vitro 

and in vivo [290, 292]. However, as we discussed in Section 2.2., release of the RNA 

payload may only has a particular “window of opportunity” during the endosomal 

maturation process, yet CADs are diverse and target multiple intracellular 

compartments. Therefore, it is important to understand whether the mismatch between 

NPs containing and CADs-targeted compartments will hinder the further knockdown 

efficiency improvement.

A recent study selected three different CADs (chloroquine, siramesine and 

amitriptyline), and separately investigated their corresponding effects on the gene 

knockdown efficiency from cholesterol-conjugated siRNA targeting d1-eGFP [293]. 

All these drugs can induce obvious endosome/lysosome rupture as reflected by 

galectin-3 and galectins-9 recruitment in the endosomal membrane, which is a typical 

signal for endosome damage (Figure 20A) [19, 20]. This membrane destabilization 

capability further improved siRNA-mediated knockdown in HeLa cells expressing a 

destabilized enhanced GFP (HeLa-d1-eGFP), yet the enhancement efficiency varied 

from drug to drug. Chloroquine lowered half-maximal inhibitory concentration (IC50) 
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for over 17-fold, whereas the number for amitriptyline and siramesine was only ∼2- 

and 4-fold, respectively (Figure 20B). The authors purposed the following explanations 

for this phenomenon. First, the authors compared to other drugs, chloroquine exhibited 

better capability in triggering cytosolic release of macromolecules. This was confirmed 

by applying 10 kDa fluorescent dextran as cytosolic release indicator (Figure 20C). 

Internalized dextran was solely located in intracellular vesicles, whereas after 

incubating HeLa-d1-eGFP cells for 16 h with different CADs, chloroquine treatment 

group triggered the most significant cytosolic dextran release, which was 8-fold higher 

than siramesine treatment group, and amitriptyline treatment only provoked low-to-no 

cytosolic redistribution of dextran. The observed results were in consistence with the 

as-mentioned knockdown enhancement efficiency, indicated the enhanced siRNA 

endosome escape is correlated with the membrane destabilization degree. 

Secondly, different drug targeted different phagocytic compartments. Authors 

identified the detailed compartments damage by different drugs, and divided the 

phagocytic compartments via the endosome maturation stages. For chloroquine treated 

HeLa-d1-eGFP cells, 43% of the damaged endosomes were featured as Rab5+ 

(immature early endosome), while Rab5 was not recruited to vesicles damaged by 

siramesine. On the contrary, siramesine mainly showed damage towards Rab9+ 

structures (late endosomes), as 42% of the Rab9+ compartments were shown as 

galectins-9+, whereas this number for chloroquine group was only 23%, suggesting 

chloroquine mainly interrupt the membrane integrity of endosome at early stages 

(Figure 20D). This is in good line with previous results, suggesting the siRNA 
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endosome escape majorly occurs in early endosome stages [19, 20]. Herein, the results 

further confirmed that, comparing to early endosomes, the disruption of late endosome 

or lysosome may show restrained effects on promoting the RNAi.

Besides of the CADs-specific effects on knockdown efficiency, the same CAD may 

exhibit altered effects on different delivery systems. For example, Wittrup et al. showed 

that treating HeLa-d1-eGFP (same cell line in Ref. [293] as discussed above) with 

chloroquine conversely reduced the knockdown efficiency of GFP targeting siRNA 

loaded in LNPs [20]. This difference can be attributed to the different endocytosis 

pathway from different delivery system. As phagocytosis of LNPs is mainly dominated 

through clathrin-dependent endocytosis [16], which can be effectively inhibited by 

chloroquine [294]. However, cellular uptake of cholesterol-conjugated siRNA is partly 

initiated with the cholesterol insertion into the cholesterol rich raft area of cell 

membranes, followed by internalization through caveolin-dependent endocytosis (also 

named as raft-dependent endocytosis) [295, 296]. Therefore chloroquine reduced 

siRNA knockdown efficiency from lipid NPs can be partly explained as the decreased 

intracellular NPs accumulation. Similar phenomenon was observed by Gilleron et al., 

who screened a CADs compound library for evaluating effects of different CADs on 

RNAi from siRNA loaded lipid NPs and cholesterol conjugated-siRNAs. Despite in 

total 51 CADs exhibited RNAi enhancing efficiency, most enhancers displayed 

specificity for one delivery system only [297], confirming the delivery system specific 

effects from CADs.

CADs induced endosome escape is also cell type dependent. For example, pretreating 
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HeLa-d1-eGFP cells with 20 μM loperamide could induce a 47-fold siRNA IC50 

reduction (Cholesterol-conjugated siRNA), whereas this RNAi enhancing efficiency 

was slightly observed in MCF-7-d1-eGFP breast cancer cells [293].

Overall, despite CADs induced RNAi enhancing has been observed, its further clinical 

application may be hindered by the multiple varieties and further investigations should 

be conducted to provide systematic guidance for proper CADs choose.

Figure 20. Enhanced RNAi efficiency from CADs. (A) HeLa cells incubated with 10 

μM siramesine, 50 μM of amitriptyline or 50 μM of chloroquine for 24 h, and the 

galetin-3 were stained for as endosome damage indicator. Scale bar indicates 50 μm. 

(B) HeLa-d1-eGFP cells were first incubated with cholesterol-conjugated siRNA for 6 
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h, sequentially treated with 10 μM of siramesine, 60 μM of amitriptyline or 60 μM of 

chloroquine for 18 h. Then evaluate the GFP knockdown by flow cytometry. The 

knockdown enhancement efficiency is qualitatively correlated with the galetin-3 foci 

number in (A). (C) Correlation between number of galectin-9 foci and median cytosolic 

dextran fluorescence intensity per cell after 16 h CADs treatment. Cell number for 

control, amitriptyline, siramesine and chloroquine are separately 953, 1204, 1177, and 

1139. Linear regression is outlined by red line. (D) Evaluated damaged vesicles 

numbers and their corresponding fraction within the total vesicles with endosomal 

markers. Modified and reproduced with permission from ref. [293]; Copyright  2020, 

Springer Nature.

7. Future perspective of non-viral NPs based RNAi

7.1. Clinical translation of non-viral NPs based RNAi

Last, but not the least, we discuss about the clinical translation of non-viral NPs based 

RNAi. By summarizing the clinical translation of RNAi-based NPs, one can better 

understand the practical obstacles and challenges during NPs design and fabrication. 

By considering the general advances and failures in the field of nucleic acid delivery 

and the different formulation strategies used in clinically approved products, we hope 

to provide insights, from a market point of view, for future designing and optimization 

of NPs’ formulations.

7.1.1 Approved nucleic acid therapies

The first nucleic acid therapy approved by FDA in 1998 was Vitravene (fomivirsen) by 
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Ionis Pharma and Novartis, a phosphorothioate antisense oligonucleotide for the 

treatment of cytomegalovirus renitis [298]. It was followed by Macugen (pegaptanib), 

a PEGylated aptamer for the treatment of neovascular age-related macular degeneration 

in 2004 [299], and nine years later by Kynamro (mipomersen) a gapmer oligonucleotide 

for treating homozygous familial hypercholesterolaemia [300]. These pioneering 

products faced commercial difficulties; Vitravene was withdrawn as a result of reduced 

clinical need [301] and the sales of both Macugen and Kynamro were limited due to 

competition [302, 303]. Furthermore, Kynamro’s safety concerns led to its rejection by 

the European Medicines Agency (EMA) [304]. 

The latter half of 2010s saw a renaissance of oligonucleotide based therapies as new 

wave of products reached the clinics. Among these was the first FDA-approved RNAi 

drug and the first approved nanomedicine for nucleic acid delivery, Onpattro, in August 

2018 [107]. Onpattro, developed by Alnylam Therapeutics, is a lipid complex injection 

of patisiran (siRNA) for the treatment of hereditary transthyretin-mediated amyloidosis. 

Of the recently approved oligonucleotide products, Onpattro (patisiran) is the only one 

that is based on nucleic acid encapsulated inside NPs. Spinraza (nusinersen), Tegsedi 

(inotersen), Exondys 51 (eteplirsen) and Vyondys 53 (golodirsen) are naked chemically 

modified ONs [305-307], Givlaari (givosiran) and Oxlumo (lumasiran) are N-

acetylgalactosamine (GalNac) conjugated siRNAs [308], Luxturna (voretigene 

neparvovec) and Zolgensma (onasemnogene abeparvovec) are DNAs delivered by 

adeno-associated viral vectors (AVVs) [309, 310] and Defibrotide (defitelio) is a 

combination of naked single- and double-stranded DNA isolated from porcine intestinal 
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mucosa [311]. In 2018, the market approval of eteplirsen was withdrawn by EMA due 

to lack of efficacy [312].

In the clinically approved products, four main formulation strategies have been 

employed: (1) chemical modification of the oligonucleotide; (2) covalent conjugation 

to carrier polymers; (3) encapsulation in lipid nanoparticles; and (4) delivery using 

AVVs. As naked RNA is rapidly degraded in the bloodstream by nucleases, chemical 

modifications are necessary to improve the pharmacokinetics, pharmacodynamics and 

biodistribution of oligonucleotides. These include modifications to the backbone of the 

molecule, to the nucleobases or to the ribose moiety. For a detailed discussion on 

chemical modification strategies, the reader is referred to recent reviews [37, 313]. 

Drawbacks of chemical modification may include loss of binding affinity or potency or 

unexpected toxicity. For example, replacing phosphodiester bonds in the backbone with 

phosphorothioate greatly retards degradation by nucleases, but also reduces target 

binding affinity [37, 313]. Fluoro-modifications of the ribose sugar at the 2’-end are 

commonly used to improve pharmacokinetic profile and reduce immunogenicity, but 

may also result in non-specific loss of cellular proteins and hepatotoxicity [37, 313-

315]. This formulation approach alone does not allow targeting to specific organs, and 

thus, the amount of dose reaching the target tissue is inherently limited. Regardless, this 

strategy has clearly been successful as the majority of the products currently on the 

market are naked, chemically modified oligonucleotides in solution. 

For viral vectors, the main challenge remains to be the body’s immune response against 
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the viral components, which can render up to 50% of patients unable to receive AAV-

based therapies due to pre-existing immunity against the viral capsid [316, 317]. While 

additional measures, such as modification of the vector or immunosuppressive 

medication can be used to mitigate this issue, immune reactions remain a major limiting 

factor for these vectors, especially when repeated dosing is required. Still, the excellent 

transfection efficiency of viruses, evolved through natural selection, still makes them 

an attractive nucleic acid delivery agent. Nevertheless, the challenges encountered with 

AVVs and with the administration of free chemically modified nucleic acid encourage 

further development of polymer-oligonucleotide conjugates and nanoparticle-based 

delivery systems.  

Conjugation of nucleic acids with polymers and biomolecules can and improve stability 

and pharmacokinetics. In currently marketed products, two classes of polymers have 

been applied for this purpose: poly(ethylene glygol) (PEG) and N-acetylgalactosamine 

(GalNac). Notably, conjugation with GalNac polymer allow efficient liver-targeted 

delivery as GalNac binds to asialoglycoprotein receptors expressed almost exclusively 

on hepatocytes [318, 319]. Compared to encapsulation in lipid NPs, using GalNac 

conjugation requires more extensive chemical modifications to the RNA to protect it 

from degradation by nucleases. Alnylam Therapeutics has developed and patented a set 

of chemical modification strategies, termed Enhanced Stabilization Chemistry (ESC), 

which they apply with GalNac conjugation to achieve high stability and knockout 

efficiency [308, 318-320]. The recently approved givosiran and lumasiran utilize this 

platform for siRNA delivery. While this method is expected to revolutionize the 
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treatment of many severe diseases, the platform is only suitable for liver delivery.

LNPs have been used in several commercial products to delivery small molecules since 

the approval of Doxil/Caelyx and Ambisome liposomal products in the 1990s and the 

approval of Onpattro proved that the lipid nanoparticle technology is clinically relevant 

also for nucleic acid delivery. The Onpattro formulation is based on the use of a unique 

combination of lipids, including PEGylated lipids to prevent immune clearance and 

cationic ionizable lipids to allow encapsulation of negatively charged RNA, efficient 

transfection and endosomal escape [94, 321]. Essential in the success of this lipid 

formulation was the development of novel synthetic ionizable lipids of high potency 

[321]. Despite of the success, Alnylam is no longer pursuing the NPs formulation and 

focuses on PMO (phosphorodiamidate Morpholino oligomer) and GalNAc-conjugate 

technologies instead [37, 320]. A major limitation of Onpatto is its immunogenicity, 

necessitating concurrent corticosteroid treatment [320]. 

The perpetual efforts in developing LNPs based RNAi vector may also accelerate the 

developments of other commercialized products. The most recent achievement for 

LNPs technology for RNA delivery are the COVID-19 mRNA vaccines developed by 

BioNTech/Pfizer (Comirnaty) and Moderna (mRNA-1273). These formulations are 

largely similar to that of Onpattro, using a combination of cholesterol, structural lipids, 

PEGylated lipids and proprietary cationic ionizable lipids [322-324]. This platform is 

now being applied by BioNTech in several clinical trials for vaccinations against both 

viral infections and cancers. However, detailed discussion of mRNA vaccines is beyond 

the scope of this review. 
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7.1.2 RNAi delivery systems under clinical investigation

Selected RNAi products currently in clinical studies are listed in Table 3. Excluded 

from this list are naked chemically modified RNAs, mRNA-vaccines, viral vector-

based formulations and cell therapies (in which RNA is transfected in vitro). The 

formulations under study cover a wide range of drug delivery techniques and are 

discussed in more detail below. 

Several subcutaneously administered siRNA products based on the GalNac-platform 

are currently under clinical trials. Cemdisiran is intended to reduce the production of 

complement protein 5 (C5), which plays an important role in several lethal rare diseases 

[325] and two phase II trials are underway for the treatment of atypical hemolytic 

uremic syndrome and immunoglobulin A nephropathy. Additionally, a phase I safety 

trial (NCT04601844) is ongoing for combination therapy of cemdisiran and pozelimab. 

Several phase II/III trials are ongoing (and several have been completed) for inclisiran 

on different patient populations with familial hypercholesterolemia or increased 

cardiovascular risk and elevated low-density lipoprotein (LDL) cholesterol. Inclisiran 

interferes with the synthesis of proprotein convertase subtilisin-kexin type 9 (PCSK9), 

an enzyme synthesized primarily in the liver [326]. PCSK9 binds to LDL receptors on 

hepatocytes and promotes their lysosomal degradation, which ultimately increases the 

production of LDL cholesterol. Additionally, one trial in ongoing for the product DCR-

HBVS, now called RG6346, by Dicerna against chronic hepatitis B virus (HBV) 
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infection.  

At least two relevant LNPs products are currently under study. A saRNA product called 

MTL-CEBPA by MiNA Therapeutics is evaluated for the treatment of advanced 

hepatocellular carcinoma by in a phase I trial. The activating RNA, encapsulated in 

“SMARTICLES” liposomal nanoparticles, is intended to increase production of 

CCAAT/enhancer-binding protein alpha (CEBPA) with the ultimate goal of reduction 

of fibrosis and reversal of liver dysfunction [327]. A liposomal formulation of EphA2 

siRNA is currently under study at MD Anderson Cancer Center. According to a 

preclinical safety report, the liposome consists of 18:1 PC/DOPC lipids and is loaded 

with siRNA against EphA2, a receptor tyrosine kinase associated with cancer 

proliferation, migration, invasion, survival and angiogenesis [328]. 

Another interesting planned to start at MD Anderson Cancer Center is looking into 

mesenchymal stromal cells-derived exosomes (extracellular vesicles) for delivering 

KrasG12D siRNA in patients with the KrasG12D mutation. This mutation has been 

shown to be associated with the development of invasive and metastatic pancreatic 

ductal adenocarcinoma [329]. Several phase I/II studies are active for the polypeptide-

siRNA complex platform STP705 of Sirnaomics where the platform is used to deliver 

siRNA by localized injection to treat several different liver and skin cancers as well as 

hypertrophic scar reduction and keloid scarless healing. In addition to these colloidal 

systems, also a macroscopic siRNA delivery system is under clinical study. This 

LODER technology by Silenseed Ltd. is based on poly(lactic-co-glycolic acid) (PLGA) 

biodegradable polymer implant for local, sustained delivery of siRNA. 
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Overall, several technologies have successfully been used for RNA delivery and many 

new approaches are under clinical investigation. These advances have already helped 

many patients and vastly expanded the range of treatable diseases. However, major 

challenges still remain in delivering RNA to tissues other than the liver through 

systemic circulation. The development of advanced, targetable colloidal drug delivery 

systems is required to enable efficient delivery to different organs and to expand the 

applications of RNAi therapy.  
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Table 3. Selected siRNA and saRNA therapeutics in clinical trials.a

Carrier class Product / RNA type Delivery system Sponsor of study Indications Delivery target, RoA * Phase Clinicaltrials.gov 
identifier

MTL-CEBPA / 
saRNA

Liposomal 
nanoparticle

Mina Alpha 
Limited

Hepatocellular carcinoma Liver, intravenous I NCT02716012Lipid

EphA2 siRNA Liposome (DOPC) National Cancer 
Institute (NCI)

Advanced solid tumors Several organs, 
intravenous

I NCT01591356

Exosomes iExosomes with 
KRAS G12D siRNA

mesenchymal 
stromal cell-derived 
exosomes 

M.D. Anderson 
Cancer Center, 
National Cancer 
Institute (NCI)

Metastatic pancreas cancer metastatic cancer, 
intravenous

I NCT03608631

Several liver cancers Liver, intratumoral I NCT04676633

Hypertrophic scar reduction, 
Keloid scarless healing

Skin, intradermal I/II NCT02956317

Basal cell carcinoma Skin, localized injection II NCT04669808

Polypeptide STP705 Histidine-Lysine-
siRNA complex

Sirnaomics

Cutaneous Squamous Cell 
Carcinoma in Situ

Skin, intratumoral 
injection

I/II NCT04293679

Polymer LODER technology 
(local RNA delivery 
platform)

PLGA implant Silenseed Ltd Pancreatic cancer Pancreas, intratumoral 
application

II NCT01676259

Cemdisiran / siRNA GalNac conjugate Alnylam Atypical hemolytic uremic 
syndrome
Immunoglobulin A 
nephropathy

Liver, subcutaneous II NCT03999840
NCT03841448

Inclisiran / siRNA GalNac conjugate Novartis 
Pharmaceuticals, 

University of 
Oxford / The 
Medicines 
Company 

Cardiovascular disease, High 
cholesterol, Homozygous 
familial hypercholesterolemia

Liver, subcutaneous II - III NCT03814187
NCT03060577
NCT04659863
NCT04652726
NCT03851705
NCT04666298
NCT04765657
NCT03705234

Biomolecule 
conjugates 

DCR-HBVS / siRNA GalNac conjugate Dicerna Chronic hepatitis B Liver, subcutaneous I NCT03772249
a RoA = route of administration, saRNA = small activating RNA, DOPC = 1,2-dioleoyl-sn-glycero-3-phosphocholine, siRNA = small interfering 
RNA, , PLGA = poly(lactic-co-glycolic acid)
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7.2. Adverse effects of RNAi

The discussion from previous section suggests the adverse effects and toxicity is the 

prerequisite yet the major obstacle for clinical applications of RNAi. Among the most 

pronounced side effects of RNAi are the off-target effects and immune stimulation 

[330]. Off-target effect is the undesired silencing of non-target genes expression [331]. 

It can occur due to the non-complete homology of RNAi to target mRNA that can result 

in partial binding [332]. In addition, coincident sufficient homology of RNAi (11 base 

pair) to other non-target mRNA can result in translational suppression or degradation 

of this mRNA [333]. Off-target effect can result as well from the loading of sense strand 

of dsRNA or miRNA (equivalent to target mRNA neuclotide sequence) into RISC 

instead of anti-sense strand (complementary to target mRNA) [332]. The improper 

RISC loading orientation results in neglecting the target mRNA and instead silencing 

of unintended transcripts complementary to the loaded strand [334]. Consequently, 

regardless the depleted effects on target genes, the off-target effects can result in knock-

down of different gene expressions and toxicities with major consequences that can 

level-up to cell death [332].

The other commonly observed side-effect from RNAi is the immune stimulation. Non-

specific administration of exogenous RNAi can result in the activation of innate 

immunity through the induction of interferon responses. This can be induced through 

binding to the cytosolic receptors; protein kinase R (PKR) and 2′-5′-oligoadenylate 

synthetase, which recognize long dsRNA. This is in addition to binding to toll-like 

receptor (TLRs) family (specifically TLR3, TLR7 and TLR8), which are responsible 
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for recognizing nucleic acid on the cell surface or in endosomes [335, 336]. This 

induces a molecular cascade, which leads to immune cells activation and release of type 

I interferons and inflammatory cytokines [337]. Although sometimes the immune 

stimulation can be a serious adverse effect, it can also be beneficial, for effective 

therapy against cancer or viruses [330]. 

The design of RNAi should be carefully considered to either avoid or induce immune 

stimulation, according to the specified application. Although dsRNA longer than 30 bp 

are known to activate the innate immunity [334], some shorter (>23-bp) dsRNA has 

also shown to induce interferon responses in some cell lines. The threshold length of 

RNAi may vary with different cell lines [338]. Specific sequence motifs, such as 5′

GUCCUUCAA3′ or 5′UGUGU3′, can induce the production of interferon and 

interleukin by plasmacytoid dendritic cells [335]. These motifs are usually U-rich, 

which are difficult to be eliminated from RNAi drug candidates [334]. In addition to 

the immune stimulation, systemic administration of RNAi can result as well in non-

specific distribution to non-target organs [339]. This would lead to gene silencing and 

toxicity in these organs, in addition to increasing the required dose of RNAi [340, 341]. 

Further unintended side effects may appear due to the saturation of cellular RNAi 

machinery by the synthetic siRNA. This will interfere with the gene silencing effect by 

endogenous miRNA, and finally results in overexpression of certain proteins and 

induction of toxicity [342].

The undesired side effects are the major obstacles for the successful clinical translation 

of RNAi. The first clinical trial with siRNA was on bevasiranib for targeting vascular 
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endothelial growth factor in age-related macular degeneration patients in order to 

suppress ocular neovascularization. The clinical studies were terminated off after 

reaching the phase III trial, because the medicinal effect is not due to gene silencing, 

but the non-specific immune stimulation via TLR3 activation [343]. ARC-520, which 

is a targeted anti hepatitis B virus (HBV) siRNA with promising therapeutic effects, 

was among the first antiviral siRNA to enter the clinical trials [344]. Its clinical trial 

was terminated due to death in non-human primates induced by administration of the 

highest siRNA dose [345]. MRX34 is a liposomal miR-34a mimic for advanced solid 

tumors, and was tested clinically on human as the first miRNA cancer therapy [346]. 

The trial was discontinued due to reported severe immune-related side effects, 

including severe cytokine release syndrome [345].

Different approaches can be considered through different stages of the development of 

RNAi candidates to eliminate the off target effects. Among these approaches are 

sequence design and optimization [334], chemical modifications [347] of RNAi 

candidates and development of effective delivery system and targeting [345]. The 

design of selective and hyperfunctional RNAi is a first step toward the reduction of off-

target effects and short-list the potential candidates [348]. Bioinformatics tools can be 

useful to avoid the design RNAi of seed region that is complementary to off-target 

mRNA [334]. Additionally, an important factor that should be considered while 

designing RNAi is the sequence-potency relationship [334]. This highlight the 

importance of developing and advancing bioinformatics tools, as it is the first step 

toward the development of effective RNAi. Screening the RNAi drug candidates for 
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off-target effect is a helpful tool as well to early eliminate the non-potential candidates. 

Protein array technologies will help to provide a representative image about the effect 

of RNAi on cellular protein expression [349].

The design and sequence optimization of RNAi candidate is important to reduce the 

side effect; however, it is still not sufficient to totally eliminate all the possible immune 

reactions toward RNAi. In this regard, different chemical modifications have been 

developed to enhance the performance of RNAi and reduce the immune response and 

off-target effects and enhance the guide strand selection and delivery. It is also 

important that chemical modifications are not adversely affecting the potency of the 

RNAi or impair its pathway. These chemical modifications can be classified as 

modifications phosphate backbone, the ribose moiety or the base [347]. Among the 

commonly used modifications is ribose 2′-OH group substitution with other groups; 

2′-O-methyl (2′-OMe), 2′-methoxyethyl (2′-MOE) or 2′-fluoro (2′-F) [337]. 

This would protect siRNA from ribonucleases, which require the 2′ -OH group to 

hydrolyze RNA [347]. In addition to increasing the resistance to degradation, this 

modification can reduce the risk of immune stimulation and decrease cytokine 

production [350]. Modifications can be performed at the termini of RNAi, which are 

recognized by immune cells. For example, siRNA with added 3′ - UU can reduce 

immune stimulation and enhance the gene silencing efficiency [337] .However, 

modifications at 5' phosphate of the antisense strand cannot be easily applied, as it is 

essential for recognition and binding to RISC [351].
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RNAi delivery systems should be non-immunogenic to reduce the side effects and 

avoid excipient-induced immune activation [345]. Additionally, designing the delivery 

systems to provide time-controlled RNAi delivery would be beneficial to control the 

intracellular concentration of RNAi. In turn, this can reduce the concentration-

dependent side effects such as off-target effects, immune stimulation and saturation of 

the endogenous RNAi pathway [348]. Tissue or cell-specific targeting is important, 

especially with systemic administration of RNAi to avoid gene silencing in non-target 

tissues inducing unwanted toxicities [352]. Additionally, targeted delivery can increase 

the therapeutic window of RNAi drug and increase bioavailability in targeted site, while 

reducing the off-target effects [345]. Targeting ligands can decorate the NPs surface or 

be conjugated to the RNAi itself. Among the targeting ligands as mentioned before are 

aptamers [353], antibodies [354], folates [355] and N-Acetylgalactosamine (GalNAc) 

[319].

Ultimately, different strategies should be combined to reduce the side effects of RNAi, 

starting from the careful designing of RNAi sequence to designing an optimum delivery 

system. For example, Dicerna Pharmaceuticals developed Dicer-substrate siRNA 

(DsiRNA), functionalized with GalNAc moieties. GalNAc is a ligand to the endocytic 

asialoglycoprotein receptor (ASGPR), which is an endocytic receptor overexpressed on 

surface of hepatocytes, and barely on other cell types [356]. The ligand moieties are 

linked to the tetraloop hairpin of DsiRNA, which is connected to sense strand, constant 

sequence, and antisense strand composed of a 21–23 nucleotides complementing the 

target mRNA. The design would make it difficult for the sense strand to be loaded to 
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RISC due to the constant complementary structure in the siRNA sense strand. This in 

turn can diminish the off-target effect mediated by the sense strand loading to RISC 

[347]. Finally, different adverse effects of RNAi and the potential approaches to avoid 

such side effects are summarized in Figure 20.

Figure 20. Schematic representation of the challenges that RNAi faces and the 

sequential adverse effect, which can hinder the clinical applications of RNAi, in 

addition to the potential approaches to reduce these side effects.

8. Conclusion

RNAi based genetic therapy provides hope for intractable and incurable diseases. Non-

viral RNAi delivery systems have drawn increasing attention in the research community 

due to their advantages in safety, controllable physiochemical properties and economic 

feasibility. Challenges, ranging from NPs synthesizing conditions, successful RNAs 
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encapsulation, protection and efficient yet precise targeting capability and efficient 

endosome escape behavior, are potentially laid ahead to achieve efficient therapeutic 

outcomes. Understanding the potential mechanism of each step is the prerequisite to 

properly resolving these obstacles and, as a result, the recent advances in utilizing 

optimized NPs formulation has enhanced the RNAi efficiency, and expand the 

application scenario to a more broad area. Furthermore, the continuous efforts may also 

provide fundamental knowledge for facilitating the development of other nucleotide-

based new cargos, such as self-amplifying mRNA, which holds promise for efficient 

next-generation vaccines.

However, further knowledge is still in demand to better promote their clinical 

translation perspectives of RNAs. From a pharmaceutical engineering point of view, 

the major challenges come from the issue of variability and reproducibility under 

laboratory setting [357]. Diversity in materials choices and detailed handling protocols 

from different laboratories may lead to inconsistencies between different studies. 

Further exploration of the underlying mechanisms of nanoparticle formation and RNA 

encapsulation remain paramount to achieve consistent results and enable rational 

formulation optimization. Meanwhile, the development of modular NP production 

methods, such as microfluidic-based production or continuous extrusion, may also 

reduce the batch-to-batch variation [93].

From a biological point of view, previous studies demonstrated the potential genome 

alteration as results of off-target RNAi delivery, also suggesting RNAi may not be in a 

traditional “dose-effect” relationship, where a conversely upregulated target gene 
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expression may be induced under high siRNA or miRNA concentrations [22-24]. 

However, despite the advances highlighting the increased RNAi efficiency by using 

NPs for intracellular delivery, a systematic investigation on the concentration 

thresholds for NP-based RNAi, and the potentially induced genome alteration with high 

RNAs dosages is still needed. Corresponding investigation may bring fundamental 

knowledge to the whole scientific community and facilitate the understanding to the 

physiological barriers of RNAi, thus holding enormous value for achieving precise gene 

therapy.
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