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Preface

This book contains all that is found in Gödel’s preserved shorthand note-
books on his research that led to the famous incompleteness theorems of
formal systems. The notes are followed by the original version of his ar-
ticle, before a dramatic change just a few days after it was handed in for
publication, and six lectures and seminars in consequence of his celebra-
ted result published in 1931. The notebooks and one of the lectures were
written in German Gabelsberger shorthand that I have translated into Eng-
lish, usually from an intermediate transcription into German, but at places
directly. I thank Tim Lethen for his help in the reading of many difficult
shorthand passages, and Maria Hämeen-Anttila for her support, especially
at the troublesome moment when I discovered Gödel’s tricky change of his
manuscript after it had been submitted for publication. Marcia Tucker of
the Institute for Advanced Study was very helpful during my visit to the
Firestone Library of Princeton University where the originals of Gödel’s
manuscripts are kept. Finally, I recollect with affection my mother’s deci-
sion to challenge her little boy by enrolling him in the German elementary
school of Helsinki, a choice without which I would not have learned to read
Gödel’s manuscripts.

Jan von Plato
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Part I

Gödel’s steps toward incompleteness
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1. THE COMPLETENESS PROBLEM

David Hilbert’s list of 23 mathematical problems from the Paris interna-
tional congress of mathematicians of 1900 had as the second problem the
question of the consistency of analysis: to show that no contradiction fol-
lows from the axioms for real numbers. A slip of paper with an additional
problem, to be placed last as a 24th one, was found some hundred years la-
ter, one that asked for criteria for the simplicity of proofs and in general, “to
develop a theory of proof methods in mathematics.” The development of
a theory to this effect, what Hilbert called proof theory, started in Göttingen
in 1917–18, when the First World War was coming to its end. Its main aim
was to provide answers to such questions as consistency.

After the war, German mathematicians were excluded from the inter-
national congress of mathematicians, held every four years. The reappea-
rance of Germans on the international scene took place in the internatio-
nal congress of Bologna in 1928, with Hilbert lecturing on “Problems in
the foundations of mathematics.” In his lecture, Hilbert surveyed the de-
velopment of mathematics in the past few decades, then listed four main
problems in its foundation. There was behind the list the most remarkable
period of research into logic and foundations of mathematics seen so far.
Hilbert had realised that Bertrand Russell’s Principia Mathematica of 1910–
13 offered the means for formalizing, not just mathematical axioms as in
geometry, but even the logical steps in mathematical proofs: “One could see
in the completion of this grandiose Russellian enterprise of axiomatization of
logic the crowning of the task of axiomatization as a whole.” (Hilbert 1918,
p. 153). Ten years later, the logic of the connectives and quantifiers had be-
en brought to perfection, presented in the book Grundzüge der theoretischen
Logik (Hilbert and Ackermann 1928). The formalization of arithmetic had
also been accomplished, with recursive definitions of the basic arithmetic
operations and an axiom system for proofs in arithmetic. Hilbert believed
at this time Wilhelm Ackermann and Johann von Neumann to have sol-
ved the problem of consistency for a strong system of arithmetic, but there
remained some doubts about it.

The first and second problems in Hilbert’s Bologna list of 1928 are about
the extension of Ackermann’s proof to higher areas of mathematics. The list
has as the third problem, from Gödel’s reading notes on Hilbert’s article:1

1 Part of document 050135, reel 36, frames 377 to 385 in the Gödel microfilms.
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III Completeness of the axiom system of number theory

i.e., to be proved:

1. S and S to be shown as not both free from contradiction.

2. When S is free from contradiction, it is also provable.

After a digression on the role of the principle of induction, there follows:

IV Completeness of logic (would follow from the completen-
ess of number theory) “Are all generally valid formulas prova-
ble?”

So far proved only for propositional logic and the logic of clas-
ses.

Gödel had studied the Hilbert-Ackermann book in late 1928, then began to
formalize proofs in higher-order arithmetic, for which purpose he invented
an impeccable system of linear natural deduction. A whole long notebook,
the “Übungsheft Logik” (exercise notebook logic) is devoted to this purpo-
se, with formal derivations of unprecedented complexity, more than eigh-
ty steps and up to four nested temporary hypotheses made (cf. von Plato
2018b).

Gödel’s interest shifted soon from the actual construction of formal de-
rivations to the completeness of a system of proof. The completeness of
quantificational logic is clearly formulated, independently of arithmetic,
in Hilbert-Ackermann. There is a shorthand notebook with the title “Diss.
unrein” (Dissertation draft), fifty pages long, with an outline of the first ten
chapter headings on page 16, slightly abbreviated here (document 040001):

1. Introduction

2. Notation and terminology

3. Basic theorems about the axiom system

4. Reduction to denumerable domains [Denkbereiche]

. . .

7. Independence of propositions and rules

8. Extension for the case in which = is incorporated
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9. Extension for axiom systems with finitely and infinitely many
propositions

10. Systems with a finite basis and monomorphic systems

These items from 1 to 10 are detailed in the rest of the notebook.

Gödel’s proof of completeness for the “narrower functional calculus,”
i.e., first-order classical predicate logic, has disjunction, negation, and uni-
versal quantification as the basic notions. The simplest case of quantifica-
tion is the formula ∀xF(x) with F(x) a propositional formula. Gödel states
in a shorthand passage that if such a formula is “correct,” i.e., becomes true
under any choice of domain of individuals and relations for the relation
symbols of the formula, then the instance with a free variable x must be a
“tautology” of propositional logic. In the usual “Tarski semantics” that is—
unfortunately—included in almost every first course in logic, the truth of
universals is explained instead by the condition that every instance be true,
an explanation that with an infinite domain of objects becomes infinitely
long.

In Gödel, by contrast, with the free-variable formula F(x) a tautology,
it must be provable in propositional logic by the completeness of the latter,
a result from Paul Bernays’ Habilitationsschrift of 1918 and known to Gödel
from Hilbert-Ackermann. That book is also the place in which the rules of
inference for the quantifiers appear for the first time in an impeccable form
(p. 54, with the acknowledgment that the axiom system for the quantifiers
“was given by P. Bernays”). With the free-variable formula F(x) provable in
propositional logic, the rule of universal generalization gives at once that
even ∀xF(x) is derivable. The step is rather well hidden in Gödel’s com-
pleteness proof in the thesis that proceeds in terms of satisfiability. At one
point, he moves to provability of a free-variable formula, then universally
quantified “by 3,” the number given for the rule of generalization.

Gödel’s profound understanding of predicate logic, especially the need
for rules of inference for the quantifiers without which no proof of comple-
teness is possible, is evident through a comparison: Rudolf Carnap, whose
course he had followed in Vienna in 1928, published in 1929 a short presen-
tation of Russell’s Principia, the Abriss der Logistik, but one searches in vain
for the quantifier rules in this booklet. Other contemporaries who failed
in this respect include Ludwig Wittgenstein and Alfred Tarski. The former
was a dilettante in logic who thought that truth-tables would do even for
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predicate logic. With the latter, no trace of the idea of the provability of uni-
versals through an arbitrary instance is found in his famous tract on the
concept of truth of 1935.

Gödel’s actual aim in his doctoral thesis was a proof of completeness of
arithmetic, as is witnessed by the last third of the planned contents of his
dissertation. It should be noted that Hilbert’s Bologna address that listed
the problem got published after Gödel had finished the thesis:

11. Application to geometry and arithmetic – connection bet-
ween the two – inclusion of functions over objects

a.) for the case of completeness b.) for the case that no finite
basis is at hand

12. General construction of resultants and solution of the pro-
blem whether real roots are at hand

holds for which number systems?, decision procedure

13. Resolution of the Archimedean axiom, proof of the comple-
teness of the arithmetic axiom system

14. There is no finite basis for arithmetic propositions

15. Independence of the concepts ?

There seem to be no traces of how Gödel in 1929 thought he would prove
the completeness of arithmetic, though I have not studied the long note-
book in every detail yet—perhaps the above already indicates some doubt?
There is instead his announcement of the failure of any such proof the next
year, found at the end of the lecture he gave at the famous Königsberg
conference on the foundations of mathematics on 5–7 September 1930. The
conference is remembered for its presentation of the main approaches to
the foundations of mathematics, logicism, formalism, intuitionism, in three
widely read lectures by Rudolf Carnap, Johann von Neumann, and Arend
Heyting, respectively.

Gödel’s short and readable lecture about the completeness of predicate
logic—just twenty minutes were allotted for it— is preserved in shorthand
and very slightly changed in a typewritten form that got first published in
the third volume of Gödel’s Collected Works. Close to the end of that lecture,
we find the following passage (p. 28):
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If one could prove the completeness theorem even for the hig-
her parts of logic (the extended functional calculus), it could be
shown quite generally that from categoricity, definiteness with
respect to decision follows.2 One knows for example that Pea-
no’s axiom system is categorical, so that the solvability of each
problem in arithmetic and analysis expressible in the Principia
Mathematica would follow. Such an extension of the completen-
ess theorem as I have recently proved is, instead, impossible,
i.e., there are mathematical problems that can be expressed in
the Principia Mathematica but which cannot be solved by the lo-
gical means of the Principia Mathematica.

It is clear from these remarks that Gödel’s first thought was to extend the
completeness result to higher-order logic, a point emphasised in Goldfarb
(2005). The above is an indication of his way to the first incompleteness
theorem from the time when the actual work was done, namely through a
failed attempt that led to the insight about undecidability.

The shorthand version of the Königsberg talk ends with (reel 24, frame
311):

I have succeeded, instead [of extending the completeness theo-
rem to higher-order logic], in showing that such a proof of com-
pleteness for the extended functional calculus is impossible or
in other words, that there are arithmetic problems that cannot
be solved by the logical means of the PM even if they can be
expressed in this system. These things are, though, still too little
worked through to go into more closely here.3

In the typewritten version, we read somewhat differently about his proof
of the failure of completeness (document 040009, page 10):

In this [proof], the reducibility axiom, infinity axiom (in the for-
mulation: there are exactly denumerable individuals), and even
the axiom of choice are allowed as axioms. One can express the
matter also as: The axiom system of Peano with the logic of the

2 Literal translation of the German “Entscheidungsdefinitheit.”
3 The last sentence reads in German: “Doch sind diese Dinge noch zu wenig durchgear-

beitet, um hier näher darauf einzugehen.”
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PM as a superstructure is not definite with respect to decision. I
cannot, though, go into these things here more closely.4

Then this last sentence is cancelled and the following written: “It would,
though, take us too far to go more closely into these things.”5 It would seem
that matters concerning the incompleteness proof had cleared in Gödel’s
mind between the writing of the shorthand text for the lecture and the ty-
pewritten version.

The shorthand text for the Königsberg lecture is found fairly early in
Gödel’s two notebooks about incompleteness. There is, about sixty pages
later, a shorthand draft for his two-page note on the two incompleteness
results that he had prepared just before departing for Königsberg, with
publication in October 1930. Whatever he had done about incompleten-
ess by that point must have been before early September 1930, and some of
it clearly earlier: Just a few pages before the Königsberg lecture text, Gödel
writes that the formally undecidable sentences have “the character of Gold-
bach or Fermat,” i.e., of universal propositions such that each of their in-
stances is decidable. These examples suggest that a formally undecidable
proposition ∀xF(x) can have each of its numerical instances F(n) provable,
but still, addition of the negation ¬∀xF(x) does not lead to an inconsisten-
cy. Were the free-variable instance F(x) provable, universal generalization
would at once give a contradiction.

2. FROM SKOLEM’S PARADOX TO THE KÖNIGSBERG CONFERENCE

Later in his life, Gödel gave various explanations of how he found the
incompleteness results. He often repeated that he was thinking of self-
referential statements, as in the liar paradox: This sentence is false. Replacing
unprovable for false, one gets a statement that expresses its own unpro-
vability. The explanation is good as far as it goes, and indeed given as a
heuristic argument in Gödel’s 1931 paper, but it gives little clue as to how
one would start thinking along such lines in the first place. Gödel’s meticu-
lously kept notes and other material point at interesting circumstances that
concern his discovery of the undecidable sentences.

As a first source from the time Gödel had begun work on incompleten-
ess in the early summer of 1930 (by Wang 1996, p. 82; I would say perhaps

4 The last sentence is: “Auf diese Dinge kann ich aber hier nicht näher eingehen.”
5 “Doch würde es zu weit führen, auf diese Dinge näher einzugehen.”
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May) there is Fraenkel’s Einleitung in die Mengenlehre that, as is seen from
Gödel’s preserved library request cards, he had taken out in early April.
Fraenkel discusses the question of decidability in principle of any mathe-
matical problem, remarking that not a long time ago, every mathematician
would believe in such solvability (p. 234):

It is a fact that until today, no mathematical problem has be-
en proved to be “unsolvable.” The discovery of such a problem
would without doubt present an enormous novum for mathe-
matics, and not only for it.

Fraenkel is very clear about Skolem’s paradox: The propositions of a truly
formal system form a denumerably infinite class, and therefore in particu-
lar the provable propositions, i.e., the theorems. The seemingly paradoxical
consequence is that formal (first-order) theories of real numbers and of set
theory admit of interpretations in which the domain is only denumerably
infinite. In particular, it can be taken to be the domain of natural numbers.

Further down, Fraenkel notes that “there should be nothing absurd in
imagining that the unsolvability of a problem could even be proved” (p.
235).

A second early source bears the date 13 May when Gödel borrowed
Skolem’s “Über einige Grundlagenfragen der Mathematik.” This 49-page
article was published as a separate issue of an obscure Norwegian journal.
There Skolem gives a striking version of his paradox: The denumerable
infinity of propositions of a truly formal system can be ordered lexicographi-
cally. “Propositions about natural numbers,” in particular, can be likewise
thus ordered, but by contrast the properties of natural numbers cannot be
so ordered, by which (p. 269):

It would be an interesting task to show that every collection
of propositions about the natural numbers, formulated in first-
order logic, continues to hold when one makes certain changes
in the meaning of “numbers.”

Among the wealth of ideas in Skolem’s paper, there is an outline for a proof
that the consistency of classical arithmetic reduces to that of intuitionistic
arithmetic (p. 260), a result Gödel proved in 1932 through his well-known
double negation translation.
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Next to the library slips, two early notebooks give indications of Gödel’s
reading through his summaries of papers by others. It has turned out re-
cently that these were begun around August 1931, when Gödel accepted
the task of writing together with Heyting a short book on “Mathematical
Foundational Research.” The first notebook has two articles listed on each
page, on top and half-way down, at times with notes, at times not, alto-
gether over a hundred articles that relate to the topics Gödel was supposed
to write as his part of the book project. Then there is the earliest preserved
and clearly written-out notebook with the text Altes Excerptenheft I (1931—
. . . ) on the cover and a continuous page numbering (document 030079).
This Heft gathers together some of his most important sources at a time
when there were no photocopiers.

In his three-page summary of Skolem’s long article (Excerptenheft, pp.
25–27), Gödel begins with Skolem’s § 2, “proof of set-theoretical relativism”
in Gödel’s words, and then comes § 1, “enumeration of possible properties
(therefore also sets) in Fraenkel’s as well as Skolem’s separation axiom.”
The last item in Gödel is for Skolem’s §7, with the condition ah− bk = 1
pointing at the unique decomposition into prime elements in principal ide-
al domains:

§7 Example of a domain that is not isomorphic with the number
sequence even if it is an integral domain and even if for every
two relatively prime h, k, ah− bk = 1.

Conjecture that the number sequence is not at all characterisable
by propositions of first-order logic.

At the end of this section, Gödel paraphrases Skolem’s conclusion: “There
is no possibility to introduce things nondenumerable as anything else but
a pure dogma.”

Gödel’s summary was written down after his work on incompleteness
had been finished and published. Still, Skolem’s paper contains important
ideas he had seen before that work. The way from these ideas to a first
intimation of incompleteness is not long. One would likely think along the
following lines:

Properties of natural numbers can be given as arithmetic propositions
F(x) with one free variable, and they can be listed in a lexicographical or-
der, F1(x), F2(x), . . . Fn(x) . . .. Each of these properties Fi(x) corresponds to
a set of natural numbers, those for which the property holds and usually
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written as Mi = {x ε N|Fi(x)}. These sets form a denumerable sequence,
but the sets of natural numbers as a whole form a continuum; each of them
corresponds to a real number. The Mi give just a denumerable sequence
of real numbers that one can diagonalise by the familiar argument of Can-
tor. Then we have a set D of natural numbers that is different from all of
the Mi. Could we describe the diagonalization procedure within arithme-
tic itself, to form an expression in the language of arithmetic that corre-
sponds to the diagonal set D, i.e., some free-variable formula G(x) such
that D = {x ε N|G(x)}?

To realise a possibility is one thing. To express provability in a formal
system inside the system itself and to construct a proposition that expres-
ses its own unprovability is, then, the real discovery. The Gödel notes show
stages of the development of his ideas. The clearest turning point is one
connected to the Königsberg conference. Before that, Gödel’s argument was
to give a truth definition for propositions of Principia Mathematica, then to
prove that all theorems are true. If the proposition that expresses its own
unprovability were provable, it would be true, hence unprovable, so it can-
not be a theorem.

Gödel saw very clearly that the truth definition is the element in his
proof that cannot be expressed within the formal system. He asked what
it was that made his proof of undecidability possible. It was the said me-
tatheorem about the truth of all the theorems, by which it could be deci-
ded that the constructed self-referential proposition is not simply false. If
that decision could be made within the system, the unprovable proposition
would follow. Therefore the truth of theorems is unprovable in the system.

The above argument is, in brief, a proof that the consistency of the sys-
tem of Principia Mathematica cannot be proved within the system, or Gödel’s
original second incompleteness theorem. His later recollections dated its
discovery to the times of the Königsberg conference. At that time, he pre-
pared the mentioned short note of his results that appeared in October 1930,
the

Some metamathematical results on definiteness with respect to decisi-
on and on freedom from contradiction

This note was published in the Anzeiger der Akademie der Wissenschaften zu
Wien, communicated by “corresponding member H. Hahn,” Gödel’s pro-
fessor.

11



No trace of Gödel’s original proof of the incompleteness theorems that
uses a truth definition is left in his published article, but the idea surfaced
from other quarters. Andrzej Mostowski knew Gödel from the late 1930s,
from his stay in Vienna as recorded in Gödel’s shorthand notes on the dis-
cussions they had. After the war, Mostowski became the author of the first
book on Gödel’s incompleteness theorems, the Sentences Undecidable in For-
malized Arithmetic: An Exposition of the Theory of Kurt Gödel of 1952. There he
describes two main ways of proving incompleteness, the first called syntac-
tic and followed in Gödel’s paper, the second semantic. The latter gives (p.
10) “an exact definition of what may be called the class of true sentences,”
with Gödel’s theorem following from three conditions: “Every theorem of
(S) is true,” secondly the condition that no negation of a theorem be true,
and as third the condition by which the truth predicate is equivalent to a
condition of unprovability. A footnote on the next page states that “the idea
of the semantical proof of the incompleteness theorem is due to A. Tarski,”
the long work on the concept of truth in formalized languages of 1935.

The second series of Gödel’s notes contains, about six pages before the
Königsberg break, the following (page 300R below):

We go now into the exact definition of a concept “true proposi-
tion.” The idea of such a definition has been expressed [cancel-
led: simultaneously] independently of me by Mr A. Tarski from
Warsaw.

On the next page, we read:

Now one arrives also quite exactly at proving (through comple-
te induction) that

Each provable proposition is true.

Tarski had visited Vienna in February 1930 and gave some lectures there
that Gödel followed. A hint on their discussions is given by a letter Gödel
wrote to Bernays on 2 April 1931. One finds there a “class sign” W(x) read
as “x is a true proposition,” with truth of negation, disjunction, and universal
quantification defined in the standard way (Collected Works IV, p. 96):

The idea to define the concept of a “true proposition” along this
way has been, incidentally, developed simultaneously and in-
dependently of me by Mr A. Tarski (as I gather from an oral
communication).
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The characteristic of Gödel’s pre-Königsberg proof of the incompleteness
theorems was that he used whatever means of classical mathematics, ana-
lysis and set theory included, in metamathematics. After the Königsberg
meeting, the concept of truth and even the intuitive notion of “correct-
ness” disappeared absolutely from his notes on incompleteness: one sim-
ply doesn’t even find these words anymore, but instead an emphasis on
the constructiveness of his proofs achieved through an “arithmetization of
metamathematics” by elementary means. A hint of his original proof me-
thod is contained in the lectures Gödel gave on incompleteness in Princeton
in the spring of 1934. There is a brief heuristic discussion of an arithmetic
predicate T(zn) that expresses the “truth of the formula with number n,”
similar to the truth predicate W of his earlier writings.

There has been some lament about Gödel not acknowledging Tarski’s
approach to incompleteness. In the light of the above, the matter was dejà
vu for Gödel, and not original to Tarski. From what has come out above,
Gödel had begun work on incompleteness in May or June 1930. How does
this fit together with Tarski’s visit several months earlier, if the concept of
“true proposition” was developed simultaneously? Gödel had arranged for
an opportunity to discuss with Tarski and knew in that way about Tarski’s
ideas. In February 1930, he was in need of a truth definition for the aim that
comes out so clearly from the Königsberg lecture, namely for the comple-
teness of higher-order logic, the type theory of Russell’s Principia, to be a
well-posed problem. Such a concept would cover his system of proof in the
1928/29 Übungsheft, also to decide what axioms to accept in higher-order
logic. The topic of a truth definition was of great systematic value for Gödel
who mentions in his shorthand notes from the 1930s several times a folder
named “The concept of truth” (Mappe “Wahrheitsbegriff”).

3. FROM THE KÖNIGSBERG CONFERENCE TO VON NEUMANN’S LETTER

Among Gödel’s audience in Königsberg sat Johann von Neumann who re-
acted at once and wanted more explanations. The two had discussions at
the conference and in Berlin, where Gödel stayed for a few days immedia-
tely after the conference. The most detailed account of these events is Wang
(1996), section “Some facts about Gödel in his own words,” that describes
the first approach to incompleteness as follows (pp. 82–84):

I represented real numbers by predicates in number theory and
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found that I had to use the concept of truth to verify the axioms
of analysis. By an enumeration of symbols, sentences, and proofs
of the given system, I quickly discovered that the concept of
arithmetic truth cannot be defined in arithmetic.
. . .

Note that this argument can be formalized to show the existence
of undecidable propositions without giving any individual in-
stances.

Gödel’s words are different from those of his notebooks of 1930; The “veri-
fication of the axioms of analysis” means that a concept of truth is establis-
hed by which the axioms turn out true and the rules of inference maintain
truth. The formulation of 1930 was that each provable proposition of Rus-
sell’s type theory is true.

Von Neumann suggested in the discussion to transform undecidability
“into a proposition about integers.” Gödel then found “the surprising result
giving undecidable propositions about polynomials.”

An edited account of the Königsberg discussion was published in the
journal Erkenntnis (vol. 2, 1931, pp. 135–151). It contained also a brief sum-
mary of the incompleteness result by Gödel with the title “Nachtrag” (ad-
dendum, pp. 149–151), written some time in 1930/31. A typewritten ver-
sion, not essentially different from the published one, is found in reel 24,
frames 240–242.

Gödel’s library loan cards show that he stayed in Berlin right after the
Königsberg meeting and that he requested again Skolem’s long paper of
1929, on 12 September from a library in Berlin. We are at the most cruci-
al turning point in Gödel’s work on incompleteness, the abandonment of
the proof idea by which all theorems of the Principia are true, proved by
methods of set theory. The first sign of this change is a set of 13 shorthand
pages, 360L to 366L, in particular page 364L in which it is stated that the
concept of “contentful correctness” can be restricted to instances of recursi-
ve predicates. These pages begin in exactly the same way as the final short-
hand version and come close to the formulations in the introductory parts
of the published article: “The development of mathematics in the direction
of greater exactness has, as is well known, led to wide areas of it being for-
malized.” Another sign of change from a set-theoretic approach that uses
the concept of truth to one that uses primitive recursive arithmetic is that
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Gödel writes ω-consistency instead of ℵ0-consistency, the latter still found
in the Anzeiger note handed by Gödel’s account in on 17 September.

Von Neumann lectured from late October 1930 on in Berlin on “Hilbert’s
proof theory.” Carl Hempel, later a very famous philosopher, recollected
the excitement created, even evidenced by contemporary letters for which
see Mancosu (1999). The account is (Hempel 2000, pp. 13–14):

I took a course there with von Neumann which dealt with Hil-
bert’s attempt to prove the consistency of classical mathema-
tics by finitary means. I recall that in the middle of the course
von Neumann came in one day and announced that he had just
received a paper from... Kurt Gödel who showed that the ob-
jectives which Hilbert had in mind and on which I had heard
Hilbert’s course in Göttingen could not be achieved at all. Von
Neumann, therefore, dropped the pursuit of this subject and de-
voted the rest of the course to the presentation of Gödel’s re-
sults. The finding evoked an enormous excitement.

These are later recollections; It is known that von Neumann got the proofs
of Gödel’s paper around the tenth of January 1931. As we shall soon see,
what von Neumann received during his lecture course are the October 1930
note with the first and second theorem stated, and the manuscript of section
4 of Gödel’s paper.

One of the few known participants in von Neumann’s lecture course
was Jacques Herbrand. He was born in 1908 and received his education at
the prestigious Ecole normale superieure of Paris. He finished his thesis Re-
cherches sur la théorie de la démonstration at the precocious age of 21 in the
spring of 1929. He went to stay for the academic year 1930–31 in Germany,
first Berlin from October 1930 on, then Hamburg and Göttingen from late
spring 1931 to July. These stays were in part prompted by his work on alge-
bra, where Emil Artin in Hamburg and Emmy Noether in Göttingen were
the leading figures. Herbrand’s life ended in a mountaineering accident in
July 1931.6

There is a letter of Herbrand’s of 28 November 1930 to the director of
the Ecole normale Ernest Vessiot in which he mentions von Neumann’s “ab-
solutely unexpected results,” then writes that for now he will write about

6 My Formal Machinery Works, section 8.3 on “two Berliners” contains a detailed account
of Herbrand’s stay in Germany and his relation to von Neumann.
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the

extremely curious results of a young Austrian mathematician
who succeeded in constructing arithmetic functions Pn with the
following properties: one calculates Pa for each number a and
finds Pa = 0, but it is impossible to prove that Pn is always
zero.

As noted above, the pre-Königsberg part of Gödel’s second notebook men-
tions that undecidable problems can have “the character of Goldbach or
Fermat.” There is a difference, though, for Goldbach’s conjecture, if false,
can be refuted by a counterexample. With Gödel’s undecidable propositi-
ons, it happens that each instance F(n) of a property of natural numbers
is provable, by which there is no counterexample. Still, ∀xF(x), classical-
ly equivalent to ¬∃x¬F(x), or the impossibility of a counterexample, need
not be provable within the system. Gödel hardly thought that Goldbach’s
conjecture would be a “Gödel sentence.”

Gödel states that he found the arithmetical form of incompleteness right
after the Königsberg meeting. Here are his own words about the change
(from Wang 1996, pp. 83–84):

To von Neumann’s question whether the proposition could be
expressed in number theory I replied: of course they can be
mapped into the integers but there would be new relations. He
believed that it could be transformed into a proposition about
integers. This suggested a simplification, but he contributed no-
thing to the proof, because the idea that it can be transformed
into integers is trivial. I should, however, have mentioned the
suggestion; otherwise too much credit would have gone to it.7

If today, I would have mentioned it. The result that the propo-
sition can be transformed into one about polynomials was very
unexpected and done entirely by myself.

Herbrand’s letter shows that von Neumann knew about the polynomial
formulation–the “arithmetic functions Pn” for which Pa = 0 is provable
for each number a–therefore the matter must have surfaced during their
discussions in Berlin.

7 The wording of Wang’s notes seems somewhat awkward here, as if Gödel needed to
protect himself against a priority claim by von Neumann, deceased two decades earlier.
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Looking at the notebooks, one realizes that Gödel’s “arithmetization of
metamathematics” was initially that natural numbers can be used as the
basic symbols of a formal system and that formulas then correspond to
series of numbers. This representation appears first on page 294R:

We replace the basic signs of the Principia (variables of diffe-
rent types and logical constants) in a one-to-one way by natural
numbers, and the formulas through finite sequences of natural
numbers (functions over segments of the number sequence of
natural numbers).8

The famous Gödel numbering through the uniqueness of prime decompo-
sition is seen first on page 293R, but just in the margin. There is no explana-
tion of these expressions, 2x3y5z7u11v, 2u3v, and pn, the last the n-th prime,
by which they must be later additions.

Incidentally, Gödel’s page 299L gives a clue to the origin of the idea
of coding formulas and proofs through the uniqueness of prime decom-
position: Gödel had used the numbers 0–7 as arithmetic representations of
his basic signs, then needed an unlimited supply of numbers to represent
variables of all finite types. He took numbers greater than 7 divisible by
exactly one prime as propositional variables, and those divisible by exactly
k + 2 primes as variables of type k.

The cancelled page 329L, written well before the Königsberg meeting,
develops the idea of Gödel numbering, with the comment that by the map-
ping of series of numbers to numbers through a product of powers of pri-
mes, “metamathematical concepts earlier defined that concern the system
S, go over into properties and relations between natural numbers.” This
mapping is put aside, however, and series of numbers continue to repre-
sent formulas and proofs until the final shorthand version that was written
after the Königsberg meeting. There, on pages 254L-R, Gödel writes that by
taking products of powers of primes, “a natural number is associated in a
one-to-one way, not just to each basic sign but also to each finite series of
basic signs” – an idea described as “trivial” in Gödel’s recollections about
his meeting with von Neumann.

8 The German is: Belegungen von Abschnitten der natürlichen Zahlenreihe mit
natürlichen Zahlen. The English wording is from the printed article in Van Heijenoort
(1967), as approved by Gödel.
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Eight days before Herbrand’s letter, von Neumann had written to Gödel
about his proof:

It can be expressed in a formal system that contains arithme-
tic, on the basis of your considerations, that the formula 1 = 2
cannot be the endformula in a proof that starts from the axioms
of this system—and in this formulation in fact a formula of the
formal system mentioned. Let it be called W.
. . .

I show now: W is always unprovable in systems free from con-
tradiction, i.e., a possible effective proof of W could certainly be
transformed into a contradiction.

Gödel must have explained how undecidable propositions are constructed
to von Neumann in Berlin, not just a blunt statement of incompleteness,
namely the way in which the provability of a formula in a system can be
expressed as a formula of that system, and likewise with unprovability. In
particular, the unprovability of a contradiction, say 1 = 2, becomes expres-
sed through an arithmetic formula.

Von Neumann writes next that if Gödel is interested, he would send the
details once they are ready for print. He asks further when Gödel’s treatise
will appear and when he can have the proofs, with the wish to relate his
work “in content and notation to yours, and even the wish for my part to
publish sooner rather than later.”

Herbrand had explained the post-Königsberg statement of incomplete-
ness in terms of polynomials to Vessiot, and five days later he writes ano-
ther letter, to his friend Claude Chevalley, in the worst handwriting imagi-
nable, but full of sparkling ideas that seem to spring from nothing. In the
letter, Herbrand explains von Neumann’s presentation of the incompleten-
ess theorem as follows:

Let T be a theory that contains arithmetic. Let us enumerate all
the demonstrations in T; let us enumerate all the propositions
Q x; and let us construct a function P x y z that is zero if and only
if demonstration number x demonstrates Q y, Q being proposi-
tion number z.

We find that P x y z is an effective function that one can construct
with arithmetic functions that are easily definable.
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Let β be the number of the proposition (x) ∼ P x y y (∼ means:
not); let A x be the proposition ∼P x β β

A the proposition (x).A x (A x is always true)
A x, equivalent to: demonstration x does not demonstrate the
proposition β; so

A x. ≡ . demonstration x does not demonstrate A

Let us enunciate:

A x. ≡ . ∼D(x, A)

1) A x is true (for each cipher x); without it D(x, A) would be
true; therefore A; therefore A x; therefore ∼ D(x, A).

2) A cannot be demonstrated
for if one demonstrates A, A x would be false; contradiction.

Therefore: A 0, A 1, A 2 . . . are true

(x)A x cannot be demonstrated in T

Next in Herbrand’s letter comes the striking second incompleteness theo-
rem. With D(x, A) standing as above for “proof number x demonstrates
proposition A,” Herbrand writes in the letter the key formulas:

3) ∼A → D(x, A) et D(z,∼A)

therefore: ∼ (D(x, A) et D(z,∼A)) → A

The conclusion, for the unprovable proposition A, is that “if one proves
consistency, one proves A”: Consistency requires that for any proposition
A, there do not exist proofs of A and∼A. This inexistence can be expressed
as the formula ∼∃x∃z(D(x, A) et D(z,∼A)), or in a free-variable formula-
tion, as ∼ (D(x, A) et D(z,∼A)) for each x and z.

The contrapositive of Herbrand’s formula 3) states that consistency im-
plies A, a formulation taken over from Gödel as we shall see.

Let us now turn to Gödel’s final shorthand version of the incompleten-
ess paper. It occupies the first 39 pages of a notebook (document 040014),
with a beginning that is very similar to the typewritten version. The impres-
sive list of 45 recursive relations in the published paper matches a similar
list of 43 items, some ten pages, followed by the upshot of the laborious
work in the form of a theorem:

19



VI. Each recursive relation is arithmetic.

After the text proper of the manuscript for the article ends, there are two
attempts at a formulation of a title, like this:

On the existence of undecidable mathematical propositions in
the system of Principia Mathematica

On unsolvable mathematical problems in the system of Principia
Mathematica

There follow five pages with formulas, recursive definitions of functions,
elementary computations, and a stylish layout for a lecture on the comple-
teness of predicate logic given in Vienna on 28 November. Next the title
“Lieber Herr von Neumann” hits the eye, with an unfinished letter draft
that contains:

Dear Mr von Neumann

Many thanks for your letter of [20 November]. Unfortunately I
have to inform you that I have been in possession of the result
you communicated since about three months. It is also found
in the attached offprint of a communication to the Academy of
Sciences. I had already finished the manuscript for this com-
munication before my departure for Königsberg and had pre-
sented it to Carnap. I gave it over to Hahn for publication in
the Anzeiger of the Academy on 17 September. [Cancelled: The
reason why I didn’t inform you in any way [written heavily
over: didn’t tell anything] of my second result in Königsberg
is that the precise proof is not suited to oral communications
and that an approximate indication could easily arouse doubts
about [heavily cancelled: correctness] executability (as with the
first) that would not appear convincing.] Concerning the publi-
cation of this matter, there will be given only a shorter sketch of
the proof of impossibility of a proof of freedom from contradic-
tion in the Monatsheft that will appear in January9 (the main part
of this treatise will be filled with the proof of existence of unde-
cidable sentences). The detailed carrying through of the proof

9 [Despite its name, the Monatshefte (monthly notices) appeared in four yearly issues.
January has been changed into “early 1931.”]
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will appear in a Monatsheft only in July or August. I can send
you a copy [Abschrift] of – proofs of my next work in a few
weeks.

I shall include the part of my work that concerns the proof of
freedom from contradiction in a manuscript, so that you can
see from it to what extent your proof matches mine.

The carrying through of the proof appears together with my
proof of undecidability in the next volume of the Monatshefte.
I didn’t want to talk about it before a publication because this
thing (even more than the proof of undecidability) must arouse
doubt about its executability before it is laid out in an exact way.

There are eight pages between a first and a second version of the letter, fil-
led with Gödel’s attempts at formulating the second incompleteness theo-
rem in various ways and how it should be proved, until another letter
sketch that first repeats the remarks about the second theorem in the Anzei-
ger note and about the “carrying through of the proof in a near Monatsheft,”
then continues:

Now to the matter itself. The basic idea of my proof can be des-
cribed (quite roughly) like this. The sentence A that I have con-
structed and that is undecidable in the formal system S asserts
its own unprovability and is therefore correct. If one analyses
precisely how this undecidable sentence A could still be me-
tamathematically decided, it appears that this became possible
only under the condition of the freedom from contradiction of
S. That is, it was strictly taken not A but W → A that was pro-
ved (W means the proposition: S is free of contradiction). The
proof of W → A lets itself be carried through, though, within
the system S, so that if even W were provable in S, then also A,
which contradicts the undecidability of A.

Concerning the meaning of this result, my opinion is that only
the impossibility of a proof of freedom from contradiction for a
system within the system itself is thereby proved. (I.e., one can-
not pull oneself up by one’s own bootstraps from the swamp
of contradiction.) For the rest, I am fully convinced that there is
[cancelled: a finite] an intuitionistically unobjectionable proof of
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freedom of contradiction for classical mathematics [added abo-
ve: and set theory], and that therefore the Hilbertian point of
view has in no way been refuted. Only one thing is clear, name-
ly that this proof of freedom from contradiction has in any case
to be far more complicated than one had assumed so far.

At the time Herbrand wrote to Vessiot, 28 November, the “absolutely unex-
pected results” he alludes to are perhaps an indication of von Neumann’s
version of the second theorem. By 29 November, von Neumann has read
Gödel’s letter of reply and that shows in Herbrand’s letter to Chevalley of
3 December. Gödel had explained to von Neumann that the second theo-
rem is proved by first showing an implication within the formal system.
The details are found in the interim pages between the two letter drafts–
with even references to the typewritten incompleteness manuscript. Here κ
is any “recursive consistent class” of formulas:

Let us now turn back to the undecidable proposition 17Gen r.
We shall denote the proposition that “κ is free from contradic-
tion” by Wid(κ). For the proof of the theorem that 17Gen r is
unprovable, only the freedom from contradiction of κ was used
(cf. 1.) on page 30). So we have

Wid(κ) → Bewκ(17Gen r)

If now Wid(κ) were provable within the system, also the unprovable propo-
sition Bewκ(17Gen r) would, which is impossible. Gödel’s first letter draft
contains that he sends the part of his manuscript with these details to von
Neumann.

In von Neumann’s second letter to Gödel, of 29 November, he writes:

I believe I can reproduce your sequence of thoughts on the basis
of your communication and can therefore tell you that I used a
somewhat different method. You prove W → A, I show inde-
pendently the unprovability of W, though with a different kind
of inference that likewise copies the antinomies.

A letter of von Neumann’s of 12 January 1931 sketches to some extent his
proof, but how exactly his “somewhat different method” relates to Gödel’s
formulation of the unprovability of consistency is hard to say. Herbrand’s
second letter is clearly based on Gödel’s formulation.
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Von Neumann’s lectures must have been widely attended, but I have
been able to secure only Hempel, Herbrand, and B. H. Neumann, and very
likely Gerhard Gentzen as participants. There is among Gödel’s correspon-
dence a postcard by Hempel, dated 15.IV.31, in which we read about the
lectures:

Perhaps Carnap has told you already that Mr von Neumann
had used the last fourth of his lectures on proof theory in the
past winter to present your research. He referred with great em-
phasis to the fundamental consequences your results have for
the formalistic attempts at a proof of consistency by contentful
methods weaker than what is contained in the system that is to
be proved consistent.

In his second letter, von Neumann asks if Gödel has been able to decide
“whether mathematics is incomplete or ω-inconsistent,” then explains why
he thinks that “each intuitionistic consideration can be formally copied.”
Next comes the conjecture by which “your result has resolved the foun-
dational question in a negative sense: there is no rigorous justification for
classical mathematics.”

Gödel’s correspondence contains a continuation of his exchange with
von Neumann, a shorthand draft for a letter sent in January 1931 and filed
under the letter M (miscellaneous M, multiple recipients):

Dear Mr von Neumann

Many thanks for your letter [of 29.XI]

I send you over today the proofs of my article. I have limited
myself in this part I mostly to the system of the Principia Ma-
thematica and just indicated roughly the general result. I have
even dedicated the main attention to questions about undeci-
dability and presented the matter that concerns freedom from
contradiction only to the point in which no doubt can remain
about its executability. I mean, it is after all obvious to anyone
who knows the formalism that all considerations employed in
section 2 can be formalized in system P. I shall, nevertheless,
naturally carry everything through in the second part.

As concerns the question whether mathematics is ω-contradicto-
ry or incomplete, a decision should be possible in the present
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state of things only in the direction in which one shows an ω-
contradiction. There should likely not be any such and it would
be as improbable for me as mathematics being contradictory.
For a proof of ω-contradiction could, in all probability, be for-
malized and a contradiction derived from it. Apart from that,
all intuitionists are likely convinced that mathematics is neither
contradictory nor ω-contradictory.

As concerns the question of formalization of intuitionistic proofs,
your considerations have not convinced me.10 There is obvious-
ly to each intuitionistic proof a formal system in which it is
representable, but there is (as I believe) no formal system in
which all intuitionistic proofs are representable. The essential
unclosedness [Unabgeschlossenheit] and extensibility [Erweite-
rungsfähigkeit] that is inherent to each formal system depends
in the end on type theory.

The letter draft ends somewhat abruptly. As mentioned, there is a third
letter of von Neumann’s, dated 12 January 1931 after he had received the
page proofs of Gödel’s article together with, one can presume, the above
letter. It contains an outline of a “somewhat shorter carrying out of the
unprovability of freedom from contradiction.”

4. THE SECOND THEOREM: “ONLY IN A REALM OF IDEAS”

No second part of the incompleteness article ever appeared. When asked
about the matter, Gödel would answer as in Van Heijenoort (1967, p. 616):
“The prompt acceptance of his results was one of the reasons that made
him change his plan.” Paul Bernays comments on the incompleteness ar-
ticle that he received in page proofs, in a long letter to Gödel of 18 January,
1931. He says nothing about the last section 4 that presents the second in-
completeness theorem, but writes instead that assuming, as von Neumann
with whom he must have been in contact, that each finitary proof can be
formalized, Gödel’s incompleteness theorem VI already gives as a conse-
quence the unprovability of consistency.

10 [Several incomplete sentences follow, including that the formalization of intuitionistic
proofs could be too complicated, with the comparison: precisely in the same sense in which,
say, computational operations with too big numbers cannot be carried through anymore.]
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In Gödel’s first letter draft, he wants to assure von Neumann that he
had both results, even mentioning Carnap as witness and quoting 17 Sep-
tember as the date he gave his October 1930 note to Hans Hahn who would
communicate it to the Academy, and a promise to send a copy of the part
of the manuscript that deals with the second theorem. Then come eight pa-
ges of attempts at a satisfactory formulation, and the second letter draft in
which just the proofs of the incompleteness article are promised once they
arrive.

The pages between Gödel’s two letter drafts to von Neumann are his
notes for section 4 of his incompleteness paper. An inspection of his ty-
pewritten manuscript shows that the last three lines of page 41 have been
cancelled. They contain the beginning of his closing paragraph as in the
shorthand manuscript. Pages 42–44, with typed page numbers in contrast
to the rest of the manuscript, contain the added section 4. The first proofs
have a Roman “I” added at the end of the title to indicate the first part of a
two-part article, a paragraph that explains the second theorem added at the
end of the introduction, and a long footnote on the second theorem added
in another place. The original proofs have no mention at all of the second
theorem before the added section 4.

The change in the manuscript has gone through the hands of Hahn,
editor of the Monatshefte. That is shown by a copy in the Gödel correspon-
dence of a note by Hahn that instructs the printing shop to “adjoin these
pages to the manuscript of Dr Gödel,” with a date that seems to be 24/11.
A close look at Gödel’s typewritten manuscript used by the printer shows
that page 41 is a stencil copy, in contrast to the other pages, and that the
cancellation of the three lines was done by Gödel who therefore must have
included this page from his stencil copy of the entire manuscript with the
new section. Von Neumann’s letter was sent on Thursday, received on Fri-
day or Saturday, after which Gödel had the new section finished over an
obviously agitated weekend, for the following Monday the 24th. Von Neu-
mann’s second letter that discusses the details of that section, as contained
in Gödel’s letter drafts and the notebook pages between them, was dated
the following Saturday.

A shadow is cast on Gödel’s great achievement; There is no way of un-
doing the fact that Gödel together with Hahn played a well-planned trick to
persuade von Neumann not to publish. In his letter of reply, he reproduced
details from section 4, freshly written after von Neumann’s letter, but he al-
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so included his short note of October 1930 that contains a statement of the
second theorem. The latter would have been enough, but Gödel panicked
at the prospect of von Neumann publishing his second theorem. The wri-
ting is quite nervous, with cancellations and additions all over. Moreover,
the typewritten manuscript and the first proofs that reveal his trick must
have caused him quite a stress; nothing he could send to von Neumann
who would have wondered why the magnificent second incompleteness
theorem is not even mentioned in the lengthy introduction, but appears
only in a final section 4. He got at most that section in November and the
page proofs for the entire article much later, around the tenth of January.

Concerning the October 1930 short notice to the Vienna academy, the
last page of the shorthand manuscript instructs to add to page 1 a reference
to this note. There is in the title of Gödel’s article a footnote that points
to it, without further explanations. The microfilms contain a typewritten
copy with a stamp “Akademie der Wissenschaften in Wien, Zahl 721/1930
eingefangt: 21.X.1930.” The wording of “Satz II” is well known:

Even when one allows in metamathematics all the logical means
of the Principia Mathematica (especially therefore the extended
functional calculus with the axiom of reducibility or without
ramified type theory and the axiom of choice), there is no proof of
freedom from contradiction for the system S (and even less if one
restricts the means of proof in some way). Therefore, a proof
of freedom from contradiction of the system S can be carried
through only by methods that lie outside the system S, and the
case is analogous for other formal systems, say the Zermelo-
Fraenkel axiom system for set theory.

With Gödel’s Anzeiger note published, it is clear that von Neumann had
no new result to publish, and there would have been no need for Gödel to
change anything, at most mention the results in the short notice.

The formulation in the Anzeiger der Akademie also confirms what I said
above, namely that Gödel’s early metamathematics used strong methods.
Moreover, the printed text mentions ω-consistency, but in the manuscript
and in the notes before Königsberg, Gödel always wrote ℵ0-consistency, the
latter a distinctly set-theoretic notation.

The typewritten manuscript of the incompleteness article, with the ty-
pesetters’ leaden fingerprints on it, contains three lines at the end of page
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41, and the rest exists only as the last paragraph in Gödel’s shorthand:

To finish, let us point at the following interesting circumstance
that concerns the undecidable sentence S put up in the above.
By a remark made right in the beginning, S claims its own un-
provability. Because S is undecidable, it is naturally also unpro-
vable. Then, what S claims is correct. Therefore the sentence S
that is undecidable in the system has been decided with the help
of metamathematical considerations. An exact analysis of this
state of affairs leads to interesting results that concern a proof
of freedom from contradiction of the system P (and related sys-
tems) that will be treated in a continuation of this work soon to
appear.

Gödel shows here a cautiousness the editor of his Collected Works Sol Fefer-
man liked to emphasise about him, just “interesting results” about consis-
tency. The thought of von Neumann publishing the second theorem must
have haunted him and led to the hasty addition of a section on results so far
“zu wenig durchgearbeitet” as he put his closing words in the Königsberg
lecture. In fact, Gödel was unable to prove the second theorem to his satis-
faction and no “Part II” of the incompleteness paper ever appeared, neither
do the shorthand notes suggest any such work even in manuscript form.

With the above details in mind, let us take a skeptical look at Gödel’s
two-page section 4. The shorthand manuscript gives the second theorem
and the standard beginning: “Proof.” It is changed in the typewriting into:
“The proof is in outline as follows,” and in printing into “sketched in out-
line.” The sketch is that for the proof of undecidability of formula 17Gen r,
“only the freedom from contradiction” was used. This observation is writ-
ten on a separate numbered line as the impressive-looking formula

Wid(κ) → Bewκ(17Gen r)

Three similarly displayed implications follow, as on pages 275R and 276L
below, with the consequent changed successively by the way Bewκ and
17Gen r were defined. Reminding that everything used in these steps is de-
finable within the formal system, Gödel notes that the provability of Wid(κ)
within the system would at once lead to the provability of the unprovable
proposition, which is impossible.
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Gödel’s lectures and seminars from the time after the great article was
finished show still confidence in the second incompleteness theorem, such
as in the long lecture titled “Über unentscheibare Sätze.” The crucial point
is to justify the informal argument by which the undecidable proposition A
follows from consistency W (p. 875 of the lecture): “A proof of this fact can,
as a more detailed investigation shows, be carried formally through from
the axioms of the system Z.” Here Z is the system of classical first-order
arithmetic of Hilbert and Bernays. The same comes out in more general
terms in the popular talk Gödel gave in New York in April 1934. He writes
there C → A for the statement that consistency implies the unprovable
formula, then claims that “this proof can be formalized so we have C → A
provable” (p. 18 of the lecture).

In a letter of 11 September 1932, Gödel corrects Carnap’s suggested de-
finition of the concept analytical and writes that “I shall give in part II of
my work a definition of ‘true’ on the basis of this idea.” In another letter to
Carnap of 28 November the same year, he writes that “part II of my work
exists only in a realm of ideas.”
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Part II

The saved sources on incompleteness
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1. SHORTHAND WRITING

Shorthand writing was regularly taught in high schools in Gödel’s young
years. The system was originally developed by Franz Gabelsberger in the
1830’s; he called it “Redezeichenkunst,” literally art of signs for speech. By
Gödel’s time, very many competing systems had sprouted from Gabels-
berger, as well as adaptations to languages with phonetic patterns different
from German. The idea was always to write down what was said, say at
a law court, parliamentary session, or business negotiation. Thousands of
lecture series from German-speaking universities have been saved as short-
hand “Mitschriften” written down by students, or by the lecturers themsel-
ves and hidden in archives.

One of the principles of shorthand writing is that only that is indicated
which makes a difference in spoken language. Therefore no regular punc-
tuation marks are used, but Gödel uses often either a dash or longer spacing
by which, in addition to sentence structure, it is seen that a new sentence
and at times a new paragraph can be introduced. Often though, the fleeing
nature of shorthand writing seems as if made for evading a firm grammati-
cal structure of complete sentences. Systematic deviations from the phone-
tic principle include occasional quotation marks and underlinings, and the
use of different sets of symbols that is a typical feature of any mathematical
writing.

A stenographer would usually take notes, then produce soon after a
polished typewritten text. One may wonder why anyone would use such
writing for private purposes. The answer to this question, one I have had
from many still active stenographic writers, is that once the habit of short-
hand has been acquired, longhand writing is experienced as exasperatingly
slow.

A word about the reading of shorthand sources is in place here: Their
transcription has similarities to the recognition of spoken language it was
originally planned to record; in both, understanding of words and phrase
structure come hand in hand. With manuscript sources, there are in additi-
on uncertainties for reasons such as faded sources, badly written or heavily
cancelled passages, etc. At its worst, one can barely see a slight depressed
line where there once was text, when the paper is illuminated obliquely.

Gödel’s texts are full with cancellations, from one word to half a sen-
tence to several pages in succession. The cancellations sometimes result in
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ungrammatical sentences that I have tried to repair by a reading of the un-
changed and changed sentences, though if the cancellations are in an un-
completed sentence, the method does not work that well. Occasional com-
ments on my part are found in square brackets, others in my footnotes.
Gödel uses practically on every page parentheses and sometimes square
brackets, with no clear difference. I have changed the latter into parenthe-
ses, except in formulas, to make clear who wrote what.

The source texts are on the whole often quite unpolished; I have tried
to avoid the temptation to change that aspect during translation, in the di-
rection of smooth English diction, trusting that Gödel’s long and involved
German sentence constructions can be turned into English with a reasona-
ble level of readability maintained.

The translation of Gödel’s German from around 1930 presents questions
of terminology. One extreme is found in the accompanying material to his
popular talk on incompleteness in New York, 1934, where words such as
“beweisbar” were left in German by an unknown translator, for the lack
of “precise English equivalents for the German words.” Next “beweisbar”
is explained as applying to a proposition that can be proved, as if there
existed no word “provable” in English!

Gödel’s New York talk, written by himself in English, gives some sug-
gestions for translation. For example, he would usually write “free from
contradiction,” and I have translated correspondingly the German “wider-
spruchsfrei,” instead of “consistent” that would be the standard usage to-
day, except in “ω-widerspruchsfrei.” A specific question comes with the
words “Satz” and “ Aussage.” “Satz” can be translated as sentence or pro-
position, but it can also mean a theorem. Even “Aussage” is usually a pro-
position, as in “Aussagenkalkül,” propositional calculus. Sometimes “Aus-
sage” is best rendered as sentence, or even statement.

With formulas, it was usual in Gödel’s times to write the letter symbols
in what is known as Sütterlin-Schrift, a form of handwriting introduced in
1915. Gödel’s notebooks from his early school years show how his writing
changed from the earlier Kurrentschrift to Sütterlin. With foreign langua-
ges, at least in his Latin notebooks from the school and later with English,
he would write in a way not different from any modern cursive handwri-
ting. The Sütterlin alphabet is used for letters in formulas even in typewrit-
ten manuscripts, with symbols usually added in ink. A printer would set
such symbols in fraktur. My translations follow these practices.
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Words I could not read or guess with reasonable certainty are indica-
ted by [?] and longer passages by [? ?]. The text can be very faint at places
and especially the last lines of pages squeezed in a small space that is worn
out and hard to read. Then there must be words I have read wrongly, but
perhaps not too many, as the sentences I find usually make sense. There
are still entire sentences the sense of which is not clear and would perhaps
not have been even to Gödel himself. Such lacunae notwithstanding, one
should still get a clear idea of how Gödel thought he would prove his in-
completeness result, so I hope. As I wrote elsewhere (viz. in my 2018a, p.
4050):

The transcription of shorthand is by the very nature of the script,
with missing endings of words and abrupt shortenings—a sin-
gle letter can stand for different words that have to be figu-
red out from the context—also error-bound interpretation and
guesswork.

The way from a transcription to an English translation is surprisingly ro-
bust; subtle differences in reading usually don’t have any effect of note on a
translation, and I judge the translations an adequate basis for a discussion
of Gödel’s views and their development. Scholarly work that concerns di-
rectly the unpublished writings requires, instead, the ability to read his Ga-
belsberger shorthand. Intermediate transcriptions into longhand German
are not a fully adequate substitute for such purposes.

2. DESCRIPTION OF THE NOTEBOOKS ON INCOMPLETENESS

1 § The sources. Gödel began around May 1930 the research that led to his
famous article on the incompleteness of formal mathematical systems. Wi-
thin half a year, or by mid-November, he had a finished typewritten 42-
page manuscript that he sent for publication. His progress is recorded in
two notebooks in which he wrote down versions of the article. The second
notebook goes even beyond the date on which Gödel’s manuscript was re-
corded as received by the journal Monatshefte für Mathematik und Physik,
namely 17 November 1930.

The two preserved notebooks can be found among the Kurt Gödel Pa-
pers at Princeton University’s Firestone Library, catalogued by Gödel’s bio-
grapher John Dawson. The papers are divided into boxes and within boxes
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into numbered folders. There can be within a folder a third division by a
running document enumeration, such as 040014 for the first incomplete-
ness notebook.

The Gödel papers are available as microfilms that are usually quite rea-
dable, except for occasional faint pages or borders that have become too
dark by the contrasty filming, with a last line sometimes hard to read for
this reason. The incompleteness notebooks are found in reel 24, beginning
with frame 245 with the explanatory text:

Folder 7
Undecidability Results (early

drafts of 1931):
AMs draft in 2 Notebooks, one

inserted in the other
“Unentsch. unrein”

written both directions,
filmed in original sequence

[1930?]

AM stands for autograph manuscript and TM is similarly used for type-
written manuscript. A document number 040014 has been stamped on three
of the initial pages. The frames have usually a notebook opening with a left
and right side, sometimes with what is indicated as an “intentional second
exposure” to capture the text with a different intensity, especially if one si-
de is an inside cover of a notebook with a darker background. Shorthand
writing normally uses a pencil, with the consequence that some pages have
become very faint with the years.

The first notebook has a blue cover and a box for text in which the tit-
le “Unentsch. unrein” (Undecidability draft) is written. The notebook has
clearly recognisable unlined pages on which Gödel has written in a hand
that is quite determined, with little cancellations, a sign of a final handwrit-
ten text for the article. (Other notebooks on squared paper of the school ty-
pe have a less finished outlook.) The pages start with the cover on frame
248. The inside cover has additions to the text to follow, the latter starting
with a heavily underlined “Arb. unentsch. unrein,” a section number 1, and
the famous opening sentence about the development of mathematics in the
direction of greater exactness. The original closing paragraph is found on
page 268L, followed by various pages to be detailed below until page 280L.
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At this point, the text hits the notes written in backwards direction:
From the back, the inside cover of the notebook has “Schmidt bedan-

ken” (Schmidt to be thanked) on top and a list of names and addresses,
frame 287L, clearly ones to whom offprints should be sent. The pages that
follow have been filmed in the order in which they appear from the front.
In the order of writing, there is a long list of formulas with the predicate
Bew and substitutions that start from the last page 286. Page 285R begins
with the end of a plan of contents:

c) Substitution and Bew definable

d) Proof of the theorem

e) Extension of both theorems

5. The conditions from 3 concern especially finite formal sys-
tems

a) Description of finite systems

Point c) has been changed from 3, d) from 4. The list of formulas from the
first backward page continues for the rest of this page. The next page 284L
begins an addition to the final shorthand version for the incompleteness
article that I have placed where the corresponding text can be found in the
typewritten manuscript.

I have found pages in completely different places in the microfilms that
clearly have been ripped off from this notebook, to be detailed below.

The second notebook mentioned in the catalogue description is found
between the back cover and the first backwards page of the first notebook.
It consist of just six pages: a back, an inside back cover, a leaf that separates
the cover from the notebook, and just two pages on a squared paper. The
text is unrelated to the theme of incompleteness but what is left of this
notebook has the same document number 040014 stamped on one page as
the first one.

The next folder is listed as follows:

Folder 8
Undecidability Results (early

drafts of 1931):
Notebook Draft

“Unentsch. unrein”
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written both directions
[1930?]

The document number is 040015, printed only on the inside leaf of a thick
notebook that is preserved in one piece. The cover is a shiny black on which
one cannot write. The first frame 292 is the inside cover and the unlined
leaf, the back of it 293L, and the text written on squared paper begins on
page 293R. The last frame is number 335, after which we find:

Folder 8
Undecidability Results (early

drafts of 1931):
Notebook Draft

“Unentsch. unrein”
Backward Direction

[1930?]

The text begins again on an inside cover, frame 337, with a few words that
mention the “strange circumstance” about consistency proofs. The text pro-
per of the next version of the incompleteness paper begins on page 339R,
with additions on the adjacent leaf. The frames go on until number 367
where the text hits the forward direction, frame 335.

2 § Division. My presentation of the notebook contents is divided into eight
parts, in an order determined by what seems to be the order of writing
of the notes, with the first notebook’s contents coming last. The order of
writing of the remaining notes is not straightforward, and different ideas
could be had about that. The abandonment of the notion of truth as a ba-
sis for the proof is the most conspicuous internal dividing line, seen quite
late in the notebooks. There are at least a couple of external fixed points:
At frame 306, there begins the text for Gödel’s Königsberg lecture. At 346,
there is the text for the Anzeiger note of 1930. By Gödel’s letter to von Neu-
mann, he had finished the note and even shown it to Carnap prior to his
trip to Königsberg. On the other hand, in the same letter a few days after
November 20, he wrote that he was “in possession of the result you com-
municated since about three months,” which should be about mid-August.
He had apparently written his shorthand text for the Königsberg lecture
in good time, as there are over sixty shorthand pages between frames 306
and 346. I present the notes except the final one in the order they are found
among Gödel’s papers and leave it to later investigation to improve on that.
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The second notebook has the shorthand version of Gödel’s address at
the Königsberg meeting in the middle, at frames 306–311. There follow ma-
ny pages of formulas, and a new start for an article at frame 318. The text
soon hits the reverse direction, with yet another series that has in the midd-
le the draft for the Anzeiger note. At the end of this notebook, there is a
four-page shorter summary and list of contents for an article, and a series
of thirteen pages of notes that are in many respects similar to the heuristic
introduction of the published paper.

The first notebook comes very close to the final typewritten manuscript,
up to a distinct closing paragraph at the end of section 3. There follow two
letter drafts to von Neumann and in between a draft of section 4 of the
published paper that together form a separate part of my presentation. The
notebook with these materials has been used also in the reverse direction
for results Gödel found later and that are incorporated in the manuscript,
judging from the typewritten version. These few pages deal with results on
predicate logic.

I describe these series of notes under headings taken from suitable in-
itial phrases of significative beginnings in them, with one unavoidable re-
petition:

1. “Undecidability draft. We lay as a basis the system of the Principia”

2. “There are unsolvable problems in the system of Principia Mathematica”

3. “The development of mathematics in the direction of greater exactness”

4. “The question whether each mathematical problem is solvable”

5. “A proof in broad outline will be sketched”

6. “We produce an undecidable proposition in the Principia”

7. “The development of mathematics in the direction of greater exactness”

8. “Let us turn to the undecidable proposition”

Many cancelled passages are just false starts. Some are longer, but at
once rewritten in an improved form. I have usually left such parts out of
the translation. Other cancelled passages can be helpful for the understan-
ding of what is to follow or may contain interesting observations not found
elsewhere and would in that case be included.
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1. “Undecidability draft. We lay as a basis the system of the Principia”

The first series of shorthand notes for Gödel’s incompleteness article of
1931 is found in the Gödel microfilm collection, reel 24, frames 292 to 297L.
The unlined leaf between the front cover and the notebook proper, page
292R, contains a heavily written title “Unentsch. unrein” (Undecidability
draft). The upper right corner has: “Welche Symbolik? Einsetzungsregel
etc neue Ausführung vorläufige Fassung” (What symbolism? Rule of sub-
stitution etc new execution preliminary version). A text about seven lines
long follows, faint as if it had been erased, but readable enough to see that
the contents are similar to those on several other pages:

Finally, there results by the above method the strange circum-
stance that the freedom from contradiction of system S cannot
be proved by the logical means that are contained in this system
itself. I.e., even if one allows for the proof of freedom from con-
tradiction all the logical means of the Principia, it is impossible,
and even the more so if one allows only a part.

The above result lets itself be extended correspondingly also to
other formal systems, say Zermelo Fraenkel’s set theory.

The page continues by giving general conditions for incomplete systems
and an explanation of ℵ0-consistency. The reference to the second theo-
rem clearly shows that these pages have been written afterwards. A similar
thing is seen in many other notebooks.

The two cover pages are similar to pages 346L and 346R in the same
notebook, with unprovability of consistency, Zermelo-Fraenkel, conditions
for the theorem, and ℵ0-consistency mentioned. These two pages are the
shorthand version of Gödel’s October 1930 note on his two theorems, writ-
ten before his trip to Königsberg. Page 348R describes again the “strange
situation” with metamathematical theorems. On page 365R, in a set of no-
tes used directly in the writing of the final version, we have: “From this
follows the strange result that one cannot carry through a proof of freedom
from contradiction for the PM even with all the logical means contained in
the PM.” The final shorthand version of the incompleteness article had ori-
ginally a closing paragraph that is similar, cited above. This paragraph was
replaced by an added section in the published paper, in which the “stran-
ge result” is mentioned that Gödel seems to have found right before the
Königsberg meeting.
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The inside cover, page 292L of the notebook, has some seemingly unre-
lated formulas and then the text, written exceptionally in ink:

There are further formulas of the narrower functional calculus
in S for which neither universal validity nor the existence of a
counterexample is provable.

This result holds especially also for the system of classical ma-
thematics as this has been put up by J. v. Neumann in Math.
Zeitschr.

The remark about predicate calculus is found as “result 3” on frame 319,
with the startling continuation:

It follows from 3 especially that one cannot solve the decision
problem of the narrower functional calculus even with the ways
of inference of abstract set theory known today.

This statement presupposes the answer to be negative, and Gödel clearly
thought that a proof to that effect could not be elementary. Turing’s proof
of the undecidability of predicate logic in 1936 must have been a great sur-
prise to him in this respect.

The two front cover pages are followed by two unorganised pages of
notes in the notebook proper. A systematic text begins, what seems to be
the very first draft for an introductory part of Gödel’s article, and goes on
for six pages, 294R–297L, “Wir legen im folgenden Untersuchungen das
System der Principia mit Reduzibilitätsaxiom (. . . ) zu Grunde.” (We lay
as a basis for the investigations to follow the system of Principia with the
axiom of reducibility.)

The contents of the translations I give of this first series can be summarised
as follows:

1. Two front cover pages with a clear indication of the unprovability of con-
sistency within formal systems, written afterwards and similar to the Octo-
ber 1930 Anzeiger note (292R–293L), and the two remarks on page 292L.

2. Two pages of unorganised notes (293R–294L)

3. Six pages of systematic introduction, beginning with: “We lay as a basis
for the investigations to follow the system of Principia” (294R–297L)
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The right page next to 297L is blank, and a new systematic text begins on
the right of the next opening, page 298R:

2. “There are unsolvable problems in the system of Principia Mathema-
tica”

“Im folgenden soll gezeigt werden, dass es im System der Principia Ma-
thematica auch bei Hinzufügung des Abzählbarkeitsaxioms (. . . ) unlösbare
Probleme gibt.” (It will be shown in what follows that there are in the sys-
tem of Principia Mathematica, even under the addition of the denumerabi-
lity axiom (. . . ) unsolvable problems.) This second instalment can be consi-
dered a detailed execution of the proof sketched in the preceding one. The
text goes on in a determined way for some fifteen pages until it is interrup-
ted by a shorthand version of Gödel’s talk on the completeness of predi-
cate logic in Königsberg in early September 1930, very closely equal to the
preserved typewritten version from which the publication in his Collected
Works III stems (frames 306L to the upper part of 311R). The Königsberg
lecture text begins very conspicuously with: “Meine Damen und Herren!”
It ends with a few words about incompleteness, as cited in Section 1 of Part
I above.

After the Königsberg break, there follow about 13 pages of formulas
between frames 311 and 318. These pages contain concepts that are used
later in the Heft.

The contents of the translations I give of this second series can be summa-
rised as follows:

1. About fifteen pages of systematic text, interrupted by the Königsberg
lecture and beginning with:“There are unsolvable problems in the system
of Principia Mathematica” (298R–305R)

2. About 13 pages of formulas (311L–318L)

3. “The development of mathematics in the direction of greater exact-
ness”

A new version of the incompleteness article begins at frame 318L, with a
section number 1 and heading: “Entscheidungsdefinitheit” (Definiteness
with respect to decidability). The opening phrase is in translation “The de-
velopment of mathematics in the direction of greater exactness has, as is
known, led in the end to great parts of mathematics being formalized (as
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intended, even the whole of mathematics).” Section 2, with no title, beg-
ins on page 323R and introduces a system of elementary number theory Z
alongside that of PM and von Neumann’s set theory. In all:

1. Section 1 with the above title, a rather long introduction (318R–323R).

2. Untitled section 2 that describes the formal system of number theory Z
and how metamathematical concepts are represented in arithmetic (323R–
331R).

3. Statement of the main result for Z and its extensions (332R–333L).

4. Discussion of formalism and the meaning of the result (334L–334R).

5. Unsystematic notes on recursion equations (335R).

4. “The question whether each mathematical problem is solvable”

The text under this heading seems to be Gödel’s third draft for an incomple-
teness article, counting instalments 1 and 2 as belonging together, written
late in the summer of 1930 and preserved in about 38 pages between fra-
mes 339 and 357 of reel 24 in the Gödel microfilm collection. The notebook
contains after these pages others that are early versions of the initial pages
of the shorthand version of the published incompleteness article.

There are three preliminary fragmentary pages 337L, 337R, and 338L
(double exposure 339L) before a systematic presentation begins. These are
the front and back covers and the inside cover of the notebook, written in
backward direction. The inside cover page 339L has three additions to the
adjacent page 339R with which the text begins; they are incorporated in the
text.

The earlier parts of this set of notes have many cancellations, about six
pages altogether out of 15 between 339R and 346R, at one place, more than
three pages in succession.

A list of contents of the translations that follow is:

1. A general description in four pages of the work, and of the formal system
for which incompleteness is to be proved (339R–341R).

2. “The formal system laid as a foundation” is described in detail on four
pages, but after half a page, there follow more than three pages in suc-
cession that are cancelled but still clearly readable (342L–343R). These are
needed for the reading of what follows and are included.
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3. A sketch for what axioms to include and detailed presentation of these,
together with the rules of inference and the notion of provability (344L–
345R).

4. Shorthand version of the 1930 Anzeiger note (346L–346R).

5. “We have so far defined a sequence of concepts,” a recapitulation and
discussion of the nature of metamathematics (347R–348R).

6. “We begin now the systematic presentation of the proof,” definitions
numbered 1–27 followed by 20 unnumbered ones (349L–356R).

7. Page 355R gives the theorem by which “each provable formula is true.”

8. The last four pages 356L to 357R contain definitions that lead to the arith-
metic proposition that states its own unprovability. If provable, it is true,
hence unprovable.

5. “A proof in broad outline will be sketched”

As noted above, the notebook that contains what seems to be the third draft
for an incompleteness article has, after the last page 357R of that series,
the four pages 358L to 359R that consist of a two-page summary, a list of
contents for an article, and one page that contains various formulas. The
summary begins:

In what follows, a proof in broad outline will be sketched by
which the Peano axioms, together with the logic of the Principia
Mathematica (with natural numbers as individuals), do not form
a system definite with respect to decision, not even when the
axiom of choice is included.

A list of basic concepts is given on the formula page 359R that relates di-
rectly to the post-Königsberg part of an early draft, page 315R in particular
that contains the definition Clsz(x) ∼ Form(x)& (E1y) y Frv a x, very simi-
lar to the more detailed Klsz(n) ∼ Form(n)& (E!x){x Frv a n x 5 Höh(n)}
on page 359R. The list of contents is:

1. Introduction (for easier expression of the theorem)

2. System of number theory (here also finite sets at hand)

3. Extension
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4. One-to-one association between formulas and numbers. Me-
tamathematical properties = properties of numbers

5. Concept true

6. Concept finitely definable

7. Theorem expressed stated in different forms

8. Carrying through of the proof by the lemma

9. Proof of the lemma

The topics of these section headings appear in various combinations and
orders in the successive drafts for the incompleteness article.

6. “We produce an undecidable proposition in the Principia”

The last-mentioned four pages are followed by a new set of notes 13 pages
in length, pages 360L to 366L, with an opening sentence as in the published
paper, about “the development of mathematics in the direction of greater
exactness.” The same opening is found in three places in the notebooks,
and there are similar repetitions of other favourite formulations of Gödel’s.
To make a difference here, I chose as a descriptive title the opening phrase
of page 361R that begins a more detailed exposition of Gödel’s argument.

These thirteen pages are clearly written to be a first, introductory secti-
on for a paper on incompleteness. They follow the new ideas of September
1930, with the notion of truth put aside. The introduction of the last hand-
written version is directly based on it.

7. “The development of mathematics in the direction of greater exact-
ness”

Gödel’s final set of shorthand notes is, as mentioned, written on a more
prominent-looking notebook in comparison to the earlier ones. The text is
mostly almost verbatim as in the typewritten manuscript, to the extent that
the latter usually helps in clarifying difficult passages in the shorthand.
There are substantial changes at two points to be discussed below. Gödel
made extensive additions to the first proofs, but practically no deletions.
Many formulas are indicated as being numbered, with space left for that as
in ( ). The lacunae and missing cross-references can be gathered from the
final typewritten manuscript and published article.
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The footnotes in this version of the incompleteness article are usually an
integral, planned part of the article. They are basically numbered consecu-
tively, to note 29 at about page 25 of 42. Some, though, are later additions,
as the first one that is signalled by2) in the text and found squeezed at the
bottom of the page that follows. After Gödel lost count, he used asterisks,
little squares, and other favourite graphical signs of his to indicate which
footnote belongs where. I give the footnotes in the succession in which they
appear in the main text, irrespective of the actual numbers or other signs
they may bear.

The two places in which the notebook differs from the typewritten ver-
sion are

1. The typewritten version (TM) has between pages 264L and 264R a
discussion of whether the proof of theorem VI is intuitionistic (TM pp. 30–
30a).

2. There is a gap between pages 267L and 267R. The typewritten manus-
cript gives here the theorem IX by which there exist undecidable arithme-
tic problems expressible within the narrower functional calculus, a result
Gödel found relatively late.

The missing pages for the latter are found in two places: The back of the
notebook, written in reverse direction, has the pages in the order of writing:
284L, 283L, 283R, and 282L. The continuation from the last is found in a
completely different place, in reel 20 that has materials from the year 1936
when Gödel had his long period of recovery from a nervous breakdown.
He stayed from the late summer on for long periods in the Austrian Alps,
in a place called Aflenz, where he wrote mainly remarks on the foundations
of quantum mechanics. The pages in question contain a prominent “black
hole,” an inkspot, and have been ripped off the main notebook between
the mentioned pages 267L and 267R. Page 20-495R continues page 282L
and is continued by page 267R. Page 20-496 is the backside of page 20-
495R and seems to be what at some point was meant to close the formal
development. There is a loose page filmed as 20-495L that has notation and
definitions that continue on the right side 495R. I have placed these pages
in the order dictated by the typewritten manuscript.

The text proper of the notebook ends with a final paragraph on page
268L, as well as some corrections and additions to the typewritten manus-
cript, followed by two attempted titles mentioned above, and some recur-
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sion formulas on the next page.
Next in the notebook come two pages of attempts with formal notation,

and then a page with a plan of contents for a lecture on completeness that
Gödel gave in Vienna on 28 November 1930.

8. “Let us turn to the undecidable proposition”

After another two more pages of formulas, there comes in the notebook
with the final shorthand version Gödel’s first draft of a letter of reply to von
Neumann’s letter dated 20 November, pages 272L and 272R. There follow
eight pages, 273L to 276R, with attempts at a proof of the second theorem,
including as a part the text for section 4 of the published paper. The second,
final letter draft to von Neumann takes four pages, 277L to 278R.

Page 279R has a very clearly written statement in which Gödel writes
that his results “stand in no contradiction with the Hilbertian formalistic
standpoint.” After a page with a few formulas, the four reverse direction
pages are encountered. Three more pages of very densely written formulas
follow. The incompleteness notes end with a list of names and addresses,
reproduced below as an indication of who Gödel thought could be his pro-
spective readers.

Inside the back cover, the remains of another notebook are inserted,
with three back cover pages and just one leaf on squared paper, with va-
rious notes on Abelian groups, the history of logic, set-theoretic formulas,
matrices, and continued fractions, unrelated to incompleteness.

The list of names at the back of the final incompleteness notebook beg-
ins with: “Schmidt bedanken,” Schmidt to be thanked. Erhard Schmidt was
an influential professor of mathematics in Berlin who made publicity for
Gödel’s results in the fall of 1930. The other names come with cities and
street addresses, the latter omitted here. They are, in order of appearance:

Hempel Berlin, Dr Kohlenberg [?] Berlin, Doz. W. Dubislaw Berlin, Rei-
chenbach ? Berlin, Dr A. Heyting Enschede, Schlick, Doz. Behmann, Prof.
P. Bernays Göttingen, Hilbert, Noether, Dr Ackermann Münster, Skolem,
Tarski, Presb.[urger] Jerusalem, Scholz.

The physical appearance of the pages in my eigth insertion of the Gödel
incompleteness notes hides behind itself the following order of writing:

1. First Gödel writes a draft for an answer to von Neumann, the two pages
272L and 272R.
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2. Next he writes four pages on how the second theorem follows from his
considerations in the manuscript handed in for publication on 17 Novem-
ber 1930, the pages 273L–274R.

3. Now there follows the text of Gödel’s new section 4, practically verbatim
the published version, on pages 275R to 276R, with the above-mentioned
inserted remark about the relation of the unprovability of consistency to
Hilbert’s program on the isolated page 279R.

4. The second letter draft to von Neumann in four pages, 277L to 278R.

3 § Summary overview of Gödel’s shorthand manuscripts. The above division
shows four successive shorthand versions of the incompleteness article:

1. The first version consists of the introduction and execution in instalments
1 and 2.

2. The second version is given in instalment 3.

3. The third version is given in instalment 4. It is followed by a plan for
a new version in instalment 5, still based on the concept of truth, but not
carried through.

4. The fourth and final version is given in instalment 7. Instalment 6 is a
preliminary version for its introduction.

3. THE TYPEWRITTEN MANUSCRIPTS

1 § The Anzeiger note of October 1930. Gödel had written, by his letter to von
Neumann, a short summary of his two incompleteness results before his
departure for Königsberg on 3 September 1930. By the same letter, he gave
the note in for publication on 17 September. As mentioned above, there is a
shorthand version of this note at frame 346. The typewritten manuscript of
this two-page note in the Anzeiger der Akademie der Wissenschaften zu Wien
has been kept in the Gödel papers (box 7a, folder 9, document 040016). A
title page has a stamp by which it has been received on 21 October 1930,
communicated by “corresponding member H. Hahn” and the title “Einige
metamathematische Resultate über Entscheidungsdefinitheit und Wider-
spruchsfreiheit.”

Gödel’ summary has the handwritten additional sentences, the first in
his, the second apparently in Hahn’s hand:
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Theorems I, III, IV, can be extended even to other formal sys-
tems, for example the Zermelo-Fränkel axiom system of set theo-
ry.

The proofs of these theorems will appear in the Monatshefte für
Mathematik und Physik.

The publication, in issue 19 of the Anzeiger, pp. 214–215, tells that the work
was presented at a session of the academy on October 23. In a first set of
proofs, ℵ0-consistency has been set by mistake as X0-consistency. The final
version has the notation ω-consistency. Gödel’s note was soon published
and he was able to send a copy to von Neumann along his letter of about
25 November 1930.

2 § On formally undecidable propositions, earlier version. Gödel handed in his
manuscript on 17 November 1930. The Gödel papers contain the printer’s
version, with a first page on which we find the title Über formal unentscheiba-
re Sätze (box 7b, folder 12, document 040020). The first word is in shorthand.
The next page is for the typesetter and instructs to print underlined words
with spaced letters (Sperrdruck) and those underlined in green in italics,
as in the final article. I have presented these as small capitals and italics, as
in the Van Heijenoort translation. The same short title with the indication
“earlier version” is found at the back of the proofs.

The typewritten manuscript follows closely the final shorthand versi-
on, except for the added section 4 on the second incompleteness theorem.
One remarkable addition is a discussion, about half a page, that follows the
proof of the central theorem VI about the existence of undecidable propo-
sitions. The argument is that if the undecidable proposition 17 Genr r were
provable, an effective proof of ω-inconsistency would follow. The results
about predicate calculus in Gödel’s theorems IX and X were late achieve-
ments, not yet in a final form in the shorthand version.

The numerous footnotes of the last shorthand version have been turned
into sixty-odd footnotes that I was able to reproduce with their original
numbering maintained.

Even if I made the transcription and translation of the shorthand versi-
on first, following the order of writing, I made some use of the typewritten
manuscript in the transcription. To have identical passages translated iden-
tically, the basis for the translation of the typewritten manuscript was that
of the shorthand version. The process of comparison of the original short-
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hand and its transcription and translation with the typewritten manuscript
led, in turn, to some changes and improvements in the other direction, and
may have left a passage or two in which the wordings are not preserved
precisely, with no effect on the content.

The typewritten manuscript has some changes, usually small ones, that
I have followed to arrive at the precise version Gödel sent in for publication.
These changes are readily visible to anyone who looks at the originals. They
were preceded by changes revealed through notes in an odd place: at reel
44, frames 870 and 871, amidst all sorts of loose notes, there pops up a list
of changes to the manuscript, with clear page indications that match the
extant typewritten manuscript. Gödel had left the pages of this manuscript
rather short, so could add footnotes at the bottom, either typewritten or
done by hand. All of these are rather brief, such as the reference to von
Neumann’s 1928 paper on set theory on the first published page, except for
two substantial additions. The first such addition is to page 30 of the TM,
effected by a rewriting of this page and an added shorter page numbered
30a. The text to be added is (to be compared to p. 30 of the TM):

The proof of theorem VI was carried through without express
consideration of intuitionistic requirements. It is, though, easy
to convince oneself that the following is shown in an intuitio-
nistically unobjectionable way: If a formal decision (from κ) is
presented (for the proposition effectively presentable), then one
can effectively specify:

1. A proof for Neg Gen r.

2. A proof for Sb(r17
n ) for each arbitrary n.

I.e., a formal decision of Gen r would have as a consequence an
ω-contradiction that can be effectively shown (and this for each
arbitrary recursive class that is laid out).

The second addition is to page 38, footnote 55, in relation of theorem IX:

This does not stand in contradiction with the result of my work
“Über die Vollständigkeit der Axiome des logischen Funktio-
nenkalküls,” because there it was proved only that each formu-
la is either provable or there exists a counterexample.
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At the end of the introduction to his article, Gödel writes about the two
conditions his result needs: first, that the concept of “provable formula”
can be defined within a system, and, secondly, that “each provable formula
be contentfully correct.” The comment is that “the exact carrying through
of the above proof has as its main task to avoid completely the content-
ful interpretation of the formulas of the system considered.” This has been
changed into: “has as its tasks among others the substitution of the second
of the conditions presented by a purely formal and much weaker one.”
Another cancellation in the introduction is on the first page, as explained
below.

The main text, after the introduction, has just two essential cancellati-
ons: The first is the second footnote on page 262R (note 42). The second one
is a passage on page 264R, found below in the footnote on that page. The
footnote numbering follows the manuscript.

The closing paragraph has been substituted by a final section 4, pages
42–44 of the manuscript.

Gödel made extensive additions to the published paper in the first set of
proofs. The two references to literature on the first page have been greatly
extended by additional references to von Neumann, Hilbert, and others in
Göttingen. Footnote 9 is a long addition, and at the end of the introducto-
ry section there is a new paragraph about the second theorem. Yet another
long addition is at the end of section 2, with a reference to “part II of this
work.” The changes in the page proofs are, instead, mainly corrections of
misprints, so that the modifications in Gödel’s article as sent in and as pu-
blished can now be found out by a comparison.

The added section 4 has in the first proofs a long new paragraph, before
the closing paragraph.

4. LECTURES AND SEMINARS ON INCOMPLETENESS

Gödel is known to have presented his incompleteness result in Vienna on
two occasions prior to its publication: first in the Schlick circle on 15 Janu-
ary 1931, and then one week later, 22 January, in Menger’s mathematical
colloquium (see Dawson 1997, p. 73). Discussion remarks on Gödel’s pre-
sentation have been preserved, prepared by the circle’s court reporter Rose
Rand. The German text is found in Rand (2002). The typewritten three-page
manuscript of Gödel’s 1932 publication “Über Vollständigkeit und Wider-
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spruchsfreiheit” (On completeness and freedom from contradiction) has at
the back of the last page the text “Menger Kolloquium” followed by “report
on my works” written in shorthand.

Gödel’s papers contain a folder with a slip of paper, in part in short-
hand, with the following (reel 24, frame 143):

Manuscripts

Proofs [cancelled: own works lectures]

the 3 works in Mo. H. + Vienna lectures on the first two

The reference is to the Monatshefte für Mathematik und Physik in which Gödel
published his completeness and incompleteness papers, and a third paper
on the decision problem of predicate logic in 1933. There is a lecture on
completeness placed with the slip (reel 24) but no lecture on incompleten-
ess. The completeness lecture is ten pages long and with the title handwrit-
ten on the back of the last page: “Vortrag über Vollständigkeit des Funktio-
nenkalküls” (Lecture on the completeness of the functional calculus). The
text is virtually the same as the shorthand text for the lecture in Königsberg
in one of the two notebooks on incompleteness. As mentioned, Gödel held
on 28 November 1930 a lecture on completeness in Vienna. A list of con-
tents is found in the final notebook for the incompleteness paper, after the
text had been completed but before the letter draft to von Neumann. This
list is quite different from what the preserved lecture contains. The idea is
not far-fetched that Gödel had little time to prepare a new talk on comple-
teness, his time before the talk being taken by the writing of a new section
for the incompleteness paper and of an answer to von Neumann’s letter of
20 November.

There are among Gödel’s papers three carefully written German texts
for lectures on incompleteness, similar in content but of varying length and
detail, presented below in 1 § to 3 §. The first and second of them can be
identified as a short and long version of the talk Gödel gave in a mathema-
tics conference on 15 September 1931.

In 1931/32, Gödel was very active with Hahn’s logic seminar and pre-
sented his completeness and incompleteness results there. The notes for
these presentations are found in two folders, usually extensive but less po-
lished. The cover of the first has: “1931/32 Hahn Logikseminar und Vor-
tragsentwürfe” (logic seminar and drafts for talks). The second folder has
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the text “Hahn Logik-Sem 31/32 (Boschan).” The name refers to the mathe-
matician Paul Boschan or von Boschan. The Boschan folder contains two
very clearly written shorthand manuscripts, the first with the title “Voll-
ständigkeit des Funktionenkalküls”, the second with the title “Über un-
entscheidbare Sätze.” The latter consists of three “Kanzleiformat” sheets,
eleven big pages, and a separate sheet with the crucial formulas of the pre-
sentation. The presentation follows closely the Bad Elster typewritten ver-
sions, but with much more explanation and discussion.

There is in the Hahn folders also a typewritten manuscript that records
the seminars, over 60 single-spaced pages with 22 seminar-hours dated bet-
ween 22 October 1931 to 4 July 1932. I assume Boschan to be the one who
prepared these. Gödel’s papers contain two sets of these notes, with slight
differences on some pages together with Gödel’s handwritten small addi-
tions and changes. These are found in reel 25, frames 4 to 62. Most of the
seminar notes deal with various aspect of propositional logic, then Gödel’s
completeness theorem, Herbrand’s results, and finally on four last pages
the incompleteness result, with the title “Über die Unmöglichkeit von Wi-
derspruchsfreiheitsbeweisen” (On the impossibility of proofs of freedom
from contradiction).

Gödel’s first stay in Princeton was from the fall of 1933 to the beginning
of summer 1934. He held lectures there on the incompleteness theorems,
between February and May, that were published in a mimeographed form
in 1934 under the title On undecidable propositions of formal mathematical sys-
tems.11 In addition to these systematic lectures, he gave two general lectures
on his theorems in April 1934, one in New York on the 18th, and another in
Washington on the 20th. The titles were The existence of undecidable proposi-
tions in any formal system containing arithmetic and Can mathematics be proved
consistent?, respectively. These two lectures are markedly different in em-
phasis. The former was meant for a general audience, whereas the latter,
the manuscript of which was identified in the summer of 2019, clearly as-
sumes some knowledge of mathematics, say the prime decomposition of
natural numbers that appears in a detailed discussion of Gödel numbering
and its use in the arithmetic representation of a Gödelian undecidable pro-
position. The same amount of detail on this crucial discovery is nowhere
else to be found in Gödel’s writings.

11 The lectures became generally available through their publication in Davis (1965).
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Gödel’s original English writing of the two lectures shows some of his
early idiosyncrasies such as writing “allways.” Some such aspects may be
just ordinary spelling errors, corrected here, but those that are systema-
tic are left as they are. The writing on the whole is very clear. Additions
and cancellations lead only in a few places to questions of what is inten-
ded. Gödel seems not to have been sure what English expression to use for
formal derivability in the Washington lecture, what would be the German
“formale Herleitbarkeit,” and left in several places generous space for an
insertion of the proper word. The lecture in New York was accompanied
by a translation of the introduction of his paper in which even “beweisbar”
was left untranslated by an unidentified translator, but in the lecture, Gödel
himself uses the word provable.

Some aspects of Gödel’s longhand writing stem most likely from the
habits of a shorthand writer. For example, punctuation marks are left out
more often than not. A capital letter can tell that a sentence begins, but not
always. Similarly to shorthand, singular and plural can be left implicit, to
be decided from the context upon reading.

1 § Bad Elster lecture on undecidable propositions. The first of two lecture texts
(document 040406, reel 30, frames 33–38) has five typewritten pages with
the crucial formulas in Gödel’s argument numbered (1)–(4). A handwritten
text at the back of the last page gives the title as: “Über unentscheidbare
Sätze (Vortrag ?)” (On undecidable propositions (lecture ?)).

Gödel gives in the lecture a very clear description of the idea that led
him to incompleteness, the diagonalization of one-place arithmetic predi-
cates ϕ1(x), ϕ2(x) . . . through ϕn(n) and the collection into a class of those
n for which ϕn(n) is not formally provable, ∼Bew ϕn(n) in Gödel’s notati-
on. The last one is a one-place arithmetic predicate, so we have some k such
that

ϕk(n) ≡ ∼Bew ϕn(n)

This is Gödel’s formula (3). With k in place of n, we get

ϕk(k) ≡ ∼Bew ϕk(k)

This is Gödel’s formula (4) in which a proposition states its own unprova-
bility.

2 § On formally undecidable propositions (Bad Elster, longer version). It ap-
pears from the shorthand remarks at the back of the last page of this nine-
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page typewritten manuscript (document 040405, reel 30, frames 22–31) that
it is Gödel’s text for the yearly meeting of German mathematicians at Bad
Elster, 15 September 1931. It is clearly an extended version of the previous
one, the note “earlier version” written with the title notwithstanding: The
crucial formulas are numbered as (5)–(9), in continuation of the numbering
of the short version.

The Bad Elster lecture was Gödel’s first presentation of the incomple-
teness theorem for a larger mathematical audience. At this point, his paper
had been available for about half a year, and major authorities in logic had
fully endorsed what he had accomplished, including von Neumann and
Bernays. Thus, there was no reason for the kind of reserve Gödel had ex-
pressed in his letter of late November 1930 to von Neumann, about the
difficulty of presenting the topic in a convincing way. Gödel’s lecture is
striking in the way it cuts the formal details of incompleteness to a few
formulas. The main presentation describes incompleteness in broad terms
as a consequence of formalization in which one-place arithmetic properties
can be only denumerably infinite, in contrast to classes of numbers. Gödel
seems even confident that the proof of the second incompleteness theorem
would follow in the way of the first one. At the end of the presentation,
he mentions the “strange” consequence of incompleteness that there must
exist results of elementary number theory provable only by the means of
analytical number theory. A cancelled last phrase mentions that this could
be a further topic of investigation for Gödel.

Gödel’s talk is listed in the Jahresbericht of the German mathematical as-
sociation (vol. 41, p. 85) with the title: “Über die Existenz unentscheidbarer
arithmetischer Sätze in den formalen Systemen der Mathematik” (On the
existence of undecidable arithmetic propositions in the formal systems of
mathematics).

Among Gödel’s audience in Bad Elster there was the set theorist Ernst
Zermelo, a presence that led to a famous exchange between the two, both
at the conference and afterwards in letters found in the fifth volume of the
Collected Works. At the back of the last page of Gödel’s manuscript, there is
written in shorthand:

1.) Zermelo

2.) [Cancelled: As a clarification to your remark] end of my talk
work I believe I have explained sufficiently see also what I
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mean by a formal system

4.) [4 written over 3, then cancelled: Clarification] Zermelo talk
delivered

3′ Skolemism

The bottom of the same page has the title “Über formal unentscheidba-
re Sätze, frühere Fassung” (On formally undecidable propositions, earlier
version).

There were altogether five talks at Bad Elster at the session starting at
4 p.m., so perhaps half an hour each. Some of the presentations are just
listed by title in the Jahresbericht, others instead come with a short paper.
The notes at the back of Gödel’s longer version indicate that he lectured
from it, but chose not to publish even the shorter version.

Zermelo’s talk, right after Gödel’s, is given as “Über Stufen der Quan-
tifikation und die Logik des Unendlichen” (On levels of quantification and
the logic of the infinite). The Jahresbericht contains a three-page account of
Zermelo’s talk, the central point of which is that the idea of representing
mathematics as a “fixed finite system of signs” is a “finitistic prejudice.”
Further, this “Skolemism” leads to the existence of denumerable models
for set theory, to which Zermelo comments that “one can prove everything
from contradictory premisses.” A paragraph is devoted to Gödel’s result
(p. 87), with a reference to the Vienna academy summary of October 1930.
Zermelo shows some caution here, apparently in awareness of the attention
that Gödel’s theorem had received, with the conclusion:

The real question, whether there exist in mathematics absolute-
ly unsolvable propositions, absolutely unsolvable problems, is
in no way touched by such relativistic considerations.

The exchange between Gödel and Zermelo is found, with ample commen-
tary, in the fifth volume of the Collected Works. Gödel remained polite in the
exchange, but a letter to Carnap of 11 September 1932 shows what he really
thought: “Have you already read Zermelo’s senseless criticism of my work
in the last Jahresbericht?”

3 § On undecidable propositions. This text is the second of the two carefully
written lectures in the Hahn folders, what the latter part refers to in the
folder title “Hahn Logikseminar und Vortragsentwürfe” (. . . and drafts for
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talks, the copula in shorthand). The lecture is written on large “Kanzlei-
format” paper with the longhand title Über unentscheidbare Sätze (box 7b,
folder 14, no separate document number but identifiable as in reel 24, fra-
mes 867–876), with formulas on a separate sheet (frame 866). It is seen from
Gödel’s wording that the text is written for a lecture, possibly with a later
article version in mind. Dawson mentions 28 November 1931 as a date on
which Gödel gave a talk at the Austrian Mathematical Society in Vienna (p.
78, but could this be the 1930 talk also on 28 November?).

4 § On the impossibility of proofs of freedom from contradiction. Gödel spoke
about his incompleteness result, especially the unprovability of consisten-
cy, in Hahn’s seminar on 4 July 1932. It is the last item in the typewritten
seminar notes. There are matching pages in the Hahn folders consecutive-
ly numbered 1–8 (reel 24, frames 750–757) mostly written in longhand and
clearly used by Gödel for the seminar talk. The typewriting uses notation
available on a keyboard such as a minus-sign for negation where Gödel
has ∼. Many formulas are much more readable in handwriting than in the
stencil copy of the typewritten version. I have made some use of this aid in
the translation of Gödel’s seminar.

Gödel’s handwritten notes are preceded by a four-page shorthand ac-
count, frames 746–749, that appears to be the basis for the longhand notes.
I give it here to the point in which it becomes similar to the latter:

We have now come to know a proof for the freedom from con-
tradiction of a certain subsystem of arithmetic. It is the widest
known proof of freedom from contradiction that we have at all.
The reason is that a proof of freedom from contradiction is, in
a sense to be made precise, impossible for certain comprehen-
sive mathematical systems. To be able to formulate and prove
a theorem that concerns it, I have to first treat another related
concept, namely that of completeness of formal theories.

Gödel has in mind here the well-known proofs of consistency of arithme-
tic with free-variable induction, as given by Ackermann, von Neumann,
and Herbrand. The last, in particular, was extensively treated in the Hahn
seminar and later in Gödel’s mathematical notebooks.

Gödel’s presentation of his incompleteness theorem at Hahn’s seminar
is preceded by his succinct presentation of Herbrand’s proof, in what must
have been a very long session. I include it as a prelude to Gödel’s presenta-
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tion of his own result, and as a witness to his thorough preparation for all
the things he confronted in his research program.

5 § The existence of undecidable propositions in any formal system containing
arithmetic. The New York lecture text was found among the Gödel papers,
identified by John Dawson, but no text of the Washington lecture (“A ma-
nuscript for the former, but not the latter, survives.” Logical Dilemmas, p.
103). The manuscript for the New York lecture is preserved in an orderly
fashion and clearly indicated as “Vortr. New York” (reel 25, frames 623–
654). There are just some formulas to be added, and some cancellations
and improvements. As mentioned, a typewritten English translation of the
introduction to the 1931 incompleteness article of unknown translatorship
was prepared, together with some words of explanation.

6 § Can mathematics be proved consistent? The lecture notes were found in Ju-
ne 2019 by Maria Hämeen-Anttila, during a search of the manuscripts for
Gödel’s 30 December 1933 lecture The present situation in the foundations of
mathematics, the final version of which is published in the third volume of
Gödel’s Collected Works. The pages were among those indicated as manus-
cripts for the Present situation lecture but divided apparently randomly in
two different places and with no title or other indication. After a shorthand
summary and sketches of formula pages to accompany the lecture (reel 25,
frames 387–390), there follows a page numbered 4 (frame 391), but it has
a Πx quantifier notation of the Princeton lectures on incompleteness, whe-
reas the Washington lecture uses (Ex) as a primitive, notation Σx in the
Princeton lectures. There follows page 4 of the Washington lecture manus-
cript (frame 392), with the suggestive phrases: “I want to deal with two of
these questions to-night. The first concerns the freedom from contradiction
of mathematics.” Pages 11 to 24 (frames 393–406) follow in succession. The
next frame 407 has page number 3 and just five lines of text that do not fit
in the lecture, frame 408 is page 7 of the lecture, and frame 409 page 10.
Frame 410 has the page number 19·1 and a cancelled text that does not fit
anywhere in the Washington lecture:

So it remains only to be proved that ∼A is not provable either.
Now if∼A were provable then also∼C were provable, for from
this impl. it follows immediately that ∼A → ∼C. So in this
case it would be provable that a system is contradictory. So if
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we assume that our system is not c

This page belongs to the New York lecture but is there replaced by another
one numbered 19.1.

Frames 411–414 have the titles Supplement I to Supplement IV. They
contain additions to the main text. There follow the three clean formula
pages, frames 415–417. As with some other notes for lectures, the formulas
to be cited during the lecture are indicated by empty space or a line.

Frame 419 begins a second set of pages, with the title (in German): “Talk
US, most probably 1934 or 33.” Now follow the seven missing pages of the
Washington lecture: 1–3 (frames 419–421), 5–6 (frames 422–423), and 8–9
(frames 424–425).

The above-mentioned pages put together make up the complete Wa-
shington lecture, with just the title missing. Gödel’s shorthand plan of the
lecture is:

1·) What is a formal system?

a) The fact that mathematics reducible to a few axioms and rules
of inference, relation between logic and mathematics

b) Exact language needed for that. Basic symbols, which combi-
nations of basic symbols are propositions, each such combinati-
on expresses a specific assertion (true or false) ∼, → , E

c) Axioms and rules of inference mix (examples), what is a proof?
Each mathematical proof can be carried through within the system

2·) Setting-out of the problem12

I.) Freedom from contradiction, a proof for it seems at first cir-
cular, but justified by rules of inference having different degrees
of reliability

II.) Completeness, or at least for subsystems

3·) Both questions to be answered negatively for given systems
of mathematics, but not independent of the specific form (even

12 [Added below: only now possible]
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if this form gives all the proofs). Of what kind are the propositi-
ons for which one can show that they are undecidable? Another
formulation: arithmetic cannot be formalized in a complete way.
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Part III

The shorthand notebooks
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1. Undecidability draft. We lay as a basis the system of the Principia

292R1

What symbolism? Rule of substitution etc new execution
preliminary version

Undecidability
draft

Finally, there results by the above method the strange circumstance that the
freedom from contradiction of system S cannot be proved by the logical
means that are contained in this system itself. I.e., even if one allows for the
proof of freedom from contradiction all the logical means of the Principia, it
is impossible, and even the more so if one allows only a part.

The above result lets itself be extended correspondingly also to other
formal systems, say Zermelo Fraenkel’s set theory.

293L

This proof of undecidability can be widened to all extensions of system S,
i.e., systems that arise from it through the adjunction of new axioms, as
long as these fulfil the conditions:

1. The class of axioms added is finitely definable (this holds especially
for all finite classes that are obtained from S through type elevation).

2. All provable propositions are true.

Condition 2 cannot be replaced by the condition of freedom from contra-
diction, i.e., there are extensions of the system of the Principia with finitely
definable axiom classes in which not all propositions are definite with re-
spect to decision. But such contain always false propositions.

1 [This page and the next one are the inside cover leaflet pages, surely written after the
main text that starts on page 294R. The acid paper has turned dark with the consequence
that the writing is very faint, but one can see that the wordings are ones that appear else-
where relatively late in the notebooks. The inside cover page 292L has the remarks:

There are further in formulas of the narrower functional calculus in S for
which neither universal validity nor the existence of a counterexample is pro-
vable.
This result holds especially also for the system of classical mathematics as this
has been put up by J. v. Neumann in Math. Zeitschr.]
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One can instead replace conditions 1 and 2 by the following:

1. The class of axioms added is not only finitely definable but even de-
finite with respect to decision, i.e., it is decidable for each formula whether
or not it is an axiom.

2. The system is ℵ0 consistent.

Here the meaning of ℵ0 consistency is the following: for no property f
of natural numbers that occurs in the system is simultaneously provable
f (1) f (2) . . . f (n) ad inf and (Ex) f (x). There are extensions of the Principia
where this fails.

293R

We replace the basic signs of the Principia (logical constants and variables
of different types) in a one-to-one way by natural numbers, and correspon-
dingly the propositions of the Principia through finite sequences of num-
bers. By “formulas” are, then, in the following always meant finite series of
numbers (with certain precisely given properties). The purpose of this re-
placement is that by it, many propositions about the system of the Principia
become expressed metamathematically within this system itself, because
they are propositions about finite series of numbers.

Metamathematical concepts used in the following2 2x3y5z7u11v

[cancelled: formula], proposition 2u3v

[cancelled: class sign, true formula] pn

Bew formula

class sign

[cancelled: proposition from a class sign]

[cancelled: ordering of the class signs]

finitely definable negation

—————————————————————————————————
Theorem: Bew is finitely definable, class sign, proposition from a class sign,
ordering [of the class signs] as well,

2 [The products of successive primes appear to be later additions close to the margin.]
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therefore also Bew[F(n); n] = K(n)

i.e. W[a; n] ∼ K(n)

a is a class sign, therefore a = F(m)

The proposition [a; m] is undecidable

because from Bew[a; m] follows

W[a; m]

K(m)

Bew[F(m); m] i.e. Bew[a; m]

Bew N[a; m]

W[N[a; m]]

W[a; m]

K[m]

Bew

There is no difficulty in writing the undecidable proposition down in exten-
so. It has a relatively simple structure. It asserts (cf. ) the inexistence of a
proof figure for [a; m]. Here it is decidable for each proof figure, in a finite
number of steps, whether it is a proof for [a; m] or not.

294R [We lay as a basis the system of the Principia]

We lay as a basis for the investigations to follow the system of Principia
with the reducibility axiom (but without ramified type theory), further the
denumerability axiom (there are exactly denumerably many individuals),
and with the axiom of choice (for all types). Instead of the denumerability
axiom, one can postulate the Peano axioms for individuals (the relation of
“successor” taken as an undefined basic concept).

We replace the basic signs of the Principia (variables of different types
and logical constants) in a one-to-one way by natural numbers, and the
formulas through finite sequences of natural numbers (functions over seg-
ments of the number sequence of natural numbers).3

3 [What follows is cancelled: There occur in the Principia itself propositions about finite
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We understand by “formula” a finite series of numbers with certain
properties that can be given precisely and by “true formula” (Wa) one for
which the associated proposition of the Principia is true. This concept is
as unobjectionably amenable of mathematical definition as, say, a formula
with 20 signs (cf. below p. ).

A formula with one free variable of the type of the natural numbers in
the Principia is a class sign. There exist naturally (just as formulas in gene-
ral) only denumerably many and we designate by F(n) the n-th relation
sign in a determinate counting. We call4 a k-place relation R between ob-
jects that occur in the Principia (i.e., classes and relations of a finite type)
definable if there exists a formula with k free variables, of the kind that the
proposition (formula) that arises through substitution of [cancelled: names
of] objects
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is true if and only if the relation R obtains between these k objects. Finitely
definable relations and properties are, briefly, those which can be defined
within the system of the Principia. It is easy to convince oneself that the
concepts formula, relation sign, further the counting relation, the relation
F, as well as also the concept “provable formula” [written above: Bew] are
altogether finitely definable.

We define now a [cancelled: relation R] class K of natural numbers in
the following way:

2·)5 K(i) =
Df

Bew(F(n); i 0) [K(i) changed from R(i k)]

Since Bew and F as well as (a; i k) cf. [?] are definable, then also R(i k)
[read: K(i)] i.e., there exists a formula a (relation sign) such that

1·) W(a; i) ∼ K(i) [changed from W(a; i k) ∼ K(i k)]

a must occur in the counting F, i.e., a = F(m) for a determinate m.
We claim now that the following proposition of the Principia is undeci-

sequences of natural numbers, and therefore the possibility is won to express a part of the
metamathematical propositions in the system itself.]

4 [A bullet at this place, in the margin, directs to the bottom of the preceding page, with
a three-line footnote: If a is a relation sign and i, k natural numbers, we designate by (a; i k)
the proposition of the Principia (i.e., the finite sequence of numbers) that arises when one
substitutes free variables in it by names of the numbers i, k.]

5 [Number added in margin.]
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dable:

(a; m 0) (there would be no difficulty in writing down this proposition
in extenso).

295R

In fact, were (a; m 0) provable, then also true

W(a; m 0)

But then there follows from 1·) in one direction [?]

Bew(F(m); m 0) which states that

(a; m 0) is not provable.

So we have hit a contradiction. If we assume, then, that Negation(a; m 0) is
provable, then it would be also true, or we have W(a; m 0). But from this
would follow that (a; m 0) is provable, so Neg(a; m 0) not provable.

One recognises a close connection of this proof with the Richard antino-
my, and it can be expected that even other epistemological antinomies can
be reshaped into analogous proofs, something that in fact happens.

One can ask whether the system of the Principia could be so extended by
the addition of new axioms that it becomes definite with respect to decision.
As concerns this, one recognises that the above proof can be applied word
for word even to each extension of the Principia,

296L

as soon as the following conditions are satisfied:

1·) Each proposition provable in it is true.

2·) The concept provable is finitely definable or in other words, the class
of newly added axioms is finitely definable.

The latter turns up at any rate for each finite class of new axioms (also for
each infinite one that arises through type elevation from a finite one) and
one sees on the whole that a system that is definite with respect to decision
and correct (no false propositions arise) could in any case be obtained only
in an extraordinarily complicated way. The axiom rules would have to be
so complicated that they would not let themselves be expressed within the
system of the Principia.
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What do the propositions (a; m 1) contentfully meant actually state? Ob-
viously that there is no proof figure for a definite finite series of signs (=
number sequence) that can be given. It is naturally decidable for each for-
mula figure whether or not it is a proof figure for a series of signs in ques-
tion. So (a; m 1) means the non-existence of a finite formula figure with a
certain property that is definite with respect to decision.

296R

The theorem is, then, of the character of one like Goldbach’s or Fermat’s
problem, so in a certain sense very simple, but nevertheless not decidable
in the system of the Principia.

————————————————————————————————–

The exact definition of the class of “true formulas” anticipated above de-
pends on the following: A proposition of the Principia is built up of ele-
mentary components of the form

ϕ(uv), ψ(s) etc in which ϕ, u, v, ψ are variables of arbitrary types with
only the restriction that u v are suitable argument variables for ϕ and s
a suitable variable for ψ

together with the operations ( ) ∨ −. [Added remark: Formulas that con-
tain propositional variables can be treated in a quite analogous way.] It lies
therefore close at hand to define the concept true formula through recursi-
on:

1·) If ϕ denotes the name of a class and u that of a suitable argument,
then the

297L

sign ϕ u shall be called true when and only when u belongs to the class
ϕ.

A ∨ B shall be true when and only when either A or B is true.

A shall be true when and only when A is not true.

(x)F(x) shall be called true when and only when F(a) is true for each
suitable name a.

This definition fails in that it assumes there to be names for all classes and
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relations which surely is not the case (for there are only denumerably ma-
ny names). However, this can be easily remedied. For we consider the for-
mulas not as spatial images but as abstract sequences of natural numbers.
Nothing prevents us, therefore, instead of delivering the names of the clas-
ses and relations, to take the classes themselves. One must then consider
also certain sequences of sets, sets of sets, etc of natural numbers as formu-
las. One sees easily how the above definition can be reformulated in this
sense.

The theorem by which the class of provable formulas and the counting
relation F are finitely definable becomes now a theorem that is quite exact
and provable by usual mathematical methods. The same with the theorem
that each provable formula is true.

297R [blank]
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2. There are unsolvable problems in the Principia Mathematica

298R

There are unsolvable problems in the system of Principia Mathematica, as
will be shown in what follows, and even under the addition of the denume-
rability axiom (there are exactly denumerable individuals) and the axiom
of choice (for all types). Instead of the denumerability axiom, one can also
postulate the Peano axioms for individuals, which results in the same and
will be taken in what follows.1

As concern the logical auxiliary means in the following proof, no kind
of restrictions are made and especially, the methods of set theory and ana-
lysis are used. Our proof is, then, comparable in this respect to a proof in
analytical number theory in which elementary results are likewise won by
complicated auxiliary means. Research into foundations [Grundlagenfor-
schung] has to decide on the justification of such a procedure, something
that has to be kept separate from sharpness in metamathematics.

We introduce the following inessential modifications to the symbolism
of the Principia.

1·) We dispense with the ramified type theory and let enter in
place of the reducibility axiom the license to substitute in place
of function variables arbitrary functions of a suitable type.

2·) We take no signs for variable relations among the basic signs
(but only ones for one-place functions), for one can conceive of
relations as classes of ordered pairs and ordered pairs again as
classes of the second type { a, b = [(a), (a, b)]

Analogous holds for relations of a higher type. With this stipu-
lation, one that has in principle no importance anywhere for our
proof, type theory assumes the simplest shape.

3·) We replace, something that is very important for what fol-
lows, the basic signs of the Principia (variables of different types
and the logical constants) in a one-to-one way by natural numbers
and the formulas by finite sequences of natural numbers, i.e., functi-
ons over finite segments of the number sequence of natural numbers.

1 [There is a big black bullet drawn right here that points at an addition on the adjacent
left page, initially left blank. It is placed here in the way intended, as the next paragraph.]
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The formal system laid as a basis presents itself thereafter in the following
way:

Basic signs:

0 sign for 0

1 sign for “the successor of”

299L

2 sign for negation

3, 4 square bracket signs ( 3 = opening 4 = closing bracket )

numbers = 7 that are divisible by exactly one prime number are =
propositional variables

numbers = 7 that are divisible by exactly k + 2 different prime num-
bers are = function variables of type k (k = 0)

i.e. variables for a property (class) of kth type

We reserve the numbers 5, 6 to denote the truth values.
We show the concept or through the setting of one next to the other,

“all” through the putting ahead of the corresponding variable.

Symbols (= finite sequences of numbers) of the form:

0 10 110 1110 etc are called constant number symbols

and indeed, is called “the symbol for number k”11 . . . 11︸ ︷︷ ︸0
k

Improper constant numbers arise when one replaces 0 by a variable of
type 0, called variable number symbols.

Let us call an elementary formula each propositional variable and further
a symbol that consists of a variable of level k followed by a variable of level
k − 1, or of a variable of the first level and a number symbol (constant or
variable). (The variables of level k− 1 and the number symbols are called
the arguments of the E 3.)2

The operation of “bracketing” of a symbol consists in setting the num-
ber 3 in front and the number 4 behind.3

2 [E stands possibly for elementary formula, a finite sequence as in point 3 above.]
3 [A cancelled passage “(obviously understood in the abstract sense)” is followed by a

footnote: The expressions often used in the following, “setting in front” “setting next to
each other” “bracketing” etc are obviously to be conceived only figuratively.]
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The operation of negation N of a symbol consists in a bracketing and
setting 2 in front.

The operation of disjunction D of two symbols consists in a setting next
to each other after a preceding bracketing

299R

of each of the two.
The operation of generalization G consists in setting a function variable

in front, after a preceding bracketing.
What arises from the elementary formulas through arbitrarily repeated

application of the operations of negation, disjunction, and generalization
we call “formulas,” with the restriction that:

1·) G can be carried out only on formulas in which the corresponding
variable is free (i.e., does not stand between two brackets or in the begin-
ning before a bracket)

2·) D can be carried out only on disjoint formulas (i.e., ones in which no
bound variable in one is free in the other).4

We designate as axioms those formulas, in our sense, that correspond
to the following propositions:

1. The last three axioms of Peano.

2. The four propositional axioms of the Principia (without the super-
fluous principle of associativity).

3. The two functional axioms

(x)F(x) → F(y)

(x) A ∨ F(x) → A ∨ (x)F(x)

expressed for all types and all variables.

4. The axiom of choice expressed for all types.

300L

5. The statement of extensionality which says that two functions with

4 We achieve by the latter stipulation at never designating free and bound variables the
same and at never having the scopes of equally designated variables overlap (for we are
not dealing with spatial figures but with sequences of natural numbers).
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equal ranges [umfangsgleich] are identical.5

One has to think of the concept of identity that occurs in the axioms to
have been defined in the most comprehensive way possible.

If next formula C is the result of detachment from A and B, then

B =D[N(A), C]

B is called a result of substitution from A if B arises from A through
either:

A propositional variable in A is replaced by a formula distinct from A.

Or:

A function of type k is substituted for a free function variable of type k
in A (that stands never in an argument place), in a way that is easily des-
cribed precisely, i.e., more precisely, a formula F (distinct from A) in which
there is singled out a free variable of type k − 1 as the “empty argument
place.” (The substitution has to happen so that each elementary component
that occurs in xk is replaced by a formula that arises from F when the em-
pty argument places therein are substituted by the appropriate elementary
component.)

300R

The class of provable formulas is the smallest class, closed against the
operations of detachment, substitution, generalization, that contains the
axioms.

We call a formula without free variables a proposition, one with exactly
one variable of type 0 a class sign.

We go now into the exact definition of the concept “true proposition.”6

We call what are either natural numbers or sets of natural or sets of sets
of natural numbers and so on ad inf objects and to be precise of respective
types 0, 1, 2, . . . ad inf. We call finite series of objects (i.e., functions over initi-
al segments of the natural numbers) series of objects [Gegenstandsreihen].
For example, the symbols and formulas defined above are, in particular,
series of objects.

5 Were this proposition not taken among the axioms, it would obviously present in a
trivial way an undecidable problem.

6 The idea of such a definition has been expressed [the word “gleich” cancelled] inde-
pendently of me by Mr A. Tarski from Warsaw.
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We call an elementary formula any series of objects that consists either
of just one of the numbers 5, 6 (truth values), or of an object of type k and
one of type k− 1 , k > 1, or of an object of first type and a constant number
symbol.

We define the operations of bracketing of negation and disjunction ap-
plied to series of objects as above.

We understand by generalization of a series of objects A that which
results from A when an object of type k, k = 1, is replaced by a variable of
type k that does not occur in A, or a constant number symbol is replaced
by a variable of type 0, with the expression that arises “bracketed” and an
xk “set ahead.”

We call “formula” that which arises from the elementary formulas by
the repeated application of the operations N, D, G.

301L

All “propositions” are then, in particular, “formulas.”
We call an elementary formula true (W) if it consists of only the sign 5,

or of two classes of which the second is contained in the first, or of a number
symbol and a class of type 1 that contains the corresponding number.7 We
call it false in all other cases. One sees without further ado how one can now
define, through recursion relative to the operations N, D, G, the concept of
truth for arbitrary formulas and therefore also for propositions.8

Now one arrives also quite exactly at proving (through complete induc-
tion) that

Each provable proposition is true.

If one substitutes in a formula a for propositional variables truth values

7 [A double arrow indicates that the order of number symbol and class should be rever-
sed.]

8 [There is an superscript0 here that should indicate a footnote, then at the bottom of
the page a long note with a footnote sign in the form of a thick letter H, possibly drawn
over the0, that continues on the next page. The letter H connects to page 304L that has a
very similar text. Gödel’s footnote is: One could maintain that the above concept formation
“series of objects” is inadmissible because it goes against type theory. Against this it should
be remarked that 1. The question is always just of the putting together of finitely many
objects. 2. That one can define, quite in accordance with type theory, though not the concept
true, still the concept true and at most of level k (where “of level k” means that variables
higher than those of type k [don’t] occur in the proposition considered), and that this suffices
for the proof that follows.]
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[w1 . . . wl] and for all free function variables objects of the corresponding
types [added above: (xt1 . . . xtk)], with variables of type 0 not the objects
themselves, but the corresponding number symbols, one obtains always a
formula that we designate as follows:9

[a; xt1 . . . xtk w1 . . . wl ]

If a is especially a class sign and x y natural numbers, then [a; x] denotes a
quite determinate proposition.10

301R

We call an n-place relation R between objects of the types t1 . . . tn finitely
definable if there is a formula a such that

W[a; xt1 . . . xtn ] ∼ R(xt1 . . . xtn)

One is at once convinced of the following facts:

1·) The relation xn−1 ε xn is definable, f (x0) ε x1 as well.

2·) If R(x1 . . . xn) and S(x1 . . . xn) are definable, then also

a.) R(x1 . . . xn)

b.) R ∨ S

c.) (x1)R(x1 . . . xn)

It follows that all relations that are built up from the ε and the successor
relations through the use of −,∨, ( ), are finitely definable (these are even
precisely the ones that occur within our formal system when one interprets
it in terms of content).

Formulas are by our definition objects (namely relations between na-
tural numbers, i.e., classes of type 3 of natural numbers). Therefore many
of the concepts defined above that relate to formulas also clearly become
finitely definable.

302L

This holds especially for the concepts that concern merely the, so to say,
“figurative” properties of formulas.

9 [he objects that in [a; xt1 . . . xtk w1 . . . wl ] ]
10 [The y has been heavily crossed out to give [a; x], but the preceding y listed after x left

uncancelled, cf. page 302L.]
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One gets convinced especially that the following classes (and relations)
are finitely definable:

1. provable (Bew)

2. class sign

3. a is a symbol for the natural number z

4. b = [a; x] where a denotes a class sign11

We order now all symbols through a relation R, after increasing sum of
digits in numbers, and with the same sum lexicographically. It leads espe-
cially to an arrangement of the expressions for class signs [changed from:
relation signs], a counting of the class signs [changed from: relation signs]
(that is a one-to-one mapping to natural numbers). We designate this map-
ping by F so that F(n) is the n-th relation sign, and we note that y = F(n)
is a definable relation.

We define now a class K of natural numbers in the following way:

K(n) =
Def

Bew[F(n); n] 1·)

Because the concepts that occur in the definition of K are all definable, then
this holds of K as well, i.e., there is a class sign a so that

W[a; n] ∼ K(n)

302R

Because a itself is a class sign, it occurs in the counting F in a determi-
nate position (m), i.e.,

a = F(m)

We claim now that the proposition [a; m] is undecidable. For

I From Bew[a; m] follows

W[a; m] so K(m)

Since Bew[F(m); m] i.e.,

Bew[a; m]

So we arrive at a contradiction.
11 [Changed from b = [a; x y] as on page 301L.]
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If we, instead, assume that the negation of [a; m] is provable

II Bew N[a; m] then it follows that

W(N[a; m]) and from this that

W[a; m] so

K(n) i.e., Bew[F(m); m] or

Bew[a; m] and

W[a; m] that stands in contradiction with W[a; m].

The same contradiction follows already from W(N[a; m]). We have, then,
proved together with the undecidability of [a; m] also W[a; m], i.e., carried
through even a decision on that problem.12
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One can write the undecidable proposition [a; n], if requested, down
in extenso. For to obtain a, one needs only to write down the right side of
1 in the symbolism of the Principia Mathematica. To determine n, one has
just to ascertain that the class sign a in question is in our lexicographical
ordering.13

Only two properties of the formal system of the Principia were essenti-
ally used in the above proof, namely

1·) All provable propositions are true.

2·) The concept provable is finitely definable.

The above proof can therefore be applied especially to all systems that arise
from the Principia through the adjunction of new axioms that fulfil the two
conditions 1·), 2·). The finite definability of the class of provable formulas
states of course the same as that the class of axioms is finitely definable,
and it is naturally sufficient to require this only for the class of the newly
added axioms, i.e., we have:

[I] Each system that arises from the Principia through the adjunction of a class of
axioms that is finitely definable and contains no false propositions is not definite

12 Even the close connection of our proof to the Richard antinomy stands out. Also the
other epistemological antinomies can be reshaped into analogous proofs of the existence of
undecidable propositions.

13 [A seamine-like symbol in the margin indicates a continuation, given on page 305L.]
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with respect to decidability

In particular, all finite classes of axioms are naturally finitely definable, and
the same with those infinite ones that arise
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through the specification of finitely many axioms for all types. On the who-
le, all somewhat simple classes of axioms are finitely definable.14

As concerns the second of the conditions of the previous theorem, na-
mely that the system must not contain any false (provable) propositions,
it cannot be replaced by a requirement of freedom from contradiction, say.
For one obtains through the following procedure (V)15 a definable class of
axioms that complements the system S into a consistent one that is defini-
te with respect to decision: One adjoins the first undecidable proposition
of our lexicographical ordering, then the first proposition undecidable in
the extended system, etc, ad inf. This system must by the above necessarily
contain false propositions.

[Cancellation begins] One can, however, replace the condition that no
false propositions are contained by a weaker one that presents a [cancelled:
generalization] sharpening of the concept of freedom from contradiction,
namely the following:

A. If for a class sign a, [a; n] is provable for each n, then N{Genn[a; n]} shall
not be provable.

I.e., it shall not be the case that on the one hand, the property a can be
shown for each arbitrary number, on the other hand the existence of a num-
ber with the property non a.

A system that satisfies condition A is called ℵ0-consistent, and we have
then the theorem:

II Each system that arises through the adjunction of a definable class of
axioms to the system S and that is ℵ0-consistent

14 It follows at once from the above theorem that the class of true propositions is not
finitely definable. For otherwise one would obtain, through adjunction [?], a system definite
with respect to decision, in contradiction to the above theorem.

15 [Perhaps for the word Verfahren]
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is not definite with respect to decision.
It follows from this, incidentally, at once that there exist systems free

from contradiction (even extensions of system S) that, though they are free
from contradiction, are not ℵ0-consistent, for the system defined by proce-
dure V offers an example for that. [Cancellation ends. A footnote is indi-
cated, but it remains undecided which. The uncancelled text begins with
a big fat H-like symbol used for additions. It connects the paragraph that
follows to the very similar footnote on page 301L.]

The concept formation of “series of objects” depends essentially on col-
lecting together all the objects that occur in the system S (classes of finite
types) into a new domain of individuals, and on arriving at a new hierar-
chy of types for these, so the theory of types is continued into the transfinite
in a sense. To one who would not recognise this concept formation, let it be
remarked that, in accordance with the usual theory of types, even if it is not
the concept true that lets itself be defined, then instead “true and at most
of level n” can be defined for each n (in which a formula of level k means
that variables higher than type k don’t occur in the formula in question)
and that this would suffice for the proof at hand.
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[Cancellation begins] The following theorem holds, in addition, for proper-
ties definite with respect to decision:

If F is a class sign definite with respect to decision in a system Σ free from
contradiction and the proposition GenxF(x) [?] undecidable in Σ, then it is
true.

For if there exists an x such that W(F; x), then (F; x) would be prova-
ble, and consequently also the corresponding existential proposition (i.e.,
GenxF(x)).

The property that x is a proof figure for a, that occurs in our proof, is de-
finite with respect to decision, so from the undecidability of the proposition
follows: It holds for all x that they are not proof figures for a. [Cancellation
ends.]
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When one asks by what auxiliary means not contained in the system
S this decision was made possible, the answer can be only: through the
continuation into the transfinite of the theory of types, used essentially in
the extension of the definition of the concept true formula.

One can naturally extend the formalism of the Principia so that the trans-
finite types required for the proof of [a; m] occur in it. Still, one can construct
in a quite analogous way a problem unsolvable in the new system (S′),
through a lexicographical ordering of class symbols in S′. So one can never
come to a system definite with respect to decision along this way, some-
thing that hangs essentially together with the fact that there are nondenu-
merably many types, but only denumerably many basic signs in a closed
formal system.

[The seamine-symbol of page 303L is found here.] Consider that the un-
solvable problem [a; m] represents, interpreted in terms of content, a propo-
sition of a relatively simple logical structure. For it signifies (compare 1) the
inexistence of a proof figure for
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a formula F(n) that can be given concretely. The property to be a “proof
figure for F(n)” is clearly definite with respect to decision. The problem
has, then, the character of those like the ones of Goldbach or Fermat: Is
there a finite object (number, finite set of numbers, etc) with a property
given in advance that is definite with respect to decision?16

f x , (x) , − , ( ιx)

It(m, n)× ϕ(x) =

It(m, 0)× ϕ(x) = m

It(m, f n)× ϕ(x) = ϕ[It(m, n)× ϕ(x)]

f [( ιx) ϕ(x) ∼

ϕ[( ιx)ϕ(x)] ∨ [( ιx)ϕ(x) = 0 & (y)ϕ(y)]

& (y)(y < ( ιx)ϕ(x) → ϕ(y)]

16 [The formulas that follow relate to the developments from page 311R on, perhaps ad-
ded at some point as the next page 306L begins with the Königsberg lecture, omitted here.]
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311R17

Z-formula class of numbers

Z-relation class Z-proposition

W-Z-proposition

[Z-Rel, x y] Z-proposition

Bew Z-proposition

Finit. Def

F(n) the n-th class sign

312L [Calculations of binomial coefficients and similar, omitted here.]

312R

Bew[F(n), n] ∼ W(K; n)

K = F(k)

W[K; n] → Bew[F(n), n]

(1. Class of Bew formulas is definable ) B

2. F(n) is definable

3. [a, n] is definable

4. class is definable through formula K

5. Ψ(m, n) m is proof for formula [K; m], L

6. L is definite with respect to decision

7. K = F(k)

8. We of lower level [?] definable for each e We
9. E definite with respect to decision and of level n is definable Ee

17 [The first four lines of this page are the last lines of the Königsberg lecture: I have suc-
ceeded, instead, in showing that such a proof of completeness for the extended functional
calculus is impossible or in other words, that there are arithmetic problems that cannot be
solved by the logical means of the PM even if they can be expressed in this system. These
things are, though, still too little worked through to go into more closely here.]
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313L

e > St(K) Ee = E We = W

10·) [E, L] is provable

[W, [L; m, n]] → [B, [L; m, n]] is provable

11·) [W, Neg Ep(L; p, k)] → [K, k]

Neg[K, k]

Neg[K, k] → [B, [F(k), k]]

→ [B, [K, k]]

[(B, [K, k])] → [W, [K, k]]

313R

[K, k] ∼ Neg E1[L. k]

E1[L. k] → B{E1[L. k]}
——————————————————————————————

K = F(k)

W[K, n] ∼ EmBew[F(n), n]

K = Neg Ex1 L —–

Entsch L —–

W[L; m, n] → Bew[L; m, n] —–

Vor18 Bew[K; k]

Bew[Neg E1L; k]

314L

[Neg E1L; k] = Neg[Ex1L; k]

18 [Vor stands for Voraussetzung that is best translated as condition here. Gödel’s first
notes on logic in the notebook Übungsheft Logik of 1928–29 contain a system of linear natural
deduction in which temporary assumptions are indicated by Vor. The next page shows how
Gödel’s notation is used: The assumption indicated by Vor is accompanied by a vertical line
drawn until the assumption is closed. In the linear derivation that follows, the assumption
leads to a contradiction by which its negation is concluded and the assumption closed at
that point. For a detailed explanation, see my “Kurt Gödel’s first steps in logic,” 2018.]
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Vor W [Ex1L; k]
W Ex1[L; . k]
W [L; p k]
Bew [L; p k]
Bew(Ex1 [L; . k])
Bew[Ex1L; k]

Wid
W Ex1[L; k]

W(Neg[Ex1L; k])

W[K, k]

(Em)Bew [F(k), k]

(Em)Bew [K, k]

Bew [K, k]

314R

W F ∼W NegF

[NegF; k] = Neg[F, k]

[Ex1L; k] = Ex[L; . k]

Bew[F; n] → Bew(Ex F)

W(Ex F) ∼ (Em)W[F; m]

————–

Concepts between [?] numbers K, k, L
[ , ] , Wn , Bew , F(n)

Neg Exl Entschn

———————————————–

x numerical variable f ( ) successor − ∨ ( )

x ε ( ) the x [ϕ(1)& (n)ϕ(n) → ϕ(n + 1)] → (n)ϕ(n)

xy It( )mn a + ( f b) = f (a + b)

( ) f Neg ε It Id f n = 1 a + 1 = f a

a.b + 1 = ab + a
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315L

1. = one

2. = successor

3., 4. brackets open closed

5. negation

6. Od

7. Id

8. ε function

9. Gen

FinRe(x) x y It z Var(x)

n Glv x y F v w Zeich(x)

x Add y x Frva y Bed

Re(x) x Fre y

Nach f (x) x Op y

Neg(x) x Op y z

x Od y x Op u v w

x Gen y Form(x)

x ε Fy Satz(x)

x Id y x y Subst1 z 19

315R

x n St-Eins z

[z, n]1 [z, n]2
Gen1 y Gen2y . . .

———————————————————–

Satz(x) ∼ Form(x)& (Ey) y Frva x

Clsz(x) ∼ Form(x)& (E1y) y Frva x

19 [Originally x x Substy, z. For the index, see page 317L]
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Relz(x) ∼ Form(x)& (E2y) y Frva x

y Frva ∼ Var(y)& (En)[n 5 l(x))& y = n Glv x]

& (En)[n < l(x))& y = n Glv x &

& ((n + 1) Gl x = 9∨ . . . = 7∨ . . . = 8∨ (n + 2) Glx = 8)]

1 Pr x = y ε (Prim(y)& y/x) [Pr changed from Prz]

(n + 1) Pr x = y ε (Prim(y)& y > n Prz x & y/x)

n Glv x = y ε (x|y(n Prz x)y)

316L

Form(x) ∼ (Ey){x = l(y) Glv y &

(n)(n 5 l(y) → (n Glv y = 0∨Var(n Glv y)&

[(Epqr) p, q, r < n & (n Glv y Op p Glv y∨
∨ n Gly Op pq])

l(y) = x εx {x Gl y > 1 & (x + 1) Gl y = 1}
x u y = εz {l(z) = l(x) + l(y)& (n)[n 5 l(x) →
n Gl z = n Gl x & l(x) < n 5 l(z) →
n Gl z = (n− l(x)) Gl y]}
R(x) = 2x

Einkl(x) = R(3)u x u R(4)

Neg(x) = R(5)u Einkl(x)

Nach f (x) = R(2)u Einkl(x)

x Od y = Einkl(x)u Einkl(y)

x Gen y

316R

x ε Fy

x Id y

xy It zvw

x Geb y ∼ (En){n 5 l(y)& n Gl y = x}
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Var(x)& x FrVa y

x Fre y ∼ (Ez){z FrVx & z Geb y∨
z FrVy & z Geb x}

Zahl(x) ∼
Auss(x) ∼
x n StEins y = εz{(Euv) y = u u R(n Gl y)u v

& z = u u x u v}

317L

x y Substkz

x y Subst1z = z

x y Substk+1z = x εn[n Gl x y Substkz = y]

St Eins(xy Substkz)

Anz(y, zx) = εk [y ε xy Substkz]

xy Subst z = xy SubstAnz(y,z,x)z

[x, y] = y FrVa(x) Subst x

FrVa(x) = εy {y FrVa x}& (En)[n Gl x = y & ((Em)

m < n & m Gl x FrVa x)]}
Z(1) = 1

Z{n + 1} = Nach f (Z(n))

B(x) ∼ (n){n 5 l(x) → [Ax(n Gl x) ∨ (Epq)

p, q < n & Folg{p Gl x, q Gl x, n Gl x}]
∨ (Epx) p < n & x FrVa p Gl x & n = x Gen p Gl x]

317R

Folg(xyz) ∼ x = (Neg y)Od z

m Bew n ∼ B(m)& [l(m)]Gl m = n

—————————————————————

R(1xy) = εn {n Gl y = x & (m)[m > n → m Gl y = x]}
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R(k + 1, xy) = εn {n Gl y = x & n < R(kxy)

& (m){n < m < R(kxy) → m Gl y = x}
x y Subst1 z = z

x y Substk+1z = x, k StEins(xy Substkz)

Anz(yz) εk[(En)n < R(kyz)

& n Gl z = y]

———————————————————————————

Bed 1 = 1 ϕ(0) = 1

Bed Nach f x = f (Bed x) ϕ(n) = 0

Bed Neg x = ϕ Bed x

318L

Bed x Gen y = εz {(u)Bed[Z(u), x Subst y] = 1

& z = 1∨ (u)Bed[ ] = 1 & z = 2}
Bed x ε Fy = εz {(Bed(Z(z), x Subst y) = 1}

Bed(x y It u v 1) = Bed v

Bed(x y It u v Nach f k) = x, Z[Bed(x y It U v k)]

y, Z(k) Subst u

Gr1(x) ∼ (Ey){x = Z(y)}
Grn+1(x) ∼ (Ey) Op′(xy) ∨ (Euv)Op′(xuv)

∨ (Evwr) Op′x(vwr)
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3. The development of mathematics in the direction of greater ex-
actness

318R [The page is very faint at places.]

1. Definiteness with respect to decision

The development of mathematics in the direction of greater exactness has,
as is known, led in the end to great parts of mathematics being formalized
(as intended, even the whole of mathematics). The presentation to follow
treats throughout that kind of “formal deductive systems,” the concepts
of which we lay down as follows: For a deductive system to be given, the
following have to be settled:

1·) What signs (symbols) to count as basic signs?

2·) What combinations of basic signs represent meaningful propositi-
ons?

3·) What meaningful propositions to maintain as axioms? If they are
finitely many, then to be added through writing them down. If they are
infinitely many, then either through giving a [?] property that characterises
axioms, or through an axiom rule, i.e., a law that assigns to each natural
number a meaningful proposition, with the condition that those and only
those propositions that are associated to a number are claimed to hold as
axioms.

4·) By what rules can one conclude new propositions from the axioms
and propositions already proved (rules of inference)?

Delimitation of the concept of a deductive system: The deductive systems
to which the following treatise mainly relates are the following:

1·) The system of number theory exactly described on page [323R] (the
theory of entire numbers).

2·) The system of Principia Mathematica (Here we count among the axioms
the axiom of choice

319L [The page is quite weak.]

and the infinity axiom in the sharpened formulation: there exist exactly
denumerably many individuals). [added heavily: Hilb]
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3· The axiom system of von Neumann of set theory (essentially a further
development of Zermelo-Fraenkel’s)

The three deductive systems introduced stand to each other in an order of
one under the other in the sense that all that can be expressed (proved) in a
preceding system can also be expressed (proved) in the next one to follow,
but not the other way around.

One of the most important questions that can be posed in relation to a for-
mal system is the one about definiteness with respect to decision (comple-
teness in the sense of the Poles), i.e., the question whether each meaningful
proposition S from the discipline in question is decidable from the axioms,
i.e., either S or non-S provable by the rules of inference. In other words, is
each problem that is expressible in the formal system under question solva-
ble by the means contained? A very general result is derived in this respect
from which it follows that none of the three systems introduced is definite
with respect to decision,1 and that there are in them even undecidable [pro-
positions] of a relatively simple structure, namely, the following theorems
hold:

319R

1·) There exist in each of the systems S1, S2, S3 undecidable propositions,
and these can also be given, and even infinitely many independent ones in
the sense that from no subset of them can the rest be inferred.

2·) There exist properties of natural numbers F(n) definable in S3 (even
more so in each narrower system, e.g., S2) definite with respect to decision,2

for which neither (n)F(n) nor (En)F(n) is provable.

3·) There exist formulas of the narrower functional calculus for which, in
S2 S3 (in S1 no such occur), neither their general validity nor the existence
of a counterexample can be proved.3

1 Problem III as posed by Hilbert in his Bologna talk (cf. ) will be resolved. Problem
IV is already solved in a work of mine [Gödel 1930].

2 [There is a footnote the end of which is very faint: I.e., they are definable only through
recursions and one can therefore give procedures that allow to decide, for each number,
whether it has the property F or not.]

3 [A cancelled paragraph of seven lines with no conclusive sentence structure follows. It
mentions an ordinal Ω and ends with: One can complement Si into a complete system in ℵ
different ways.]
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It follows from 3 especially that one cannot solve the decision problem
of the narrower functional calculus even with the ways of inference of ab-
stract set theory known today.

320L

To be able to express the general result from which the theorems 1–3
follow, let the following be said in advance. The “propositions” “proofs”
etc of the deductive disciplines, conceived as concrete figures, are thereby
surveyable finite objects (finite series of symbols).4 One can, however, map
finite series of symbols in a unique and isomorphic way on finite series5

of natural numbers (by replacing the basic signs in a unique way through
numbers).

Concepts about series of numbers occur in formalized disciplines them-
selves (these meant in a contentful way). One can especially define, for ex-
ample, the concepts “meaningful proposition” and “axiom” of the system
S1 inside this system S1 (meant in a contentful way) and the analogue holds
for systems 2, 3.

The general result from which Theorem 1 follows is the following:

II If a system of deduction satisfies the conditions:6

1. The system contains number theory.

2. The class of “axioms” (and the “axiom” rules)7 are definable within
the system (this meant in a contentful way). (This condition will become in
particular fulfilled when there are only finitely many axioms at hand).

3. Each “formally provable proposition” is contentfully correct.8

4 [A footnote is squeezed at the bottom of the page: When the concepts “proposition”
“proof from axioms [?]” “consequence [?]” are to be conceived in a purely formal sense (as
properties and relations between series of signs), we put them in quotation marks.]

5 Natural series in an abstract sense, say, functions over segments of the number series of
natural numbers [Belegungen von Abschnitten der natürlichen Zahlenreihe mit natürlichen
Zahlen].

6 [An arrow indicates that the originally third condition has to be placed first. I have ad-
justed their numbering accordingly, to have a match with references to them on pages 322L
and 322R. The cancelled pages that follow contain different formulations of the conditions
and the result.]

7 [Added on the right page: This is especially always the case when the class of axioms
is finite.]

8 We give in what follows an exact definition for this concept, for all cases encountered.
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then there are undecidable propositions in it.

320R [cancelled]

321L [cancelled]

321R [cancelled]

322L

Theorems 2 and 3 result through a precise analysis of the proposition
that turned out to be undecidable and they hold for all formal systems that
satisfy the above conditions 1–3 and have axiom classes (and axiom rules)
that are definite with respect to decision (i.e., to be more precise, it must be
decidable by number-theoretic means whether a “proposition” is an “axi-
om” or not, and whether it is the n-th axiom).9

322R

The above theorem I remains still correct when one replaces condition
2 in it by the sharper one that the axiom rules be definable in the system of
number theory (S1), and condition 3 by the weaker one that each provable
proposition of number theory has to be contentfully correct.10 Even this is
of importance, because with this formalization, a contentful interpretation
is required only for the system S1. (For the existence of such for S2 and S3
is contested from different directions.)

So as not to let the main idea of the proof of theorem I disappear in the
details that follow, it is briefly detailed out here, [?] without the system S
satisfying the conditions of theorem I.

If one substitutes for a free numerical variable in a the symbol for the
number n, we denote that by [a; n].11 We think of the class signs from S (of
which there are only denumerably many) as lexicographically ordered and
call the n-th by F(n), the statement that a is provable in S briefly by Bew(a).

We define now a class K of natural numbers by the stipulation:

9 This can be expressed also as follows: the axioms must be definable by recursions in
system S1.

10 Even this condition can be further weakened (cf. p. .)
11 [This phrase is preceded by a similar inconclusive one that begins with: If in a meaning-

fully (i.e., by the rules of the grammar) built symbol from S with a free numerical variable]
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323L

K(n) = Bew(F(n), n) (1)

It results from conditions 2, 3 that the concepts Bew, the ordering relation
F, and the substitution relation [a; b] are definable12 in S, consequently also
the class K. We call ϕ the class sign that corresponds to K. ϕ occurs in the
counting F(n), i.e.,

ϕ = F(p) for a determinate p.

It follows from (1) that

K(p) ∼ Bew(F(p); p) i.e. (2)

K(p) ∼ Bew(ϕ; p) (3)

The claim is now that the proposition (ϕ; p) that occurs in S is undecidable.
Were it provable, then it would be by 3 also contentfully correct,

323R

i.e., K(p) would hold, i.e., because of (3), ϕ(p) would not be provable.
If instead the negation of [ϕ; p] were provable, it would also be correct,

so that even [ϕ; p] would be provable, which is impossible. A contradiction
follows, then, from both assumptions.

One recognises a close connection of this proof with the antinomy of
Richard. Even the other epistemological antinomies can be used for proofs
of undecidability.

2

We begin our presentation by describing the formal system of number theo-
ry that is fundamental for what is to follow.

[Added between lines: distinction between contentful and formal form]

Basic signs: 1, f ,∼,∨,=, Π, τ, It ( )

x y ... z ad inf

Execution:13 The mode of usage and translation of these signs is the follo-
wing:

12 [This word seems to be lightly cancelled but no alternative written.]
13 [These are the longhand letters Erl that should stand for Erledigung.]
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1 = number 1

f (x) = successor of

∼ = not

a ∨ b = a or b

x = y a = b between natural numbers

xτ F(x) the smallest natural number x for which F(x) holds

324L

[Cancelled: The concept for all is expressed through writing ahead the va-
riable in question, for example]

xΠF(x) F(x) holds for all x

The symbol It replaces the definition by recursion. It is used as in

x yIt{F(xy), m, n}
in which F(xy) denotes a two-place [cancelled: function] in the domain
of natural numbers the values of which are again natural numbers, m, n
instead natural numbers.

x yIt{F(xy), m, n}
denotes then the number that the function ϕ defined by the recursion

ϕ(1) = m
ϕ(k + 1) = F(k, ϕ(k))

}
assumes for the argument n. There can occur in F, m, n in addition arbitra-
rily many numerical parameters.

The basic signs x y... are called “variables.” We call a finite, completely
arbitrary series of basic signs “series of signs,” denoted by a, b, c etc.14 We
define in the domain of series of signs the following operations that give
always series of signs from series of signs.

324R

Bracketing of a, i.e., setting the sign ( ahead and the sign ) after.

14 Series of signs that consist of the same signs in the same arrangement are to be consi-
dered identical.
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O1(a) i.e., setting ahead the sign f , after a foregoing bracketing.

O2(a) i.e., setting ahead the sign ∼, after a foregoing bracketing.

O3(a b) (and O4(a b)) setting one after the other of the bracketed a and
bracketed b in the serial order a, b, with the writing between of the sign ∨
(and =, respectively).

O5
α(a) (and O6

αβ(a) ) (α β denote two different individual variables).

Bracketing of a and setting before it both of the signs α and Π in the
order (αΠ) (and both of the signs α τ in the order α, τ, respectively).

O7
αβ(a, b, c) (α β denote some variables).

Bracketing of a, of b, and of c and setting one after the other the bracke-
ted a, b, c (in this order), setting in front the signs α, β, It in the order α β It.

325L

We call Z-signs those series of signs for which there are others from
which they arise through the application of operations O1 O4 O6.

We call S-signs those series of signs for which there are others from
which they arise through the application of operations O2 3 5 7.15

We define now, for the six operations O1...O6, corresponding relations
between series of signs in the following way:

R1(a b) means a = O1(b) and b is a Z-sign

R2(a b) means a = O2(b) and b is an S-sign

R3(a b c) means a = O3(b c)

R4(a b c)

R5(a b) there is a variable such that R5 = xΠb b is an S-sign

325R

[Cancelled addition to the previous page]

————————————————————————————————–
R7(a b c d)

————————————————————————————————–
15 This division is justified by the fact that the operations O1... deliver as results numbers,

the latter [?] operations instead propositions.
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We define the class of formulas as the smallest class K of series of signs
that contains 1 and the variables and is closed with respect to the relations
R1...R7 (in the sense that the first member x of a relation is contained in K
if the following ones are).

The concept of a free variable is introduced in the usual way.
Formulas without free variables are called normal.
Formulas that are at the same time Z-signs are called number signs,

those that are at the same time S-signs are called proposition signs, nor-
mal proposition signs briefly meaningful propositions (or even more brief-
ly propositions). We call formulas that arise only through the application of
the operation O1 to 1 or to a variable simple (constant or variable) number
signs. Subst!

326L

We go now over to the definition of the class W of contentfully correct
propositions.

We declare, to start, through recursion the operation St that associates
to each formula a natural number (the level [Stufe] of this formula), in the
following way:

St(1) = 1

St(x1) = 1 for each variable xi

St(O2a) = St(a) + 1

St(O3ab) = St(O4ab) = 1+ max{St(a), St(b)}
St(O4a) = St(O5a) = 1 + St(a) 16

St(O7abc) = 1+ max{St(a), St(b), St(c)}
St(O1a) = St(a) when St(a) = 1

St(O1a) = 1 + St(a) when St(a) > 1

We achieve by the last two stipulations that each simple number sign has
level 1 (and there are indeed next to them no others of level 1).

Further, the [?] level of a formula does not change when one substitutes
for a free variable a constant number sign.

16 [The first term seems to relate to page 324R before changes were made there.]
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326R

We define now a relation Bed that associates to each normal formula a
natural number (its meaning [Bedeutung]), by recursion according to level:

1. Bed(1) = 1

Bed O1(a) = the number that follows Bed(a)

We shall designate by Z the operation, covered by Bed, that refers to simple
number sign indices,17 so that hereby Bed is defined for every formula of
level 1.18

2. Bed(O2a) = 1 when Bed(a) = 2 19

= 2 when Bed(a) = 1

3. Bed(O3ab) = 1 when Bed(a) = Bed(b)
in contrary case = 2

4. Bed O4(ab) = 1 when at least one of the two numbers Bed(a) Bed(b) = 1
otherwise = 2

327L

Bed O5
x a = 1 when for each simple constant number sign z

Bed[Subst(x
z )a] = 20 1 otherwise = 2

Bed O6
x a = the smallest number p for which Bed{Subst(x

Z(p))a} = 1

and equal to 1 when no such number p exists21

Bed O7
αβ(a b c) shall [be] the number m that the function ϕ(x) that sa-

tisfies the conditions

ϕ(1) = Bed(b)

ϕ(k + 1) = Bed{Subst(α β

Z(k) Z(ϕ(k)))a}

17 This presupposes that Bed( ) is unique for simple number signs, of which it is easy to
convince oneself.

18 [The following continuation is cancelled: The index of the meaning relation for simple
constant number signs will be denoted by Z, so Bed(Za) = a.]

19 The numbers 1, 2 represent here the two “truth values,” the values true and false.
20 Observe that St[Subst(x

z )a] = St(a) or < St O5
xa, which gives [?] to each simple number

sign z the possibility of recursive definition [?].
21 [The symbol p is a later addition, with Zp written above some other letter in the sub-

stitution.]
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assumes for the argument Bed(c) [changed from Bed(b)].
One can naturally turn the recursive definitions of St and Bed, through

known methods, without further ado into explicit definitions into which
we won’t go further here.

A proposition S is called contentfully correct when Bed(S) = 1.

327R [Two carefully drawn diagonal wavy lines cross this page]

dWe introduce the following abbreviations:

vu It( f (u))( f (x))(z) =
Df

x + z ∼ (a)

(∼ (a)) ∨ (b)
a → b

∼ (xΠ(∼ (x + z) = (y))) =
Df

y > x ∼ ((∼ a) ∨ (∼b))

We understand by a number-theoretic axiom each formula that comes out
from one of the following schemes:

(∼ (xΠ(Fx))) ∨ F(y)

F(xτ(Fxv)) ∨ [(xΠ)(∼Fx))& (xτ(Fx)) = e]

y < (xτ(Fx)) → ∼Fy

uv It{Fuvxe} = x

uv It{Fuvx f (y)} = F(y, uv It{Fuvxy})
(F(e)& xΠ(F(x) → F( f (x)))) → xΠF(x) c

328L [A page of seemingly unrelated computations, written upside down.]

328R

a is called an immediate consequence of b when a and b are proposition
signs and there is a variable v so that a = O4

vb.
Further, a is called an immediate consequence of b and c when all three

are proposition signs and when

b = O(Oc, a)

A proof is a finite series of formulas of which each is either an axiom or
an immediate consequence of a preceding one (or of two). A formula is cal-
led provable when it is the endformula of a proof. It is quite easy to show
exactly that each provable formula has the property by which the substitu-
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tion of simple number signs for the free variables that occur in it results in
a contentfully correct formula (then especially, every provable proposition
is contentfully correct). The proof proceeds by complete induction in which
one shows that each axiom is contentfully correct and that this property is
carried over to immediate consequences.

We map now the series of signs to finite sequences of natural numbers
through a unique relation R, by letting natural numbers correspond to the
basic signs in the following way:22

329L

[Lightly cancelled: We map the finite sequences of natural numbers further
into the natural numbers, through a relation S that is defined as follows:

The relation S holds between the sequence x1 . . . xn and the number y if and
only if

y = px1
1 px2

2 . . . pxn
n

Here the pi are the prime numbers contained in y and p1 < pi+1.]

[Clearly cancelled: For one can map finite sequences of natural numbers
on natural numbers themselves, by having each natural number of the se-
quence as an exponent in the representation as a product of powers of pri-
me numbers.]

In this way, to each natural number is assigned one and only one se-
quence of natural numbers, and one obtains in this way each finite se-
quence of natural numbers.

[Lightly cancelled: By this mapping of formulas to natural numbers, all
metamathematical concepts defined so far that concern the system S, go

22 [Omitted but with some space left to fill in, likely as on pp. 298R and 299L:

0 for 0

1 for successor

2 for negation

3, 4 for ( and )

5, 6 the truth values.

numbers = 7 divisible by exactly one prime number = propositional variables

numbers = 7 divisible by k + 2 different prime numbers = function variables of type k]
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over into properties and relations between natural numbers.]

329R

One can now place on the side of each of the metamathematical con-
cepts defined above a corresponding concept about natural numbers, by
the stipulation that this concept shall hold for numbers if and only if the
corresponding metamathematical concept applies to the (uniquely) corre-
sponding series of signs.23 The association between numbers and series of
signs is unique only in one direction and therefore one has still to adjoin in
the case of operations (for example ): one has to take always the smallest
number that is associated to the corresponding series of signs.

When in what follows expressions so far defined are used, the corre-
sponding concepts about natural numbers are meant all along. The contra-
ry case is indicated by setting a B ahead, for example (B formula).

We define now: a class of natural numbers is called definable if there is
a sentence-formula24 a in which at most the variable α is free, such that

(x)W{Subst(α
Zx)a} ∼ K(x)

330L

Analogous definitions hold for relations (with arbitrarily many places)
between natural numbers. We put up analogous definitions for operations
within the domain of natural numbers.

ϕ(x) is finitely definable when there exists a number formula a with
the variable v

(x){Bed Subst(v
x)a = ϕ(x)}

It is easy to prove exactly that [cancellation to page 330R begins] if the rela-
tions R(x1 . . . xn), S(x1 . . . xn) are finitely definable, then also

R ∨ S R & S R (x1)R(x1 . . . xn) (Ex1)R(x1 . . . xn)

Further also the n− 1 place operation:

The smallest x1 for which R(x1 . . . xn)

or 1 if there is no such x1.
23 The concepts Bed, St, Z, to begin with, already relate to natural numbers.
24 One can give Z definable classes, for example, the class of true propositions is one, as

will turn out later.
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It is equally easy to see that if the operations ϕ(x1 . . . xn), ψ(x1 . . . xm)
are definable, then also

ϕ(ψ(z1 . . . zm)x2 . . . xn)

Further, the relation

330R

ϕ(x1 . . . xn) = ψ(y1 . . . ym)

and finally those functions that satisfy the conditions:

f (1 x1 . . . xn) = ϕ(x1 . . . xn)

f (k + 1 x1 . . . xn) = g{x1 . . . xn k f (k x1 . . . xn)}
[cancellation from page 330L ends]

It is easy to prove exactly on the basis of the foregoing definitions:

S25

When the relations R( S

and the operations are Z definable, then

also the relations

and the operations

331L

and the operations that satisfy the conditions

One can now show, on the basis of this theorem as well as the fact that the
operation of successor (through B formula f (x) ) and the relation of iden-
tity (B formula (x) = (y) ) are definable, that all of the metamathematical
concepts introduced earlier (as listed above), (with the exception of Bed and

25 [Most likely by S is meant a theorem (Satz). The result is just indicated and space left
here and there so that it can be filled in later in the way suggested by the preceding long
cancelled passage that begins identically.]
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W), are Z definable. The proof procedure is in short: To show that a relati-
on (class, operation) is Z definable, one gives a series of relations (classes,
operations) ϕ1 ϕ2 . . . ϕn that begins with Iden and the successor operation
and ends with R, each ϕn of which arises from the earlier ones through
application of the logical operations mentioned in theorem .

331R

We assume for the following that the operations of addition a + b, mul-
tiplication a · b, and exponentiation ab are finitely definable. We step over
the proof of this.

In the following, a series of number classes (relations, operations)

F1 F2 . . . G1 . . .

is defined, and indeed defined in such a way each from the previous or the
operations (a + b a · b ab) that theorem VI is each time applicable (several
steps of theorem 6 are almost always put together into one here). By theo-
rem VI, all classes (all operations) defined in what follows are Z definable,
and among them occur in 6 all of the above listed.

332L [blank]

332R [The page begins halfway down]

We are now in the position to prove the following theorem:

The formal system T [cancelled: that contains Z] satisfies the following con-
ditions:

1. Each meaningful proposition in Z is also a meaningful proposition in
T.

2. The axiom class of T (i.e., more precisely that class of numbers that
arises from T after the replacement of the basic signs by numbers) is Z
definable.

3. Each proposition of Z provable in T is contentfully correct.

Then there exists a proposition A from Z for which neither A nor A is pro-
vable in T.
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333L

The system Z itself, especially, satisfies the above three conditions.

333R [blank]

334L

In the formalistic conception, one adds to the (meaningful) propositions
[Sätze] of mathematics transfinite statements [Aussagen] that have no mea-
ning in themselves, but serve only to make the system into a rounded one,
just as in geometry, one arrives at a rounded system through the introduc-
tion of points at infinity. This conception presupposes that when one adds
to the system S of meaningful propositions the system A of transfinite pro-
positions and then proves a proposition from S through a detour over pro-
positions from T [changed from A], this proposition is also correct, so that
no false (meaningful) propositions become provable through the addition
of transfinite axioms. Hilbert has replaced this requirement by the require-
ment of freedom from contradiction. One has so far paid little attention to
the fact that these two formulations are in no way equivalent.

334R

For if one has proved a meaningful proposition F in a formal system
A with the help of transfinite axioms, it follows just that non-F is not pro-
vable within the system A. Nevertheless, there could be a proof for non-F
that is contentfully correct [added above: satisfies all intuitionistic requi-
rements] but is not representable in system A. It would be, for example,
thinkable that one proves a proposition of the form (En)F(n) (where F is
a finite property of natural numbers) by the transfinite means of classical
mathematics, and could on the other hand have by contentful finite con-
sideration the insight that all numbers have the property non-F, and such
could be even thinkable had one proved the freedom from contradiction
of the contemporary system of classical mathematics. For it is altogether
not sure whether each contentful consideration can be represented in this
system (say ramified M [?])26

One can even give examples of propositions (in fact, of the kind of Fer-

26 [The parenthetical addition with “ramifiziert” written in ink could stand for a system
of ramified set theory.]
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mat) that one can recognise as correct through contentful consideration but
that are undecidable in the system of classical mathematics. Therefore, if
one adds the negation of such a proposition to the axioms of classical ma-
thematics (like PM), one obtains a system free from contradiction in which
a proposition is provable that one can recognise as false through unobjec-
tionable contentful considerations.

335L [This page contains seemingly unrelated computational formulas.]

335R [This page contains unsystematic recursion equations and attempts at
explicit definitions of functions, perhaps in relation to the remark on page
326L about turning recursive definitions into explicit ones.]

Φ(0, x) = Ψ(x)

Φ(n + 1, x) = M(n, ϕ(n, x) x)

ϕ(y, 0, x) ∼ ψ(y, x)

ϕ(y, n + 1, x) ∼
(Ez)µ(y, n, z, x)& ϕ(z, n, x)

(Eϕ){[ϕ(y, 0, x) ∼ ψ(y, x)&

(y)[y 5 n → ϕ(y, n + 1, x) ∼
(Ez)µ & ϕ ]}

ϕ(y, k, x) ∼ (E f ){Eind f &

[0 f y → ψ(y, x)]& (y, p, n)[n < k → n f y & (n + 1) f p

→ µ(p, n, y, x)]& k f y}
(x)x2(x) ∼ f (x) → (x)x2(x) (x)x2 ∼ f → x2 ∼ f

(Ex)x2(x) ∼ f (x) → x2(x) → f (x)& f (x + 1) → x2(x + 1)

(x)[ f (x) → f (x + 1)]
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4. The question whether each mathematical problem is solvable

339R1

The question whether each mathematical problem is solvable, i.e., whether
for each mathematical proposition A either A or non A is provable, lacked
so far an exact sense, as the words “mathematical proposition” and “mathe-
matically provable” had not been made precise. The divergence of opinion
of various mathematicians on this point is proved sufficiently by the dis-
cussions on the axiom of choice and the law of excluded middle. The way
to make precise the concepts of “mathematical proposition” “mathemati-
cal proof” that lies at the base of the following investigation is essentially
the one given in Principia Mathematica. More precisely: We take the Peano
axioms with the logic of the Principia as a superstructure. There are in the
Principia itself natural[ly?] unsolvable problems, specifically the question
of the number of individuals. As is known, all so far known theorems of
all mathematical disciplines can be proved in this system, with the excepti-
on of certain theorems of the abstract theory of sets that deal with “aleph”
cardinalities. So, the appearance is as if really all thinkable mathematical
proofs, at least the disciplines that don’t treat great cardinalities (number
theory, algebra, function theory), were contained in it, and nevertheless, as
will be shown, undecidable questions [cancelled: problems] can be given in
this system,2 and even problems of a relatively simple kind, namely ques-
tions about the existence and nonexistence of finite sequences of natural
numbers with properties given in advance (even definite with respect to
decision), and these problems are not decidable even with the help of the
axiom of choice.

340L

The method that leads to this result is most suited to generalization. It leads
especially to a situation in which one cannot make the Principia into a sys-
tem definite with respect to decision through the adjunction of finitely ma-
ny new axioms (and, say, such infinite ones that arise from it through type
elevation), and the same holds also for all somewhat “simple” infinite ex-

1 [Three additions are indicated at the facing left inside cover page 338, placed as inten-
ded in the following. These two pages have been exposed twice and appear therefore on
frames 338 and 339.]

2 I.e., problems that can be formalized in the Principia Mathematica but not solved.
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tensions of the Principia. Here one requires always of an extension that no
false propositions about natural numbers are provable in it, or that they are
free from contradiction in a sense to be given below. Proof methods [line
ends]

340R

We give next a precise metamathematical description of the formal sys-
tem for which we want to prove that there exist undecidable problems in
it, a system that coincides up to inessential points with the one of the Prin-
cipia Mathematica, as such a description is not to be found in the Principia
Mathematica itself. We make now, in advance, the following remarks about
it.

1. We dispense with the ramified theory of types, therefore allow that each
function of a suitable type can be substituted for a function variable, irre-
spective of whether there appear in it bound variables of higher types or
not. It is easy to convince oneself that this stipulation is equivalent with
keeping the ramified type theory and the reducibility axiom (that is the
standpoint assumed in the Principia).3

341L [cancelled]

341R

2. We dispense with the introduction of relational variables among the basic
signs: For one can conceive of each relation as a class of ordered pairs and
each ordered pair as a class of second type, e.g., a, b = [(a), (a, b)], so each
relation between individuals as a class of third type. It is easy to ascertain
that the analogue holds also for the relations of higher types and inhomo-
geneous relations. This arrangement built into the Principia Mathematica is,
incidentally, not at all essential for the proof that follows, but fairly said
serves to simplify it.

3. We take among the basic signs a relation f between individuals for which
we postulate the Peano axioms ( f as the successor relation). So, our system
is strictly speaking the axiom system of Peano with the logic of the Principia
Mathematica as a superstructure. Even this measure serves, fairly said, the
simplification of the proof.

3 [The end of this page and the next contain the cancelled item 2, rewritten on page
341R.]
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4. We add as an axiom the proposition that all functions are extensional (ex-
act formula see page ), because otherwise the question whether all func-
tions are extensional would obviously be in a trivial way an unsolvable
problem.

342L

The formal system laid as a foundation presents itself thereafter as follows:

1. Basic signs
∨ or4 ∼ negation

0 = zero f = successor used in the combination f x, the number
that follows x

p1 p2 . . . pk . . . ad inf propositional variables

x0
1 x0

2 . . . x0
k . . . ad inf individual variables

x1
1 . . . . . . x1

k . . . variables for classes of the first level,
simple execution

( )5 brackets

Symbols for or and generalization are superfluous, because they are defi-
ned from these in the known way through abbreviation;

2.
We understand by a “series of signs” each finite series that consists of the

above basic signs.
We understand by a “sum of two series of signs” a b the series of signs that

arises

342R

when first a and then b immediately following is written down.6

We understand by “an f series” a series of signs that consists of only
signs f .

A “constant number symbol” is a sum of an f series and of 0.

4 [This connective has been cancelled.]
5 [These have been cancelled.]
6 [The next three lines are cancelled and the rest as well as pages 343L and 343R crossed

over by a diagonal line, but the latter are included here for a better understanding of what
follows.]
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A “variable number symbol” is a sum of an f series and a variable of type
0.

An “elementary formula” is the sum of a variable of level k + 1 and a
variable of level k or of a variable of level 1 and a number symbol {so we
express the ε relation by the simple writing of one next to the other}, or a
propositional variable.

We understand by “negation of the series of signs a” that which arises from
a when one brackets it (i.e., sets a sign ( ahead and a sign ) after) and then
the sign ∼ in front. Neg a = ∼ (a)

343L

We understand by a “disjunction of the series of signs a and b” the series of
signs that arises when one brackets a and b, then adds them up, Disj(ab) =
(a)(b)

We understand by “the generalization of the series of signs a by means of the
variable z” the sum of z and the bracketed series of signs a.

Gen(za) = z(a)

A variable “x is a bound variable of the series of signs a” when it is at so-
me place in a between two bracket signs, or at the beginning and before a
bracket.

“x is free variable in a” means that x occurs in a but is not a bound varia-
ble in a.

We say of a generalization “a is an allowed generalization of b,” the mea-
ning being that the generalization variable occurs in a as a free variable.

We call c an allowed disjunction of a and b when c is a disjunction of a
and b and when none of the bound variables from a occur in b and none of
the bound variables from b in a (disjoint formulas!).

A formula. We can now define the concept “formula.” The class of for-
mulas is the smallest set of series of signs that contains all the elementary
formulas and is closed with respect to negation, allowed disjunction, and
allowed generalization.
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343R

We have achieved by our stipulation on allowed disjunction especially
that different bound variables, i.e., ones the scopes of which are different,
are designated differently in each formula, and that no free variable is equal
to a bound one.

We say of a formula a that it arises through k-fold type elevation from b if it
arises so that one replaces in b each variable of type m by one of type m + k,
and to be precise different by different, and propositional variables again
by propositional variables (for type elevation to be possible, the sign f must
not occur in b). We say in place of 0-fold type elevation also congruence.

To be able to write down the axioms more easily, we introduce the fol-
lowing abbreviations:

344L

(∼ (a))(b) a → b

in place of 7 x1 x1x0
•

∼ ((∼ (a))(∼ (b)))
•

a & b

a ≡ b

x1(x1x0
1 ≡ x1x0

2) x0
1 = x0

2

1. Propositional axioms 2. Functional axioms

3. Peano axioms 4. Extensionality axiom

5. Axiom of choice

∼ ( f x = 0)

( f x = f y) → (x = y)

((x10)& (x((x1x) → (x1 f x)))) → (x1y)

(x((x1x) ≡ (y1x))) → (x1 = y1)

344R

Symbols of the form

7 [This seems incomplete.]
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0 , f 0 , f f 0 , f f f 0 etc

and those that emerge from these when one replaces 0 by a variable of type
0 are called number symbols and counted together with the variables of type
0 as objects of type 0.

We call an elementary formula a combination of signs that arises through
the replacement of a place holder in a variable of type k + 1 by an object
of type k. That which appears through a finite repetition of the operations
( ) ∨ − on elementary formulas is called a formula. A formula without
propositional and free variables is called a proposition.

We designate as axioms the following formulas:

I Propositional axioms

Functional axioms

II 1. (x)x1(x) → x1(y) and all those that arise from type elevation
and renaming of variables

2. (x) A ∨ x1(x) → A ∨ (x)x1(x)

Extensionality axiom

III (x)[x1(x) ∼ y1(x)] → x1 = y1 and type elevation

Choice

IV {(x1)[x2(x1) → (Ex)x1(x)]&

(x1y1)[x2(x1)& x2(y1) → (Ex)x1(x)& y1(x)]}
→ (Ex1)[(y1)(x2(y1) → (Ex)(y){y1(x)& x1(x) ∼ x = y})]

345L

Peano

V. 1. f x = 0

2. f x = f y → x = y

3. x1(0)& (x)[x1(x) → x1 f x] → (x)x1(x)

————————————————————————————————–

Rules of inference

1. Rule of detachment: from A → B and A, B can be inferred.
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2. In whatever expression A, any expression distinct from A can be sub-
stituted for a propositional variable.

3. If A is an expression and if the free variable xk of level k occurs nowhe-
re in A as an argument, i.e., xk must stand in the first place in all elementary
components in which it occurs, and if B is any expression distinct from A
that contains the free variable yk−1 of level k− 1, then it is allowed to put B
in the place of all the elementary components that contain xk and occur in
A, wherein the variable yk−1 must be replaced each time by the respective
argument of xk.

4. Arbitrary number symbols can be substituted for variables of type 0.

5. If A contains the free variable x (of an arbitrary type), then (x)A(x)
is allowed 8

6. ιdenotes the variables.

345R

to be inferred from it.
A formula is called provable if it can be obtained from the axioms by

finitely many applications of the rules of inference, and the theorem to be
justified can itself be expressed in the following way: There are propositions
for which neither A nor A is provable.

In 3, we have to assume about xk that it does not occur in any argument
place, because no formula in our sense would result through the substituti-
on of an expression in an argument place. This, however, means altogether
no restriction in coverage for axiom 3, for it is easy to convince oneself that
all propositions about classes of the Principia that are provable with the help
of the reducibility axiom, follow from our axioms I–IV. The same holds for
the propositions about relations, as soon as these are introduced in way
given above, page .

8 [Point 6 has been squeezed at the bottom of the page after the last words of point 5
had already been continued on the next page. The first sign looks just like the description
operator ι.]
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346L 9 [Anzeiger manuscript, first page]

If one builds on top of the Peano axioms the logic of the Principia Mathe-
matica (numbers as individuals), with the axiom of choice for all types, a
formal system S arises for which the following theorems hold:

I·) The system S is not definite with respect to decision i.e., there exist wi-
thin it propositions (such can even be given) for which neither A nor A
is provable, namely, there exist some undecidable problems of the simple
structure (Ex)F(x), in which x runs over the natural numbers and F is a
property of natural numbers definite with respect to decision. Problems of
this kind [?] their unsolvability at the same resolved (in a metamathemati-
cal way).

II·) Even if one allows all the logical means of the P.M. (especially the ex-
tended functional calculus and the axiom of choice) in metamathematics,
there is no

346R [Anzeiger manuscript, second page]

proof of freedom from contradiction for system S (even less so if the me-
thods of proof are somehow restricted). So, a proof of freedom from con-
tradiction for the system S can be carried through only by means that lie
beyond the system S, and the case is analogous also for other formal sys-
tems, say Zermelo Fraenkel’s axiom system of set theory.

3·)10 The Roman I can be sharpened in the sense that the addition of finitely
many axioms to the system S (or infinitely many ones that come out from
them through “type elevation”) does not lead to a system definite with re-
spect to decision, as soon as the extended system is ℵ0-consistent.

Here a system is called ℵ0-consistent, when for no property of natural
numbers F, F(1) F(2) −−− F(n) ad inf. are at the same time provable,
and instead (Ex)F(x) { there are extensions of the system that are free
from contradiction but not ℵ0-consistent}.
4·) I continues to hold also for all extensions of the system S through infi-

9[The writing on this page is weak, as if some lines had been erased. The typewritten
version follows closely these two handwritten pages and provided decisive help in their
reading.]

10 [Results I and II on the previous page had first been 1 and 2, then changed, but not 3
and 4 on this page.]
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nitely many axioms as soon as the class of axioms K added is definite with
respect to decision. It is metamathematically decidable for each formula
if it is an axiom or not (here again, the logical means of the Principia are
assumed in metamathematics).

347L [A blank page.]

347R

We have so far defined a series of concepts that relate to series of signs,
without encountering the question of what these signs (and series of signs)
actually are (whether formal or physical objects etc). [Cancelled: If an ans-
wer had to be given to that, it could very well not be other than that the
signs are physical objects. Hereby metamathematics would become a part
of physics and even that is acceptable. The solution to this difficulty lies
at hand:] It is obviously quite indifferent for metamathematical investiga-
tions what one lays down as signs to serve as a basis. The question is only
about their equality and difference and their arrangement in the formulas,
but even this arrangement need not be in any way anything spatial. We
can take, for example, without further ado as signs natural numbers and as
series of signs finite sequences of natural numbers, i.e., number-theoretic
functions defined on segments of the number series. The above definitions
are, then, to be completed with something like the following ones:

basic sign = natural number

propositional variable = number that is divisible by exactly one prime
number

variable of level k number that is divisible by exactly k + 2 prime
numbers

formula = finite sequence of natural numbers (that satisfies certain
conditions)

When one imagines further the sign 0 to be replaced through the number 0,
f through 1, the brackets through 4 5, [cancelled but intermittently under-
lined for emphasis: one sees easily how all of the concepts defined above

348L

go over into properties and relations of natural numbers.]
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Formulas are, then, from this point of view finite sequences of num-
bers with certain properties and metamathematics a science that treats cer-
tain properties of finite sequences of numbers. We gain two possibilities
through this conception.

1. It clearly follows that metamathematics holds in no way any excep-
tional position against other mathematical disciplines, for it treats as said
of finite sequences of numbers and these appear in the most different parts
of mathematics. It follows especially that no restrictions whatsoever are re-
quired in the proof methods for the proofs of metamathematical theorems.
I.e., one can apply all theorems and methods of analysis and set theory etc
in metamathematical proofs. A proof of a metamathematical theorem thus
conducted is comparable to proofs in analytical number theory. Here as
well as there, simple combinatorial results (theorems about finite numbers
or

348R

finite sequences of numbers) are won by higher auxiliary means. (It is ano-
ther question to what extent such a procedure is justified on the whole (in
analytical number theory as well as metamathematics), one that hangs to-
gether with the proof of freedom from contradiction and belongs to foun-
dational research that is to be sharply separated from metamathematics).

2. From our conception results the strange state of affairs that the meta-
mathematical theorems (or at least a part of them), because they are theo-
rems about sequences of numbers, can be expressed in the system itself,
the metamathematics of which one exercises (in the case at hand, Principia
Mathematica). It is to be expected from the outset that such expressibility
must yield interesting results, and in fact, the whole of the proof to follow
depends on it.

349L

We begin now the systematic presentation of the proof and take here
the point of view by which combinations of signs are finite sequences of
natural numbers. Hereby all metamathematical concepts explained in the
following receive a completely different sense from the one one is otherwise
used to have with them. The reader is begged to forget this usual sense
as far as possible and instead to understand by these concepts solely that
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which is expressed in the definitions that follow.

Definition 1.∗ x3 is a series of signs =
Df

x3 is a function over a segment of the series of natural numbers to natu-
ral numbers = 0. 11

We designate by x3(n) the number that stands in the n-th place. We desi-
gnate a number series of length 1 for which x3(1) = a with a. We designate
series of numbers by x3, y3, numbers by x, y.

Definition 2.∗ x is the length of the series of signs x3 =
x is the greatest natural number for which there is still assigned a num-
ber in x3 l(x3).

Definition 3.× x3 is the sum of series of signs y3 and z3 = x3 = y3 + z3

x3(k) = y3(k) for k 5 l(y3)

x3(k) = z3(k) for k > l(y3), k 5 l(y3) + l(z3)12

Definition 4. x3 is a propositional variable =

349R

[cancelled: x3 has length 1 and x3(1) is a number] > [positive] that is
divisible by exactly one prime number.

Definition 5. x3 is a variable of level k = (k = 0)
is > [positive] and divisible by exactly k + 2 prime numbers.

Definition 5a. x3 is a variable x3 > and by at least13

Definition 6. “x3 is a constant number symbol” =
let n be the length of x3 then the following must hold:
x3(k) = 1 for k < n x3(n) = 0 14

Especially the series that consists of just 0.

Definition 7. “x3 designates the number x” is a symbol for number x

11 [The German is: x3 ist eine Belegung eines Abschnittes der Reihe der natürlichen Zah-
len mit Zahlen = 0.]

12 [The original has x3(k) = z3(k−m), from an unfinished cancellation with m the length
of y3 and x3(k) = z3(k−m) for k > m.]

13 [This definition has been squeezed between the lines and the last words “2 prime num-
bers” cancelled.]

14 [Original has as a leftover from a second cancelled alternative: either = 0.]
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x3 is a constant number symbol l(x3) = x + 1

Definition 8. “x3 is a variable number symbol”
x3(k) = 1 for k < l(x3)
x3(k) = divisible by exactly two prime numbers for k = l(x3)

Every variable of type 0 is in particular a variable number symbol.

“x3 is a number symbol” = x3 is a constant or variable number symbol.
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Definition 9. We designate the sequence of signs 2, 3, and 4 as, respectively,
negation symbol, open bracket sign, closed bracket sign.

Definition 10. x3 is a negation of y3 x3 = N(y3)

x3 = 2 u 3 u y3 u 4

[Cancelled: Definition 11. x3 is a disjunction of y3 and z3 x3 = y3Oz3

x3 = 3 u y3 u 4 u 3 u z3 u 4 ]

Definition 10.
“x3 is an elementary formula”
x3 is either a sum of a variable of level k + 1 and level k or
of a variable of level k and a number symbol.

We designate in what follows all by simply setting the corresponding va-
riable before the bracketed formula, the scope of which it is. Therefore we
can define bound variables simply by their standing either at the head of a
formula or between two brackets.

Definition 11. “x is a bound variable in x3”

there exists n so that x = x3(n) and x3(n− 1) as well as x3(n + 1) is a
bracket sign

or x = x3(1) and x3(2) is a bracket sign.
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Definition 12. “x is a free variable of x3”
x occurs in x3 but is not a bound variable of x3.

Definition 13. “x3 is distinct from y3”
no bound variable of y3 is free in x3 and no bound variable from x3 is
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free in y3.

Definition 14. “x3 is is the disjunction of y3 and z3”

x3 = 3 u y3 u 4 u 3 u z3 u 4

and y3 is disjoint from z3.

Definition 15. y3 is the generalization of x3 with respect to the variable x

x a free variable in x3 (not a propositional variable) and

y3 =
−
x u 3 u x3 u 4

Definition 16.—————– y3 is generalization of x3

there exists a variable such that y3 is a generalization of x3 in relation
to this variable.

Definition 16. “y3 is a formula (or expression)”

x3 belongs to the smallest set of series of signs that contains the
elementary formulas and is closed
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against negation, generalization, and disjunction.

We have achieved through our arrangement about the disjointness of
formulas, the disjunction of which is built, that the scopes of bound va-
riables identically denoted never overlap, and that no bound variable is
designated by a free one equal to it.

Definition 17. x3 is a proposition x3 is a formula without free variables.

Definition 18. x3 is a two-place relation sign

it contains exactly two different free variables that are both of type 0.

We go now over to the exact definition of the class of formulas one
usually describes with the words “true proposition,” by which one wants
to express that the thought expressed through it is true. It is one of the
cardinal points of our proof that this concept is amenable to an exact ma-
thematical formulation in which one doesn’t have to invoke in any way a
mysterious “meaning relation,” but uses only concepts otherwise usual in
mathematics. We introduce to this purpose the concept:

Definition 19. “Series of sets.” We understand by such a function over a
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segment of the series of natural numbers to natural numbers, or of sets of
numbers, or of sets of sets of numbers and so on, whereby sets of arbitrarily
high types are allowed to appear, and in the series of sets also
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sets of different types can occur. The series of signs defined above are con-
tained therein as special cases. This concept formation falls beyond the Rus-
sellian type theory by the consideration that there occur only finitely many
sets in each such series, and therefore also a finite highest type must occur,
whereas one could hardly object anything to that.

One can explain just as above the sum of two series of sets.

Definition 20. We shall call a series of sets f of length 1 for which f (1)
represents a class of type k an “element of type k.”

Definition 21. We understand by an “elementary formula” a series of sets
that is either the sum of an element of type k + 1 and one of k or the
sum of an element of type 1 and a constant number symbol or finally
identical with 5 or 6 (the numerical values 5 and 6 represent for us the
truth values true and false).

Definition 22. We understand by the negation of formula f the formula

y = 2 u 3 u f u 4

Definition 23. We understand by the disjunction of the formulas f and g the
formula

h = 3 u f u 4 u 3 u g u 4
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Definition 24. We understand by the generalization of the series of sets f
the following:

One replaces a set of type k that occurs in f by a variable of type k that
does not occur in it (= number that is divisible by k + 2 prime numbers).
One builds from the formula f ′ thus obtained

g = xk u 3 u f ′ u 4

g is then called a generalization of f .
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Definition 26.15 We understand by a “formula” a series of sets that occurs
in the smallest set of series of sets that contains the elementary formulas
and is closed with respect to negation, disjunction, and generalization.

Each formula is either an elementary formula, or it is a negation or ge-
neralization or disjunction of other such formulas, and it is in fact easy to
convince oneself that only one of the four mentioned cases can enter in each
case, and that in the case of a formula that is the disjunction of two others,
also the members of the disjunction are uniquely determined. This follows
from the way we use the bracket symbols. We call the number of bracket
symbols divided by two the grade of a formula.

Definition 27.16 We associate now to each
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formula its truth [value], by the use of induction after the grade.

1·) An elementary formula [written above: (formula of grade 0)] shall have
truth value true when and only when (cf. Definition 21):

a. The class of level k is contained in one of level k + 1.

b. The number designated by a number symbol (cf. Definition ) is
contained in a class of level 1 that stands in front of it.

c.) When it is identical with 5;

the truth value false in all other cases.

2·) A formula f of grade k + 1 is either a disjunction of two formulas of
lower grade, or a negation, or a generalization of a formula of lower grade.
The truth value of f is determined in the usual way in the first two cases.
In the second [third], f shall receive the truth value true if and only if all
formulas from which it arises through generalization have the truth value
true, in other cases the truth value false. By the remark made above, hereby
every formula is assigned a truth value in a unique way.

One can make from each formula a form in which classes of correspon-
ding types are substituted for free variables and truth values for proposi-
tional variables (i.e., the symbols 5, 6). Each proposition, especially,

15 [There is no definition 25.]
16 [This has been added later in the text that continues from the previous sentence.]
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is itself already a form. We define now:

A formula has the truth value true if and only if each form that arises
through substitution has the truth value true.

We go now over into the definition of the concept provable.

Definition. x3 is the result of detachment from y3 and z3 =

z3 = N(y3)Ox3

Definition. x3 is a ground axiom those given below

15 formulas that one obtains from the axioms given above on page
when one replaces the letters by numbers in corresponding ways.

Definition. x3 is k-fold type elevation of y3

x3 arises from y3 when one replaces every variable of type m that oc-
curs in it by one of type m + k (the sign 1 must naturally not occur in
y3).17

l(x3) = l(y3)

x3(n) = x3(m) ∼ y3(n) = y3(m)

If x3(n) not a variable, then x3(n) = y3(n)

If x3(n) propositional variable, then also y3(n) propositional variable

If x3(n) variable of type s, then y3(n) variable of type s + k

Definition. x3 is an axiom shall mean

x3 is a ground axiom or a type elevation of a ground axiom.
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Definition. x3 is a subformula of y3
18

(En) x3(k) = y3(k + n)

1 5 k 5 l(x3)

17 [This definition is put in brackets and a changed one as given here written on the next
page.]

18 [Added in margin: An elementary formula that is a subformula of x3 is called an ele-
mentary component of x3.]
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Definition. We call a set to which belong all and only the subformulas of
x3 the subformula set of x3.

Definition. Let S be a function always defined for all elementary components
of x3 such that S(x3) is [cancelled: a formula distinct from x3.]

We define y3 [cancelled: arises through substitution] = S | (from x3):

If there is a mapping F from the subformula set of x3 to a set B of series of
signs
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such that

1. For elementary components of ei in x3:

F(ei) = S(ei)

2. F maintains the relations of negation, disjunction, and generalizati-
on.

That is: From m = N(k) must follow

F(m) = N[F(k)]

and from m = u Gen F(k)

F(m) = u Gen F(k)

and analogously for disjunction

3. F(x3) = y3

One sees easily that there is always one and just one y3 of the required
property.

Definition. Let x3 be an elementary formula, v a variable that occurs in it,
and A an arbitrary series of signs. Then we designate by [incomplete].

Since v stands always in the first or last place, we have

x3 = v u x′3 x′3 = x3 − v

or x3 = x′3 u v
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We designate now by “x3 v|A” the series of signs

y4 = A u x′3
or = x′3 u A

Let x3 be a formula wherein the free variable v occurs. We designate now
by x3; v|A that [phrase seemingly incomplete]

Definition. S|(x3)

Here S(u3) = u3 for all elementary components from x3 that do not
contain v.

S(u3) = u3 v|A for all elementary components from x3 that
contain v.

Let x3 be a formula and v a variable that stands in the first place in
each elementary component of x3 in which it occurs. Let further A be an
expression and w a free variable that occurs in A, of a level one less than
that of v.

Definition. Then we designate by x3; v|A(v)

S|(x3) where
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S(u3) = u3 for all elementary components from x3 that do not contain v

S(u3) = A w|u3 − v for those elementary components from x3 that
contain v

Definition. y3 is called a substitution result of x3

when y3 and x3 are formulas and there is a formula z3 distinct from x3
such that there exist a propositional variable u, or variables vk, vk−1 of
types k and k− 1 such that

y3 = x3; u|z3

or y3 = x3; vk|z3(vk−1)

Definition. We can now define the class of provable formulas as the smallest
class of formulas that contains the axioms and is closed against the
relations of detachment, generalization, and result of substitution.
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It is easy to convince oneself by complete induction of the correctness
of the theorem:

Each provable formula is true.

For obviously the axioms are true formulas and this property is not de-
stroyed by the rules of inference. This theorem can be proved, though, only
with the help of the axiom of choice (the proposition that the formula of the
axiom of choice is true means obviously the same as the axiom of choice).

Definition. The symbol (a, α1 α2...αk) shall have a sense when and only
when a is a formula with exactly k free variables. The αi are allowed clas-
ses that coincide respectively with the types of the free variables of a, under
the condition that the above symbol means those formulas that arise from a
when the free variables therein are replaced by classes αi (in the case of clas-
ses of type 0 [added above: i.e., numbers] by their symbols in accordance
with definition ), and the greater variable (for variables are numbers) by
a class with a greater index.

Definition. A k-place relation between allowed classes of respective types
t1...tk shall be called finitely definable when there exists a formula a with
exactly k free variables of the types t1...tk such that

W(a; xt1 ... xtk) ∼ R(x1... xk)

in which xi is a class of type t.
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It is easy to convince oneself that if two relations R1 and R2 are defi-
nable (through a1 and a2), then also R1 ∨ R2 is definable through a1 O a2,
and the same with the negations of R1 and R2 through N(a1) and N(a2),
respectively. It holds further that when the n-place relation R(x1... xn) is
defined, then also the n−1 -place relation (x1)R(x1... xn), and the relation is
further definable that holds between a class of type k + 1 and one of type
k when the second is an element of the first one. From this it follows that
every relation is definable that is built by the operations of ( ) ∨ − from
the ε-relations (of different types). If one goes through the above definition,
one recognises especially that the class of provable formulas is definable.
Formulas are here conceived as relations between two natural numbers, so
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as classes of level 3 by a stipulation made above (cf. ). One is convinced
by complete induction, without further ado, of the theorem: Each provable
formula is true.

We call the greatest number that occurs in a series of signs a the height of
a ( h(a) ) and define an order relation [vor, before] for series of signs through
the stipulation:
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Definition. x3 vor y3 when [?]

either h(x3) + l(x3) < h(y3) + l(y3)

or h(x3) + l(x3) = h(y3) + l(y3)

and l(x3) < l(y3)

or when l(x3) = l(y3) h(x3) = h(y3)

and when x3(m) < y3(m) for the smallest m

for which x3(m) 6= y3(m)

We define further a counting [Zählung] of all of the relation signs through
the stipulation:

Definition. n Zähl x3 =
Df

n− 1 is the cardinal number of the class of relation signs y3 for which
y3 vor x3.

It is easy to convince oneself that the relation n Zähl x3 is definable.

Definition. Now a relation R(ik) between natural numbers becomes as fol-
lows:
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R(nk) = Bew{[( ιx3)nZx3]; n, 0}
The relation b = (a; ik) in which b denotes a proposition, a a relation sign,
and i, k natural numbers, is obviously definable, therefore also the relation
R(ik), because it is built up from the concepts Bew, xZx3, and (a; i, k) = b
with the help of the logical operations. So there is a relation sign a such that

W(a; ni) ∼ Bew[ ]
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a occurs as a relation sign in the counting Z, say at the m-th place,

i.e., mZa

We form the following proposition (a; m, 0) and claim that it is undeci-
dable, for assuming Bew(a; m, 0) we would also have

W(a; m, 0)

therefore R(m, 0), i.e.,
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Bew(Z(m); m, 0) or

Bew(a; m, 0) i.e., we are at a contradiction.

From BewN(a; m, 0) follows analogously

Bew(a; m, 0)

so again a contradiction, for when (a; m, 0) as well as N(a; m, 0) are both
provable, both should be also true, impossible by the definition of the con-
cept “true.” So we have shown that the proposition

(a; m, 0)

is undecidable. One can give the formula a in extenso. For that, one needs to
write down the definition of R(ik) in the symbols of the Principia Mathema-
tica. Even the number m can be determined by definition. So one can even
write down (a; m, 0) in extenso.
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5. A proof in broad outline will be sketched

358L

In what follows, a proof in broad outline will be sketched by which the
Peano axioms, together with the logic of the Principia Mathematica (with
natural numbers as individuals), do not form a system definite with respect
to decision, not even when the axiom of choice is included, i.e., that there
exist unsolvable problems therein, and even of a relatively simple structure.

We replace the basic signs of the formal system S characterised {logical
constants, variables of different types, successor, bracket symbols} by na-
tural numbers in a one-to-one way, and correspondingly the formulas of
system S through finite sequences of natural numbers. Thereby many me-
tamathematical propositions about system S become (as they are indeed
propositions about finite sequences of numbers) expressible within the sys-
tem, something that is essential for the proof that follows.

Concepts used in what follows:

1. “Z-formula” = finite sequence of numbers that corresponds to a formula
of system S

2. “Z-proposition” = “Z-formula” without free variables

3. “true Z-proposition” = “proposition” of the kind that the associated
sentence of system S is true

4. “class sign” = “formula” with one free individual variable

5. F(n) We think of the class signs as lexicographically ordered and de-
note the n-th by F(n)

How this ordering is taken makes no difference, just that one ordering is to
be kept once and for all.
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6. Neg of a “formula” f [N( f )] = the “formula” that arises from f through
the setting ahead of the number that corresponds to the negation sign

7. “proved” is what a “formula” is called if it follows by the rules of
inference from the axioms of system S

8. Let a stand for a class sign and n for a natural number. We denote by
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[a; n] the “proposition” that arises from the class sign a when one sub-
stitutes therein the sign for number n in place of the free individual
variable.
Sign for number n = the finite number sequence that corresponds to the
following sign of system S:

R′R′ . . . R′0︸ ︷︷ ︸
n (R = successor relation)

The most important concept for what follows is:

“Finitely definable” is what a class (of arbitrary type) K is called if there
exists a class sign such that [incomplete sentence]
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1. Introduction (for easier expression of the theorem)

2. System of number theory (here also finite sets at hand)

3. Extension

4. One-to-one association between formulas and numbers. Metamathemati-
cal properties = properties of numbers
occur in the system itself

5. Concept true

6. Concept finitely definable

7. Theorem expressed stated in different forms

8. Carrying through of the proof by the lemma

9. Proof of the lemma
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F(n) the n-th class sign

Klsz(n) ∼ Form(n)& (E!x){x Frva n & x 5 Höh(n)}
F(n) = m the number-theoretic formula n gets expressed through m

W Subst A(11
Z(x)

12
Z(y)) ∼ x Bew y

(Ex)Bew[n; Z(n)]
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W[q; x, n] ∼ x Bew F[n, Z(n)]

p = NE, q

W[p; n] ∼ (Ex)Bew F[n; Z(n)]

F[p; Z(p)] F[N(p; Z(p)]
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6. We produce an undecidable proposition in the Principia

360L

The development of mathematics in the direction of greater exactness has
led, as is well known, to wide areas of it being formalized (as intended, the
whole of mathematics).1 The most comprehensive formal systems put up
at present are the Principia Mathematica on the one hand, and the Zermelo-
Fraenkelian axiom system of set theory (as developed further by J. von
Neumann). Both of these systems are so wide that all the proof methods
used as of today in mathematics, formalized in them, are led back to a
few axioms and rules of inference. Therefore, the conjecture lies close at
hand that these axioms and rules of inference are really sufficient to car-
ry through each proof thinkable in general. In what will be presented, it
is shown that this is not the case, but that there are instead in both of the
systems referred to2 problems3 that
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cannot be decided with the help of the axioms and rules of inference put
up. It is a situation that lies in no way in, say, the special nature of the
systems put up so far, but holds in general for any formal system in which
number-theoretic problems can be expressed and in which axioms are at
hand only in a finite number or are obtained through substitution in a finite
number of steps. It has to be required further that no false number-theoretic
propositions are provable in a system.

The formulation just given is still vague and will be made precise in
what follows. Nevertheless, we want to sketch now the course of the proof
in rough outline, for an orientation for the reader, naturally without raising
any pretence to exactness. To fix ideas, we consider the system of the Princi-
pia. The propositions of this system are, externally considered, finite series

1 [Cancelled but intermittently underlined for emphasis: in a way in which proving is
carried through by a few mechanical rules.]

2 Here we assume in the Principia, in particular, the axiom of infinity in the form, there
exist exactly denumerably many individuals, naturally the axiom of reducibility, and, if one
wishes, also the axiom of choice.

3 Indeed, there exist in particular problems in which no other concepts than + (sum) and

× (product) (both applied to natural numbers) occur, further the logical concepts = ( )
− ∨,

in which ( ), for all, is allowed to apply only to natural numbers.
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of basic signs, and it is easy to make precise when a finite series of basic
signs is a meaningful proposition
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and when not. [Added: We think here and in what follows of each propo-
sition as having been written down without abbreviations.] The proofs, in
turn, are finite sequences of propositions, with certain properties that can
be given precisely. (Each proposition in a proof must be either an axiom or
arise from some of the ones before through the application of the rules of
inference.)

It is obviously indifferent for metamathematical considerations what
one takes as basic signs. We can take, in particular, natural numbers as ba-
sic signs, and a proposition is then, correspondingly, a finite sequence of
natural numbers (with certain properties that can be given precisely) and a
proof a finite sequence of finite sequences of natural numbers. Thereby all
metamathematical concepts and propositions become concepts and propo-
sitions about natural numbers or finite sequences of natural numbers etc.
Now, because natural numbers occur within the system of the PM (this
meant in a contentful way), a greater part of metamathematics becomes
thereby expressible within the system itself (this meant contentfully). One
can show, especially, that the concepts of formula, proof, provability [writ-
ten above: Bew] can be defined in the PM itself, i.e., one can give, for exam-
ple, a formula F(x) of the Principia with one free variable, such that F(x)
states, contentfully interpreted: x is a provable formula. [Added: It is very
easy (just somewhat long-winded) to actually write down this formula.]
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We produce now an undecidable formula of the Principia in the followi-
ng way:

We shall call a formula of the Principia with one free variable of the ty-
pe of class of classes [added: this is the type of the natural numbers in the
Principia] a class sign. We think of the class signs as lexicographically orde-
red and designate the n-th by F(n) [added remark: There are, admittedly,
infinitely may letters, namely the natural numbers, but that is obviously
no obstacle.] and note that the ordering relation P lets itself be defined wi-
thin the Principia. We designate by [P(n); k] the formula that arises from
the class sign P(n) when one replaces the free variable by the sign for the
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natural number k. Even the triple relation z = [x; y] turns out to be defi-
nable within the PM. We define now a class K of natural numbers by the
condition:

K(n) =
Df

Bew[P(n); n]

All the concepts that appear on the right, namely Bew, P, [x; y], are definable
in the PM, therefore also the concept K composed of them, i.e., there exists
a class sign R 4
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such that formula [R; n] states, meant contentfully, that K(n) holds.
As a class sign, R is identical to some P(x), i.e.,

R = P(q) for a determinate q

We show now the following theorem: The proposition [P(q); q] 6 of the Prin-
cipia is not decidable from the axioms.

For were the proposition [P(q); q] provable, it would be, contentfully inter-
preted, correct. Then K(p), i.e.,

Bew[P(q); q]

would hold, in contradiction with the assumption. If instead the negation
of [P(q); q] were provable, then K(n), therefore Bew[P(q); q] would hold.
Then [P(q); q] together with its negation would be provable which is again
an impossibility.7

The analogy of this proof with the antinomy of Richard

362R

hits the eye. There is even a close resemblance with the Cretan inference,
for the undecidable proposition [F(p); p] states by the above that [F(p); p]

4 Again, there is not the least difficulty in actually writing down the formula R.
5 [The second half of this page is quite faint, but the text can still be read with the help

of the typewritten version that is very similar.]
6 As soon as one has actually determined R, then q and thereby the undecidable propo-

sition can be effectively written down.
7 The basis of the treatment as a whole lies in the possibility of a contentful interpretation

of the propositions of the Principia (a specific exact consideration would be required for
this). The freedom from contradiction of the system results of course all by itself from this
supposition. [Remark added at bottom of the facing page.]
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is not provable.8 So we have a proposition in front of us that claims its own
unprovability.9

The whole train of thought can be carried over – – 10

What is the logical structure of the undecidable proposition? It claims,
by the above, the inexistence of a proof for [P(q; q)], i.e., the inexistence of
a finite sequence of finite sequences of natural numbers with a property F,
to be a proof for [P(q; q)]. One can map the finite sequence of sequences of
natural numbers in a unique way to the natural numbers, and hereby the
undecidable proposition assumes the form

En)F(n) 11

in which F denotes a property of natural numbers.

363L [The first half of this page is cancelled, the rest very weak]

One can establish through a precise analysis (to be conducted in what
follows) the following concerning the property F:

1. It is definite with respect to decision, i.e., one can decide for every
natural number whether it applies or not (and even inside the system of the
Principia).
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For one can, on the one hand, decide of each formula whether it is an
axiom or not, on the other hand whether it follows from given other formu-
las by the rules of inference. Therefore it is even decidable for each sequence
of formulas whether it is a proof and this extends to the numbers assigned
to sequences of formulas. [Added in margin: The definiteness with respect
to decision of F gets especially expressed through the possibility to define
F recursively.12]

8 [The typewritten manuscript has [R(q); q] instead of [F(p); p].]
9 It seems at a first look as if such a proposition had to be either nonsense, because

the object it talks about is constructed only through the proposition itself. The situation
is, instead, rather the following: The proposition [F(p); p] states, initially, that a specific,
precisely given formula is unprovable. It turns out later, and in a certain way by chance,
that this formula is precisely the one in which it itself gets expressed.

10 [The typewritten manuscript continues from this point on in a different way.]
11 F(n) means here: n is associated to a proof of [F(p); p].
12 Definable by recursion means always: definable by the simplest form of recursion (wi-

thout function parameters).
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2. The property F can be defined with just the concepts + (addition),
× (multiplication) (both concerning natural numbers), = identity, ( ) for all
(concerning natural numbers), ∨ (or), − negation. I.e., there are already in
the arithmetic13 of natural numbers built merely upon addition and multi-
plication problems that are not solvable by the means of the axioms of the
Principia (and not even those of set theory).

It will be shown below that a problem of the form (En)F(n), in which
F is a property defined by simple recursion, is always equivalent to the
question whether a certain formula G(ϕ, ψ) of the narrower functional cal-
culus14 (determined through F) is generally valid or not. This equivalence
can be also proved within the Principia.
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One concludes therefore [added above: theorem from 1] that there are in
the PM formulas within the narrower functional calculus for which neither
general validity nor the existence of a counterexample is provable.

In the above proof of the undecidability of [P(q); q], we have made use
of the concept of contentful correctness of formulas of the Principia, and
especially of the theorem that every provable formula is contentfully cor-
rect. Because of the problematic nature of these things (one can think of,
say, the axiom of choice), it would be advisable to avoid the concept of
contentful correctness as far as possible and [?] to replace where possible
the condition of contentful correctness of provable propositions by the free-
dom from contradiction of the system. This succeeds (at least in part) in the
following way: We assume the concept of contentful correctness as given
only for formulas of the form F(n), where F is a recursively defined pro-
perty and n denotes a specific natural number. This concept is, admittedly,
completely unproblematic for such formulas and beyond that
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exactly defined. Further, we shall call a system ω-consistent when the fol-
lowing holds: For no recursive property G is

13 Observe in particular that there occur no functions, just variables for natural numbers,
in the propositions within this domain.

14 ϕ, ψ shall be the function variables that occur in G (all of them are, by the definition of
the narrower functional calculus, free variables, cf. Hilbert-Ackermann).
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(Ex)G(x) together with all the formulas

G(1) G(2) . . G(n) ad inf. provable

Then the following holds:

If (Ex)G(x) (G(x) recursive) is provable in an ω-consistent system in
which the proofs of finite number theory can be carried through, then there
exists an n for which G(n) is contentfully correct. For in other case, G(n)
would be correct for all n, therefore (because of the recursive definability of
G), even provable. So, (Ex)G(x) would be provable together with all of the
G(n), against the assumption.15

Further, for each system free from contradiction holds already:16

In case (x)G(x) is provable (G recursive), G(n) is contentfully correct
for all n, for were for one, say for m, G(m) correct, it would also be provable
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in contradiction with (x)G(x).
One can, then, make for ω-consistent (and sufficiently wide) systems

the inference from the provability of propositions of the form of (x)G(x),
(Ex)G(x) (G recursive) to their contentful correctness, and precisely this is
used in the above proof. Therefore it holds word for word also for all ω-
consistent extensions of the PM, as soon as the class of axioms to be added
is recursively definable (especially with finitely many ones).

As concerns the concept of ω-consistency, let the remark be added that
there are extensions of the PM that are, indeed, free from contradiction, but
they are not ω-consistent. One obtains such in the following way. One sees
easily that of the two propositions (En)F(n), (En)F(n), neither of which
is provable,17 the first is false, the second correct. For (En)F(n) states that
there exists a proof for the formula [P(q); q] and this was the one shown to
be undecidable.
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Then, for each n, F(n) is correct, therefore (by the recursive definability of

15 [The negation lines in the G(n) are not visible.]
16 It is assumed that finitary number-theoretic proofs can be carried through in this sys-

tem.
17 F is the property defined on page .
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F) also provable. So, if one adds (En)F(n) to the Principia, one obtains a
system that is free from contradiction but not ω-consistent.

The fact just used, namely that problems undecidable in the system of
the PM still can be decided in a metamathematical way, is even in itself
of interest. An investigation of which means not available in the PM ma-
ke possible a metamathematical proof of (En)F(n) leads to the result that
the one and only such means that comes into consideration is the freedom
from contradiction of the PM, as required in the metamathematics. I.e., if
one could prove the freedom from contradiction of the PM within the PM,
then one could even prove (En)F(n), which is in contradiction with the
undecidability of this problem. From this follows the strange result that
one cannot carry through a proof of freedom from contradiction for the PM
even with all the logical means contained in the PM. It needs hardly be
mentioned that all considerations carried through so far
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can be extended to arbitrary formal systems as soon as number theory is
contained in them18 and the axiom classes definable through ordinary re-
cursion. There are in each such system, as soon as it is ω-consistent, unsol-
vable number-theoretic problems [cancelled: and there exists for no such
system a proof of freedom from contradiction that uses only means contai-
ned in the system.]

18 I.e., number-theoretic propositions (in a sense to be made precise below) must be ex-
pressible and number-theoretic proofs formally executable.
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7. The development of mathematics in the direction of greater ex-
actness

249R

The work undecidability,
draft

1.

The development of mathematics in the direction of greater exactness has
led, as is well known, to wide areas of it being formalized, in a manner in
which proofs can be carried through by a few mechanical rules. The most
comprehensive formal systems put up at present are the system of the Prin-
cipia Mathematica (P) on the one hand, and the axiom system of set theory of
Zermelo Fraenkel [cancelled: (M)] (developed further by v. Neumann). Both
of these systems are so wide that all the proof methods used in mathema-
tics today are formalized in them, i.e., led back to a few axioms and rules
of inference. Therefore, the conjecture lies close at hand that these axioms
and rules of inference are sufficient to carry through each thinkable proof
in general. It will be shown in what follows that this is not the case but that
there exist (in both of the systems put forward)1 even arithmetic problems
from the theory of ordinary numbers2 that cannot be decided with the help
of the axioms and rules of inference put up. It is a situation that lies in no
way in, say, the special nature of the systems (P, M) put up, but
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holds instead for a very wide class of formal3 systems to which belong
especially all those that arise from M and P through the addition of finitely

1 Here, we assume especially as axiom in P the axiom of reducibility. [The margin has
very faintly: axiom of infinity, there exists exactly denumerably many]

2 I.e., more precisely, there exist undecidable propositions in which there occur no con-
cepts beyond the logical constants −,∨ ( ) =, except + (add) × (mult), both in relation to
natural numbers, and in which even the prefix ( ) relates only to natural numbers. (In such
propositions, there can thus occur only numerical variables, but never function variables
whether free or bound.)

3 To this class belong for example all formal systems the axioms of which arise through
substitution of arbitrary formulas in finitely many schemes (as rules of inference the usual
ones, say those assumed in the PM).
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many axioms4, with the condition that no false propositions of the kind
given in2) become provable through the newly added axioms.

We shall sketch to begin with, before we go into the details, the main
idea of the proof, naturally with no pretence to exactness. The formulas of
a formal system (we delimit ourselves here to the system P of the Principia)
are, externally considered, finite series of basic signs (variables and logi-
cal constants), and it is easy to make it precise which series of basic signs
are meaningful formulas and which not.5 Proofs are analogously, external-
ly considered, nothing but finite series of propositions (with specific pro-
perties). It is, for metamathematical considerations, obviously indifferent
what objects one takes as basic signs. We decide to use natural numbers
as such signs.6 A formula is then, correspondingly, a finite sequence of na-
tural numbers7 and a proof figure a finite sequence of finite sequences of
natural numbers. The metamathematical concepts (propositions) become
hereby concepts (propositions) about natural numbers (and sequences of
such) and therefore (at least in part) expressible within the system P (this
meant in a contentful way). One can show, especially,
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that the concepts “formula,” “proof figure,” “provable formula” are defi-
nable within the system P, i.e., one can, for example, give a formula F(x) of
one free variable of the PM such that F(x) states, interpreted contentfully:
x is a provable formula (that we abbreviate with the designation Bew(x)).8

We produce now an undecidable proposition of the system P (i.e., a propo-
sition A for which neither A nor A is provable) in the following way:

We shall call a formula from P with one free variable of the type of the
natural numbers (class of classes)9 a class sign. We think of the class signs
as lexicographically ordered and designate the n-th by R(n) and note that
the concept of “class sign” as well as the ordering relation R let themselves

4 In this, only those axioms are counted as distinct in P that do not come out one from
the other by a simple change of type.

5 We mean here and in what follows by “formula of the system P” only a proposition
written without abbreviations (i.e., without the use of definitions).

6 I.e., we map the basic signs in a one-to-one way on the natural numbers.
7 In an abstract sense, i.e., as functions over segments of the natural number sequence of

natural numbers. [Belegungen eines Abschnittes der Zahlenreihe mit natürliche Zahlen]
8 It would be very easy (just a bit long-winded) to actually write down this formula.
9 That is the type of the natural numbers in P.
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be defined within P. We designate by [P(n), k] the sentence-formula that
arises from the class sign P(n) through the replacement of the free variable
by the sign for the natural number k. Even the relation z = [x, y] 10 turns
out to be definable within P. We define now a class K of natural numbers
as follows:

251L

K(n) =
Df

Bew[R(n), n] (1)

All of the concepts that occur in the Definiens are definable in P, and the-
refore also the concept K composed of them., i.e., there is a class sign S 11

such that formula [S; n] states, meant in a contentful way, that the natural
number n belongs to K. As a class sign, S is identical to a determinate R(x),
i.e., we have

S = R(q) (2)

Here q is a determinate natural number. We show now that the proposition
(more precisely, proposition-formula) [R(q), q] 12 is undecidable in P. For if
it is assumed that the sentence [R(q), q] is provable, then it would even be
correct contentfully interpreted, i.e., by the above, q would belong to K, i.e.,
by (1), Bew[R(q), q] would hold in contradiction with the assumption.
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If instead the negation of [R(q), q] were provable, then K(q), i.e., Bew[R(q), q]
would hold. [R(q), q] together with its negation would be provable which
is again impossible.

The analogy of this inference with the antinomy of Richard hits the eye.
There is even a close relation with the “liar” [changed from: Cretan infe-
rence], for the undecidable proposition [R(q), q] states that q belongs to
K(n), i.e., by (1), that [R(q), q] is not provable. So we have a proposition
in front of us that claims its own unprovability.13

10 In case x is not a class sign or k no natural number, one means by [x, y] the empty
sequence of numbers, say.

11 There is, again, not the least difficulty actually to write down the formula S.
12 As soon as S has been actually determined, even q lets itself obviously be determined

and thereby the undecidable proposition effectively written down.
13 Such a proposition has, contrary to appearance, nothing circular about it, for it claims

in the first place the undecidability of quite a specific formula (namely the q-th in the lexi-
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The proof method just presented can be evidently applied to every for-
mal system that:

1. In terms of content, provides sufficiently in the form of means of ex-
pression, so that the concepts used in the above considerations (especially
the concept provable formula) can be defined and in which

2. every provable formula is even contentfully correct.

These conditions are satisfied, especially, by the Zermelo Fraenkel axiom
system of set theory.

The exact carrying through of the above idea [changed from: proof] that
is to follow has, actually, as its main task the replacement of the concept
“definable in the system” that is too vague by a precise one, to eliminate
the suspicious concept of contentful correctness (think just of the axiom of
choice, say) entirely from consideration.14
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2

We go now into the exact carrying through of the proof sketched above and
give, to start with, a precise description of the formal system P for which
we want to prove the existence of undecidable propositions. P is essentially
the system one obtains if one builds, upon the Peano axioms,15 the logic of
the Principia Mathematica (numbers as individuals, successor relation as an
undefined basic concept).

The basic signs of the system are as follows:

“∼” (not) , “∨” (or) , “Π” (for all, with the usage xΠF(x) )

“0” (zero) “ f ” (successor of) “(” “)” (bracket symbols)

Further:

variables of type 1 (for individuals, i.e., natural numbers) “x1” “y1”

cographical ordering). It turns out only afterwards (by chance as it were) that this formula
is just the one in which the formula itself gets expressed.

14 [Added above: to avoid completely the contentful interpretation of the formulas of the
system considered]

15 The addition of the axioms of Peano to the system is done just on technical grounds.
[Added remark: From a formal point of view, Π as well as all the other opportune changes
in system PM take place merely on technical founds.]
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“z1”. . .

variables of type 2 (for classes of natural numbers) “x2” “y2” “z2”. . .

variables of type 2 (for classes of classes of natural numbers) “x3” “y3”
“z3”. . .

etc ad inf 16

Variables for two-place functions (relations) are superfluous as basic signs,
because one can define relations as classes of ordered pairs, and ordered
pairs in turn as classes of classes, for example
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the ordered pair (a, b) by [(a), (a, b)]17 in which (a, b) and (a) denote the
classes the only the elements of which are a, b (and a, respectively).

We mean by a sign of the first type a combination of signs of the form

“a” “ f a” “ f f a” etc

Here “a” is either “0” or a variable of type 1 (in the first case, the sign beco-
mes a “number sign”).

For n > 1, we mean by a sign of the n-th type the same as a variable of
“n-th type.”

We call combinations of signs of the form a(b), in which b is a sign of
type n and a a sign of type n + 1, “elementary formulas.” We define the class
of “formulas” as the smallest class of combinations of signs to which belong
the elementary formulas and to which belong, with a and b, always also
(a) ∨ (b) ∼ (a) v Π(a) (here v denotes an arbitrary variable18). We call
(a) ∨ (b) the disjunction of a and b, ∼ (a) the negation of a, and v Π(a) a
generalization of a.

A formula in which there occur no free variables (“free variables” de-
fined in the usual way) is called a “sentence sign.” We call a formula with
exactly n free individual variables, n = 1, (and with no further free varia-
bles) an n-place relation sign.

16 It is required that denumerably many signs are available for each type of variable.
17 Even inhomogeneous relations can be defined in this way, for example, a relation bet-

ween individuals and classes as a class with elements of the form ((x1), x2).
18 So v Π(a) is a formula even in the case that v does not occur or does not occur free in a

(it then means naturally the same as a).
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We mean by Sb(a v
b) (in which a denotes a formula, v a variable, b a sign

of the same type as v) the formula that arises from a when v is replaced in
it (everywhere where it is free) by b.19

We say that a formula a is a type elevation of another b if a arises from
b through the elevation by the same number of all the free variables that
occur in b.

The following formulas are called “axioms” (they are written down
with the help of the abbreviations → & ≡ (Ex) = 20):

I 21 1.) ∼( f x1 = 0)

2.) f x1 = f y1 → x1 = y1

3.) x2(0)& x1Π(x2(x1) → x2( f x1)) → x1Π(x2(x1))

II Each formula that arises from the following schemes through the sub-
stitution of arbitrary formulas for p, q, r:

1 p ∨ p → p

2 p → p ∨ q

3 p ∨ q → q ∨ p

4 (p → q) → (r ∨ p → r ∨ q)
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III Each formula that arises from the two schemes

1.) xΠA → Sb(A x
b)

2.) xΠ(B ∨ A) → B ∨ xΠA

through making the following substitutions for A, B, x:

for A an arbitrary formula

for x an arbitrary variable

19 In case v is not free in a, Sb(a v
b) = a shall be the case.

20 v = w is, as in the Princ. Math., defined by [the typewritten version, footnote
21, suggests the completion: x2Π(x2(v) ≡ x2(w))].

21 [Gödel gives just the numbers for axioms in I and II. I have added the axioms from
the typewritten manuscript. The logical notation in the typewritten version is somewhat
different from the one here.]
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for B a formula in which x does not occur free

for b a sign of the same type22 as x, on the condition that b contain
no variable (or is such) that is bound in A in one of the places in which x is
free.23

IV Each formula that arises from the following scheme through the sub-
stitution of arbitrary variables of the types n, n + 1 for v, u and a formula
for A that does not contain u free:

(Eu)(v)[u(v) ∼ A] 24

V Each axiom that arises from the following one through type elevation:25

(x1)x2(x1) ≡ y2(x1) → x1 = x2

This axiom states that a class is completely determined by its members.
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A formula c is called an immediate consequence of a and b (or of a) if a is the
formula b → c (or if c = xΠb, respectively, where x is an arbitrary variable).
The class of provable formulas is defined as the smallest class of formulas that
contains the axioms and is closed with respect to the relation of “immediate
consequence.”26

We associate next natural numbers to the basic signs, in the following
one-to-one way:

“0” → 1 “ f ” 2 ( 3 ) 4 ∼ 5 ∨ 6 Π 7

Further, for the variables of type n numbers of the form pn in which p de-
notes a prime number > 7. Hereby there corresponds to each finite series
of basic signs (therefore also each to formula) a finite series of natural num-
bers in a one-to-one way. We map now the finite series of natural numbers
(again in a one-to-one way) on the natural numbers through the stipulation:

22 So b is either a variable or a sign of the form f f . . . f x0 in which x0 is either 0 or a
number variable.

23 [The previous footnote is repeated here.]
24 This axiom means the same as the axiom of reducibility (the separation axiom in set

theory).
25 [The conclusion in Gödel’s axiom should be x2 = y2 as in the typewritten manuscript.]
26 The rule of substitution becomes superfluous through the carrying out of all possible

substitutions already in the axioms.
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To the series e1e2 . . . en shall correspond the number p:

2e13e2 . . . pn
en in which pn is the n-th prime number.

Hereby a natural number is associated in a one-to-one way, not just to each
basic sign but also to each finite series of basic signs. We designate the num-
ber associated to the basic sign (or the finite series of basic signs) a by ϕ(a).

Next, let there be given whatever class or relation R(a1 . . . an) (n = 1)
between basic signs or series thereof. We associate to it that class (relation)
R′(x1 . . . xn) between natural numbers that obtains between x1 . . . xn when
and only when there exist a1 . . . an such that xi = ϕ(ai) (i = 1, 2, . . . n) and
R(a1 . . . an).

We designate the classes (relations) between natural numbers that are
associated in this way to the metamathematical concepts so far defined,
for example “variable” “elementary formula” “formula” “sentence-sign”
“negation” “axiom” “immediate consequence” “provable formula” “x =
Sb(a v

b),” etc, by the same words but in cursive writing. The existence of
formally unsolvable problems becomes thereby expressed within the sys-
tem P as follows: There exists a sentence formula a such that neither a nor the
negation of a are provable formulas.

We put next up the following definition: A number-theoretic function27

ϕ(x1 . . . xn) (with arbitrarily many independent variables)
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is said to be recursively defined from the number-theoretic functions

ψ(x1 . . . xn−1) and µ(x1 x2)

if the following holds for all x2 . . . xn k:

ϕ(0 x2 . . . xn) = ψ(x2 . . . xn)
(1)

ϕ(k+1 x2 . . . xn) = µ(k, ϕ(k x2 . . . xn))

Further, a number-theoretic function is said to be recursive if there exists
a finite series of functions ϕ1 . . . ϕn that ends with ϕ and has the property
that each of the functions ϕk of the series is either recursively defined from

27 I.e., its domain of definition is the class of non-negative entire numbers and its range
of values a (proper or improper) subclass thereof.
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two preceding ones, or arises from whichever of the preceding through
substitution,28 or finally is a constant or identical to the successor function
(x1 + 1) (or x2 + 1, etc). The length of the shortest series of ϕi that belongs
to a recursive function is called its level [Stufe].

A relation (class) between natural numbers R(x1 . . . xn) is recursive if
there is a recursive function ϕ(x1 . . . xn) such that

R(x1 . . . xn) ≡ ϕ(x1 . . . xn) = 0 29

The following theorems hold:

I Each (function) relation that arises from recursive functions (relations)
through substitution of recursive functions in the place of variables is re-
cursive. The same for functions that arise from recursive functions by re-
cursive definition according to scheme (1).

II If R and G are recursive relations, then also ∼R R ∨ G R & G.

255R

III If the functions ϕ(x) and ψ(y) are recursive, then also the relation

R(x y) = ϕ(x)=ψ(y)30

IV If the function ϕ(xx) 31 and the relation R(x y) are recursive, then also
the relations

S(x, y) ≡ (Ex)[x 5 ϕ(x)& R(x y)]

T(x, y) ≡ (x)[x 5 ϕ(x) → R(x y)]

as well as the function

εx{x 5 ϕ(xx)& R(x y)} = ψ(x y)

in which εx f (x) means: the smallest x for which f (x) holds or 0 (in case
there is no such x).

Theorem I follows at once from the definition.
28 More precisely, through substitution of some of the preceding functions in the argu-

ment places of others that precede, so for example:
ϕk(x1 x2) = ϕl{ϕp(x1), ϕq(x1 x2)x1} l, p, q < k.
29 Recursive relations have obviously the property that one can decide for each specific

n-tuple of numbers whether R(x1 . . . xn) holds.
30 We use German letters x y as abbreviatory expressions for series of arbitrarily many

variables (x1 x2 . . . xn).
31 [IV has twice ϕ(x) with x cancelled, twice ϕ(xx), the former as in TM.]
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Theorems II and III depend, as one easily convinces oneself, on the re-
cursiveness of the functions

δ(x) µ(x y) ν(x y)

that correspond to the logical concepts ∼,∨,=, namely

δ(0) = 1 δ(x) = 0 for x 6= 0

µ(0 x) = µ(x 0) = 0 µ(x y) = 1 when x y both 6= 0

ν(x y) = 0 when x = y ν(x y) = 1 when x 6= y
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The proof of theorem IV is in brevity the following:

There is by assumption a recursive $ such that $(x y) = 0 ≡ R(x y). We
define now by recursion scheme (1) a function χ(x y) in the following way:

χ(0 y) = 0

χ(n + 1, y) = (n + 1) . a
+χ(n y) . δ(a) 32

Here a = δ$(n + 1, y)δδ$(0 y) δχ(n y)

χ(n+1 y) is therefore either = n + 1 (when a = 0) or = χ(n y) (when
a = 1).33 The first case occurs clearly if and only if all of the factors of a are
1, i.e., when the following holds:

∼R(0 y)& R(n+1 y)& (χ(n y) = 0)

From this it follows that the function χ(n y) (considered as a function of n)
remains 0 until the smallest value
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for which R(n y) holds, and is from there on equal to this value (in case that
R(0 y) already holds, we have correspondingly χ(n y) constant = 0).

By this we have

ψ(x y) = εx{x 5 ϕ(xx)& R(x y)} = χ(ϕ(x x, y)

32 We assume as known that the functions a + b (addition) a . b (product of two numbers)
are recursive.

33 a cannot apparently have other values.
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S(x y) ≡ R(ψ(x y), y)

The relation T can be reduced through negation back to a case that is ana-
logous to S, by which theorem IV is proved.

The functions a + b, a . b, ab, further the relations a< b, a= b are, as one
is easily convinced, recursive, and starting with these concepts, we define
now a series of functions (relations) (1– ) each of which is defined from the
preceding ones by the procedures mentioned in theorems I–IV. Here, sever-
al of the steps of definition allowed by theorems I–IV are usually combined
into one. Each of the functions (relations) 1– (among them occur for exam-
ple the concepts “formula” “axiom” “immediate consequence”) is therefore
recursive.

1. x/y =
Df
(Ez){z 5 x & x = yz}

x is divisible by y
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2. Prim(x) =
Df
(Ez){z 5 x & z 6= 1 & z 6= x & x/z}& x > 1

x is a prime number

3. 0 Pr x = 0

(n + 1)Pr x = εy{y 5 x & Prim(y)& x/y & y > n Pr x}
n Pr x is the n-th (in order of value) prime number contained in x

4. 0! = 1

(n + 1)! = n! · (n + 1)

5. Pr(0) = 1

Pr(n + 1) = εy[y 5 [Pr(n)]! + 1 & Prim(y)& y > Pr(n)]

Pr(n) is the n-th prime number (in order of value)

6. n Gl x = εy[y 5 x & x/(n Pr x)y & x/(n Pr x)y+1] 34

the n-th member of the number series that corresponds to x
(in accordance with the stipulation set on page )

34 [The last conjunct is negated in TM.]
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7. l(y) = εx{x 5 y & x Pr y > 0 & (x + 1) Pr y = 0}
the length of the number series that corresponds to y

8. x ‖− y = εz{z 5 [Pr(lx + ly)x+y & l(z) = l(x) + l(y)

& (n)[n 5 lx → n Gl z = n Gl x]&

& (n)[0 < n 5 l(y) → (n + lx) Gl z = n Gl y]}35

x ‖− y corresponds to the operation of “adjoining one to another” of
two finite series of numbers

9. R(x) = 2x

R(x) corresponds to the number series that consists of just the num-
ber x

10. E(x) = R(3) ‖− x ‖− R(4)

this corresponds to the operation of bracketing (3 and 4 represent the
signs ( and ) )

11. n Var x = (Ez){z 5 x & Prim(z)& x = zn & x > 7}
x is a variable of type n

12. Var(x) = (En){n 5 x & n Var x}
x is a variable
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13. Neg(x) = R(5) ‖− E(x)

negation of x

14. x Od y = E(x) ‖− R(6) ‖− E(y)

disjunction of x and y

15. x Gen y = R(x) ‖− R(7) ‖− E(y)

generalization of y by the variable x

35 The limit z 5 [Pr(lx + ly)]x+y follows from the fact that each prime number from z is
certainly 5 Pr(lz) and the sum of prime number exponents of z is equal to the sum of the
exponents from x and from y, therefore smaller than x + y.
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16. 0 Nf x = x

(n + 1)Nf x = R(2) ‖− n Nf (x)

n Nf x formula that arises from x through setting the sign f n times
ahead

17. Z(n) = n Nf [R(1)]

symbol for number n

18. Typ1(x) = (Em, n){m, n 5 x & [m = 1∨ 1Var m]& x = n Nf [R(m)]}
sign of type 1
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19. Typn(x) = {n = 1 & Typ1(x)} ∨ {n > 1

& (Ev)[v 5 x & nVar v & x = R(v)]}
sign of type n

20. Elf (x) = (Ea, b, n){a, b, n 5 x &

Typn+1(a)& Typn(b)& x = a ‖− E(b)}
elementary formula

21. Op(xyz) = x = Neg y ∨ x = y Od z∨
(Ev)[v 5 x & Var(v)& x = v Gen y]

the formula x arises from y or z through the operations of negation,
disjunction, generalization

22. F-R(x) = (n){0 < n 5 l(x) →
Elf (n Gl x) ∨ (Ep, q)[0 < p, q 5 n & Op(n Gl x, p Gl x, q Gl x)]}
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& l(x) > 0

x is a series of formulas each of which is either an elementary formula
or comes out from the previous ones throughout the operations of
negation, disjunction, generalization

23. Form(x) = (En){n 5 Pr[l(x)2]x(lx)
2
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& F-R(n)& x = l(n)Gl n} 36

x is a formula (i.e., the last member of a series of formulas)

24. v Fr n, x = Var(v)& v = n Gl x & Form x

& (Ea, b, c)[a, b, c 5 x & x = a ‖− v Gen b ‖− c

& Form(b)& l(a) + 1 < n 5 l(a) + l[v Gen b]}
the variable v is free in x in the n-th place

25. v Geb n, x = Var(v)& Form(x)& v = n Gl x & v Fr n, x

259R

26. v Fr x = (En)[n 5 l(x)& v Fr n, x]

v occurs in x as a free variable

27. Su x(n
y) = εz{(Eu, v)u, v 5 x &

n = l(u) + 1 & x = u ‖− R(n Gl x) ‖− v &

z = u ‖− y ‖− v}
Su x(n

y) arises from x when one substitutes y in place of the n-th sign
of x

28. 0 St v, x = εn{n 5 l(x)& v Fr n, x & (Ep)[n < p 5 l(x)& v Fr p, x]}
k + 1 St v, x = εn{n < k St v, x &

v Fr n, x & (Ep)[n < p < k St v, x & v Fr p, x]}
k St v, x is the k-th position (counted from the end of the formula)
in which v is free in x

29. A(v, x) = εn{n St v, x = 0 & n 5 l(x)}
number of positions in which v is free in x
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30. Sb0(xv
y) = x

36 One recognises the bound n 5 Pr[l(x)2]xl(x)2
like this: the length n of a series of formu-

las that belongs to x can be at most equal to the number of subformulas of x. But there are
at most lx subformulas of length 1, at most lx − 1 of length 2, and so on, so on the whole
at most lx(lx − 1) < [l(x)]2. The prime numbers from n are then all < Pr(lx)2, but their
number < (lx)2, and their exponents (which are subformulas of x) 5 x.
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Sbk+1(xv
y) = Su{Sbk(xv

y)}(k St v,x
y )

31. Sb(xv
y) = SbA(v,x)(xv

y)

Sb(xv
y) is identical to the concept Subst(av

b) defined above

32. x Imp y = N(x)Od y

x K y = N[N(x)Od N(y)]

x Aeq y = (x Imp y)K (y Imp x)

v Ex y = N[v Gen(N(y))]

these correspond to the concepts ⊃, &,≡, (Ex)
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33. n Th x = εy(y 5 x(xn) & (k){k 5 l(x)

→ [(k Gl x 5 13 & k Gl x = k Gl y)∨
(k Gl x > 13 & k Gl y = k Gl x [1 Pr(k Gl x)]n)]})

n type elevation of x

34. To the axioms I 1–3 correspond three specific numbers that we desi-
gnate by z1 z2 z3

37

Z-Ax(y) = [x = z1 ∨ x = z2 ∨ x = z3]

35. A1-Ax(y) = (Ea){a 5 x & Form(a)& x = (a Od a) Impl a}
y arises through a substitution in axiom II 1

A2Ax, A3Ax, A4Ax that correspond to axioms II 2, 3, 4 are defined ana-
logously

36. A-Ax(y) = A1-Ax(y) ∨ . . . ∨ A4-Ax(y)

261L

y is a propositional axiom

37. Q(z, y, v) = (Ep, w)[v Fr p, y & w Fr z & w Geb p y]

z contains no free variable that is bound in a place in y in which v is
free

37 [This item and the next should have x as argument at left.]
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38. L1Ax(x) = (Ev, y, z, n){v, y, z, n 5 x

& n Var(v)& n Typ z & Form(y)& Q(z, y, v)

& x = (v Gen y)Impl[Sb(yv
z)]}

x arises from axiom scheme III 1 through substitution

39. L2Ax(x) = (E v q r){v, q, r 5 x &

Var(v)& v Fr p & Form(p)& Form(q)

& x = [v Gen(p Od q)]Impl[p Od(v Gen q)}
x arises from axiom scheme III 2 through substitution

261R

40. Red-Ax(x) = (Eu v y n)[u, v, y, n 5 x &

(n + 1)Var(u)& n Var(v)& u Fr y &

Form(y)& x = u Ex{v Gen[{R(u) ‖− E(R(v))}Aeq y]}
x arises from scheme IV 1 through substitution

50. A determinate number z4 corresponds to axiom V 1 and we define

M-Ax(x) = (En)[n 5 x & x = n Th z4]

51. Ax(x) ∼ Z-Ax(x) ∨ A-Ax(x)∨
L1-Ax(x) ∨ L2-Ax(x) ∨ Red-Ax(x) ∨M-Ax(x)

x is an axiom

52. Fl(xyz) = y = z Impl x∨
(Ev)[v 5 x & Var(v)& x = v Gen y]

x is an immediate consequence of y and z

262L

The fact that one can vaguely formulate as follows, namely that each
recursive relation (class) can be defined within the system P (meant in a
contentful way), without recourse to any contentful meaning of the formu-
las of P, is expressed in an exact form by the following theorem:
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Theorem V.38 There exists for each recursive relation R(x1 . . . xn) an n-place
relation sign r (with the free variables u1 . . . un) such that

(x1 . . . xn)R(x1 . . . xn) → Bewb Subst(ru1.........un
Z(x1)...Z(xn)

)

(x1 . . . xn)R(x1 . . . xn) → Bewb Neg Subst(ru1 .........un
Z(x1)...Z(xn)

)39

We rest content to indicate the proof of this theorem in outline, becau-
se no difficulties of principle are met in it and because it is rather long-
winded. We prove the theorem for all relations R(x1 . . . xn) of the form
x1 = ϕ(x2 . . . xn)40 (in which ϕ is recursive):

If ϕ is of the first level, the theorem is trivial. We can therefore use com-
plete induction on the level. Let then ϕ have level n. It arises in that case
from functions of lower levels ψ1 . . . ψk through the operation of substituti-
on or through recursive definition. By the inductive hypothesis, all is pro-
ved for ψ1 . . . ψk, so there exist the associated relation signs r1 . . . rk such
that IV [V] holds. The definitional processes
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by which ϕ arises from ϕ1 . . . ϕn−1 (substitution and recursive definition)
can all be formally reproduced in P. If one does that, one obtains from
r1 . . . rn a new relation sign r41 for which one can prove without difficul-
ty that theorem IV [V] holds, under the condition that it holds for the
r1 . . . rn.42 A relation sign r to which a recursive relation is associated in this
way (one that contentfully meant expresses that this relation holds) shall

38 [Changed from IV.]
39 The variables u1 . . . un can obviously be given arbitrarily. There exists, for example,

always an r with one free variable 11, 13, 17 etc for which ( ) and ( ) hold. [I have added
the negation stroke above the lower R, cf. the typewritten version. The empty parentheses
have there the numbers 3 and 4 inside.]

40 From this follows of course at once that it holds for each recursive relation, because
such a relation is equal in meaning to 0 = ϕ(x1 . . . xn), ϕ recursive.

41 In a precise carrying through of this proof, r is not defined through the detour of a
contentful meaning, but through a purely formal condition. [Footnote at the bottom of the
page, with a circular sign but no corresponding sign in the text. The typewritten version,
note 41, gives its place.]

42 The provability of Sb(rn1 ......nn
Z x1 ...Z xn

) on the basis of the correctness of R(x1 . . . xn) (ana-
logously for negations) depends in the end of course on the decidability of the question
whether, for each n-tuple of numbers in a recursive relation, the relation holds and that this
decision can be carried through within the system P.
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be called recursive.
We come now to the goal of our explanations:43

Let κ be an arbitrary class of formulas. We designate by Fl(κ) (set of con-
sequences [Folgerungsmenge]) the smallest set of formulas that contains κ
as well as the axioms of group [empty space left] and is closed with respect
to the relation of immediate consequence. κ is called ω-consistent44 if there is
no recursive class sign a (with the free variable v) such that45

(n)[Sb(av
Z(n)) ε Fl(κ)]& Neg v Gen a ε Fl(κ)

Then we have the theorem:

263L

The general result about existence of undecidable propositions.

VI There exists for each ω-consistent recursive class κ of [TM: formulas]
a recursive class sign a with the variable v such that neither v Gen a nor
Neg v Gen a belong to Fl(κ).

Proof: Let κ be an arbitrary recursive ω-consistent class. We define

Bκ(n) ∼ l(n) > 0 & (x)[x 5 l(n) →
Ax(x Gl n) ∨ K(x Gl n) ∨ (Ep, q)[p, q 5 x & Fl(x Gl n, p Gl n, q Gl n)]46

(cf. the analogous concept Bew(n) )

xBκn ∼ Bew(x)& l(x) = n

Bewbκ(n) ∼ (Ex) x Bew n

We clearly have (n)Bewbκ(n) ∼ n εFl(κ)

and (n)Bew(n) → Bewbκ(n)

We define now the relation

R(xy) =
Df

x BewκSb(y 13
Z(y))

43 [There appears for the first time a cursive-looking K used for a class of formulas that I
give as κ. The same symbol, possibly drawn smaller, is typeset with no instruction as κ in
the printed paper.]

44 Each ω-consistent κ is of course even so more free from contradiction. The contrary,
though, does not hold, as will be shown later.

45 [Original has as first occurrence of Fl(v), as second Flκ.]
46 [Parentheses after Fl adjusted as in formula (5) of the typewritten version.]
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Because x Bewκ n (by ) and Sb (by ) are recursive,

263R

then also R(xy). Therefore there exists by theorem V and ( ) a relation sign
q (with the free variables 11, 13) such that the following holds:

x BκSb(y 13
Z(y)) → BewκSb(q 11 13

Z(x) Z(y))

x BκSb(y 13
Z(y)) → BewκNeg Sb(q 11 13

Z(x) Z(y))

We put:

p = 11Gen q (p is a class sign with the free variable 13)

and

r = Sb(y 13
Z(y))

r is a recursive47 class sign with the free variable 11

Then the following holds:

Sb(p 13
Z(p)) = Sb(11Gen q 13

Z(p)) = 11Gen Sb(q 13
Z(p))

= 11Gen r 48 (because of )

and

Sb(q 11 13
Z(x) Z(p)) = Sb(r 11

Z(x)) (by )

264L

If one now substitutes in formula [missing] p for y, then, taking into consi-
deration ( ) and ( ), there arises:

x Bκ(11Gen r) → BewκSb(r 11
Z(x))

x Bκ(11Gen r) → BewκN Sb(r 11
Z(x))

Now there results:

1. 11Gen r is not κ-provable49 because there is in this case an n so that

47 For it arises from the recursive relation sign q through the replacement of a free variable
by a determinate number (p).

48 The operations Gen Sb are naturally always exchangeable (in case they relate to diffe-
rent variables).

49 x is κ-provable shall mean Bewκ(x) that says the same as x ε Fl(κ). [Note added at
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n Bewκ(11Gen r). By , BewκN Sb(r 11
Z(n)) would then hold, whereas on the

other hand, from the κ-provability of 11Gen r would follow also that of
Sb(r 11

Z(n)). So κ would be inconsistent (and the more so ω-inconsistent).

2. Neg11Genr is not κ-provable. For were this the case, then (in accordance
with the ω-consistency of κ), Sb(r 11

Z(n)) would not be κ-provable for all n. It
follows from this by that there is in this case an n such that n Bewκ(11Gen r),
i.e., 11Gen r would be provable, which is impossible because of the freedom
from contradiction of κ. Then 11Gen r is undecidable from κ by which theo-
rem VI has been proved.

[At this point, an addition is indicated. The addition is found in pages
ripped off the manuscript, microfilmed in reel 20, frame 496. The same text
is found on page 31 of the typewritten manuscript.]

If one adjoins Neg11Gen r to κ one obtains a consistent but not ω-consis-
tent class κ′. κ′ is consistent, because otherwise 11Gen r would be κ-provable.
κ′ is, though, not ω-consistent because Bewbκ11Gen r holds, in other words
(x)xBκ(11Gen r), and then there follows [added below the text: on the basis
of lemma] (x)BewκSb(r 11

Z(x)), and even the more so (x)Bewκ′Sb(r 11
Z(x)), and

on the other hand there holds naturally Bewκ′Neg Gen r. [End of addition.]
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A special case of theorem VI is the one in which the class κ consists of
finitely many axioms α (and those infinitely many ones that arise from them
by type elevation). Each finite class α is naturally recursively definable. Let
M be the greatest number contained in α. Then in this case the following
holds for κ:

κ(x) ∼ (En, m)[m 5 x & n 5 M & α(n)& x = m Th n]

Then also κ is recursively definable. This allows one to conclude, for exam-
ple, that not all problems are solvable even with the help of the axiom of
choice (for all types) or with the generalized continuum hypothesis (assu-
ming that these hypotheses are ω-consistent).50

bottom of page, placed here as in the TM.]
50 From the fact that one never obtains a system definite with respect to decision through

the addition of finitely many axioms, it follows especially that each formal system that falls
under theorem V has the ordinal degree of incompleteness Ω (in the sense of ). [This
note, with the name A. Tarski, is cancelled in the typewritten version.]
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In the proof of theorem V [VI], no other properties of the system P need
be used than the following:

1. The class of axioms and the rules of inference (i.e., the relation of imme-
diate consequence) are recursively definable.

2. Each recursive relation can be defined inside the system (in the sense of
theorem IV).

Therefore there exist in each formal system in which conditions 1 and 2
are satisfied and that is ω-consistent undecidable propositions of the form
(Ex)F(x) in which F is recursive (and the same for each extension of such
a system by a

265L

recursively definable class of axioms).
To systems that satisfy conditions 1–2 belong, as is easy to ascertain,

especially the axiom systems of set theory of Zermelo Fraenkel and of von
Neumann.51

We derive now further consequences from theorem VI and give to this
purpose the following definition:

A relation (class) is called arithmetic if it can be defined with the help of just
the concepts + × (addition and multiplication applied to natural numbers)
and the logical constants ∨ − ( ) =, in which ( ) and = are allowed to
apply only to natural numbers.52 The concept of an arithmetic proposition
is defined correspondingly. In particular, the relations “greater than” and
“congruent” for example are arithmetic, because we have:

x ≡ y
mod
(n) ≡ (Ez)(x = y + zn ∨ y = x + zn)

x > y ≡ (Ez) y = x + z [TM has existence negated]

The following theorem holds:

51 The proof of condition 1 presents itself even as simpler than in the case of system S,
because there is only one kind of ground variable and one basic relation ε. The axioms run
pretty much parallel to the above.

52 The Definiens of such a concept must be built with only the help of the signs introduced
and variables for entire numbers x y (there must not occur function variables).
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VI [VII] Each recursive relation is arithmetic.

We prove the theorem in the form: Each relation of the form x0 = ϕ(x1 . . . xn)
in which ϕ is recursive, is arithmetically definable, and we use complete in-
duction on the level of ϕ. Let ϕ have level n. We have either:

1. ϕ(x1 . . . xn) = $(χ1(x1) . . . χn(xn)) 54

Here $ and all of the χi have levels lower than n.

Or we have:

2. ϕ(0x2 . . . xn) = ψ(x2 . . . xn−1)

ϕ(k+1 x2 . . . xn) = µ(k ϕ(k x2 . . . xn))

in which ψ µ are of a lower level than n.

In the first case, we have55

x0 = ϕ(x1 . . . xn) ∼ (Ey1 . . . yn)[R(x0 x1 . . . xn)&

S1(x1x1) . . . & . . . Sn(xnxn)]

266L

in which R and Si are the arithmetic relations that, by the inductive ass-
umption, exist and are equivalent to

y = $(x1 . . . xn) and y = χi(xi), respectively

Therefore x0 = ϕ(x1 . . . xn) is in this case arithmetic.
In the second case, we use the following procedure: One can define the

relation y = ϕ(x1 . . . xn) with the help of the concept of a “sequence of
numbers” ( f ), in the following way:

(E f ){ f0 = ϕ(0 x2 . . . xn−1)& (k)[k < x1 → fk+1 = µ(k fk)]& fx1 = y}
or when S and T are the relations that, by the inductive assumption, exist
and are of a kind equivalent to, respectively, [TM: y = ψ(x2 . . . xn)] and

53 We use German letters xi as abbreviations of n-tuples of variables x1 . . . xn.
54 [The arguments are close to illegible, perhaps changed from the German x1 . . . xn to

x1 . . . xi. The typewritten version has χ1(x1 . . . xn) etc.]
55 [Gödel changed the bound variables from xi to yi in the quantifier but left those in the

relation unchanged.]
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[TM: z = µ(x2 . . . xn+1)], through56

(E f ){S f0x2 . . . xn & (k)[k < x1 → fk+1 = µ(k fk)]& fx1 = y}
[Bottom of the page has the undesignated footnote: We denote by fx the
x-th member of the sequence x [should be f ].]

266R

We replace now the concept “sequence of numbers” by the concept
“pair of numbers,” by associating to the pair n, d the sequence of numbers

f nd { f nd
k = [n]1+(k+1)d}

in which [n]p denotes the smallest non-negative remainder of n modulo p.
We have then the

Lemma 1. If f is an arbitrary sequence and k an arbitrary natural number,
there exists a pair of natural numbers n d such that f nd and f agree on the k
first members.

Proof. Let l be the greatest of the numbers k f0 f1 . . . fk−1. n is determined so
that

n ≡ fi(1 + (i + 1)l!) for i = 0, 1, . . . k− 1

something that is possible because each two of the numbers

1 + (i + 1)l! i = 0, 1 . . . k− 1

are relatively prime.57 The pair of numbers n, l! fulfils therefore what is
required.
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The relation x = [n]p is defined by

x ≡ n(p)& x < n

It is therefore arithmetic, and then also the relation

(Emd){S([m]d+10 x2 . . . xn)&

(k)[k < x1 → T([m]d(k+2)+1k[m]d(k+1)+1]

56 [TM has:
x0 = ϕ(x1 . . . xn)∼ (E f ){S( f0, x2 . . . xn)&(k)[k < x1 → T( fk+1, k, fk, x2 . . . xn)]&x0 = fx1} ]

57 A prime number contained in two of these would also have to be contained in the
difference (i1 − i2)l! and therefore, because of i1 − i2 < l, in l!.
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& y = [m]d(k1+1)+1}
that is by Lemma 1 equivalent to y = ϕ(x1 . . . xn). (With the sequence f , the
question is only about its course of values up to the k-th member.) Hereby
the lemma is proved.

In accordance with theorem VI [VII], there exists for each problem of the
form (En)F(n) (F recursive) an equivalent arithmetic problem, and because
the whole proof of theorem VI [VII] can be formalized within the system P,
this equivalence is also provable. Therefore we have:

Theorem VI [VIII] There exist in each of the formal systems58 mentioned
in theorem V [VI] undecidable arithmetic propositions (i.e., ones in which
only the concepts + × applied to natural numbers occur).

20-496 59

The same holds for axiom systems of set theory and their extension by
ω-consistent recursive classes of axioms.

[There follows the addition to page 264L.]

For the existence of undecidable propositions, it is sufficient just to as-
sume for κ next to ω-consistency the following: There exists a class sign r
such that κ(x)→ BewSb(r n

Z(x)) and κ(x)→ BewSb(r n
Z(x)). In other words, it

is decidable for each number in P whether it belongs to κ. For this property
carries over from κ to Bκ, and only this is required in the above proof.

284L60

We derive finally the following result:

Theorem. There exist in all of the formal systems mentioned in theorem VI
unsolvable problems within the narrower functional calculus.

58 [Footnote found on page 20-496: I.e., in those ω-consistent systems that arise from P
through the addition of a recursively defined class of axioms.]

59 [This page belongs to a loose sheet found in reel 20. It has been clearly ripped off from
the notebook, because “black holes,” revealed as ink spots, match to perfection such spots
on pages 267L and 267R. The text continues the previous in the same way as the typewritten
version. There is on these loose pages also an addition to several pages before, on page 264L,
and more remarks that are difficult to locate precisely.]

60 [The following four pages are written in backward direction from the end of the note-
book. Their contents can be profitably compared with theorem X and its proof with which
the original version of Gödel’s article ends.]
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This depends on the following:

Theorem N [TM: X]. Each problem of the form (x)ϕ(x) in which ϕ is a
recursive property can be reduced back to the satisfiability of a formula of
the narrower functional calculus.61

We count as formulas of the narrower functional calculus (eF) those for-
mulas that are built up from the basic signs ( ) − ∨ = x y (individual va-
riables) and class and relation variables F(x) G(x y) in which ( ) and = 62

are allowed to apply only to individuals. We join to these signs even a third
kind of variables ϕ(x) ψ(xy) χ(xyz) that represent functions over objects
(i.e., ϕ(x) ψ(xy) denote (unique) functions the arguments and values of
which are individuals).

283R

We shall call a formula that contains, beyond the basic signs of the eF
introduced above, variables of the third kind ϕ ψ etc a formula in the exten-
ded sense (iwS) [im weiteren Sinne].63 The concepts satisfiable, generally
valid carry over without further into formulas in the extended sense. The
theorem holds that gives, for a formula iwS (A), a usual formula B of the
eF such that the satisfiability of A is equivalent to the satisfiability of B. B
is obtained from A through the replacement of function variables ϕ(x1 y x2)
that occur in A through expressions of the form ( ιy)F(y x1 . . . x2), i.e., ιthe
descriptive function ( ιx)( , ) in the sense of the PM, is resolved [TM has
I∗14, a reference to the PM] and

282L

the formula obtained in this way logically multiplied by an expression that
states that all of the F put in place of ϕ are unique in respect of the first

61 Cf. Hilbert Ackermann Grundzüge.
62 One can, however, give to each formula in which the sign = occurs another one in

which it doesn’t occur anymore, the satisfiability of which is equivalent to the satisfiability
of the original formula. Therefore theorem N holds also for the narrower functional calculus
in the sense of Hilbert and Ackermann. Formulas with the sign = are not counted among
the narrower functional calculus in Hilbert Ackermann.

63 Variables of the third kind are allowed to stand everywhere as placeholders for indivi-
dual variables, for example F(ϕ(x)), ϕ(x) = y, and substituted arbitrarily inside each other,
for example ϕ[ψ(χ(x), y)z].
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placeholder.
We show now that there is to each problem of the form (x)ϕ(x) [κ writ-

ten above ϕ] (ϕ recursive) an equivalent one as concerns the satisfiability of
a formula iws, from which theorem N follows by the remark made. Since κ
is recursive, there is a recursive function ϕ such that ϕ(x) = 0 ∼ κ(x), and
there is for ϕ a series of functions ϕ1 . . . ϕn such that ϕn = ϕ, ϕ1 = f (x)
(successor function) and for each k either:

1.) (x1 . . . xn)ψk(0 x2 . . . xn) = ψl(x2 . . . xn) (1)

(x x1 . . . xn)ψ(ψ1(x), x2 . . . xn) = ϕn(x, ψ(x . . . xn))

l, n < k

2.) or (x1 . . . xn)ϕk(x1 . . . xn) = ϕl(ϕi1(x1) . . . ϕin(xn) (2)

The theorem holds in the case that ϕn is a constant function that forms the
negation.

20-495L64

P(x1) ∼ (Ex, y){
P(x2, x, y) ∼ (Ex1y1){(v1)x2(v1) ∼ v1 = x1 ∨ v1 = y1 &

(x, y)[
65

G(x, y, x1) = (v)[x1(v) ∼ x = v ∨ y = v]

G(x, x1) = (v)[x1(v) ∼ x = v]

P(x2, x1, y) ∼ (Ex, y1)[G(x1y1x2)& G(x1x)& G(y1xy)]

R(x3, xy) = (Ex2)[x3(x2)& G(x2x y)]

Eind(x3) ∼ (x)(Ey)(v)[R(x3x v) ∼ v = y]

P(z0x1 . . . xn−1)

Q(z0x1 . . . xn+1)

(Ex3)Eind(x3)& [(x)x3(0 x) → P(x1x2x3 . . . xn)

64 [This seems an inconclusive page with notation and definitions that continue on page
20-495R, in preparation of the theorem on page 284L that begins the backward direction of
the Heft. Comma and subscript 1 are indistinguishable as written. Compare also page 335R
for Eind.]

65 [Squeezed between the lines here: G(x1y1x2)]
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(y)(x)(k)[x3(k x)& x3(k + 1 y) → Q(y, k, x, x2 . . . xn)& x3(x1, x0)]

20-495R66

Q : (x)ϕ1(x) = x0 & (xy){[ϕ1(x) = ϕ1(y)] → x = y}
R : (x)ϕn(x) = 0

The formula (Ex0){P & Q & R} (abbreviated designation Z) has then the
required property, i.e.

1. If (x)Φ(x) = 0 holds, Z is satisfiable, because the functions

Φi(1 = 1 . . . k) clearly give when substituted in Z a correct proposition.

2. If Z is satisfiable, (x)Φ(x) holds.

Proof. Let Ψi be the functions that exist by assumption and that deliver,
when substituted in Z, a correct proposition. Their domain of objects is I.
We designate by (Ex0)P′&Q′&R′ the proposition that arises through sub-
stitution of the Ψi from (Ex0)P&Q&R , and by a0 {a0 ε I} one of the indi-
viduals x0 the existence of which is claimed in this proposition. We build
now

267R

the smallest subclass of I that contains a and is closed with respect to the
operation Φ1(x). This subclass (I′) has the property that each of the functi-
ons Ψi, when applied to an element from I′, gives again an element of I′,
for this follows for Ψ1 from the definition, and because of the correctness of
the formulas [(1), (2), (3)] for Ψi, this property is carried over from formu-
las with a lower index to ones with a higher one. We call Ψ′i the functions
that arise from the Ψi through a limitation to the domain of individuals I′.
The individuals from I′ can be (because of the correctness of Q′ for x0 = a)
mapped in a unique way to the non-negative integers and moreover so
that a goes over to 0 and the function Ψ′1 to the successor function. By this
mapping, the function Ψ′i goes, then, over to the function Φi and because of
the correctness of R′, (x)(Φn(x) = 0), or (x)Φ(x) = 0 holds, as was to be
proved.

The considerations that have led to the proof of theorem [TM: IX] can

66 [This “black hole” page continues with page 267R. The backside of this page is page
20-496 that has additions to the text in different places, as indicated above.]
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be carried through also within the system P. Therefore the equivalence bet-
ween a proposition of the form (x)F(x) (F recursive) and the satisfiability
of the corresponding formula of the narrower functional calculus is prova-
ble in P. From the undecidability of the one proposition follows that of the
other, by which theorem X has been proved.67

268L

To finish, let us point at the following interesting circumstance that con-
cerns the undecidable proposition S put up in the above. By a remark made
right in the beginning, S claims its own unprovability. Because S is unde-
cidable, it is naturally also unprovable. Then, what S claims is correct. We
have, then, decided with the help of metamathematical considerations a
proposition S that is undecidable in the system. The precise analysis of this
state of affairs leads to interesting results that concern a proof of freedom
from contradiction of the system P (and related systems) that will be trea-
ted in a continuation of this work soon to appear.

[The rest of the page indicates the following additions to the manuscript,
lightly cancelled which should just mean that they have been incorporated
in the text:]

Footnote p. 1. Cf. the summary of results of this work that appeared in
[the place of publication of the 1930 note is added here in the proofs of the
article].

Footnote By formulas of the narrower functional calculus of the system
P are naturally to be understood those that arise from formulas of the PrM
through the replacement of relations by classes of higher types, as indica-
ted on page footnote p. 12 [This passage is found in the typewritten
manuscript, and in the final article as footnote 54, p. 193.]

268R [The two titles below are followed by recursion equations for the pre-
decessor operation, recursion schemes, and schemes for the ε-operator.]

On the existence of undecidable mathematical propositions in the sys-

67 It follows from theorem X that, for example, Fermat’s theorem and that of Goldbach
would become decided if one had solved the decision problem of the narrower functional
calculus, because both of these problems can be easily brought into the form (x)F(x) (F
recursive).
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tem of the Princ math

On unsolvable mathematical problems in the system of the Principia
Mathematica

269 [The left page of this frame is blank, the right side has just formulas
with the ε-operator.]

270 [The left page has recursion schemes, the right a plan of contents for
a lecture on completeness. Gödel gave such a lecture in Vienna on 28 No-
vember 1930.]

1. How do the building blocks of an axiom system look like
basic objects, basic relations

2. How do the axioms look like
a.) Logical signs, meaning explanation
b.) Axioms of the first kind
c.) Axioms of the second kind
d.) Reduction of one to the other

3. How is the construction carried out
counterexample, inference, inference formalizable by Frege, problem of
completeness

4. Transition to the narrower functional calculus
Setting out of the problem by Hilbert

5. Setting up of the axioms and rules of inference

6. The problem for the propositional calculus and a brief solution

7. Production of normal form

8. Formula of grade k

9. Formula of first grade

271 [The left page has four equations for higher-level functions, followed
by unrelated computations in red pencil that continue to the next page.]
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8. Let us turn back to the undecidable proposition

272L

Dear Mr von Neumann

Many thanks for your letter of [20 November]. Unfortunately I have to in-
form you that I have been in possession of the result you communicated
since about three months. It is also found in the attached offprint of a com-
munication to the Academy of Sciences. I had finished the manuscript for
this communication already before my departure for Königsberg and had
presented it to Carnap. I gave it over to Hahn for publication in the Anzei-
ger of the Academy on 17 September. [Cancelled: The reason why I didn’t
inform you in any way [written heavily over: didn’t tell anything] of my se-
cond result in Königsberg is that the precise proof is not suited to oral com-
munication and that an approximate indication could easily arouse doubts
about [heavily cancelled: correctness] executability (as with the first) that
would not appear convincing.] As concerns the publication of this matter,
there will be given only a shorter outline of the proof of impossibility of a
proof of freedom from contradiction in the Monatsheft that will appear in Ja-
nuary [changed into: early 1931] (the main part of this treatise will be filled
with the proof of existence of undecidable sentences). The detailed carrying
through of the proof will appear in a Monatsheft only in July or August. I
can send you a copy [Abschrift] of – proofs of my next work in a few weeks.
[Cancelled: I would be readily prepared, though, to send you already the
manuscript – a copy of the manuscript. I am, though, [prepared] to send
you a part of my work that

272R

relates to freedom from contradiction, in a few days as a manuscript, so
that you see to what extent there obtains accordance with my result.]

I shall include the part of my work that concerns the proof of freedom
from contradiction in a manuscript, so that you can see from it to what
extent your proof matches mine.

The carrying through of the proof appears together with my proof of
undecidability in the next volume of the Monatshefte. I didn’t want to talk
about it before a publication because this thing (even more than the proof
of undecidability) must arouse doubt about its executability before it is laid
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out in an exact way.

273L

Let us now turn back to the undecidable proposition 17Gen r. We shall
denote the proposition that “κ is free from contradiction” by Wid(κ). For
the proof of the theorem that 17Gen r is unprovable, only the freedom from
contradiction of κ was used (cf. 1.) on page 30). So we have

Wid(κ) → Bewκ(17Gen r)

therefore by (6·1) Wid(κ) → (x)[x Bκ(17Gen r)]

and by (15) Wid(κ) → (x)Bewκ[Sb r 17
Z(p)]

By we have r = Sb(q 19
Z(p))

and q is by the relation sign (with the variables 17, 19) that, meant con-
tentfully, expresses that R(xy),

R(xy) ∼ x BκSb(y 17
Z(y)) holds

Therefore r expresses that

x BκSb(p 17
Z(p)) −→ x Bκ 17Gen r holds.

We designate this by R′(x)

273R

and by , we have

R′(x) → BewκSb(r 17
Z(x))

R′(x) → Bewκ Neg(r 17
Z(x) [incomplete]

(for even r is recursive), that is in other words, r is, contentfully meant, the
class R′(x). Therefore we have:

Wid(κ) → (x)R(x) 1

It is easy to show that all concepts that occur in section 2 (beginning with
the concept recursive included) are definable within the system P and all

1 One has to think for all these considerations a recursive class κ as a basis, chosen once
and for all (but arbitrarily) (thereby also q, r, p become fixed for values that can be given)
(the simplest assumption is that κ is the empty set).
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theorems proved about them even provable in P.2

Let, especially, w be the formula that exists by the remark made and that
denotes, contentfully meant, Wid(κ). Since r denotes, contentfully meant,
R′(x),

274L

then (x)R(x) becomes expressed by 17Gen r. We have therefore [added bet-
ween lines: and because Wid(κ) → (x)R(x) is, by a remark already made,
provable in P, i.e.], the proposition [added in margin: exactly expressed the
propositional sign] w Impl 17Gen r is provable, and because (even the more κ
provable3) 17Gen r is by the above [not] κ provable, then also w cannot be κ
provable,4 i.e., the freedom from contradiction of κ (with arbitrary recursi-
ve κ free from contradiction) is unprovable.

Even this proof is constructive, i.e., if a formal proof of freedom from
contradiction were at hand, one could effectively construct a contradiction
in κ. The theorem can be very easily generalized (the theorem about unde-
cidability), like this.

274R

It can be, for example, extended word for word to set theory and to axiom
systems for classical mathematics.5 In each of these systems S, the (propo-
sition expressible therein) A that states that S is free from contradiction is
unprovable in S. The proof given in the last section need not be carried
out in all details. A completion in this direction as well as precise charac-
terisation of systems in which on the one side [sentence breaks off but the
preceding cancelled sentence reads: A completion in this direction as well
as precise characterisation of systems in which it holds is to follow next to
other results in a continuation of this work.]

——————————————————————————

We have shown above that through the adjunction of Neg17Gen r to κ, a

2 One can convince oneself about this step by step, for the concepts defined and theorems
proved from page on.

3 [Parenthetical remark probably added afterwards at the end of line. An improved for-
mulation is found on page 276L.]

4 [Changed from: because 17Gen r is by the above undecidable, then also w must be
unprovable.]

5 Cf. J. v. Neumann [TM: Zur Hilbertschen Beweistheorie].
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system arises that is not ω-consistent. Therefore one can (roughly speaking)
infer that Neg17Gen r is false, consequently 17Gen r correct. We have, after
all, decided a proposition undecidable from κ. When one analyses precisely
what has been proved, it turns out that [sentence breaks off]

275L [This page has an addition to page 276L.]

275R6

From the outcome of section 2, a strange result follows that concerns
proofs of absence of contradiction of the system P (and its extensions). It is
stated by the following theorem. Let κ be an arbitrary recursively defined
class of formulas free from contradiction. Then we have:

Theorem IX The proposition (expressible in P) that Pκ
7 is free from contra-

diction is not κ-provable. Or: The freedom form contradiction of P (and its
extension Pκ) becomes unprovable in P (Pκ), on the condition that P (Pκ) are
free from contradiction. In the contrary case, each proposition is obviously
provable.

Proof: Let κ be an arbitrary (one that remains fixed in the considerations to
follow) recursive class (in the simplest case an empty class). To prove the
fact that 17Gen r is not κ-provable one needs, as emerges from the above
page , to use only the freedom from contradiction of κ, i.e., we have:

Wid(κ) → Bewκ(17Gen r) 8

or by (6·1) Wid(κ) → (x)xBκ(17Gen r)

276L

and therefore:
Wid(κ) → (x)xBκSb(p 19

Z(p))

or by Wid(κ) → (x)Q(x, p)

6 [The following three pages are almost identical to section 4 of Gödel’s published paper,
with just an added remark about Hilbert’s program. The missing cross-references can be
gathered from the latter.]

7 We designate by Pκ the system that becomes provable from P after the adjunction of
axiom class κ.

8 Wid(κ) = (Ex)[Form(x)& Bewκ(x)].
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We ascertain now the following:9 All of the concepts defined so far in secti-
ons 210 and 4 (and all of the claims proved) are also definable (provable) in
P. For we have applied the usual methods of definition and proof as these
are formalized in system P.

Let w be the sentence formula through which Wid(κ) is expressed in P.

Q(xy) is correspondingly expressed through q (in Z-ordinals),

Q(xp) consequently through r (= Sb(q 19
Z(p))) = r,

and (x)Q(xp) through 17Gen r.

Because of , w Impl(17Gen r) is then provable in P (even the more prova-
ble from κ). Were now w κ-provable, then also 17Gen r would be κ-provable,
and from this would follow by that κ is not free from contradiction, by
which theorem IX is proved.

Let it be remarked that even this proof is constructive, i.e., it admits, in
case w were proved, a contradiction to be shown in κ.

The whole proof lets itself be carried over word for word to set theory
(M) or to analysis (A). For that, one needs just to replace the metamathe-
matical concepts that concern P, defined on page ,

276R

by the corresponding concepts about M and A. The result would be the
same as in theorem IX: There exists no proof of freedom from contradiction
for A (M) that could be formalized within A (M), on the condition that A
(M) are free from contradiction.11

We have limited us in this work, in section 2 as well as 4, essentially to
the system P, and have indicated only in outline the application to other
systems. The results will be expressed and proved in full generality in a
continuation of this work soon to follow. In this work, even the proof of XI,
conducted here in a somewhat sketchy fashion, will be presented in detail.

277L

Dear Mr von Neumann!
9 [Addition from page 275L.]

10 From the definition of recursive up to the proof of theorem VIII [TM note 66: VI] inclu-
sive, [?] cf. J. v. Neumann.

11 [The typewritten manuscript has here the remark from page 279R.]
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Hearty thanks for your letter of 20·/IX [XI]. The result of which you write
to me is known to me since already about three months, but I didn’t want
to talk anything about it before I had brought the proof into a print-ready
form. I send you enclosed an offprint in which the mentioned theorem gets
expressed. I had finished the manuscript of this communication to the Aca-
demy already before my departure to Königsberg and presented it to Car-
nap. I gave it to Hahn for publication in September. The carrying through
of the proof will appear together with the proof of undecidability in a ne-
ar Monatsheft (beginning of 1931). I shall have proofs of this work in a few
weeks and will then send them to you immediately.

[Lightly cancelled: I have limited myself in this work, following the main
issue, to the system of PM, and as concerns other systems, remained con-
tent with the indication that the proof can be carried through similarly. I
wanted to prove in detail the general result to this effect only in a

277R

continuation of this work.]

Now to the matter itself. The basic idea of my proof can be described
(quite roughly) like this. The sentence A that I have put up and that is unde-
cidable in the formal system S asserts its own unprovability and is therefo-
re correct. If one analyses precisely how this undecidable sentence A could
still be metamathematically decided, it appears that this became possible
only under the condition of the freedom of contradiction of S. That is, it
was strictly taken not A but W → A that was proved (W means the propo-
sition: S is free of contradiction). The proof of W → A lets itself be carried
through, though, within the system S, so that if even W were provable in S,
then also A which contradicts the undecidability of A.

[Cancelled: As concerns the meaning of this result, my opinion is that
it does not reach as far as you suggest in your letter, namely that, as you
write, “the unprovability of freedom from contradiction of mathematics ”
would have been proved.]

278L

As concerns the meaning of this result, then, my opinion is that only the
impossibility of a proof of freedom from contradiction for a system within
the system itself is thereby proved. (I.e., one cannot pull oneself up by one’s
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own bootstraps from the swamp of contradiction.) For the rest, I am fully
convinced that there is [cancelled: a finite] an intuitionistically unobjectio-
nable proof of freedom of contradiction for classical mathematics [added
above: and set theory], and that therefore the Hilbertian point of view has
in no way been refuted. Only one thing is clear, namely that this proof of
freedom from contradiction has in any case to be far more complicated than
one had assumed so far.

As concerns the question of translation, then, I don’t share your opini-
on, but my opinion is instead that there exists no formal system in which
all [cancelled: intuitionistically unobjectionable constructive] finite proofs
would be expressible*12 (and even [cancelled: constructive] finite in the
strictest sense, i.e., without choice sequences)

278R

would be expressible. Still, I would like very much to hear about your con-
trary argument concerning the matter. I would be further interested in whe-
ther your proof is built on the same thoughts as mine, concerning which,
from what you intend in relation to publication, namely that you refer to
my work in yours, would be something I very much hope in any case.

Unfortunately, nothing seems to come of my travel to Berlin this year.
In the hope of a swift reply, I remain with

best wishes, yours sincerely

279L [blank]

279R [This remark is a part of Gödel’s section 4 in the printed paper.]

Let it be expressly stated that theorem IX (and the corresponding results
about A, M) stand in no contradiction with the Hilbertian formalistic stand-
point. For the latter requires only the existence of a finite consistency proof
and it is not at all excluded that each finite proof has to be representable in
P (A, M).

12 [The asterisk directs to an addition at the end of the letter draft:] ∗ From the treatise
of P. Bernays on “Philosophie der Mathematik und die hilbertsche Beweistheorie” in the
Blätter für Deutsche Philosophie, volume 4, issue 3/4, 1930, I see that this is also the view of
Hilbert and Bernays (cf. what is said on page 366).
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Some metamathematical results on definiteness with respect
to decision and on freedom from contradiction

by

Kurt Gödel, Wien.

-1-

If one builds on top of the Peano axioms the logic of the Principia mathe-
matica1 (natural numbers as individuals), with the axiom of choice (for all
types), a formal system S arises for which the following theorems hold:

I. The system S is not definite with respect to decision, i.e., there exist
within the system propositions A (and such can even be given) for which
neither A nor A is provable, and there exist even some undecidable pro-
blems of the simple structure: (Ex)F(x) in which x runs over the natural
numbers and F is a property of natural numbers (even definite with respect
to decision).

II. Even if one allows all the logical means of the Principia Mathematica
in metamathematics (especially the extended functional calculus1 and the
axiom of choice), there is no proof of freedom from contradiction for the system
S (even the less if one restricts the means of proof in some way). A proof of
freedom from contradiction of the system S can, then, be carried through
only by auxiliary means that lie outside the system S, and the case is analo-
gous also for other formal systems, say the Zermelo-Fränkel axiom system
of set theory.

III. Theorem I can be sharpened in that even if finitely many axioms are
added to the system S (or infinitely many that arise from the finitely many
through “type elevation”), no system definite with respect to decision arises
as soon as the

-2-

extended system is ℵ0-consistent. Here, a system is called ℵ0-consistent if
for no property of natural numbers F(x), we have as simultaneously pro-
vable:

1 With the axiom of reducibility or without ramified type theory.
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F(1), F(2) . . . F(n) . . . ad inf.

and (Ex)F(x). (There exist extensions of the system S that are consistent
but not ℵ0-consistent.)

IV. Theorem I holds even for all ℵ0-consistent extensions of the system S
by infinitely many axioms, as soon as the class added is definite with respect
to decision, i.e., it is decidable for each formula whether it is an axiom or not
(herein, the logical means of the Principia Mathematica are again assumed.)

Theorems I, III, IV, can be extended also to other formal systems, for ex-
ample the Zermelo-Fränkel axiom system of set theory. [Added by Gödel.]

The proofs of these theorems will appear in the Monatshefte für Mathe-
matik und Physik. [Added by Hahn.]
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- 1 -

On formally undecidable propositions of Principia Mathematica
and related systems1).

By KURT GÖDEL in Vienna.

1.

The development of mathematics in the direction of greater exactness
has led, as is well known, to wide areas of it having been formalized, in a
manner in which proofs can be carried through by a few mechanical rules.
The most comprehensive formal systems put up at the time are on the one
hand the system of the Principia Mathematica (PM)2), on the other hand
the axiom system of set theory3) of Zermelo–Fraenkel (developed further
by J. v. Neumann). Both of these systems are so comprehensive that all the
proof methods used in mathematics today are formalized in them, i.e., led
back to a few axioms and rules of inference. Therefore,

- 2 -
the conjecture lies close at hand that these axioms and rules of inference
are sufficient to carry through any proof at all thinkable. It will be shown
in what follows that this is not the case but that there exist in both of the
systems put forward even relatively simple problems from the theory of
ordinary entire numbers4) that cannot be decided from the axioms. It is a

1) Cf. the summary of results of this work that appeared in [the Anzeiger der Akad. Wiss.
in Wien (math.-naturw. Kl.) 1930, Nr. 19.]

2) We count among the axioms of system PM especially also: the axiom of infinity (in the
form: there exist exactly denumerable many individuals), the axiom of reducibility, and the
axiom of choice (for all types).

3) Cf. A. Fraenkel, Zehn Vorlesungen über die Grundlegung der Mengenlehre, Wis-
sensch. u. Hyp. Bd XXXI. J. v. Neumann, Die Axiomatisierung der Mengenlehre, Math.
Zeitschr. 27, 1928.

4) I.e., more precisely, there exist undecidable propositions in which there occur no con-
cepts beyond the logical constants − (not), ∨ (or), (x) (for all), =, except + (addition) ×
(multiplication), both in relation to natural numbers, and in which even the prefixes (x) are
allowed to relate only to natural numbers. In such propositions, there can thus occur only
numerical variables, but never function variables whether free or bound.
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situation that lies in no way in, say, the special nature of the systems put up,
but holds instead for a very wide class of formal systems to which belong
especially all those that arise from both of the presented ones through the
addition of finitely many axioms5), with the condition that no false propo-
sitions of the kind given in footnote4) become provable through the added
axioms.

We shall sketch to begin with, before we go into the details, the main
idea of the proof, naturally without raising any pretence to exactness. The
formulas of a formal system (we delimit ourselves here on the system PM)
are,

- 3 -

externally considered, finite series of basic signs (variables, logical con-
stants, and brackets and points of separation), and it is easy to make it
precise which series of basic signs are meaningful formulas and which not6).
Proofs are analogously, from a formal point of view, nothing but finite series
of formulas (with specific properties that can be given). It is, for metama-
thematical considerations, obviously indifferent what objects one takes as
basic signs, and we decide to use natural numbers7) as such signs. A for-
mula is then, correspondingly, a finite sequence of natural numbers8) and
a proof figure a finite sequence of finite sequences of natural numbers. The
metamathematical concepts (propositions) become hereby concepts (pro-
positions) about natural numbers and sequences of such and therefore (at
least in part) expressible within the system PM itself. One can show, espe-
cially, that the concepts “formula,” “proof figure,” “provable formula” are
definable within the system PM, i.e., one can, for example, give a formu-
la F(x) of one free variable of the PM9) such that F(x) states, interpreted
contentfully: x is a provable

- 4 -

formula. We produce now an undecidable proposition of the system PM,
i.e., a proposition A for which neither A nor non-A is provable, as follows:

5) In this, only those axioms are counted as distinct in PM that do not come out one from
the other by a mere change of types.

7) I.e., we map the basic signs in a one-to-one way on the natural numbers.
8) I.e., a function over segments of the natural number sequence of natural numbers.

[Belegung eines Abschnittes der Zahlenreihe mit natürliche Zahlen]
9) It would be very easy (just a bit long-winded) to actually write down this formula.
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We shall call a formula from PM with one free variable of the type of
the natural numbers (class of classes) a class sign. We think of the class
signs as ordered in some way in a sequence and designate the n-th by R(n)
and note that the concept of “class sign” as well as the ordering relation R
let themselves be defined in system PM. We designate by [α; n] the formula
that arises from the class sign α through the replacement of the free variable
by the sign for the natural number n10). Even the relation x = [y, z] turns
out to be definable within PM. We define now a class K of natural numbers
as follows: K(n) ≡ Bew[R(n); n] 11) (1)
(where Bew(x) means: x is a provable formula). All of the concepts that oc-
cur in the Definiens are definable in PM, therefore also the concept K com-
posed of them., i.e., there exists a class sign S 12) such that

- 5 -

formula [S; n] states, meant in a contentful way, that the natural number n
belongs to K. S is, as a class sign, identical to a determinate R(q), i.e., we
have

S = R(q)

for a determinate natural number q. We show now that the proposition
[R(q), q] 13) is undecidable in PM. For if it is assumed that the proposition
[R(q), q] is provable, then it would be correct contentfully interpreted, i.e.,
by the above, q would belong to K, i.e., by (1), Bew[R(q), q] would hold in
contradiction with the assumption. If instead the negation of [R(q), q] were
provable, then K(q), i.e., Bew[R(q), q] would hold. [R(q), q] together with
its negation would be provable, which is again impossible.

The analogy of this inference with the antinomy of Richard hits the eye;
There is also a close relation with the “liar”14), for the undecidable propo-
sition [R(q), q]) states that q belongs to K, i.e., by (1), that [R(q), q] is not

10) In case α is not a class sign or n no natural number, one means by [α; n] the empty
sequence of numbers, say.

11) Negation is denoted by overlining.
12) There is, again, not the least difficulty actually to write down the formula S.
13) As soon as S has been established, even q lets itself naturally be determined and the-

reby the undecidable proposition effectively written down.
14) In general, each epistemological antinomy can be turned into such a proof of undeci-

dability.
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provable. So we have a proposition in front of us that claims its own un-
provability15).

- 6 -
The proof method just presented can be evidently applied to every formal
system that, first, in terms of content, provides sufficiently in the form of
means of expression, so that the concepts used in the above considerations
(especially the concept “provable formula”) can be defined, and, secondly,
in which each provable formula is even contentfully correct. The exact car-
rying through of the above proof that is to follow has as its tasks among
others the replacement of the second of the conditions presented by a pu-
rely formal and much weaker one.

2.

We go now into the exact carrying through of the proof sketched above
and give, to start with, a precise description of the formal system P for
which we want to prove the existence of undecidable propositions. P is
essentially the system one obtains if one builds, upon the Peano axioms,

- 7 -
the logic of the Princ. Math.16) (numbers as individuals, successor relation
as undefined basic concept).

The basic signs of the system are as follows:

I Constants: “∼” (not) , “∨” (or) , “Π” (for all, with the usage xΠϕ(x) ),
“0” (zero), “ f ” (the successor of), “(” , “)” (bracket symbols).

II Variables of the first type (for individuals, i.e., natural numbers): “x1”,
“y1”, “z1”, . . .

Variables of the second type (for classes of natural numbers): “x2”,
“y2”, “z2”, . . .

15) Such a proposition has, contrary to appearance, nothing circular about it, for it claims
in the first place the undecidability of quite a specific formula (namely the q-th in the lexico-
graphical ordering under a determinate substitution), and it turns out only afterwards (by
chance as it were) that this formula is just the one in which the formula itself got expressed.

16) The addition of the axioms of Peano as well as all other changes called for in the system
of the Princ. Math. serve merely for the simplification of the proof and can in principle be
dispensed with.
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Variables of the third type (for classes of classes of natural numbers):
“x3”, “y3” ,“z3”, . . .

etc for each natural number as a type17).

Variables for two-place functions (relations) are superfluous as basic si-
gns, because one can define relations as classes of ordered pairs, and orde-
red pairs in turn as classes of classes, for example the ordered pair (a, b)
by ((a), (a, b)) in which (x, y) and (x) denote the classes the only elements
of which are x, y and x, respectively18). We mean by a sign of the first type a
combination of signs of the

- 8 -
form: n

a f a f f a . . .
︷ ︸︸ ︷
f . . . f a . . . etc

in which a is either “0” or a variable of first type. In the first case, we call
such a sign a number sign. For n > 1, we mean by a sign of the n-th type the
same as a variable of n-th type. We call combinations of signs of the form a(b),
in which b is a sign of type n and a a sign of type n + 1, elementary formulas.
We define the class of formulas as the smallest class to which belong the
elementary formulas and to which belong, with a and b, always also ∼ (a),
(a) ∨ (b), xΠ(a) (here x is an arbitrary variable19). We call (a) ∨ (b) the
disjunction of a and b, ∼ (a) the negation, and xΠ(a) a generalization of a. A
formula in which there occur no free variables (free variable defined in the
known way) is called a propositional formula. We call a formula with exactly
n free individual variables (and with no further free variables) an n-place
relation sign, for n = 1 also class sign.

- 9 -
We mean by Subst a(v

b) (in which a denotes a formula, v a variable, and b a
sign of the same type as v) the formula that arises from a when v is replaced
in it by b everywhere where it is free20). We say that a formula a is a type

17) It is required that denumerably many signs are available for each type of variable.
18) Even inhomogeneous relations can be defined in this way, for example, a relation

between individuals and classes as a class with elements of the form: ((x2), ((x1, x2)) – A
simple consideration shows that all theorems about relations provable in the Princ. Math.
are provable also under this treatment.

19) So xΠ(a) is a formula even in the case that x does not occur or does not occur free in
a. xΠ(a) means in this case naturally the same as a.

20) In case v is not free in a, Subst a(v
b) = a shall be the case.
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elevation of another b if a arises from b through the elevation by the same
number of all the free variables that occur in b.

The following formulas (I to V) are called axioms (they are written with
the help of the abbreviations defined in the usual way: . ,⊃, ≡, (Ex),=,21)
and with the application of the usual conventions about the leaving out of
brackets)22):

I 1. ∼ ( f x1 = 0)

2. f x1 = f y1 ⊃ x1 = y1

3. x2(0) . x1Π(x2(x1) ⊃ x2( f x1)) ⊃ x1Π(x2(x1))

II Each formula that arises from the following schemes through the sub-
stitution of arbitrary formulas for p, q, r.

1. p ∨ p ⊃ p 3. p ∨ q ⊃ q ∨ p

2. p ⊃ p ∨ q 4. (p ⊃ q) ⊃ r ∨ p ⊃ r ∨ q)

- 10 -

III Each formula that arises from the two schemes

1. vΠa ⊃ Subst a(v
b)

2. vΠ(b ∨ a) ⊃ b ∨ vΠ(a)

through making the following substitutions for a, v, b, c:
For a an arbitrary formula, for v an arbitrary variable, for b a formula

in which v does not occur free, for c a sign of the same type as v, on the
condition that c contain no variable that is bound in a in a place in which v
is free23).

IV Each formula that arises from the scheme

1. (Eu)(vΠ[u(v) ≡ a])

through the substitution of arbitrary variables of the types n and n + 1 for

21) x1 = y1 is, as in the Princ. Math. I, ∗13, to be thought as defined by x2Π(x2(x1) ≡
x2(y1)) (and the same for higher types).

22) To obtain the axioms from the schemes written down here one has, then (possibly after
the execution of the allowed substitutions), to

1.) resolve the abbreviations, 2.) add the suppressed brackets.
23) So c is either a variable or a sign of the form f f . . . f u︸ ︷︷ ︸ in which u is either “0” or a

numerical variable. k
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v and u, and for a a formula that does not contain u free. This axiom repres-
ents the axiom of reducibility (comprehension axiom in set theory).

V Each formula that arises from the following one through type elevation
(and this formula itself):

x1Π(x2(x1) ≡ y2(x1)) ⊃ x2 = y2

This axiom states that a class is completely determined by its members.

- 11 -

A formula c is called an immediate consequence of a and b (or of a) if a is the
formula (∼ (b)) ∨ (c) (or if c is, respectively, the formula vΠ(a), where v is
an arbitrary variable). The class of provable formulas is defined as the smal-
lest class of formulas that contains the axioms and is closed with respect to
the relation of “immediate consequence”24).

We associate next to the basic signs of system P natural numbers, in the
following one-to-one way:

“0”. . . 1 “∨” . . . 7 “(” . . . 11

“f”. . . 3 “Π” . . . 9 “)” . . . 13

“∼”. . . 5

further, for the variables of type n the numbers of the form pn (in which
p is a prime number > 13). Hereby there corresponds to each finite series
of basic signs (therefore also each to formula) in a one-to-one way a finite
series of natural numbers. We map now the finite series of natural numbers
(again in a one-to-one way) on the natural numbers, by letting the number
2n1 . 3n2 . . . pk

nk correspond to the series n1, n2 . . . nk, where pk denotes the
k-th prime number in size. Hereby a natural number is associated in a one-
to-one way, not just to each basic sign, but also to each finite series

- 12 -

of such in a one-to-one way. We designate the number associated to the ba-
sic sign (or the finite series of basic signs) a by Φ(a). Next, let there be given
whatever class or relation R(a1, a2 . . . an) between basic signs or series the-
reof. We associate to it that class (relation) R′(x1, x2 . . . xn) between natural

24) The rule of substitution becomes superfluous through all possible substitutions having
been carried out already in the axioms (analogously in J. v. Neumann, Zur Hilbertschen
Beweistheorie, Math. Zeitschr 26, 1927).
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numbers that obtains between x1, x2 . . . xn when and only when there exist
a1, a2 . . . an such that xi = Φ(ai) (i = 1, 2, . . . n) and R(a1, a2 . . . an) holds.
We designate the classes and relations between natural numbers that are
associated in this way to the metamathematical concepts so far defined, for
example “variable,” “formula,” “sentence-sign,” “axiom,” “provable for-
mula,” etc, by the same words in cursive writing. The proposition that there
exist formally unsolvable problems in system P, for example, reads as fol-
lows: There exists a sentence formulas a such that neither a nor the negation
of a are provable formulas.

We put next up the following definition: A number-theoretic function
ϕ(x1, x2 . . . xn) 25) is said to be recursively defined from the number-theoretic
functions ψ(x1, x2 . . . xn−1) and µ(x1, x2 . . . xn+1) if the following holds for
all x2 . . . xn, k 26):

- 13 -

ϕ(0, x2 . . . xn) = ψ(x2 . . . xn)
(2)

ϕ(k+1, x2 . . . xn) = µ(k, ϕ(k, x2 . . . xn), x2 . . . xn)

A number-theoretic function ϕ is said to be recursive if there exists a fini-
te series of functions ϕ1, ϕ2 . . . ϕn that ends with ϕ and has the property
that each of the functions ϕk of the series is either recursively defined from
two preceding ones or arises from whatever of the preceding ones through
substitution27) or is finally a constant or identical to the successor functi-
on x + 1. The length of the shortest series of ϕi that belongs to a recursive
function ϕ is called its level [Stufe]. A relation between natural numbers
R(x1 . . . xn) is called recursive28) if there is a recursive function ϕ(x1 . . . xn)
such that for all x1, x2 . . . xn

R(x1 . . . xn) ≡ [ϕ(x1 . . . xn) = 0] 29)

25) I.e., its domain of definition is the class of non-negative entire numbers and its range
of values a proper or improper subclass thereof.

26) Lower case Latin letters (possibly with indices) are in the following always variables
for non-negative entire numbers (in case the opposite is not especially noted).

27) More precisely, through substitution of some of the preceding functions in the argu-
ment places of one that precedes, for example:

ϕk(x1, x2) = ϕp[ϕq(x1, x2), ϕr(x2)] (p, q, r < k).
28) Recursive relations R have clearly the property that one can decide for each specific

n-tuple of numbers whether or not R(x1 . . . xn) holds.
29) For all considerations that relate to content, the Hilbertian symbolism is used.
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The following theorems hold:

I Each function (relation) that arises from recursive functions (relations) through
substitution of recursive functions in the place of variables is recursive; the same
for each function that

- 14 -

arises from recursive functions by recursive definition after scheme (2).

II If R and S are recursive relations, then also R, R ∨ S, R & S.

III If the functions ϕ(x) and ψ(y) are recursive, then also the relation ϕ(x) =
ψ(y) 30).

IV If the function ϕ(x) and the relation R(x, y) are recursive, then also the
relations S, T

S(x, y) ∼ (Ex)[x 5 ϕ(x)& R(x, y)]

T(x, y) ∼ (x)[x 5 ϕ(x) → R(x, y)]

as well as the function ψ

ψ(x y) = εx[x 5 ϕ(x)& R(x, y)],

where εxF(x) means: the smallest x for which F(x) holds, or 0 in case there
is no such number x.

Theorem I follows immediately from the definition of “recursive.” Theo-
rems II and III depend, as one can easily convince oneself, on the recur-
siveness of the number-theoretic functions

α(x), β(x, y), γ(x, y)

that correspond to the logical concepts −,∨,=, namely:

α(0) = 1 ; α(x) = 0 for x 6= 0

β(0, x) = β(x, 0) = 0 ; β(x, y) = 1, if x, y are both 6= 0

γ(x, y) = 0 if x = y ; γ(x, y) = 1, if x 6= y

30) We use German letters x y as abbreviating designations for arbitrary n-tuples of varia-
bles, e.g., x1 x2 . . . xn.
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- 15 -

The proof of theorem IV is in brevity the following: There is by assumption
a recursive $(x, y) such that: R(x, y) ∼ [$(x, y) = 0]. We define now by
recursion scheme (2) a function χ(x, y) in the following way:

χ(0, y) = 0

χ(n + 1, y) = (n + 1) · a + χ(n, y) · α(a) 31)

where a = α[α($(0, y))] · α[$(n + 1, y)] · α[χ(n, y)].

χ(n+1, y) is therefore either = n + 1 (when a = 1) or = χ(n, y) (when
a = 0) 32). The first case occurs clearly if and only if all of the factors of a are
1, i.e., when the following holds:

R(0, y)& R(n+1, y)& [χ(n, y) = 0]

From this it follows that the function χ(n, y) (considered as a function of
n) remains 0 until the smallest value n for which R(n, y) holds, and is from
there on equal to this value (in case that R(0, y) already holds, we have
correspondingly χ(n, y) constant and = 0). By this we have:

ψ(x, y) = χ(ϕ(x), y)

S(x, y) ∼ R[ψ(x, y), y]

- 16 -

The relation T can be reduced through negation back to a case that is ana-
logous to S, by which theorem IV is proved.

The functions x + y, x · y, xy, further the relations x < y, x = y are, as
one is easily convinced, recursive, and starting with these concepts, we de-
fine now a series of functions (relations) 1–45, each of which is defined from
the preceding ones by the procedures mentioned in theorems I to IV. Here,
several of the steps of definition allowed by theorems I to IV are usual-
ly combined into one. Each of the functions (relations) 1–45, among them
occur for example the concepts “FORMULA,” “AXIOM,” “IMMEDIATE CON-
SEQUENCE,” is therefore recursive.

31) We assume as known that the functions x + y (addition), x · y (multiplication) are
recursive.

32) a cannot assume other values than 0 and 1, as is seen from the definition.
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- 17 -

1. x/y ≡ (Ez)[z 5 x & x = y · z] 33)

x is divisible by y. 34)

2. Prim(x) ≡ (Ez)[z 5 x & z 6= 1 & z 6= x & x/z]& x > 1

x is a prime number.

3. 0 Pr x ≡ 0

(n + 1)Pr x ≡ εy[y 5 x & Prim(y)& x/y & y > n Pr x]

n Pr x is the n-th (in order of value) prime number contained in x

4. 0! ≡ 1

(n + 1)! ≡ (n + 1) · n!

5. Pr(0) ≡ 0

Pr(n + 1) ≡ εy[y 5 x{Pr(n)}! + 1 & Prim(y)& y > Pr(n)]

Pr(n) is the n-th prime number (in order of value)

- 18 -

6. n Gl x ≡ εy[y 5 x & x/(n Pr x)y & x/(n Pr x)y+1]

n Gl x is the n-th member of the number series associated to x (for
n > 0 and n not greater than the length of this series; otherwise 0)

7. l(x) ≡ εy[y 5 x & y Pr x > 0 & (y + 1) Pr x = 0]

l(x) is the length of the number series associated to x.

8. x ∗ y ≡ εz{z 5 [Pr(l(x) + l(y))]x+y &

(n)[n 5 l(x) → n Gl z = n Gl x]&

(n)[0 < n 5 l(y) → (n + l(x)) Gl z = n Gl y]}
x ∗ y corresponds to the operation of “adjoining one to another” of

two finite series of numbers.
33) The sign≡ is used in the sense of “definitional equality” (the symbolism is for the rest

the Hilbertian one).
34) Whenever one of the symbols (x), (Ex), εx occurs in the definitions to follow, it is

followed by a bound on x. This bound serves merely to ensure the recursive nature of
the concepts defined (cf. theorem IV). The scope of these concepts would, on the contrary,
usually not change by the leaving out of this bound.
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9. R(x) ≡ 2x

R(x) corresponds to the number series that consists of just the num-
ber x.

10. E(x) ≡ R(11) ∗ x ∗ R(13)

E(x) corresponds to the operation of “bracketing” (11 and 13 are as-
sociated to the basic signs “(” and “)” ).

11. n Var x ≡ (Ez)[13 < z 5 x & Prim(z)& x = zn]& n 6= 0

x is a VARIABLE OF TYPE n.

12. Var(x) ≡ (En)[n 5 x & n Var x]

x is a VARIABLE.

- 19 -
13. Neg(x) ≡ R(5) ∗ E(x)

Neg(x) is the NEGATION of x.

14. x Dis y ≡ E(x) ∗ R(7) ∗ E(y)

x Dis y is the DISJUNCTION of x and y.

15. x Gen y ≡ R(x) ∗ R(9) ∗ E(y)

x Gen y is the GENERALIZATION of y by the VARIABLE x.

16. 0 Nf x ≡ x

(n + 1)Nf x ≡ R(3) ∗ n Nf x

n Nf x corresponds to the operation: “setting the sign “ f ” n times in
front of x.”

17. Z(n) ≡ n Nf [R(1)]

Z(n) is the NUMBER SIGN for the number n

18. Typ1(x) ≡ (Em, n){m, n 5 x & [m = 1∨ 1 Var(m)]

& x = n Nf [R(m)]} 34a)

x is a SIGN OF THE FIRST TYPE.

19. Typn(x) ≡ [n = 1 & Typ1(x)] ∨ [n >1 &
—————————————

34a) m, n 5 x stands for: m 5 x & n 5 x (and the same for more than 2 variables)
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(Ev){v 5 x & n Var v & x = R(v)}]
x is a SIGN OF n-TH TYPE.

20. Elf (x) ≡ (Ey, z, n)[y, z, n 5 x & Typn(y)

& Typn+1(z)& x = z ∗ E(y)]

x is an ELEMENTARY FORMULA.

- 20 -

21. Op(xyz) ≡ x = Neg(y) ∨ x = y Dis z∨
(Ev)[v 5 x & Var(v)& x = v Gen y]

22. FR(x) ≡ (n){0 < n 5 l(x) → Elf (n Gl x)∨
(Ep, q)[0 < p, q 5 n & Op(n Gl x, p Gl x, q Gl x)]}

& l(x) > 0

x is a series of FORMULAS each of which is either an ELEMENTARY

FORMULA or comes out from the previous ones through the operations of
NEGATION, DISJUNCTION, GENERALIZATION.

23. Form(x) ≡ (En){n 5 (Pr[l(x)]2)x[l(x)]2

& FR(n)& x = [l(n)]Gl n} 35)

x is a FORMULA (i.e., the last member of a series of FORMULAS FR)

24. v Fr n, x ≡ Var(v)& Form(x)& v = n Gl x &

(Ea, b, c)[a, b, c 5 x & x = a ∗ (v Gen b) ∗ c

& Form(b)& l(a) + 1 < n 5 l(a) + l(v Gen b)]

The VARIABLE v is free in x in the n-th place.

- 21 -

25. v Geb n, x ≡ Var(v)& v = n Gl x & v Fr n, x

35) One recognises the bound n 5 (Pr[l(x)]2)xl(x)2
like this: the length n of the shortest

series of formulas that belongs to x can be at most equal to the number of subformulas of
x. But there are at most l(x) subformulas of length 1, l(x) − 1 of length 2, and so on, so
on the whole at most l(x)[l(x)−1]

2 < l(x)2. All of the prime numbers from n can then be
assumed to be smaller than Pr{[l(x)]2}, their number < l(x)2, and their exponents (which
are subformulas of x) 5 x.
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& Form(x)

The VARIABLE v is BOUND at the n-th place in x.

26. v Fr x ≡ (En)[n 5 l(x)& v Fr n, x]

v occurs in x as a FREE VARIABLE.

27. Su x(n
y) ≡ εz[(Eu, v) u, v 5 x & x = u ∗ R(n Gl x) ∗ v

& z = u ∗ y ∗ v & n = l(u) + 1]

Su x(n
y) arises from x when one substitutes y in place of the n-th mem-

ber of x.

28. 0 St v, x ≡ εn{n 5 l(x)& v Fr n, x

& (Ep)[n < p 5 lx & v Fr p, x]}
(k + 1) St v, x ≡ εn{n < k St v, x & v Fr n, x

& (Ep)[n < p < k St v, x & v Fr p, x]}
k St v, x is the k + 1-th place in x (counted from the end of the FORMU-

LA) in which v is FREE in x (and 0 in case there is no such place).

29. A(v, x) ≡ εn{n 5 l(x)& n St v, x = 0}
A(v, x) is the number of positions in which v is FREE in x.

- 22 -
30. Sb0(xv

y) ≡ x

Sbk+1(xv
y) ≡ Su[Sbk(xv

y)](
k St v,x

y )

31. Sb(xv
y) ≡ SbA(v,x)(xv

y)
36)

Sb(xv
y) is the concept SUBST(av

b)
37) defined above.

32. x Imp y ≡ [Neg(x)]Dis y

x Con y ≡ Neg{[Neg(x)]Dis[Neg(y)]}
x Aeq y ≡ (x Imp y)Con(y Imp x)

v Ex y ≡ Neg{v Gen[Neg(y)]}
33. n Th x ≡ εy{y 5 x(xn) & (k)[k 5 l(x) →

36) In case v is not a VARIABLE or x not a FORMULA, we have Sb(xv
y) = x.

37) We write, instead of Sb[Sb(x v
y)

w
z ], Sb(x v

y
w
z ) (analogously for more than two variables).

186



(k Gl x 5 13 & k Gl y = k Gl x)∨
(k Gl x > 13 & k Gl y = k Gl x . [1 Pr(k Gl x)]n)]}

n Th x is the n-TH TYPE ELEVATION of x (in case x is a FORMULA).

Three specific numbers correspond to axioms I 1–3, ones we designate
by z1, z2, z3, and we define:

34. Z-Ax(x) ≡ (x = z1 ∨ x = z2 ∨ x = z3)

- 23 -

35. A1-Ax(x) ≡ (Ey)[y 5 x & Form(y)& x = (y Dis y) Imp y]

x is a FORMULA that arises through a substitution in axiom II 1.
A2-Ax, A3-Ax, A4-Ax that correspond to axioms II 2 to 4 are defined analo-
gously.

36. A-Ax(x) ≡ A1-Ax(x) ∨ A2-Ax(x) ∨ A3-Ax(x) ∨ A4-Ax(x)

x is a FORMULA that arises through a substitution in a propositional
axiom.

37. Q(z, y, v) ≡ (En, m, w)[n 5 l(y)& m 5 l(z)& w 5 z &

w = m Gl z & w Geb n, y & Fr n, y]

z contains no VARIABLE that is BOUND in a place in y in which v is
FREE.

38. L1-Ax(x) ≡ (Ev, y, z, n){v, y, z, n 5 x& n Var v &

Typn(z)& Form(y)& Q(z, y, v)&

x = (v Gen y)Impl[Sb(yv
z)]}

x is a FORMULA that arises from axiom scheme III 1 through substitu-
tion.

39. L2-Ax(x) ≡ (Ev, q, r, p){v, q, r, p 5 x &Var(v)& Form(p)

& v Fr p & Form(q)&

x = [v Gen(p Dis q)]Impl[p Dis(v Gen q)]}
x is a FORMULA that arises from axiom scheme III 2 through substitu-

tion.
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40. R-Ax(x) ≡ (Eu, v, y, n)[u, v, y, n 5 x & n Var v &

(n + 1)Var u & u Fr y & Form(y)&

x = u Ex{v Gen[[R(u) ∗ E(R(v))]Aeq y]}]
x is a FORMULA that arises from axiom scheme IV 1 through substitu-

tion.

A determinate number z4 corresponds to axiom V 1 and we define:

41. M-Ax(x) ≡ (En)[n 5 x & x = n Th z4]

42. Ax(x) ≡ Z-Ax(x) ∨ A-Ax(x) ∨ L1-Ax(x) ∨ L2-Ax(x)

∨R-Ax(x)∨M-Ax(x)

x is an AXIOM.

43. Fl(xyz) ≡ y = z Impl x∨
(Ev)[v 5 x & Var(v)& x = v Gen y]

x is an IMMEDIATE CONSEQUENCE of y and z.

44. Bw(x) ≡ (n){0 < n 5 l(x) → Ax(n Gl x)∨
(Ep, q)[p, q 5 n & Fl(n Gl x, p Gl x, q Gl x)]}& l(x) > 0

x is a PROOF FIGURE (a finite sequence of FORMULAS, each of which is
either an AXIOM or an IMMEDIATE CONSEQUENCE of two preceding ones).

- 25 -

45. x B y ≡ Bw(x)& [l(x)]Gl x = y] [last bracket to be deleted]

x is a PROOF of the FORMULA y

46. Bew(x) ≡ (Ey)y B x

x is a PROVABLE FORMULA. (Bew(x) is the only one among the con-
cepts 1–46 of which it cannot be claimed that it is recursive).

- 26 -

The fact that one can vaguely formulate as: Each recursive relation can
be defined within the system P (meant in a contentful way) without recourse
to any contentful meaning of the formulas of P, is expressed in an exact
form by the following theorem:
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Theorem V: There exists for each recursive relation R(x1 . . . xn) an n-place RELA-
TION SIGN r (with the FREE VARIABLES u1, u2 . . . un) such that for all x1 . . . xn
holds:

R(x1 . . . xn) → Bew[Sb(ru1.........un
Z(x1)...Z(xn)

] (3)

R(x1 . . . xn) → Bew[Neg Sb(ru1 .........un
Z(x1)...Z(xn)

)] 38) (4)

We rest content here to indicate the proof of this theorem in outline, as
there are no difficulties of principle in it and as it is rather long-winded39).
We prove the theorem for all relations R(x1 . . . xn) of the form:

x1 = ϕ(x2 . . . xn)40)

(here ϕ is a recursive function) and apply complete induction on the level
of ϕ. So let ϕ have level n. It arises from functions of a lower level ϕ1 . . . ϕk
through the operations of substitution or of recursive definition. By the in-
ductive hypothesis, all is proved for ϕ1 . . . ϕk,

- 27 -

so there exist the associated RELATION SIGNS r1 . . . rk such that V holds.
The definitional processes by which ϕ arises from ϕ1 . . . ϕk (substitution
and recursive definition) can all be formally reproduced in system P. If one
does that, one obtains from r1 . . . rk a new RELATION SIGN r 41) for which
one can prove without difficulty that theorem V holds, under the condition
that it holds for ϕ1 . . . ϕk, r1 . . . rk. A RELATION SIGN r to which a recursive
relation is associated in this way42) shall be called recursive.

We come now to the goal of our explanations: Let κ be an arbitrary class
of FORMULAS. We designate by Flg(κ) (set of consequences of κ [Folge-
rungsmenge]) the smallest set of FORMULAS that contains all FORMULAS of
κ and all AXIOMS and is closed with respect to the relation of “IMMEDIATE

38) The VARIABLES u1 . . . un can be given arbitrarily. There exists, for example, always an
r with the FREE VARIABLES 17, 19, 23 . . . etc for which (3) and (4) hold.

39) Theorem V depends obviously on the fact that with a recursive relation R it is, for each
n-tuple of numbers, decidable from the axioms of the system P whether relation R obtains or
not.

40) From this follows at once that it holds for each recursive relation, because such a
relation is equal in meaning to 0 = ϕ(x1 . . . xn), in which ϕ is recursive.

41) In a precise carrying through of this proof, r is not defined through the detour of a
contentful meaning, but through a purely formal condition.

42) So, one that expresses, contentfully meant, that this relation obtains.
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CONSEQUENCE.” κ is called ω-consistent if there is no CLASS SIGN a (with
the free variable v) such that:

(n)[Sb(av
Z(n)) ε Flg(κ)]& [Neg(v Gen a)] ε Flg(κ)

- 28 -
Each ω-consistent system is obviously also free from contradiction. The

converse, however, does not hold, as will be shown later.
The general result about existence of undecidable propositions reads as

follows:

Theorem VI: There exists for each ω-consistent recursive class κ of FORMULAS

a recursive CLASS SIGN r (with the FREE VARIABLE v) such that neither v Gen r
nor Neg v Gen r belong to Flg(κ).

Proof: Let κ be an arbitrary recursive ω-consistent class of FORMULAS.
We define:

Bwκ(x) ≡ (n)[n 5 l(x) → Ax(n Gl x) ∨ (n Gl x) ε κ ∨ (5)

(Ep, q){p, q 5 n & Fl(n Gl x, p Gl x, q Gl x)}]& l(x) > 0

(cf. the analogous concept 44)

x Bκ y ≡ Bwκ(x)& [l(x)]Gl x = y (6)

Bewκ(x) ≡ (Ey) y Bκx (6·1)

(cf. the analogous concepts 45, 46)

We clearly have:

(x)Bewκ(x) ∼ x ε Flg(κ) (7)

(x)Bew(x) → Bewκ(x) (8)

- 29 -
We define now the relation:

Q(x, y) ≡ x Bκ[Sb(y 19
Z(y))] (8·1)

Because x Bκ n (by (6), (5) ) and Sb(y 19
Z(y)) (by Def. 17, 31) are recursive,

then also Q(xy). Therefore there exists then, by theorem V and (8), a RE-
LATION SIGN q (with the FREE VARIABLES 17, 19) such that the following
hold:

x Bκ[Sb(y 19
Z(y))] → Bewκ[Sb(q 17 19

Z(x) Z(y))] (9)
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x Bκ[Sb(y 19
Z(y))] → Bewκ[Neg Sb(q 17 19

Z(x) Z(y))] (10)

We put:

p = 17Gen q (11)

(p is a CLASS SIGN with the FREE VARIABLE 19)

and

r = Sb(q 19
Z(y)) (12)

(r is a recursive CLASS SIGN with the FREE VARIABLE 17 43)). Then the follo-
wing holds:

Sb(p 19
Z(p)) = Sb([17Gen q] 19

Z(p)) = 17Gen Sb(q 19
Z(p)) = 17Gen r 44) (13)

(because of (11) and (12) ) further:

(x)Sb(q 17 19
Z(x) Z(p)) = Sb(r 17

Z(x)) (14)

- 30 -
(by (12) ). If one now substitutes in (9) and (10) p for y, then, taking into
consideration (13) and (14), there arise:

x Bκ(17Gen r) → Bewκ[Sb(r 17
Z(x))] (15)

x Bκ(17Gen r) → Bewκ[Neg Sb(r 17
Z(x))] (16)

Now there results:

1. 17Gen r is not κ-PROVABLE45). For were this the case, there would
(by 6·1) exist an n such that n Bκ(17Gen r). By (16), we would then have:
Bewκ[Neg Sb(r 17

Z(x))], whereas on the other hand, from the κ-PROVABILITY

of 17Genr r follows also that of Sb(r 17
Z(x)). So κ would be inconsistent (and

the more so ω-inconsistent).

2. Neg(17Genr) is not κ-PROVABLE, for, as was just proved, 17Gen r is
not κ-provable, i.e., (by 6·1), we have (n)n Bκ(17Gen r). From this follows
by (15) (n)Bewκ[Sb(r 17

Z(x))] that, together with Bewκ[Neg(17Gen r)], would

43) For r arises from the recursive relation sign q through the replacement of a free variable
by a determinate number (p).

44) The operations Gen, Sb are obviously always exchangeable, in case they relate to dif-
ferent variables.

45) x is κ-PROVABLE shall mean x ε Flg(κ) that says by (7) the same as Bewκ(x).
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violate the ω-consistency of κ.
17Gen r is, then, undecidable from κ, by which theorem VI has been

proved.
The proof of theorem VI was carried through without express conside-

ration of intuitionistic requirements. It is, though, easy to convince oneself
that the following is shown in an intuitionistically unobjectionable way: Let
an arbitrary recursively defined class κ be presented. If, then, a formal de-
cision (from κ) is laid out for the (effectively presentable) PROPOSITIONAL

FORMULA 17 Gen r, one can effectively specify:

1. A PROOF for Neg(17Genr).

2. A PROOF for Sb(r 17
Z(x)) for each arbitrary n, i.e., a formal decision of

17Genr would have as a consequence the effective demonstrability of an
ω-contradiction.

- 30a -

We shall call a relation (class) R(x1 . . . xn) between natural numbers de-
finite with respect to decision if there is a RELATION SIGN r with the free varia-
bles u1 . . . un such that (3) and (4) hold. In particular, each recursive relation
is then, by theorem V, definite with respect to decision. If a RELATION SIGN

is associated in this way to a relation definite with respect to decision, it
shall analogously be called definite with respect to decision. It is, now, suffi-
cient for the existence of undecidable propositions to assume of the class κ
that it is ω-consistent and definite with respect to decision. For definiten-
ess with respect to decision is carried over from κ to x Bκ y (cf. (6) ) and to
Q(x, y) (cf. (8·1) ), and only this was utilized in the above proof. The unde-
cidable proposition has in this case the form v Gen r, in which r is a CLASS

SIGN definite with respect to decision (it suffices, incidentally, that κ is de-
finite with respect to decision in the system extended by κ).

If one requires of κ merely freedom from contradiction, instead of ω-
consistency, there follows, even if not the existence of an undecidable pro-
position, then the existence of a property (r) for which neither a counter-
example can be given, nor is it provable that it belongs to all numbers. For
in the proof that 17 Gen r is not κ-PROVABLE, only the freedom from contra-
diction of κ was used, and from Bewκ(17 Gen r) follows by (15) Sb(r 17

Z(x)) for
each number x, consequently for no number is x Neg Sb(r 17

Z(x)) κ-PROVABLE.
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- 31 -
If one adjoins Neg(17Gen r) to κ, one obtains a class of FORMULAS κ′

that is free from contradiction but not ω-consistent. κ′ is free from contra-
diction, because otherwise 17Gen r would be κ-provable. κ′ is, though, not
ω-consistent because we have by Bewκ17Gen r and (15): (x)BewκSb(r 17

Z(x)),
so even more also: (x)Bewκ′Sb(r 17

Z(x)), and on the other hand there holds

naturally: Bewκ′ [Neg 17Gen r)].46)
A special case of theorem VI is the one in which the class κ consists

of finitely many FORMULAS (and those arising by TYPE ELEVATION). Each
finite class α is obviously recursively definable. Let a be the greatest number
contained in α. Then in this case the following holds for κ:

x ε κ ∼ (Em, n)[m 5 x & n 5 a & n ε α & x = m Th n]

Then κ is recursive. This allows one to conclude, for example, that not
all propositions are solvable even with the help of the axiom of choice (for
all types) or with the generalized continuum hypothesis, assuming that the-
se hypotheses are ω-consistent.

- 32 -
In the proof of theorem VI, no other properties of the system P were

used than the following:

1.) The class of axioms and the rules of inference (i.e., the relation “im-
mediate consequence”) are recursively definable (as soon as one replaces
in some way the basic signs by natural numbers).

2.) Each recursive relation can be defined inside system P (in the sense
of theorem V).

Therefore there exist in each formal system in which the conditions 1.),
2.) are satisfied and that is ω-consistent undecidable propositions of the
form (x)F(x) in which F is a recursively defined property of natural num-
bers, and the same in each extension of such a system by a recursively de-
fined class of axioms. To systems that satisfy the conditions 1.), 2.) belong,
as is easy to ascertain, the axiom systems of set theory of Zermelo Fraen-
kel and of v. Neumann47), further the axiom system of number theory that

46) [The published version has here note 46. The typewritten manuscript jumps from note
45 to 47, see footnote 48 of the last shorthand version, p. 264L.)

47) The proof of condition 1 presents itself even as simpler than in the case of system P,
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consists of the axioms of Peano, recursive definition (by scheme (2) ), and
the logical rules.48) Condition 1 is satisfied, in general, by each system the
rules of inference of which are the usual ones and the axioms of which arise
(analogously to P) through subsitution from finitely many schemes.

- 33 -

3

We derive now further consequences from theorem VI and give to this
purpose the following definition:

A relation (class) is called arithmetic if it can be defined with the help
of just the concepts +, · (addition and multiplication applied to natural
numbers49) and the logical constants ∨, −, (x), =, in which (x) and = are
allowed to apply only to natural numbers50). The concept of an “arithmetic
proposition” is defined correspondingly. Especially, the relations “greater
than” and “congruent modulo” for example are arithmetic, because we ha-
ve:

x > y ∼ (Ez)[y = x + z]

x ≡ y (mod n) ∼ (Ez)[x = y + z.n ∨ y = x + z.n]

The following theorem holds:

Theorem VII: Each recursive relation is arithmetic.

We prove the theorem in the form: Each relation of the form x0 = ϕ(x1 . . . xn)
in which ϕ is recursive is arithmetic, and we use complete induction on the
level of ϕ.

- 34 -
Let ϕ have level n. We have either:

1.) ϕ(x1 . . . xn) = $[χ1(x1 . . . xn), χ2(x1 . . . xn) . . . χm(x1 . . . xn)] 51)

because there is only one kind of ground variable (and two in v. Neumann).
48) Cf. problem III in D. Hilbert’s talk on Probleme der Grundlegung der Mathematik,

Math. Ann. 102.
49) 0 is counted here and in what follows always as belonging to the natural numbers.
50) The Definiens of such a concept must be built with only the help of the signs introduced

and variables for natural numbers x, y, . . . (there must not occur function variables).
51) Obviously not all of the x1 . . . xn need in fact occur in the χi (cf. the example in footnote

27)).
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(here $ and all of the χi have levels smaller than n) or:

2. ϕ(0, x2 . . . xn) = ψ(x2 . . . xn)

ϕ(k+1, x2 . . . xn) = µ[k, ϕ(k, x2 . . . xn), x2 . . . xn]

(in which ψ, µ have a level lower than n).

In the first case, we have:

x0 = ϕ(x1 . . . xn) ∼ (Ey1 . . . ym)[R(x0 y1 . . . ym)&

& S1(y1, x1 . . . xn)& . . . & Sm(ym, x1 . . . xn)],

in which R and Si are the arithmetic relations that, by the inductive assump-
tion, exist and are equivalent to x0 = $(y1 . . . ym) and yi = χi(x1 . . . xn),
respectively. Therefore x0 = ϕ(x1 . . . xn) is in this case arithmetic.

In the second case, we apply the following procedure: One can define
the relation x0 = ϕ(x1 . . . xn) with the help of the concept of a “sequence of
numbers” ( f ) 52) in the following way:

x0 = ϕ(x1 . . . xn) ∼ (E f ){ f0 = ψ(x2 . . . xn)& (k)[k < x1 →
fk+1 = µ(k, fk, x2 . . . xn)]& x0 = fx1}

- 35 -

We have therefore, if S(y, x2 . . . xm) and T(z, x1 . . . xn+1) are the arithmetic
relations that, by the inductive assumption, exist and are equivalent to y =
ψ(x2 . . . xn) and z = µ(x1 . . . xm+1), respectively:

x0 = ϕ(x1 . . . xn) ∼ (E f ){S( f0, x2 . . . xn)& (k)[k < x1 → (17)

T( fk+1, k, fk, x2 . . . xn)]& x0 = fx1}
We replace now the concept “sequence of numbers” by the concept “pair
of numbers,” by associating to the pair n, d the sequence of numbers f (n,d)

( f (n,d)
k = [n]1+(k+1)d) in which [n]p denotes the smallest non-negative re-

mainder of n modulo p.
We have then the

Lemma 1. If f is an arbitrary sequence of natural numbers and k an
arbitrary natural number, there exists a pair of natural numbers n, d such
that f (n,d) and f agree on the k first members.

52) The k+1-st member of the sequence f is denoted by fk (with f0 the first).
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Proof: Let l be the greatest of the numbers k, f0, f1 . . . fk−1. Let n be de-
termined so that:

n ≡ fi(mod 1 + (i + 1)l!) for i = 0, 1, . . . k−1

something that is possible because each two of the numbers 1 + (i + 1)l!
(i = 0, 1 . . . k −1) are relatively prime. For a prime number contained in
two of these would also have to be contained in the difference

- 36 -

(i1− i2)l! and therefore, because of i1− i2 < l, in l!, which is impossible. The
pair of numbers [from the shorthand version: n, l!] fulfils therefore what is
required.

The relation x = [n]p is defined by:

x ≡ n(mod p)& x < n

It is therefore arithmetic, and then also the relation P(x0, x1 . . . xn):

P(x0, . . . xn) ≡ (En, d){S([n]d+1, x2 . . . xn)& (k)[k < x1 →
T([n]1+d(k+2), k, [n]1+d(k+1), x2 . . . xn)]& x0 = [n]1+d(x1+1)}

that is by (17) and Lemma 1 equivalent to: x0 = ϕ(x1 . . . xn) (with the se-
quence f in (17), the question is only about its course of values up to the
x1+1-st member.) Hereby theorem VII is proved.

In accordance with theorem VI, there exists for each problem of the form
(x)F(x) (F recursive) an equivalent arithmetic problem, and because the
whole proof of theorem VII can be formalized within the system P, this
equivalence is also provable. Therefore we have:

Theorem VIII: There exist in each of the formal systems mentioned in theorem
VI 53) undecidable arithmetic propositions.

- 37 -
The same holds (by the remark on page 32) for axiom system of set

theory and their extensions by ω-consistent recursive classes of axioms.

We derive finally the following result:

Theorem IX: There exist in all of the formal systems mentioned in theo-
53) These are those ω-consistent systems that arise from P through the addition of a re-

cursively defined class of axioms.
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rem VI 53)undecidable problems of the narrower functional calculus 54), i.e., for-
mulas of the narrower functional calculus for which neither general validi-
ty nor the existence of a counterexample is provable55).

This depends on:

Theorem X: Each problem of the form (x)F(x) (F recursive) can be reduced back
to the satisfiability of a formula of the narrower functional calculus. (i.e., one can
give for each recursive F a formula of the narrower functional calculus the
satisfiability of which is equivalent to the correctness of (x)F(x)).

We count as formulas of the narrower functional calculus (e.F.) those
formulas that are built up from the basic signs56) −, ∨, (x), = ; x, y, . . . (in-
dividual variables) F(x), G(x, y), H(x, y, z) . . . (class and relation variables),
where (x) and =

- 38 -
are allowed to refer only to individuals. We join to these sings even a third
kind of variables ϕ(x), ψ(xy), χ(xyz) etc that represent functions over ob-
jects (i.e., ϕ(x), ψ(xy) etc denote unique functions the arguments and va-
lues of which are individuals57).) We shall call a formula that contains,
beyond the basic signs of the e.F. introduced above, variables of the third
kind (ϕ(x), ψ(xy) . . . etc) a formula in the extended sense (i.w.S.)58) [im wei-
teren Sinne]. The concepts “satisfiable,” “generally valid” carry over wi-
thout further into formulas i.w.S., and the theorem holds that gives, for a
formula i.w.S. A, a usual formula B of the e.F. such that the satisfiability
of A is equivalent to the satisfiability of B. B is obtained from A through

54) Cf. Hilbert-Ackermann, Grundzüge der theoretischen Logik.
By formulas of the narrower functional calculus in system P are to be understood those

that arise from the formulas of the narrower functional calculus of the Princ. Math. through
the replacement of relations by classes of higher type, as indicated on p. 7.

55) I have shown in my work: Über die Vollständigkeit der Axiome des logischen Funk-
tionenkalküls, Monatsch. f. Math. u. Phys. XXXVII, 2, that each formula of the narrower
functional calculus can be shown to be either generally valid, or there is a counterexample;
the existence of this counterexample, though, is by theorem IX not always provable (in the
formal system introduced).

56) Hilbert and Ackermann don’t count the sign = among the narrower functional calcu-
lus. There exists, however, for each formula in which the sign = occurs one without this sign
that is satisfiable when and only when the original one is (cf. the work cited in footnote 55).

57) Namely, the domain of definition shall always the whole of the domain of individuals.
58) Variables of the third kind are allowed to stand everywhere as placeholders for indi-

vidual variables, for example y = ϕ(x), F(x, ϕ(y)), G[ψ(x, ϕ(y)), x] etc.
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replacing the variables ϕ(x), ψ(xy) that occur in A by expressions of the
form: ( ιz)F(zx), ( ιz)G(z, xy) . . ., the descriptive functions in the sense of the
Princ. Math. I∗14 resolved and the formula obtained in this way logically
multiplied59) by an expression that states that all of the F put in place of ϕ
are unique in respect of the first placeholder.

We show now that there is to each problem of the form

- 39 -

(x)F(x) (F recursive) an equivalent one that concerns the satisfiability of a
formula i.w.S. from which theorem X follows by the remark made.

Since F is recursive, there is a recursive function Φ(x) such that F(x) ∼
[Φ(x) = 0], and there is for Φ a series of functions Φ1, Φ2 . . . Φn such that
Φn = Φ, Φ1(x) = x +1, and for each Φk (1 < k 5 n) either:

1.) (x2 . . . xm)[Φk(0, x2 . . . xm) = Φp(x2 . . . xm)] (18)

(x, x1 . . . xm){Φk[(Φ1(x), x2 . . . xm] = Φq[x, Φk(x, x2 . . . xm), x2 . . . xm]

p, q < k

or:

2.) (x1 . . . xm)[Φk(x1 . . . xm) = Φr(Φi1(x1) . . . Φis(xs))] 60) (19)

r < k, iv < k (for v = 1, 2 . . . s)

or:

3.) (x1 . . . xm)[Φk(x1 . . . xm) = Φ1(Φ1 . . . Φ1(0))] (20)

We build further the propositions:

(x)Φ1(x) = 0 & (xy)[Φ1(x) = Φ1(y) → x = y] (21)

(x)[Φn(x) = 0] (22)

We replace now in all the formulas (18), (19), (20) (for k = 2, 3 . . . n) and
in (21) (22) the functions Φi by function variables ϕi, the number 0 by an
individual variable x0 that has no occurrences otherwise, and form the con-
junction C of all the formulas obtained in this way.

59) I.e., the conjunction formed.
60) xi (i = 1, . . . s) represent arbitrary n-tuples of the variables x1, x2 . . . xm, for example:

x1x3x2.
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- 40 -

The formula (Ex0)C has then the required property, i.e.

1. If (x)[Φ(x) = 0] holds, (Ex0)C is satisfiable, for the functions
Φ1, Φ2 . . . Φn clearly give, when substituted in (Ex0)C for ϕ1, ϕ2 . . . ϕn, a
correct proposition.

2. If (Ex0)C is satisfiable, (x)[Φ(x) = 0] holds.

Proof. Let Ψ1, Ψ2 . . . Ψn be the functions that exist by assumption and
that deliver, when substituted in (Ex0)C, a correct proposition. Let their
domain of objects be I. Because of the correctness of (Ex0)C for the func-
tions Ψi, there exists an individual a (from I) such that all of the formulas
(18) to (22) turn into correct propositions (18′) to (22′) under the replace-
ment of the Φi by Ψi and of 0 by a. We build now the smallest subclass of I
that contains a and that is closed with respect to the operation Ψ1(x). This
subclass (I′) has the property that each of the functions Ψi, when applied
to elements from I′, gives again an element of I′. For this holds for Ψ1 by
the definition of I′, and because of (18′), (19′), (20′), this property is carried
over from Ψi with a lower index to ones with a higher one. We call Ψ′i the
functions that arise from the Ψi through a limitation to the domain of indi-
viduals I′. All of the formulas (18)–(22) hold for these functions (under the
replacement of 0 by a and of Φi by Ψ′i).

- 41 -

The individuals from I′ can be, because of the correctness of (21) for Ψ′1 and
a, mapped in a unique way to the natural numbers, and moreover so that
a goes over to 0 and the function Ψ′1 to the successor function Φ1. By this
mapping, all the functions Ψ′i go over to the functions Φ′i and because of
the correctness of (22) for Ψ′n and a, (x)[Φn(x) = 0] or (x)[Φ(x) = 0] holds,
as was to be proved61).

The considerations that have led to the proof of theorem IX (for each
specific F) can be carried through also within the system P. Therefore the
equivalence between a proposition of the form (x)F(x) (F recursive) and
the satisfiability of the corresponding formula of the e.F. is provable in P,
and therefore the undecidability of one of the propositions follows from

61) It follows from theorem IX that, for example, the problems of Fermat and that of
Goldbach would become solvable if one had solved the decision problem of the e.F.
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that of the other, by which theorem X has been proved62).

To finish, let us point at the following interesting circumstance that con-
cerns the undecidable proposition A put up in the above. By a remark made
right in the beginning,

- 42 -

A claims its own unprovability. Because A is undecidable, it is naturally
also unprovable. Then, what A claims is correct. We have, then, decided
with the help of metamathematical considerations a proposition A that is
undecidable in the system. An exact analysis of this state of affairs leads
to interesting results that concern a proof of freedom from contradiction of
the system P (and related systems) that will be treated in a continuation of
this work soon to appear.

62) Theorem X holds obviously also for the axiom system of set theory and its extensions
through recursively definable ω-consistent classes of axioms, because there exist even in
these systems undecidable propositions of the form (x)F(x) (F recursive).
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Part V

Lectures and seminars on incompleteness
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Lecture on undecidable propositions (Bad Elster)

–1–

A formal system S is, as is well known, complete (definite with respect
to decision) if each proposition p expressible in the symbols of S is decida-
ble from the axioms of S, i.e., either p or non-p derivable from the axioms
in finitely many steps by the rules of inference of the calculus of logic. In
the following, a procedure shall be sketched that shows, not only that all
of the formal systems so far put up for mathematics (Principia Mathematica,
axioms systems of set theory, systems of the Hilbert school) are incomple-
te, but beyond this allows to prove quite generally: Each formal system
of finitely many axioms that contains the arithmetic of natural numbers is
incomplete. The same holds also for systems with infinitely many axioms,
provided that the axiom rule (i.e., the law by which the infinite set of axioms
is produced) is constructive (in a sense that can be made precise1). One can
indicate, for each formal system that satisfies the conditions mentioned, ef-
fectively an undecidable proposition, and the

– 2 –

propositions thus constructed belong to the arithmetic of natural numbers.
Here those concepts and propositions are counted as arithmetic that are ex-
pressible solely through the concepts of addition and multiplication and
the logical connectives (not, or, and, all, there is). “All” and “there exists”
may refer here only to natural numbers.

The proof procedure that delivers this result runs as follows: Let the for-
mulas of the system at hand be first numbered (there are naturally only de-
numerably many), in an arbitrary way that is fixed once and for all. By this,
there is associated to each concept that pertains to formulas (each meta-
mathematical concept) a definite concept that pertains to natural numbers,
e.g., to the metamathematical relation “formula a is derivable from formula
b by the rules of inference” is associated the following relation R between
natural numbers: R obtains between the numbers m and n if and only if

1 One can think of the axiom rule as being given in the form of something like a law that
associates to each natural number n an axiom. One can call it constructive in a comprehen-
sive sense if the law provides a procedure that allows to write down effectively for each
number n the axiom that belongs to it. The concept of “constructive” that lies at the basis
of the above theorem is, admittedly, more strict in its wording, but no law is known that
would be constructive in one of these senses but not in the other.
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the formula with number m is derivable from the formula with number n.
To the concept “provable formula” corresponds the class of those numbers
that are numbers of provable formulas, etc. It turns out, now, (as a detailed
investigation shows), that the relations between numbers (and classes of
numbers) defined in such a way by a detour over metamathematics, differ
in principle in no way from the relations and classes that otherwise occur
in arithmetic (e.g., “prime number,” “divisible,” etc).

– 3 –

They can be reduced just like that back to such through definition, without
taking first the detour over the metamathematical concepts; i.e., more preci-
sely: these relations turn out to be arithmetic in the above sense. That this is
the case depends in the end on the fact that the metamathematical concepts
pertain solely to certain combinatorial relations between formulas that are
directly reflected in the associated numbers (under a suitable association).

We shall consider now the totality of propositional functions in one va-
riable that are contained in the formal system at hand, and think of these
as ordered in a sequence.

ϕ1(x), ϕ2(x), . . . ϕn(x) . . . (1)

Next we define a class K of natural numbers in the following way:

n ε K ≡ ∼Bew ϕn(n) (2)

Here Bew x shall mean: x is a provable formula. The class K was defined
through the detour over metamathematical concepts (“propositional func-
tion,” “provable” etc.). This detour can be, as noted above, avoided, i.e., one
can give an arithmetic class (in the above sense) that is coextensive with K.
It is the salient point for what follows that this is in fact possible, and it
must naturally be proved in detail, something to which we shall, however,
not enter here. The condition was that arithmetic

– 4 –

is contained in the system S, so there is in S and therefore in series (1) a
propositional function ϕk(x) that is coextensive with K, for which we then
have:

ϕk(n) ≡ ∼Bew ϕn(n) (3)

If one puts k in place of n, it follows:
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ϕk(k) ≡ ∼Bew ϕk(k) (4)

From (4) results, however, that neither ϕk(k) nor ∼ ϕk(k) can be provable,
for from the assumption that ϕk(k) is provable would follow that ϕk(k) is
correct, and therefore, because of (4), it would not be provable. From the
assumption that∼ ϕk(k) is provable follows that∼ ϕk(k) is correct and the-
refore, because of (4), ϕk(k) is provable that is as well in contradiction with
the assumption. A tacit condition in the proof was that each proposition
provable in system S be correct. This condition can be replaced by a much
weaker one, as a closer investigation shows, one that requires just a little
more than the consistency of the formal system considered.

The procedure just sketched delivers, for each system that satisfies the
conditions mentioned, an arithmetic proposition undecidable in this sys-
tem. This proposition is, though, by no means absolutely undecidable, one
can instead go always over to “higher” systems in which the proposition
in question becomes decidable (there remain obviously other undecidable
propositions). It results, especially, that for example analysis is a higher sys-
tem in this sense than number

– 5 –

theory, and the axiom system of set theory again higher than analysis. It
follows, for example, that there exist number-theoretic problems that can-
not be solved by number-theoretic means, but only with analytical or set-
theoretic ones.

A result that concerns proofs of freedom from contradiction is revealed
by the above investigations. The proposition that a system is free from con-
tradiction is a metamathematical proposition. Therefore it can be replaced
by an arithmetic one by the above procedure (therefore expressible in the
same system). It turns out that this proposition is always unprovable in the
system the freedom from contradiction it claims (under the same conditi-
ons as above). I.e., the freedom from contradiction of formal systems (of
the kind characterised above) can never be shown by lesser (or the same)
ways of inference than are formalized in the system in question, one needs
instead for such always some ways of inference that go beyond the system.
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On formally undecidable propositions (Bad Elster)

–1–

The development of research into foundations of the past decades al-
lows many a question to have a precise formulation and a mathematical
treatment, something that earlier had to be left over to subjective opinions.
One such question is, e.g., the decidability of each precisely posed mathe-
matical problem. To get to grips with this question (to give it a precise sense
at all), an analysis of the proof methods used in mathematics was required
above all. This analysis was delivered by the logicists (Frege etc) and it has
revealed that all the ways of inference used in today’s mathematics can
be reduced back without residue to a few axioms and ways of inference.
The creation of an exact formula language as a substitute for the imprecise
word-language went hand in hand with this analysis.

Formal systems of this kind, i.e., formula languages with the axioms
and rules of inference that belong to them, have been put up for different
areas of mathematics (number theory etc), and the question could then be
put precisely whether these systems are complete in the sense that each
proposition of the discipline in question is decidable in it, i.e., the propo-
sition itself or its negation provable from the axioms in a finite number of
steps. With the higher disciplines, especially abstract set theory, there was
anyway doubt whether this is the case, but with the arithmetic of the na-
tural numbers for example, it was generally believed. The completeness
of the formal system in question was even repeatedly expressed as a con-
jecture. What I would like to show you here is [cancelled: that a complete
formalization is impossible already with the arithmetic of the natural num-
bers] the surprising fact that there exist undecidable propositions already
in systems of number theory, and even more, namely that: In each formal
system, however described, in which the arithmetic propositions

– 2 –

are expressible, there certainly exist undecidable arithmetic propositions,
with the condition that results by itself that no false, i.e., contentfully con-
tradictory arithmetic propositions be provable in the system in question.

I shall make next precise what is to be understood by a formal system.
One speaks of a formal system when the following are given

1.) A certain finite or denumerably infinite set of basic signs.
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2.) Precise rules for how the formulas are built up from these basic signs,
i.e., which combinations of basic signs are formulas and which not.

3.) A certain finite set of formulas has to be singled out as axioms.

4.) Certain rules of inference, finitely many, have to be given which al-
low to derive new formulas from the axioms and formulas already proved.

A formula A is said to be provable in the system in question if there exists a
finite series of formulas that begins with whichever of the axioms and ends
with formula A and which has the further property that each formula of
the series arises through application of a rule of inference from whichever
previous ones. A series of formulas with this property is even called a proof
figure.

I would like to remark further that the condition by which the axioms
must be at hand in only a finite number is not required for the existence of
undecidable propositions. Even when a formal system has infinitely many
axioms, naturally denumerably many, in which connection there has to be
given a rule that allows to actually

– 3 –

write down the n-th axiom for each n, the proof that follows is applica-
ble, admittedly under a certain condition for this so-called axiom rule that,
however, is in praxi always satisfied, i.e., one cannot give a single counter-
example.

It is perhaps appropriate to describe as arithmetization of metamathe-
matics the method by which this very general result is achieved. One un-
derstands by metamathematics, as is known, that discipline which is preo-
ccupied with the study of formal systems as I have characterised them
above. The object of metamathematics is formed, then, of formulas, i.e.,
combinations of signs and their properties and relations, in the same sen-
se in which the object of geometry is formed of points, lines, planes, and
their properties and relations (examples of metamathematical concepts ).
The decisive circumstance, now, is the following: Just as one can carry over
the geometric concepts and propositions, through a one-to-one mapping of
points on triples of numbers, into analytical concepts and propositions, so
one can equally carry over the metamathematical concepts and propositi-
ons into arithmetic, through a one-to-one mapping of formulas on num-
bers. Here the question is naturally of a mapping on the natural numbers,
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because there are in each formal system only denumerably many formulas.
This arithmetization has, further, a special consequence in metamathe-

matics. The metamathematical propositions go in this way over into arith-
metic propositions and are, then, expressible in the symbolism of the for-
mal system of mathematics. There follows the strange circumstance that
the theory that has as its object a certain formal system, is even

– 4 –
expressible by the formulas of this system and this is, as you shall soon see,
the decisive circumstance in the proof to follow. Namely, it will become
possible in this way to formally reconstruct antinomies of the second kind
(Richard in the usual sense), naturally in a way that they, divested of their
character as antinomies, turn into correct proofs of certain metamathema-
tical facts.

I shall, next, go over to the proof and assume that some formal system
in the above sense is at hand. We consider the totality of the propositional
functions and in particular the one-place functions that belong to this sys-
tem. By a one-place propositional function one understands, as is known,
a formula with one free variable that becomes a proposition as soon as one
substitutes for this variable an object of a determinate type. We encounter
in particular as such a type of objects the natural numbers, because arith-
metic has, clearly, to be contained in the system under consideration.

I have written down here an example of such an arithmetic propositio-
nal function. The variable is n and the formula states that the great theorem
of Fermat with the number n as an exponent is correct . . .

Each such propositional function expresses, then, a certain property of
numbers, and a specific class of numbers is associated to it, namely the class
of those numbers that have the property, i.e., ones that when substituted
give a correct proposition. (In our case . . . )

There exist naturally only denumerably many one-place propositional
functions in each formal system, because there exist on the whole only de-
numerably many formulas, and we think of all of these as ordered in a
sequence.

– 5 –
We shall derive out of this sequence of propositional functions a sequence
of propositions, through substituting always in the n-th propositional func-
tion the number n. This set of propositions decomposes, now, into two clas-
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ses, namely those that are provable in the system under question and those
that are not, and I designate by K that class of indices for which the associa-
ted proposition of the above series is not provable. We have, then, defined
in this way a certain class K of natural numbers. The definition is written
down here in formulas. This definition was made, as you can see, through
the detour over metamathematical concepts. There appear, indeed, the con-
cepts of propositional function and provable formula in it.

It is, now, possible to avoid the detour, by the arithmetization of meta-
mathematics previously mentioned, and to define the class K directly in an
arithmetic way. The arithmetic concepts, though, are expressible in the for-
mal system laid as a basis (something that was required). One can then ex-
press the property of natural numbers, to belong to class K, in the symbols
of the system in question, through a certain propositional function ϕ(x) for
which we then have: ϕ(x) is equivalent to the n-th proposition of the abo-
ve series not being provable. But ϕ(x) must, as a propositional function of
the system laid as a basis, occur in the above series, i.e., be identical with a
determinate ϕq(x). Then (5) holds1 — and now I claim that the proposition
that results when one substitutes q in this propositional function, that is to
say the proposition ϕq(q), is undecidable. For: We do have that if we substi-
tute in formula (5) for n the number p, then (6),2 or if we denote proposition
ϕq(q) abbreviated by P, then (7).3 Proposition P is hence equivalent with its
own unprovability.

– 6 –
It follows then at once that neither P nor ∼ P can be provable, if we ta-
ke into account in addition that each provable proposition is also correct
(something that was also presupposed).

I would also wish to note that the number q and thereby the undeci-
dable proposition P can always be actually determined, i.e., one can write
down effectively for each formal system an undecidable arithmetic pro-
position. It results from a closer analysis that the undecidable proposition
thus constructed is of a relatively simple structure, i.e., more precisely, the-
re occur in it beyond the logical constants no other concepts than additi-
on and multiplication applied to natural numbers. In the proof that I have

1 [By the short version, (5) is ϕq(n) ≡ ∼ Bew ϕn(n). The letter has been changed from p
to q.]

2 [With q instead of p, (6) is ϕq(q) ≡ ∼Bew ϕq(q).]
3 [Condition (7) is P ≡ ∼Bew P.]
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just sketched, the condition was used essentially by which each proposition
provable in the system is even contentfully correct, i.e., that no false propo-
sitions are provable. It is a condition the correctness of which could even
be doubted, but it can be replaced by a purely formal one that relates to no
contentful meaning (correctness) of the formulas. This formal property of
the system that one must presuppose is indeed, in a certain sense, a sharpe-
ning of the property of freedom from contradiction, into which I, however,
cannot go closer here.

A strange consequence arises from the above result, regarding the ques-
tion of freedom from contradiction, to which I shall now move. The ques-
tion at hand is the following one. The proposition by which a certain for-
mal system is free from contradiction is a metamathematical proposition.
It states that a certain formula cannot occur as the endformula of a proof
figure.

– 7 –

The arithmetization of metamathematics turns therefore the statement of
freedom from contradiction into a certain arithmetic proposition that can
under the circumstances be expressed in the symbols of the self-same for-
mal system the freedom from contradiction of which it asserts, and this
result reads now that this arithmetic proposition is always unprovable in
the system under consideration, i.e., the freedom from contradiction of a
formal system is never provable by the methods of proof that are formaliz-
able in this system.

The train of thought in the proof is the following: Arithmetic statements
of a certain constitution have the property that if they are correct, they are
then for sure even provable from the arithmetic axioms, e.g., the negation of
Goldbach’s conjecture is such a statement. If it is correct that certain even
numbers are not a sum of two prime numbers, then that is certainly also
provable, for it is in that case possible to write down the even number in
question and to determine by a finite number of trials that it is not the
sum of two primes. This consideration does not hold, for example, for the
Goldbach conjecture itself. It would be without further ado possible that
each single even number is the sum of two prime numbers without there
existing a proof for it from the arithmetic axioms.

A closer investigation shows that even the negation of the undecidable
proposition has the mentioned property, namely that one can infer from its
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correctness to its provability. Then the above formula (8) holds.4 For let us
assume that ∼P held. Then ∼P would be provable, on the basis of (8). On
the basis of (7) even P would also be provable, i.e., it follows from ∼P that

– 8 –
P as well as ∼ P would be provable, i.e., that the formal system in ques-
tion would be contradictory, or the other way around, P follows from the
freedom from contradiction of the system as expressed by formula (9).5

One can carry through the proof for formula (9) as I have sketched he-
re, also purely formally within arithmetic, and from this follows: Were the
freedom from contradiction provable, then also P provable, whereas it was
shown earlier that P is undecidable, consequently also unprovable. The
freedom from contradiction of the formal system considered is then not
provable in this system

This result, the proof of which I have naturally sketched to you only in
quite rough lines, has for example as a consequence that the freedom from
contradiction of classical mathematics is not provable by even using all of
the set-theoretic and analytical ways of inference of classical mathematics,
even less then by a proof apparatus somehow restricted. The formalistic
school searches for a proof of the freedom from contradiction of classical
mathematics by finite means, i.e., there must occur in the proof only de-
cidable properties and computable functions, and what is called the exis-
tential way of inference must not be applied anywhere. But all finite ways
of inference are easily formalizable in the system of classical mathematics
and it is not at all foreseeable today how one could find ones that are not
formalizable, even if one cannot exclude this with absolute certainty.

– 9 –
To end with, I would like to make notice that in all the considerations

so far, the question has always been of relative undecidability and unpro-
vability, i.e., of undecidability and unprovability in specific formal systems
given at hand. One can extend these systems through the addition of new
axioms in a way in which the undecidable propositions become solvable,
indeed, this extension results in an entirely natural and so to say compel-
ling way, through the introduction of certain ever higher concept forma-
tions, i.e., in the language of logicism, higher types and the axioms that

4 [This should be ∼P ≡ Bew∼P.]
5 [This should be ∼ (Bew P & Bew∼P) ⊃ P.]
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belong to them. The decisive thing is, though, that however far one should
go in this extension of concept formation, there remain always undecidable
propositions, because one can always apply the proof methods that I have
presented to you also to the extended systems. It is, then, certain that one
will never come to a system in which all arithmetic propositions would be
decidable.

[The reverse of page 9 has the following written in ink:]

1.) Zermelo

2.) [Cancelled: As a clarification to your remark] end of my talk work
I believe I have explained sufficiently see also what I mean by a formal
system

4.) [4 written over 3, then cancelled: Clarification] Zermelo talk deliver-
ed

3′ Skolemism

[The bottom of the folded page has the text: Über formal unentscheidbare
Sätze, frühere Fassung]
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8671

I On undecidable propositions (Vienna)

As soon as a domain of mathematics (say, geometry) is axiomatized, the
question of the completeness of this axiomatization presents itself. One can
understand different things with this. The meaning that is closest to what I
lay here as a foundation is the following. An axiom system shall be called
complete if each appropriate proposition (i.e., each proposition that deals
with the basic concepts that occur in the system) can be decided by logical
inferences from the axioms, i.e., whenever always either the proposition
itself or its negation can be logically inferred from the axioms.

For such a question (about the completeness of an axiom system) to
have a precise sense, one must require that the term “logical inference” is
made precise in the first place. Namely, this one is by no means as unequi-
vocal and clear as it might appear on a first sight. Let me just remind of the
axiom of choice that is seen as logically precise by quite a few mathemati-
cians, by others not, and of the law of excluded middle that was shown, as
is known, dubitable by Brouwer. Finally, one should consider that careless
uses of the “substitution” inference can even lead to a contradiction (to the
antinomies of set theory).

For the question of completeness to have a precise sense at all, it is ab-
solutely required that the logical ways of inference allowed to be used in
derivations from an axiom system be made precise. This kind of making
precise is achieved through what is known as formalization of the discipline
in question. Formalization goes, then, beyond axiomatization, in that even
the logical inferences are axiomatized in it, whereas one assumes such to be
given by nature, so to say, in axiomatics. To achieve this goal of an axioma-
tic conception of logical inference, the imprecise and often equivocal word-
language [Wortsprache] needs to be replaced by an exact formula language
to start with. It allows the expression of each proposition of the discipline
in question in an unequivocal way through a formula (inexact language is
inexact logic). Secondly, one has to adjoin to the simple formulas that ex-

1 [These clearly written pages are preceded by a page with the longhand heading “For-
meln” and a whole page of symbolic expressions. The first ones can be placed within the
text where some empty space is left for them, the latter part is similar to those found on a
leaf of formulas midway through the lecture. I have placed them there, in continuation of
the others.]
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press the axioms of the discipline in question certain others that express
the logical axioms (say, the law of contradiction, etc). Third, one must list in
concreto the rules of inference by which it shall be allowed to derive further
formulas from the axioms. These rules of inference must be formulated so
that they refer only to the form of the formulas (not their meaning). Ex-
pressed in another way, it must be possible to use these rules of inference
purely mechanically, even for someone who doesn’t know the meaning of
the formulas.2

With these, we have agreed on the essential characteristics of a formal
system.

A formal system lies, then, at hand when the following are given:

1. Certain basic signs (the undefined concepts of the system) in a finite
number.

2. It has to be made precise how the meaningful propositions of the
system are built from these basic signs. i.e., it has to be specified which
combinations of the basic signs are meaningful formulas and which not. It
is the case even in a natural language

868

that not just any combination of words expresses a proposition. (Here one
must guard oneself all the time against mixing the false and senseless. The
formula 1 = 1 + 1, for example, is definitely a meaningful proposition. It
claims something but it is wrong. The combination of signs = +1, instead,
is meaningless.)

3. Certain formulas have to be singled out as axioms.

4. Certain formal rules of inference have to be given in a finite number
with the help of which new formulas can be derived from the axioms.

I add two remarks on this, namely 1. one must guard oneself against mi-
xing . . . 2. The set of formulas that in all practical cases at hand are taken
as axioms is finite. This, however, is not at all necessarily required. One
can consider also formal systems with infinitely many axioms. These must,
then, be given through a characteristic property, so in a form: all formulas
of this and this kind have to hold as axioms.

There are, now, two kinds of mathematical properties, a distinction that
2 Example rule of substitution
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plays an important role in the investigations to follow, namely what are
known as properties definite with respect to decision or decidable proper-
ties and those that are not decidable. A property is called definite with re-
spect to decision if its definition is of a kind that gives the means to de-
cide for any object presented whether the property belongs to it or not.
For example, the property to be a prime number is definite with respect
to decision (for every . . .). If one instead defines a property E through the
stipulation: E shall belong to a number n when and only when Fermat’s
great theorem is correct for the exponent n, then the property is not defini-
te with respect to decision, because the definition gives no means to hand
to decide if a number has this property or not. The kind of distinction as
for properties can obviously be made also for relations. With functions, the
distinction corresponds to computable and non-computable functions.

It is, now, a close to self-evident condition that the property by which
the class of axioms is defined must be definite with respect to decision in
the case that infinitely many axioms are at hand, i.e., it must be possible
to determine for each formula in a finite number of steps whether it is an
axiom or not. For rules of inference, it is required in the same way that they
are definite with respect to decision, i.e., to determine for each finite set of
formulas whether or not the rules of inference are applicable. This holds
especially for finitely many axioms and the two rules of inference.

Let now a formal system of the kind characterised be presented. We say
a proposition [added above: a formula of the system] is provable in this
system if it can be derived from the axioms in a finite number of appli-
cations of the rules of inference of the system. A proposition is said to be
refutable when its negation is provable, and we say a formal system is com-
plete when the propositions expressed in its symbols are either provable or
refutable, or more shortly, when each such proposition is decidable.

One can, in fact, put up formal systems for certain limited partial do-
mains of mathematical disciplines that are complete in this sense. There
is, as an example, such a system for the intersection point properties of
straight lines, i.e., a system in which in fact only relations of intersection of
straight lines

869

are expressible by formulas and each such formula is either provable or
refutable. It has been presumed from different sides that one should be ab-
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le to put up such complete systems also for comprehensive mathematical
disciplines, as number theory, analysis, set theory. It has been especially
presumed that the formal systems already put up today for these discipli-
nes possess this property of completeness, or at least they will have it after
the addition of just a few axioms. What I would like to show now is the
surprising fact that this doesn’t apply and even more, namely, that it is in
a certain precise sense even impossible to find complete formalizations of
comprehensive mathematical disciplines, i.e., more precisely, one can show
the following: If a formal system, with finitely many axioms and the rules
of inference of the calculus of logic (these are substitution and the rule of
implication) is at least as comprehensive as to contain the theory of natu-
ral numbers (rational number theory), it is certain that there are undecida-
ble propositions in the system, and even undecidable propositions of the
theory of natural numbers. The same holds, though, also for systems with
infinitely many axioms and arbitrary other rules of inference, under a cer-
tain condition which is so general that it suffices in all cases that come into
consideration in practice. Indeed, it is utterly dubitable whether it is at all
possible to construct a formal system that would not satisfy this condition
to which I’ll return later – always under the assumption of no contradiction
in the system.

This result has also a fundamental significance in so far as it shows ma-
thematics not to be trivializable, in the sense that one could, say, find a
machine that solves each mathematical problem. There cannot exist such a
machine even for rational number theory.

There occurs in the theorem I have just stated the term number-theoretic
proposition (I shall say briefly arithmetic proposition) that I shall now make
more precise. By an arithmetic proposition shall be understood one that can
be represented in the formal system of number theory put up by Hilbert
and his students, I shall call it briefly Z. One can say briefly that they are
those sentences that can be expressed with just the means of the concepts
of addition and multiplication and the logical concepts.

The basic signs of the system are as follows:

1 + . = x, y, z . . . natural numbers, (x), (Ex) & ∨ ∼ (⊃) εx ( )

The next thing is to indicate, by choices in the above scheme, how formulas
of the system are built up from these basic signs. I clarify this by some ex-
amples. One can, to begin with, distinguish between two kinds of expressi-
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ons, namely those that signify numbers and those that signify propositions,
for example:

1 + 1, εx[(Ey) x = y + 1]

There occur variables in the expressions written down, but with the parti-
cularity that there occurs with each variable a variable binding operation
(x), (Ex), εx. Such variables are called bound.

A variable that is not bound, so to which no sign x Ex relates, is called
free. Here are, for example, written down two expressions with free varia-
bles:

x = 1 + y, ∼ (Eu, v)[x = u.v & u 6= 1 & v 6= 1]

There are also with these again two kinds. Namely, if one substitutes spe-
cific numbers for free variables, it turns into an expression without free
variables, and this signifies either a number or a proposition.

870

In the first case, one calls the expression a numerical function, in the second
case a propositional function or a sentence function, a one-place, two-place
etc propositional function by how many variables there occur.

A numerical function associates to each number another number (or
to each two numbers). A sentential function, in turn, determines a certain
class of numbers, namely those numbers for which the sentence is true (or a
class of pairs of numbers etc). Two complicated functions are written down
here, a numerical function and a propositional function that defines the
class of prime numbers. I have presented the matter here in an intuitive
way. One can easily state the characteristic features of a numerical function,
a sentential function, a sentence, etc.

We have now established what the formulas of the system are. Now we
would have to establish what the axioms and rules of inference are. I don’t
want to stop further here with the axioms, they are the simplest properties
of + and · and a number of purely logical propositions. Two rules of infe-
rence are used, namely those two which one has actually always found to
suffice, namely the rule of implication and the rule of substitution:

The rule of implication states that whenever a formula A and whenever
further a formula of the shape A ⊃ B have been proved, the formula B can
be inferred from these.
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The rule of substitution states that whenever a formula of the shape (x)F(x)
has been proved, i.e., a formula that begins with the sign ( ), one can then
leave out the all-sign and substitute for x an arbitrary numerical expression
(an expression that signifies a number).

One can easily express in the system Z all the concepts and theorems
of rational number theory, and even of algebraic number theory, as long as
they are not abstract, and conduct the proofs of these theorems from the
axioms.

We shall next say of an arbitrary class K of entire numbers that it is ex-
pressible in the system Z, or contained in the system Z, if there is a propositional
function F(x) with one free variable such that x εK ≡ F(x), analogously
for relations, that is to say for classes of pairs of numbers. We say similarly
of a numerical function of natural numbers f (x) that it is contained in the
system Z if there is in Z a numerical function with one free variable that
takes on always the same value as f (x). So one can say in this sense that
the class of prime numbers or the function smallest common multiple are
contained in Z.

It is certain that not all classes and relations are contained in Z, becau-
se there are clearly more than denumerably many relations but just denu-
merably many formulas in Z. One can easily give examples of functions
that are not contained in Z, namely through processes that are analogous
to the diagonal process. Nevertheless, and this is important for what follows,
one cannot give any decidable properties and also no computable functions that
would not be contained in Z. One cannot prove, say, that

871

II Decidable

each property or function [cancelled: of the said kind] must be contained
in Z, but one can show that all procedures for the definition of decidable
properties and computable functions (especially the procedure of recursive
definition) lead always only to functions that are contained in Z. It is pre-
sumed from different sides that one would never be able to find any kind
of new procedures that would lead to decidable properties not contained
in Z. Even more holds for decidable properties (as said, at least for those
known today), namely the following:

Let K(x) be such a decidable property. There exists then in Z an equiva-
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lent propositional function F(x). But it holds even that if K(a) holds for a
specific natural number a, then F(a) is provable in Z. That is, . . . . Example
prime number.

To say that a formal system S contains number theory shall, then, mean
that each sentence, each propositional function and numerical function that
is expressible in Z is also expressible in S, and that each proof that is con-
ductible in Z is also conductible in S. So this is what we must assume about
the system S in what follows, to be able to prove our theorem.

I define next a few concepts that pertain to an arbitrary formal system
S. There are in S certain basic signs. Certain combinations of these basic si-
gns are the formulas. A subclass of formulas form the propositions (not every
formula is a proposition). A subclass of the propositions is, next, the axioms.
Further, a certain relation between formulas is given through rules of infe-
rence. This relation shall be called immediate consequence, i.e., more precisely,
a formula A shall be called an immediate consequence of some other for-
mulas B,C (finitely many) if A results through a single application of a rule
of inference of the system to the formulas B,C, etc. For example, if three
formulas of the shape A, B, A → B are at hand, then the second is an im-
mediate consequence of the first and last, for it can indeed be recovered
through the application of the implication rule to the first and last.

In the case that the implication rule is the only rule of inference of a
formal system, the relation of immediate consequence would obtain only
between three formulas of the correct shape, i.e., the statement that B is an
immediate consequence of A and C would mean that C = A → B.

We can now define what is to be understood by a proof or a chain of
inference. A proof is a finite series R of formulas of the system S with the
following property: Each formula of the series shall be either an axiom or
an immediate consequence of preceding formulas of the series. A series of
formulas R shall be, further, called a proof for a formula A if:

1. the series R is a proof and
2. the last formula of R is A

The concept proof for is, then,
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a relation between a finite series of formulas and a formula.
I have now defined a series of concepts that pertain to the formulas of a
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formal system. One calls such concepts metamathematical. All of the con-
cepts defined so far have one property in common, namely, they are definite
with respect to decision. Let us take, for example, the concept chain of infe-
rence or proof. To decide of a series of formulas at hand whether it is a proof,
one has to go through the formulas one after the other and to determine
for each formula whether it is an axiom or an immediate consequence of
the preceding ones. The first determination is naturally to be done in finite-
ly many steps (as assumed), and even the second requirement has a finite
number of trials as only finitely many formulas precede the one in question
(example with substitution rule and implication rule). The relation “proof
for” is, correspondingly, a relation definite with respect to decision.

A formula ϕ is called provable if there exists a series of formulas that is a
proof for ϕ. This relation is, contrary to all of the previous ones, not definite
with respect to decision.

There exist in each formal system only denumerably many formulas,
for there exist only finitely many basic signs and each formula is a finite
combination of these basic signs. Therefore the formulas can be numbered
through, i.e., one can associate in a one-to-one way to each formula a na-
tural number, say lexicographically or whatever other way. The essential
thing for what follows is just that the numbering has been so arranged that
one can actually determine for each formula the associated number and
conversely for each number the associated formula, something that natu-
rally is the case with lexicographical ordering. So we think some numbe-
ring for the system S at hand as chosen and kept fixed in what follows. It is
in virtue of this one-to-one association between formulas and natural num-
bers that (something that is crucial for what follows) there is associated to
the metamathematical concepts at hand (classes and relations of formulas)
a certain class or relation between natural numbers.3 For example, to the
class of sentences of the formal system considered is associated the class of
those natural numbers that are numbers of sentences, or to the relation of im-
mediate consequence is associated the relation R between natural numbers
that is defined as follows:

R shall obtain between the numbers n1 n2 . . . nk if and only if the relation

3 [The sentence has many changes, but the original is clearly readable: It is in virtue
of this numbering that one can now (something that is crucial for what follows) associate
to each of the previously defined metamathematical concepts (i.e., classes and relations) a
certain class or relation between natural numbers.]

220



of immediate consequence obtains between the numbers n1 n2 . . . nk,
i.e.,

if the last of these formulas is an immediate consequence of the rest.

There are, further, only denumerably many formulas at hand, and therefore
there exist also just denumerably many proofs, for each proof is a finite
series of formulas. Therefore one can enumerate the proofs as well, and
thereby there arises the relation:

The series of formulas a is a proof of the formula b corresponds to the
following relation between two natural numbers: —

We obtain therefore in this way a number of relations and classes of natu-
ral numbers, and it is clear now that these relations and classes are just as
definite with respect to decision as the corresponding metamathematical
concepts from which they have arisen. I.e., if two determinate numbers a, b
are laid at hand, one can
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always determine in a finite number of steps whether a is the number of a
proof for the formula with the number b. For one can produce, to start with,
the proof with the number a and then the formula with the number b, and
then it needs only to be determined whether the formula in question is the
last formula of the proof in question.

The classes and relations of natural numbers we have thus defined are,
admittedly, obtained by a detour through metamathematical concepts, but
they don’t differ in the least from the classes and relations between na-
tural numbers that are otherwise encountered in mathematics. I.e., more
precisely, all of these number concepts are contained in the system Z (i.e.,
expressible through the basic symbols of the system Z), i.e., more precisely,
if the system S contains only finitely many axioms and if its rules of infe-
rence are the usual ones (i.e., rules of substitution and implication), then
the concept xBy and even the further ones are surely contained in Z. In ca-
se the system contains infinitely many axioms or other rules of inference,
then xBy and the other corresponding concepts are surely contained in Z,
if the number concepts that correspond to the class of the axioms and to
the relation of immediate consequence are contained in Z. That amounts,
by what was said earlier, in all known cases to the same as when one says
that the class of axioms and rules of inference are to be definite with respect
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to decision. If one, now, requires of a formal system S that 1. both of the re-
quirements presented are satisfied (these were either finitely many axioms
and usual rules of inference, or axioms and rules of inference [written abo-
ve: definite with respect to decision] expressible in Z) and that 2. S contains
the system Z, then there results the strange fact that the metamathematical
concepts that pertain to formulas of S (and their arithmetical correlates) are
once again expressible through formulas of S. For they are expressible by
formulas of Z to start with, and Z has to be contained in S. This is, as you
shall see, the decisive condition for the proof that follows. All conditions
for the proof to follow are especially fulfilled by the system Z, further for
all formal systems of analysis and set theory put up so far.

I shall now go over to the proof. Let, then, S be a system that satisfies
the conditions and contains the system Z. I consider the two sequences of
concepts:4

xBy ϕ(xy) | definite with respect to decision – computable

numerical relation numerical function

contained in Z therefore in S

xBy propositional function in S

F(xy) numerical function in S

874 [This is the page with formulas and a few words in longhand.]

xBF(yz) in S definite with respect to decision therefore

(1) aBF(bc) ⊃ Bew aBF(bc) negation analogously

Let the following be formed:

(2) (Ey)yBF(xx) number p (because in S) [above: is a specific number]

(3) (Ey)yBF(pp) number F(pp) = q

(3) claims unprovability of the formula with number F(pp)
which it itself [is]

(3) is the sentence (3) is undecidable

A. Assume (3) is provable proof No k

4 [The text from now on is written in longhand.]
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then we have kBF(pp)

therefore because of (1) even provable

therefore also (Ey)yBF(pp) [second y added] provable contradiction

So (3) not provable if W [widerspruchsfrei]

W → (Ey)yBF(pp)

(3) correct if W

B. (3) correct because free from contradiction, i.e., for each a:

∼ aBF(pp) therefore provable for each a

If now, on the other side, (Ey)yBF(pp) provable then inconsistency

[The following is found on the page before the main text.]

x ε K ≡ F(x)

K(a) ⊃ Bew[F(a)] [right bracket added]

Propositional axiom, immediate consequence, proof, proof of provabi-
lity

xBy proof No x is a proof for the formula with number y

f (xy) = number of the formula that arises from formula No x when
the number y is substituted in place of the free variables

xBF(yz)

(1) aBF(bc) ⊃ Bew[aBF(bc)]

∼ [aBF(bc)] ⊃ Bew[∼ (aBF(bc)]

(2) ∼ (Ey)yBF(xx) number p

(3) (Ey)yBF(pp) number F(pp) F(pp) = q

(4) kBF(pp) provable

(5) (Ey)yBF(pp)

(6) W → (Ey)yBF(pp)

(7) ∼ aBF(pp)
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III

A further strange result follows from what has been presented so far,
concerning proofs of freedom from contradiction. The statement that a for-
mal system S is free from contradiction is a metamathematical one. It claims
that of two formulas A and ∼A, both can never be provable. The metama-
thematical concepts can be replaced by arithmetic ones by the procedure
presented earlier, and therefore one can express the statement of freedom
from contradiction through a certain arithmetic proposition. More preci-
sely, one can give an arithmetic proposition that is equivalent to the free-
dom from contradiction of the system in question. This proposition is, as an
arithmetic one, contained within the system S itself, the freedom from con-
tradiction of which it expresses. From the above proof follows at the same
the result that this statement of freedom from contradiction can never be
provable within the system S, the freedom from contradiction of which it
claims. That is to say, in other words, one can never prove the freedom from
contradiction of a formal system (that satisfies the above conditions) with
the help of ways of inference formalizable in this system, but one needs
to use for that always some ways of inference that go beyond the system,
not contained in it. This fact results at once formally from the above. For
we have shown that if the system is free from contradiction, then the un-
decidable proposition is correct. A proof of this fact can, as a more detailed
investigation shows, be carried formally through from the axioms of the
system Z, therefore also in S, i.e., one can prove this formally in S. If one
could, now, prove the proposition W in S, one could also prove the propo-
sition , whereas it was just shown that this proposition is undecidable.
As is known, Hilbert and his students are looking since long for a proof
of freedom from contradiction for the formal system of classical analysis
and set theory, and they search this proof from as weak assumptions as
possible. As far as possible, only the simplest [added above: combinatorial]
facts [cancelled: of spatial intuition] must be used. It follows by the result
described that all these attempts to conduct a proof of freedom from con-
tradiction with so weak means of proof are condemned to fail, because all
purely combinatorial facts are clearly expressible in the axiom system of
analysis. To carry through a proof of freedom from contradiction, one has
to absolutely use proof methods that go much further than has happened

224



with the Hilbertian ansatz so far.
To end with, I would like to point out that with all the things I have

presented so far, the question has always been about relative unprovabili-
ty and relative undecidability, i.e., of unprovability and undecidability in a
specific formal system. One can extend each such system by the addition
of a few sentences, namely sentences that are pertinent in such a way that
previously undecidable sentences are decidable in the new system. It is,
for example, sufficient to take as a new added axiom the statement of the
freedom from contradiction of the old formal system (i.e., more precisely,
the arithmetic proposition equivalent to it). There exist in the new systems
naturally again undecidable arithmetic propositions that require a new ex-
tension and so on into the transfinite. One has to say into the transfinite
because it would not be sufficient, say, to take denumerably many exten-
sions, for even after denumerably many extensions, there would remain
undecidable propositions for an ω + 1 extension.

876 [The upper left corner has four seemingly unrelated words.]

So this is to say, one can in fact give for each undecidable sentence construc-
ted in this way a further axiom system in which it is decidable, but one can
give no system in which each sentence is decidable.

One can carry out yet another kind of extension that makes the previously
undecidable propositions decidable as well, one that has great mathema-
tical interest, namely through the introduction of higher types. I illustrate
this in axiom system Z. If one adds here as new concepts those that stand
here, ones that correspond to the axioms for classes and relations of num-
bers, the propositions that were previously undecidable become decidable.
The transition into the concepts of classes and relations between numbers
means, however, a transition from number theory to analysis, for real num-
bers are defined as sequences of rational numbers or as classes of ratio-
nal numbers. The strange state of things follows that there exist number-
theoretic problems that are not solvable in an axiom system of number
theory, but only in one of analysis, which then shows that analytical num-
ber theory can be indispensable in certain cases. [Cancelled: Perhaps I re-
turn to these questions again later.]
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On the impossibility of proofs of freedom from contradiction

Mathematical logic 22nd seminar hour 4.7.1932

Gödel:

The following enter into Herbrand’s proof for the consistency of arithmetic:

a) basic constant o

b) a one-place operation “+1”

c) the basic relation “=”

d) axioms 1) x = x

2) x = y . ⊃ . y = x

3) x = y . y = z . ⊃ . x = z

4) x = y . ≡ . x + 1 = y + 1

5) ∼ . x + 1 = o

An infinite set of new axioms is introduced through complete induction,
say for functions of one variable through the stipulation

f (o) = α here a constant, i.e., a number o, 1, 1 + 1, 1 + 1 + 1, . . .

f (x + 1) = β( f (x)) here a function of one variable already known.

If one puts in evidence further variables,

f (o;x1, x2, . . . xn) = g(x1, x2, . . . xn)

f (x + 1; x1, . . . xn) = h( f (x; x1 . . . xn), x1, x2, . . . xn)

As an example f (x, y),

f (x, 0) = x

f (x, y + 1) = f (x, y) + 1

Quite generally, one can add (meta-arithmetically) any arbitrary system of
equations, whenever it allows the computation in a unique manner and
each natural number appears there, then even, for example, the recursion

u(n, a,o) = a

u(o, a, b) = a + b

u(n + 1, a, b) = u(n, a, u(n + 1, a, b− 1)
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This prescription does not allow, though, to determine of a formula whe-
ther it is an axiom or not.

There comes finally in addition the principle of complete induction.

(Hahn:) Not as with Peano, as an axiom, but instead separately for each
function as an axiom of its own,

ϕ o : . (x) . ϕ x ⊃ ϕ x + 1 :⊃ . (x)ϕ x

The proof of freedom from contradiction is now carried through for each
finite subset of the axioms. To be able to carry it through, only functions ϕ
without bound variables are allowed to enter in the inductive statement.
Let then, be it ϕ a, be it ∼ ϕ a derivable from the axioms. That is to say, the
recursively defined formulas ϕ1 . . . ϕn are present, and then a) to d) to be
shown, then the logical product

H . (u)A1(u) = B1(u) . . . (u, v)A′1(u, v) = B′1(u, v) . . .
(z)(∃x) : . ϕ1(o)ϕ1(x) ⊃ ϕ1(x + 1) ⊃ ϕ1(z) . . .

Here H is the logical product of the axioms sub d), and a finite number of
formulas for one, for two, for more than two variables occur, finally the
formulas ϕ1 to ϕn for which complete induction is stated, brought here
already to normal form with the help of the rules of passage.

One can now specify the construction of the infinite field, i.e., to each
natural number n a field of order n in such a away that the substitution of
the field functions in the functions of the formulas give the truth value true.
To this end, the reduction is built that consists here simply in introducing in
the last part the corresponding index functions, i.e., (z)(∃x) delivers fx(z).

Mathematical logic, 22nd seminar hour, page 2 4.7.1932

The reduction obtains hereby the shape

H . A1(u) = B1(u) . . . A′1(u, v) = B′1(u, v) . . .

ϕ1(o)ϕ1( f 1
x (z)) . ⊃ . ϕ1( f 1

x (z) + 1) . ⊃ . ϕ1(z) . . .

Here there occur just +1, ϕ1 . . . ϕk f i
x o =

One can specify with the natural numbers, o included, so o, 1, 2 . . ., an in-
finite field and with it a sequence of finite fields the elements of which,
substituted by corresponding rules of associations, make the expression al-
ways true.
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Then, for example,

0 o

+1 the successive number
ϕi number that results after computation of the recursion formula

f i
x(k) Dilemma

I ϕi(o) false or ϕi(k) true, then f i
x(k) = o

II ϕi(o) true and ϕi(k) false, then f i
x(k) = a

This a gets determined so that there exists in the sequence of
natural numbers an a such that

ϕi(a) is true and ϕi(a + 1) is false

a = b shall be true if arithmetically a = b
false if arithmetically a 6= b

In virtue of the association found, it is necessary to furnish a proof only for
the inductive axioms. One uses for this in the case,

I :⊃ ϕ1(k)ϕ1(o)
f

. ϕ1(o) . ⊃ . ϕ1(1)
w

f
————————————————–

w
w

————————————————–
w

[Added at right: There enters here essentially the restriction for the ϕ and
the recursive definition.]

and

II ϕ1(o) . .⊃ .ϕ1(k)
w f

fw

ϕ1(a) . ⊃ . ϕ1(a + 1)
w f

f
f f

w

(Menger:) What is the sense of a theory in which all natural numbers enter
through complete induction?
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(Gödel:) All natural numbers enter, sure, in the theory, but not instead the
tertium non datur, (x)ϕ(x).∨. (∃y)∼ ϕ(y) that is a provable formula. I.e., one
can derive consequences from the proposition: “The Fermat conjecture is
correct, or it is not provable.” One cannot, though, conclude its correctness
in this theory on the basis of complete induction, i.e., “correct for z = 3”
and “if correct for k, then correct for k + 1,”because of the restriction that
has been made.

Gödel:

On the impossibility of proofs of freedom from contradiction.

A formal theory will be, as is well known, described as complete when for
each meaningful proposition P either P or its negation ∼ P is derivable
from the axioms

But now, each formal system in which there occurs addition and multi-
plication contains propositions that are undecidable.

Mathematical logic, 22nd seminar hour, page 3 4.7.1932

Let such a formal system S contain, then,

what are known as variables of type 1, x, y, z . . .

and it is required

IA. that x + y, x.y are variables of the same type, that especially 1 is of the
first type.

IB. the propositions by which = is an aequitas (reflexive, symmetric, transi-
tive)

for “+” (without 0!) x + 1 6= 1 x + 1 = y + 1 . → . x = y and x + (y +
1) =

(x + y) + 1 and analogously for “.”

IC. the induction

from ϕ(1) and ϕ(x) → ϕ(x + 1), (x)ϕ(x) can be inferred

I.e., even arithmetic is formally contained in the theory.

II. A sharper formulation of freedom from contradiction.

1, 1 + 1, 1 + 1 + 1, . . ., briefly denoted by a, are CIPHERS.
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If for ϕ(x): ϕ(1) ϕ(1 + 1) . . . ϕ(a) . . . are provable

then (∃x)∼ ϕ(x) is not provable.

I.e., it will be certainly said that something is wrong then, but not that a
formal contradiction is derivable. In other words, even if the formula is
provable for each single n, it does not mean the same as the provability of
(x)ϕ(x).

III. (can be extended later:) there are infinitely many axioms.

We say now of a class of natural numbers K that it is contained in the
formal system S if there exists a ϕ(x) – where x is of type 1 – so that

if a ε K, then ϕ(a) provable

if ∼ a ε K, then ∼ ϕ(a) provable

Analogously for relations as classes of ordered pairs of natural numbers

if aRb, then ψ(a, b) provable

if ∼ aRb, then ∼ψ(a, b) provable

As an example, say, the class of even numbers [G = Gerade]

(Formula:) (∃y) x = y + y
free variable =̂

2 ε G (∃y) 1 + 1 = y + y
∼3 ε G ∼ (∃y) 1 + 1 + 1 = y + y

or the relation of x smaller than y

(Formula) (∃z) y = x + z [the manuscript has x = y + z]
free variable =̂ =̂

1 < 2 (∃z) 1 + 1 = 1 + z
∼ (2 < 1) ∼ (∃z) 1 = 1 + z

or “prime number”

∼ (∃uv) u < x . v < x . x = uv
=̂ =̂ =̂

There are only denumerably many formulas, but definitely nondenumera-
bly many classes of natural numbers that therefore cannot be contained.

It can be shown that each recursively defined sequence is contained,
possibly even each decidable formula.
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The set of basic signs is denumerable, and therefore also the set of mea-
ningful expressions composed from them, i.e., a one-to-one association with
the natural numbers is possible,

Mathematical logic, 22nd seminar hour, page 4 4.7.1932

for example ∼ v (∃x) etc.
1 2 3

Each expression is now composed of a finite sequence of such signs, i.e.,
fixes a series of associated numbers e1, e2 . . . en. If one takes these next as
exponents of the prime numbers in an ascending order, each expression
itself obtains again an associated natural number

pe1
1 pe2

2 . . . pen
n

By this, not to each number is associated a formula, but to each formula
is associated – because of the prime decomposition in a unique way – a
number.

In this class of numbers M, we have for example:

Formulas that begin with the sign of negation distinguished as numbers
that are divisible precisely by 2, 21 pe2

2 pe3
3 . . .

The relation “a is longer than b” between formulas, i.e., consists of more
signs, [cancelled: through xRy u, zw, this is precisely the number of base
numbers]

If ordered series of formulas are again given in the same way,

[F1F2 . . . Fn]

a number pe1
1 pe2

2 . . . can be uniquely associated to each series of formulas,
because the formula numbers are uniquely determined by the same proce-
dure.

Next a series of formulas is designated as a “proof” if the formulas that
occur there first are axioms and if each formula that follows is derived from
the previous ones though the rules of inference.

By the above, there corresponds to the subclass of proofs among the
class of series of formulas a subclass from the class of numbers of series of
formulas.

We say: F is a proof for formula g if
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a) F is a proof x the number of proof F
b) the last formula of F is precisely g y the number of formula g

Hereby a relation xBy for natural numbers is now fixed: “x is the number
of a proof for the formula with the number y,” a relation that is decidable
in a finite number of steps and moreover as a recursive one contained in
the formal system.

That is, then, there is in the formal system S an expression ψ(x, y) such
that

aBb then ψ(a, b) provable (in short: bew) ψ(a, b)

∼ (aBb) then ∼ψ(a, b) provable

For the axioms, it is of course required that it is decidable (in finitely
many steps) whether a formula at hand is an axiom, i.e., that axioms just be
recursively defined, or what amounts to the same, B must be recursive.

Next, the operation Π(g, z) associates to the formula g the one that one
obtains when the fixed number z is substituted for the free variable of type
1. There corresponds to this operation a relation ϕ(x, y) between natural
numbers, the number of the formula that one obtains from formula No x
through substitution of the cipher y in place of the free variable.

Mathematical logic, 22nd seminar, page 5 4.7.1932

All the auxiliary means for the construction of an undecidable proposition
have now been put together.

The formula xBF(yy) belongs, because of its recursive definition, to the
formal system, i.e., if

(3) aBF(bb) then ϕ(a, b) provable

(4) ∼ aBF(bb) then ∼ ϕ(a, b) provable

We form now:

(1) ∼ (∃y)ϕ(y, x) and put therein for the free variable x the number
p the formula itself has:

(2) ∼ (∃y)ϕ(y, p) the formula thus arrived at has the number σ(p, p)

(2) is now a proposition without free variables. We infer now indirectly:

Were next
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I ∼ (∃y)ϕ(y, p) provable, the number of its proof k, but then kBF(p, p),
so by the previous (3), ϕ(k, p) would be provable, and the rule of generali-
zation 2 applied on it, (∃y)ϕ(y, p) [manuscript has ϕ(x, p)]. I.e., the nega-
tion of (2) would follow, the system would be contradictory, whereas it is
required to be free from contradiction. The proposition itself is, then, not
provable.

W. ⊃ . ∼bew[∼ (∃y)ϕ(y, p)]

Were next

II (∃y)ϕ(y, p) provable, i.e., also the negation of (2) and let us have for
a specific k, say

∼ kBF(p, p)

Then ∼ ϕ(k, p) is provable by (4).
If on the other hand kBF(p, p) holds for a specific choice, it would

mean that the formula with number F(p, p) is provable, i.e., precisely ∼
(∃y)ϕ(y, p) in contradiction with assumption II, so hereby even ∼ ϕ(k, p)
would be provable. I.e., then the sharper formulation of freedom from con-
tradiction, as required for the system, would not hold, because by the abo-
ve, from (∃y)ϕ(y, p) would follow ∼ ϕ(k, p) for each k.

Each contradiction can be derived or reduced back to the contradiction
1 6= 1 and therefore, if this formula carries the number q, one can give to
the conclusion under I the specific form:

∼ (∃x)xBq . ⊃ . ∼ (∃x)xBF(p, p)

I.e., if there exists no proof of whatever number x for the formula No q, then
there exists as well no x that would be the number of a proof for F(p, p).

B and F are two-place relations between natural numbers, and the who-
le an arithmetic proposition to which there is associated in the formal sys-
tem the proposition

∼ (∃x)ψ(x, q) . ⊃ . ∼ (∃x)ϕ(x, p)

But this is the arithmetic expression for the statement that “the formal sys-
tem is free from contradiction,” i.e., the statement as a formula of the sys-
tem S, “formalized in S.” Were the formula, now, provable, it would follow
that the system is contradictory. The proposition that a formal system is free
from contradiction cannot be proved within the same system, for otherwi-
se the system would be contradictory. But this means that the concept of
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decidability is a relative one. One could prove trivially an undecidable pro-
position in an extended theory by adding it, say, as an axiom, but the sys-
tem achieved in this way would not possess the property of freedom from
contradiction in a sharpened sense anymore.
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The existence of undecidable propositions
in any formal system containing arithmetic

0

I appreciate very much my having the opportunity of speaking before you
on some of the modern results in the foundations of mathematics and I
hope I shall succeed in making leading ideas clear to you, despite the very
technical character of the work.

The subject I want to talk about is closely connected with the so-called
formalisation of mathematics, i.e., with the fact that all mathematics and
logic (at least all mathematics and logic that has been developed so far) can
be deduced by means of a few axioms and rules.

1.

The modern investigations in the foundations of mathematics gave as one
of their outstanding results the fact, that all mathematics and logic (at least
all mathematics that has been developed so far) can be deduced by means
of a few axioms and rules of inference.

In order to bring out this fact clearly it was necessary at first to replace
the imprecise and often ambiguous colloquial language (in which mathe-
matical statements are usually expressed) by a perfectly precise artificial
language the logistic formalism. This formalism consist of a few primitive
symbols which represent the primitive notions of logic and mathematics
and play the same role as the words in ordinary language. I wrote some ex-
amples of the primitive symbols on the blackboard. —————— Now any
logical or mathematical proposition can be expressed by a formula compo-
sed of these primitive symbols and vice versa any formula composed of
our

2.

primitive terms according to certain rules (which constitute the grammar of
our logical language) expresses a definite mathematical statement. In prac-
tice it would be very inconvenient to express mathematical statements in
this way by means of the primitive terms of . . . i.e. our formulas would
become very long and cumbersome therefore besides our primitive terms
new symbols are introduced by definitions but it is to be noted that this
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(device) serves merely the practical purpose of abbreviation and therefore
is entirely dispensable from the theoretical point of view since we can re-
place in every formula the new symbols by their meaning expressed in the
primitive terms. So we may disregard the possibility of introducing new
symbols by definition and think of any mathematical statement as expres-
sed by our primitive terms alone. —— The process of deduction, i.e., of
proof is represented in our formalism in the

3.

following manner: Some of our formulas are considered as axioms, i.e., as
the starting point for developing mathematics and in addition to that cer-
tain rules of inference are stated which allow one to pass from the axioms
to new formulas and thus deduce more propositions. One of the rules of
inference, e.g., reads. If A and B are two arbitrary formulas and if you have
proved the formula A and A → B you are entitled to conclude B. The other
rules of inference are of a similar simple character. In practice all of them
are purely formal, i.e., they do not refer to the meaning of the formulas but
only to their outward structure and so they could be applied by someone
who knows nothing about the meaning of the symbols. One could even ea-
sily device a machine which would give you as many correct consequences
of the axioms as you like, the only trouble

4.

would be that it – at random and therefore not the results one is interested
in. By iterated application of the rules of inference starting from the axioms
we obtain what I call a chain of inference. A chain of inference is simply a fi-
nite sequence of formulas A1 . . . An which begins with some of our axioms
and has the property that each of it’s other formula’s can be obtained from
some of the preceding ones by applications of one of our rules of inference.
Instead of chain of inference I shall also use the term formal proof or briefly
proof. A proof ending up with the formula F is called a proof for the for-
mula F and of course we shall call a formula F provable if there is a proof
for it, which means the same thing as: F can be obtained from the axioms
by iterated application of the rules of inference. A symbolism for which
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5.

axioms and rules of inference are specified in the manner I have just descri-
bed is called a formal system and the fact to which I referred in the begin-
ning of my talk can now be expressed by saying that one has succeeded in
reducing all of mathematics and logic to a formal system [added above: in
such a way that every mathematical proof can be]. Owing to this fact certain
general questions concerning the structure of mathematics which formerly
had to be left to vague specifications (and could not even be stated pre-
cisely), have become amenable to scientific treatment. I want to deal with
two of these questions. The first concerns the freedom from contradiction
of mathematics. This question can now be stated in a perfectly precise way
as follows. “Does there exist any formula A such that A and not ∼(A) are
both provable” where the term provable has the precise meaning which I
defined before by our rules of inference in a finite number of steps.

6.

It can be easily shown that if there existed two formulas A and ∼ A, both
of which were provable, then any formula whatsoever would be provable
for instance also the formula 0 = 1. So it is of vital importance for our for-
malism that his should not happen and the problem of giving a proof that
it cannot happen arises. But at the same time an objection can be brought
against the soundness of this problem. Namely one may say: Suppose we
had given a proof for consistency then owing to the fact that it is a ma-
thematical proof it must necessarily proceed according to the axioms and
rules of inference for mathematics and logic. So in order to be convinced
by this supposed proof we must know that our axioms and rules of infe-
rence which we used always lead to correct results. But if we know this in
advance then no proof for freedom from contradiction is necessary

7.

(because rules of inference which lead to correct results cannot lead to A
and ∼ A because these two formulas cannot both be correct). Fortunately
the actual situation is slightly different. For mathematics consists of two
distinct parts which are usually referred to as finite and transfinite mathe-
matics and which may be roughly characterised as follows. Under the first
heading (of finite mathematics) are comprised all such methods of proof
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which do not presuppose the existence of any infinite set whereas under
the second heading (of infinitary mathematics) fall those methods of proof
which do presuppose the existence of infinite sets and are based on this
assumption. (e.g., let P be any arithmetical proposition and let’s consider
the statement either every integer has the property P or there is an integer
which has not this property.

8.

Now nobody has ever questioned seriously the consistency of finite mathe-
matics whereas the situation is quite different with the transfinite methods
based on the assumption of the existence of infinite sets, which by the way
is by far the greater part of mathematics now existing. In this domain of
mathematics actual contradictions had arisen unexpectedly by toward the
end of the 19. century the so called paradoxes of the theory of aggregates. In
order to avoid them certain restrictions on the previous assumptions con-
cerning the existence of infinite sets had to be made. These restrictions can
be made in a very natural way and they do not affect in any way the ma-
thematical results previously obtained, but nevertheless the faith of many
mathematicians in the transfinite methods

9.

was shaken by this bad experience and there remains the fear that other
paradoxes may arise in spite of the restrictions. Now I think it is clear what
the question of proving freedom from contradiction really is about. It is the
problem of proving the freedom from contradiction of transfinite mathe-
matics by means of finite methods, i.e., using in the proof for consistency
only such methods as are not based on the existence of infinite sets. So
much for the meaning of the 1. problem, the question of consistency. The
second problem is in its treatment so closely related to the first that it can
hardly be dealt with separately. It is the question of completeness of the for-
mal system for mathematics, i.e., the question whether every mathematical
statement expressed by a formula of the system can be decided (either in
the affirmative or in the negative) by means of the rules of inference and
axioms, i.e., is it

10.

true that if A is any arbitrary formula expressing a proposition then either
A or ∼ A is provable? Or are there formulas for which neither one of the
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two is provable? I am going to sketch a proof which answers both questions
in the negative in the following sense: 1.) It is not possible to prove one
system consistent, using only a part of the methods of proof embodied in
its axioms and rules of inference. In fact, it is not even possible to prove
it consistent using all of its methods of proof. 2.) There are propositions in
fact even propositions belonging to the arithmetic which cannot be decided
by a formal proof. Of course mathematics can be formalized in different
ways, i.e., the axioms and rules of inference representing mathematics can
be chosen in different manners and so one may suspect that our two results
depend on the special system for mathematics which we chose. But this is
not the case. It can be shown that

11.

the two theorems which I just stated hold good whatever formal system we
may choose provided only that arithmetic of integers in its usual form is
contained in the system and that no false arithmetic statement is provable,
i.e., the axioms and rules of inference should not lead to results which can
be disproved for intuitive reasons.

The proof for these two statements (impossibility of a proof for con-
sistency and existence of undecidable propositions) is very cumbersome if
worked out in all details but I hope to succeed in making the leading ideas
clear to you.

12.

Suppose system given
Among expressions also such as x is > 6
not proposition but becomes so if substituted
called propositional function
expresses properties
Similarly with several properties expressing relations

—————————————————————————————————

Let1 primitive symbols of the system be ∼, → , E, x, rs, . . . sn
Any formula = combination of primitive symbols = sequence
Therefore numbering possible

1 Changed into: Let’s write down the
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in many ways, we choose the following:
(number primitive symbols . . . )
Proof = sequence of formulas = sequence of numbers
Numbering of proofs
Not all numbers used up but one to one

————————————————————————————————–
Owing to numbering: class of formulas⇒ class of numbers

relation of formulas⇒ relation of numbers
e.g., relation of being longer
Similarly for any relation (called metamathematical)⇒

relation arithmetic

13. 12a

A relation between formulas such as being longer is

Analogous to analytical geometry (also statements)
—————————————————————————————————

Further examples needed for subsequent proof.

Relation of immediate consequence
P
Q
R means P is the formula Q → R

(= implication with Q as first and R as second term)
What does that mean for corresponding numbers p, q, r
Series of exponents correspond to series of symbols therefore series of

exponents of p must be composed of those for q and r with one between
them

purely arithmetic relation
call it for the moment derived
for any three numbers it can be ascertained whether or not

—————————————————————————————————

Arithmetic definition of the integers which are numbers of proof as fol-
lows:

Suppose n axioms with numbers k1 . . . kn (definite numbers which can
be computed)

Suppose further only one rule of inference which makes no essential
difference

240



14.

Recall definition of formal proof (or chain of inference)
What does that mean for numbers?
According to correspondence if n is number of proof the exponents

numbers of formulas occurring in this proof and so the exponents must
satisfy this condition 1.) first – k1 − kn 2. each derived from some prece-
ding one where derived means
———

This property again purely arithmetic proof number
Further we consider the relation yPrx
means x proof and last exponent of x = y

———
and class P(x) ≡ (Ey) yPrx

—————————————————————————————————

Since the notions P and Pr are arithmetic and as arithmetic contained
in our system they can be expressed by formulas in fact by propositional
functions as can be shown in detail.
—————————————————————————————————

So consider from now on P and Pr as abbreviations for complicated
formulas which can actually be found and written

15.

Relation yPrx constructive (finite number of steps) and this has the conse-
quence

If A arbitrary formula and a its number if A provable then P(a) provable

Proof: Suppose A provable and b number then bPra true and provable
hence (Ey) yPra = P(a) provable
—————————————————————————————————

I need one more arithmetic notion derived from metamathematics S(x, y)
(calculable)
———
Again can be shown to be arithmetic notion which can be calculated (how?)
———
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Therefore represented by a formula of our system and again consider S as
denoting this formula
—————————————————————————————————

through with preparations

16.

Consider this expression

∼P[S(x, x)] . . . q

this is a propositional function with one variable and means:

1. Formula obtained by substitution x in formula number x is not pro-
vable

2. The property expressed by propositional function number x cannot
be proved to belong to the number x - computed

The above proposition f being a formula of our system it must have a num-
ber q (calculable!). Substituting q I get a proposition

∼P[S(q, q)] S(q, q)

which says that proposition number S(q, q) is not provable. What is the
number of this formula S(q, q)?

Let’s introduce r for S(q, q) then

17.

∼P(a)︸ ︷︷ ︸ . . . a

A number

A states on itself that it is not provable or arithmetic statement equivalent
to statement A not provable
—————–
Now we prove

If A provable then system contradictory

Apply auxiliary theorem we have a proposition A with number a and
know if A provable then P(a) provable so

If ∼P(a) provable then P(a) provable
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If ∼P(a) provable system contradictory

If system consistent A not provable. But owing to the fact that A itself means
exactly that A is not provable we may say

If system consistent then A, i.e.,

C → A

if C means the statement that the system [is consistent],

18.

is not provable.
This statement can itself be expressed by formula owing to correspon-

dence. So we proved a certain formula of our system C → A and this proof
can be formalized so we have

C → A is provable

Now it follows that C cannot be proved because if it were provable then A
were provable and then system contradictory.

[Cancelled: Close consideration shows constructivity]

19.

So we have shown: If the statement that our system is free from contradic-
tion could be proved then our system would be contradictory and a closer
examination shows that we could actually exhibit this contradiction, i.e.,
given a proof for freedom from contradiction we could derive from it an
actual contradiction of our system. The second half of our program, the
proof for the existence of undecidable arithmetic propositions is now easi-
ly accomplished. A, e.g., is such an undecidable proposition. For we know
if our system is free from contradiction then A is not provable. [The last
four lines have been lightly cancelled, then, it seems, the cancellation era-
sed.] On the other hand we know under the same assumption that A is true
therefore ∼ A is false and therefore ∼ A cannot be provable if we assume
that no false arithmetic statement is provable in our system.

19.1

The proposition A which we proved to be undecidable is an arithmetic
statement because P and S of which it is constructed are arithmetic notions.
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But this proposition A seems at first sight to be very artificial and far remote
from everything that is actually dealt with in arithmetic. This however is
a wrong appearance. It can be shown that A can be transformed into a
statement on the solutions of a certain diophantine equation, i.e., into a
statement of the same character as are actually dealt with in number theory.

20.

Of course the undecidability of A is only relative. We can add a new axiom
to one system which has the consequence that A becomes decidable in fact
a very plausible axiom namely C which states that our system is free from
contradiction. If we add this C, then owing to this implication A becomes
provable but it would be wrong to suppose that now we should have ob-
tained a system in which every arithmetic statement is decidable. For we
can apply the same method of proof to our new system and construct ano-
ther proposition, which is undecidable in the new system [added: For this
system again we can add a new axiom, e.g., the statement that the new sys-
tem is [consistent?] and make by it the undecidable proposition a decidable
one], and so we can go on indefinitely with our ever reaching a system in
which every arithmetic statement is decidable. This situation can also be
expressed by saying: It is impossible to give a complete system of axioms
for the arithmetic of integers, i.e., a system

21.

which makes it possible to decide any given arithmetic statement expres-
sible in the primitive terms of our system. I wish to make a final remark
on the impossibility of proving consistency. In that case too our statement
is only relative, i.e., we proved only that if a definite formalization of ma-
thematics is given then it is impossible to prove consistency of that formal
system, i.e., using only the axioms and rules of inference of this same sys-
tem. Someone may set up another formalism of mathematics and prove
the consistency of the first system by an argument proceeding according
to the rules of the second system. But we know in a proof for consistency
the point is that it should be conducted by finite methods and now nobody
has ever been able to produce a proof conducted by finite methods which
could not easily be expressed in anyone of the
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22.

formal systems for mathematics and nobody knows how to construct such
a proof and therefore the foregoing considerations make it appear entirely
hopeless to prove consistency for the transfinite methods of mathematics
using only the unobjectionable methods of finite arithmetic which was the
program of the formalistic school.
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Can mathematics be proved consistent?

1.

The modern investigations in the foundations of mathematics gave as one
of their remaining results the fact that all logic and all mathematics (at
least as far as it has been developed so far) can be deduced by means of
a few axioms and rules of inference. In order to bring out this fact clear-
ly it was necessary at first to replace the imprecise and often ambiguous1

by a perfectly precise artificial language, the logistic formalism. This forma-
lism consists of a few primitive symbols representing the primitive notions
of logic and mathematics [addition in Supplement I, cancelled: and the pri-
mitive symbols play the same role as the words in ordinary language]. I
wrote some examples of those primitive symbols on the blackboard

∼ not → implies E there exists

Now any logical or mathematical proposition can be expressed by a for-
mula composed of these primitive symbols [addition in supplement I: one
could even [cancelled: construct] device a machine that would give you as
many consequences of the axioms as you like. The only trouble would be
that it would give the consequences at random and therefore not the results
one is interested in] and vice versa any formula composed of our primiti-
ve terms according to certain rules which constitute the grammar of our
logistic language

2.

expresses (in a perfectly unique way) a definite mathematical statement.
[Addition from supplement II begins] In practice it would be very in-

convenient to express mathematical statements in this way by means of
the primitive terms of logic and mathematics. Our formulas would soon
become very long and cumbersome. Therefore we usually introduce besi-
des our primitive terms new symbols by definition but this process serves
merely the practical purpose of abbreviation and from the theoretical point
of view is entirely dispensible, as we can replace in any formula the new
symbols by their meanings expressed on our primitive terms. Therefore we

1 [The empty space left should be for an English equivalent of the German Wortsprache
that Gödel used in his other presentations in the same context. The New York lecture has:
colloquial language]
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may look away entirely from the possibility of introducing new symbols
by definition and think of any mathematical proposition as expressed by
the primitive terms of logic and mathematics. The process of deduction is
represented in this logistic language in the following way [text from sup-
plement II ends]: Some of our formulas are considered as axioms, that is
to say as the starting point for developing mathematics, and in addition to
that certain rules of inference are stated which allow you to pass from the
axioms to new formulas and this to deduce more and more propositions by
iterated application of the rules of inference. One of the rules of inference,
e.g., reads: If A and B are two arbitrary formulas and if you have proved
the formula A and the formula A → B, then you are entitled to conclude B
[Cancelled: This rule of inference has an important characteristic An im-
portant feature of the rules of inference is this that they do not refer to the
meaning of the formulas involved but only to their outward structure.

3.

You can see at once that in order to apply this rule of inference you need
not know anything about the meaning of our formulas.]

The other rules of inference are of a similar simple character. In particu-
lar, all of them are purely formal, i.e., they do not refer to the meaning of
the formulas but only to their outward structure so that they could be ap-
plied by someone who knew nothing about the meaning [cancelled: or by
a machine]. By iterated application of our rules of inference, starting from
our axioms, we obtain what I call [a derivation],2 i.e. a [derivation] sim-
ply is a finite sequence of formulas A1 . . . An which begins with some of
our axioms and has the property that each of it’s subsequent formulas can
be obtained from some of the preceding one’s by application of one of the
rules of inference. Instead of [derivation] I shall also use the term formal
proof or proof, and I will call a [derivation] a proof for formula F if the [de-
rivation] under consideration ends up with the formula F. And of course
we

4.

will call a formula F provable if there is a proof for it which means the same
thing as: if F can be obtained from the axioms by iterated application of the

2 [As explained in Part II, Section 4, Gödel had left space for an English word where he
likely thought of the German Herleitung.]
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rules of inference3 A symbolism for which axioms and rules of inference
are specified in the manner I have just described, is called a formal sys-
tem4 and one has succeeded in reducing all mathematics and logic to such
a formal system. Owing to this fact, certain general questions concerning
the structure of mathematics and logic have become amenable to a scien-
tific treatment, whereas formerly those questions had to be left to vague
speculations [added in supplement: and could not even be stated precise-
ly]. I want to deal with two of these questions to-night. The first concerns
the freedom from contradiction of mathematics. This question can now be
stated in a perfectly precise

5.

way as follows: Does there exist any formula A such that A and ∼ (A) are
both provable?, where the term “provable” has the precise meaning which I
explained before, namely it means “being the last formula of a [derivation]
which proceeds according to the rules of inference starting from axioms.”

[Cancelled: The question of consistency is actually a mathematical ques-
tion amenable to mathematical treatment. Every mathematician is convin-
ced that there do not exist two such formulas A and ∼A both provable,
and so the problem of giving a proof for this statement.]

It can easily be shown that if two such formulas A and ∼A which were
both provable existed, then any formula whatsoever would be provable,
for instance also the formula 0 = 1, and so it is of vital importance for our
formal system that this should not happen and the problem of giving a
proof that it cannot happen arises. But at the same time, serious objections
can be brought against this problem, namely one may, say, suppose we had
found a proof for consistency, then owing to the fact that it is a mathemati-
cal proof, it must necessarily

3 Cancelled addition on frames 411–412: It may seem as if in mathematics besides sho-
wing conclusions we would perform another important operation namely making defi-
nitions, i.e., introducing new notions by definition. But a closer consideration shows that
definitions are by no means indispensable but merely serve for the sake of abbreviation as
they introduce single symbols for complicated expressions. If, however, we take the trou-
ble of allways writing down the complicated expressions in full we need no definitions at
all and we can express every mathematical statement by means of the primitive notions of
logic and mathematics alone.

4 [Cancelled passage begins: and so I can state the fact to which I was referring in the
beginning of my talk has been established toward the end of the 19th century can be
stated by saying that there are formal systems comprising all of mathematics now existing]
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6.

proceed according to the axioms and rules of inference for mathematics. So
in order that this supposed proof may prove anything at all we must know
that our axioms and rules of inference which we used in it are correct, i.e.,
we must know that our axioms and rules of inference allways lead to cor-
rect results.5 But if we know [changed from: believe] this in advance, then
no proof for freedom of contradiction would be necessary, for A and ∼A
then could not both be provable, because they cannot both be correct re-
sults. Fortunately the actual situation is slightly different. For mathematics
consists of two distinct parts which are usually referred to as finite and
transfinite mathematics which may roughly be characterised as follows.
Under the first heading are comprised (subsummed) all such considera-
tions and methods of proof which do not presuppose the existence of any
infinite sets and are based on this assumption, e.g., [cancelled: Let P be a
property]

7.

6Now nobody has ever doubted [written above: questioned (challenged)]
seriously the consistency of finite mathematics, whereas the situation is
quite different with the transfinite methods based on the assumption of the
existence of infinite sets which, by the way, is by far the greater part of now
existing mathematics. In this domain of mathematics, actual contradiction
had arisen unexpectedly toward the end of the 19th century, the so called
paradoxes of the theory of aggregates. In order to avoid those paradoxes,
certain restrictions on the previous assumptions concerning

5 [Originally: So in order to be convinced by this supposed proof we must believe in the
correctness of our axioms and rules of inference, i.e., we must believe that our axioms and
rules of inference allways lead to correct results.]

6 [Cancelled:
Let us call an integer a “prime sum” if it is the sum of two prime numbers. Now if we

make the following association, “Either every even integer is a prime sum or there is an
even integer which is not a prime sum,” then the correctness of this assertion presupposes
that the infinite totality of all even numbers exists somehow objectively because we assert
the above disjunction although we are ]
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8.

infinite sets had to be made, and these restrictions7 can be made in a very
natural way and they do not alter anything in the mathematical results, but
nevertheless, the faith of the mathematicians in the transfinite methods was
shaken by the bad experience of the paradoxes of the theory of aggregates
and there remains the fear that other paradoxes may arise in spite of our
restrictions. And now you see what the question of proving consistency
really is about. It is the problem of proving the freedom from contradiction
of the transfinite mathematics by means of finite methods, i.e., using in the
proof for consistency only such methods

9.

as are not based on the existence of infinite sets. So much on the meaning of
the first problem, the question of consistency. The second problem which I
want to deal with is so closely related to the first in its treatment that it can
hardly be separated from it. It is the question of completeness of the for-
mal system for mathematics, i.e., the question whether every mathematical
statement expressed by a formula of our system can be decided by means
of our axioms and rules of inference that is to say: Or in other words, is it
true that if A is an arbitrary formula then either A or ∼A is provable. I am
going to sketch a proof which answers both those questions in the negative.
I.e. 1.) It is not possible to prove our system consistent using only the finite
methods of proof embodied in its axioms and rules of inference. 2.) There
are propositions, in fact even

10.

arithmetic propositions A, for which neither A nor ∼A is provable.
Of course mathematics can be formalized in different ways, that is to

say, the axioms and rules of the formal system representing mathematics
can be chosen in different manners and so one may suspect that our two
results depend on the special system for mathematics which we chose. But
that is not the case: It can be shown that the two theorems which I just stated
hold good whatever formal system we may choose provided only that or-
dinary arithmetic of integers in its usual form is contained in our system

7 [Cancelled: are of course carefully observed in the axioms and rules of inference of
the formal system for mathematics, so that we may be quite sure that none of the known
paradoxes of the theory of aggregates can be obtained by our axioms but of]
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and that no false arithmetic statement is provable, and these two require-
ments seem to be indispensable for any system which can be claimed at all
to represent mathematics.

The proof for these two statements (impossibility of a proof for consis-
tency and existence of undecidable

11.

propositions is very cumbersome if worked out in all details, but I hope to
succeed in (explaining you) making the leading ideas clear to you.

So let us suppose a formal system for mathematics given [cancelled: and
let f1 f2 . . . fk be its primitive symbols. Any formula then is a combination
of those primitive symbols, i.e., a finite sequence of the primitive symbols.]
Among the expressions which can be built up by our primitive symbols,
also expressions of such a kind as I wrote down here occur:

x2 > 6 x2 > y + 1 x + y{
22 > 6 22 > 2 + 1
32 > 6 22 > 5 + 1

}
Take, e.g., x > 6, it does not denote a proposition, but it becomes a propo-
sition if the variable x is replaced by a definite number, e.g., x . . 2.

Such an expression involving a variable which becomes a proposition if
the variable is replaced by a number ist called propositional function. And
we may say that propositional functions represent properties, e.g., x > 6 re-
presents the property of being greater than 6 (or we may say they represent
classes fi). In a similar way, you can

12.

form propositional functions involving several variables which become pro-
positions if [the variables are replaced by numbers], e.g., [x > y].8 Such
propositional functions with several variables of course represent relations,
e.g., [the relation of greater than]. Finally, there are expressions involving
variables [cancelled: of a third kind (example) [possibly x + y intended]
which, if variables are replaced by numbers, do not become propositions,
but become a symbol of definite numbers]. If here the variables are repla-
ced you obtain a symbol for a definite number, so we have to bear in mind

8 [Guessed from context.]
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that these three kinds of expressions exist beside the expressions denoting
propositions. That is first remark.

Suppose f1 f2 . . . fk be the primitive symbols of our system. Then eve-
ry formula is a combination of these symbols = finite sequence of these
symbols. [Cancelled: Therefore it is possible to order all the formulas in a
series in a similar way as the words in dictionary are ordered. The only
difference is that there are infinitely many formulas and therefore our dic-
tionary would have – –] Owing to this fact, it is possible to number the
formulas, i.e., to associate with each formula a number in the same way as
to each house

13.

in a street a number is associated, of course in such a way that to different
formulas different numbers. This numbering of the formulas can be effec-
ted in many way’s. For the subsequent purposes, it is most convenient to do
it in the following way: We give [changed from: associate] at first a number
to each of our primitive symbols fi – – i. As each formula is a finite sequence
of [primitive symbols], to each formula there corresponds a sequence of in-
tegers k1k2 . . . ks, and from this sequence of integers, we construct a single
integer in the following way: 2k1 · 3k2 · . . . · pks

s [added above: and consider
this as the number of] ? So to every formula a corresponding integer.9 As
we know, proof = sequence of formulas satisfying certain conditions. As
any formula has a number, a proof can be represented by a sequence of
numbers, and in the same way as before, we can again construct a single
number out of this sequence and consider this as the number

14.

of our proof. So we have succeeded in numbering not only the formulas,
but also the proofs.10 Owing to this numbering of the formulas, of course
to every class of formulas there corresponds a certain class of integers and
to every relation between formulas a certain relation between integers. Ta-
ke, e.g., the following relation: the formula x is longer than the formula y,

9 of course not all numbers used up
10 Not all numbers are used up in this numbering process, that is to say, there are numbers

that correspond to no formula and numbers that correspond to no proof. But that does not
matter; the only thing we need is that every formula and every proof should be labeled by
a definite number.
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i.e., consists of more symbols. What does that mean for the numbers of the
formulas x, y which I denote by m, n? Of course it means that m contains
more different prime factors than y. So we have a definite arithmetic relati-
on which corresponds to the relation of being longer between formulas. In
a similar manner to any

15.

relation between formulas, there corresponds a certain arithmetic relation
between integers. Relations between formulas are called meta and so we
can say – –. The situation is similar to that in analytic geometry where
we also associate numbers (called coordinates) to certain entities namely
the points, planes, etc., and owing to this correspondence to any geome-
tric relation [continued in supplement IV] between points corresponds an
arithmetic relation between numbers, for instance the relation which holds
for three points if they lie on a straight line corresponds to the arithme-
tic relation of linear dependence between numbers. Similarly also to each
geometric statement corresponds an arithmetic statement, e.g., and in our
case to each metamathematical statement concerning the formulas of our
system corresponds a certain arithmetical statement. [end of continuation]

————————————————————————————————

I hope this will become clear by some other example which I need for the
subsequent proof. Take, e.g., the relation of immediate consequence bet-
ween formulas. What arithmetic relation does correspond to it? I called a
formula R an immediate consequence of two formulas P and Q if R could
be concluded from P and Q according to our rule of inference, which means
the same thing as P must be an implication whose first term is Q and se-
cond term is R, because only when P has this structure we can apply our
rule of inference and get R as a consequence. Now what does that mean for
the numbers of P, Q, R ? According to our definition, if p corresponds to the
formula P, then the series of exponents in the expansion of p corresponds
to the series of symbols of which p [should be P] consists, and similarly for
q and r. Now suppose the sign of implication which is one of the primitive
terms has the number k.

16.

Then the fact that the formula P is composed of the formulas Q and R with
an implication sign between them means for the corresponding number
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that the series of exponents in the expansion of p is composed with the
number k between them. This is clearly a purely arithmetic relation bet-
ween the numbers p, q, r, and if three numbers are given, it can easily be
ascertained whether this relation holds or not. And if and only if this arith-
metic relation holds between three integers p, q, r, the relation of immediate
consequence holds for them. [Addition in supplement IV] If three integers
p, q, r stand in this relation, I shall call r derived of the two integers p and
q. Now we are in a position to give a purely arithmetic characterisation of
those integers which correspond to proofs [end of addition]. Also the class
of integers which are numbers of some proofs [cancelled: can be characte-
rised arithmetically] in the following manner. Let us suppose that we have
n axioms and that the number of these n

17.

formulas taken as axioms be k1 k2 . . . kn. So there are n definite numbers
which are determined if the system is given.11 A formal proof of our system
was defined as being a sequence of formulas beginning with some axioms
and such that each subsequent formula of the sequence can be obtained
from some of the preceding ones by the rule of inference. What does that
mean for the corresponding number, i.e., what arithmetic property must
a number a posess in order to be the number of a proof? Now according
to the manner in which we associated numbers to proofs we have this: If a
corresponds to a proof, then the exponents in the prime expansion of a must
correspond to the single formulas of this proof, and so these exponents
must satisfy the condition that the first exponents say m1 up to ms, must
be some of the n numbers k1 . . . kn, and each of the subsequent exponents
must be derived from some of the preceding, where derived means that
purely arithmetic relation which I defined before, so the property of being
the number of some proof can be expressed purely arithmetically. Therefore
also this relation P

18.

which means [y Pr x] can be expressed arithmetically, because it simply
means y is the number of a proof and the last exponent of y is equal to

11 Let us further suppose, for the sake of simplicity, that we have only one rule of infe-
rence. This one which [perhaps intended: with] implication. Actually there are several rules
of inference but that makes no essential difference.

254



x. Further, we can form the class of those integers which correspond to pro-
vable formulas and denote it by P; so P(x) means the formula with the
number x is provable, i.e., (Ey)y Pr x

[Addition from supplement III] This property P again is a purely arith-
metic property. Now we have assumed that arithmetic be contained in our
formal system, that is to say that arithmetic relations and statements can
be. Therefore, relation Pr and the property P, being purely arithmetical,
can be expressed by formulas of our system. We know how relations and
properties are expressed in a formal system. They are expressed by propo-
sitional functionals, so we can say, and it can be shown with all necessary
rigor, that there is a propositional function with two variables [continues
in supplement IV] expressing the relation y Pr x, function P(x) with one
variable expressing this property, and it would make no difficulty actually
to write down these formulas as in terms of the primitive symbols of the
system of mathematics and logic, and so I beg [above: ask] you to consider
these letters P, Pr from now on as a shorthand notation for some long and
complicated formulas of our system [end of addition].

Now the relation y Pr x has the following important property: If two
arbitrary numbers k, l are given, you can allway decide in a finite number
of steps whether for these two numbers the relation Pr holds, i.e., whether
k is [the number of a proof for the formula number] l. Because in order to
find that out you have only to expand k in its prime factors (which can –
– step), then write down the series of exponents and find out 1.) if the last
exponent is the number l 2.) if the first exponents up to a certain stage are
numbers of axioms and 3.) If all the subsequent numbers are derived from
the preceding one’s. And as the number of exponents for which you have
to check the latter statement is finite and as the relation of “being

19.

derived” is [decidable], this can allways be done in a finite number of steps.
This fact that for any two integers k, l it can be decided in a finite number
of steps whether the relation Pr holds or not now has the following con-
sequence: Let A be an arbitrary formula and a its number. Then I assert if
A is provable P(a) is provable, i.e., if A is a provable formula, then for the
number of a one can prove that it is the number of a provable formula. So
this theorem which I assert means: If A is provable, then the statement that
A is provable is also provable. [Addition in supplement III] I.e., if the state-
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ment that A is provable is true it is also provable. It could not be asserted
for every mathematical proposition that if it was true, it was provable, but
it can be asserted for a certain class of proposition (existence propositions).
Take for instance the famous theorem of Goldbach which states that [every
even integer is a] prime [sum]. If it was false we could certainly prove it
was false [end of addition].

The reason for this theorem’s holding is this: Suppose A is provable, i.e.,
there is a proof. This proof has a number, say b. b is the number [of a proof
for the formula] a, i.e., b Pr a, but as Pr is decidable for any two numbers,
we can ascertain in a finite number of steps that b Pr a, i.e., prove b Pr a, and
therefore also prove (Ey)y Pr a, i.e., P(a).

20.

For the subsequent considerations, I need one more arithmetic notion de-
rived from a corresponding metamathematical, and this is the following
[from formula list]:

S(x, y) = number of formula obtained from formula number x
by substituting number y for the variable a

So if two numbers x, y are given, S(x, y) allways is a definite number which
can be computed in a finite number of steps. In order to do that we have
first to find out whether the combination of symbols corresponding to x is a
propositional function. If this is not the case, we know that S(x, y) = 0, if it
is the case, we have to replace the variable in this propositional function by
the number y. Thus we obtain a definite formula and we have only to com-
pute the number of this formula. This gives us the value of S(x, y). Again,
this function S(x, y) whose arguments as well as its value are integers turns
out to be a purely arithmetical function which therefore can be represented
by a formula of our system, and again consider the latter S as a shorthand
notation for this formula. Now I am through with the preparations and can

21.

proceed to the proof. I consider the following expression:

∼P[S(x, x)]

This is a propositional function with one variable x and it means: the for-
mula obtained from the propositional function number x by substituting in
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it the number x itself is not provable. If x is not the number of a proposi-
tional function, then this formula is allways true, because then S(x, x) = 0.
But that is of no importance. If x is the number of a propositional functi-
on, then this statement means the following thing: the property expressed
by the propositional function number x cannot be proved to belong to the
number x. Now this formula being itself a propositional function of formal
mathematics, it must have a number itself. Let us call it q. This number
could easily be calculated if we like because – – . And now I substitute the
number q in it so that I obtain [ ∼P[S(q, q)] ]. So we get a definite proposi-
tion which says that

22.

the proposition number S(q, q) is not provable, i.e., that the proposition
obtained [ ∼P[S(q, q)] ] is not provable. What is the number of this propo-
sition? We can easily compute it from the manner in which we obtained it;
We obtained it by substituting the number q in this propositional function,
i.e., in the propositional function with the number q. But the number of the
formula obtained from [formula number q] by [substituting number q for
the variable x] is S(q, q). That is exactly the definition of S so we know that
this proposition, I call it R, has the number S(q, q). [Added: Lets introdu-

ce an abbreviation for this expression S(q, q), say r, then we have

∼P(r)︸ ︷︷ ︸
R ,

[formula number] r, and I call this statement R.] But what does this propo-
sition state? It states that proposition N 0

= r is not provable, but the proposi-
tion number r is exactly itself. So we have a proposition which states about
itself that it is not provable. This proposition really is an arithmetical state-
ment because P and S are arithmetical functions and so to be more exact
we would have to say we have an arithmetical statement

23.

R which is equivalent with the logical statement that R is not provable.
And now the next step is that we can prove that if this proposition were
provable, our system would be contradictory. For this purpose, we have
only to apply the above theorem that if r is the number of R and if R is pro-
vable, then the formula P(r) is provable. So in our case, if the proposition
R number r is provable, then the formula P(r) is provable,
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24.

i.e., if ∼ P(r) were provable, then system for mathematics would involve
contradiction, or vice versa if system consistent, then R not provable. But R
just means that R is not provable and so we may say – –

Now owing to the fact that we have replaced the notions relating to for-
mulas (e.g. notion of provability) by arithmetic notions, also to every me-
tamathematical statement relating to formulas there corresponds an equi-
valent arithmetic statement, e.g., also to the statement that our system is
consistent. I denote this statement by Contr. So what we have proved so
far can be understood to be an arithmetical statement. So this arithmetical
statement is proved and therefore for this also, a formal proof for it in our
system can be given, in our system. But from this we infer at once that C
cannot be proved. For if it could be proved, then owing to this implicati-
on also R could be proved but if R could be proved, the system would be
contradictory.

25-415 [The three formula pages follow]

1.)c
∼ not → implies E there exists

∼ p p → q (Ex)F(x)

A → B
A

}
premises Rule of inference

———
B

A1 A2 . . . An chain of inference or formal proof

x2 > 6, x > y2 + 2 propositional functions

∼, → , E, x, s5, s6 . . . sn
| | | | | | |

1, 2, 3, 4, 5, . . . n

A . . . n1 n2 . . . nr . . . 2n13n2 . . . pnr
r

pr = r-th prime number

A1 A2 Am
a1 a2 am

}
2a13a2 . . . pam

m
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P Q → R
Q Q

∣∣∣∣ P = Q → R
—– —–
R R

p = 2a1 . . . pal
l

q = 2b1 . . . pbm
m

r = 2c1 . . . pcn
n

(a1, a2 . . . al) = (b1, b2 . . . bm, 2, c1, c2 . . . cn)
r derived from p, q

25-416

2.)c
k1 k2 . . . kn numbers of axioms

z = 2m1 . . . pmr
r

m1 . . . ms |ms+1 . . . mr

————————————————————————————————
y Pr x = y is the number of a proof for the formula number x

————————————————————————————————
P(x) = formula number x is provable = (Ey) yPr x

S(x, y) = number of formula obtained from formula number x by sub-
stituting number y for the variable a
————————————————————————————————

A number a

If A provable P(a) provable
———————————————————————————————

25-417

3.)c
∼P[S(a, a)] number q

∼P[S(qq)] number S(qq)

S(qq) = a

∼P(a)︸ ︷︷ ︸
A

number a

If ∼P(a) provable then P(a) provable

If ∼P(a) provable system contradictory

If system free from contradiction A not provable
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If system free from contradiction A holds
——————————————————————————————

C → A is provable

C = statement that system free from contradiction
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kalküls. Monatshefte für Mathematik und Physik, vol. 37, pp. 349–360: TM 37
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Kurt Gödel (1906–1978) shook the mathematical world in 1931 by a result that
has become an icon of 20th century science: The search for rigour in proving ma-
thematical theorems had led to the formalization of mathematical proofs, to the
extent that such proving could be reduced to the application of a few mechanical
rules. Gödel showed that whenever the part of mathematics under formalization
contains elementary arithmetic, there will be arithmetical statements that should
be formally provable but aren’t. The result is known as Gödel’s first incompleteness
theorem, so called because there is a second incompleteness result, embodied in his
answer to the question Can mathematics be proved consistent?

This book offers the first examination of Gödel’s preserved notebooks from
1930, written in a long-forgotten German shorthand, that show his way to the
results: his first ideas, how they evolved, and how the jewel-like final presentation
in his famous publication On formally undecidable propositions was composed.

The book contains also the original version of Gödel’s incompleteness article,
as handed in for publication with no mentioning of the second incompleteness
theorem, as well as six contemporary lectures and seminars Gödel gave between
1931 and 1934 in Austria, Germany, and the United States. The lectures are master-
pieces of accessible presentations of deep scientific results, readable even for those
without special mathematical training, and published here for the first time.


