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a b s t r a c t

We present ennemi, a Python package for correlation analysis based on mutual information (MI). MI is
a measure of relationship between variables. Unlike Pearson correlation it is valid also for non-linear
relationships, yet in the linear case the two are equivalent. The effect of other variables can be removed
like with partial correlation, with the same equivalence. These features make MI a better correlation
measure for exploratory analysis of many variable pairs. Our package provides methods for common
correlation analysis tasks using MI. It is scalable, integrated with the Python data science ecosystem,
and requires minimal configuration.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00028
Code Ocean compute capsule N/A
Legal Code License MIT License
Code versioning system used Git
Software code languages, tools, and services used Python 3
Compilation requirements, operating environments & dependencies Python 3.6+, NumPy 1.17.5+, SciPy 1.4+
Link to developer documentation/manual https://polsys.github.io/ennemi/
Support email for questions petri.laarne@helsinki.fi

1. Motivation and significance

During the past few decades, a rapidly increasing amount
f measurement data has become available in various fields of
cience. This allows us to discover unexpected relationships be-
ween measured variables. On the flip side, the number of vari-
ble pairs has also grown significantly. In order to focus the
xploratory (hypothesis-generating) data analysis on the most
romising relationships, an automated process is necessary. The
ost popular correlation coefficient, Pearson’s r , is not a sufficient
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measure for this purpose, since many natural phenomena are
non-linear.

Mutual information (MI) is an information-theoretic measure
of dependency between two random variables [1]. It is defined
as the difference between marginal and joint entropies, or equiv-
alently as

I(X; Y ) =

∫
R2

p(x, y) log
(

p(x, y)
p(x)p(y)

)
d(x, y), (1)

where p denotes the respective probability densities. The defini-
tion is analogous for discrete variables. In addition, conditional
MI, denoted by I(X; Y |Z), is defined by conditioning on a third,
possibly multidimensional, variable. It is analogous to partial
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orrelation. In both cases, zero MI implies independence between
he two variables.

Mutual information ranges over [0, ∞], but can be normalized
o a correlation coefficient in [0, 1] by

I(X;Y ) =

√
1 − exp(−2 I(X; Y )). (2)

If (X, Y ) is normally distributed, then ρI(X;Y ) equals the Pear-
on correlation coefficient between the two variables. The same
quivalence applies between conditional MI and partial correla-
ion coefficient.

Furthermore, MI is invariant under monotonic transformations
f variables. This means that the MI correlation coefficient of a
on-linear model (X, Y ) matches the Pearson correlation of the
inearized model (f (X), g(Y )). General conditions for f and g are
escribed in [2, Thm. 1.6.3].
MI has been used for correlation analysis across fields, such

s in bioinformatics [3] and atmospheric sciences [4]. Special-
zed software includes MDEntropy [5] for molecular dynamics
nd IDTxl [6] for network inference. Machine learning packages
uch as scikit-learn [7] apply MI as part of feature selection.
elf-contained packages such as infotheory [8] or pycit [9] are
omewhat technical to use.
Our goal is to present MI as a correlation measure, a term

ell understood by practitioners. Hence we focus on compatibil-
ty with existing workflows and on variety of use cases rather
han variety of algorithms. Our package, named ennemi, is distin-
uished by the following features:

• Simple, documented interface for common analysis work-
flows,

• Integration with the Python data science ecosystem,
• Support for discrete–continuous and (multi-dimensional)

conditional MI,
• Minimal exposure of technical details,
• Good and scalable runtime performance.

There are three common methods for estimating MI from
ontinuous data: binning/discretization (used by infotheory), ker-
el density estimation [10], and k-nearest neighbor search [11]
scikit-learn, pycit). We have chosen the last one because it per-
orms well and requires only a single parameter k, the effect of
hich is relatively small [11]. The other methods are sensitive to
in/kernel width [e.g. 12, Figure 2]. We also use the algorithm
ariants for discrete–continuous MI [12] and conditional MI [13].

. Software description

The implementation of ennemi consists of two parts: the al-
orithms and the public interface. The latter module implements
ll the distinguishing features: parallelism, lags, masking and
ptional Pandas data type support. This split greatly simplifies
he algorithms module, which only handles raw NumPy ndarray
ariables and independent estimation tasks. The algorithms are
traightforward implementations of the referenced articles.

.1. Functionalities

The primary methods of ennemi are estimate_mi and pair-
ise_mi. The first compares a variable against one or more
ariables, whereas the second does pairwise comparisons be-
ween a set of variables. Data may be passed in as Python lists,
darrays or Pandas DataFrames (in which case the result will
ave column names).
The estimate_mi method supports time lags of variables.
hen a positive lag ∆ is supplied, the data points y1+∆, . . . , yn

re compared against x1, . . . , xn−∆, and symmetrically for nega-
ive lags. If multiple lags are specified, the set of y observations

is kept fixed. This ensures that all estimates use the same subset
of the variable of interest.

Both methods accept a mask parameter. The mask is ap-
plied to y values and the translated x values. This enables using
a subset of data without manually adapting the mask to lags.
Both methods also accept a conditioning variable, which may be
multidimensional.

The nearest neighbor algorithm produces the most accurate
results when the variables are roughly symmetrical and of same
variance. If there are duplicate observations (e.g. due to low
precision), some noise should be added. The package rescales
variables and adds reproducible noise by default. However, the
user needs to transform the marginal distributions to symmetric
(e.g. by taking logarithms) if necessary.

Finally, there are additional parameters for returning corre-
lation values (Eq. (2)), specifying that y is discrete, and tun-
ing the algorithm. Full description and examples are included
in ennemi documentation. For completeness, we have also in-
cluded a method (estimate_entropy) for continuous entropy
estimation.

2.2. Performance

The execution time is close to linear in sample size n, and in-
creases with the number of conditioning variables and neighbors
to search. Measurements of run time for different values of n and
k are shown in Fig. 1.

The k-nearest neighbor algorithm consists of two main steps:
find the L∞ (maximum norm) distance to the k’th neighbor of
a point, and count the points within that distance in marginal
spaces. These steps use a multidimensional tree structure pro-
vided by the scipy.spatial.cKDTree class. The class is im-
plemented in C++ and offers efficient vectorization.

Python enforces data consistency by executing only a sin-
gle Python thread at a time. The cKDTree methods release the
Global Interpreter Lock (GIL) while compiled code is executed,
and therefore it is possible to use thread-level parallelism. Large
estimation tasks parallelize nearly perfectly as the thread over-
head and GIL contention are relatively small. We use simple
heuristics to run very short tasks on a single thread.

The performance measurements in this section were done on
a desktop computer with Intel i5-4670 (4 cores at 3.40 GHz)
CPU, 16 GB of DDR3 RAM, Windows 10 (version 1910), 64-bit
Python 3.8.5, NumPy 1.19.1, and SciPy 1.5.2. The code and other
benchmarks are included in ennemi source repository.

2.3. Verification

We have implemented an extensive test suite consisting of
unit and integration tests. A continuous integration (CI) system
hosted on GitHub runs the unit tests on every pull request, using
combinations of the supported operating systems and Python
versions. The line coverage of unit tests is measured and re-
quired to be close to 100%. For testing the algorithms, we use
analytical expressions of MI, most importantly those of Gaussian
distribution and some described in [14].

The integration tests simulate more realistic workflows, using
either real data or simulated datasets with numerical reference
results. For example, the tests reproduce the results of [12,13].

Because Python is a dynamically-typed language, type errors
occur only at run time. To detect these errors earlier, we have dec-
orated all methods with type annotations defined in the standard
library [15] for verification with the Mypy static analyzer. These
annotations are also available to package users. The coverage is
still partial, as NumPy and other dependencies are in progress of
adding type information.
2
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Fig. 1. Execution time (best of 10 repeats) of a single MI estimation with zero (unconditional), one (1D condition), and two (2D condition) conditioning variables,
as a function of (a) number of data points n, and (b) the parameter k. All variables are independent standard Gaussians.

Fig. 2. The pairwise MI between each variable in the Helsinki meteorological data set at 3 PM local time. In (a) the unconditional correlation is shown, and in (b)
the correlation is conditioned on the day of year.

We have also automated the package release process. When
release is created on GitHub, a script submits the package

o Python Package Index (PyPI). The released code versions are
rchived on Zenodo, where the exact versions are citable [16].

. Illustrative example

We demonstrate the basic usage with meteorological observa-
ions (wind speed and direction, dew point, temperature, and air
ressure) from 2015 to 2019 at the Kaisaniemi weather station in
elsinki, Finland. An extended version of this example is included
n ennemi documentation. The original data was obtained from
he Finnish Meteorological Institute.1

rom ennemi import estimate_mi , pairwise_mi
import numpy as np
import pandas as pd

data = pd . read_csv ( " kaisaniemi . csv " ,
index_col =0 , parse_dates=True )

Listing 1: Import of the package and data.

1 https://en.ilmatieteenlaitos.fi/download-observations, accessed 13 August
020.

To begin, we import ennemi, NumPy, and Pandas, and then
load the data as a Pandas data frame (Listing 1). By visual in-
spection, the variables have roughly symmetric distributions, so
there is no need to e.g. take logarithms. Therefore the automatic
rescaling of variables suffices.

A good first step is to plot the pairwise MI between all
variables. Because the algorithm assumes independent samples
whereas meteorological data is highly autocorrelated, we have to
select only one sample per day. For example, we can calculate the
dependency between variables at 3 PM local time, both with and
without conditioning on the day of year (Listing 2).

# The data i s at hourly i n t e r v a l s and in UTC
mask = ( data . index . hour == 13)

pairwise = pairwise_mi ( data , mask=mask ,
normalize=True )

pairwise_doy = pairwise_mi ( data , mask=mask ,
cond=data [ "DayOfYear " ] , normalize=True )

Listing 2: Calculation of pairwise MI between variables.

The resulting matrices can be plotted with e.g. Matplotlib, as is
done in Fig. 2. The strong seasonal cycles of temperature and dew
point are clearly visible in the unconditional plot. Conditioning
removes this effect without requiring further model specification.
3
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Fig. 3. The correlation between wind direction and temperature in Helsinki
depends on the season, with Western winds associated with less extreme
temperatures.

Fig. 4. The dependency between temperature at 3 PM and earlier observations
of variables.

The correlation between temperature and wind direction in-
creases with conditioning, correctly suggesting that the air mass
source affects the temperature within a season. This dependency
could be difficult to see with traditional methods because the sign
of the correlation varies seasonally, as shown in Fig. 3.

Lag up to three days with four hour spacing
lags = np . arange (0 , 3∗24 + 1 , 4)

i = estimate_mi ( data [ "Temperature" ] , data ,
lags , cond=data [ "DayOfYear " ] ,
mask=afternoon_mask , normalize=True )

Listing 3: Estimation of time dependency after removing
seasonal effect.

We can also estimate the time dependency between variables.
or example, how long into the future can we predict the tem-
erature? This can be calculated by passing covariate lags into
stimate_mi. The seasonal effect is removed by conditioning on
he day of year (Listing 3).

The results are displayed in Fig. 4. As can be expected, the
orrelations decrease as the time difference increases. The air
ressure is an exception, suggesting that it is the slowest to
hange. The correlation between temperature and wind speed is
ery low regardless of the time delay.

There is significant noise in the lowest correlation values.
This is because the normalization formula (Eq. (2)) is non-linear.
Increasing the k parameter improves the accuracy of low val-
ues, but may introduce a small bias to high values. To increase
the effective sample size from 1826 days without violating the
independence assumption, we can average the results of sepa-
rate, nearly identical estimations: for example, the temperature
observations fixed at 2 PM, 3 PM, and 4 PM.

4. Impact

We have used ennemi to evaluate the applicability of MI for
detecting non-linear correlations in large atmospheric datasets.
We have used data from the University of Helsinki SMEAR sta-
tions network [17], where comprehensive long-term measure-
ments of meteorological, atmospheric and ecological parameters
are performed. These datasets allow detailed studies of vari-
ous processes, interactions and feedbacks in the atmosphere–
biosphere system.

In our past experience, MI has performed well in detecting
known linear and non-linear correlations [4,18]. The primary
issues are the necessity to work around autocorrelation and the
inaccuracy of low MI values. There is also the need to sym-
metrize the marginal distributions of variables, although this
process could feasibly be automated.

There are other similar measures of variable relationship such
as maximal information coefficient [19] and transfer entropy [20].
The simplicity and the theoretical equivalence with Pearson cor-
relation make MI attractive even when more advanced methods
are available. Transfer entropy could be a future inclusion to
ennemi.

Our new package is distinguished by being aimed specifically
at data analysis. It requires little information-theoretic knowledge
from the user and works with the common Python ecosystem for
data manipulation. We have also worked extensively on testing
and performance in order to provide a reliable building block for
future applications.

5. Conclusions

We have presented a Python package for estimation of mutual
information. The package is designed for the non-linear cor-
relation detection as part of a modern data analysis pipeline.
Therefore, it features integration with Pandas data types and
supports masks, time lags, and normalization to correlation co-
efficient scale. Our implementation is also extensively tested,
portable, and reasonably fast.

We believe that ennemi can help discover new relationships
in datasets. The underlying measure has already been used both
in specialized applications and general correlation analysis across
multiple fields. By presenting a ready-to-use software package,
we hope to encourage more widely applicable exploratory corre-
lation analysis in different contexts.
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