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Rapid growth and advancement of next generation sequencing (NGS) technologies have changed
the landscape of genomic medicine. Today, clinical laboratories perform DNA sequencing on
a regular basis, which is an error prone process. Erroneous data affects downstream analysis
and produces fallacious result. Therefore, external quality assessment (EQA) of laboratories
working with NGS data is crucial. Validation of variations such as single nucleotide polymor-
phism (SNP) and InDels (<50 bp) is fairly accurate these days. However, detection and quality
assessment of large changes such as the copy number variation (CNV) continues to be a concern.

In this work, we aimed to study the feasibility of an automated CNV concordance analysis for
the laboratory EQA services. We benchmarked variants reported by 25 laboratories against
the highly curated gold standard for the son (HG002/NA24385) of the askenazim trio from
the Personal Genome Project published by the Genome in a Bottle Consortium (GIAB). We
employed two methods to conduct concordance of CNVs, the sequence based comparison with
Truvari and the in-house exome-based comparison. For deletion calls of two whole genome
sequencing (WGS) submissions, Truvari gained a value greater than 88% and 68% for precision
and recall respectively. Conversely, the in-house method’s precision and recall score peaked at
39% and 7.9% respectively for one WGS submission for both deletion and duplication calls.
The results indicate that automated CNV concordance analysis of the deletion calls for the
WGS-based callset might be feasible with Truvari. On the other hand, results for panel-based
targeted sequencing for the deletion calls showed precision and recall rates ranging from 0-80%
and 0-5.6% respectively with Truvari. The result suggests that automated concordance analysis
of CNVs for targeted sequencing remains a challenge. In conclusion, CNV concordance analysis
depends on how the sequence data is generated.

ACM Computing Classification System (CCS)
Applied computing → Life and medical sciences → Computational biology → Computational
genomics
General and reference → Cross-computing tools and techniques → Validation

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information



Acknowledgements

In the course of writing this thesis, I have received plenty of help. First of all, I am
extremely grateful to my supervisor, Professor Veli Mäkinen - your guidance was invaluable
in the completion of this work.

I would like to express my deepest gratitude to my second supervisor Mr. Jukka Mati-
lainen. Thank you for all those brilliant ideas - your expertise was instrumental throughout
this work.

I would like to express my deepest appreciation to my third supervisor Dr. Christophe
Roos. Thank you for always encouraging and nurturing me.

I would also like to thank my employer Euformatics Oy for allowing me to work on this
project. Further, thank you all the colleagues for creating a supportive environment.
Special thanks to Jussi Volanen for spontaneous ideas.

Many thanks to EMQN and GenQA. Thank you for collaborating and providing the data
for the project.

I am deeply indebted to my friends, Corinna Hertweck and Jyoti Prabha Satta, along with
my Rush. Thank you for reading my thesis and providing valuable feedback.

Finally, heartfelt thanks to my family for always being there and to my friends Anil,
Ashika, Mangesh, Mina and Keshav for keeping me sane in this difficult times.





Contents

Abbreviations 1

1 Introduction 3

2 Next Generation Sequencing (NGS) 5
2.1 NGS platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Short vs long-read sequencing . . . . . . . . . . . . . . . . . . . . . 6
2.2 Types of NGS sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Targeted sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Whole Genome Sequencing . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Variant Calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Causes of erroneous NGS data . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Variation in the genome 13
3.1 Structural variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Copy Number Variation (CNV) . . . . . . . . . . . . . . . . . . . . 14
3.2 CNV detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Datasets 21
4.1 The gold standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The callsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Methods 27
5.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Assessment workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Evaluated regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Variant comparison strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 Sequence based comparison . . . . . . . . . . . . . . . . . . . . . . 30



5.4.2 Exome based comparison . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Results 38
6.1 Method 1: Sequence based comparison . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Analysis of deletion and duplication calls with Truvari . . . . . . . 38
6.1.2 Stratified analysis of deletion calls with Truvari . . . . . . . . . . . 38
6.1.3 Further analysis of WGS submissions . . . . . . . . . . . . . . . . . 41

6.2 Method 2: Exome based comparison . . . . . . . . . . . . . . . . . . . . . 42

7 Discussion 44

8 Conclusions 46
8.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47



Abbreviations

AS de novo assembly of genome

BAM Binary alignment map

BED Browser extensible data

BND Breakend

CBS Circular binary segmentation

CCS Circular consensus sequencing

CFTR Cystic fibrosis transmembrane conductance regulator

CNV Copy number variation

DOC Depth of coverage

DEL Deletion

DUP Duplication

EMQN The European Molecular Genetics Quality Network

EQA External Quality Assessment

FP False positive

FN False negative

GenQA Genomic Quality Assessment

GIAB Genome in a Bottle Consortium

HMM Hidden Markov Model

IGV Integrative Genomics Viewer

INS Insertion

kb Kilobase

NGS Next generation sequencing

PacBio Pacific Biosciences
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PEM Paired end mapping

PT Proficiency testing

RD Read depth

ROI Region of interest

SAM Sequence alignment map

SMRT Single molecule real-time

SNP Single nucleotide polymorphism

SNV Single nucleotide variant

SR Split read

SV Structural variant

TP True positive

TS Targeted sequencing

VCF Variant call format

WES Whole exome sequencing

WGS Whole genome sequencing



1 Introduction

With the dawn of high-throughput next generation sequencing (NGS, also known as mas-
sively parallel sequencing), the field of genomics has produced more data than ever [6].
High speed deep sequencing capabilities of NGS technologies have been proven to detect
more de novo and rare genetic variants than conventional Sanger sequencing [23]. NGS
technologies have made existing analytics much cheaper both in cost and time and new
advancements are rapidly widening the scope of applications. However, NGS has certain
disadvantages, the fundamental technologies used for calling the DNA bases frequently
make errors, and the type of errors depend on the technology [45, 81]. For example,
some technologies make sequence-dependent errors, while others simply make random er-
rors independent of the molecule to be sequenced. There are preventive measures such
as reading the same genomic region multiple times to obtain the correct read through a
majority vote system, but there are also other computational tricks to get more accurate
reading. Nevertheless, these sequencing artifacts happen all the time. Moreover, it is not
only the sequencing per se that introduces error, the sequence quality is heavily dependent
on how the sample is handled in the wet-lab before sequencing using NGS technologies
[81].

To guarantee the correctness of the end result, laboratories need to perform validation runs
in which the concordance of the obtained result is evaluated with the high quality truth
set. In particular, clinical diagnostic laboratories must perform well in their concordance
analysis to have confidence in their result and to be allowed to provide their diagnostic
services [43]. However, performing well in an internal assessment is not enough. It is
a standard practice for laboratories to have an external quality assessment (EQA), also
known as proficiency testing (PT) from an EQA service providers to ascertain the quality
of their result. The EQA is a method where an external party examines the laboratory
result without prejudice [75]. It is not a one-time process, but rather a recurring one,
in which laboratories must have their results repeatedly verified by the EQA providers
in certain intervals. The key purpose of EQA is to standardize laboratory practices to
guarantee quality and uniformity of result among laboratories. [78, 75]

For genetic testing, EQA service providers would benefit from an automated system to
conduct a concordance analysis because, typically, there are thousands of genomic varia-
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tions to validate, which is not practical to do manually. Genomic (or genetic) variations
are changes in a person’s DNA. Variations can be enormously diverse. They can range
from single nucleotide variants (or polymorphisms, SNV / SNP) in the DNA, to large
structural variants (SV) affecting hundreds of base-pairs or more, or even whole section
of a chromosome (millions of base-pairs). The large SVs are much more complex from
both the detection and interpretation point of view. [13] Copy number variation (CNV)
is one type of SV in which a piece of DNA longer than 50 bp is either added or deleted.
CNVs are clinically important because they have been linked with several genetic diseases
including cancer [46]. Automatic concordance analysis of changes such as SNPs and small
(<50 bp) insertions or deletions (InDels) is fairly accurate these days [73, 69]. However,
comparing sequences that are thousands of bases long is a computationally hard problem,
thus making automated concordance analysis difficult for CNVs. In this work, we aim to
study the practicality of automating CNV concordance analysis.

There are 8 chapters in this thesis. Chapter 2 reviews the relevant literature about NGS
in general. The reviewing continues in Chapter 3 where the details of the CNV detection
methods are explained. Then, Chapter 4 describes the datasets used in the study. Chapter
5 explains the two benchmarking methods (sequence based and in-house exome-based
comparison) used, results obtained are then presented in Chapter 6. In Chapter 7, key
findings of the study along with the acknowledgement of the limitations faced during the
study is discussed. At last, conclusions and possible directions for the future work are
presented.



2 Next Generation Sequencing (NGS)

Next generation sequencing is a successor to Sanger sequencing that ruled the DNA se-
quencing domain together with Maxam-Gilbert sequencing [1] for more than two decades.
NGS refers to the collection of technologies that were developed after Sanger that can
carry out deep parallel sequencing on a massive scale. Due to its high-throughput capa-
bilities, the cost and time of genomic sequencing were tremendously reduced compared
to its predecessors. [39] To put this improvement into perspective, the yearly throughput
of NGS as of today is in petabases while Sanger sequencing would yield just a fraction
of this [83]. The cost of sequencing has also dropped significantly over the last 20 years
[44]. Reduced time and cost as well as a much more comprehensive understanding of the
genome (human, but also many other species) has enabled almost any laboratory or re-
search groups to use NGS in their routine work. Additionally, NGS users have developed
new, innovative and creative ways to make use of NGS technologies, which have lead to
an explosion of new scientific and analytical approaches in the field. Now, the NGS and
technologies built around it are evolving quickly.

Currently, NGS is used extensively in whole genome sequencing (WGS), which is improving
our understanding of the genome. Additionally, such improved comprehensive knowledge
will bring more crucial biological understanding and interpretation of variations. Apart
from WGS, NGS is used for targeted and whole exome sequencing (WES), which are even
faster and cheaper than WGS and can still provide invaluable information on targeted
regions of the genome. [61] For instance, Iossifov et al. [24] detected CNVs, de novo
missense variants and de novo gene-disrupting variants responsible for autism spectrum
disorder (ASD) with WES.

Today, NGS is not just a high-tech innovation that only a few select people have access
to. Its application has spread in domains that we could not even imagine a few years
ago. It is used in forensic sciences but also in veterinary sciences, agriculture, and most
recently for tracking the evolution of the SARS-CoV-2 virus and for following the Covid-19
pandemic [80]. Specially in clinical genomics, its use is rather a necessity now and the
technology is very widespread. One of the key clinical areas where NGS can shine is in
the field of precision medicine, where precise information about the patient genome can
help instruct the development of tailored treatments [42]. Clinicians are also looking into
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the possibilities of how NGS can be incorporated to obtain a necessary biological insight
to develop a new clinical practice [10].

2.1 NGS platforms

DNA sequencing is a technically challenging task. Currently, several different NGS plat-
forms for sequencing exist. Following the arrival of Illumina in 2006 [30], several other
technologies with different sequencing methods have emerged. However, Illumina remains
the most popular sequencing technology among the sequencing service providers [48, 7].
Methodologies used by some popular NGS platforms to call DNA bases are discussed here.

There are some fundamental differences in how different sequencing platforms work. Firstly,
all of these technologies require platform-specific library preparation [48]. Secondly, dif-
ferent sequencing technologies determine nucleotides in a sequence by applying different
methods. For example, Illumina is an imaging-based technology that uses fluorescence sig-
nals to determine bases because each DNA nucleotide has a unique fluorescence signature.
On the other hand, Ion Torrent technology is based on a semiconductor chip that detects
the change in the pH value resulting from a release of H+ ion during the incorporation of
a DNA nucleotide into a single strand of DNA. [18]

Pacific Biosciences (PacBio) technology’s single molecule real-time (SMRT) sequencing
has become popular in recent years. Similar to Illumina, it also uses a fluorescence sig-
nal of DNA nucleotides to call bases. However, PacBio’s SMRT chips measure emitted
fluorescence signal in real time, which gives it the capability to detect a single molecule.
[18] Oxford Nanopore sequencing is another sequencing platform that is gaining ground in
recent years. It measures the change in ionic current resulting from the passing of different
DNA bases through a protein nanopore. The electrical signal changes because the size of
each DNA base is different. [51]

2.1.1 Short vs long-read sequencing

Apart from how different NGS platforms perform base calling, they can be broadly classi-
fied into short-read and long-read based sequencing platforms. The long-read technologies
are newer than the short-read ones and are sometimes referred to as the third genera-
tion sequencing technology. The main difference between the short-read and the long-read
technologies is the length of reads produced by them. As the name suggests, the short-read
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and the long-read platforms produce shorter and longer reads respectively. The Illumina
and the Ion Torrent platforms are short-read based, whereas the PacBio and the Oxford
Nanopore are long-read based sequencing platforms. [8]

The read length produced by the short-read technologies is limited by the short length
of the DNA fragments used during the sequencing process, which is usually in a range
of 75 to 400 base pairs [8]. Conversely, long-read technologies are capable of sequencing
thousands of contiguous bases because they have the ability to identify a single molecule
of DNA in real time. The long-read platforms have some clear advantages over the short-
read platforms. For instance, the long-read technologies are able to sequence repetitive
regions, which have been troublesome for short-read technologies. Furthermore, they can
resolve sequences in structural variants better than the short-read technologies. Similarly,
long reads are more useful than short reads in the de novo genome assembly process
because they align better with the reference genome. However, long-read technologies
are considerably more expensive than the short-read ones. Moreover, accuracy per read
of short-read platforms are higher than that of the long-read platforms. [8] Currently,
compared to the long-read sequencing, the existing bioinformatics infrastructure is more
favorable to the short-read sequencing platforms [65]. However, this could change in the
future when the use of the more advanced long-read technologies are widely adopted.

2.2 Types of NGS sequencing

Based on the genomic region of interest (ROI) to sequence, NGS sequencing can be divided
into two main types, namely targeted sequencing (TS) and whole genome sequencing
(WGS). We discuss the key ideas behind each strategy in the following section.

2.2.1 Targeted sequencing

Targeted sequencing is a technique in which the sequencing of the DNA is restricted to
the predefined regions of the genome. The decision on ROIs for sequencing is based on the
genetic testing being carried out. [4] For instance, BRAF and EGFR genes are frequently
targeted because they are known to contain mutation hotspots for various cancer types
[14]. The sequencing cost of TS is much cheaper than WGS. Moreover, greater sequencing
depth achieved in TS allows the detection of more genomic variation. [4, 14] TS can be
further divided into two types: (i) gene panel based sequencing, and (ii) whole exome
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sequencing [4].

Gene panel based sequencing

In gene panel based sequencing, the handful of genes that are known to have clinical
significance relating to patient’s phenotype or indicated by some other medical procedures
are sequenced. The genes or ROIs under study are enriched before the sequencing. The
list of selected genes for testing are termed as a ’gene panel’. These gene panels can be
either purchased or custom made. The volume of data produced by gene panel sequencing
is small, which saves computational resources during analysis. [4, 14]

Whole Exome Sequencing

Exomes or protein-coding regions cover less than 2 percent of the human genome [39].
However, the majority of the Mendelian diseases are linked to mutations in the protein
sequence [4]. Therefore, it makes sense for the clinical laboratories to conduct WES for
disease diagnosis. In WES, all the known exons in the genome are sequenced, which is
roughly around 22,000 protein coding genes [4].

2.2.2 Whole Genome Sequencing

WGS involves the sequencing of the entire DNA of the organism. For the human genome,
WGS means the sequencing of 23 pairs of chromosomes along with the mitochondrial DNA.
WGS produces lots of genomic data, which require intensive computational resources for
analysis. Furthermore, the cost of WGS is higher compared to TS, which limits its use.
[4]
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2.3 Variant Calling

DNA sequencing is a complicated task that comprises multiple steps between sample
collection and generation of a list of variants in a digital file such as the variant call
format (VCF) [84]. In a typical clinical setting, a doctor examines a patient and orders a
gene analysis (sequencing) job. Then, a laboratory takes a sample from the patient, for
example, some drops of blood, and stores it appropriately. After that, DNA is extracted
from the sample. The DNA is then used to prepare a library of short molecules to analyse
with the sequencer, and the library is run through a high-throughput NGS sequencer.
Depending upon the NGS platform being used, the most ’raw’ data produced by the
sequencer is either a set of images (Illumina platform) or electric signals (Ion Torrent,
Oxford Nanopore) [31]. During the process of base-calling, that raw data is converted
into a human as well as computer readable sequence data, usually produced as a FASTQ
file. The FASTQ file is then forwarded for computational analysis. This part of the
data processing is referred as the secondary analysis, while the sequencing per se was the
primary analysis. The secondary analysis consists of two major steps: (i) aligning the
obtained sequence to the reference genome and (ii) calling the variants, i.e. the positions
in the DNA sequence that differ from the reference. After this secondary computational
processing, the output is a list of variants as compared to the reference genome used. VCF
files are normally used for reporting variants, which are then given back to a pathologist
or molecular biologist for interpretation (tertiary analysis). The interpretation is then
passed on to the doctor who ordered the gene test. Finally, the doctor uses the provided
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interpretation of observed variants to take clinical actions accordingly. [84] Figure 2.1
depicts the typical variant calling process.

Figure 2.1: A typical workflow of variant calling pipeline.(Adapted from [63, 38])

In a clinical context, biological interpretation of the calls produced by the variant calling
pipeline during the secondary analysis provides the most important piece of information
to the medical practitioner. Hence, the accuracy of these calls is very important because
the patient’s healthcare plan will be affected by it. [41]
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2.4 Causes of erroneous NGS data

The success of any genomic analysis depends on the correctness of the variants produced by
the variant calling pipelines. Recent advances in NGS platforms have improved error rates
significantly. Nonetheless, the size of the human genome is about 3 billion base pairs [25],
while working with the data of this magnitude, even a small error during variant calling
can cause serious damage to the robustness of the variants. Such spurious technical errors
require difficult and costly computational techniques to minimize the number of erroneous
variants. This becomes crucial when incorrect variant resembles rare and deleterious
mutations. Furthermore, the errors will have serious negative implications on downstream
analysis and may result into producing wrong interpretation if not identified and resolved
in time. [37]

Since DNA sequencing is a multi-step process, an error can happen in any of these steps.
Frequently, the correctness of variants depends on how things are done in a wet-lab. For
example, simple human errors such as mislabelling of a sample during sample preparation
would completely jeopardize the outcome. In addition, low DNA amount or quality would
also adversely affect the result of sequencing. Moreover, contamination of samples, ma-
chine failures, faulty workflow protocol, strand biases due to molecular amplification and
working conditions amongst others are also the major cause of experimental errors during
laboratory work. [37]

There are many strategies that laboratories can employ to mitigate the challenges men-
tioned above. Increasing the read depth, which is the frequency of a base sequenced at an
individual position contributing to form the consensus sequence is the simplest method to
improve accuracy. Nevertheless, problems caused by batch effects or the DNA sequence
complexity itself, are immune to this approach. In addition to improving read depth, lab-
oratories can redo the whole experimental workflow on the same sample, which can also
improve the accuracy of the result (duplicate experiment). [37] Additionally, integration
of data from different NGS platforms is known to improve sequence quality immensely
since some errors are typical for one platform and absent from others [58]. In particular,
combining short and long reads is now gaining a lot of interest [34]. Since certain kinds
of errors are typical to some NGS platforms, data integration is a very good mitigation
approach that the laboratories can use. However, it can be very costly because it requires
more than one NGS platform. [37]

Even with all the mitigation techniques mentioned above, some errors such as faulty vari-
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ants due to misalignment of short-reads in repetitive regions or the presence of very similar
pseudo-genes in the genome need to be resolved by computational methods. Furthermore,
the quality and completeness of the reference genome used has a bearing on the outcome.
Human reference genome build GRCh37 is not complete and has gaps. Mutations falling
into those gaps are always missed. However, with the arrival of the new build GRCh38,
this problem has been addressed, albeit not completely. [37]



3 Variation in the genome

The human genomes of any two individuals are 99.9% similar to each other [40]. The
remaining 0.1% difference is a key in diagnosing any genetic disorders. Before the era of
today’s advanced sequencing platforms, such genetic differences were first observed cyto-
logically using microscopic techniques. They were very large changes of size ≥3 Mb and
were mostly rare variants. They caused a visible change to the structure and quantity of
chromosomes. These types of large changes are termed as microscopic structural variants.
[40] With the advancement of sequencing technologies, smaller changes such as SNP/SNVs
and InDels also became accessible. Nowadays, the convention is to separate small changes,
i.e. SNP/SNVs and InDels, from larger ones, which are referred to as SV. Although the
small events account for the most common occurrence of mutations in the human genome
[77], SVs are responsible for most per base changes [71]. Recent findings suggest that
each human genome comprises more than 20,000 SVs. Notably, the majority of them are
not detectable by short-read sequencing platforms. [71] Among all the variants including
SNPs, InDels and SVs, SVs larger than 2 kilobase (kb) are relatively the most unexplored.
Their obscurity is chiefly due to the limitation in our capabilities to detect them. [49]

3.1 Structural variation

Originally, genomic alterations larger than 1 kb were referred to as SV [40]. However,
the definition of SV has been widened. Now, any changes greater than 50 bp are called
SV [71]. Thus, SV is a super class of different kinds of large mutational changes. CNV,
translocation and inversion are a few examples of SVs. [77, 71, 40]
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3.1.1 Copy Number Variation (CNV)

Copy number variation also known as copy number polymorphism is a type of SV where
the copy number of a portion of a DNA is changed with respect to the reference genome
[50]. Redon et al. [57] described CNVs as changes larger than 1 kb but now, any deletion
and duplication ≥50 bp are defined as CNVs. CNVs are extremely common throughout
the human genome. Current estimates suggest that CNVs cover about 12% of the human
genome, making them as important as SNPs [54]. Moreover, Sebat et al. [32] found that
50 percent of all reported CNVs touch coding regions to some extent, further highlighting
their importance for functional understanding of the genome. Evidence also suggests that
CNVs play a crucial role in driving the evolutionary process. [54] Figure 3.1 depicts the
CNV event on a chromosome.

Figure 3.1: Illustration of the CNV event on a chromosome. The chunk ’A’ from the reference genome
has been removed causing a deletion event. Likewise, the chunk ’B’ has been copied causing a duplication
event. The figure is based on reference [17].

As shown in Figure 3.1, deletion and duplication are the two major types of CNVs. How-
ever, duplication can be of different types such as segmental duplications, tandem duplica-
tions and higher-grade amplifications. [77] Both somatic and meiotic mutations are known
to cause copy number changes. CNVs can be of no effect or they might cause increased
or decreased expression of a gene. Furthermore, it might also be that one copy retains
the original functionality and the new copy develops entirely different functionality. At
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the initial stages of copy number variation research, CNVs were positively received be-
cause researchers found that their presence in the gene responsible for olfaction resulted
in the improvement of the sense of smell. [54] Nevertheless, CNVs are not perceived as
advantageous any more. Although a majority of them are harmless and contribute to a
natural process of an organism’s evolution, some of them have been definitively linked to
effects on biological processes, such as observable phenotype changes but also development,
progression and aggressiveness of cancer. [54]

3.2 CNV detection methods

Today, variant calling is almost exclusively performed on NGS data in the clinical disease
diagnostics context. Moreover, SNP and InDel calling has become a routine laboratory
procedure. The large number of computational tools have been developed to mine genomic
variations from short reads produced by NGS technologies. Many are even designed to
detect copy number variations specifically. However, the detection of CNVs with reason-
able sensitivity still remains a challenge. Also, breakpoint (start coordinate of the variant
or range if position is unknown) detection of insertion variants is difficult because of the
repetitive nature of the human genome [79]. Detection of CNV breakpoint is particularly
difficult in targeted sequencing because sequences tend to discontinue [19].

Despite having a surplus of tools to detect CNVs, none is capable to find all of the changes
present in the sample. All of these tools have their strengths and weaknesses as a result of
trade-offs made during the development. There is a lot of literature available comparing
the performance of these tools [33, 50, 9]. Users should choose wisely as per their needs.
For instance, tools designed for WGS and WES data would not produce an expected result
for data generated with panel-based targeted sequencing. Regardless of different names
and tricks used by these tools, they mostly fall into one of the four general methods used
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in CNV identification: (i) paired-end mapping (PEM), (ii) split read (SR), (iii) read depth
(RD), and (iv) de novo assembly of the genome (AS). [47, 50] Figure 3.2 demonstrates the
workflow of each method.

Figure 3.2: Four main strategies used for identifying CNVs from NGS data. However, these methods are
not limited to CNV detection and are also used in general SV detection as well. 1. PEM-based approach
looks into the average insert size to detect CNVs. 2. SR strategies report CNVs by making use of
completely or partially unmapped reads. 3. RD-based approach looks into coverage of a genomic region
to determine CNVs. 4. AS approach compare de novo contigs built from NGS data against reference
genome to detect CNVs. The figure is based on references [50, 47].

Most read-depth based tools are designed for CNV detection. On the other hand, three
other approaches are used to detect structural variants in general, which includes CNVs as
well. Tools based on RD often take sequence alignment map (SAM) or binary alignment
map (BAM) files as an input because they require read depth details of each sequenced
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nucleotide. On the contrary, PEM and SR based tools accept FASTQ files because they
only require positional information of a sequence. [77, 50]

Paired-end mapping

Paired-end mapping is a very popular technique employed by many tools used for CNV
detection. It also happens to be the very first method used for calling SVs/CNVs from NGS
data [29]. As the name suggests, the PEM algorithm requires paired reads to function.
Paired reads are obtained by sequencing a DNA fragment from both ends. Consequently,
paired-end sequencing produces twice the amount of data than single-read sequencing.
Nonetheless, the data generated with this method is highly reliable and allows quality
alignment. [22] In paired-end sequencing, the average insert size is determined during the
sequencing process. Therefore, the average insert size is expected to follow a particular
distribution. [29, 47, 50] PEM based methods use this phenomenon along with read pair
orientation to identify SVs/CNVs. Discordant read pairs that are located too far signal
deletion. On the contrary, insertion is reported if read pairs are located too close. [77]
PEM is a very capable method that can effectively detect inversions, tandem duplications
and mobile element insertions. Breakdancer, PEMer and Ulysses are some popular tools
that use the PEM algorithm. [50, 47]

Despite being a very powerful technique at our disposal, PEM is not without limitations.
For instance, PEM is not capable to identify insertions larger than the average insert size
and copy number estimation reported by read pair is not very accurate [77]. Furthermore,
the PEM method fails to detect CNVs falling in low-complexity regions of the genome
[50]. Increasing the average insert size has some benefits such as better coverage and more
variant detection power. However, a smaller insert size is very effective in identifying
smaller variants with high confidence. PEM is inapplicable to single read data because at
the time of development of this method, paired-end sequencing was a standard sequencing
technique. Later, newer sequencing platforms started to produce single read data, which
made this approach a bit obsolete. [77]

Split read

Similar to paired-end mapping, the split read method is also incapable to handle single
read data and thus, requires read pairs. In SR methods, one read aligns accurately and the
other one is either partially aligned or not aligned at all to the reference genome. [50] Mills
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et al. first demonstrated this method to identify InDels in the human genome [60, 77]. The
unmapped or partially mapped reads are further split into multiple pieces. The resulting
pieces are then remapped independently against the reference genome. Consequently, SR
based method is very effective in resolving breakpoint (down to single base pair level)
of SVs/CNVs. Even though, the potential to resolve breakpoint accurately gives SR an
edge over other methods, its application is limited to the unique region of the genome. In
addition, local mapping used by the SR method massively relies on read length and is not
suitable for large variants. Tools such as Pindel, Gustaf and PRISM apply SR algorithm.
[50, 77, 35, 47]

Read depth

The emergence of read depth based methods is a direct consequence of the availability
of a considerable amount of high-coverage NGS data. Methods based on read depth are
relatively new. The use of depth of coverage (DOC) for CNV identification is based on the
idea that more reads are detected if a duplication event has occurred and conversely, the
number of reads would be significantly lower if a deletion event has happened. [67] Teo
et al. [67] explained that read intensity is central to the RD-based CNV detection meth-
ods. The hypothesis mentioned above expects sequencing data to have uniform coverage.
Moreover, aligned reads are expected to adhere to Poisson distribution. [77]

The RD-based approach follows a four-stage linear workflow. First of all, reads are aligned
against the reference genome and the read depth is computed in each window locally. In
the second stage, read depth is corrected for GC content and repeat region biases. In the
third stage, normalized read depth is used to determine the precise copy number of gain
or loss of DNA content. Finally, in the segmentation stage, neighbouring windows with
similar copy numbers are merged to form a single large detection. The size of windows is
either predefined or randomly assigned to make sure that reads mapping to a single window
would not cross a specified threshold. Notably, circular binary segmentation (CBS) and
Hidden Markov Model (HMM) are very popular methods to perform segmentation. [77]

One of the drawbacks of PEM and SR methods is their inability to handle single-read data.
This is not a limitation to RD methods. In addition, unlike PEM and SR methods that rely
on the position of reads, the RD-based technique can report absolute copy numbers. [50]
As a result, the RD-based approach is a good fit for tools that are specifically designed for
CNV detection [77, 68]. The data used in this study was generated almost exclusively with
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RD-based methods. The RDmethod also outperforms PEM and SR methods in identifying
large CNVs in the repetitive region [50]. Conversely, breakpoint resolution capability
of RD-based method is extremely inferior compared to PEM and SR approaches [77].
Furthermore, GC content bias affects RD-based techniques the most [67]. A sequencing
bias that causes variable coverage of reads due to richness and poorness of G and C bases
is known as GC content bias [82]. Identification of duplication events with RD method is
also less efficient because the difference in read depth is not always very significant [77].
CNV-seq, BIC-seq, CNVnator and ReadDepth are some popular tools that are based on
read depth computation [47].

De novo assembly of a genome

In the methods explained above, the first step is to align reads against reference genome
and a variant is called by investigating the difference between the two sequences. Unlike
this approach, AS-based methods first align short reads against themselves and builds
a contig. Such contigs are then used to reconstruct a whole DNA sequence known as
the consensus sequence. Then, consensus sequence is compared with the known reference
genome to identify SVs/CNVs. Although not required at all, reference genome can also
be used during the assembly process to achieve speed and improvement of contigs. The
consensus sequence assembled with the AS-based approach is called de novo assembly.
[50] In theory, the AS-based method can detect a full range of SVs/CNVs along with de
novo variants. Moreover, it can potentially resolve complex regions of the genome. On the
contrary, accurate and long reads beyond the capabilities of today’s sequencing platform
are required to make this approach computationally viable. As a result, the method is
not used for routine variant calling. The AS-based method performs poorly in repetitive
regions because repeats collapse into one during the reconstruction process. [77] Magnolya
is an assembly based tool that can be used for CNV identification [47].

The mixed method

Yoon et al. [64] predicted the use of the combined approach more than ten years ago.
Therefore, the combinatorial approach is not exactly a novel idea. The PEM method is
extremely efficient in detecting small deletions with outstanding breakpoint resolution.
Nevertheless, it cannot report absolute copy numbers and performs poorly in identifying
large CNVs. On the other hand, the RD-based methods fail to handle translocations and
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inversions because of their copy neutral nature but detect large CNVs quite efficiently.
Similarly, read depth approaches can estimate copy numbers quite accurately but are un-
able to identify breakpoints. In the matter of AS method, it excels in detecting de novo
variants but requires intensive computational power and is unable to deal with variants
located at repetitive regions. As for SR-based methods, smaller changes and precise de-
tection of breakpoints is an advantage but the low-complexity region of the genome is a
problem. [50]

As discussed above, one single strategy is not enough to detect the wide variety of CNVs.
Hence, a number of tools have been developed by combining strategies of two or more than
two of the four methods. As there are known limitations to each of the four methods,
the idea behind combining them is to make them complement each other’s weaknesses
and maximize the sensitivity and specificity of the calls. [50] Tools based on a combined
approach also demonstrated a low false positive rate [47]. The pair, PEM and RD is a very
popular combination used by many tools [77]. SVDetect, CNVer and DELLY are some
popular tools that are based on a combinatorial approach [47]. Although, this approach
ouputs a different set of variants, it is not a different method by itself because it merely
combines different methods.



4 Datasets

In this pilot study, we used datasets from several different sources. Since we are bench-
marking, the data can be categorized into two main categories, the "gold standard", also
known as the truth set or the benchmark set and the data to compare against it, also re-
ferred to as the callset or the comparison set. We received the callsets from The European
Molecular Genetics Quality Network (EMQN) and Genomic Quality Assessment (GenQA),
who collaborated with the participating laboratories. For sequencing, participating lab-
oratories used the germline of widely available DNA of the son (HG002/NA24385) from
the Personal Genome Project’s Ashkenazi Jewish trio. Then, we downloaded the truth
set for the same sample from the publicly available data source [34]. In addition to that,
we used chain files (to convert coordinates from GRCh38 to GRCh37 genome assembly),
exome coordinates and reference genome assembly that are publicly available in ensembl’s
ftp server [36].

4.1 The gold standard

The gold standard is a set of high quality variants that we used as a benchmark set in our
analysis. Notably, it is by no means a perfect list of variants, but only the best available
at the time when this work was done. In our analysis, we used the Tier 1 germline SVs
published by the GIAB as the benchmark set that covers 2.51 Gbp of the GRCh37 reference
genome assembly. The final Tier 1 set is a combination of results from 19 different variant
calling methods containing 12745 variants. The variant detection methods were both de
novo assembly and alignment based and all of them produced sequence-resolved variants.
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Moreover, the variants catalogued in the truth set are deletions and insertions that are
≥50 bp. The variants that were detected by no less than two sequencing platforms or 5
callsets were classified as a true mutation event and recorded in the final truth set. In the
context of preparing this truth set, Zook et al. define a "callset" as an output produced
by a specific variant calling method, which is then later used to integrate into the truth
set. [34]

The callsets were produced with several different sequencing platforms such as Illumina,
10x Genomics, PacBio and Complete Genomics. Illumina and Complete Genomics are
short read sequencing technologies, whereas 10x Genomics and PacBio are linked read
and long-read technologies respectively. Furthermore, Bionano’s optical and Nabsys’s
electronic mapping was used to approximate the size of SVs. Currently, GIAB is working
towards the use of new technologies such as PacBio circular consensus sequencing (CCS)
and Oxford Nanopore sequencing to produce a more robust and comprehensive version
of the benchmark set. Also, they are working on expanding the truth set to support the
GRCh38 genome assembly. [34]

4.2 The callsets

Within the scope of this pilot study, we define "callset" as the list of variants submitted
by the participating laboratories. In total, 25 laboratories took part in this study, thus we
received 25 submissions for analysis. For data collection, participants were asked to fill up
a survey describing their test process along with a VCF file containing variant calls and
the browser extensible data (BED) file that contained the information about the target
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region. Optionally, participants could also submit FASTQ or BAM file or both. Figure
4.1 provides information about the variants in the callsets.

Figure 4.1: Some insights from the submitted callsets. 1. Varying number of variants reported by
the participants. 2. Distribution of different type of structural variants such as copy number variation
(CNV), duplication (DUP), deletion (DEL), breakend (BND), insertion (INS) and inversion reported by
the participants. 3. Different type of variant callers used by the participants. 4. Different type of
Illumina sequencing platforms used by the participants. 5. Genome regions covered by the truth set and
the callsets.

As shown in figure 4.1, the number of variants varied greatly among submissions. Some
submissions contained thousands of variants and some did not even report one variant.
Similarly, participating laboratories used disparate methods to generate the callsets. The
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majority (80%) of participants used the GRCh37 reference assembly. On the other hand,
the remaining 20% used the GRCh38 reference assembly. Among the 25 submissions, 23
were targeted submissions (panel or exome), ranging from 4 kbp to 112 Mbp, whereas 2
submissions almost covered the entire genome. The size of the variants also varied among
callsets as shown in Figure 4.2.

Figure 4.2: Distribution of the length of variants reported in the callsets.

Interestingly, all laboratories used Illumina technology for sequencing, albeit different
platforms, hinting towards popularity of short read sequencing in clinical space. As part
of the submission survey, participants were also asked to mention the variant caller used.
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We found that despite using the same sequencing technology, laboratories used a variety of
variant calling methods. Several submissions combined results of multiple variant callers
into the same submitted callset. Submission contents varied regarding the types of variants
submitted. Some submissions also contained SNPs and Indels (< 50 bp), which were not
considered in our analysis.

4.3 Data pre-processing

Standardizing data obtained from the NGS technologies and bioinformatics infrastructure
has been a challenge in computational genomics. Although, the field has achieved unprece-
dented success with the availability of abundance of data, efficiency has been reduced due
to lack of standardization. In this study, we received data in the variant call format (VCF)
[55] and BED files. The 1000 genome project [72] first introduced the VCF file to represent
genetic variation in the human genome. However, its use is not just limited to the human
genome. Today, diverse projects use VCF file format and it is a standard file format in
a clinical space. The VCF is a generic and extremely flexible file format. Although it is
a standard format and there are some conventions to be followed, the information about
variants can be represented in many different ways in the VCF file. [55] For instance,
one can add as many custom attributes as required in an INFO field. As a consequence,
VCF files produced by two different variant callers are always different in some manner.
As an example, a chromosome can be represented as either just a number or with a ’chr’
prefix, but this subtle difference prevents bioinformatics tools from operating smoothly.
As a result, data needs to be tailored to the need of the tool that is being used. In addi-
tion, freely available bioinformatics tools are poorly maintained and lack standardization
themselves. Typically, lots of tweaking and cleaning is required before a NGS data can be
given to the tool for smooth analysis. [70, 11] All the submissions in this study were dif-
ferent from each other, thus each submission was carefully curated and normalized before
benchmarking. During our observation, we found that there is a considerable difference in
how a variant type is reported by a particular variant caller. For example, some variant
callers reported CNV calls as a generic ’CNV’ type while others reported as ’DUP’/’DEL’
calls. For submissions that used generic ’CNV’ type, we normalized them to ’DEL’ and
’DUP’ types by computing the length of the variant.

In addition to VCFs, we received information about the targeted region in a BED file. The
BED file format is considerably simpler than the VCF file format. For that reason, the
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ones we received were less disparate and required a lot less cleaning. We only normalized
the chromosome representation and removed extra columns other than start and end
coordinates. Nevertheless, the two whole genome submissions had millions of rows with
small intervals, which made the benchmarking extremely time inefficient. In order to solve
this issue, bedtools [3] was used to merge these small intervals into a big one.

At the time of writing this thesis, the truth set was not available for GRCh38 genome
assembly. The one we used in this study from GIAB was only available in GRCh37 coordi-
nates. As a result, submissions from five participants that used GRCh38 genome assembly
were remapped to GRCh37 coordinates using a tool called CrossMap [20]. Importantly,
not all genomic regions in GRCh38 genome assembly are present in its predecessor. So,
many reported calls were removed during this process. However, GIAB is in the process
of developing the truth set for GRCh38 assembly as well [34]. Once it is public, that will
address this issue.



5 Methods

We used two different methods to validate variants in the callset. We primarily used a tool
called Truvari [16] developed by GIAB [34] with default parameters to produce evaluation
metrics for sequence based analysis. On the other hand, we used our in-house strategy for
exome-based benchmarking. Furthermore, we used Integrative Genomics Viewer (IGV)
[28] to manually confirm results in many occasions.

5.1 Evaluation metrics

We used precision, recall and F1-score as metrics to assess the VCFs submitted by the
laboratories. Truvari outputs these numbers by comparing variants (calls) in a submitted
VCF (callsets) with variants in the truth set (base calls). Calls can be classified into one of
the three categories: true positive (TP), false positive (FP) or false negative (FN). Since
we are primarily interested in finding the positives, we discard true negatives (TN) in this
study. Ideally, laboratories would want all reported variants to be present in the callset.
A call variant is marked as TP when the same variant is present in the truth set as well.
These are the calls that are correctly reported by the laboratories. Similarly, a variant is
marked as FP when it is present in the callset but not in the truth set. These are the calls



28

that had been incorrectly reported by the laboratories. Finally, a variant is classified as
a false negative when it is absent in the callset but is present in the truth set. These
are the calls that had been missed by the laboratories. [21] Figure 5.1 below depicts the
above-mentioned idea.

Figure 5.1: The confusion matrix showing the binary classification of variants in the callset.

The precision, recall and F1-score are derived from TP, FP and FN scores. The score is
defined as a sum of the total number of variants falling into each category.

• Precision (also known as a positive predictive value) is a ratio of correctly reported
calls over the total number of reported comparison calls. It is computed as

Precision = TP

TP + FP

[27]

• Recall (also called sensitivity or the true positive rate) is a ratio of correctly reported
calls over the total number of base calls. It is computed as

Recall = TP

TP + FN

[27]

• F1-score: Neither precision nor recall alone is enough to evaluate the performance.
F1-score is an aggregate metric that combines both recall and precision. Simply, the
harmonic mean of the precision and recall is defined as the F1-score. It is computed
with the formula

F1 = 2 ∗ precision ∗ recall

precision + recall

[27]
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5.2 Assessment workflow

The workflow that we used in our assessment of callsets is quite simple. First of all,
we preprocess the callset and the truth set as described in Section 4.3. In addition, we
only retain variants from the truth set that has a "PASS" filter. For stratified analysis,
we filter variants from both the callset and the truth set depending on the variant type
to be analyzed. Since VCF files can be extremely large, we then compress and index
both the callset and the truth set for efficient use of space and fast access to the data.
Subsequently, we benchmark the call set against the truth set. Once benchmarking is
complete, evaluation metrics are calculated and assessment is performed based on those
metrics. Figure 5.2 illustrates our assessment workflow, which is a multi-step process.

Figure 5.2: Assessment workflow used in the study.
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5.3 Evaluated regions

During our observation, we found that many of the targeted submissions called variants
outside their sequencing target indicated by the submitted BED file. This is likely due to
a capture-based targeting strategy, where regions adjacent to the targeted region (within
the captured fragment) are also sequenced. In order to accommodate this, the submissions
were evaluated in the area, which was common with the Tier 1 high-confidence region of
the benchmark set and the target of the submission after expanding each region in the
target by ±250 bases in each direction. The extension of the target region was performed
while doing the separate analysis of the deletion calls but not during the first round of
analysis i.e. analysis including duplication calls.

5.4 Variant comparison strategy

5.4.1 Sequence based comparison

The sequence-based comparison is a straightforward way of validating variants in the
callset. In this method, we simply compare variant sequences present in the callset and
the truth set against each other.

Sequence comparison method

Truvari uses an elaborate algorithm to compare and classify variants. Once the comparison
and classification is complete, it outputs evaluation metrics necessary to assess the quality
of the callset. Algorithm 1 shows the pseudo-code of the algorithm used by Truvari [16].
Parameters used in the Algorithm 1 are as follow:

• Refdist is a maximum distance a comparison call can be within from base call’s start
and end co-ordinates to be marked as a neighbor. 500 is a default value of refdist.
[16]

• Pctsim is a Levenshtein distance ratio between base and comparison call. Default
value of pctsim is 0.7. However, it can be set to 0 if calls are not sequence resolved
(variants with actual bases not just starting base and start/end co-ordinate) in either
comparison or base set. [16]
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• Pctsize is the size ratio of call and base and is computed as:

pctsize = min(comp_length, base_length)
max(comp_length, base_length)

Hence, if the value of pctsize is 1 then that would mean the length of both comparison
call and base call is the same. We do not want to compare variants if their size
difference is extremely large because other criteria for matching would easily be
satisfied in cases when either comparison or base variant is extremely large. The
default value of pctsize is 0.7, this means the size of both comparison or base call
needs to be at least 70 percent of the other. [16]

• Pctovl is a reciprocal overlap between comparison and base call. It is computed as:

pctovl = sizeofoverlappingbases

max(comp_length, base_length)

For a variant to be classified as TP, We would like the major portion of the com-
parison call to overlap with the base call. The default value for pctovl is 0.7. As a
result, if the overlap between comparison and base call is less than 70% then that
variant is not classified as TP. [16]

• TruScore (also called Truvari score) is an aggregate value derived from pctsim, pct-
size and pctovl. Neighbor getting the highest truscore is classified as TP. Truscore
is computed as:

truscore = 2 ∗ pctsim + pctsize + pctovl

3
Pctsim is given two times the weight than the others. [16]
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Algorithm 1: Classify variants as TP, FN and FP [16]
Input: CompCalls, TruthSet, CompBed, TruthBed
Output: list of TP, FP and FN variants

init
Build interval tree of CompCalls;

for each variant t in TruthSet do
fetch CompCall variants overlapping within refdist from interval tree;
for each fetched CompCall variant c do

if (c.variant_type == t.variant_type
AND Levenshtein distance ratio of c and t >= pctsim
AND sizeRatio of c and t >= pctsize
AND ratio of reciprocal overlap of c and t >= pctovl) then

Add c to the list of neighbors;
end

end
sort list of neighbors by TruScore;
Mark highest scoring c and t as TP;
Use c only once unless –multimatch parameter is given;
if neighbors==0 then

Mark t as FN;
end

end

for each variant c in CompCall do
if c is not marked as TP then

Mark as FP;
end

end

As shown in Algorithm 1, sequences are matched based on the Levenshtein distance [76]
and reciprocal overlap. The absolute sequence matching would not produce lots of matches
because having nucleotide level accuracy for large changes like CNVs is not practical.
Moreover, the clinical significance of the mutation probably would not change much even
if variants are matched with a stringent scheme.
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Limiting truth set within the target region of the callset

During our observation, we noticed that the average length of variants in the truth set
is much longer than that of in the callsets. This is reasonable because the truth set
covered the whole genome and used long-read sequencing platforms along with short-read
technologies. Conversely, callsets were prepared with short-read Illumina platforms with
an average read sizes ranging from 150 bp to 300 bp. It leads to a problem that smaller
variants in the callset would never match with much longer variants in the truth set because
their size ratio would never be within the threshold. Figure 5.4 shows the real case from
one of the submissions.

Figure 5.3: A variant in the callset that is completely inside the larger variant in the truth set.

The variant shown in Figure 5.4 was marked as false positive due to the enormous disparity
in the size ratio. Nevertheless, these two variants are probably the same, it is just that
targeted sequencing did not target the whole region. To address this issue, we limited
variants in the truth set only to the high confidence region of both the truth set and the
callset. The steps taken to do this is as follow:

1. Get overlapping regions between the truth set and the call set.

2. Limit (cut) variants in the truth set to the overlapping intervals obtained in the
previous step.

We used bedtools [3] to get the overlapping intervals.
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Stratified analysis

Delage et al. [79] demonstrated that only 17-28% of insertion calls (≥50 bp) could be
detected by the short-read platforms. While building the truth set used in this study,
Zook et al. [34] experienced the same. Clearly, short read based technologies struggle
to detect insertions more than deletions. With all these insights from prior work and
our observation of the comparison of the full set of data, we hypothesized that perhaps
automated concordance analysis for deletion calls is more feasible than that of duplication
calls. Hence, in our second round of analysis, we only benchmarked deletion calls.

Limiting analysis to the WGS submissions

As previously mentioned, we received two WGS submissions covering more than 80% of
the genome in this pilot. Among all the submissions, these two were the most similar to
the truth set and yielded the most promising result. Therefore, we further analyzed WGS
submissions with two extra tools, namely, Readdi [59] and SVanalyzer [52] to validate the
results obtained from Truvari. Notably, the tool Readdi can only benchmark DEL calls.

5.4.2 Exome based comparison

Exons are protein-coding segments of any gene [5, 62]. They cover about 2% of the hu-
man genome. Nevertheless, exons comprise 85% of the known pathogenic variants. [12]
Due to this correlation, many researchers only focus on exonic variants [15]. Further-
more, exome sequencing is a common first step while dealing with many genetic disorders
[26]. On the other hand, many genetic diseases have well-known phenotype, albeit not
all. Usually, these distinct signals direct clinicians to test for mutations in a handful of
genes. For instance, a mutation in the Cystic fibrosis transmembrane conductance regula-
tor (CFTR) gene causes cystic fibrosis and patient develops a peculiar phenotype. In this
case, clinicians just need to know if mutation has occurred in the CFTR gene to verify
the phenotypic signal [56], resolution down to nucleotide level change is not required.

Since exonic variants are clinically more relevant and nucleotide level resolution of variants
are not always required to establish medical significance, we used these two concepts to
develop our exome based strategy. Compared to sequence based method explained in
Section 5.4.1, our alternative strategy is very lenient. In our new approach, we only check
if the exon has been affected by a mutation or not. The underlying idea behind this
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approach is that if the same exon in both the callset and the truth set has been affected
by the same type of mutation event, for example, a deletion, then it should have the same
clinical consequence as far as the patient is concerned. Algorithm 2 illustrates our exome
based strategy.

Algorithm 2: Classify variants based on presence of mutation event affecting an exon
Input: CompCalls, TruthSet, CompBed, TruthBed, exonBed
Output: list of TP, FP and FN variants

init
Only retain variants that overlap with exon in both CompCalls and TruthSet;
t-dict = {};
c-dict = {};

for each variant t in TruthSet do
t-dict[exon affected by t] = t.variant_type;

end
for each variant c in CompCalls do

c-dict[exon affected by c] = c.variant_type;
end
for each item e in min_size(t-dict, c-dict) do

for each item i in max_size(t-dict, c-dict) do
if e.exon_number == i.exon_number then

Mark as TP;
end

end
end
for each item i in t-dict do

if i is not marked as TP then
Mark as FN;

end
end
for each item i in c-dict do

if i is not marked as TP then
Mark as FP;

end
end

As shown above, algorithm 2 takes five inputs.
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• CompCalls is a list of variants in the callset. It is a VCF file.

• TruthSet is a list of variants in the truth set. It is also a VCF file.

• CompBed is a target regions of the callset. It is a BED file.

• TruthBed is high confidence region of the truth set. It is also a BED file.

• exonBed is also a BED file containing start and end coordinates of all the known
exons in the human genome. It was downloaded from ensembl database [36].

In our exome based strategy, we start by removing variants that do not affect any exons
from both the truth set and the callset. In other words, if a variant does not touch an exon,
we remove it from our analysis. We use normalized VCF in this analysis. Therefore, VCF
only contains variants of type DEL and DUP. Once the intronic variants are removed, we
make a list of DEL and DUP calls in each exon for both the truth set and the callset.
We only keep one mutation per exon, whenever there are two deletions reported in an
exon, we only list one in our data structure. The data structure we use is a key-value pair
dictionary where exon id is a key and mutation type is a value. Figure 5.4 depicts the
data structure used in this process.

Figure 5.4: Illustration of key-value pair of exon id and variant type stored in a data structure.

Following the preparation of the two separate lists for the truth set and the callset, we
make a comparison of these two lists. The match criteria is very simple, identical rows are
marked as true positives. Provided there is a deletion in Exon_1 in both the truth set and
the callset as shown in Figure 5.4, we mark it as a true positive. On the contrary, rows
that fail to match are marked as false negatives and false positives. In Figure 5.4, records
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in green, red and purple are true positives, false negatives and false positives respectively.
The time complexity of Algorithm 2 is proportional to the number of exons affected by
the variants in both the truth set and the callset. Assuming m and n are number of exons
affected by mutation in the truth set and the callset respectively, the time complexity of
Algorithm 2 is O(m×n). The quadratic running time of Algorithm 2 can be improved to
O(n log m) by using the search routine of the dictionary, but here the quadratic solution
is sufficiently efficient.

Our exome based strategy is experimental and suffers from some known limitations. For
instance, if an exon has been affected by both deletion and duplication, then this approach
would only retain one of the two, whichever comes last. However, this is a perfectly valid
biological scenario. Moreover, we are discarding intronic variants in this method, hence
the results obtained will never be complete. This approach most likely would not be
comprehensive enough to validate the correctness of the callset. However, it can be used
as a rapid screening method. At the least, it can help narrow down the scope of genetic
testing and help guide the therapeutic process in the right direction. In addition, this
approach can be used as an orthogonal method to validate exonic CNVs reported by other
tools. For future work on validating CNVs affecting exons, the high quality validation set
publish by Mahamdallie et al. [66] could be a great resource.



6 Results

We applied two strategies to perform CNV concordance analysis on a submitted sequence
data. We used Truvari as a primary tool for sequence based benchmarking and our in-
house strategy for exome based comparison. Firstly, the number of TPs, FPs and FNs
variants were counted from which the precision, recall, and F1-score were computed. For
two better performing WGS submissions, we conducted further analysis with Readdi [59]
and SVanalyzer [52]. Moreover, we conducted pairwise concordance analysis of the two
WGS submissions with Truvari, Readdi and SVanalyzer to have more confidence on the
data because in principle they should be identical. For the pairwise benchmarking, we
did not have to remap coordinates because both WGS callsets were based on the GRCh38
genome assembly. This preserved the variants that otherwise would have been removed
during the remapping process.

6.1 Method 1: Sequence based comparison

6.1.1 Analysis of deletion and duplication calls with Truvari

Among the 25 submissions, 23 were used for the benchmarking of both DEL and DUP
calls because 2 submissions did not report any CNVs. Based on the benchmarking with
Truvari (Table 6.1), out of the 23 submissions, only 4 contained at least one true positive
variant. Unsurprisingly, these 4 callsets were WGS and WES submissions. The precision
obtained from WES submissions E and I were 18% and 33% with recall of 1% and 6%
and F1-score 0.02 and 0.068 respectively. On the contrary, both WGS submissions Q and
U performed well with high precision of 89%, recall of 29%, and F1-score 0.43 and 0.44
respectively. All other submissions were found to have 0 precision and recall.

6.1.2 Stratified analysis of deletion calls with Truvari

For the benchmarking of only deletion calls with Truvari, we extended the target region
by 250 bases on each direction. This extension and stratification technique improved the
scores for the 2 WGS and 2 WES callsets from before. However, precision and recall for
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all the other submissions remained 0. Based on these benchmarking results (Table 6.2),
the precision obtained from WES submissions E and I were 24% and 80% with the recall
of 2.5% and 5.6% and F1-score 0.046 and 0.105 respectively. The score for WGS callsets
Q and U also improved to a precision of 92% and 89% and to a recall of 68% and 69%
and F1-score 0.78 and 0.77 respectively.

Table 6.1: Method 1: Benchmark results of both deletion and duplication calls with Truvari.

Submissions Target region Precision Recall F1-score TPs FPs FNs

A Whole Exome 0 0 NaN 0 0 6
B(GRCh38) Gene panel 0 0 NaN 0 0 16
C(GRCh38) Gene panel 0 0 NaN 0 0 4

D Gene panel No CNVs, therefore not assessed.
E Whole Exome 0.188 0.01 0.02 45 194 4135
F Gene panel 0 0 NaN 0 0 18
G Gene panel No CNVs, therefore not assessed.

H(GRCh38) Whole Exome 0 0 NaN 0 0 163
I Whole Exome 0.33 0.068 0.113 5 10 68
J Gene panel 0 0 NaN 0 0 0
K Clinical Exome 0 0 NaN 0 0 0
L Gene panel 0 0 NaN 0 9 70
M Gene panel 0 0 NaN 0 0 0
N Gene panel 0 0 NaN 0 0 23
O Gene panel 0 0 NaN 0 0 0
P Gene panel 0 0 NaN 0 0 23

Q(GRCh38) Whole Genome 0.89 0.29 0.43 2832 332 6877
R Clinical Exome 0 0 NaN 0 0 24
S Gene panel 0 0 NaN 0 0 1
T Gene panel 0 0 NaN 0 0 1

U(GRCh38) Whole Genome 0.89 0.29 0.44 2857 352 6881
V Whole Exome 0 0 NaN 0 4 66
W Gene panel 0 0 NaN 0 0 18
X Gene panel 0 0 NaN 0 0 0
Y Clinical Exome 0 0 NaN 0 0 12
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Table 6.2: Stratified analysis: Benchmark results of deletion calls with Truvari after extension of the
target region by 250 bases on each side

Submissions Target region Precision Recall F1-score TPs FPs FNs

A Whole Exome 0 0 NaN 0 3 7
B(GRCh38) Gene panel 0 0 NaN 0 4 14
C(GRCh38) Gene panel NaN NaN NaN 0 0 0

D Gene panel No CNVs, therefore not assessed.
E Whole Exome 0.244 0.025 0.046 44 136 1688
F Gene panel 0 0 NaN 0 3 17
G Gene panel No CNVs, therefore not assessed.

H(GRCh38) Whole Exome NaN 0 NaN 0 0 124
I Whole Exome 0.8 0.056 0.105 4 1 67
J Gene panel NaN NaN NaN 0 0 0
K Clinical Exome NaN NaN NaN 0 0 0
L Gene panel 0 0 NaN 0 36 65
M Gene panel NaN NaN NaN 0 0 0
N Gene panel NaN 0 NaN 0 0 23
O Gene panel NaN NaN NaN 0 0 0
P Gene panel 0 0 NaN 0 9 22

Q(GRCh38) Whole Genome 0.921 0.688 0.787 2832 242 1284
R Clinical Exome NaN 0 NaN 0 0 21
S Gene panel 0 0 NaN 0 1 1
T Gene panel NaN NaN NaN 0 0 0

U(GRCh38) Whole Genome 0.89 0.692 0.778 2857 352 1270
V Whole Exome 0 0 NaN 0 1 137
W Gene panel NaN 0 NaN 0 0 17
X Gene panel NaN NaN NaN 0 0 0
Y Clinical Exome NaN 0 NaN 0 0 3
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6.1.3 Further analysis of WGS submissions

The WGS submissions Q and U were further analysed for deletion calls with Readdi and
SVanalyzer (Table 6.3). Compared to Truvari, both Readdi and SVanalyzer achieved lower
precision, recall and F1-score for submission Q. The precision, recall and F1-score with
Readdi were 56%, 66% and 0.60 and with SVanalyzer were 57%, 67% and 0.61 respectively.
For submission U, Readdi performed slightly better than Truvari with 94% precision, 67%
recall and F1-score of 0.78. On the other hand, performance of SVanalyzer was almost
similar to Truvari with 89% precision, 67% recall and F1-score of 0.77.

In addition, the pairwise comparison of WGS submissions Q and U were performed with
Truvari, Readdi and SVanalyzer as shown in Table 6.4. Truvari performed best with
89% precision, 88% recall and F1-score 0.89. However, SVanalyzer and Readdi provided
low precision of 53% and 52% with recall of 85% and 87% respectively and F1-score of
0.65. Truvari’s slightly better performance might be because of its ability to consider the
targeted region provided in BED files. Also, since Truvari was our first choice, variants
were preprocessed before analyzing, which may have helped for slightly better results, too.

Table 6.3: Benchmark results of deletion calls for two WGS submissions with Readdi and SVanalyzer
compared to Truvari

Submissions Tool Precision Recall F1-score TPs FPs FNs

Q
Truvari 0.92 0.68 0.78 2832 242 1284
Readdi 0.56 0.66 0.60 2856 2243 1459

SVanalyzer 0.57 0.67 0.61 2920 2180 1402

U
Truvari 0.89 0.69 0.77 2857 352 1270
Readdi 0.94 0.67 0.78 2876 172 1439

SVanalyzer 0.89 0.67 0.77 2935 366 1387

Table 6.4: Benchmark results of pairwise comparison of WGS submissions with Truvari, Readdi and
SVanalyzer

Submissions Tool Precision Recall F1-score TPs FPs FNs

Q vs U Truvari 0.89 0.88 0.89 2831 333 371
Q vs U Readdi (only DELs) 0.52 0.87 0.65 2669 2430 379
Q vs U SVanalyzer 0.53 0.85 0.65 2802 2470 497
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6.2 Method 2: Exome based comparison

With our alternative exome-based method, we hoped to improve the precision and recall
scores. However, only 10 callsets contained at least one key-value pair of exon id and
mutation type that matched with the key-value pair in the truth set. Again, two WGS
callets along with one WES callset scored the same highest F1-score of 13%. The F1-score
of all other submissions were less than 7%. Table 6.5 shows the benchmarking results for
all the callsets with our exome-based approach.

Table 6.5: Method 2: Benchmark results with in-house exome-based approach.

Submissions Target region Precision Recall F1-score TPs FPs FNs

A Whole Exome 0 0 NaN 0 57 1409
B(GRCh38) Gene panel 0 0 NaN 0 24 1409
C(GRCh38) Gene panel No variants reported, therefore not assessed.

D Gene panel No CNVs, therefore not assessed.
E Whole Exome 0.001 0.064 0.002 90 87112 1319
F Gene panel 0.0005 0.0014 0.00072 2 4077 1407
G Gene panel No CNVs, therefore not assessed.

H(GRCh38) Whole Exome 0.085 0.0035 0.0068 5 54 1404
I Whole Exome 0.17 0.037 0.06 53 258 1356
J Gene panel NaN NaN NaN 0 0 0
K Clinical Exome NaN NaN NaN 0 0 0
L Gene panel 0.032 0.0234 0.028 33 997 1376
M Gene panel NaN NaN NaN 0 0 0
N Gene panel 0.0022 0.0014 0.0017 2 906 1407
O Gene panel NaN NaN NaN 0 0 0
P Gene panel NaN NaN NaN 0 0 0

Q(GRCh38) Whole Genome 0.395 0.0794 0.132 112 171 1297
R Clinical Exome 0.031 0.0014 0.0027 2 61 1407
S Gene panel NaN NaN NaN 0 0 0
T Gene panel 0 0 NaN 0 2 1409

U(GRCh38) Whole Genome 0.227 0.095 0.134 134 457 1275
V Whole Exome 0.226 0.095 0.134 39 1133 1370
W Gene panel 0 0 NaN 0 6329 1409
X Gene panel No variants reported, therefore not assessed.
Y Clinical Exome NaN NaN NaN 0 0 0
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As shown in Table 6.5, our alternative strategy produced lots of FPs and FNs. In some
cases, an overwhelmingly large number of FPs. For example, callset E reported 87112
FPs, nevertheless, further analysis revealed that callset E contained several extremely
long variants that were millions of bases long as shown below.

CHR POS ID REF ALT QUAL FILTER INFO
12 25956511 . N <DEL> 1000 PASS END=104373629;

SVLEN=78417118

Consequently, one variant affected thousands of exons, therefore the high number of FPs.
During our observation, we also found that some (J, K, M, O, P, S, Y) panel-based targeted
sequencing did not affect any exons at all. As a result, these callsets did not produce any
results because they were empty.



7 Discussion

As new studies keep linking CNVs to rare diseases [53], CNV calling for disease diagnostic
laboratories is becoming more relevant than ever. Due to this need and the availability of
the number of tools capable to detect and interpret CNV calls, many medical laboratories
are starting to incorporate genetic testing for CNVs. As more and more laboratories adopt
various CNV calling pipelines, it is imperative that their approaches are standardized to
ensure quality of testing via EQA schemes.

The main purpose of this study was to examine whether automated concordance analysis of
CNV calls for the EQA is feasible or not. This study showed that the result of concordance
analysis is dependant on how the sequence data is generated. The results implied that
compared to the callsets generated with WGS, concordance of the callsets generated with
the panel-based targeted sequencing is poorer. Additionally, the results also showed that
the concordance of deletion calls is better than that of duplication calls.

The low precision and recall of targeted panel-based sequence data are explained by the fact
that short-read sequencing produces discontinuous sequences. As a result, the breakpoint
resolution capability of short-read sequencing is limited, which adversely affects the CNV
detection process. [77] Furthermore, all the participants in this study used RD-based
method for CNV calling, which performs better for the WGS data because coverage of
WGS sequencing is more uniform than that of targeted sequencing [77]. Moreover, short-
read technology lacks the ability to access GC high and repetitive region of the genome
[74] that contributed to the poor result of panel-based sequence data. Similarly, the poor
concordance of duplication calls was expected because duplications are generally known
to be more difficult to detect than deletions [34, 77].

The instructions provided to the participants of this study were not stringent. Conse-
quently, even though participating laboratories were asked to submit CNV calls, all kinds
of SVs were received, which added extra time for data pre-processing. Likewise, the partic-
ipants used a variety of CNV callers. The overall score of precision and recall suffered from
it because multiple studies have found that the concordance of variants called by different
tools is poor [77]. Moreover, the majority of the participants targeted different regions of
the genome for sequencing, which added to the complexity in a concordance analysis. For
the concordance study like ours, the dataset generated by the similar procedures would
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produce better results. Also, this would help us validate the correctness of the data by
conducting a pairwise comparison of the callsets.

One of the major limitations of this study was the poor quality of the submitted data. To
our knowledge, this is the first ever pilot study to validate CNV data quality. The nature
of this study was experimental and a first step towards automating CNV concordance
analysis. Therefore, the participants might not have applied the same rigour as they
would for the regular clinical samples to produce the dataset submitted in this study.
In addition, since CNV calling is not a regular clinical procedure for the participating
laboratories, it might be that users simply did not have comprehensive knowledge about
their CNV calling pipeline. Oftentimes, bioinformatics tools are command line based,
which diminishes their usability for normal users. It is very common for these tools to
take multiple parameters to improve their output. In the case of CNV calling, parameter
tweaking is very important to obtain an optimum output [33, 77]. Executing the CNV
calling pipeline with the default parameters would reduce the data quality significantly.
Another limitation to this study was the truth set itself. The truth set used in this study
is based on the whole genome sequencing. Additionally, multiple sequencing platforms
including long-read technologies have been used to construct it. Therefore, there is a
significant difference between the truth set and the callsets that were generated by the
short-read targeted sequencing.



8 Conclusions

The concordance analysis of sequence data is crucial for precision medicine and better
healthcare. In this work, we looked into several strategies to investigate the feasibility
of an automated CNV concordance analysis for the routine EQA. The result of CNV
concordance is heavily dependent on the data produced by the variant calling pipeline that
the laboratories have adopted. Although, we expected that CNV concordance strategy
used in this study was relevant, the overall performance of the submitted dataset was low.
To conclude, CNV detection capabilities of today’s state of the art NGS technologies from
targeted panel-based sequence data are limited. However, for whole genome sequencing,
automated concordance analysis might be feasible for deletion calls.

8.1 Future directions

As discussed in Chapter 7, we believe the quality of the dataset is the major reason for
the low concordance obtained in this study. We are continuing this work, in fact, we
are already planning to launch the second round of submissions with more precise and
stringent instructions to overcome the poor data quality issue faced in this study. In
future studies like this, the data generation process needs to be standardized.

Further, it would be interesting to benchmark callsets against different truth sets since
there are at least two available for the sample (HG002/NA24385) used in this study [2,
66] to validate the truth set from GIAB. Moreover, pairwise comparison of these three
truth sets to observe the differences between them is also intriguing. For the majority of
our analysis, we relied on just one tool. A rigorous analysis of the dataset with multiple
benchmarking tools could be done to compare the performance of the tools.
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