
Master’s thesis

Master’s Programme in Computer Science

Utilizing Software Analytics to Guide
Software Development

Marko Juhani Koskinen

June 14, 2021

Faculty of Science
University of Helsinki

Supervisor(s)

Prof. T. Mikkonen, Ph.D. M. Luukkainen

Examiner(s)

Prof. T. Mikkonen, Ph.D. M. Luukkainen

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Marko Juhani Koskinen

Utilizing Software Analytics to Guide Software Development

Prof. T. Mikkonen, Ph.D. M. Luukkainen

Master’s thesis June 14, 2021 51 pages, 12 appendix pages

software analytics, post-deployment data, software usage data

Helsinki University Library

Software study track

Modern software systems often produce vast amounts of software usage data. Previous work,
however, has indicated that such data is often left unutilized. This leaves a gap for methods
and practices that put the data to use.

The objective of this thesis is to determine and test concrete methods for utilizing software
usage data and to learn what use cases and benefits can be achieved via such methods.

The study consists of two interconnected parts. Firstly, a semi-structured literature review
is conducted to identify methods and use cases for software usage data. Secondly, a subset
of the identified methods is experimented with by conducting a case study to determine how
developers and managers experience the methods.

We found that there exists a wide range of methods for utilizing software usage data. Via these
methods, a wide range of software development-related use cases can be fulfilled. However, in
practice, apart from debugging purposes, software usage data is largely left unutilized. Fur-
thermore, developers and managers share a positive attitude towards employing methods of
utilizing software usage data.

In conclusion, software usage data has a lot of potential. Besides, developers and managers
are interested in putting software usage data utilization methods to use. Furthermore, the
information available via these methods is difficult to replace. In other words, methods for
utilizing software usage data can provide irreplaceable information that is relevant and useful for
both managers and developers. Therefore, practitioners should consider introducing methods
for utilizing software usage data in their development practices.

ACM Computing Classification System (CCS)
Information systems applications → Decision support systems → Data analytics
Software and its engineering → Software creation and management → Software post-
development issues → Software evolution

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background 3
2.1 Software usage . 3
2.2 Software usage data . 5
2.3 Software analytics . 6
2.4 Data-driven decision-making . 8

3 Research approach 10
3.1 Research questions . 10
3.2 Structure of the study . 10
3.3 Part I: Semi-structured literature review 11

3.3.1 Search String Definition . 12
3.3.2 Inclusion and Exclusion Criteria . 12
3.3.3 Data extraction . 14
3.3.4 Concept Formation . 14

3.4 Part II: Case study . 14
3.4.1 Case selection . 15
3.4.2 Case description . 15
3.4.3 Data collection - Qualitative data from interviews 16

4 Semi-structured literature review 22
4.1 Results . 22

4.1.1 Manual analysis and simple visualizations 23
4.1.2 Visualizing software usage with heatmaps 24
4.1.3 Usage mining and pattern discovery 25
4.1.4 Constructing operational profiles 25
4.1.5 Machine learning and artificial intelligence 26
4.1.6 Aggregating usage data from several applications 26

4.1.7 Combining usage data with feedback and bug-reports 27
4.1.8 Data-driven design and experimentation 28
4.1.9 Data-driven requirements engineering 28

4.2 Validity . 29

5 Case study 30
5.1 Results . 30

5.1.1 Defining software usage data and its uses 30
5.1.2 Usage of software usage data . 31
5.1.3 Prototype evaluation . 32
5.1.4 Putting the prototypes to real use 37

5.2 Validity . 39

6 Discussion 40
6.1 Analysis . 40

6.1.1 Use cases of software usage data . 40
6.1.2 Utilization methods of software usage data 41
6.1.3 Practicality of the prototypes . 42
6.1.4 Success factors for software usage data utilization 43

6.2 Research questions revisited . 43
6.3 Future work . 45

7 Conclusions 46

Bibliography 47

A Sources of the semi-structured literature review

1 Introduction

Modern software systems are complex and the users of these systems have varying needs,
competencies, and ways of making use of the software. According to the Pareto principle,
also known as the 80-20 rule, 20% of the input produces 80% of the output [1]. By looking
at this principle from the software development perspective, one might hypothesize that
20% of software system’s features provide 80% of the value for the end-user.

The process of developing and maintaining modern software products creates a lot of
data, including version control histories, build pass rates, feedback, bug reports, and real
usage data. This data can be utilized in a variety of ways, for example, by combining it
into visualizations to enable understanding the project’s state at a glance [2, 3]. Often,
however, even if there is a large amount of data available, it may be left unutilized.

To begin unleashing the power of the data, software practitioners have begun utilizing
software analytics (SA). SA aims at increasing both the managers’ and the developers’
understanding of the software system by systematically condensing these large volumes
of data into insightful and actionable metrics. Via these metrics, the development and
maintenance efforts can be more efficiently targeted in a data-driven manner, instead
of relying on intuition and speculation. Doing so is of high importance, since software
development is an inherently expensive process. Misplacing the limited resources can lead
to major repercussions from worsened customer satisfaction to project failure.

In this thesis, we investigate how SA can be integrated into the software development
workflow of an agile software development team. The research approach is twofold. Firstly,
we conduct a semi-structured literature review to learn about the methods and use cases for
utilizing software usage data. Secondly, we conduct a case study to learn how developers
and managers of an agile software development team utilize software usage data in their
day-to-day work and to learn how they experience methods for utilizing software usage
data.

This thesis is structured as follows. We begin in Chapter 2 by taking a look at relevant
background literature. Next in Chapter 3, the research methodology to be used in this
thesis is unfolded. In Chapter 4 the results of the semi-structured literature review are
presented and their validity is evaluated. Continuing in Chapter 5, the results of the case
study are presented, and their validity is examined. Next in Chapter 6, we discuss our

2

findings and their practical relevance. Finally, we conclude by summarizing our research
efforts in Chapter 7.

2 Background

This thesis revolves around software usage and software analytics. This chapter presents
some of the central concepts related to software usage and software analytics on a high
level. We begin Section 2.1 by taking a look at how software systems are used in practice,
and what are the contributing factors that affect the usage of a software system. In Sec-
tion 2.2 we shed light on some of the common sources of software usage data. We continue
in Section 2.3 by presenting an overview of software analytics. Finally, in Section 2.4, we
conclude with an overview of data-driven decision-making.

2.1 Software usage

The usage of a software system is distributed among its features. The IEEE standard
glossary defines a software feature as ”a software characteristic specified or implied by
requirements documentation (for example, functionality, performance, attributes, or design
constraints)” [4]. In the context of this thesis, we mainly focus on functional requirements.

How the usage of a system is distributed among its features varies based on the user.
Different users have varying needs, competencies, and ways of making use of the software.
Past experiences with similar software systems may guide the user’s behavior towards
familiar ways of working, and the environment in which the software is used may also
have an effect. Furthermore, the user’s primary goal for using the software defines what
parts of the software they will usually be interacting with. Even the user’s personality
traits may have an impact on how and when they use a particular software product [5].
Furthermore, the gender of the user has also been shown to have an impact on how the
user perceives the usefulness and ease of use of the system, ultimately affecting if and how
the user will be using the software [6].

Software usage is also highly dependent on the software itself. Social media software, such
as Facebook, get quite even usage throughout the year. While, for example, the usage of
software for filling in tax return forms is more tightly concentrated to specific times of the
year. Sometimes these variations in the software usage patterns can cause major problems
[7]. Naturally, the overall usability and the layout of the system’s user interface also play
an important role. For example, if accessing a feature requires the end-user to perform

4

Figure 2.1: Feature Use in Four Internal-Use Products. From [9]. Original source [8].

a complex navigational process, the resulting usage of that particular feature might be
lower than anticipated. Furthermore, when new features are added to the system, how are
these additions communicated to the end-users that are supposed to benefit from them?
If the users do not get informed or trained to use new features, the usage and therefore
the value of these features might be less than optimal.

Some features of a software system are used more than others and some might never be
used. A widely quoted study reports that 64% of four internal-use products’ features
are rarely or never used [8]. Figure 2.1 illustrates these results. Even though the afore-
mentioned study has been widely quoted, the results have often been misinterpreted and
overgeneralized [9]. Another single-case study reports that 28% of a software system’s
features were never used during a five-month period [10]. These two studies already illus-
trate that the usage of software systems is by no means homogeneous and highlight the
importance of taking the data’s time range into account when analyzing software feature
usage. Generally speaking, there exists no consensus on what a typical software system’s
feature usage distribution might look like.

5

Even if some features of a system are never used, it does not necessarily mean that de-
velopment efforts have been misplaced. It has been hypothesized that unused features
may be justified if they make the consumer software product more attractive for potential
customers [11]. Furthermore, a feature that implements a fail-safe mechanism for a nuclear
reactor can be considered valuable, even though it was never to be used.

If a feature can not be justified, it probably should not be implemented. Unjustified fea-
tures increase the development costs while providing no value. Besides, they unnecessarily
increase the complexity of the system, making it harder to maintain and more prone to
errors. As it happens, writing less code has been identified as an important strategy for
making software development more productive [12].

Summing up, the usage of software systems is affected by a great number of factors. Thus,
it is hard to accurately predict the actual usage of the system. Therefore to get an accurate
representation of the usage of a system, one must turn to software usage data.

2.2 Software usage data

There exists a wide range of data sources that provide information on software usage,
including web server logs and direct instrumentation of the software system. Both of
which have unique benefits and drawbacks as a data source.

Web server logs store information about each request, for instance, the IP address of the
client, what resource was requested, and so on. An important benefit of web-server logs is
that they are automatically generated without any additional configuration. A drawback
in this log-based approach is that due to the substantial caching practices of the modern
web, the requests might never actually hit the server, decreasing the quality of the data
[13].

Usage data can also be collected by purposefully instrumenting the software. Page tagging,
for example, is a popular instrumentation method in the context of web applications [14]. It
typically involves a snippet of Javascript code, which tracks the user’s actions, such as what
pages they visited, in what order, and how long they spent on those pages. Page tagging
can provide more detailed information than the web server logs. It can, for example, report
the browser’s window size, and track custom events that do not automatically generate a
request to a backend server. However, setting up page tagging requires some additional
configuration, and the quality of data can be negatively affected by browser extensions

6

and security software that aim to prevent client-side instrumentation.

The problem with software usage data is that if it is not being utilized, it is just data. As
it happens, many companies do collect huge volumes of post-deployment usage data, but
only a few put it to use outside of diagnostic purposes [15].

No sensible manager or developer is willing to spend hours upon hours manually going
through thousands of log file entries in search of new insights or innovations. Thus the
raw software usage data needs to be processed further into insights via software analytics.

2.3 Software analytics

Analytics is the process of systematically analyzing data to support decision-making [16].
Software analytics (SA) aims to increase both the managers’ and the developers’ under-
standing of the software system by producing condensed information from raw data to
empower rationalized decisions [17, 18]. SA plays an important role in modern software
development [17]. In a similar vein, web analytics aims at achieving similar goals in the
domain of web applications [19].

SA can be utilized to identify and address issues originating from any of the aspects of the
trinity of software development, considering the software system, its users, or the software
development process [20]. Figure 2.2 illustrates the trinity of software development. Iden-
tifying and addressing issues in the software system can enhance quality, for example, by
locating bottlenecks in the application code or by identifying parts of the system which are
potentially unsafe or unreliable. The software users perspective is more closely related to
the real users’ actions, expectations, and demands. Finally, the software development pro-
cess perspective aims to improve the productivity of the development team, for example,
by focusing development efforts on activities that have a high value/effort ratio.

SA can be used in different stages of the software development process. It can be used in
the early stages, even before the system has been deployed to production. For example, in
the implementation stage, software repository mining can already be applied on the source
code to detect code smells early [21]. Once the development has been going on for some
time, we can start answering questions such as: ”How has the complexity and stability of
our system evolved over time?”, and ”How should we target our testing and refactoring
efforts?” [18]. Finally, when the software system gets deployed to production, more data
becomes available. This makes it possible for SA to answer a wider range of questions,

7

Figure 2.2: The trinity of software development. From [20].

such as: ”How are our users using the product?”, and ”How can we help and educate our
users?” [18].

The results of SA should be both insightful and actionable [17, 20, 22]. Insightful results
provide practitioners with useful information that can be put to use when working on a
particular task. Actionable results consist of information that allows the practitioner to
design and implement an (better, if an old solution exists) approach for dealing with the
task at hand. A list of the software system’s most commonly activated functions is an
example of insightful and actionable results in the context of software development. This
example is insightful because it communicates useful information to, say a project man-
ager, who has to perform the task of backlog prioritization. It is also actionable because
the project manager can realistically utilize this data when performing the prioritization
process. The results must also be recent enough because outdated results are no longer
actionable [17]. The required level of recency, however, is largely dependent on the appli-

8

cation domain. Furthermore, managers and developers are interested in different metrics.
Thus the insightfulness and actionability of a particular SA metric depend on the person
who is using it.

In practice, SA has proven to be both impactful and beneficial. Microsoft, for example,
has demonstrated how performance data gathered from 48 000 users can be utilized to
detect and resolve performance issues that would have otherwise remained undetected and
unresolved [23]. Another company, Intuit, reports utilizing software’s post-deployment
data to facilitate product improvement and innovation [24].

2.4 Data-driven decision-making

As discussed above, the goal of SA is to empower rational decision-making by providing
insightful and actionable metrics for developers and managers to use. As the name sug-
gests, the main idea of data-driven decision-making is to make decisions based on data,
instead of based on some stakeholder’s opinions. The problem with basing decisions on the
stakeholders’ opinions is that opinions are subjective by nature and can turn the decision-
making process into a politized one [24]. That is, the opinions of higher-ranked officials
are often considered to be more important and correct, than those of their subordinates.

Data-driven decision-making is important because software development is an inherently
expensive process. Misplacing the limited resources can lead to major repercussions from
worsened customer satisfaction to project failure. Be that as it may, it has been shown
that companies often do not actively even measure whether or not the features they are
producing are of value to the end-users [25].

Fortunately, however, it has been shown that developers and managers alike are interested
in utilizing various types of software metrics, based on real data, if made available [18].
Furthermore, it has been shown that both managers and developers see features as the
most important type of artifact that should be analyzed [18].

Since developers and managers are working with features on a daily basis, it is no wonder
that they are greatly interested in understanding feature-related artifacts. For example,
a project manager might have to decide what features to prioritize in testing before the
next release, while a developer might need to figure out how to resolve a bug report
concerning a particular feature. In the context of this example, the manager might benefit
from understanding how much existing features are being used to justify what features

9

Figure 2.3: Types of decisions that analytics could help with. From [18].

should be tested. And the developer could benefit from understanding what exact chain
of events caused the end-user to encountered the bug. Thus, providing the developers and
the managers with feature-related metrics might be a good first step towards data-driven
decision-making.

Software analytics is capable of enabling different types of data-driven decisions. In a
study by Buse and Zimmermann [18], the information needs of software developers and
managers were investigated. Figure 2.3 illustrates the types of decisions that SA could help
with. Both parties are clearly most interested in metrics that could help with decisions
related to software testing. Developers and managers are faced with different decisions.
Thus, it makes sense that the developers and the managers are interested in using SA for
different kinds of decisions.

3 Research approach

This chapter defines the research approach used in this thesis. We start by defining the
research questions in Section 3.1, followed by a visual representation of the study design in
Section 3.2. Then, in Section 3.3, the process for conducting the semi-structured literature
review is presented. Finally, in Section 3.4, we bring forward the case organization and
describe how the case study was conducted.

3.1 Research questions

In this thesis, we aim to enhance our understanding of the interplay between software
usage and software development. We approach the problem via the following three research
questions (RQs).

• RQ1: How and for what purposes can software usage data be used for?

• RQ2: How do developers and managers utilize software usage data in practice?

• RQ3: How do developers and managers experience methods for utilizing software
usage data?

In RQ1, we investigate existing studies to learn how and for what purposes software usage
data has been used in the past. In RQ2, we investigate how the developers and managers
of an agile software development team utilize software usage data in their regular work by
conducting a case study. As a part of the same case study, to answer RQ3, we evaluate
the feasibility of software usage data utilization methods to learn how they would work in
practice.

3.2 Structure of the study

The study consists of two interdependent parts: a semi-structured literature review, and
a case study. Figure 3.1 illustrates the structure of the study. We begin by conducting a
semi-structured literature review on past studies on utilizing software usage data to answer

11

Figure 3.1: The study design.

RQ1. We continue with a case study to firstly determine how software usage data is used
in practice, answering RQ2. And secondly, with past methods and use cases for software
usage data charted out from the literature, we have a solid foundation for experimenting
with a subset of the methods in a form of a case study to answer RQ3.

3.3 Part I: Semi-structured literature review

This section describes how the semi-structured literature review (SSLR) is conducted. The
goal of the SSLR is to find answers to RQ1: How and for what purposes can software usage
data be used for? In other words, the goal is to discover methods for utilizing software
usage data and to learn what use cases those methods can help us achieve.

12

3.3.1 Search String Definition

The search was performed on the abstract and citation database Scopus with the following
search string on the 1st of February 2021, resulting in 99 preliminary results. All the 99
sources are listed in detail in Appendix A.

(

TITLE-ABS-KEY("usage mining" OR "usage data")

AND TITLE-ABS("software")

AND TITLE("experience" OR "report" OR "case study")

OR ABS ("experience" OR "report" OR "case study")

)

3.3.2 Inclusion and Exclusion Criteria

After the initial search resulting in 99 hits, abstracts were read and evaluated against
the inclusion/exclusion criteria. In a few unclear cases, some sources were read in more
depth to make a justified decision. Three of the sources discussed the same method,
REQANALYTICS. Only the most recent source (S19) discussing the method was included.

The source must meet all of the following inclusion criteria:

• The title or the abstract must strongly hint that software usage data is used in the
study.

• The study must propose or experiment with a method of using software usage data.
Or the study must describe a use case for software usage data.

The source must not meet any of the following exclusion criteria:

• The source focuses on a software system that collects or processes other than software
usage data.

• The source is a workshop introduction.

• The source is a listing of a proceeding’s contents.

After applying the inclusion/exclusion criteria, 49 sources remained for further analysis.
Table 3.1 presents the included sources’ titles along with an assigned SID (source identifier)
that will be used to refer to a particular source later in this thesis.

13
Table 3.1: Included sources for data extraction and concept formation.

SID Title
S1 Automation of NERSC Application Usage Report
S2 Can operational profile coverage explain post-release bug detection?
S3 Prediction of Success and Complex Event Processing in E-Learning
S4 Enabling Data-Driven API Design with Community Usage Data: A Need-Finding S...
S5 Lessons learned from developing and evaluating an educational database mode...
S6 Quantifying use of a health virtual community of practice for general pract...
S7 How do practitioners capture and utilize user feedback during continuous so...
S8 Don’t worry, be happy - Exploring users’ emotions during app usage for requ...
S9 Development of a web based framework to objectively compare and evaluate so...
S10 FAME: Supporting continuous requirements elicitation by combining user feed...
S11 Physician experience with speech recognition software in psychiatry: Usage ...
S12 A machine learning approach to generate test oracles
S13 Feature crumbs: Adapting usage monitoring to continuous software engineerin...
S14 Notifying and Involving Users in Experimentation: Ethical Perceptions of So...
S15 Behavior metrics for prioritizing investigations of exceptions
S16 ForgetMeNot: Active reminder entry support for adults with acquired brain i...
S17 Application of adaptive game-based learning in image interpretation
S18 Exploring use and benefit of corporate social software: Measuring success i...
S19 Maintaining Requirements Using Web Usage Data
S20 Toward data-driven requirements engineering
S21 Improving web navigation usability by comparing actual and anticipated usag...
S22 Early experiences in developing and managing the neuroscience gateway
S23 UX work in startups: Current practices and future needs
S24 Vision 2020: The future of software quality management and impacts on globa...
S25 Usage results of a mobile app for managing urinary incontinence
S26 Strengthening district-based health reporting through the district health m...
S27 Deploying communitycommands: A software command recommender system case stu...
S28 Experiences gamifying developer adoption of practices and tools
S29 Fixing the ’out of sight out of mind’ problem: One year of mood-based micro...
S30 Patina: Dynamic heatmaps for visualizing application usage
S31 Data-Driven Design Process in Adoption of Marking Menus for Large Scale Sof...
S32 Post-deployment data collection in software-intensive embedded products
S33 Development and feasibility of an electronic white blood cell identificatio...
S34 A case study on usage of a software process management tool in China
S35 Integrating quality, quality in use, actual usability and user experience
S36 Model-driven instrumentation of graphical user interfaces
S37 Interactive usability instrumentation
S38 Web usage mining in a blended learning context: A case study
S39 Seeking activity: On the trail of users in open and community source framew...
S40 Value tensions in design: The value sensitive design, development, and appr...
S41 Evaluation of the Turkish translation of the Minimal Standard Terminology f...
S42 Improving web service discovery with usage data
S43 Building an institutional repository: Sharing experiences at the HKUST libr...
S44 Intelligent decision support system based on data mining: Foreign trading c...
S45 Analysis of user’s behaviour in very large business application systems wit...
S46 Designing adaptive mobile applications: Abstract components and composite b...
S47 A provision framework and data logging tool to aid the prescription of elec...
S48 Experiences with an interactive video code inspection laboratory
S49 Remedial and second language English teaching using computer assisted learn...

14

3.3.3 Data extraction

After applying the inclusion/exclusion criteria, the following properties were extracted
from each of the remaining 49 sources.

• SID as defined in Table 3.1.

• Title and abstract of the paper.

• A collection of relevant quotes.

• A description of the method(s) used for utilizing software usage data, if presented.

The data were collected in a separate document for concept formation purposes.

3.3.4 Concept Formation

Two distinct types of concepts were formed 1) use cases for software usage data, 2) methods
for utilizing software usage data. The distinction is important. While all of the included
sources discuss use cases for software usage data, not all of them describe concrete methods
for achieving those use cases.

From the 49 included sources, the extracted quotes were assigned to use cases for software
usage data by employing the concept-centric approach [26]. Initially, 26 distinct use cases
for software usage data were identified, 15 of which were present only in two or fewer
sources. A closer look at these rare concepts was taken to merge them into larger ones
when appropriate.

As for forming the concepts for methods of utilizing software usage data, the same ex-
tracted data from the same 49 included sources were used. In particular, the extracted
descriptions of the method(s) were used to group similar methods under the same concept.

3.4 Part II: Case study

As illustrated in Figure 3.1, case study acts as an information source for addressing both
research questions two and three. We start by exploring how a small and agile development
team utilizes software usage data in their work, allowing us to answer RQ2: How do
developers and managers utilize software usage data in practice? Then, to answer RQ3:

15

How do developers and managers experience methods for utilizing software usage data?, we
analyze the feasibility of two previously identified methods for utilizing software usage data
by constructing and evaluating their prototypes with three developers and a consultant of
the development team.

3.4.1 Case selection

The case organization was selected by convenience. The author has previously worked
in the organization as a software developer. The manager of the organization had also
previously indicated to be interested in further investigating how the unutilized potential
of software usage data could be unleashed. The case application was selected because
it is the most information-rich one available in the organization and it has already been
gathering feature-based usage data for over a year.

3.4.2 Case description

The context of this study is a software development team, working on a certain computer
application. Table 3.2 summarizes the composition of the development team. Each mem-
ber of the team has been assigned an identifier that will be used when needed to refer
to a particular member. The development team itself consists of a project manager (I1),
a consultant (I2), and three full stack developers (I3-I5). The consultant (I2) acts as a
middle-man between the end-users and the development team.

Table 3.2: Compositions of the case application’s development team.

Identifier Role Experience with the case application

I1 Project manager three years
I2 Consultant three years
I3 Full stack developer three months
I4 Full stack developer over a year
I5 Full stack developer a year

The team values both agile and lean principles by aiming to satisfy the end-user’s needs
while eliminating waste. At the time of the study, the team was working completely
remotely. The development takes place in short iterations, creating a need for continuous
monitoring of the system’s state and learning from software analytics. Besides, the team

16

works in a self-organizing manner, which builds up an increased need for some metrics to
guide their work. As pointed out by Martínez-Fernández et al. [27], software analytics
can be especially useful for teams practicing agile software development.

The case application is a tool for visualizing and presenting large amounts of complex
data to support generating insights and decision-making. The users of the application are
teaching and management personnel.

3.4.3 Data collection - Qualitative data from interviews

In the interviews, we collect qualitative data to be used for answering both research ques-
tions two and three. We begin the interviews by exploring the topic of RQ2: How do
developers and managers utilize software usage data in practice? Then, we explore the
topic of RQ3: How do developers and managers experience methods for utilizing software
usage data?, by evaluating two prototypes of software usage data utilization methods with
four members of the case application’s development team.

A longitudinal study examining the actual effects of putting the methods to use was not
possible because 1) the timeline of the thesis did not allow it, 2) the case organization’s
resources had to be focused on more time-critical activities at the time of the study.

Selected methods and their prototypes

Two methods for utilizing software usage data were selected from the findings of the semi-
structured literature review, presented in Table 4.1 on page 22. The two methods were
selected by the author based on his knowledge of the available software usage data, the
project manager’s needs/wishes, and the author’s personal interest. Not all methods were
feasible in the context of this case study to begin with, for example building an AI system
for processing usage data is clearly out of the scope of this thesis. The two selected methods
were: Combining usage data with feedback and bug-reports and Visualizing software usage
with heatmaps. The prototypes are displayed in Table 3.3 and Figure 3.2 respectively.

Combining usage data with feedback and bug reports, or more specifically combining
usage data with bug reports was selected because the case application has both usage
data and automatically collected bug reports available, making the method a feasible
one. Furthermore, the project manager had previously indicated that they would like
to see if and how these two sources of data could be used together. Before reaching its

17

Table 3.3: Prototype 1: Combining usage data with bug reports. The three-digit codes in the Errors-
column stand for standard HTTP response status codes [29].

URL Errors Pageviews Total users Users affected Error rate

/coursestatistics

16 x 500
17 x 400
8 x 502
1 x 503
42 total

325 233 7 (3% of users) 13%

/students
38 x 400
2 x 401
40 total

850 200 4 (2% of users) 5%

/populations

8 x 401
4 x 400
2 x 403
2 x 503
1 x 502
17 total

323 243 6 (2.5% of users) 2%

final form, the prototype was enhanced based on feedback from senior researchers. The
prototype is presented in Table 3.3. It was constructed by combining usage data from web
analytics software and automatically generated bug-report data from specialized exception
capture software Sentry [28]. Sentry captures any exceptions thrown by the application
and is capable of determining how many users have been affected by the same exception.
However, it does not monitor the normal usage of the system. Thus, to be able to calculate
the error rate and how many users are affected by the errors, usage data has to be obtained
from a different source.

Combining the data was straightforward since Sentry captures the URL in which the error
occurred, while web analytics reports page views based on the URL. After combining the
data, the error rate of each particular URL was calculated with the following formula: er-
rorRate = errorsTotal/pageviews. To keep the prototype actionable, the time range of
data for this prototype was set to be from the 1st of February to the 1st of April 2021.
Only the three most error-prone URLs were included.

Visualizing software usage with heatmaps was selected as the second method. The method
is feasible, because the case application’s usage data includes interface-level events, making

18

Figure 3.2: Prototype 2: Visualizing software usage with heatmaps.

the creation of a heatmap overlay possible. The heatmap overlay was created by combining
a screenshot of the graphical user interface with a heatmap generated with heatmap.js [30].
After deciding on the view to be visualized, usage data for the interface level elements
were gathered manually. The process of mapping the collected usage data to the interface
elements required a moderate amount of manual work.

Figure 3.2 presents the prototype of the heatmap overlay. The used data range was
from 2020 to the 1st of April 2021. The colored dots indicate the relative usage of each
particular user interface element. For example, we can see that the Name filter is being
used significantly less when compared to the Code filter. This particular portion of the
application’s user interface was selected for the prototype because it has been thoroughly
instrumented and illustrates a heterogeneous usage distribution.

19

Interview questions

A semi-structured interview was selected as the type of the interviews as it is a suitable
format for gathering descriptive and explanatory data while retaining flexibility [31]. The
interview questions were designed to contain both closed and open-ended questions. Before
reaching their final form, the interview questions were iterated on based on feedback from
senior researchers. The final set of interview questions is as follows:

1. How would you describe your role in the case application?

2. How long have you been working with the case application?

3. How would you define the term ”software usage data”?

3.1. What types of data does it include/exclude?

3.2. Hypothetically, how and for what purposes (goals) could the data be used for?

4. What do you think about the idea of putting software usage data to use?

5. How is software usage data being utilized currently in the organization?

5.1. What benefits have been achieved?

5.2. Are these some difficulties related to using the data?

5.3. Have you personally used the project’s usage data for something before?

5.3.1. For what?
5.3.2. How often?

At this point, the prototypes are presented.

6. Please rate the prototypes, on the scale of 1–5, on the following dimensions accord-
ing to your own experience:

6.1. Understandability

6.2. Relevancy

6.3. Informational value

6.4. Irreplaceability

7. For ratings of 1–2 and 4–5 can you elaborate why so low or high rating was given?

20

8. What did you learn from the prototype?

8.1. In what situations could the learned information be most useful in?

8.2. What kinds of decisions could the learned information support?

9. What benefits and drawbacks does the prototype have?

10. How would you improve the prototype?

11. How would you feel about putting the prototype to actual use?

For the remaining questions, the interviewees were asked to imagine putting the proposed
prototypes to real use in the case application

13. What high-level tasks would have to be performed and by whom?

14. How much time and resources would be required?

15. How often would it make sense to make update/reproduce the prototypes?

16. Is there something that might hinder putting the prototypes to use?

16.1. Do some other tasks take priority?

17. Is there something that might help with putting the prototypes to use?

18. Is there anything you would like to add or a particular topic to revisit?

Conducting the interviews

The interviews were conducted one-on-one with four members of the development team,
including the consultant (I2), and the three full stack developers (I3, I4, I5), as described
in Table 3.2. The project manager (I1) was not included in the interviews, as their
active involvement in the thesis work would likely have had an impact on that interview’s
results. Even though the three developers share the title of ”full stack developer”, they
have been working on different aspects of the application, ranging from design and frontend
development to DevOps-related activities. Members with different roles were included to
capture data from multiple different perspectives [31]. The interviews were conducted
remotely and in Finnish. Audio recordings were collected from each of the interviews with
each individual’s consent for transcription purposes.

21

In each interview session, the author presented the prototypes to the interviewee. In the
brief presentation, the author described how the prototypes were constructed, what data
were used, and how much effort was required. The interviewees were encouraged to ask
any questions they might have regarding the prototypes during and after the short five-
minute-long presentation. The prototypes were purposefully presented after covering the
first five interview questions so that the results of those questions would not be affected
by the presentation. The interviewees were given access to screenshots of the prototypes
to help them answer questions regarding the prototypes.

Data analysis

After conducting the interviews, raw data in the form of five audio files were transcribed
by the author. The transcribed interviews were then dissected via thematic analysis [32].
Once the data had been processed to its final form, the results were brought back to the
interviewees for member checking to catch any misunderstandings [33]. No issues were
identified.

4 Semi-structured literature review

This chapter presents the results of the semi-structured literature review. Furthermore,
the validity of the results is evaluated. We start in Section 4.1 by presenting the findings
of the SSLR. After presenting our findings, we conclude in Section 4.2 by examining the
validity of the results.

4.1 Results

A total of 9 methods and 9 use cases for software usage data were identified. Table 4.1
presents the identified methods in a descending order based on the number of sources
discussing each particular method. Table 4.2 presents the identified use cases in a similar
manner.

Table 4.1: Identified methods for utilizing software usage data.

Method Count

Manual analysis and simple visualizations 20
Usage mining and pattern discovery 4
Data-driven requirements engineering 2
Machine learning and artificial intelligence 2
Aggregating usage data from several applications 2
Combining usage data with feedback and bug-reports 2
Constructing operational profiles 1
Data-driven design and experimentation 1
Visualizing software usage with heatmaps 1

In the following, the identified methods and their respective use cases for utilizing software
usage data will be presented to answer RQ1: How and for what purposes can software usage
data be used for? Use cases will be connected to each method to describe what are the
potential benefits that the method could bring. A single method can be used to achieve
several use cases. Furthermore, many use cases can be achieved via multiple methods. For
presentation purposes, some closely related methods have been grouped together.

23

Table 4.2: Identified use cases for software usage data.

Use case Count

To better understand software usage 27
To locate issues and improvement needs 17
To enable measuring, monitoring and evaluating software 13
To understand the users’ behaviors and needs 10
To enable comparing different applications and different versions
of the same application.

4

To enable making rationalized design and development decisions 4
To help with support and bugfixing activities 3
To help with software testing 3
To enable reporting of usage data to external stakeholders 2

4.1.1 Manual analysis and simple visualizations

The most common method for using software usage data is to perform manual analysis
on the data and visualize the results. Manual analysis of software usage data has plenty
of potential use cases. Most importantly, it can help stakeholders better understand how
the software system is truly being used on a variety of dimensions. Depending on the
type and level of detail of the usage data, the dimensions can range from estimating the
number of active users to minute-scale breakdowns of the system’s feature-level usage.
If the data allows, the usage of a feature can further be tied to a specific version of the
feature, enabling the comparison of feature increments (S13).

Visualizing the results of manual analysis via simple methods, such as clustering and
plotting, can also act as a powerful way to grasp a better understanding of software usage.
Furthermore, such visualizations can also act as a rudimentary method for finding patterns
and trends in the data.

Both of the techniques can also allow for a better understanding of the users’ behaviors
and needs. These techniques can also help to detect issues in the software or its use.
S3 for example was able to identify a problematic user behavior by manually analyzing
educational software’s usage data:

The students use this "check button" a bit more than we expected, especially for
difficult and large exercises. [...] One explanation for this is that even though the

24

check button in LearnER shows explanations for all errors in the model, students
often fix only one or two errors, and then click the check button again. (S3)

Manual analysis and simple visualizations can also be used to evaluate whether or not
a software is fit for its purpose. Studies S16, S25, and S47, for example, utilize these
techniques to evaluate the fit of medical software systems. S16 performs statistical analysis
to determine whether or not unsolicited prompts can be of benefit for people with memory
problems related to acute brain injury. S25 utilizes usage data to measure the acceptance
of a mobile application by calculating the number of users who only use the application
once, and to evaluate the hypothesis that the application can help manage a particular
medical condition. S47 visualizes usage data with bar- and line charts to discover answers
to questions such as ’Is the interface most efficient for the user?’, and ’Does the application
usage follow the expected pattern?’.

4.1.2 Visualizing software usage with heatmaps

If usage data can be linked to interface elements, as is often the case, a new visualization
technique can be unlocked.

S30 presents Patina, a system for gathering and visualizing software usage data by applying
a heatmap on top of the application’s user interface. In addition to being able to visualize
the user’s own usage data, the system also allows the user to see what the heatmap of
the community (other users) looks like. The system does not extend beyond desktop
applications, but the idea of visualizing usage data with heatmaps remains a possibility.

The study claims that visualizing an application’s usage data by applying a heatmap
overlay has three main potential benefits for the system’s users. Firstly, it can help new
users to get to know the system by seeing what interface elements a typical user interacts
with. Secondly, if the usage data can be tied to a specific document or more generally to
any artifact that can be shared and manipulated by a group of users, the most commonly
used interface elements for that specific document/artifact can be highlighted. Thirdly,
the user can potentially learn from the way other users use the software and also reflect
on their usage on the wider population.

For example, one user discovered the “zoom slider” in the bottom right corner of
the window, and has subsequently adopted the use of that slider for zooming his
documents. (S30)

25

4.1.3 Usage mining and pattern discovery

Another common method for utilizing software usage data is pattern discovery through
usage mining. Unlike manual analysis and visualization techniques which cover a wide
range of use cases, pattern discovery has more limited applications. The main focus of
pattern discovery in the context of software systems lies in detecting problematic patterns
that require attention.

S21, for example, uses web usage mining techniques on software usage data to discover
the actual usage patterns, which are then compared with the anticipated usage patterns
constructed by experts in human cognition. Detecting differences in the patterns can be
indicative of poor design choices in the software that should be addressed to enhance the
usability of the system:

Temporal deviations also highlight some usability problems linked to pages where
users spent excessive time. For example, Table II shows that 23 users spent ex-
cessive time in the page “register.php.” After inspecting this page, domain experts
recommended that some page elements be redesigned to enable more efficient com-
pletion of this task. . . (S21)

According to S4, there is also an interest in finding re-occurring patterns from usage data,
in addition to finding differences in expected and actual usage patterns. Such patterns
can be indicative of users using the software incorrectly. The same study, however, points
out that the tool support for discovering such patterns is lacking.

4.1.4 Constructing operational profiles

An operational profile defines how the usage of a system is expected to be distributed over
its features and functionalities. Operational profiles are essential in operational testing,
where the goal is to prioritize limited testing resources on the most crucial parts of the
software system. By targeting the limited testing resources on the most crucial parts of
the system, the highest possible level of reliability can be achieved.

S2 describes how an operational profile can be constructed from software usage data. The
resulting operational profile estimates, on code-level, the probabilities of each function
being called. The authors show, that by further combining the operational profile with
test coverage data, the quality of the projects testing efforts can be better evaluated.

Usage data is not required for creating an operational profile. Instead of usage data, other

26

data sources such as user interviews can be used. Furthermore, oftentimes usage data is
not available since testing usually takes place before shipping software to production.

4.1.5 Machine learning and artificial intelligence

Software usage data can be utilized as an input source for machine learning (ML) and
artificial intelligence (AI) systems. S3 describes a ML system that both collects and
processes usage data from log files of an educational software system. The goal of the
system is to generate actions that might be able to benefit the user’s learning process. S17
presents a similar system, designed for adapting a game’s difficulty based on the user’s
performance.

S12 presents a supervised ML approach for generating test oracles based on real usage
data. The test oracle infers/learns the correct behavior of a software system based on
the real usage of that system. For example, if a user performs the action of logging in to
the system, the oracle learns that the system should show a welcome-message to the user.
Now, if a programmer were to accidentally break the login functionality, the same action
of logging in would no longer result in the system showing a welcome-message. Thus a
difference between the anticipated and actual outcomes would be detected, indicating that
there may be a bug in the system. On a high level, the approach is quite similar to S21’s
approach of comparing actual and anticipated usage patterns.

The main idea is to compare the captured information of the application with the
oracle information referring to the same action, in order to identify any inconsis-
tencies in the application behavior. (S12)

While the examples presented here may not be easily transferrable to other contexts, they
do illustrate a range of possibilities for software usage data in the domain of AI and ML
systems.

4.1.6 Aggregating usage data from several applications

Many methods for utilizing software usage data deal with systems that aggregate usage
data from multiple different applications. Doing so unlocks some new use cases for software
usage data.

S1, for example, presents a system that collects usage data from thousands of different
jobs running on the same scientific computing hardware in the same physical location.

27

Gathering the usage data to such a central system has several benefits. Firstly, it enables
comparing the usage of different applications. Secondly, it can make the task of reporting
application usage to external stakeholders significantly easier by decreasing the amount of
manual work required.

If aggregated to a central location, usage data from otherwise completely separate appli-
cations can also be used as a basis for recommender systems. S42 presents an approach
for collecting and processing usage data from service-oriented applications to generate
recommendations of web services for software developers to use. The proposed system is
fundamentally different from most other recommender systems in that it relies on implicit
feedback (usage data) instead of explicit feedback, such as ratings and reviews.

Usage data can also be collected systematically and purposefully to enable the comparison
of software systems. S9 presents a framework for comparing any two web-applications to
detect issues related to usability and user experience and to objectively evaluate which of
the two performs better.

4.1.7 Combining usage data with feedback and bug-reports

Software systems get feedback through a variety of channels including emails, phone calls,
and special feedback-functionalities integrated within the software system. Studies suggest
that usage data could and should be taken into account when handling feedback. It has
also been claimed that usage data itself can be used as implicit feedback, even if there is
no explicit feedback available.

S10 presents a system for combining user feedback with software usage data. The authors
argue that if feedback can be combined with usage data of the system, the end-users’
needs can be better understood. A case study is presented, highlighting several use cases
where the approach can be beneficial.

Firstly, if the feedback concerns a functionality of the system, usage data can be taken
into account in the prioritization process. For example, if a user reports a bug in a feature,
usage data can be taken into account to estimate how many users the bug is affecting. S15
goes more in-depth in estimating user-inconvenience by investigating the actions taken by
the user after encountering a bug. By understanding what happens after a user encounters
a bug, the bug’s severity can be better evaluated. For example, if the bug causes the whole
application to crash multiple times, the bug is likely of high priority. But if the bug only
causes the user to repeat the same action, a lower priority rating is probably justified. The

28

case study presented in S15 suggests that if bug-reports are combined with estimations of
user-inconvenience, the prioritization of roughly every 3rd bug-report is likely to change.

Secondly, usage data can help understand the context in which the feedback was given and
thus the meaning of the feedback. S10 presents an example, where a user sent feedback
about a problem they encountered, but a closer inspection of the user’s usage data revealed
that the actual problem was different than the reported one.

4.1.8 Data-driven design and experimentation

Data-driven design practices rely on data to make educated design decisions. S31 describes
the success story of Autodesk in designing and implementing a new marking menu for their
software system.

We analyzed the usage data from the past release to identify high usage commands
and coverage of those commands. It showed that top 20-30 commands in the
workspace of Inventor takes 80% of workflow. This result supported the single
level of menu instead of hierarchical menu, while identifying the commands that
we need to put in. (S31)

Software usage data is essential for development practices that rely on experimentation.
One such development practice is A/B testing, where a single variable is altered and the
effect of the change is evaluated. A simple experiment for an A/B-test would be to evaluate
whether a red or a green button get more clicks. The data that is evaluated in A/B testing,
and other types of experimentation, can originate from many sources, including the real
usage data of a software system.

4.1.9 Data-driven requirements engineering

Software usage data can also be put to use while performing the process of requirements
engineering.

S20 hypothesizes that the trend in requirements engineering might be towards a more data-
driven process, where various sorts of data stemming from the end-users will be playing
an increasingly important role. However, the authors also acknowledge that there are still
plenty of challenges and issues ahead on employing data-driven requirements engineering
on a large scale.

29

We project a transition from stakeholder-centered, intuition- or rationale-based
decisions to group-based, mass-driven, user-centered decisions. Such decisions will
be based on real-time analysis of a range of information sources. (S20)

S19 presents a system called REQANALYTICS, which aims to help with the requirements
management process by generating recommendations for actions. The system functions by
combining manually specified functional requirements with web usage data. It is capable of
generating several types of recommendations, including creating and splitting requirements
and adjusting priorities.

Furthermore, when considering an end-user’s request for a particular enhancement, usage
data can be of help. S10 discusses an example, where an end-user wanted to know how a
"conversion factor" should be calculated. The stakeholders’ first impression was that the
application should of course calculate this conversion factor automatically. However, after
consulting the usage data it was determined that such an enhancement was not justified
due to anticipated low usage and that the average user was able to compute the required
conversion factor quickly. Thus it was decided that adding instructions for calculating the
conversion factor would suffice.

4.2 Validity

The search string may have not been optimal, resulting in a biased population of the
discovered methods and use cases. Most importantly, it was noted that only very few
papers were discussing continuous experimentation as a method for utilizing software
usage data. Furthermore, the frequencies of the methods and use cases should be taken
with a grain of salt. Altering the keywords would likely result in different frequencies.

There exists no categorization for the methods and use cases for software usage data. Thus,
the methods and use cases defined here by the author, may not be the same definitions as
other researchers would have ended up with.

5 Case study

This chapter presents the results of the case study. Furthermore, the validity of the results
is evaluated. We begin in Section 5.1 by presenting the interview results and conclude in
Section 5.2 by examining the validity of the results.

5.1 Results

This section presents the interview results. We approach the presentation by dividing the
results into four major categories 1) defining software usage data and its uses, 2) usage of
software usage data, 3) prototype evaluation, and 4) putting the methods to real use.

5.1.1 Defining software usage data and its uses

The interviewees gave homogeneous definitions for software usage data. All of them de-
scribed that software usage data conveys how the users actually use the software. Examples
of data were given, such as 1) what buttons the users click in the application, 2) how many
users the application has overall, and 3) how much time the users spend in the application.

As for the sources of software usage data, there were some differences. Two out of four
interviewees mentioned application logs as a source of software usage data, while the rest
only mentioned client-side tracking techniques such as Google Analytics.

When asked what hypothetical goals could be achieved by utilizing software usage data, the
interviewees reported an overlapping collection of activities. The developers thought that
software usage data could be used for many software development-related tasks, including
1) prioritizing and planning feature development, 2) assisting in debugging, and 3) helping
to discover underused features. As an example, one of the developers described a usage
scenario, where software usage data could be of value to help to target development efforts
and to identify issues:

The project manager or someone else might look at the data and say that maybe
this feature is not so important as no one is using it. Therefore we should focus on
the more important features. Or they might notice that some feature is not being

31

used and then begin to think why that is. From the developers’ perspective: is there
something wrong with the product? (I4)

The consultant was also interested in discovering underused features, but also in under-
standing what groups of users are using the product. As described by the consult knowing
what groups of people make use of the system is important for their work.

The overall attitude towards putting software usage data to use was positive. One devel-
oper described that if software usage data is not available, then to get feedback one must
resort to asking the users for it. This approach was seen as being too laborious. Besides,
it was hypothesized that the users would be more inclined to leave negative feedback as
opposed to positive feedback, which was seen as an unpleasant outcome. It was also em-
phasized that when compared to other data collection methods, collecting software usage
data is painless because once it has been set up, the collection process is automatic.

Some negative aspects were identified as well. One developer noted, that while the usage
data has some value, it is more important to have direct communication with the end-users:

It’s a double-edged sword. It (software usage data) can be a great source of infor-
mation because data always tells about something. But one should not focus on the
data too much. I think that talking with the end-users or seeing how they use the
product is more important and that the data should play a more supportive role.
(I3)

Furthermore, another developer expressed their concern about the added infrastructural
complexity that comes with implementing the collection and storage of the usage data.
It was also mentioned that the granularity of automatically collected data can not match
the detail of other feedback collection methods, such as user interviews.

5.1.2 Usage of software usage data

How software usage data is and had been used varied greatly among the interviewees.
Some reported utilizing it almost weekly, while some reported needing it only very seldom
or not at all. Two of the developers mentioned debugging as the most common use case
for the usage data. In the process of debugging complex problems that were hard to
reproduce, the developers turned to usage data to learn what were the steps that the user
took that resulted in the error.

Furthermore, all of the developers mentioned a recent refactoring effort of a particular part

32

of the application that was driven forth by usage data. This refactoring process took wind
when the project manager noticed, based on usage data, that a part of the application was
being underused. The developers then took a closer look at the data to determine what
features should be kept and which should be eliminated from the new version, based on
the usage data of said features:

I recall that we used the data to make some decisions regarding refactoring the
filters. By manually just looking at the data we were able to determine which of
the filters should be removed from the new version. (I4)

The consultant mentioned preferring to ask any usage data-related questions from the
developers or the project manager, instead of looking at the data themselves. For the
consultant, the data had been used indirectly to detect underused features. After detecting
such features the consultant along with the developers approached the end-users of the
application to try to determine why the features were not being used.

The developers had experienced some difficulties while putting the data to use. One
developer mentioned that interpreting the data can be difficult because there is no baseline
for what the usage of a successful or an unsuccessful feature looks like. Furthermore, a
developer noted that depending on the quality of the data collection implementation, the
data might be difficult to interpret and understand, or downright faulty:

If the data collection has been poorly implemented, then it can be difficult to un-
derstand and make use of the data. [...] If a user has some URL containing a
query in their bookmarks, then the buttons required to make that query don’t get
pressed. So even though the query is being made, it might not show up in the data
as one would expect. (I4)

5.1.3 Prototype evaluation

For presentation purposes, prototypes 1 and 2 will hereon out be referred to as P1 and
P2, respectively. Numerical results of the prototype evaluation are presented for P1 and
P2 in Figure 5.1 and Figure 5.2, respectively. Both of the prototypes received relatively
good overall scoring. P1 achieved a total score of 61/80 and P2 60/80. Next, we take a
look at each of the dimensions for each of the prototypes.

33

Figure 5.1: Evaluation results for prototype 1: Combining usage data with bug reports. Higher is better.

Understandability

Both of the prototypes were rated high in understandability, indicating that the informa-
tion presented by the prototypes was easy to grasp. In particular, P2 achieved a perfect
score from all of the interviewees. Error codes in P1 were a bit difficult, while the heatmap
was seen as a very intuitive way to present usage data.

The visuality, as in the colors and the wholeness, it’s like really easy to understand
that there where the color is of lighter blue then it has been used very rarely and
where it is red there has been used the most. (I2)

Relevancy

There is some deviation in the relevancy of the prototypes. For P1, standard deviation is
0.83, and for P2, standard deviation is 0.5. The relatively big deviation of P1 is explained
mainly by the fact that the interviewees are working with different tasks, where different
kinds of information are relevant. Thus the error information conveyed by P1 is not
of equal importance for everyone. On the other hand, all of the interviewees felt that
knowing where the errors are occurring and how many users they are affecting is somewhat

34

Figure 5.2: Evaluation results for prototype 2: Combining usage data with heatmaps. Higher is better.

important information regardless of their role. The consultant describes P1’s relevancy
from a non-programmer’s perspective:

Because I am not a programmer I would probably say two because of the technical
information like the error codes. But I’ll increase the relevancy to three because I
am interested in the end-user’s viewpoint, so of course, it’s important for me as
well if the program is constantly crashing due to errors. (I2)

As for P2, all of the developers had coincidentally worked on the same exact view that was
selected for the prototype. This made them feel that it was interesting to finally see how
a view that they have been part of developing is truly being used. The consultant also felt
that the conveyed usage information was relevant because for their work it is important
to know how the end-users are really making use of the software.

Informational value

Both P1 and P2 achieved similar average ”information value” ratings of 3 and 3.5, with
standard deviations of 0.63 and 0.5, respectively. For P1, the interviewees unanimously
agreed that the informational value was only mediocre because the presented data is quite
coarse-grained. Thus the interviewees were left longing for more fine-grained information

35

to answer more detailed questions such as ”What were the exact URLs?”, and ”What
groups of users have encountered these errors?”

As for the informational value of P2, the interviewees were again almost unanimous. All
of the developers explicitly mentioned that the information conveyed by the prototype is
quite simple, as it only attaches actions to user-interface elements. Once again, this lack
of more fine-grained information left the interviewees longing for more information:

From this I get the volume and the target, that is the data pair I can get from this.
But I might have questions such as how many users, and what roles do the users
have who have interacted with these user-interface elements? (I5)

Irreplaceability

For the irreplaceability dimension, P1 obtained an average score of 4.5 with a standard
deviation of 0.5. In other words, the interviewees found the information conveyed by the
prototype to be very difficult or troublesome to obtain via other means. The interviewees
explained that obtaining the data necessary for calculating the ”Users affected” and ”’Error
rate” columns could be a tedious task:

Assuming that the error rate and users affected had to be calculated by hand, I
would rate the irreplaceability as a five. Because if you have to dig for the data,
you wouldn’t be doing it. (I5)

P2 scored an average of 3.25 on the irreplaceability dimension with a standard deviation
of 0.43, indicating that the same information could be obtained via other means with some
effort. The interviewees agreed it that would be possible to obtain the same information
from the raw data. However, the developers who were aware of the technical implementa-
tion claimed that mapping the events to the interface elements would be a tedious task.
Furthermore, all of the interviewees explicitly stated that the effectiveness and clarity of
the heatmap presentation would be hard to achieve via other means. One developer also
pointed out that the prototype could be replaced by conducting live user interviews:

This is a very efficient way to present the data. But I think that it might also be
beneficial to conduct user interviews to see how the users really use the product.
That way we could discuss with the users, understand what they are trying to do,
and see where they get stuck. Besides, from this prototype, it is impossible to know
how long it took for a user to find the correct button or input. (I3)

36

Learned information and its practicality

The interviewees reported gaining some new insights from P1. Before seeing the prototype,
the interviewees were already aware that there were some errors in the system. However,
the developers reported that some of the error rates were surprisingly high and that the
most error-prone URL was different than what they had anticipated. Furthermore, one
developer mentioned that the categorization of error codes for each URL was helpful, as
it allowed them to understand where the error might be originating from. Both the error
rate and the ”users affected”-dimension were seen as interesting.

When asked how the newly learned information from P1 could be used in practice, two
developers mentioned that it could be used by developers to self-direct their bug fixing
efforts. Furthermore, the same two developers mentioned that such information could be
used to justify taking a break from normal feature development only to fix bugs for a
while. I4 also mentioned that the error rate could potentially be used as a goal to be
worked towards:

It might be good to show this prototype to the development team during a weekly
meeting and decide that for a week we should only focus on fixing errors stemming
from a particular URL. We could set goals to define how low the error rate should
be. (I4)

For P2, the interviewees reported that they were able to grasp a good overview of how the
presented part of the user interface is being used. Two of the interviewees reported that
the high usage of the code filter was rather unexpected, raising further questions on why
that is. P2 was also able to confirm one developer’s assumptions on the low usage of some
of the available features. Furthermore, one developer felt that seeing such a presentation
was an astounding experience:

This concept is great, I have never seen this before. [...] It is really eye-opening to
see this kind of visualization of a familiar program. [...] I would really like to see
this method to be put to practice. (I5)

All of the four interviewees identified that the aforementioned information learned from
P2 could be primarily used to detect underused features. By detecting these underused
features, discussion on the root cause of the issue could be started:

If we spot a feature that is experiencing low usage over the entire user population,
then we could think why. Is it a useful feature, or is it difficult to grasp? (I2)

37

5.1.4 Putting the prototypes to real use

The interviewees were unanimously in favor when asked if putting the prototypes to use
would be a good idea. P2 especially was seen as particularly impactful by one of the
developers:

I think that P2 could absolutely drive forward the transition towards a more fact-
based decision-making process in the user-interface side of things. (I5)

Implementation

When asked to consider how the prototypes could be merged into the development work-
flow, two of the developers immediately started imagining automatically updating dash-
boards. The rest of the interviewees went with a manual approach, where one of the
developers would manually fetch the data and update the prototypes on-demand. The
main driver behind the dashboard approach was that after setting it up, it would be
always up-to-date and readily available:

If we, as a group, believe that the prototypes would be beneficial, then I think that
automating it (the creation of prototypes) would be worth it. Because if some-
one had to construct them manually on-demand, then we would probably see the
prototypes only a couple of times. (I3)

No matter how the prototypes would be created, the consensus was that they should be
taken a look at every 1–2 weeks. P1, portraying the error status of the system was deemed
to be worth revisiting every week. P2, on the other hand, would be more suitable for ad-
hoc use when a particular part of the user interface is the focus of the team’s development
efforts. Furthermore, the priority of this prototype-related work would depend on what
had been decided as a team. A developer argued that the priority of the prototype related
work would be higher than ”regular development work”:

If we have decided to implement such prototypes, then the priority of that work
would be higher than regular development work. Because once the work on side
of the prototypes is finished, we can then use them to better target our regular
development efforts. (I3)

I5 gives a similar statement:

If we really have the opportunity and a general consensus that we want to im-
plement such an (automatic dashboard) system, then does it really make sense to

38

keep doing ”regular development work”, or should we set up the system first? Then
once the system would be ready to use we could look at the ”regular work” from
a fresh perspective with this new information and perhaps make new realizations
and adjust our priorities. So in a way, this should affect the prioritization, and
not just be a thing to be prioritized. (I5)

Hindering and driving factors

Several driving and hindering factors became apparent during the interviews. The only
hindering factor which appeared multiple times was higher priority tasks taking prece-
dence. In fact, it was mentioned by each interviewee. Potential technical difficulties when
opting for the dashboard approach were also apparent.

Softer issues were mentioned by two interviewees. Even if the whole team more or less
agrees to try out the prototypes, everyone will still have their own opinions on the actual
benefits brought forward by the prototypes. Furthermore, as time goes on and the initial
boost of motivation fades, the utilization rate might slowly fade to inexistence.

The driving factors identified in the interviews were not uniform. One developer mentioned
that looking at the prototypes should become a routine part of the group’s activities. An-
other developer stressed the importance that everyone should take the prototypes seriously
and that the team should have a common will to use them. Furthermore, another devel-
oper argued that in order to be successful, the prototypes would have to be easy to use
and reliable:

The overall ease of use would help the prototype(s) succeed. It needs to be easy
to use, automatically generated, and always up-to-date. In addition, it has to be
reliable and robust so that when you need the prototype you can always get it. (I5)

The final factor which might help with the success of such prototypes is the setting of
goals and rewards. One interviewee pitched the idea of setting prototype-related goals,
for example by defining that the error rate of the most error-prone URL should be less
than 5% by next week. In addition, the developers could even be offered bonuses or other
benefits to motivate them to work even harder towards the decided goal.

39

5.2 Validity

The author has an acknowledged personal bias towards thinking that software data uti-
lization is in general something that has a lot of potential and should be utilized further
where possible. This bias was fought against by having the interview questions checked by
third parties and the questions were purposefully designed to include questions for both
negative and positive aspects of the proposed methods/prototypes for putting software
usage data to use.

The fact that the author had worked with some of the interview subjects in the past,
may have had an impact on how the interviewees responded to the interview questions.
For example, when the interviewees were asked if there was something "wrong/bad" in the
prototype, the interviewees may have answered less harshly than if the prototype was made
by a program or some other person than the interviewer. Thus the overall rating of the
prototypes may be higher than it should be. This threat was fought against by informing
the interviewees that the prototypes were created based on pre-existing literature. In the
end, however, the results contained a lot of positives, but also a lot of negatives related
to the prototypes constructed by the author. Thus it is reasonable to believe that the
interviewees were quite open in expressing their honest thoughts and feelings towards the
prototypes.

Furthermore, due to implementation, the quality of the usage data used for constructing
the prototypes is not perfect. Consequently, the validity of the information conveyed by
the prototypes is not perfect. Therefore some of the reportedly gained insights from the
prototypes may be incorrect.

Finally, as the methods and prototypes were not actually put to practice, no conclusions
on the actual feasibility and usefulness should be drawn.

6 Discussion

This chapter combines discussion and analysis of the results and provides some pointers
for future work. We begin in Section 6.1 by analyzing our results by reflecting them on
each other and existing literature. Next, in Section 6.2 we discuss our results in light of
our three research questions. Finally, in Section 6.3 we give some pointers for future work
in the domain of software usage data utilization.

6.1 Analysis

In the following subsections, we will be discussing the main findings of our study. Fur-
thermore, we reflect our findings on related work.

6.1.1 Use cases of software usage data

By analyzing the relevant literature, we identified a wide range of use cases for utilizing
software usage data. The most common use cases were related to better understanding
the usage of the software and its users, but also in staying on top of the performance and
quality of the software.

Furthermore, we noted that utilizing software usage data to help with software testing was
a very uncommon use case in the literature. Whereas Buse and Zimmermann [18] found
that both developers and managers are interested in information that could help in tar-
geting testing efforts. Perhaps this discrepancy between the use case and the information
needs of managers and developers is due to the lack of methods and tooling for employing
software usage data in the context of software testing.

From the case study we found out that in practice, software usage data is used to fulfill a
subset of the use cases identified in the literature. Both the developers and the managers
had found software usage data to be beneficial in better understanding the usage of the
system, further allowing them to locate issues and improvement needs. In other words,
software usage data had acted as the first step towards enhancing the quality of the
software. Some developers had also found software usage data to be useful in debugging
hard to reproduce issues.

41

Furthermore, it was mentioned that software usage data can be used as a source of implicit
user feedback [34]. When compared to traditional feedback collection methods, such as
interviews or questionnaires, software usage data was seen as a non-biased and easily
collectible alternative. While the traditional ways of feedback collection were seen as
laborsome and easily biased. However, it was also observed that there are drawbacks to
using software usage data as a source of feedback, as automatically collected data can be
faulty, difficult to interpret, and lacking detail and context.

A multiple case study of three software development companies [15] made three observa-
tions that are relevant to our study 1) software usage data is rarely used for improving the
current version of the product, 2) software usage data is mainly used for troubleshooting
activities, and 3) software usage data does not often convey feature-level information.

Contrary to the first observation, in our case study, the usage data had been used explicitly
to improve the current version of the product. This is, however, because there exists
only one version of the product which is being continuously improved. Our case study
results are in line with the second observation, in that software usage data is mainly used
for troubleshooting (debugging) activities. Our case study’s results differ on the third
observation, as the usage data of our case study includes information on the usage of
specific features. This difference can be explained by the types of software products being
developed by the organizations, as Holmström et. al [15] studied embedded software,
whereas we studied a web application.

6.1.2 Utilization methods of software usage data

In the semi-structured literature review, we identified a total of 9 methods for utilizing
software usage data. Manual analysis with simple visualizations was clearly the most
commonly utilized method for taking advantage of software usage data, while the rest of
the methods appeared only a few times in the literature. This is likely because manually
analyzing the data and creating simple visualizations is relatively easy, while for example,
designing and implementing an ML/AI system for processing the data is more difficult
and requires expertise.

From the case study, we found that the sole method used for utilizing the available software
usage data was manual analysis. This is not surprising, as the overall utilization rate for
the data was low. Thus, investing time and resources in utilizing more advanced methods
for software usage data utilization could not be justified. Furthermore, we identified that

42

the usage of the data takes place at random intervals with no pre-defined procedure.
Both the low utilization rate and the lack of a standardized procedure have been noted in
previous work [15].

6.1.3 Practicality of the prototypes

In the case study, we evaluated two methods for utilizing software usage data 1) Combining
usage data with bug reports, and 2) Visualizing software usage with heatmaps. Both of
the methods were received with interest by both the managers and the developers. As
previous work has identified [18], the developers and the managers were interested in
different types of information, thus affecting the value of the methods on a personal level.
However, even within the developers, there was significant variation on how relevant the
information conveyed by the method was for the individual.

From the literature, we gathered that by combining usage data with bug reports the
severity of the bugs could be better evaluated, thus helping in the prioritization process. In
practice we found this claim to be true, as developers reported that such information could
be used to justify focusing development efforts in fixing the most error-prone endpoints,
and to help them self-direct their development efforts.

As for visualizing software usage with heatmaps, the literature indicated that such an
approach could be especially valuable for new users to get familiar with the system. As
no users of the system were interviewed, we can not accept nor reject this hypothesis. In
practice, visualizing software usage with heatmaps was seen by the developers and the
managers as an eye-opening and intuitive way to present an overview of the usage of a
system. Furthermore, the presentation was found to be well suited for either confirming
or falsifying assumptions on the usage of particular features and to detect underutilized
features.

The proposed prototypes of the methods, however, were not perfect. Most importantly,
the information presented by the prototypes was on a too high level and would have to
be more fine-grained for the prototype to be actionable on its own. Besides, as previous
work has identified, interpreting feature-level usage data can be difficult because there is
no simple way to classify whether a feature is valuable or wasteful [15].

43

6.1.4 Success factors for software usage data utilization

From the case study, we found that methods for utilizing software usage data were seen as
interesting, insightful, and valuable. However, despite the clear interest in the methods,
there would still be some obstacles that need to be overcome for the methods to work
efficiently and sustainably in a real-world setting.

For a software usage data utilization method to be successfully instilled into an organiza-
tion or a development team, any work related to the method should be prioritized at least
as high as regular development work. It might even be feasible to give the method-related
work a higher priority than normal development work, as once the method is ready to be
utilized, it can potentially help prioritize and focus normal development efforts.

The method would have to be accepted, taken seriously, and found useful by all the
members of the development team. Furthermore, the technical implementation of the
method would have to be feasible and robust. Finally, using the method would have
to become a routine part of the team’s regular workflow, for example by allocating five
minutes for the method in every weekly meeting.

6.2 Research questions revisited

In this thesis, we set out to find answers to three research questions revolving around the
idea of utilizing software usage data to help with software development. In the following,
we will be revisiting each of the research questions one by one.

RQ1: How and for what purposes can software usage data be used for

In our first research question, we set out to understand how and for what purposes software
usage data can be used for. We approached the question by conducting a semi-structured
literature review and identified 9 concrete methods and 9 use cases for software usage
data. We found that by a clear margin, the most common method for utilizing software
usage data is via manual analysis and simple visualizations, likely due to the simplicity of
the method. The rest of the identified methods were significantly more sophisticated and
consequently appeared more rarely in the literature.

Furthermore, we found that software usage data can be used to both perform and help
with a significant collection of software development-related activities. The focus of these

44

activities seems to lie in obtaining an enhanced understanding of both the usage of the
system and its users. Furthermore, there appears to be a strong quality-related component,
which aims to monitor and evaluate the state of the software, allowing for detecting and
resolving issues in the system.

RQ2: How do developers and managers utilize software usage data in practice?

In our second research question, we sought to understand how software usage data is
utilized in practice by interviewing the developers and a consultant of an agile software
development team. In short, the usage data was utilized mainly for debugging and to
obtain information on the usage of specific features. We found that the utilization of
software usage data varied greatly within the development team. Some of the developers
had found the data to be beneficial in their weekly work, especially when working on
resolving hard to reproduce issues. On the other hand, some developers had not yet found
any use for the data in their regular workflows. Furthermore, the usage data had also been
of use for the developers while performing data-driven design to determine which features
of a particular view should be removed and which should be kept, based on the usage of
those features.

The consultant had found some use cases for the usage data as well. Unlike the developers,
the consultant’s interest lied in understanding the usage of the application on a high level.
Furthermore, like the developers, the consultant was also interested in discovering under-
used features so that the root cause of the underuse could be found and the application
be improved further.

RQ3: How do developers and managers experience methods for utilizing soft-
ware usage data?

In our third and final research question, we aimed at understanding how developers and
managers experience methods for utilizing software usage data. To this end, two pro-
totypes of methods for utilizing software usage data were constructed based on existing
literature and then evaluated by the developers and managers of a software development
team.

The methods for utilizing software usage data were received with interest. Overall, both
of the methods were rated highly by both the managers and the developers. Due to their
simplicity, the methods were easy to understand but that came with the cost of decreased

45

informational value. In practice, the simplicity of the methods should likely be sacrificed to
increase their informational value. Furthermore, the methods were deemed to be difficult
to replace, as the information conveyed by the prototypes, especially if they were to be
automated, as obtaining the same information manually was deemed to be too laborious.
The relevancy of the methods was tied to each person’s individual information needs, as
identified in previous work [18].

Furthermore, we found that the overall attitude towards putting such software usage data
utilization methods to use was positive. Both the developers and the managers felt that
software usage data utilization methods should be employed to a greater extent. However,
as discussed in Section 6.1.4 on page 43, putting the methods to real use would likely
require overcoming some obstacles.

6.3 Future work

We were only able to experiment with and evaluate two of the nine identified methods
for utilizing software usage data. Thus, as the groundwork of identifying the methods has
been laid out, there lies an opportunity for experimenting and evaluating the rest of the
methods in a similar manner.

Furthermore, it was unfortunately not possible to put the methods to real use and to
evaluate their performance and feasibility in a real setting. It would be interesting to
see how they truly perform, especially regarding extended usage ranging several months.
What benefits could be achieved and what obstacles would have to be overcome?

It was noted that the process of generating heatmaps from feature-based usage data re-
quired a moderate amount of manual work. Thus to make the method (and other software
usage data utilization methods) feasible, further research on the tooling for automating
some or all of the heatmap generation-related tasks would be of value.

7 Conclusions

In this thesis, we set out to explore how software usage data can be used to assist developers
and managers in software development-related activities. We approached the problem by
combining the knowledge of existing literature with novel information from a case study.
This chapter summarizes our research efforts.

We began by conducting a semi-structured literature review to identify methods and use
cases for software usage data. We quickly learned that there exists a wide range of methods
for putting software usage data to use, ranging from manual analysis to sophisticated
AI/ML systems. We learned that via these methods, a collection of use cases focusing on
gaining knowledge and resolving issues can be fulfilled.

Next, we conducted a case study where we sought to explore how a small development
team utilizes software usage data in their work. We learned that even though usage data
are being collected, it is not used very often. Furthermore, we found that debugging issues
occurring in production environments is the dominant use case for software usage data.

Lastly, we sought to understand how do managers and developers experience methods
for utilizing software usage data. To this end, we constructed and evaluated prototypes
of two software usage data utilization methods with four members of an agile software
development team. Both the managers and the developers were interested to see the
prototypes in action with real usage data stemming from a familiar program. It became
apparent that such methods produce information that would be difficult to obtain via other
means. In other words, methods for utilizing software usage data can provide irreplaceable
information that is relevant and useful for both managers and developers. Therefore,
practitioners should consider introducing methods for utilizing software usage data in
their development practices. Furthermore, we learned that presenting usage data in a
coarse-grained and simple format can work well for igniting individuals’ thought processes
towards the root cause of the higher-level observation.

As a final remark, we noticed that even though methods for utilizing software usage data
are received with interest, successfully putting them to use might be a different story as
there are social, technological, and organizational factors that might hinder the success of
such methods.

Bibliography

[1] N. Bunkley. “Joseph Juran, 103, Pioneer in Quality Control, Dies”. In: The New
York Times. Business (Mar. 3, 2008). issn: 0362-4331. url: https : / / www .

nytimes.com/2008/03/03/business/03juran.html (visited on 02/12/2021).

[2] T. Lehtonen, V. Eloranta, M. Leppänen, and E. Isohanni. “Visualizations as a
Basis for Agile Software Process Improvement”. In: 2013 20th Asia-Pacific Software
Engineering Conference (APSEC). 2013 20th Asia-Pacific Software Engineering
Conference (APSEC). Vol. 1. Dec. 2013, pp. 495–502. doi: 10.1109/APSEC.2013.

71.

[3] A. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systä. “Mashing Up Soft-
ware Issue Management, Development, and Usage Data”. In: 2015 IEEE/ACM 2nd
International Workshop on Rapid Continuous Software Engineering. 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering. May 2015,
pp. 26–29. doi: 10.1109/RCoSE.2015.12.

[4] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std
610.12-1990 (Dec. 1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.

[5] T. Ryan and S. Xenos. “Who Uses Facebook? An Investigation into the Relationship
between the Big Five, Shyness, Narcissism, Loneliness, and Facebook Usage”. In:
Computers in Human Behavior. 2009 Fifth International Conference on Intelligent
Computing 27.5 (Sept. 1, 2011), pp. 1658–1664. issn: 0747-5632. doi: 10.1016/

j.chb.2011.02.004. url: http://www.sciencedirect.com/science/article/

pii/S0747563211000379 (visited on 02/02/2021).

[6] V. Venkatesh and M. Morris. “Why Don’t Men Ever Stop to Ask for Directions?
Gender, Social Influence, and Their Role in Technology Acceptance and Usage Be-
havior”. In:MIS Quarterly: Management Information Systems 24.1 (2000), pp. 115–
136. doi: 10.2307/3250981.

[7] Slack’s Outage on January 4th 2021. Slack Engineering. Feb. 1, 2021. url: https:

//slack.engineering/slacks- outage- on- january- 4th- 2021/ (visited on
02/01/2021).

https://www.nytimes.com/2008/03/03/business/03juran.html
https://www.nytimes.com/2008/03/03/business/03juran.html
https://doi.org/10.1109/APSEC.2013.71
https://doi.org/10.1109/APSEC.2013.71
https://doi.org/10.1109/RCoSE.2015.12
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1016/j.chb.2011.02.004
https://doi.org/10.1016/j.chb.2011.02.004
http://www.sciencedirect.com/science/article/pii/S0747563211000379
http://www.sciencedirect.com/science/article/pii/S0747563211000379
https://doi.org/10.2307/3250981
https://slack.engineering/slacks-outage-on-january-4th-2021/
https://slack.engineering/slacks-outage-on-january-4th-2021/

48

[8] J. Johnson. “ROI, It’s Your Job!” In: Published Keynote Third International Con-
ference on Extreme Programming. Vol. 4. 3. 2002, p. 48.

[9] M. Cohn. Are 64% of Features Really Rarely or Never Used? Mountain Goat Soft-
ware. url: https : / / www . mountaingoatsoftware . com / blog / are - 64 - of -

features-really-rarely-or-never-used (visited on 01/22/2021).

[10] E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deissenboeck, R. Vaas, and K.
Prommer. “Feature Profiling for Evolving Systems”. In: 2011 IEEE 19th Inter-
national Conference on Program Comprehension. 2011 IEEE 19th International
Conference on Program Comprehension. June 2011, pp. 171–180. doi: 10.1109/

ICPC.2011.12.

[11] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K. Prommer. “How
Much Does Unused Code Matter for Maintenance?” In: 2012 34th International
Conference on Software Engineering (ICSE). 2012 34th International Conference
on Software Engineering (ICSE). June 2012, pp. 1102–1111. doi: 10.1109/ICSE.

2012.6227109.

[12] B. W. Boehm and P. N. Papaccio. “Understanding and Controlling Software Costs”.
In: IEEE Transactions on Software Engineering 14.10 (Oct. 1988), pp. 1462–1477.
issn: 1939-3520. doi: 10.1109/32.6191.

[13] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. “Web Usage Mining: Dis-
covery and Applications of Usage Patterns from Web Data”. In: ACM SIGKDD
Explorations Newsletter 1.2 (Jan. 1, 2000), pp. 12–23. issn: 1931-0145. doi: 10.

1145/846183.846188. url: http://doi.org/10.1145/846183.846188 (visited
on 01/27/2021).

[14] G. Zheng and S. Peltsverger. “Web Analytics Overview”. In: 2015. doi: 10.4018/

978-1-4666-5888-2.CH756.

[15] H. Holmström Olsson and J. Bosch. “Towards Data-Driven Product Development:
A Multiple Case Study on Post-Deployment Data Usage in Software-Intensive Em-
bedded Systems”. In: Lean Enterprise Software and Systems. Ed. by B. Fitzgerald,
K. Conboy, K. Power, R. Valerdi, L. Morgan, and K.-J. Stol. Lecture Notes in
Business Information Processing. Berlin, Heidelberg: Springer, 2013, pp. 152–164.
isbn: 978-3-642-44930-7. doi: 10.1007/978-3-642-44930-7_10.

https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://doi.org/10.1109/ICPC.2011.12
https://doi.org/10.1109/ICPC.2011.12
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/ICSE.2012.6227109
https://doi.org/10.1109/32.6191
https://doi.org/10.1145/846183.846188
https://doi.org/10.1145/846183.846188
http://doi.org/10.1145/846183.846188
https://doi.org/10.4018/978-1-4666-5888-2.CH756
https://doi.org/10.4018/978-1-4666-5888-2.CH756
https://doi.org/10.1007/978-3-642-44930-7_10

49

[16] T. H. Davenport, J. G. Harris, and R. Morison. Analytics at Work: Smarter De-
cisions, Better Results. Harvard Business Press, 2010. 231 pp. isbn: 978-1-4221-
7769-3. Google Books: 2otJuvfvflgC.

[17] T. Menzies and T. Zimmermann. “Software Analytics: So What?” In: IEEE Soft-
ware 30.4 (July 2013), pp. 31–37. issn: 1937-4194. doi: 10.1109/MS.2013.86.

[18] R. P. L. Buse and T. Zimmermann. “Information Needs for Software Develop-
ment Analytics”. In: 2012 34th International Conference on Software Engineering
(ICSE). 2012 34th International Conference on Software Engineering (ICSE). June
2012, pp. 987–996. doi: 10.1109/ICSE.2012.6227122.

[19] W. A. Association et al. “Web Analytics Definitions”. In: Digital Analytics Associ-
ation (2008).

[20] D. Zhang, S. Han, Y. Dang, J. Lou, H. Zhang, and T. Xie. “Software Analytics in
Practice”. In: IEEE Software 30.5 (Sept. 2013), pp. 30–37. issn: 1937-4194. doi:
10.1109/MS.2013.94.

[21] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A. D. Lucia.
“Mining Version Histories for Detecting Code Smells”. In: IEEE Transactions on
Software Engineering 41.5 (May 2015), pp. 462–489. issn: 1939-3520. doi: 10.

1109/TSE.2014.2372760.

[22] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie. “Software An-
alytics as a Learning Case in Practice: Approaches and Experiences”. In: Pro-
ceedings of the International Workshop on Machine Learning Technologies in Soft-
ware Engineering. MALETS ’11. New York, NY, USA: Association for Computing
Machinery, Nov. 12, 2011, pp. 55–58. isbn: 978-1-4503-1022-2. doi: 10 . 1145 /

2070821.2070829. url: http://doi.org/10.1145/2070821.2070829 (visited on
01/19/2021).

[23] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Ganguly. “Lever-
aging the Crowd: How 48,000 Users Helped Improve Lync Performance”. In: IEEE
Software 30.4 (July 2013), pp. 38–45. issn: 1937-4194. doi: 10.1109/MS.2013.67.

[24] J. Bosch. “Building Products as Innovation Experiment Systems”. In: Software
Business. Ed. by M. A. Cusumano, B. Iyer, and N. Venkatraman. Lecture Notes
in Business Information Processing. Berlin, Heidelberg: Springer, 2012, pp. 27–39.
isbn: 978-3-642-30746-1. doi: 10.1007/978-3-642-30746-1_3.

http://books.google.com/books?id=2otJuvfvflgC
https://doi.org/10.1109/MS.2013.86
https://doi.org/10.1109/ICSE.2012.6227122
https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1145/2070821.2070829
https://doi.org/10.1145/2070821.2070829
http://doi.org/10.1145/2070821.2070829
https://doi.org/10.1109/MS.2013.67
https://doi.org/10.1007/978-3-642-30746-1_3

50

[25] H. H. Olsson and J. Bosch. “From Opinions to Data-Driven Software R D: A Multi-
Case Study on How to Close the ’Open Loop’ Problem”. In: 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications. 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications.
Aug. 2014, pp. 9–16. doi: 10.1109/SEAA.2014.75.

[26] J. Webster and R. T. Watson. “Analyzing the Past to Prepare for the Future:
Writing a Literature Review”. In: MIS Quarterly 26.2 (2002), pp. xiii–xxiii. issn:
0276-7783. JSTOR: 4132319.

[27] S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch, L. López, P. Ram,
P. Rodríguez, S. Aaramaa, A. Bagnato, M. Choraś, and J. Partanen. “Continuously
Assessing and Improving Software Quality With Software Analytics Tools: A Case
Study”. In: IEEE Access 7 (2019), pp. 68219–68239. issn: 2169-3536. doi: 10.

1109/ACCESS.2019.2917403.

[28] Application Monitoring and Error Tracking Software. Sentry. url: https://sentry.

io/welcome/ (visited on 04/14/2021).

[29] R. T. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Seman-
tics and Content. RFC 7231. 2014. url: https://www.rfc-editor.org/rfc/

rfc7231.txt (visited on 05/20/2021).

[30] Dynamic Heatmaps for the Web. url: https://www.patrick-wied.at/static/

heatmapjs/ (visited on 04/14/2021).

[31] P. Runeson and M. Höst. “Guidelines for Conducting and Reporting Case Study
Research in Software Engineering”. In: Empirical Software Engineering (2008). doi:
10.1007/s10664-008-9102-8.

[32] V. Braun and V. Clarke. “Using Thematic Analysis in Psychology”. In: Qualitative
Research in Psychology 3.2 (Jan. 1, 2006), pp. 77–101. issn: 1478-0887. doi: 10.

1191/1478088706qp063oa. url: https://www.tandfonline.com/doi/abs/10.

1191/1478088706qp063oa (visited on 04/06/2021).

[33] J. W. Creswell and D. L. Miller. “Determining Validity in Qualitative Inquiry”. In:
Theory Into Practice 39.3 (Aug. 1, 2000), pp. 124–130. issn: 0040-5841. doi: 10.

1207/s15430421tip3903_2. url: https://doi.org/10.1207/s15430421tip3903_

2 (visited on 04/06/2021).

https://doi.org/10.1109/SEAA.2014.75
http://www.jstor.org/stable/4132319
https://doi.org/10.1109/ACCESS.2019.2917403
https://doi.org/10.1109/ACCESS.2019.2917403
https://sentry.io/welcome/
https://sentry.io/welcome/
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.patrick-wied.at/static/heatmapjs/
https://www.patrick-wied.at/static/heatmapjs/
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1207/s15430421tip3903_2
https://doi.org/10.1207/s15430421tip3903_2
https://doi.org/10.1207/s15430421tip3903_2
https://doi.org/10.1207/s15430421tip3903_2

51

[34] W. Maalej, H.-J. Happel, and A. Rashid. “When Users Become Collaborators:
Towards Continuous and Context-Aware User Input”. In: Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications. OOPSLA ’09. New York, NY, USA: Association for
Computing Machinery, Oct. 25, 2009, pp. 981–990. isbn: 978-1-60558-768-4. doi:
10.1145/1639950.1640068. url: http://doi.org/10.1145/1639950.1640068

(visited on 06/05/2021).

https://doi.org/10.1145/1639950.1640068
http://doi.org/10.1145/1639950.1640068

Appendix A Sources of the semi-structured literature review

This reference listing contains the initial 99 sources used in the semi-structured literature
review. Each reference ends in parentheses, containing the SID (source identifier) assigned
for the source, or the text ”Excluded” if the source was excluded.

B. Driscoll and Z. Zhao. “Automation of NERSC Application Usage Report”. In: Pro-
ceedings of 2020 IEEE/ACM International Workshop on HPC User Support Tools,
HUST 2020 and the Workshop on Programming and Performance Visualization Tools,
ProTools 2020 - Held in Conjunction with SC 2020: The International Conference for
High Performance Computing, Networking, Storage and Analysis. Institute of Elec-
trical and Electronics Engineers Inc., 2020, pp. 10–18. isbn: 978-0-7381-1070-7. doi:
10.1109/HUSTProtools51951.2020.00009. (SID: 1).

M. Bano, E. Groen, I. Hadar, and A. Mahmoud. “Welcome to the Fourth International
Workshop on Crowd-Based Requirements Engineering (CrowdRE’20)”. In: Proceedings
- 4th International Workshop on Crowd-Based Requirements Engineering, CrowdRE
2020. Institute of Electrical and Electronics Engineers Inc., 2020, pp. VI–VII. isbn:
978-1-72818-362-6. doi: 10.1109/CrowdRE51214.2020.00005. (SID: Excluded).

L. Andrade, P. Machado, and W. Andrade. “Can Operational Profile Coverage Explain
Post-Release Bug Detection?” In: Software Testing Verification and Reliability 30.4-5
(2020). issn: 09600833. doi: 10.1002/stvr.1735. (SID: 2).

B. Sudan, S. Cansiz, E. Ogretici, and M. Aktas. “Prediction of Success and Complex Event
Processing in E-Learning”. In: 2nd International Conference on Electrical, Communica-
tion and Computer Engineering, ICECCE 2020. Institute of Electrical and Electronics
Engineers Inc., 2020. isbn: 978-1-72817-116-6. doi: 10 . 1109 / ICECCE49384 . 2020 .

9179281. (SID: 3).

T. Zhang, B. Hartmann, M. Kim, and E. Glassman. “Enabling Data-Driven API Design
with Community Usage Data: A Need-Finding Study”. In: Conference on Human Fac-
tors in Computing Systems - Proceedings. Association for Computing Machinery, 2020.
isbn: 978-1-4503-6708-0. doi: 10.1145/3313831.3376382. (SID: 4).

https://doi.org/10.1109/HUSTProtools51951.2020.00009
https://doi.org/10.1109/CrowdRE51214.2020.00005
https://doi.org/10.1002/stvr.1735
https://doi.org/10.1109/ICECCE49384.2020.9179281
https://doi.org/10.1109/ICECCE49384.2020.9179281
https://doi.org/10.1145/3313831.3376382

ii Appendix A

W.-P. Brinkman, P. Gray, and K. Renaud. “Computer-Assisted Recording, Pre-Processing,
and Analysis of User Interaction Data”. In: Proceedings of the 20th BCS HCI Group
Conference: Engage, HCI 2006. British Computer Society HCI Group, 2020, pp. 273–
275. (SID: Excluded).

O. Dæhli, B. Kristoffersen, and T. Sandnes. “Lessons Learned from Developing and Eval-
uating an Educational Database Modeling Tool”. In: vol. 2020-October. Proceedings of
the European Conference on E-Learning, ECEL. Academic Conferences and Publishing
International Limited, 2020, pp. 129–138. isbn: 978-1-912764-78-5. doi: 10.34190/EEL.

20.055. (SID: 5).

A. Murad, N. Hyde, S. Chang, R. Lederman, R. Bosua, M. Pirotta, R. Audehm, C. Yates,
A. Briggs, A. Gorelik, C. Chiang, and J. Wark. “Quantifying Use of a Health Virtual
Community of Practice for General Practitioners’ Continuing Professional Development:
A Novel Methodology and Pilot Evaluation”. In: Journal of Medical Internet Research
21.11 (2019). issn: 14388871. doi: 10.2196/14545. (SID: 6).

J. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech. “How Do Practitioners Capture
and Utilize User Feedback during Continuous Software Engineering?” In: vol. 2019-
September. Proceedings of the IEEE International Conference on Requirements En-
gineering. IEEE Computer Society, 2019, pp. 153–164. isbn: 978-1-72813-912-8. doi:
10.1109/RE.2019.00026. (SID: 7).

M. Stade, S. Scherr, P. Mennig, F. Elberzhager, and N. Seyff. “Don’t Worry, Be Happy
- Exploring Users’ Emotions during App Usage for Requirements Engineering”. In:
vol. 2019-September. Proceedings of the IEEE International Conference on Require-
ments Engineering. IEEE Computer Society, 2019, pp. 375–380. isbn: 978-1-72813-912-
8. doi: 10.1109/RE.2019.00048. (SID: 8).

A. Rhoads and W. Hill. “Development of a Tool for Estimating the Life Cycle Climate
Performance of MAC Systems”. In: SAE Technical Papers 2019-April (April 2019). issn:
01487191. doi: 10.4271/2019-01-0611. (SID: Excluded).

C. Sahin, L. Pollock, and J. Clause. “Supporting Software Evolution through Feedback on
Executing/Skipping Energy Tests for Proposed Source Code Changes”. In: Journal of
Software: Evolution and Process 31.4 (2019). issn: 20477481. doi: 10.1002/smr.2155.
(SID: Excluded).

https://doi.org/10.34190/EEL.20.055
https://doi.org/10.34190/EEL.20.055
https://doi.org/10.2196/14545
https://doi.org/10.1109/RE.2019.00026
https://doi.org/10.1109/RE.2019.00048
https://doi.org/10.4271/2019-01-0611
https://doi.org/10.1002/smr.2155

Appendix A iii

M. Barta, S. Schimanski, J. Buchhorn, and A. Nawrot. “Development of a Web Based
Framework to Objectively Compare and Evaluate Software Solutions”. In: Advances in
Intelligent Systems and Computing 787 (2019), pp. 3–11. issn: 21945357. doi: 10.1007/

978-3-319-94229-2_1. (SID: 9).

M. Cosar. “Carbon Footprint in Data Center: A Case Study”. In: Fresenius Environmental
Bulletin 28.2 (2019), pp. 600–607. issn: 10184619. (SID: Excluded).

A. Kleyner and D. Elmore. “Weibull Analysis and Zero-Time Failures. What Are Your
Data Analysis Options?” In: vol. 2019-January. Proceedings - Annual Reliability and
Maintainability Symposium. Institute of Electrical and Electronics Engineers Inc., 2019.
isbn: 978-1-5386-6554-1. doi: 10.1109/RAMS.2019.8769298. (SID: Excluded).

S. Kosić. “The efficacy analysis of the university of rijeka library’s book aquisition [Analiza
uspješnosti kupnje knjiga za fond sveučilišne knjižnice rijeka]”. In: Vjesnik Bibliotekara
Hrvatske 62.2 (2019), pp. 131–148. issn: 05071925. doi: 10.30754/vbh.62.2.771.
(SID: Excluded).

M. Oriol, M. Stade, F. Fotrousi, S. Nadal, J. Varga, N. Seyff, A. Abello, X. Franch, J.
Marco, and O. Schmidt. “FAME: Supporting Continuous Requirements Elicitation by
Combining User Feedback and Monitoring”. In: Proceedings - 2018 IEEE 26th Inter-
national Requirements Engineering Conference, RE 2018. Institute of Electrical and
Electronics Engineers Inc., 2018, pp. 217–227. isbn: 978-1-5386-7418-5. doi: 10.1109/

RE.2018.00030. (SID: 10).

M. Arthur. “Managing a Comprehensive Cost-per-Use Project in a Large Academic Li-
brary”. In: Serials Review 44.4 (2018), pp. 299–306. issn: 00987913. doi: 10.1080/

00987913.2018.1558936. (SID: Excluded).

J. Fernandes, I. Brunton, G. Strudwick, S. Banik, and J. Strauss. “Physician Experience
with Speech Recognition Software in Psychiatry: Usage and Perspective”. In: BMC
Research Notes 11.1 (2018). issn: 17560500. doi: 10.1186/s13104-018-3790-y. (SID:
11).

L. Poppe, C. Van Der Mispel, G. Crombez, I. De Bourdeaudhuij, H. Schroé, and M.
Verloigne. “How Users Experience and Use an eHealth Intervention Based on Self-
Regulation: Mixed-Methods Study”. In: Journal of Medical Internet Research 20.10
(2018). issn: 14388871. doi: 10.2196/10412. (SID: Excluded).

https://doi.org/10.1007/978-3-319-94229-2_1
https://doi.org/10.1007/978-3-319-94229-2_1
https://doi.org/10.1109/RAMS.2019.8769298
https://doi.org/10.30754/vbh.62.2.771
https://doi.org/10.1109/RE.2018.00030
https://doi.org/10.1109/RE.2018.00030
https://doi.org/10.1080/00987913.2018.1558936
https://doi.org/10.1080/00987913.2018.1558936
https://doi.org/10.1186/s13104-018-3790-y
https://doi.org/10.2196/10412

iv Appendix A

R. Braga, P. Neto, R. Rabêlo, J. Santiago, and M. Souza. “A Machine Learning Approach
to Generate Test Oracles”. In: ACM International Conference Proceeding Series. As-
sociation for Computing Machinery, 2018, pp. 142–151. isbn: 978-1-4503-6503-1. doi:
10.1145/3266237.3266273. (SID: 12).

G. Orsini, D. Bade, and W. Lamersdorf. “CloudAware: Empowering Context-Aware Self-
Adaptation for Mobile Applications”. In: Transactions on Emerging Telecommunications
Technologies 29.4 (2018). issn: 21615748. doi: 10.1002/ett.3210. (SID: Excluded).

J. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech. “Feature Crumbs: Adapting Usage
Monitoring to Continuous Software Engineering”. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 11271 LNCS (2018), pp. 263–271. issn: 03029743. doi: 10.1007/978-

3-030-03673-7_19. (SID: 13).

S. Yaman, F. Fagerholm, M. Munezero, H. Maenpaa, and T. Mannisto. “Notifying and
Involving Users in Experimentation: Ethical Perceptions of Software Practitioners”. In:
vol. 2017-November. International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2017, pp. 199–204. isbn: 978-1-5090-4039-1.
doi: 10.1109/ESEM.2017.31. (SID: 14).

Z. Coker, K. Damevski, C. Le Goues, N. Kraft, D. Shepherd, and L. Pollock. “Behavior
Metrics for Prioritizing Investigations of Exceptions”. In: Proceedings - 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution, ICSME 2017. Institute
of Electrical and Electronics Engineers Inc., 2017, pp. 554–563. isbn: 978-1-5386-0992-7.
doi: 10.1109/ICSME.2017.62. (SID: 15).

“Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering and Education Track, ICSE-SEET 2017”. In: Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering and Education Track, ICSE-SEET 2017. Institute of Electrical and Electronics
Engineers Inc., 2017. isbn: 978-1-5386-2671-9. (SID: Excluded).

M. Jamieson, B. O’Neill, B. Cullen, M. Lennon, S. Brewster, and J. Evans. “ForgetMeNot:
Active Reminder Entry Support for Adults with Acquired Brain Injury”. In: vol. 2017-
May. Conference on Human Factors in Computing Systems - Proceedings. Association
for Computing Machinery, 2017, pp. 6012–6023. isbn: 978-1-4503-4655-9. doi: 10.1145/

3025453.3025888. (SID: 16).

https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1002/ett.3210
https://doi.org/10.1007/978-3-030-03673-7_19
https://doi.org/10.1007/978-3-030-03673-7_19
https://doi.org/10.1109/ESEM.2017.31
https://doi.org/10.1109/ICSME.2017.62
https://doi.org/10.1145/3025453.3025888
https://doi.org/10.1145/3025453.3025888

Appendix A v

M. Ahmed, A. Mohamed, R. Homod, H. Shareef, and K. Khalid. “Awareness on En-
ergy Management in Residential Buildings: A Case Study in Kajang and Putrajaya”.
In: Journal of Engineering Science and Technology 12.5 (2017), pp. 1280–1294. issn:
18234690. (SID: Excluded).

A. Streicher, W. Roller, and C. Biegemeier. “Application of Adaptive Game-Based Learn-
ing in Image Interpretation”. In: Proceedings of the 11th European Conference on Games
Based Learning, ECGBL 2017. Academic Conferences and Publishing International Lim-
ited, 2017, pp. 975–978. isbn: 978-1-911218-56-2. (SID: 17).

J. Piacenza, S. Mayoral, B. Albarhami, and S. Lin. “Understanding the Importance of
Post Occupancy Usage Trends during Concept-Stage Sustainable Building Design”. In:
vol. 4. Proceedings of the ASME Design Engineering Technical Conference. American
Society of Mechanical Engineers (ASME), 2017. isbn: 978-0-7918-5816-5. doi: 10.1115/

DETC2017-67461. (SID: Excluded).

J. Fletcher and W. Malalasekera. “Development of a User-Friendly, Low-Cost Home En-
ergy Monitoring and Recording System”. In: Energy 111 (2016), pp. 32–46. issn: 03605442.
doi: 10.1016/j.energy.2016.05.027. (SID: Excluded).

A. Stocker and J. Müller. “Exploring Use and Benefit of Corporate Social Software: Mea-
suring Success in the Siemens Case References+”. In: Journal of Systems and Infor-
mation Technology 18.3 (2016), pp. 277–296. issn: 13287265. doi: 10.1108/JSIT-03-

2016-0021. (SID: 18).

M. Javad Nasiri, A. Chirani, M. Amin, R. Halabian, and A. Imani Fooladi. “Isoniazid-
Resistant Tuberculosis in Iran: A Systematic Review”. In: Tuberculosis 98 (2016), pp. 104–
109. issn: 14729792. doi: 10.1016/j.tube.2016.03.007. (SID: Excluded).

J. Garcia and A. Paiva. “Maintaining Requirements Using Web Usage Data”. In: vol. 100.
Procedia Computer Science. Elsevier B.V., 2016, pp. 626–633. doi: 10.1016/j.procs.

2016.09.204. (SID: 19).

“Proceedings of the International Conference on Software Engineering and Knowledge En-
gineering, SEKE”. In: vol. 2016-January. Proceedings of the International Conference on
Software Engineering and Knowledge Engineering, SEKE. Knowledge Systems Institute
Graduate School, 2016. isbn: 1-891706-39-X 978-1-891706-39-4. (SID: Excluded).

C. Macpherson. “How M&V Makes a Difference - A Real World Case Study”. In: vol. 1.
39th World Energy Engineering Conference, WEEC 2016. AEE Energy Books, 2016,
pp. 442–448. isbn: 978-1-5108-3076-9. (SID: Excluded).

https://doi.org/10.1115/DETC2017-67461
https://doi.org/10.1115/DETC2017-67461
https://doi.org/10.1016/j.energy.2016.05.027
https://doi.org/10.1108/JSIT-03-2016-0021
https://doi.org/10.1108/JSIT-03-2016-0021
https://doi.org/10.1016/j.tube.2016.03.007
https://doi.org/10.1016/j.procs.2016.09.204
https://doi.org/10.1016/j.procs.2016.09.204

vi Appendix A

J. Garcia and A. Paiva. “An Automated Approach for Requirements Specification Main-
tenance”. In: Advances in Intelligent Systems and Computing 444 (2016), pp. 827–833.
issn: 21945357. doi: 10.1007/978-3-319-31232-3_78. (SID: Excluded).

W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. “Toward Data-Driven Requirements
Engineering”. In: IEEE Software 33.1 (2016), pp. 48–54. issn: 07407459. doi: 10.1109/

MS.2015.153. (SID: 20).

J. Garcia and A. Paiva. “REQAnalytics: A Recommender System for Requirements Main-
tenance”. In: International Journal of Software Engineering and its Applications 10.1
(2016), pp. 129–140. issn: 17389984. doi: 10.14257/ijseia.2016.10.1.13. (SID:
Excluded).

“1st International Conference on Smart Trends in Information Technology and Computer
Communications, SmartCom 2016”. In: Communications in Computer and Information
Science 628 CCIS (2016), pp. 1–918. issn: 18650929. (SID: Excluded).

F. Doyle, M.-J. Duarte, and J. Cosgrove. “Design of an Embedded Sensor Network for
Application in Energy Monitoring of Commercial and Industrial Facilities”. In: vol. 83.
Energy Procedia. Elsevier Ltd, 2015, pp. 504–514. doi: 10.1016/j.egypro.2015.12.

170. (SID: Excluded).

D. Shepherd, K. Damevski, and L. Pollock. “How and When to Transfer Software Engi-
neering Research via Extensions”. In: vol. 2. Proceedings - International Conference on
Software Engineering. IEEE Computer Society, 2015, pp. 239–240. isbn: 978-1-4799-
1934-5. doi: 10.1109/ICSE.2015.152. (SID: Excluded).

“Proceedings - 2nd International Workshop on Rapid Continuous Software Engineering,
RCoSE 2015”. In: Proceedings - 2nd International Workshop on Rapid Continuous Soft-
ware Engineering, RCoSE 2015. Institute of Electrical and Electronics Engineers Inc.,
2015. isbn: 978-1-4799-1934-5. (SID: Excluded).

R. Geng and J. Tian. “Improving Web Navigation Usability by Comparing Actual and
Anticipated Usage”. In: IEEE Transactions on Human-Machine Systems 45.1 (2015),
pp. 84–94. issn: 21682291. doi: 10.1109/THMS.2014.2363125. (SID: 21).

S. Sivagnanam, A. Majumdar, K. Yoshimoto, V. Astakhov, A. Bandrowski, M. Martone,
and N. Carnevale. “Early Experiences in Developing and Managing the Neuroscience
Gateway”. In: Concurrency Computation 27.2 (2015), pp. 473–488. issn: 15320626. doi:
10.1002/cpe.3283. (SID: 22).

https://doi.org/10.1007/978-3-319-31232-3_78
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.14257/ijseia.2016.10.1.13
https://doi.org/10.1016/j.egypro.2015.12.170
https://doi.org/10.1016/j.egypro.2015.12.170
https://doi.org/10.1109/ICSE.2015.152
https://doi.org/10.1109/THMS.2014.2363125
https://doi.org/10.1002/cpe.3283

Appendix A vii

R. MacIntyre, J. Alcock, P. Needham, and J. Lambert. “Measuring the Usage of Reposito-
ries via a National Standards-Based Aggregation Service: IRUS-UK”. In: New Avenues
for Electronic Publishing in the Age of Infinite Collections and Citizen Science: Scale,
Openness and Trust - Proceedings of the 19th International Conference on Electronic
Publishing, Elpub 2015. IOS Press BV, 2015, pp. 83–92. isbn: 978-1-61499-561-6. doi:
10.3233/978-1-61499-562-3-83. (SID: Excluded).

L. Hokkanen and K. Väänänen-Vainio-Mattila. “UX Work in Startups: Current Practices
and Future Needs”. In: Lecture Notes in Business Information Processing 212 (2015),
pp. 81–92. issn: 18651348. doi: 10.1007/978-3-319-18612-2_7. (SID: 23).

R. Poston and A. Calvert. “Vision 2020: The Future of Software Quality Management and
Impacts on Global User Acceptance”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9191 (2015), pp. 748–760. issn: 03029743. doi: 10.1007/978-3-319-20895-4_70.
(SID: 24).

J. Pepper, A. Zhang, R. Li, and X. Wang. “Usage Results of a Mobile App for Manag-
ing Urinary Incontinence”. In: Journal of Urology 193.4 (2015), pp. 1292–1297. issn:
00225347. doi: 10.1016/j.juro.2014.10.009. (SID: 25).

C. Piovesan. “A Real Time Chemical Monitoring Platform for Inventory and Usage”.
In: vol. 2015-January. Proceedings - SPE Annual Technical Conference and Exhibition.
Society of Petroleum Engineers (SPE), 2015, pp. 804–810. isbn: 978-1-5108-1322-9. doi:
10.2118/174780-ms. (SID: Excluded).

V. Kiberu, J. Matovu, F. Makumbi, C. Kyozira, E. Mukooyo, and R. Wanyenze. “Strength-
ening District-Based Health Reporting through the District Health Management Infor-
mation Software System: The Ugandan Experience”. In: BMC Medical Informatics and
Decision Making 14.1 (2014). issn: 14726947. doi: 10.1186/1472-6947-14-40. (SID:
26).

T. Evans, W. Barth, J. Browne, R. Deleon, T. Furlani, S. Gallo, M. Jones, and A. Patra.
“Comprehensive Resource Use Monitoring for HPC Systems with TACC Stats”. In:
Proceedings of HUST 2014: 1st International Workshop on HPC User Support Tools -
Held in Conjunction with SC 2014: The International Conference for High Performance
Computing, Networking, Storage and Analysis. Institute of Electrical and Electronics
Engineers Inc., 2014, pp. 13–21. isbn: 978-1-4799-7023-0. doi: 10.1109/HUST.2014.7.
(SID: Excluded).

https://doi.org/10.3233/978-1-61499-562-3-83
https://doi.org/10.1007/978-3-319-18612-2_7
https://doi.org/10.1007/978-3-319-20895-4_70
https://doi.org/10.1016/j.juro.2014.10.009
https://doi.org/10.2118/174780-ms
https://doi.org/10.1186/1472-6947-14-40
https://doi.org/10.1109/HUST.2014.7

viii Appendix A

H. Liu, Y. Liu, G. Xue, and Y. Gao. “Case Study on Software Refactoring Tactics”. In:
IET Software 8.1 (2014), pp. 1–11. issn: 17518806. doi: 10.1049/iet-sen.2012.0121.
(SID: Excluded).

W. Li, J. Matejka, T. Grossman, and G. Fitzmaurice. “Deploying Communitycommands:
A Software Command Recommender System Case Study”. In: vol. 4. Proceedings of the
National Conference on Artificial Intelligence. AI Access Foundation, 2014, pp. 2922–
2929. isbn: 978-1-57735-680-6. (SID: 27).

W. Snipes, A. Nair, and E. Murphy-Hill. “Experiences Gamifying Developer Adoption of
Practices and Tools”. In: 36th International Conference on Software Engineering, ICSE
Companion 2014 - Proceedings. Association for Computing Machinery, 2014, pp. 105–
114. isbn: 978-1-4503-2768-8. doi: 10.1145/2591062.2591171. (SID: 28).

K. Dullemond, B. Van Gameren, M.-A. Storey, and A. Van Deursen. “Fixing the ’out of
Sight out of Mind’ Problem: One Year of Mood-Based Microblogging in a Distributed
Software Team”. In: IEEE International Working Conference on Mining Software Repos-
itories. 2013, pp. 267–276. isbn: 978-1-4673-2936-1. doi: 10.1109/MSR.2013.6624038.
(SID: 29).

T. Furlani, B. Schneider, M. Jones, J. Towns, D. Hart, S. Gallo, R. Deleon, C.-D. Lu, A.
Ghadersohi, R. Gentner, A. Patra, G. Laszewski, F. Wang, J. Palmer, and N. Simakov.
“Using XDMoD to Facilitate XSEDE Operations, Planning and Analysis”. In: ACM
International Conference Proceeding Series. 2013. isbn: 978-1-4503-2170-9. doi: 10.

1145/2484762.2484763. (SID: Excluded).

S. Khatoon, A. Mahmood, G. Li, and J. Xu. “A Novel Integrated Framework to Increase
Software Quality by Mining Source Code”. In: Journal of Software Engineering 7.3
(2013), pp. 86–105. issn: 18194311. doi: 10.3923/jse.2013.86.105. (SID: Excluded).

J. Matejka, T. Grossman, and G. Fitzmaurice. “Patina: Dynamic Heatmaps for Visualizing
Application Usage”. In: Conference on Human Factors in Computing Systems - Proceed-
ings. 2013, pp. 3227–3236. isbn: 978-1-4503-1899-0. doi: 10.1145/2470654.2466442.
(SID: 30).

J.-Y. Oh and A. Uggirala. “Data-Driven Design Process in Adoption of Marking Menus for
Large Scale Software”. In: vol. 2013-April. Conference on Human Factors in Computing
Systems - Proceedings. Association for Computing Machinery, 2013, pp. 2327–2330.
isbn: 978-1-4503-1899-0. doi: 10.1145/2468356.2468757. (SID: 31).

https://doi.org/10.1049/iet-sen.2012.0121
https://doi.org/10.1145/2591062.2591171
https://doi.org/10.1109/MSR.2013.6624038
https://doi.org/10.1145/2484762.2484763
https://doi.org/10.1145/2484762.2484763
https://doi.org/10.3923/jse.2013.86.105
https://doi.org/10.1145/2470654.2466442
https://doi.org/10.1145/2468356.2468757

Appendix A ix

A. Fry. “A Hybrid Model for Managing Standard Usage Data: Principles for e-Resource
Statistics Workflows”. In: Serials Review 39.1 (2013), pp. 21–28. issn: 00987913. doi:
10.1016/j.serrev.2012.12.001. (SID: Excluded).

H. Olsson and J. Bosch. “Post-Deployment Data Collection in Software-Intensive Em-
bedded Products”. In: Lecture Notes in Business Information Processing 150 (2013),
pp. 79–89. issn: 18651348. doi: 10.1007/978-3-642-39336-5_9. (SID: 32).

D. Haun, A. Foley, and P. Jarreau. “Development and Feasibility of an Electronic White
Blood Cell Identification Trainer.” In: Clinical laboratory science : journal of the Amer-
ican Society for Medical Technology 26.1 (2013), pp. 23–29. issn: 0894959X. doi: 10.

29074/ascls.26.1.23. (SID: 33).

“2012 9th IEEE Working Conference on Mining Software Repositories, MSR 2012 - Pro-
ceedings”. In: IEEE International Working Conference on Mining Software Repositories.
2012. isbn: 978-1-4673-1761-0. (SID: Excluded).

“PLATEAU’11 - Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and
Usability of Programming Languages and Tools”. In: PLATEAU’11 - Proceedings of the
3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages
and Tools. 2011. isbn: 978-1-4503-1024-6. (SID: Excluded).

T. Salfischberger, I. Van De Weerd, and S. Brinkkemper. “The Functional Architecture
Framework for Organizing High Volume Requirements Management”. In: 2011 5th In-
ternational Workshop on Software Product Management, IWSPM 2011 - Part of the
19th IEEE International Requirements Engineering Conference. 2011, pp. 17–25. isbn:
978-1-4577-1147-3. doi: 10.1109/IWSPM.2011.6046208. (SID: Excluded).

J. Du, Y. Yang, Z. Lin, Q. Wang, M. Li, and F. Yuan. “A Case Study on Usage of a
Software Process Management Tool in China”. In: Proceedings - Asia-Pacific Software
Engineering Conference, APSEC. 2010, pp. 443–452. isbn: 978-0-7695-4266-9. doi: 10.

1109/APSEC.2010.57. (SID: 34).

P. Lew, L. Olsina, and L. Zhang. “Integrating Quality, Quality in Use, Actual Usability
and User Experience”. In: 2010 6th Central and Eastern European Software Engineering
Conference, CEE-SECR 2010. 2010, pp. 117–123. isbn: 978-1-4577-0606-6. doi: 10.

1109/CEE-SECR.2010.5783161. (SID: 35).

M. Funk, P. Hoyer, and S. Link. “Model-Driven Instrumentation of Graphical User Inter-
faces”. In: Proceedings of the 2nd International Conferences on Advances in Computer-

https://doi.org/10.1016/j.serrev.2012.12.001
https://doi.org/10.1007/978-3-642-39336-5_9
https://doi.org/10.29074/ascls.26.1.23
https://doi.org/10.29074/ascls.26.1.23
https://doi.org/10.1109/IWSPM.2011.6046208
https://doi.org/10.1109/APSEC.2010.57
https://doi.org/10.1109/APSEC.2010.57
https://doi.org/10.1109/CEE-SECR.2010.5783161
https://doi.org/10.1109/CEE-SECR.2010.5783161

x Appendix A

Human Interactions, ACHI 2009. 2009, pp. 19–25. isbn: 978-0-7695-3529-6. doi: 10.

1109/ACHI.2009.16. (SID: 36).

S. Hickey, C. Fitzpatrick, M. O’connell, and M. Johnson. “Use Phase Signals to Promote
Lifetime Extension for Windows PCs”. In: Environmental Science and Technology 43.7
(2009), pp. 2544–2549. issn: 0013936X. doi: 10.1021/es8020638. (SID: Excluded).

S. Bateman, C. Gutwin, N. Osgood, and G. McCalla. “Interactive Usability Instrumen-
tation”. In: EICS’09 - Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. Association for Computing Machinery, 2009, pp. 45–
54. isbn: 978-1-60558-600-7. doi: 10.1145/1570433.1570443. (SID: 37).

Q. Zhang and R. Segall. “Web Mining: A Survey of Current Research, Techniques, and
Software”. In: International Journal of Information Technology and Decision Making
7.4 (2008), pp. 683–720. issn: 02196220. doi: 10.1142/S0219622008003150. (SID:
Excluded).

M. Jones. “Polymorphism and Page Tables: Systems Programming from a Functional
Programmer’s Perspective”. In: Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP. 2008, p. 265. isbn: 978-1-59593-919-7. doi:
10.1145/1411204.1411207. (SID: Excluded).

R. García and C. Kloos. “Web Usage Mining in a Blended Learning Context: A Case
Study”. In: Proceedings - The 8th IEEE International Conference on Advanced Learning
Technologies, ICALT 2008. 2008, pp. 982–984. isbn: 978-0-7695-3167-0. doi: 10.1109/

ICALT.2008.229. (SID: 38).

O. McGrath. “Seeking Activity: On the Trail of Users in Open and Community Source
Frameworks”. In: Proceedings ACM SIGUCCS User Services Conference. 2007, pp. 234–
239. isbn: 978-1-59593-634-9. doi: 10.1145/1294046.1294103. (SID: 39).

J. Miller, B. Friedman, G. Jancke, and B. Gill. “Value Tensions in Design: The Value Sen-
sitive Design, Development, and Appropriation of a Corporation’s Groupware System”.
In: GROUP’07 - Proceedings of the 2007 International ACM Conference on Support-
ing Group Work. 2007, pp. 281–290. isbn: 978-1-59593-845-9. doi: 10.1145/1316624.

1316668. (SID: 40).

K. Atalaǧ, S. Bilgen, G. Gür, and S. Boyacioǧlu. “Evaluation of the Turkish Translation
of the Minimal Standard Terminology for Digestive Endoscopy by Development of an
Endoscopic Information System”. In: Turkish Journal of Gastroenterology 18.3 (2007),
pp. 157–164. issn: 13004948. (SID: 41).

https://doi.org/10.1109/ACHI.2009.16
https://doi.org/10.1109/ACHI.2009.16
https://doi.org/10.1021/es8020638
https://doi.org/10.1145/1570433.1570443
https://doi.org/10.1142/S0219622008003150
https://doi.org/10.1145/1411204.1411207
https://doi.org/10.1109/ICALT.2008.229
https://doi.org/10.1109/ICALT.2008.229
https://doi.org/10.1145/1294046.1294103
https://doi.org/10.1145/1316624.1316668
https://doi.org/10.1145/1316624.1316668

Appendix A xi

A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash. “Improving Web
Service Discovery with Usage Data”. In: IEEE Software 24.6 (2007), pp. 47–54. issn:
07407459. doi: 10.1109/MS.2007.169. (SID: 42).

K.-T. Lam and D. Chan. “Building an Institutional Repository: Sharing Experiences at
the HKUST Library”. In: OCLC Systems and Services 23.3 (2007), pp. 310–323. issn:
1065075X. doi: 10.1108/10650750710776440. (SID: 43).

R. Girardi and L. Balby Marinho. “A Domain Model of Web Recommender Systems
Based on Usage Mining and Collaborative Filtering”. In: Requirements Engineering
12.1 (2007), pp. 23–40. issn: 09473602. doi: 10.1007/s00766- 006- 0038- 5. (SID:
Excluded).

F. Zhang, B. Yang, W. Song, and N. Li. “Intelligent Decision Support System Based on
Data Mining: Foreign Trading Case Study”. In: 2007 IEEE International Conference on
Control and Automation, ICCA. Institute of Electrical and Electronics Engineers Inc.,
2007, pp. 1487–1491. isbn: 1-4244-0818-0 978-1-4244-0818-4. doi: 10.1109/ICCA.2007.

4376609. (SID: 44).

“7th IFIP International Conference on E-Business, e-Services, and e-Society, I3E 2007”.
In: IFIP Advances in Information and Communication Technology 252 VOLUME 2
(2007). issn: 18684238. (SID: Excluded).

A. Lindoso and R. Girardi. “The SRAMO Technique for Analysis and Reuse of Require-
ments in Multi-Agent Application Engineering”. In: WER 2006 - 9th Workshop on
Requirements Engineering. 2006, pp. 41–50. (SID: Excluded).

L. Sokvitne. “Redesigning the Opac: Moving Outside the Ilms”. In: Australian Academic
and Research Libraries 37.4 (2006), pp. 246–259. issn: 00048623. doi: 10.1080/00048623.

2006.10755344. (SID: Excluded).

R. Girardi and A. Lindoso. “An Ontology-Driven Technique for the Architectural and
Detailed Design of Multi-Agent Frameworks”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 3529 LNAI (2006), pp. 124–139. issn: 03029743. doi: 10.1007/11916291_9.
(SID: Excluded).

J.-P. Norguet, E. Zimányi, and R. Steinberger. “Semantic Analysis of Web Site Audience”.
In: vol. 1. Proceedings of the ACM Symposium on Applied Computing. Association for
Computing Machinery, 2006, pp. 525–529. isbn: 1-59593-108-2 978-1-59593-108-5. doi:
10.1145/1141277.1141401. (SID: Excluded).

https://doi.org/10.1109/MS.2007.169
https://doi.org/10.1108/10650750710776440
https://doi.org/10.1007/s00766-006-0038-5
https://doi.org/10.1109/ICCA.2007.4376609
https://doi.org/10.1109/ICCA.2007.4376609
https://doi.org/10.1080/00048623.2006.10755344
https://doi.org/10.1080/00048623.2006.10755344
https://doi.org/10.1007/11916291_9
https://doi.org/10.1145/1141277.1141401

xii Appendix A

R. Girardi and A. Lindoso. “DDEMAS: A Domain Design Technique for Multi-Agent Do-
main Engineering”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3770 LNCS (2005),
pp. 141–150. issn: 03029743. doi: 10.1007/11568346_16. (SID: Excluded).

J. Thevenet. “AMR System Helps Santa Fe Conserve Water”. In: Water and Wastewater
International 20.6 (2005), p. 23. issn: 08915385. (SID: Excluded).

Y. Zhang, H. Zhu, and S. Greenwood. “Website Complexity Metrics for Measuring Navi-
gability”. In: Proceedings - Fourth International Conference on Quality Software, QSIC
2004. 2004, pp. 172–179. isbn: 0-7695-2207-6. (SID: Excluded).

J. Gómez, G. Kassem, C. Rautenstrauch, and M. Melato. “Analysis of User’s Behaviour
in Very Large Business Application Systems with Methods of the Web Usage Mining
- A Case Study on SAP® R/3®”. In: vol. 2663. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science). Springer Verlag, 2003, pp. 329–338.
isbn: 3-540-40124-5 978-3-540-40124-7. doi: 10.1007/3-540-44831-4_34. (SID: 45).

M. Prieto and M. Sicilia. “Designing Adaptive Mobile Applications: Abstract Compo-
nents and Composite Behaviors”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2795 (2003), pp. 378–383. issn: 03029743. doi: 10.1007/978-3-540-45233-1_32.
(SID: 46).

M. Hawley, P. O’Neill, L. Webb, and C. Roast. “A Provision Framework and Data Logging
Tool to Aid the Prescription of Electronic Assistive Technology”. In: Technology and
Disability 14.2 (2002), pp. 43–52. issn: 10554181. doi: 10.3233/tad- 2002- 14201.
(SID: 47).

M. Christel. “Experiences with an Interactive Video Code Inspection Laboratory”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics) 640 LNCS (1992), pp. 395–411. issn:
03029743. doi: 10.1007/3-540-55963-9_65. (SID: 48).

G. Boyd, A. Keller, and R. Kenner. “Remedial and Second Language English Teaching
Using Computer Assisted Learning”. In: Computers and Education 6.1 (1982), pp. 105–
112. issn: 03601315. doi: 10.1016/0360-1315(82)90019-7. (SID: 49).

W. Jessop, J. Kane, S. Roy, and J. Scanlon. “ATLAS-an Automated Software Testing
System”. In: Proceedings - International Conference on Software Engineering. IEEE
Computer Society, 1976, pp. 629–635. (SID: Excluded).

https://doi.org/10.1007/11568346_16
https://doi.org/10.1007/3-540-44831-4_34
https://doi.org/10.1007/978-3-540-45233-1_32
https://doi.org/10.3233/tad-2002-14201
https://doi.org/10.1007/3-540-55963-9_65
https://doi.org/10.1016/0360-1315(82)90019-7

	Introduction
	Background
	Software usage
	Software usage data
	Software analytics
	Data-driven decision-making

	Research approach
	Research questions
	Structure of the study
	Part I: Semi-structured literature review
	Search String Definition
	Inclusion and Exclusion Criteria
	Data extraction
	Concept Formation

	Part II: Case study
	Case selection
	Case description
	Data collection - Qualitative data from interviews

	Semi-structured literature review
	Results
	Manual analysis and simple visualizations
	Visualizing software usage with heatmaps
	Usage mining and pattern discovery
	Constructing operational profiles
	Machine learning and artificial intelligence
	Aggregating usage data from several applications
	Combining usage data with feedback and bug-reports
	Data-driven design and experimentation
	Data-driven requirements engineering

	Validity

	Case study
	Results
	Defining software usage data and its uses
	Usage of software usage data
	Prototype evaluation
	Putting the prototypes to real use

	Validity

	Discussion
	Analysis
	Use cases of software usage data
	Utilization methods of software usage data
	Practicality of the prototypes
	Success factors for software usage data utilization

	Research questions revisited
	Future work

	Conclusions
	Bibliography
	Sources of the semi-structured literature review

