
MSc Thesis

Master’s Programme in Computer Science

Modelling a Distributed Data Acquisition
System

John Lång

June 7, 2021

Faculty of Science

University of Helsinki

Supervisor(s)

Prof. Keijo Heljanko

Examiner(s)

Prof. Keijo Heljanko,

Ph.D. Jarno Alanko

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)

00014 University of Helsinki, Finland

Email address: info@cs.helsinki.fi

URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

John Lång

Modelling a Distributed Data Acquisition System

Prof. Keijo Heljanko

MSc Thesis June 7, 2021 72 pages, 3-page appendix

distributed systems, control systems, data acquisition, formal verification, model checking, case study

Helsinki University Library

Algorithms study track

This thesis discusses the formal modelling and verification of certain non-real-time aspects of
correctness of a mission-critical distributed software system known as the ALICE Data Point
Service (ADAPOS). The domain of this distributed system is data acquisition from a particle
detector control system in experimental high energy particle physics research. ADAPOS is
part of the upgrade effort of A Large Ion Collider Experiment (ALICE) at the European
Organisation for Nuclear Research (CERN), near Geneva in France/Switzerland, for the third
run of the Large Hadron Collider (LHC). ADAPOS is based on the publicly available ALICE
Data Point Processing (ADAPRO) C++14 framework and works within the free and open
source GNU/Linux ecosystem.

The model checker Spin was chosen for modelling and verifying ADAPOS. The model
focuses on the general specification of ADAPOS. It includes ADAPOS processes, a load
generator process, and rudimentary interpretations for the network protocols used between
the processes. For experimenting with different interpretations of the underlying network
protocols and also for coping with the state space explosion problem, eight variants of the
model were developed and studied. Nine Linear Temporal Logic (LTL) properties were defined
for all those variants.

Large numbers of states were covered during model checking even though the model
turned out to have a reachable state space too large to fully exhaust. No counter-examples
were found to safety properties. A significant amount of evidence hinting that ADAPOS
seems to be safe, was obtained. Liveness properties and implementation-level verification
among other possible research directions remain open.

ACM Computing Classification System (CCS)

Theory of computation → Logic → Verification by model checking
Computer systems organisation → Architectures → Client-server architectures

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Background 3
2.1 The O2 Project . 3
2.2 ALICE Data Point Service . 4
2.3 Requirements of ADAPOS . 6
2.4 What Makes Testing Insufficient for ADAPOS? 9
2.5 Why Formal Methods? . 11
2.6 Why Model Checking in Particular? 12

3 Enumerative LTL Model Checking 15
3.1 Finite State Machines . 16
3.2 Linear Temporal Logic . 21
3.3 Enumerative Model Checking 23
3.4 State Space Explosion . 25

4 The Model of ADAPOS 30
4.1 Processes in the Model . 33
4.2 Differences Between the Model and the Implementation . . . 34
4.3 The Base Variant . 37
4.4 Input Counters Variant . 43
4.5 Direct Input Variant . 43
4.6 Direct Input Counters Variant 44
4.7 Structured Input Variant . 44
4.8 Structured Input and Output Variant 46
4.9 Input Channels Variant . 47
4.10 Input and Output Channels Variant 48
4.11 Spin to LATEX Converter . 48

5 The Specification of ADAPOS 50
5.1 Sanity . 50
5.2 Safety . 51
5.3 Disjointness . 52
5.4 Checksums . 52
5.5 Causality . 52
5.6 Monotonicity . 53
5.7 Combined Effect of the Safety Properties 54

6 Results 56

7 Discussion 60
7.1 Lessons Learned . 60
7.2 Experiences with Tools and Technologies 60
7.3 Related Work . 61
7.4 Conclusion . 62
7.5 Future Prospects . 63
7.6 Acknowledgements . 64

References 64

A Derivation for Sanity in the Default Mode i

1 Introduction
A particle detector known as a Large Ion Collider Experiment (ALICE)1 is
one of the eight experiments of the Large Hadron Collider (LHC)2 at European
Organisation for Nuclear Research (CERN)3 near Geneva in Switzerland
and France. ALICE specializes in measuring properties of quark-gluon-
plasma, an extremely hot and dense form of matter, produced in so-called
heavy ion collisions involving two lead ions or a lead ion and a proton,
accelerated to ultra-relativistic speeds. This research is important for building
an understanding of the conditions of the early universe, just moments after
the Big Bang.

Apart from the exciting prospects in physics and cosmology, the LHC
experiments, including ALICE, also present formidable challenges to engineers
and computer scientists. In terms of number of subsystems and experts of
different fields involved, the complexity of LHC experiments is comparable
to spaceship construction. According to [1, Table 4.1], the expected rate
of raw physics data produced by the detectors of ALICE during the third
run (RUN3) of LHC that starts in 20214 is more than a terabyte per second.
Compared to the situation during the second run, the amount of physics
data obtained in ALICE is going to grow hundred-fold.

In order to cope with the increase in data throughput, the data delivery
architecture of ALICE from detectors all the way to the LHC Grid computing
cloud needs to be upgraded. ALICE Data Point Service [48] (ADAPOS) is a
distributed system that is part of this upgrade effort. It moves a subset of the
data produced by subdetectors of ALICE towards the LHC Grid computing
cloud for particle track reconstruction and physics analysis. The article [48,
p. 482] lists five requirements for ADAPOS:

1. It must not lose or corrupt data;

2. it must preserve the ordering of data elements;

3. its throughput and latency must be as predictable as possible;

4. it must be stable and responsive; and

5. its processes must have redundant instances for maximising availability
and making maintenance easier.

Originally, unit and integration tests were used for finding defects in
ADAPOS implementation. Testing alone is insufficient for demonstrating
the correctness of a system such as ADAPOS. The great Edsger Dijkstra
has famously said [10, p. 21]:

1https://home.cern/science/experiments/alice
2https://home.cern/science/accelerators/large-hadron-collider
3https://home.cern/
4https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

1

https://home.cern/science/experiments/alice
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

“Testing shows the presence, not the absence of bugs.”
The heart of the problem is that ADAPOS is a distributed system

made of concurrently executing multi-threaded processes running on separate
machines connected by network. There are simply too many possible scenarios
to capture into hand-written test cases. The cppunit5 test framework used
for developing ADAPOS does not control scheduling of threads. When
threads access shared memory, there can be data races that have different
outcomes depending on scheduling. Unpredictable resolution of data races
may translate into flaky test cases which sometimes succeed and sometimes
fail. Reproducing rare system behaviours with flaky tests can be hard.

A portion of software systems are critical in some sense. According to [31,
Table 2], a system is mission-critical if a failure

“[m]ay lead to an inability to complete the overall system or
project objectives; e.g., loss of critical infrastructure or data.”

The failure of ADAPOS could ruin the analysis of physics data collected from
the subdetectors, making ALICE effectively a 10,000-tonne paperweight with
huge electricity consumption. Thus, ADAPOS qualifies as a mission-critical
system. Furthermore, stopping expensive experiments for patching ADAPOS
is not on the table. These factors justify investing more than the usual
amount of effort into verification and validation of ADAPOS.

The shortcomings in testing and the importance of getting ADAPOS
work right led the author of this thesis to consider formal verification. Based
on the good experiences obtained with a related system [49], model checking
was chosen as the method for performing the current study. Simply put,
model checking [2, 17, 38, 58] is the process of building a mathematical model
of the system under verification and algorithmically checking if the model
satisfies a specification written in formal logic.

The goal of this study is to demonstrate the correctness of ADAPOS with
respect to the properties refined from the five requirements above. There are
three levels of scope which contribute to the overall correctness of ADAPOS:

1. The part of the underlying C++ software framework that may run
persistently;

2. The individual component processes of ADAPOS; and

3. ADAPOS as a distributed system.
Level 1. has been mostly verified [49]. The focus of the current work is

on levels 3. Level 2 had to be left out as future work. Chapter 2 provides
more context and motivation. Chapter 3 introduces the theory behind the
methods used. Chapter 4 describes the abstract model that was developed.
Chapter 5 presents the specification of the model. Chapter 6 summarises
the results. Finally, Chapter 7 closes this thesis with discussion.

5https://sourceforge.net/projects/cppunit/

2

https://sourceforge.net/projects/cppunit/

2 Background
As mentioned above, for verifying that ADAPOS meets its requirements, a
formal verification technique known as model checking was chosen for this
study. The model checker chosen for model checking the abstract specification
of ADAPOS was Spin [34]. Another model checker, DIVINE [4] was tried
for model checking the C++ implementation of ADAPOS. Implementation-
level modelling had to be dropped due to technical issues with DIVINE
and for keeping the scope of this work suitable for a master’s thesis. This
chapter provides background and motivation for the research question and
the method chosen for answering it.

2.1 The O2 Project

Until the third run of LHC, data from ALICE was processed in two stages.
Online processing decides which measurements need to be preserved for
further analysis and which measurements can be discarded as noise or
otherwise uninteresting data. Offline processing reconstructs particle tracks
from the data filtered online and compares them with predictions made by
theoretical models. The O2 project, whose name refers to the conjunction of
offline and online, aims to combine these two currently separate stages of
processing into one real-time computation pipeline.

The ALICE experiment produces data relevant to O2 in two categories:
physics data and conditions data. Physics data includes the readings from
the numerous subdetectors of ALICE, e.g., gas detectors, silicon detectors, or
scintillating crystals. Physics data forms the vast majority of the data pro-
duced by volume. The ALICE Data Acquisition (DAQ) system is responsible
for collecting physics data and delivering it to Grid.

Conditions data, on the other hand, is data on the subdetectors themselves
and their supporting infrastructure. Conditions data records the ambient
conditions of ALICE. For example, the output voltages of power sources or
gas temperature or pressure readings in gas detectors fall into this category.

Conditions data are crucial for maintaining optimal operating conditions
for detectors. For example, too high input voltage can break the very del-
icate and expensive silicon detectors. For many of the devices, there are
no commercially available replacements. The task of the ALICE Detector
Control System (DCS) [14, 15] is to maximise the duration of optimal work-
ing conditions for physics detectors by using conditions data and possible
commands from human operators.

Some of the physics calculations involved in particle track reconstruction
are sensitive to ambient conditions. Thus, conditions data has a second role
in providing correcting coefficients to the physics calculations. DCS and
DAQ are designed to be two independent systems separated by a firewall, so
DAQ cannot directly acquire conditions data from DCS.

3

2.2 ALICE Data Point Service

ADAPOS contributes to the O2 project. The purpose of ADAPOS is to
transmit conditions data from DCS to DAQ. It succeeds an application
known as Amanda which is part of the ALICE offline Shuttle [68] system.
Figure 1 gives an overview of ADAPOS.

DP1

DP2

DP3
. . .

DPnDIM

Engine 1 Engine 2

Terminal 1 Terminal 2

O2

↑ DCS
↓ DAQ ADAPOS

Figure 1: A simplified presentation of ADAPOS deployment.

The conditions data in ALICE DCS consists of data points. A data point
represents the state of (a channel in) a hardware device, or some other logical
or aggregated piece of information. There is separation of concerns between
the DCS and the DAQ subsystems. The service delivering data points has
been split into two types of processes accordingly: Engines operating on
DCS servers and Terminals running on the DAQ side.

All data are replicated between two redundant copies of Engines and
Terminals in order to increase the availability of the service. Engines and
Terminals maintain indexed data structures known as Full Buffer Images
(FBIs). An FBI represents a snapshot of the state of all data points published
through ADAPOS. The number of data points is fixed; if it changes, then
ADAPOS has to be reconfigured and restarted.

Data points are published to ADAPOS using the Distributed Information
Management (DIM) [25] protocol, following a publisher-subscriber pattern
with a service broker known as a DIM DNS server. DIM is developed and

4

maintained at CERN and is freely available6. Another protocol, called 0MQ7,
is used for transmitting data points between Engines and Terminals and also
between Terminals and DAQ readout software.

In Figure 1, The bold arrow between Terminals and O2 emphasises the
fact that the FBIs are sent as discrete messages of dozen or so megabytes in
size. By contrast, other arrows denote continuous event-based data streams
containing only changes to individual data points that arrive as they are
measured. DP stands for a data point.

During the start-up of ADAPOS, Engine queries the DIM DNS server
which returns the addresses of the servers publishing the data points. After
that, Engine establishes a direct connection with the relevant servers. Figure 2
presents the interaction between an Engine and a Terminal after Engine has
started.

DIM(sendMaster)

0MQ(master(size’))

realloc(FBI, size’)
0MQ(FBI’)

copy(FBI’, FBI)

0MQ(DPCOM)

update(FBI, DPCOM)

0MQ(connect, addr)
0MQ(bind, addr)

Engine: Terminal:

loop

Figure 2: A UML sequence diagram showing the key events in the communication between
a Terminal and an Engine.

After the start-up phase, whenever the state of a data point changes, the
new value is transmitted to Engine. Engine then sends a fixed-size binary
record known as a Data Point Composite Object (DPCOM) to Terminal over
a 0MQ socket.8 A DPCOM contains the value of a single data point along

6http://dim.web.cern.ch/
7https://zeromq.org/
8See Chapter 4 of the ADAPRO manual for the classes used in ADAPOS at https:

//gitlab.com/jllang/adapro/-/jobs/artifacts/5.0.0/download?job=manual

5

http://dim.web.cern.ch/
https://zeromq.org/
https://gitlab.com/jllang/adapro/-/jobs/artifacts/5.0.0/download?job=manual
https://gitlab.com/jllang/adapro/-/jobs/artifacts/5.0.0/download?job=manual

with the name of the device or channel it represents and other metadata
such as the type of the data point, a timestamp, and bit flags.

ADAPOS applications have been implemented on top of the open source
C++ software framework, the ALICE Data Point Processing Framework
(ADAPRO)9. Inspired partly by the SMI++ [23]10 framework used in control
systems at CERN, ADAPRO follows a state machine model which has been
formally verified for certain safety and liveness properties [49]. The C++
implementation of the state machine mechanism was also partially verified
in the same study. Figure 3 presents the technological ecosystem supporting
ADAPOS.

GNU / Linux / POSIX / C++

TCP / IP

DIM 0MQ

ADAPRO

Engine Terminal

Platform

Libraries

ADAPOS

Figure 3: The technological ecosystem which ADAPOS inhabits.

2.3 Requirements of ADAPOS

This chapter discusses the specification of ADAPOS using the English lan-
guage. The specification will be formalised in Chapter 5. The properties
investigated in this thesis were developed from earlier requirements [48, p.
482] and discussed above in Chapter 1.11 Unfortunately, due to known theo-
rems [21, 27] it is impossible to complete all of these goal to be listed below
perfectly in the same system. ADAPOS aims to find a sensible compromise.
The main properties investigated in this thesis are listed below.

1. Atomicity: ADAPOS must never produce output containing partial or
incomplete data points.

2. Disjointness: ADAPOS must never mix updates to separate data
points. Specifically, all data points must be stored in non-overlapping
locations.

9https://gitlab.com/jllang/adapro
10https://smi.web.cern.ch/
11See also the manual of ADAPOS Engine at https://gitlab.com/jllang/

adapos-engine/-/jobs/713674023/artifacts/download

6

https://gitlab.com/jllang/adapro
https://smi.web.cern.ch/
https://gitlab.com/jllang/adapos-engine/-/jobs/713674023/artifacts/download
https://gitlab.com/jllang/adapos-engine/-/jobs/713674023/artifacts/download

3. Causality: ADAPOS must never produce output values that it did not
receive as input.

4. Monotonicity: ADAPOS must never change the order of updates to
data points.

5. Availability: There should always be an Engine-Terminal pair available
that is able to deliver up-to-date data points.

A software system may have safety [2, p. 109] and liveness [2, p. 119] prop-
erties. According to Leslie Lamport, safety properties state that “something
will not happen” [44, p. 125] while liveness properties state that “something
must happen” [44, p. 125]. Safety and liveness properties can also be
distinguished by how they are refuted.

Safety properties are those properties that have counter-examples of
finite length. Type safety (e.g., that variables declared having type int
can never have string type values) and absence of division by zero, illegal
memory accesses, or deadlocks are examples of safety properties. A stack
trace that is printed when a Java program halts abnormally due to an unhan-
dled NullPointerException, is a counter-example to the safety property
asserting that the program never dereferences the null reference.

Liveness properties have counter-examples that are infinitely long. De-
pending on the property, a counter-example may never satisfy it or satisfy it
at most finitely many times. Halting is a commonly needed liveness property.
A counter-example to halting is an infinite, i.e. never-ending execution. Not
all programs are meant to halt, though. In fact, ADAPOS processes should
only halt in case of a scheduled maintenance. Livelocks are also typical
liveness violations.

Properties 1 – 4 are safety properties. A natural desirable safety property
would be that ADAPOS must never alter the data it transmits. This is
related to the concept of data independence introduced by Pierre Wolper [67].
Considering the modelling and verification effort involved, and the use case
at CERN, properties 1 – 4 together give reasonable guarantees for ADAPOS.

ADAPOS can be used for transmitting arbitrary binary data without type
information. It would be hard to define and verify safety properties stronger
than properties 1 – 4 in the general case. Furthermore, these four properties
allow dropping or duplicating data points, which gives the implementation
some slack when the network is highly congested or some data points are
updated infrequently.

In addition to the safety properties, it is important to ensure the avail-
ability of ADAPOS, which is a liveness property. Availability means that
at any given moment of time, there is at least one Engine-Terminal pair
able to deliver conditions data to O2. As mentioned earlier, maximising
availability is the reason why ADAPOS has redundant copies of the Engine
and Terminal processes.

7

There are interesting properties that had to be excluded from this study.
Updates to certain data points may arrive scarcely. It is all the more
important that they get through. The property that all updates eventually
arrive at O2 would be reliability.

Ensuring reliability would require storing updates in a buffer that could
theoretically grow without a bound. If ADAPOS processes ran out of their
finite amount of memory, they would cease operation, violating availability.
An unbounded memory requirement would also preclude certain formal
verification methods, including model checking. Furthermore, arbitrarily
long buffers would also introduce unbounded latency. Trade-offs between
conflicting requirements are inevitable.

ADAPOS processes use a bounded amount of memory to avoid running
out of resources or introducing unnecessary latency. In the previous study [48,
p. 484], no evidence of packet loss was found. Considering the effort invested
in simulating ADAPOS under maximum load, and the fact that no event
losses have ever been observed, it can be argued that packet loss is unlikely to
occur under foreseeable operating conditions. As mentioned in the previous
study [48, p. 485],

“[t]he maximum level of performance with the test setup [of
ADAPOS] was found to be around 400 kHz, which is two orders
of magnitude better than the current requirements.”

400 kHz means 400,000 data points per second.
Still, with the current design of ADAPOS, dropping updates under

force majeure conditions cannot be ruled out theoretically. It is generally
impossible to guarantee availability and atomic consistency (a strong form
of reliability) in the same distributed system [27, p. 53]. ADAPOS prefers
availability over reliability.

An important property is that if ADAPOS drops updates, it must do it
without introducing biases to the conditions data. This property, neutrality
means that no particular set of data points can be favoured over others by
the architecture of ADAPOS. Neutrality would be very expensive to verify
using model checking, because neutrality requires strong fairness assumptions
for every data point separately.

A liveness property that was considered and even formalised, was called
synchrony. This property asserts that every once in a while, all Terminal
processes must have the same data points in their FBIs. However, this
property was considered too demanding to be guaranteed in all possible
situations, so it was dropped.

Another notion of synchrony, or consensus more precisely, is about decid-
ing which Engine-Terminal pair serves as the active route for transmitting
the conditions data and making sure that all processes involved agree on
the decision. For a distributed system featuring replicated processes, it is

8

important to be able establish a consensus on the roles of each process. There
are distributed consensus algorithms such as Paxos [46] and Raft [53].

An arrangement to use the distributed file system ETCD12 to keep
track on the active Engine-Terminal pair was considered. In principle, all
of conditions data could be handled in a message passing system such as
Apache Kafka13, which would also take care of consensus problems. Such a
huge design change would be too late at this point considering the schedule
of RUN3. The evidence on the more than satisfactory performance [48] of
ADAPOS also argues against such a redesign, as all the hard work on testing
and measuring (in addition to designing and implementing) the system would
need to be redone.

It was decided to keep all Engines and Terminals always active and
agnostic about processes outside ADAPOS accessing conditions data. In
a way, this design decision moved the consensus problem to O2. Now the
recipient of the data streams has to decide which Terminal to connect to and
there are no guarantees that all Terminals have the same data.

The last property to mention is that conditions data should be up-to-
date in the sense that ADAPOS adds a bounded amount of latency to data
point updates passing through it. This is related to the requirement 3 listed
in Chapter 1. This requirement has been taken into account in the C++
implementation. Real-time properties such as bounded latency are out of
the scope of this thesis, however. The model checker UPPAAL14, has been
used for verifying real-time systems, e.g., in nuclear power domain [43].

Preliminary latency measurements were made during the early simula-
tions [48], but they were considered to be too early for publication at that
point, as details of the design and deployment of ADAPOS would change.
Latency was not considered to be a critical concern of the design of ADAPOS.
Much of the conditions data arriving at ADAPOS Engine is already relatively
old and ADAPOS usually adds only milliseconds or so to the overall latency.
For example, some power supply devices read out their channel voltages twice
per minute. Furthermore, ALICE DCS applies smoothing to the conditions
data [15, Section III]. The distance between devices and ADAPOS Engine (or
Terminal) in terms of the number of different machines involved in transport
and processing is quite long.

2.4 What Makes Testing Insufficient for ADAPOS?

The usual approach to verifying the correctness of a piece of software is to
write tests to see how the system reacts to a handful of possible inputs. In
this paradigm, it is typically the interactions between the software system
and its environment or tests, as well as the feedback from the clients or

12https://etcd.io/
13https://kafka.apache.org/
14https://www.it.uu.se/research/group/darts/uppaal/examples.shtml

9

https://etcd.io/
https://kafka.apache.org/
https://www.it.uu.se/research/group/darts/uppaal/examples.shtml

end-users, that define what correctness means. ADAPRO and ADAPOS
originally relied on tests and hundreds of hours of simulations [48]. This
work was certainly valuable but it did not remove all reasonable doubts on
the correctness of the specification and design of ADAPOS.

The main difficulty in testing ADAPRO and ADAPOS were the complex
concurrent behaviours arising from interactions between threads or processes.
Concurrency-related defects were hard to anticipate in the informal design
process and to reproduce with tests. Chapters 5 and 6 of the article [49]
discuss four defects that were found in the formal verification of ADAPRO.
Model checkers were able to quickly uncover these issues whereas hundreds
of hours of testing and simulation had failed to do so.

Generally speaking, there are too many behaviours to test individually
for achieving complete or even relatively high coverage. Exhaustive testing
of a concurrent system takes double exponential amount of work with re-
spect to the number of parallel processes, as noted by Petr Ročkai in his
dissertation [59, Footnote 1 on p. 10]. Exhaustive testing is thus challenging.

One consideration in choosing verification methods is the level of risks
involved in the project. Wikipedia lists cautionary tales on what may happen
if verification is not done carefully enough15. The sheer number of software
defects with catastrophic consequences in the past provides motivation for
investing effort into preventing future incidents.

The failure of ADAPOS would mean that either O2 gets no conditions
data at all, or the data is stale or incorrect. This in turn would hinder the
particle track reconstruction process. If the physics data cannot be analysed
accurately, then there is no point in running an expensive physics experiment.
Even though it is a small system, ADAPOS is a link in a chain of critical
software components of the ALICE experiment. The ADAPOS project aims
not to be the weakest link in that chain.

From a business point of view, as conjectured by Gerard Holzmann [35,
p. 81], the problems most likely to be exposed by testing may not be those
that pose the greatest risk. One study goes even further to note that testing
can even miss “simple, obvious faults than one may expect” [41, p. 217].
ADAPOS qualifies as a mission-critical system with economically high stakes.
This motivates the search for high-risk defects in addition to the easily
testable ones.

If testing cannot be carried out exhaustively, then the question is how
to direct the testing effort in a way that maximises the chance of finding
bugs. Methods such as Whitebox fuzzing [29], directed automated random
testing [28], symbolic execution [11], and concolic testing [63] aim to increase
test coverage by automatically generating inputs to tests. Regardless, earlier
positive experiences with model checking [49] made the author of this thesis
choose model checking over these advanced forms of testing.

15https://en.wikipedia.org/wiki/List_of_software_bugs

10

https://en.wikipedia.org/wiki/List_of_software_bugs

2.5 Why Formal Methods?

Formal methods focus on demonstrating (or finding counter-evidence against)
the correctness of a piece of software by employing mathematical techniques.
The range of techniques under the umbrella of formal methods is quite
extensive. It is thus hard to give a precise definition for the term. Christel
Baier and Joost-Pieter Katoen characterise formal methods as “the applied
mathematics for modeling and analyzing [Information and Communication
Technology] systems” [2, p. 7].

Testing, static analysis, model checking, and theorem proving form
a continuous spectrum of methods, each one choosing different trade-offs
between exhaustiveness, precision, speed of execution and ease of use. At least
a part or an aspect of the system under verification must be unambiguously
defined in mathematical terms in order to apply formal methods. That
formal definition can sometimes be generated or extracted programmatically.
The formal specification of ADAPOS was written by hand, because it was
easier to do that way.

There are numerous case studies and success stories on using formal
methods in software development [22]. A seminar report16 written by the
author of this thesis lists a few reported uses of model checking for verifying
real life systems and elaborates three of them in detail. In addition to the
ADAPRO case [49], some interesting examples from the past decade or so
include the Address Resolution Protocol [9], slats and flaps control unit of an
aircraft [13], attitude and orbit control system of a satellite [24], the control
system of another LHC experiment, the Compact Muon Solenoid control
system [37], a stepwise shutdown system and uninterruptible power supply
control software in nuclear power domain [43], a compiler for a subset of the
C programming language [47], an operating system microkernel [41], just to
name a few.

The first chapter in the book by Baier and Katoen [2] mentions some
real-life examples of software defects exposed with model checking. The
website of the Spin17 model checker lists important use cases of the tool.
There is another list of Spin case studies online.18 Other model checking
and formal verification tools often list case studies and other research articles
on their own websites.19

Apart from technical arguments, economical considerations often sup-
port formal methods, too. Gerard Holzmann [35] and John Fitzgerald et
al. [22] provide business-oriented argumentation on why formal methods
are worth using. Jonathan Bowen and Michael Hinchey discuss some com-

16https://www.cs.helsinki.fi/u/jllang/Three_Examples_on_the_Real_Life_
Applications_of_Model_Checking.pdf

17https://spinroot.com/spin/success.html
18http://www.imm.dtu.dk/~albl/promela.html
19E.g., https://ti.arc.nasa.gov/tech/rse/publications/vnv/#model

11

https://www.cs.helsinki.fi/u/jllang/Three_Examples_on_the_Real_Life_Applications_of_Model_Checking.pdf
https://www.cs.helsinki.fi/u/jllang/Three_Examples_on_the_Real_Life_Applications_of_Model_Checking.pdf
https://spinroot.com/spin/success.html
http://www.imm.dtu.dk/~albl/promela.html
https://ti.arc.nasa.gov/tech/rse/publications/vnv/#model

mon preconceptions and provide general guidelines on the use of formal
methods [8].

The rise of specialised companies relying on formal methods, such as
Coverity [7] (which was acquired by Synopsys in 2014), Galois [55] and IOHK
[40], hint that there might be a rising trend on the adoption of formal methods
in the software industry. Large established companies such as Amazon [51],
Microsoft [3], and former Lucent [12] (which was later acquired by Nokia)
are also known for using formal methods to their profit. In the computer
hardware industry, AMD [60], Centaur [30] and Intel [39] for example, have
successfully deployed formal verification in their processes.

The case studies and companies mentioned above are just select few
examples. More thorough overview on different flavours of formal verification
and their industrial adoption is worthy of a survey article or a thesis in its own
right. At any rate, the there is a growing corpus of literature demonstrating
that formal methods are not merely an academic exercise that can be easily
dismissed. There are industrial segments relying on formal methods.

2.6 Why Model Checking in Particular?

ADAPOS is a distributed system made of reactive components. Apart from
possible bugfixes and design changes necessitated by the findings made during
the verification, ADAPOS is more or less complete, for the time being. Since
the source code already exists, a correct-by-construction approach (e.g., by
constructing the system using a framework like Verdi [66] or directly with
an interactive proof assistant [57] like how the CompCert C compiler [47]
was made) is no longer attractive. Neither is a refinement approach such as
the one taken in the seL4 case [41].

According to Edmund Clarke et al. [17, p. 4], model checking in general
has three advantages:

• Ideally, model checking can be fully automated without need for verifi-
cation experts in software development teams.

• Model checking can be applied at different stages and abstraction levels
of software development processes, from abstract designs to concrete
program code.

• Model checking is particularly suitable for analysing concurrent systems.

Baier and Katoen [2, p. 14-16] list eight other strong points of model
checking:

• It is suitable to many applications such as embedded systems, software
engineering, and hardware design.

• It supports partial verification; individual properties can be checked
without having to supply a complete specification at once.

12

• It is not sensitive to the probability of an error occurring; this contrasts
model checking with testing and simulation which usually find only
the most easily exposed errors.

• It provides diagnostic information in case a property violation is de-
tected which is useful for debugging.

• It is a potential “push-button” technology requiring neither a high
degree of user interaction or high level of expertise.

• It enjoys an increasing interest by industry; many hardware manufac-
turers run their own verification labs and offer model checking-related
jobs, there are also commercial model checkers available these days.

• It integrates well with current development processes; it does not have a
steep learning curve, and empirical studies indicate that it may shorten
the development times.

• It has a sound mathematical foundation based on the theory of graph
algorithms, data structures, and logic.

All of the pros of model checking mentioned above are relevant for the
work discussed in this thesis. That said, experience with the models studied
in this thesis and in the previous article [49] have taught that especially the
promises of a “push-button” technique can be a bit on the optimistic side.
It can take weeks or months of work to have the model in a state where
this metaphorical button can be finally pressed. Baier and Katoen [2, pp.
115–116] also list eight weaknesses of model checking:

• It is mainly suited to control-intensive applications; it is weaker on
data-intensive applications that may have even infinite data domains.

• It depends on decision procedures; there are infinite-state systems and
data types that require semi-decidable or even undecidable logics.

• It verifies a model of a system, and not the system itself; the results
obtained are only as good as the model, so complementary techniques
such as testing might still be needed.

• It checks only the properties suggested by the user; the validity of
properties not checked remains open.

• It suffers from the state explosion problem (which will be discussed in
Chapter 3.4); even the most advanced state space reduction techniques
may not be able to make a model fit into a computer’s memory.

• It requires a certain amount of expertise for finding the best abstrac-
tions for representing the system with a small model and stating the
specification using mathematical logic.

13

• It may not deliver correct results if the model checker has a software
defect, though parts of advanced model checking algorithms have been
formally demonstrated to be correct using theorem provers.

• It does not work for generalisations: systems with an arbitrary number
of components, i.e. parametrised systems, cannot be model checked;
however, model checking may help to find hypotheses to be proved in
a parametrised setting.

Based on personal experience, the author of this thesis would like to add
to the list of shortcomings above that interpreting the counter-examples
given by a model checker is not always easy. Clarke et al. [17, pp. 4 – 5]
characterise three of the complementary methods with their pros and cons:

• Testing: There is a wide range of technologies for testing software,
such as the familiar unit testing with hand-written inputs. Testing
is generally the fastest and easiest software verification method to
deploy. Due to its dynamic nature, testing can detect a wide range of
errors, many of which are hard to find with purely static techniques.
However, the weakness of testing is typically low coverage of state spaces,
making it more suitable for debugging than verification. Advanced
testing techniques, some of which were mentioned above at the end of
Chapter 2.4, try to alleviate this shortcoming.

• Abstract interpretation: Though somewhat similar to model checking
in some respects, abstract interpretation usually focuses more on speed
while sacrificing some of its accuracy in exchange.20

• Theorem proving [57]: The disadvantage of this method is that it can
be very time-consuming to the software developers, even more than
model checking.

The above three families of methods are quite large and varied. Abstract
interpretation itself is a general technique that can be used in many different
settings, including model checking and theorem proving. All in all, based
on the empirical observations and the more general reasoning above, it was
decided that model checking would be a good method for carrying out the
research in this thesis.

20Clarke et al. might be referring to the use of abstract interpretation in static analysis [52,
Ch. 4].

14

3 Enumerative LTL Model Checking
Model checking [2, 16, 38, 59] is based on the idea of representing the system
under verification as a mathematical model and its properties as logical
formulae. The problem of deciding whether or not a system meets its specifi-
cation becomes the problem of deciding if its model satisfies the formulae. A
model checker implements a decision procedure for this satisfaction problem.
Figure 4 presents the general idea of model checking schematically.

system description

model M

system specification

temporal logic formula ϕ

model checker
checks whetherM |= ϕ

modelling translation

Figure 4: Outline of model checking. Adapted from [17, p. 3].

There are multiple approaches to model checking. As Clarke et al. [17, p.
5] put it,

“. . . model checking is characterised less by purity of method than
by the goal of debugging and analyzing dynamical systems that
exist in the real world and can be modeled as state-transition
systems.”

Enumerative model checking [36] [38, Ch. 2] represents the model along with
its properties explicitly as a finite state transition system. The satisfaction
problem is solved by computing all the reachable states of the system and
checking if they satisfy the property under investigation thus performing a
proof by exhaustion. The model checkers DIVINE and Spin used for the
research work discussed in this thesis are enumerative.

Instead of relying on brute strength, industrial grade enumerative model
checkers use optimisation techniques to reduce the search space. These
techniques include partial order reduction [54] and bitstate hashing [33] used
in Spin, as well as τ -reduction [5] used in DIVINE. Optimisation techniques
for model checking are outside the scope of this thesis, however, and will not
be discussed further.

Even though model checkers are automated tools, understanding their
internal mechanisms and general theory helps building models that can
be optimised well by the model checkers. There are many formalisms for

15

representing finite-state systems such as (labelled) transition systems [2, p.
20] [54, p. 174], program graphs [2, p. 32] Kripke structures [17, p. 6] [42, p.
141], simple programs [38, Ch. 1.1], and various types of automata [26, p.
6] [36, p. 156] [42, p. 108] [61, Ch. 1]. These formalisms are all similar in
spirit and differ only in specifics. There are likewise many different systems
of formal logic used for specifying properties.

3.1 Finite State Machines

A Finite State Machine (FSM) [36, p. 156], also known as Finite (State)
Automaton [42, p. 108] [61, pp. 51, 53], (Σ, S, ι, δ, F) has

• a finite non-empty set Σ of symbols known as the alphabet (or label
set or set of actions),

• a finite non-empty set S of states,

• an initial state ι ∈ S [36, p. 156] (which could equivalently defined to
be a set of initial states [42, p. 108]),

• transition relation δ ⊆ S × Σ× S, and

• a set F ⊆ S of final (or accepting) states.

Following the convention of [2, p. 20], this text uses s α−→ s′ to denote the
proposition (s, α, s′) ∈ δ.

A program or a model written in textual programming or modelling
language source code can be converted into an FSM. The following naïve
conversion was inspired by the operational semantics of NanoPromela [2, Ch.
2.2.5] and the transition system semantics of channel systems [2, Ch. 2.2.4]
but simplified (omitting channels and guards) and adapted for FSMs. More
rigorous semantics for modelling languages such as Promela [50] can be
quite complex.

• The alphabet will be the set of all statements in the code.

• The states will be tuples (`,v) containing the location ` of the current
statement of code and the values v = v0, v1, . . . , vn of all the respective
variables x0, x1, . . . , xn occurring in the code. A special location halt
can be used to mark those states for which there are no more statements
left to execute.

• The initial state will point to the first statement and have suitable
values (e.g., zeros) in all variables.

• There will be a transition (`,v) α−→ (`′,v′) if and only if

1. ` is the location of the statement α;

16

2. `′ is the location arrived after executing α (usually the next line,
but in case of control structures and goto statements it can be a
different location); and

3. executing α changes the values v into the values v′.

• All states can be made accepting. The reason for this choice will
become clear later.

The conversion above tacitly assumes that the language of the code has
well-defined operational semantics. Typically, this state-machine approach
works best for imperative programs. For purely functional programs, other
verification methods such as using the type system of the programming
language to enforce safety invariants in a propositions-as-types [65] style and
using equational reasoning might be better options.

Consider the lines labelled as `1 to `4 in the C language subroutine fact
shown in figure 5. The code uses a goto statement to create repetition instead
of a loop in order to make it easier to establish the connection between fact
and its flowchart-style FSM representation. In C, v = e means that the value
of expression e will be stored in the memory location named by variable v.
Such assignments are often denoted as v ← e or v := e in pseudocode. This
must not be confused with a (Boolean-valued) assertion of equality, denoted
as x == y in C or x = y in mathematics. The notation b -> α on the FSM
means that when (if ever) the Boolean-valued guard b is true, then the FSM
can execute the statement α in order to perform a state transition.

int fact(int n) {
int k = 1;
int m = 0;

l1: k = k * n;
l2: n = n - 1;
l3: if (n > 0) goto s1;
l4: m = k;

return m;
}

`1

`2

`3

`4

true -> k = k * n

true -> n = n - 1

(n
>

0)
->

go
to

l1

!(n > 0) -> m = k

Figure 5: A subroutine in C (on the left) and an FSM (on the right) representing the
control logic of the body of that subroutine after the initialization of the variables n, k,
and m.

The interpretation of fact here as an FSM is intuitive rather than formal.
It is somewhat imprecise. Firstly, the complications involved in calling and
returning from subroutines are ignored. That is justified in this case, because

17

this is not an interprocedural analysis [52, Ch. 2.5]. Instead, the FSM
represents the logic that takes place inside the subroutine body. Secondly,
the FSM only considers the locations of the statements of fact and not the
values of the variables n, k, and m.

If the variables n, k, and m are taken into account, then the conversion
outlined above yields an FSM with 3n+ 1 successive states without loops.
Figure 6 demonstrates this when n = 3 initially. The reason for why all
states are chained one after the other is that fact is deterministic: At any
given state, executing a single statement can only result in a single successor
state. Because a state also includes the current location, there can be at
most one statement to execute.

(`1, 3, 1, 0)

(`2, 3, 3, 0)

(`3, 2, 3, 0)

(`1, 2, 3, 0)

(`2, 2, 6, 0)

(`3, 1, 6, 0)

(`1, 1, 6, 0)

(`2, 1, 6, 0)

(`3, 0, 6, 0)

(`4, 0, 6, 6)

k = k * n

n = n - 1

goto l1

k = k * n

n = n - 1

goto l1

k = k * n

n = n - 1

m = k

Figure 6: A more accurate FSM representation of fact that models states as quadruples
(`, n, k,m).

Each choice of n leads into a different FSM, so fact describes an infinite
family of systems. Model checking that all finite-state models of an infinite
family fulfil a property is equivalent to solving the halting problem for an
infinite-state system, cf. a Turing machine. The halting problem of Turing
machines is undecidable. However, there are also infinite-state systems such
as well-structured transition systems [20] that allow decidable state space
enumerations. For model checking properties of ADAPOS, the models have
been made finite-state by fixing free parameters during compilation.

An execution (of an FSM) is an alternating sequence

s0α1s1α2s2α3 . . .

of states si ∈ S and actions αi ∈ Σ such that si
αi+1−−−→ si+1 for every i ∈ N.

A finite execution is a sequence

s0α1s1α2s2α3 . . . αnsn

18

that is an initial segment of an execution.
An FSM accepts a finite path α1α2 . . . αn (called string in this context)

if and only if there is a finite execution s0α1s1α2 . . . αnsn such that s0 = ι,
the initial state, and sn ∈ F . A Büchi automaton is similar to an FSM,
except it accepts an infinite string α1α2 . . . if and only if there is an (infinite)
execution s0α1s1α2 . . . starting from s0 = ι that contains infinitely many
occurrences of one or more states in F .

The handshake product [2, p. 48]M1||M2 of FSMsM1 andM2, with
Mi = (Σi, Si, ιi, δi, Fi) for i ∈ {1, 2}, is an FSM (Σ, S, s0, δ, F) such that

• Σ = Σ1 ∪ Σ2;

• S = S1 × S2;

• ι = (ι1, ι2);

• δ is defined with three rules:

α1 6∈ H, (s1, α1, s
′
1) ∈ δ1

((s1, s2), α1, (s′1, s2)) ∈ δ (I1) α2 6∈ H, (s2, α2, s
′
2) ∈ δ2

((s1, s2), α2, (s1, s′2)) ∈ δ (I2)

α ∈ H, (s1, α, s
′
1) ∈ δ1, and (s2, α, s

′
2) ∈ δ2

((s1, s2), α, (s′1, s′2)) ∈ δ (HS)

where H ⊆ Σ1 ∩ Σ2 is the set of handshake actions; and finally

• F = F1 × F2.

The rules I1 and I2 express interleaving while the rule HS expresses handshak-
ing. For a non-handshake action, one of the two component FSMs performs a
transition while the other component FSM does nothing. If both component
FSMs can perform a transition, then the handshake product automaton
chooses non-deterministically one of them to perform a transition while the
other one does nothing. When the two component FSMs can perform a
transition with the same handshake action, then they perform that transition
simultaneously. The difference between interleaving and handshaking is
analogous to the difference between time sharing and parallel execution.

A railroad crossing system [2, pp. 50 – 52] is an example of a handshake
product of three transition systems:

1. A train, which is initially far away from the crossing. It is safe to cross
the railroad until the train gets near the crossing.

2. A gate, which needs to be lowered before the train reaches the crossing
in order to prevent accidents. The gate can be opened again after the
train has left the crossing.

19

3. A controller that receives information about trains that are about to
enter the crossing. The controller must send the signal to raise or lower
the gate when appropriate.

A natural correctness property for the railroad crossing system is that
whenever the train is in the crossing, the gate must be down.

Figure 7 represents the three component systems as FSMs. Figure 8
shows the handshake product of the train, the gate, and the controller with
handshake actions approach, exit, lower , and raise. The system a design flaw:
The train might enter the crossing while the gate is still up. This unwanted
behaviour will be exposed momentarily using an enumerative model checking
algorithm.

far

nearin

approach

enter

exit

0

1

2

3

approach

lowerexit

raise
up

down

lowerraise

Figure 7: The components FSMs of the railroad crossing system. The components are,
from left to right: Train, controller, and gate.

(far , 0, up)

(near, 1, up)

(near, 2, down) (in, 1, up)

(in, 2, down)

(far , 3, down)

approach

lower enter

enter lower

exit

raise

Figure 8: The handshake product of the railroad crossing system. Dashed arrows denote
transitions by interleaving (the Int rule) while other arrows denote handshake transitions
(by the HS rule).

20

The Synchronous product [61, p. 61] [36, p. 159] [2, pp. 73 – 75]M1×M2
of FSMsM1 andM2 is a special case ofM1||M2 whereM1 andM2 share
the same alphabet Σ and every transition uses the rule HS with H = Σ.
Simply put, M1 ×M2 can only perform a transition when both M1 and
M2 can. The FSMs M1 and M2 in M1 ×M2 perform their transitions
simultaneously, or in lock-step.

3.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is a formal language used for specifying prop-
erties. Though known longer among logicians, LTL was introduced into
computer science by Amir Pnueli in 1977 [56]. LTL expresses ordering of
events [2, p. 226] (e.g., “the sun rises before it sets”), rather than real-time
assertions (e.g., “the monitor shuts down after five minutes of inactivity”) or
claims about calendar events (e.g., “31 December is the New Year’s Eve”).
The syntax of LTL formulae over a set A of atomic propositions [2, p. 227]
in BNF is:

〈formula〉 ::= ‘true’
| 〈atomic proposition〉
| ‘(’ 〈formula〉 ‘∧’ 〈formula〉 ‘)’
| ‘¬’ 〈formula〉
| ‘©’ 〈formula〉
| ‘(’ 〈formula〉 ‘U’ 〈formula〉 ‘)’

In model checking, atomic propositions often establish constraints over
values of variables (e.g., x < 10) or locations of processes (e.g., “process A is
at critical section”). This means that atomic propositions express properties
of states. The constant true stands for a proposition that holds for every
state.

The meta-variables ϕ and ψ will henceforth refer to arbitrary LTL formu-
lae. Intuitively, ©ϕ asserts that ϕ will hold after a single abstract discrete
moment of time. (More precisely, ©ϕ asserts that ϕ holds for the next
state in every possible execution that continues from the current state.) The
formulae ©ϕ and ¬ © ¬ϕ are equivalent. A formula of the form ϕ U ψ
asserts that eventually ψ must hold and that ϕ holds perpetually until ψ
becomes true.

Just like in classical propositional logic, the connectives false, ∨, →, ↔
can be derived from ∧ and ¬. There are other commonly used LTL operators,
such as �, ♦, W, and R among others that can be derived from U using
propositional logic. The derivations are given below:

false ≡ ¬true

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ ≡ ¬ϕ ∨ ψ
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

♦ϕ ≡ true U ϕ

�ϕ ≡ ¬♦¬ϕ
ϕ R ψ ≡ ¬(¬φU ¬ψ)
ϕW ψ ≡ �ϕ ∨ (ϕU ψ)

21

Intuitively, �ϕ asserts that ϕ holds always while ♦ϕ asserts that ϕ eventually
holds at least once. The combinations �♦ϕ and ♦�ϕ assert that ϕ holds
infinitely often and ϕ holds eventually forever, respectively.

Figure 9 presents ten examples of LTL formulae along with one of their
infinitely many satisfying executions in an unspecified model with respect
to arbitrary atomic propositions p, q, and r. Figure 10 presents counter-
examples to the same formulae.

p
p

p ∧©©¬q
p, r p, r

p ∧ (q ∨ r)
p, q

p U q

p p p p p q

p U (q U r)
p p p q q q r

�(p ∨ q)
p p p, q p p p q q

♦p
p p p

♦�p
p p p p

�♦p
p p p

¬p U (p ∧©�¬p)
p

Figure 9: Intuitive semantics of some LTL formulae.

A Kripke structure [17, p. 6] (S,R,L) over a set A of atomic propositions
has a set of states S, a relation R ⊆ S×S, and a labelling function L : S → 2A
that assigns each state a set of propositions that the state satisfies. Kripke
structures are similar to automata, except that instead of having labels on
transitions (i.e. actions), they have labels on states. A path on a Kripke
structure is a sequence s0s1s2 . . . such that (si, si+1) ∈ R for every i ∈ N.

The relation π |= ϕ (“π satisfies ϕ”) between (an infinite) path π in a
Kripke structure and an LTL formula ϕ is defined inductively [2, p. 231] [17,
p. 8] [42, p. 141]). Denote the path π with the first i states removed as πi.
Let π = s0s1s2... and define

22

π |= true;
π |= p iff p ∈ L(s0);
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ;
π |= ¬ϕ iff π 6|= ϕ;
π |=©ϕ iff π1 |= ϕ; and
π |= ϕU ψ iff πj |= ψ for some j ≥ 0 and πi |= ϕ,∀i, 0 ≤ i < j.

Now enumerative model checking can be defined rigorously.

p
q, r

p ∧©©¬q
p, q p, q p, q

p ∧ (q ∨ r)
p

p U q

p p p p r

p U (q U r)
p p p q q q q q

�(p ∨ q)
p p r

♦p

♦�p
p p p p

�♦p
p q q q q q q q

¬p U (p ∧©�¬p)
p p

Figure 10: LTL formulae and their corresponding counter-examples. For safety properties,
violations can be demonstrated in finitely many steps. The executions drawn in gray
continue after the states where property violations have been established.

3.3 Enumerative Model Checking

An LTL formula can be converted into a Büchi automaton algorithmically [26]
[42, Ch. 4.6.1]. Gerard Holzmann lists four steps for formalising the model
checking problem [36, p. 159]:

1. Convert the negation ¬ϕ of the LTL property ϕ into the Büchi au-
tomaton B¬ϕ.

23

2. Compute the handshake product A = A1||A2|| . . . ||An21 of the au-
tomata Ai representing the concurrent processes in the model. Fi = Si
for each component automaton Ai.

3. Compute the synchronous product C = A× B¬ϕ. Note that A is an
FSM and B¬ϕ is a Büchi automaton, but in this case the product
can be computed as a synchronous product of FSMs. The resulting
automaton will be a Büchi automaton.

4. See if C has accepting executions.

Because all states in A are accepting, it is B¬ϕ alone that determines whether
or not a given execution qualifies as a counter-example. There are depth-first
and breadth-first algorithms for enumerative model checking [36].

Consider the railroad crossing system again. A natural safety requirement
for the system is that the gate must be always down when the train is
approaching, i.e. �(“train is in” → “gate is down”). Figure 11 represents
a Büchi automaton that accepts those executions where the train enters
the crossing while the gate is still open. Figure 12 shows the synchronous
product of the railway crossing system and this Büchi automaton. It has a
reachable strongly connected component [42, p. 110] starting from the state
((in, 1, up), C) with accepting only states. Any execution visiting this state
is a counter-example to the safety requirement.

A B C

approach

lower

enter

Σ

Figure 11: The Büchi automaton accepting executions where the train moves into the
crossing while the gate is still up. The label Σ is a wildcard matching all five actions.

There are also other ways of performing model checking. In symbolic
model checking, the state space of the model is represented in a more abstract
way often by grouping states in sets instead of enumerating them individually.
Examples of these more abstract state set representation techniques include
Binary Decision Diagrams (BDD), Boolean Satisfiability (SAT) and Satisfia-
bility Modulo Theories (SMT). There is a survey focusing on symbolic model
checking techniques for LTL properties [58]. Another survey [38] explains
many more model checking techniques. Recent books [2, 16] likewise cover
many areas of model checking.

21Actually, Holzmann uses interleaving product which is similar to the handshake product,
but without handshake actions H and only the (Int) rule for the transition relation

24

((far , 0, up), A)

((near, 1, up), B)

((near, 2, down), A) ((in, 1, up), C)

((in, 2, down), A)

((far , 3, down), A)

approach

lower enter

enter

exit

raise

Figure 12: The synchronous product of the FSMs presented in Figures 8 and 11. The
dashed arrow means the state ((in, 1, up), C) is the initial state of a strongly connected
component (shaped like the automaton in Figure 8) made entirely of accepting states.

3.4 State Space Explosion

All of the steps 1 – 4 of the enumerative model checking procedure in
Chapter 3.3 can be performed on the fly. If a counter-example exists, then
it usually suffices to expand only the part of the state-space covered by
that counter-example. However, in worst case, and despite the optimisations
mentioned briefly above, enumerative model checking can be computationally
extremely expensive. Theorem 2 in [17, p. 13] expresses that:

“There is an LTL model-checking algorithm whose running time
depends linearly on the size of the Kripke structure and exponen-
tially on the length of the LTL formula.”

Furthermore, it is known that the enumerative LTL model checking
problem is PSPACE-complete [42, p. 147]. As [17, p. 13] and [42, p. 147]
point out, in practice the bottleneck is usually the size of the FSM and not
the size of the LTL formulae. The extremely fast growth of the number of
states of a model as a function of the length of the model’s formal description
is known as the state-space explosion (or just state explosion) problem. There
is a survey on state explosion problem [64].

Baier and Katoen [2] Denote V ar as the set of all variables of a process,
Loc as the set of possible program counter values, and dom(x) as the set of
values that variable x may take, i.e. the domain of x. Thus, the number of

25

states in the program graph is [2, p. 75]

|S| = |Loc| ·
∏

x∈V ar
|dom(x)|, (1)

where |X| denotes the cardinality (i.e. the number of elements) of the set X.
Under the translation outlined in Chapter 3.1, the Equation (1) gives the
number of states of the FSM representation of the process.

Without loss of generality, the domain of program counter values and
the domains of variables may be assumed to be sets of bit strings. Thus, the
equation (1) may be estimated as

|S| ≤ 2k ·

 ∏
0<i≤|V ar|

2m
 , (2)

where k is the number of bits needed for representing the domain of program
counter values and m is the number of bits needed for representing the
variable with the largest domain. If there are n variables, then (2) becomes

|S| ≤ 2kmn. (3)

If there are p such processes, then the upper bound becomes

|S| ≤ 2pkmn. (4)

For a system with heterogeneous processes, the upper bound can be estimated
in terms of the process with largest state space and assuming that all processes
are copies of the largest process. Thus, the state space potentially grows
exponentially in at least four different variables.

Not all states in a model are necessarily reachable, though. In general,
establishing the number of reachable states is a much more difficult task
than estimating the upper bound for the number of all states. Determining
the reachable states requires either deep knowledge in the details of the
particular model under investigation or a large amount of computation for
enumerating the reachable portion of the state space.

Consider the following C code fragment.

int x = 0; int y = 0; // Initial state
if (1) { // 1 means true in C

t0: x = 1; goto t1; // Set x to 1, go to next transition
t1: x = 0; goto t0; // Set x to 0, go to other transition

} else {
t2: y = 1; // Unreachable

}

26

On an abstract level, the fragment above could be modelled as a (determin-
istic) finite state automaton or as a Kripke structure, as shown in Figure 13.
The transitions of the finite state machine are labelled according to the
labelling in the C code, while the states of the Kripke structure are labelled
with the values of the variables x and y. The state s0 is the state after the
initialization of the variables x and y in the first line of the C code fragment.
s1 is the state after transition t0 and before the transition t1, which takes
the process back in state s0.

s0 s1

s2 s3

t0

t1

s0

x = 0, y = 0

s1

x = 1, y = 0

s2

x = 0, y = 1

s3

x = 1, y = 1

Figure 13: A finite state machine (on the left) and a Kripke structure (on the right)
representing the C code fragment.

Notice that the transition t2 from s0 to s2 has been omitted from the
diagrams, because it is never enabled: The condition of the if-else control
structure can never be false, so the line labelled with t2 is dead code. Also,
there is no code at all which could move the process to or from the state
s3. Hence, the states s2 and s3 are unreachable. Therefore, the size of the
reachable state space for the Kripke structure is two, even though the whole
state space has size four, assuming that the variables x and y are stored as
single bits.

More realistically, all variables of type int might take one or more words of
memory, e.g., 32 or 64 bits. If x and y would be stored as 32-bit integers, then
there would be 232+32 potential combinations of their values. Furthermore,
even though the code conceptually has only three transitions, the actual
number of control points in the C code is eight. This makes the total number
of states 8∗264 as per equation (1). Fortunately, enumerative model checkers
only allocate memory for the states they can reach, so the states for C code
example above would be easy to enumerate.

The C code example also shows that a program having finitely many
states does not need to terminate. This makes model checking suitable
for verifying properties of reactive systems. Reactive systems in real life
include control systems (including the ALICE [14] and CMS [37] DCSs),
operating systems, and server processes. In fact, for many reactive systems,
including ADAPOS, termination considered as a violation. By contrast,

27

many deductive verification [57] techniques that rely on theorem proving
hinge on proofs of termination.

Another source for state space explosion is branching. The following
complete Promela model is an extreme example of branching:

init {
byte x; byte i;
for (i : 0 .. 7) {

if
:: x = x | (1 << i) /* Maybe sets the ith bit... */
:: skip /* or maybe does not */

fi
}

}

This Promela model essentially represents a random number generator
that produces a random byte by eight consecutive coin flips. The bytes x
and i are implicitly initialized to zeros. Inside the deterministic for-loop,
there is a non-deterministic if-statement with two then-branches which
either sets the ith bit of the byte x to 1 or leaves x unchanged. Both cases
will be investigated by the model checker Spin. After the loop has been
executed, x may have any value, depending on the choices made during
the loop. According to the verifier executable generated by the Spin model
checker, this model has 1024 reachable states. Figure 14 illustrates the shape
of this model’s state space.

0

0

0

0 4

2

2 6

1

1

1 5

3

3 7

Figure 14: The state space of the Promela model unrolled for the first three steps of
the for-loop. The states are labelled according to the value of the variable x (omitting the
‘x =’ part of the propositions). Names for the states have been omitted, too.

To summarize the state-space explosion problem from a practical per-
spective, a model for a reactive system needs to try to minimize

• the number of processes;

• the number of statements;

28

• the amount of non-determinism;

• the number of variables;

• the size of the domains of the variables;

• the number and size of arrays and channels;

• the number of possible interleavings of statements belonging to concur-
rent processes;

• the number of auxiliary variables used for formulating the properties;
and

• lengths of the LTL formulae and the sizes of their corresponding Büchi
automata.

The model should not have any unnecessary sources for complexity, because
model size tends to be the bottleneck of model checking. Even though the
number of reachable states is often many orders of magnitude lower than
the number of all states, it is still often a very large quantity.

In the previous study [49], two model checkers were used for verifying
properties of ADAPRO on both design and implementation level. The plan
was originally to follow a similar approach in the current study. Implementa-
tion level C++ models were drafted for Engines and Terminals as individual
processes with a simulated non-deterministic environment. These models
were meant to be checked using the model checker DIVINE [4].

The complexity of the modelling task necessitated narrowing the focus
to design level only, to make the work fit a master’s thesis. Based on earlier
good experiences [49], the model checker Spin [34] was chosen for building
and verifying the model of ADAPRO discussed in this thesis.

29

4 The Model of ADAPOS
Now that the necessary background information for ADAPOS has been
discussed, the following chapters will dive in to the technical substance.
ADAPOS is a tailor-made system designed to serve a specific purpose on
a specific environment operated by specialists over the limited duration
of the third run of LHC. The model will be explained operationally on
a moderately high level of detail. The general idea of the model will be
presented first. After that, the eight variants refining certain details of the
general specification will be introduced.

An abstract model of asynchronously operating ADAPOS Engines and
Terminals was built with Promela 22 for two reasons. Firstly, the model
serves as an abstract specification document, focusing on the essential struc-
tures and phenomena and leaving out irrelevant details. Building a model is a
great way to learn new insights about the domain of an application. Secondly,
the C++ implementation-level models for Engine and Terminal that were
initially planned had huge state spaces. Composing the C++ models together
and verifying them would have been technically and computationally quite a
challenge. The C++ models had to be dropped eventually.

The Promela model is summarised in Figure 15. There are three types
of concurrently operating processes, a Load Generator (LG), Engines, and
Terminals. All processes loosely follow FSM-like logic and have their own
copies of the FBI, represented as vertically aligned arrays in Figure 15. As
Figure 15 suggests, all FBIs have exactly the same size. Data points are
represented as bytes. For data connections, regular arrows denote single
data point transmissions while bold arrows denote single data point or FBI
transmissions depending on Engine state. Dotted arrows denote control
connections for requesting FBI transmissions.

The model has four compile-time constants:

• Service count determines the number of data points per FBI.

• Engine count determines the number of Engines.

• Terminal count determines the number of Terminals.

• Event count determines how many updates to data points LG produces.

The states of FSMs shown in Figure 15 are high-level abstractions like
the FSMs shown in Figures 5, 7, and 8 in Chapter 3.1, and also Figures
11, 12, and 13 in Chapter 3.4. The states of the FSMs of Engines and
Terminals in Figure 15 are called protocol states. Protocol states should not
not be confused with ADAPRO states which are omitted from this model.23

22Version 6.10 of the model is archived at https://doi.org/10.5281/zenodo.4767686
23See Section 3.2 in the manual of ADAPRO.

30

https://doi.org/10.5281/zenodo.4767686

Load Generator

q1

q2

Engine 1

e1

e2

τ1, τ2

Engine 2

e2

e1

τ3, τ4

Terminal 1

t1

t2

τ1, τ3

Terminal 2

t2

t1

τ2, τ4

Figure 15: A schematic view on the abstract model of ADAPOS with five data points
per FBI, a Load Generator, two Engines, and two Terminals. The handshake actions τi

are used for synchronisation.

Protocol states could be considered to be substates of the ADAPRO state
RUNNING, though this is a slightly inaccurate simplification.

The model makes the following assumptions on publish-subscribe network
connections with DIM [25] and 0MQ24,25 protocols:

• Message contents are never altered.

• Messages between two processes are not duplicated in transit.

• Those messages between two processes that are received arrive in the
order they were sent.

• When there is a message in transit between two processes and the sender
attempts to transmit another message, then one of these messages will
be dropped. DIM drops the old message and 0MQ drops the new one.

• Messages to n recipients are transmitted over n one-to-one connections
which may drop messages independently.

• Engines may disconnect from Terminals for unspecified reasons.
24TCP is assumed to be the underlying transport protocol.
25https://rfc.zeromq.org/spec/29/

31

https://rfc.zeromq.org/spec/29/

The data connections from LG to Engines and Engines to Terminals interpret
the publish-subscribe patterns of DIM and 0MQ respectively. The control
connections from Terminals to Engines represent DIM command calls that
are assumed to never fail or be delayed.

The large state space of the base Promela model and the fact that there
are multiple interpretations on how DIM and 0MQ connections could be
modelled led to the creation of several variants of the model. Variants are
maintained in separate branches in the Git version control system used in
the modelling project. The variants differ by their interpretations of input
(LG to Engines) and/or output (Engines to Terminals) connections.

Figure 16 illustrates refinement relations between the variants of the
model. In object-oriented terms, the arrows point from inheriting variants
to the more general ones. This hierarchy is only conceptual and it is not
reflected in the Promela code in any way.

Base

Direct
Input

Input
Counters

Structured
Input

Direct Input
+ Counters

Structured
Input + Output

Input Channels

Input + Output
Channels

Figure 16: The variants of the Promela model of ADAPOS.

Chapters 4.3 – 4.10 sketch a simplified overview on these variants using
Python-style pseudocode instead of Promela. A book [6] provides a hands-
on introduction to the Promela modelling language and the Spin model
checker. For the sake of conciseness, certain details on the variants have
been omitted from this presentation, including
• details of the FSMs shown in Figure 15;

• FBI transfers between Engines and Terminals; and

• details on how Terminals keep track on the freshness, the current value,
and the previous value of a data point in their FBIs.

General discussion on the roles and logic of the different process types of the
model is appropriate before introducing the variants, though.

32

4.1 Processes in the Model

LG and Engines are agnostic about other processes receiving their outputs.
They act as publishers sending the same data to any number of subscribers.
It is possible that a message will be received by some subscribers while it
is dropped for others. Neither of these two process types ever block when
sending messages. Both process types follow the same general logic regardless
of the number of connected subscribers.

LG simulates the DIM services producing input to ADAPOS. By default,
LG generates distinct updates until the number of updates generated exceed
the event count. At this point, LG halts. LG also has an alternative cyclic
mode in which it never halts, and keeps cycling through three constant
values per data point. The event count parameter has no effect when LG is
compiled to run in cyclic mode.

Consider the FSMs of Engines and Terminals shown in Figure 15. In the
Promela code, the states e1 and t1 are both named as SEND_SINGLE. The
states e2 and t2 share the name SEND_FBI. The meaning of these protocol
states is that during e1 and t1 the processes expect the messages to be single
data points, while state e2 and t2 the processes expect the next message to
be an FBI.

As a simplification, the states e1 and t1 correspond approximately to
the loop in Figure 2 in Chapter 2.2. The states e2 and t2 correspond to the
exchange of messages between “DIM(sendMaster)” and “copy(FBI’, FBI)”.
Only the FBI transmission using 0MQ (“0MQ(FBI’)”) and replacing the
Terminal’s FBI with the FBI received from Engine (“copy(FBI’, FBI)”) are
included in the model.

During the state e1, an Engine updates data points in its FBI whenever
it receives updates to them from LG. After updating its FBI, the Engine
sends the updated data point to Terminals. Engine moves to the state e2
only when a Terminal requests it to do so. During the state e2 the Engine
transmits its FBI to Terminals. After dispatching its FBI, Engine returns to
state e1.

A Terminal begins by establishing a connection to an Engine in state
t1. When connecting to an Engine, the Terminal tells the Engine to move
to state e2 as it transitions to state t2 itself. This can be thought of as a
handshake action, denoted as τi for i ∈ {1, 2, 3, 4} in Figure 15. For example,
when Terminal 1 connects to Engine 2, they both perform the transition
associated with τ3.

During the state t2, the Terminal is expecting to receive an FBI from
the Engine. If it receives a single data point, it goes back to state t1 and
establishes a connection to another Engine. If it receives an FBI, it copies
its contents into its own FBI and moves into state t1. After that, Terminal
stays in t1 copying both single data points and FBIs into its FBI as they
arrive. A disconnection always makes the Terminal to switch to the next

33

Engine and move back to state t1.
Engines follow their two-state FSM logic accurately. For Terminals, the

FSM is more of an abstraction. Terminals need to (re)establish connections
with Engines, which is not reflected by their FSMs. Perhaps Terminals could
have a third state in their FSMs for (re)connecting to Engines. However, an
Engine does not need to know when a Terminal is considering to switch to
another Engine. It is simpler to think in terms of two protocol states for
Engines and Terminals.

Ideally, Engines and Terminals should always change their states in lock-
step. Initially, a pair of an Engine and a Terminal starts from the states
e1 and t1 respectively. Next, they should both agree to transfer the FBI,
moving to states e2 and t2 respectively. After that, they should stay in states
e1 and t1 respectively forever. The trace of this ideal execution would be
(e1, t1)(e2, t2)(e1, t1)(e1, t1)(e1, t1) . . . for each Engine-Terminal pair.

4.2 Differences Between the Model and the Implementation

This chapter discusses some finer semantic details of the model. It can be
skipped on the first reading.

An Engine may non-deterministically disconnect from any Terminal at
any point. It is also possible that the Engine disconnects from all Terminals
at the same time. This could be interpreted such that the Engine shut down
unexpectedly or got disconnected from the network.

If an Engine disconnects from one or more Terminals, the Engine will
continue operating normally. The shutdown and (re)start sequences of
Engines are omitted from the model. The argument for this decision is that
properties of the model focus mainly on Terminals. Terminals should not be
sensitive to the internal states of Engines and neither should the model be.
More importantly, the DAQ readout process receiving data from ADAPOS
should not even need to be aware of Engines at all.

From the point of view of Terminals, it is not relevant what was the root
cause for a disconnection. Whenever an Engine disconnects from a Terminal,
the Terminal will establish a connection with another Engine. For limiting
the size of the state space, Terminals always manage to connect to Engines
without errors. Nothing prevents an Engine immediately disconnecting after
a connection has been established, so this simplification should not hide
errors in the design.

For a 0MQ publish-subscribe connection, a parameter known as high
water mark26 (HWM) determines how many messages between a publisher
and a subscriber there can be in transit. Once the HWM is exceeded, the
publisher starts dropping messages until there is room for new messages once
more. The messages that get through are those that were sent before the

26https://zeromq.org/socket-api/#high-water-mark

34

https://zeromq.org/socket-api/#high-water-mark

HWM was exceeded (though for ADAPOS, it would be preferable to start
dropping messages starting from the oldest one).

The Promela model behaves approximately as if HWM was just 1. This
design choice makes the model rather pessimistic, as it makes it easy to
find executions during which messages are dropped. On the other hand, the
model may hide some behaviours that could result from buffering when HWM
was greater than 1. As buffering is essentially just copying values without
modification, it is not an interesting detail from the safety perspective. This
buffering would would further aggravate the state explosion problem, which
explains the current design choice to elide buffering in network connections.

Thanks to multi-threading, real ADAPOS processes are able to simulta-
neously receive and send data over the network. In the Promela model, an
Engine may either update its FBI or broadcast it to Terminals, but not both
at the same time. If Terminals keep constantly bombarding the Engine with
requests for FBIs, the Engine will not have a chance to update the contents
of its FBI. Thus, Terminals will receive stale data, resulting in a denial of
service situation.

The unwanted behaviour described above would not be possible in the
real system. Such unrealistic behaviours arising from simplifications made in
the modelling or model checking process are called spurious. Distinguishing
spurious counter-examples from realistic counter-examples is one of the
challenges in verifying liveness properties. The existence of this particular
problematic behaviour could not be confirmed with Spin though the model
checker did find other kinds of liveness violations. Liveness properties had
to be ultimately left out from the scope of this thesis.

Terminals only request one FBI per connection. A flood of FBI requests
would likely occur during a malicious attack. In production environment,
ADAPOS machines will not be directly exposed to the Internet. Thus,
malicious attacks are expected to be much more unlikely to happen than
honest bugs to surface. This thesis does not investigate data security, but
the ARP case study [9], for example, shows that model checking can be also
used for finding security exploits.

The Promela model has other significant differences from the real
ADAPOS software. The main reason for the differences is the need for
keeping the state space as small as possible. Minimizing state space size
necessitates leaving details out from the model. Notable differences, which
the C++ models were meant to investigate in more detail, are listed below:

• The most obvious difference between the Promela model and real
ADAPOS is that there is no upper bound for the number of updates
in the real system. ADAPOS could run for an arbitrarily long period
of time. The amount of memory needed by ADAPOS should remain
almost unchanged after start-up. This could be verified in the C++
models. Hence, ADAPOS has finitely many states in theory, but the

35

actual state space is probably unimaginably large. The event count
parameter is important for adjusting the size of the model.

• All integer variables are in the Promela model are unsigned bytes.
All values in the model are bounded above by compile-time constants.
There is also a hard limit of 255 processes in Promela.

• The model represents FBIs as small byte arrays, not as huge DPCOM
vectors. The reason is simply that full DPCOM structure is not needed
for verifying the properties of interest. This choice of representation
implies that all accesses to data points in the model are atomic, making
property 1 in Chapter 2.3 trivially true. The C++ implementations of
ADAPOS processes use locking to ensure mutually excluded DPCOM
access.

• In the model, all FBIs and memory allocations in general, have fixed
size determined during compilation time. Real ADAPOS Engines
determine and fix their FBI sizes during startup. In the production
environment, FBI sizes may only change when the configuration of
data points in ALICE DCS changes. The configuration of the DIM
services providing data points to ADAPOS may only change during
LHC technical stops. It is acceptable to require a full reconfiguration
and restart of ADAPOS when new data points need to be added to
the system.

• The model forgets about the ADAPRO FSM aspect of Engines and
Terminals. ADAPRO FSM mechanism has already been studied in
a general setting [49]. Omitting the intricacies of ADAPRO makes
the model much simpler and more importantly, smaller. The logic
represented in the Promela model mostly takes place when the Engine
and Terminal processes are in ADAPRO state RUNNING.27

• Keepalive messages have been omitted from the Promela model. Their
only purpose is to detect if the connection between an Engine and
Terminal fails. The keepalive mechanism has been simply replaced
with the event where an Engine disconnects.

• Another omitted message type are the so-called master DPCOMs.
Unlike Engines, Terminals do not know in advance what services
ADAPOS publishes. When an Engine is about to broadcast its FBI, it
first broadcasts a special master DPCOM which contains the number
of DPCOMs in the FBI. This way, Terminals can (re)allocate the right
amount of memory for their FBIs. Figure 2 shows the transmission of
a master DPCOM over 0MQ as the message “0MQ(master(size’))”.

27The only exception is that Terminal establishes its first connection to an Engine during
the state STARTING. Even this behaviour could easily be moved to the state RUNNING.

36

• When connecting to an Engine, a Terminal clears the messages in transit
between the Engine and the Terminal. According to the specification of
the 0MQ publish-subscribe pattern, a publisher socket “SHALL create
a queue when a subscriber connects to it. If this subscriber disconnects,
the [publisher] socket SHALL destroy its queue and SHALL discard
any messages it contains.”28 An Engine keeps relaying updates as it
receives them, without any knowledge about Terminals. It is thus
simpler to make the Terminal responsible for clearing the old messages.

Compared to the Promela model of ADAPRO [49], the Promela model
of ADAPOS has more coarse level of atomicity. The model of ADAPOS
uses atomic and d_step blocks extensively to keep the state space size as
small as possible. Aside from the state space size considerations, using coarse
atomics is also semantically meaningful. Engines and Terminals are separate
processes running on different machines. Their behaviour should not be
sensitive to the internal states and transitions of remote processes. Only
the messages passed from a process to another should have effect on the
high-level behaviour of the system.

4.3 The Base Variant

The base variant of the Promela model represents network connections
through shared memory. An array of data points (i.e. bytes), called the input
array, in this variant, is exposed to Engines as a global array. The bold
arrows in Figure 15 are represented through another global array, called the
output array.

In what follows, an atomic sequence α1α2 . . . αn of statements can be
interleaved with another statement or sequence β only as either α1α2 . . . αnβ
or βα1α2 . . . αn (and not e.g., α1βα2 . . . αn). There are two exceptions to
this restriction:

• If a process blocks during an atomic sequence, then other processes
can be interleaved. (The situation where all processes block is called
a deadlock and it is considered as a basic liveness violation.) When
blocking ends, the process continues execution as if it entered a new
atomic block.

• If a process halts or jumps out of an atomic sequence, then it relinquishes
the right for non-interleaved execution with other processes.

This notion of atomicity is similar to how locks work in many programming
languages. Depending on the particular sequence, atomicity is represented
using either atomic or d_step constructs. Atomic pseudocode sequences
using either of the two exceptions above are represented with atomic blocks

28https://rfc.zeromq.org/spec/29/

37

https://rfc.zeromq.org/spec/29/

in Promela while the rest of the atomic sequences in pseudocode are
represented with more restricted d_step blocks [6, Ch. 4.4].29

The first step at explaining the model is to define the basic domains in
which contain the values of the model. The basic datatype for most variables
is the unsigned byte type, that is, the set {0, 1, . . . , 255}. Let

• X ⊆ {0, 1, . . . , 255} be the set of possible data point values (bytes);
• M = {NONE, DC} be the set of special constants (with X ∩M = ∅);
• c, s, e, t ∈ {1, 2, . . . , 255} be the event count, service count, Engine

count, and Terminal count respectively;
• D be the set {0, 1, . . . , s− 1} of data point indices;
• E be the set {0, 1, . . . , e− 1} of Engine indices;
• T be the set {0, 1, . . . , t− 1} of Terminal indices;
• T ′ = {j+e | j ∈ T} be the index set T offset by the number of Engines;
• In : D → X be the input array;
• Out : E × T ×D → X ∪M be the output array; and
• FBI : (E ∪ T ′)×D → X be the FBIs of Engines and terminals.

All the sets above are assumed to be finite and non-empty. Variables ranging
over the sets D, E, T , and X will be denoted with k, i, j, and v respectively,
following the variable naming convention of the Promela code. The symbols
occurring above will be used in the following Chapters with the same meaning
unless otherwise stated or implied by the context. The initial values for the
arrays will be

In[k] = k + 1, for all k ∈ D;
Out[i, j, k] = NONE, for all i ∈ E, j ∈ T , k ∈ D; and
FBI [x, k] = 0, for all x ∈ E ∪ T ′ and k ∈ D.

In the base variant, there is little coordination between LG and Engines.
The Engines do not know when LG updates the input array. LG uses the
local variables k, z, and a global variable end which is initialised to false.
Algorithm 1 shows essentially the full logic of LG in pseudocode. Lines 2 – 6
correspond with the conceptual state q1 in Figure 15 while the last line can
be thought of as the state q2. a% b denotes the remainder of a/b.

Algorithm 1 Base variant Load Generator in default mode.
1: process LoadGenerator
2: local variable k ← 0
3: for z from 0 to c− 1 do
4: atomic
5: In[k]← In[k] + s
6: k ← (k + 1) % s

7: end← true

29Also in the situations where execution can jump into an atomic block, atomic is used
instead of d_step.

38

Statements from other processes cannot be executed while LG is executing
the statements in lines 5 and 6, because they are part of an atomic sequence
starting at line 4. However, the loop starting from line 3 is not part of an
atomic sequence statements, so other processes may be executed between
iterations of the loop. In the cyclic mode, z is restricted to the values {0, 1, 2}
and LG runs the modified procedure shown in Algorithm 2.

Algorithm 2 Base variant Load Generator in cyclic mode.
1: process CyclicLoadGenerator
2: local variable k ← 0
3: local variable z ← 0
4: repeat
5: atomic
6: In[k]← zs+ k + 1
7: k ← (k + 1) % s
8: if k = 0 then
9: z ← (z + 1) % 3

There are two differences between the default mode and the cyclic mode
of LG. The first one is that z is cycled by incrementing it by one, modulo
three, every time k reaches zero. This is similar to how the minute hand
on a watch takes one step every time the second hand returns to zero. The
other difference is that instead of sending In[k] + s+ 1, i.e. the previously
sent value incremented by s, to the Engines, LG sends zs + k + 1. It is
straightforward to adapt these two changes between the two operating modes
of LG to other variants, too.

The properties to be discussed in Chapter 5 would allow LG to choose k
non-deterministically from D. Non-deterministic scheduling of updates, that
preserves the order of updates to individual data points in a sequentially
consistent [45, p. 690] manner would reflect the expected operating conditions
of ADAPOS more realistically. Non-determinism is a known source of state
space explosion. This particular case of non-determinism was not considered
to be essential, so it was omitted from the model at the risk of losing potential
counterexamples.

LG cycles over the data point indices D in both operation modes, but in
cyclic mode, it also cycles over their content X. When s = 3, we can think
of In as a triple (x0, x1, x2) ∈ X ×X ×X. Thus, the initial state of In can
be expressed as (1, 2, 3). Table 1 illustrates the evolution of k, z, and In
after each iteration of the cyclic LG procedure.

In state e1, Engine number i keeps polling over the input array as shown
in Algorithm 3. The procedure Multicast called inside the atomic block
starting from line 12 is part of the same atomic sequence. Promela does not
support procedures, so the contents of Multicast are inlined in Promela.

On lines 3 – 8 Engine chooses non-deterministically between sending

39

k z In Comment

0 0 (1, 2, 3) Initial state.
1 0 (1, 2, 3) zs+ k + 1 evaluated to 1. Wrote that into In[0].
2 0 (1, 2, 3) zs+ k + 1 evaluated to 2. Wrote that into In[1].

0 1 (1, 2, 3) Since k reached 0, z was incremented by 1 (mod 3).
1 1 (4, 2, 3)
2 1 (4, 5, 3)
0 2 (4, 5, 6) Since k reached 0, z was incremented by 1 (mod 3).
1 2 (7, 5, 6)
2 2 (7, 8, 6)
0 0 (7, 8, 9) Now k and z have their initial values again.
1 0 (1, 8, 9)
2 0 (1, 2, 9)
0 1 (1, 2, 3) The loop starts again.

Table 1: An execution of LG. It runs into a loop that starts from the fourth state.

FBI [i, k] or DC to Terminal j. Informally, this means that the connection
between Engine i and Terminal j may or may not fail during any transmission.
(ADAPOS must survive regardless.) The verifier generated by Spin will
explore both outcomes which creates two branches in the state space.

The choice between successfully sending the data point or disconnecting
is the only source of explicit non-determinism in the model. The condition
on line 5 stays false if Terminal j has not yet read its incoming data point
before Engine i continues executing. Terminal j loses an update in this
scenario. Losing a data point is the third possible outcome after a successful
transfer and a disconnect. It is the result of the implicit non-determinism of
process scheduling.

Engine updates at most one data point in its FBI during the atomic
sequence. If Engine does not disconnect, it reaches line 6. In the condition
of the if statement on that line, it checks if there is room for a message to
be sent over the network to Terminal j. If there is, Engine sends FBI [i, k].
If not, the Engine drops the message and carries on. The base variant of the
Promela model assumes that there is capacity for exactly one data point
per triple (i, j, k) in Out.

Terminals can detect incoming data points from Engines through the
use of the special constant NONE. When Terminal j connected to Engine i
attempts to read from Out[i, j, k], it follows a procedure that is given in
a simplified form in Algorithm 4. The Promela code corresponding to
the pseudocode statement block until blocks the execution of Terminal
j at least until the expression Out[i, j, k] 6= NONE becomes true (if it ever
becomes). When blocking ends, Terminal continues its execution atomically.

40

Algorithm 3 Simplified overview of base variant Engine i, restricted to the
actions during the state e1.
1: procedure Multicast(i, k, v)
2: for j in 0 to t− 1 do
3: flip coin
4: if heads then
5: if Out[i, j, k] = NONE then
6: Out[i, j, k]← v

7: else
8: Out[i, j, k]← DC

9: process Engine(i)
10: local variable k ← 0
11: repeat
12: atomic
13: if end then halt
14: if In[k] > FBI [i, k] then
15: FBI [i, k]← In[k]
16: Multicast(i, k,FBI [i, k])
17: k ← (k + 1) % s

Algorithm 4 Simplified overview of base variant Terminal j, restricted to
state t1.
1: process Terminal(j)
2: local variable i← 0
3: start: Connect(i)
4: repeat
5: atomic
6: block until Out[i, j, k] 6= NONE
7: if Out[i, j, k] 6= DC then
8: FBI [j + e, k]← Out[i, j, k]
9: Out[i, j, k]← NONE
10: else
11: i← (i+ 1) % e
12: goto start
13: k ← (k + 1) % s

41

As explained in Chapter 4, the procedure connect called on line 3
establishes a connection between Engine i and Terminal j using something
like a handshake action, setting their states to e2 and t2 respectively. After
that, the FBI will be transferred. As said above, FBI transfers have been
omitted from this presentation. The pseudocode shows what happens after
Terminal moves back into state t1.

This is a straightforward interpretation of the semantics of ADAPOS,
but it has disadvantages. While LG (in default mode) and Terminals always
do productive work, Engines may have executions in which they keep polling
their input arrays causing LG and Terminals to starve. Table 2 shows one
such execution. Executions where Engines cause other processes to starve
are unfair in the sense that they violate weak fairness [2, p. 128]. Unfair
executions can make some desirable properties generally invalid for a model.

k In FBI [i] Comment

0 (1, 2, 3) (0,0,0) Initial state.
1 (1, 2, 3) (1,0,0) In[0] was greater than FBI [i][0].
2 (1, 2, 3) (1,2,0) In[1] was greater than FBI [i][1].
0 (1, 2, 3) (1,2,3) In[2] was greater than FBI [i][2].

1 (1, 2, 3) (1,2,3) No change in In[0]. Loop starts.
2 (1, 2, 3) (1,2,3) No change in In[1].
0 (1, 2, 3) (1,2,3) No change in In[2].
1 (1, 2, 3) (1,2,3) The loop starts again.

Table 2: A looping execution of Engine i that makes other processes starve. The
values of relevant variables are shown in columns. The array FBI has been Curried into
(E ∪ T ′) → XD.

There are at least three ways to ensure fairness:

• Firstly, the verifier executables generated by Spin have an option for
enabling weak fairness. This option may be the one easiest to use.

• Secondly, a fairness constraint can be added to the LTL formulae
requiring it [24, pp. 49 – 51]. Fairness constraints have the advantage
of not changing the model or the arguments passed to the model checker.
Properties not requiring fairness, e.g., safety properties, can be left
unmodified.

• Thirdly, the model itself can implement a scheduler, for which weak
fairness can be proven as an LTL property.

The problem of fairness can also be sidestepped by removing non-progress
cycles by adding inter-process coordination (which is in a way comparable to
implementing a scheduler). This approach was chosen in the current study. It

42

has the benefit of having the possibility of reducing the number of reachable
states in the model.

Other variants for the Promela model were developed in the hope of
reducing the number of unfair executions and reachable states in the model
by adding extra structure for coordination. These variants explore various
ways to improve the communication between Engines and LG, and also
between Engines and Terminals. For conciseness, will be explained in terms
of changes to the base variant.

4.4 Input Counters Variant

It was mentioned above that the base model suffers from non-progress cycles
where an Engine keeps polling the input array. Excessive polling prevents
LG and Terminals from carrying out their respective tasks. Adding extra
counters shared between LG and Engines is one way to fix this problem.

In the input counter variant of the model, LG and Engines share an
additional array Ctr : E → {0, 1, . . . , s}, mapping each Engine index i ∈ E
to the number of data points waiting for processing by Engine number i.
The array is initialised with Ctr[i] = 0 for each i ∈ E. Between lines 5 and 6
in Algorithm 1, the input counter variant LG adds an extra loop where it
increments Ctr[i] by one for each i ∈ E such that Ctr[i] < s.

The cyclic mode works similarly as in the base variant. The new loop
will be added between lines 6 and 7 in Algorithm 2. The cyclic mode works
similarly for variants too, so cyclic mode will not be discussed for the rest of
the variants.

The variable end is not used in the input counter variant. On line
13 of Algorithm 3, instead of halting if end is true, Engine i blocks until
Ctr[i] > 0. After the call to Multicast on line 16 an extra statement
Ctr[i]← Ctr[i]−1 to decrement the relevant counter is added (staying inside
the if -block). Otherwise, the input counter variant Engine is the same as
the base variant Engine.

4.5 Direct Input Variant

The numerous arrays in the base model led into a large number of reachable
states. The state vector size of the base model with two Engines, two
Terminals, and three data points per FBI was reported by Spin to be bytes
in size (making the theoretical upper bound for the number of reachable
states 28·120 = 2960 ≈ 10289 or a hundred billionth of a Googol cubed). This
led to the creation of a simplified variant of the model which removes the
input array.

In the direct input variant, LG updates values directly in the FBIs of
Engines. More precisely, the array In is dropped and for each i ∈ E and
k ∈ D, FBI [i, k] is initialized to k + 1. In line 5 of Algorithm 1, instead of

43

overwriting In[k] with In[k] + s+ 1, LG overwrites FBI [i, k] with FBI [i, k]
for each i ∈ E. It also marks the data point as dirty by setting its most
significant bit (128) to one.

On line 14 of Algorithm 3, instead of checking that In(k) > FBI [i, k],
Engine checks checks if FBI [i, k] has been marked dirty, i.e. has its, most
significant bit set. On line 15, instead of copying In[k] to FBI [i, k], Engine
marks FBI [i, k] clean, i.e. resets its most significant bit to zero.

While the size of the state vector for the direct input variant is 104 bytes,
this variant has its downsides. Firstly, 104 bytes is still a huge amount
of state information. Secondly, the assumption that LG always updates
values in the FBIs of all Engines in synchrony translates into the requirement
that DIM must always keep every Engine simultaneously up-to-date. This
requirement is not trivial if the network has random delays or disconnects.
A small simplification to the model can introduce a great complication to
the implementation.

4.6 Direct Input Counters Variant

As the name suggests, the direct input counters variant is a combination of
the direct input variant and the input counter variant. It merges the changes
listed in Chapters 4.4 and 4.5 above. The loops over i ∈ E are combined
into the one loop on lines 5 – 9 in Algorithm 5.

Algorithm 5 Direct input counters variant Load Generator in default mode.
1: process DirectInputLoadGenerator
2: local variable k ← 0
3: for z from 0 to c− 1 do
4: atomic
5: for i from 0 to e− 1 do
6: FBI [i, k]← FBI [i, k] + s
7: mark FBI [i, k] as dirty
8: if Ctr[i] < s then
9: Ctr[i]← Ctr[i] + 1
10: k ← (k + 1) % s

Engine is adjusted accordingly, as shown in Algorithm 6.

4.7 Structured Input Variant

In the base model and the input counter variant, the input array and FBIs
use the same indexing. This design has a weakness. When LG writes v ∈ X
to In[k] for some k ∈ D and Engine i is currently processing index k + 1,
Engine i has to poll through all indices k+1, k+2, . . . s−1 and then 0, 1, . . . , k
before observing In[k] = v. As Algorithm 3 shows, Engine checks one data

44

Algorithm 6 Direct input counters variant Engine i.
1: process DirectInputEngine(i)
2: local variable k ← 0
3: repeat
4: atomic
5: block until Ctr[i] > 0
6: if FBI [i, k] is dirty then
7: mark FBI [i, k] as clean
8: Multicast(i, k,FBI [i, k])
9: Ctr[i]← Ctr[i]− 1
10: k ← k + 1 % s

point per execution of its atomic sequence. Other non-blocking processes
will be interleaved by Spin in all possible ways while Engine is polling. This
leads into an enormous number of new reachable, but uninteresting, states.

Polling is not the only way to interpret how DIM publish-subscribe
connections with client-side callbacks work. In fact, according to Gaspar et
al. [25], one of the requirements of DIM is that

“[a] process should be not [sic] have to poll at regular intervals in
order to find out that something changed, it should be informed
when it changes”.

As only one data point at a time needs to be transmitted, polling can be
avoided by sending the index of the data point along with the data point
itself.

The input pairs or structured input variant of the model shares only
one index-value pair between LG and each Engine instance. LG uses an
additional global array În : E → D ×X in variant, which is initialised with
pairs (0, NONE) in every index i ∈ E. Between lines 5 and 6 in Algorithm 1,
the structured input variant LG runs an additional loop over i ∈ E where it
overwrites În[i] with (k, In[k] + s+ 1).

Instead of reading from In, Engine reads from În. It gets both the index
and the value of the data point from this new array. Algorithm 7 shows
how Engine works in this variant. As a notational convenience, line 4 uses
functional style pattern matching defining new local variables k and v that
refer to the first and the second component of În[i] respectively. Because
LG updates În atomically (and because in Promela, changes to shared
variables are immediately visible for all processes), after line 5, Engine has
got the updated values for both k and v.

The structured input variant differs in its approach from the direct input
and input counters variants so much that no attempt to combine structured
input with either of the two variants was made. It can be considered as a

45

Algorithm 7 Structured input variant Engine i.
1: process StructuredInputEngine(i)
2: repeat
3: atomic
4: let (k, v) := În[i]
5: block until v 6= NONE
6: FBI [i, k]← v
7: În[i]← (k, DC)
8: Multicast(i, k,FBI [i, k])

more sophisticated version of the direct input variant that simply does not
need additional counters.

4.8 Structured Input and Output Variant

All the variants discussed so far have explored different interpretations of the
network connections between LG and Engines, which represents the DIM
side of ADAPOS. All of the five variants above share exactly the same code
for the procedure Multicast in Algorithm 3 and for Terminals as well,
which is sketched in Algorithm 4. The structured input and output variant is
based on the structured input variant, but it changes the way how Engines
send data to Terminals.

In this variant, the array Out is replaced with an array Ôut : E × T →
D × X. Compared to the procedure Multicast of Algorithm 3, Engine
inspects the second component of Ôut[i, j] instead of Out[i, j, k] on line
5. Instead of writing v or DC to Out[i, j, k], Engine now writes (k, v) or
(0, DC) to Ôut[i, j, k] on lines 6 and 8 respectively. The choice of the first
component does not matter if the second component is DC, because Terminal
will determine whether or not there is a disconnect by inspecting the second
component first.

Just as in the structured input variant, Engine i uses the pair În[i]
to determine which data point received an update. Likewise, Terminal j
connected to Engine i uses the pair Ôut[i, j] to do the same. Neither Engines
nor Terminals need to do any polling in the structured input and output
variant.

As mentioned in Chapter 4, the model behaves “approximately” as if
the 0MQ HWM parameter was 1. In the first five variants discussed above,
every data point at index k ∈ D has its own quota of at most one message in
transit between an Engine and a Terminal. These variants of the Promela
model actually behave as if there were s parallel 0MQ connections between
Engine and Terminal. This is the approximation that made building the
model a little bit easier, but which sacrificed accuracy.

Real ADAPOS Engines and Terminals share only one 0MQ connection at

46

a time. In this respect, the structured input and output variant of the model
is more realistic, because there can be at most one pair (k, v) ∈ D ×X in
transit at a time. The same argument applies to the last two variants.

4.9 Input Channels Variant

All of the six variants discussed so far use shared memory for communicating.
The following slogan from Effective Go30 has been credited to Rob Pike:

“Do not communicate by sharing memory; instead, share memory
by communicating.”

Channels were introduced by Tony Hoare in his seminal paper bearing the
name of the process algebra Communicating Sequential Processes (CSP) [32].
Channels are an alternative mechanism for communicating between processes.
The slogan above can be interpreted to encourage the use of channels instead
of shared memory. There are similarities between Promela and CSP,
including not only channels but also guarded commands that were introduced
by Dijkstra [18]. The Chapter 7 in Ben-Ari’s book [6] explains how channels
can be used in Promela.

Channels pass messages between processes in a first in, first out fashion;
messages are read from a channel in the same order they were written into it.
Many channels buffer messages. In this sense, ADAPOS as a whole is one
large distributed channel. It makes sense to attempt modelling ADAPOS by
using channels as a communication primitive.

A statement c !m writes the message m to channel c while c ?m reads
a message from channel c into m. A channel has a finite capacity. If c is
at maximum capacity, then c !m blocks until another process reads from c,
freeing capacity for m. If c is empty, then c ?m blocks until some process
sends a message to c. In both cases, when blocking ends, both processes
move together, performing a handshake action, as explained in Chapter 3.1.

Channels with capacity zero, or rendezvous channels [6, Ch. 7.2] are a
special case. With rendezvous channels, every read or write blocks until
another process performs the corresponding write or read. When the read
and write operations happen, they occur simultaneously as a handshake
action, resulting in a value being copied from one process to the other. This
is the semantics of Hoare’s original channel concept [32].

In Promela unlike in CSP [32], channels can be referred to using
variables, like c above. This makes it possible to have multiple processes
reading from and writing to the same channel. Even the same process
can write to and read from the same channel. The channel variants of the
Promela model of ADAPOS have only one process writing to and one
process reading from each channel.

30https://golang.org/doc/effective_go#sharing

47

https://golang.org/doc/effective_go#sharing

The input channels variant of the Promela model of ADAPOS introduces
an array Ĩn of channels indexed over E. Each channel has capacity for one
message (k, v) ∈ D ×X. LG has an extra variable w ∈ D ×X. Algorithm 8
shows the input channels variant of LG. Unlike with arrays, subsequent
writes to a channel do not overwrite its previous contents. The if -statement
on line 7 takes care of removing the previously sent message from the channel
Ĩn[i] if it’s still there. In Promela, LG has to perform two checks, one to
see if the channel is full and another to see if it is empty, instead of just one
check and an else branch.

Algorithm 8 Input channels variant Load Generator in default mode.
1: process ChanneledLoadGenerator
2: local variable k ← 0
3: for z from 0 to c− 1 do
4: atomic
5: In[k]← In[k] + s+ 1
6: for i from 0 to e− 1 do
7: if full Ĩn[i] then Ĩn[i] ? w
8: w ← (k, In[k])
9: Ĩn[i] ! w
10: k ← (k + 1) % s

The input channels variant of Engine does not need extra variables such
as end to decide when it may proceed. Instead, Engine i relies on its input
channel Ĩn[i] to do the blocking when there are no incoming data points.
Engine has its own local copy of the variable w. Instead of the let expression
in line 4 in Algorithm 7, Engine first performs the read operation Ĩn[i] ? w.
Line 5 is replaced with let (k, v) := w.

4.10 Input and Output Channels Variant

The last variant is the input and output channels variant. Based on the input
channels variant, it adds another channel Õut for each pair (i, j) ∈ E × T .
Algorithm 9 shows the version of the multicast procedure for this variant.
When Engine i disconnects from Terminal j, it removes the message that
was currently being transmitted in Õut[i, j] and sends the byte DC.

Algorithm 10 shows the logic of Terminal j in this variant of the model.

4.11 Spin to LATEX Converter

Besides the models, a model checking project may need auxiliary scripts and
tools for generating properties, running the model checker and analysing
the results. A tool named Spin2Latex was created for scraping important
numbers from the output of the Spin verification runs. It reads text files, and

48

Algorithm 9 The multicast procedure for Engine i that uses channels.
1: procedure ChanneledMulticast(i, k, v)
2: for j in 0 to t− 1 do
3: flip coin
4: if heads then
5: if ¬(full Õut[i, j]) then
6: Õut[i, j] ! (k, v)
7: else
8: if full Õut[i, j] then
9: Õut[i, j] ? (k, v)
10: Õut[i, j] ! (0, DC)

Algorithm 10 Simplified overview of input and output channels variant
Terminal j.
1: process Terminal(j)
2: local variable i← 0
3: start: connect(i)
4: repeat
5: atomic
6: block until Out[i, j, k] 6= NONE
7: if Out[i, j, k] 6= DC then
8: FBI [j + e, k]← Out[i, j, k]
9: Out[i, j, k]← NONE
10: else
11: i← (i+ 1) % e
12: goto start
13: k ← (k + 1) % s

produces LATEX tables, like the ones shown in the Chapter 6. This tool was
written in Haskell and it was extended to other output formats besides LATEX.
This tool is publicly available at https://gitlab.com/jllang/spin2latex.

49

https://gitlab.com/jllang/spin2latex

5 The Specification of ADAPOS
The main properties of the model will be discussed next. The purpose of
these properties is to formalise the requirements discussed in Chapter 2.3.
The properties are what the verifier executable of Spin verifies.

As a notational shorthand, denote
n∧
i=0

ϕ(i) := ϕ(0) ∧ ϕ(1) ∧ . . . ∧ ϕ(n).

Spin does not support indexed conjunctions. Each formula featuring indexed
conjunctions has to be hard-coded separately for any particular value n.
Save for syntactic differences, the LTL formulae presented in this chapter
faithfully reflect their counterparts studied with the Spin model checker on
the Promela model of ADAPOS. The LTL properties checked with Spin
in this study were instantiated with, s = 3, e = 2, and t = 2. Recall that
s, e, and t stand for service count, event engine count, and terminal count
respectively.

5.1 Sanity

In every variant of the Promela model of ADAPOS, data points are repre-
sented as bytes. Access to scalar values (i.e. Booleans, bytes, and integers)
in atomic in Promela. Thus, requirement 1. in Chapter 2.3 is trivial for
the Promela model. The model focuses on requirements 2. – 4. The model
compensates the omission of requirement 1. with three other safety properties
which will be discussed in this Chapter as well.

In the Promela code, the values in the sets X and M are both repre-
sented as bytes. Specifically, DC = 126 and NONE = 127. A priori, nothing
prevents a byte variable representing a value v ∈ X overflowing and thus
unintentionally becoming the reserved constant 126 or 127. An overflow
could also result in the bit 128 (see Chapter 4.5) of the variable becoming
one when it should remain zero. The first property of the model, called
sanity, focuses on detecting overflows indirectly.

As mentioned in Chapter 4, all values in the model are bounded above
by four compile-time constants. Recall that these constants are service count
s, Engine count e, Terminal count t, and event count c. In cyclic mode, LG
keeps cycling over three values per data point. On line 6 of Algorithm 2, LG
sets the value of data point k to zs+ k + 1. Since k cycles between 0 and
s− 1, and z cycles between 0 and 2, the maximum value produced by LG is

zs+ k + 1 = 2s+ (s− 1) + 1 = 3s.

Hence, for the cyclic mode, sanity can be expressed as a simple static property
of a compile-time constant,

3s < 126. (5)

50

For the default mode, deriving the upper bound requires more work. The
derivation is discussed in Appendix A. Sanity for the default mode can be
stated as the inequality

c+ s < 126. (6)

There are quite many choices for c and s that prevent their sum from
overflowing. The correctness of the model does not hinge on sanity, though,
because other safety properties can also detect the consequences of overflows.
More importantly, in the experiments performed on the model, c and s were
chosen to be single-digit numbers.

The proofs for the upper bound for the values produced by LG in
Appendix A demonstrate the use of deductive reasoning on pseudocode
level. For the actual Promela code, a formal proof would require defining
formal semantics [62] for Promela first. Even for small programs, correctness
proofs can be quite tedious to produce. There might be hundreds of proofs
like the ones presented in Appendix A to be performed for real code. This
provides motivation for automated verification.

The Büchi automaton B¬sanity that accepts the negation of sanity (or
insanity) has only two states, the initial non-accepting state s1 and an
accepting state s2 into which the automaton moves if insanity holds. The state
s2 has a self-loop on every action. If the model is given sane parameters, then
B¬sanity fails to take the first step, rejecting insanity. Otherwise, B¬sanity
moves to the accepting state and loops there forever, accepting insanity.

Model checking is an overkill for such a simple static property. Still, as a
property, sanity is a great tool for making sure that the parameters c and s
are within the safe range. Unlike sanity, other properties that were studied
with the model, have temporal operators and refer to non-constant values.
They cannot be verified by checking the initial state alone.

5.2 Safety

Another property which more directly enforces the requirement that values
in FBIs must not overflow is the property named vaguely as safety. Safety
asserts that the values in all indices in the FBIs of Terminals must remain
below 126 at all times. Formally,

�

t−1∧
j=0

s−1∧
k=0

FBI [j, k] < 126

 . (7)

For example, when t = 2 and s = 3, the formula (7) expands to

�((FBI [0, 0] < 126) ∧ (FBI [0, 1] < 126) ∧ (FBI [0, 2] < 126) ∧
(FBI [1, 0] < 126) ∧ (FBI [1, 1] < 126) ∧ (FBI [1, 2] < 126)).

51

5.3 Disjointness

Consider requirement 2. disjointness, in Chapter 2.3. One one hand, all
values of data point k generated by LG are congruent, modulo s. On the
other hand, the values generated to data points k, k′ ∈ D are always distinct
when k 6= k′. ADAPOS processes are not allowed to modify the data point
values they store and transfer. Values that were distinct when they left LG
must remain distinct when they are stored in the FBIs of Terminals.

This requirement has one exception: Initially, all FBIs are initialised
with zeros. Terminals are permitted to have zeros at multiple indices while
waiting for updates from Engines. Hence, values in the FBIs of Terminals
must stay zero weakly until they become disjoint.

Disjointness can be formalised as

�

t−1∧
j=0

s−2∧
k=0

s−1∧
k′=k+1

Null(j, k, k′) ∨Disjoint(j, k, k′)

 , (8)

where

Null(j, k, k′) := FBI [e+ j, k] = 0 ∧ FBI [e+ j, k′] = 0 and
Disjoint(j, k, k′) := FBI [e+ j, k] 6= FBI [e+ j, k′].

5.4 Checksums

The property named checksums refines safety and disjointness. It asserts
that for those indices of Terminal FBIs that receive updates, the values must
have the correct remainder when divided by s. Recall that each data point
In(k) is initialised as k+1 and only modified by incrementing it by s. Hence,
for FBI index k, the correct remainder is (k + 1) % s. Formally,

�

t−1∧
j=0

s−1∧
k=0

FBI [e+ j, k] = 0 ∨ FBI [e+ j, k] % s = (k + 1) % s

 , (9)

5.5 Causality

The property 3. causality, is interpreted as a requirement that the values
stored in the FBIs of Terminals must be less than or equal to the current
input values provided to Engines. Formally,

�

t−1∧
j=0

s−1∧
k=0

FBI [e+ j, k] ≤ In[k]

 . (10)

The direct input and direct input counters variants do not have the array
In. In these variants, the property is instead expressed in terms of FBIs

52

of Engines. Since LG always keeps the FBIs of all Engines synchronised, it
does not matter which Engine’s FBI is referred to in LTL properties. The
only complication is that the most significant bit must be removed by using
a bitwise AND mask.

5.6 Monotonicity

The requirement 4. monotonicity, i.e. that Terminals may not change the
order of updates, can be expressed in terms of consecutive updates: If value
b arrives after value a to a Terminal, then the Terminal must store b after a
in its FBI. Both the previous value a and the current value b of a data point
needs to be stored in order to express monotonicity.

It was discovered that monotonicity may be temporarily violated when a
Terminal connects to a different Engine which has older data points in its
FBI. An additional boolean value was added for tracking the freshness of
data points. A data point is fresh if and only if it has been received as a
part of the FBI sent by an Engine during the connection procedure.

Therefore, FBI entries for Terminals were changed into triples X ×X ×
{0, 1}, where the first component stands for the current value, the second
component stands for the previous value, and the third component is a
Boolean expressing freshness. Initially, FBI [e+ j, k] = (0, 0, 0) for all j ∈ T ,
k ∈ D. Whenever Terminal j updates the entry (v, u, b) with a new value v′
with freshness b′, it writes (v′, v, b′) into FBI [e+ j, k]. Thus, monotonicity
can be formalised as

�

t−1∧
j=0

s−1∧
k=0

Fresh(j, k) ∨ Previous(j, k) ≤ Current(j, k)

 , (11)

where

(v, u, b) := FBI [e+ j, k],
F resh(j, k) := b,

Previous(j, k) := u,

Current(j, k) := v.

There are three things to note about this formalisation. Firstly, the
notion of monotonicity used in this thesis follows a common convention in
computer science. By this convention, a sequence x1, x2, x3, . . . of elements
of a preorder (A,�) is called monotone, or order-preserving, if i ≤ j implies
xi � xj for all indices i and j. In more precise language, this definition
actually defines isotone or non-decreasing sequences, whereas monotonicity
in mathematics entails antitone or order-reversing sequences as well.

53

Secondly, it is sufficient to only consider pairs of consecutive updates.
For example, consider the following two sequences of natural numbers:

σ1 = 0, 1, 2, 3, 4, 5, 6, 7, . . .
σ2 = 0, 1, 2, 4, 3, 5, 6, 7, . . .

σ1 is monotone because n ≤ k implies σ1(n) ≤ σ1(k). On the other hand,
3 ≤ 4, but σ2(3) = 4 > 3 = σ2(4), so σ2 is not monotone (it’s neither
order-preserving nor order-reversing). In general, for any sequence σ, it
suffices to find an index n such that σ(n) > σ(n+ 1) to show that σ is not
monotone (in the computer science sense).

Thirdly, the formalisation of monotonicity in Formula (11) only mentions
Terminals. This is not an issue. If an Engine violates monotonicity, i.e.
changes the ordering of updates and a Terminal honours monotonicity, then
the Terminal simply repeats the mistake made by Engine, so the violation
will be caught by the model checker. If Engines and Terminals both violate
monotonicity in such way that the violations cancel out, then from the
perspective of the outside world, nothing bad happened. The purpose of
the Promela model of ADAPOS is to explore the behaviours visible to the
outside world.

5.7 Combined Effect of the Safety Properties

Consider the case s = 3, c = 3 in the default mode. The Load Generator will
start with values (1, 2, 3), while the ADAPOS Terminals will initially have
values (0, 0, 0) in their FBIs. LG will update each data point exactly once.
The input that LG produces to Engines will be

(1, 2, 3), (4, 2, 3), (4, 5, 3), (4, 5, 6).

Table 3 shows the contents of the FBI of a Terminal in hypothetical coun-
terexamples. The last row contains values violating the safety properties for
each column while the first four lines contain legal FBIs.

Safety Disjointness Checksums Causality Monotonicity

(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
(1,0,0) (1,0,0) (0,0,3) (0,2,0) (1,2,3)
(1,2,0) (1,0,3) (0,2,3) (1,2,3) (1,2,3)
(1,2,3) (1,2,3) (1,2,3) (4,2,3) (4,5,6)

(1,2,126) (3,2,3) (1,2,4) (7,2,3) (4,5,3)

Table 3: Snapshots of a Terminal’s FBI during five hypothetical executions.

All of the five initial fragments in the table would be accepted by all of
the five safety properties. Each property focuses on a particular aspect of

54

safety. Together these properties define which sequences of Terminal FBI
values are to be considered valid.

There are two details to consider. Firstly, none of the properties dictate in
which order Terminals must receive updates, as long as the values themselves
are correct. Secondly, as the monotonicity column hints, the five properties
also allow so-called stuttering steps, where the FBI contents are duplicated,
as well as the omission of intermediary steps.

55

6 Results
After numerous iterations of running Spin and fixing errors in the model
and its specification, the final results were obtained with version 6.6 of the
model. The properties disjointness and checksums had to be weakened due
to a counter-example found by Spin. The two properties were updated in
versions 6.8 and 6.10, with no other changes, and checked again with Spin.

For eight variants, two modes for LG, ten properties, and four event
count values, the total number of runs of the Spin model checker was 640.
The output of the model checker created a dataset of about 30 megabytes
of text. This dataset was processed with Spin2Latex version 0.1.4.1. No
counter-examples or other errors with default mode LG were encountered for
any of the (updated) safety properties that were checked. Due to the large
amount of data produced, only the results with default mode LG without
LTL properties will be presented in this Chapter.31

Tables 4, 5, 6, and 7 show the results for event counts 0, 1, 2, and 3
respectively. States and transitions are in millions, time is in seconds, and
memory is in megabytes. For saving space, the words “input” and “output”
have been abbreviated as I and O in two rows. One hour time limit was
used for all model checking runs, so times exceeding one hour imply timeout.
Timeout implies incomplete verification. For event count 0, only two variants
timed out while for event count 3, all variants timed out.

Variant States Transitions Time Memory

Direct Input 0.909 2.964 1.32 772
Direct Input Counters 0.152 0.719 0.47 695
Base* 1,929.597 6,090.928 3609 207,479
Input Counters* 1,732.826 6,377.193 3608 187,475
Structured I & O 0.090 0.270 0.28 689
Input Channels 0.109 0.327 0.32 694
I & O Channels 0.109 0.327 0.32 694
Structured Input 0.090 0.270 0.28 689

Table 4: Results for event count 0. Verification timed out for variants marked with ‘*’.

The results shown in Tables 4 – 7 seem to suggest that the Structured
Input and Output variant has the smallest reachable state space. However,
for LTL properties, the Input Channels variant performed better. Figure 17
shows the amount of time and memory consumed for verifying the Input
Channels variant without LTL properties using the numbers from Tables
4 – 7. Event count 3 is an exception. As the verification for event count 3
could not be completed in one hour, it had to be rerun without timeout. It

31The results are archived at https://doi.org/10.5281/zenodo.4745459

56

https://doi.org/10.5281/zenodo.4745459

Variant States Transitions Time Memory

Direct Input 36.238 118.184 63.47 4,870
Direct Input Counters 11.871 60.362 26.78 1,887
Base* 1,933.020 6,101.580 3609 207,827
Input Counters* 1,745.192 6,421.090 3608 188,732
Structured I & O 2.006 7.401 3.37 925
Input Channels 3.013 10.471 4.95 1,095
I & O Channels 1,192.309 4,025.300 2906 194,654
Structured Input 2.746 9.854 4.28 996

Table 5: Results for event count 1. Verification timed out for variants marked with ‘*’.

Variant States Transitions Time Memory

Direct Input* 1,922.047 6,056.387 3609 206,706
Direct Input Counters* 1,440.935 6,752.014 3607 157,807
Base* 1,937.755 6,116.348 3609 208,308
Input Counters* 1,693.919 6,235.008 3608 183,521
Structured I & O 110.690 386.985 218 14,745
Input Channels 147.144 495.998 326 23,549
I & O Channels* 1,418.646 4,959.715 3610 227,887
Input Pairs 289.464 914.706 517 36,414

Table 6: Results for event count 2. Verification timed out for variants marked with ‘*’.

Variant States Transitions Time Memory

Direct Input* 1,966.080 6,070.566 3609 211,181
Direct Input Counters* 1,634.125 6,897.237 3608 177,443
Base* 1,942.412 6,131.067 3609 208,782
Input Counters* 1,740.866 6,406.162 3608 188,292
Structured I & O* 1,590.470 5,883.783 3609 206,293
Input Channels* 1,552.148 5,518.906 3610 225,897
I & O Channels* 1,413.876 4,940.419 3610 227,178
Input Pairs* 1,866.103 6,052.492 3610 225,379

Table 7: Results for event count 3. Verification timed out for variants marked with ‘*’.

57

took 2 hours and 9 seconds and 466,903 megabytes of memory to enumerate
the whole reachable state space.

0 1 2 3
10−1

100

101

102

103

104

Event count

T
im

e
(s
)

0 1 2 3

103

104

105

Event count

M
em

or
y
(M

B
)

Figure 17: Time and memory consumption for the Input Channels variant.

The memory consumption data behind Figure 17 hints that increasing the
event count by one might grow amount the memory needed for verification
roughly twenty-fold. The difference in memory consumption between event
counts 0 and 1 is an exception, though. The small apparent difference is
probably caused by overhead dominating the memory consumption with
smaller models.

In addition to having the least state space when combined with LTL
properties, Input Channels variant arguably captures the intuitive idea on
how DIM and 0MQ behaves the best. For these two reasons, Input Channels
variant was chosen for further state space exploration using the bitstate
hashing [33] feature of Spin. Bitstate hashing is a probabilistic state space
compression technique similar to Bloom filters [19]. It is a good method for
quickly covering a large portion of a reachable state space of unknown size
[19, p. 368].

Ten additional runs were executed, one without any LTL properties and
one for each of the nine LTL properties defined for the model. The verifier
executable (Pan) generated by Spin was executed using bitstate hashing
with three hash functions, 512 gigabytes of memory reserved for the hash
table, one billion entries reserved for the DFS stack and a three-hour timeout.
Pan used in total about 580 gigabytes of RAM during these runs. The event
count parameter of the model was set to 10 in all runs.

Later, a run without LTL properties but with otherwise same parameters
was executed with one week timeout. Pan ran out of time without finding
any errors. It managed to cover 1.94 · 1011 states and 8.11 · 1011 transitions.
If there are deadlocks or other such basic errors in the model, they must be
well hidden.

Table 8 summarizes the results. All runs except the ones checking sanity
and progress timed out after the three hours. Again, the state and transition
counts are in millions. As expected, checking sanity took only one state,

58

which has been rounded down to 0 in the table. Spin found a counter-example
to the property named progress, which is a liveness property. It took only
1.43 seconds to find this counter-example.

Never Claim States Transitions

none* 3,260.836 12,957.467
sanity 0.000 0.000
disjointness* 2,937.172 11,664.587
checksums* 2,945.884 11,700.446
safety* 2,958.879 11,754.421
causality* 2,932.432 11,645.993
monotonicity* 2,946.208 11,701.709
progress* 0.459 1.897
synchrony* 2,911.869 11,563.463
convergence* 2,940.560 11,678.290

Table 8: Results for bitstate hashing with the Input Channels variant and event count 10.
Verification timed out for properties marked with ‘*’.

The main result of this study is that the model of ADAPOS seems to
satisfy its safety properties, for as far in the reachable state space that could
be checked within the time and memory budget available. This should
be taken with a grain of salt, though. Bitstate hashing is a sound lossy
compression method for state space. Soundness means that all counter-
examples found with bitstate hashing are legitimate (i.e. bitstate hashing
produces no false positives). Due to the lossy nature of the state space
compression, some legitimate counter-examples might be missed (possibly
leading to false negatives). Thus, like testing, bitstate hashing can only show
the presence of errors and not their absence.

It cannot be said that ADAPOS has been proven to be safe. Nonetheless,
there is substantial amount of evidence supporting the hypothesis of safety.
The volume of state space explored in this study narrows the room in which
defects may exist in the specification of ADAPOS.

59

7 Discussion
This study explored the process of formally modelling a real-life software
system. The goal was to show that for a system such as ADAPOS, this
non-conventional approach would have its merits and bring in added value.
The task turned out to be challenging, but it was a learning experience.

7.1 Lessons Learned

The main lesson learned was that in writing a model, every byte matters.
Memory has to used sparingly, perhaps similarly to how programming might
have been in the early days of computing. Back then, memory was a scarce
and precious resource. Today, there is plenty of memory available. The
reason why memory is a bottle neck for model checking is that every bit of
memory used has the potential of doubling the size of the state space.

Some of the challenges in the modelling process came from interpreting the
DIM and 0MQ protocols. Their published documentation and specifications
are unfortunately not precise enough for direct mathematical formalisation.
The author of this thesis had to develop new formalisations for these two
protocols. The focus of the model presented in this thesis is not on the
underlying protocols, but rather on how the distributed system of ADAPOS
works on top of them. The DIM and 0MQ protocols deserve their own more
detailed models.

7.2 Experiences with Tools and Technologies

As mentioned in the beginning of Chapter 2, a complementary model checker,
DIVINE was tried but had to be dropped from this study. The version32

of DIVINE tried first seemed to have some technical issue that caused a
segmentation violation when the memory usage reached about 272 GB. The
possibility of the segmentation violations being caused by the computing
platform was not ruled out, though. Newer versions of DIVINE could
not be compiled, installed or run in the computing environments offered
by University of Helsinki and CSC. An issue33 has been reported to the
developers of DIVINE.

What comes to the three main advantages of model checking [17, p. 4], the
promise of fully automating model checking while doing so without special
expertise requirements still remains to be delivered. Deploying DIVINE was
not a trivial task in the previous study [49, Ch. 7.2]. It took many weeks of
work. In the current study, it took months of work to make the Promela
models of the current work small enough to be verified with Spin.

324.1.20+2018.12.17
33https://divine.fi.muni.cz/trac/ticket/113

60

https://divine.fi.muni.cz/trac/ticket/113

An extra level of model engineering challenge was caused by the design
decision of storing the different variants of the model in different branches
of the Git version control system that was used in this project. Merging
different branches for transferring changes was found to be problematic. If
branch A contains changes to lines which have not been changed in branch
B, then apparently merging A to B silently overwrites the lines in B that
were changed in A. In many occasions this led into unwanted changes being
introduced in addition to those changes that were actually meant to be
merged.

Cherry-picking commits instead of merging branches seemed to circumvent
this problem, but resulted in many duplicated commits on separate branches.
As each commit would have to be cherry-picked individually in each relevant
branch, this increased the total workload. In retrospect, it might have been
a better idea to represent different variants using just a single Git branch
with CPP macro guards isolating the variants from each other. On the other
hand, CPP is known to create its own set of problems.

The syntax of Promela is quite primitive. It lacks modern comforts
such as subroutines/functions, classes/typeclasses, modules, and so on. The
type system of Promela is likewise very weak and it seems that many
problems that could be caught in compile time are delayed into runtime.
This translates into the need for the users to build up their own toolchains
and scripts to support larger and more systematic modelling efforts. Also,
the output from the verifier executable (Pan) generated by Spin is not in
a standardised machine-readable output which again necessitates writing
custom tools and scripts to scrape the relevant information from the output.

7.3 Related Work

The earlier article [48] presented the high level design and requirements
of ADAPOS. It also contains simulation results focusing on measuring the
performance. The conclusion [48, p. 485] of was that

“ADAPOS turns out to meet its specifications.”

The work presented in this thesis supports this claim for safety properties by
providing considerable amount of additional evidence obtained with model
checking.

As pointed out in Chapter 1, the part of the ADAPRO framework running
persistently has been investigated in another study [49]. The topic and the
methods of that study and the current work are closely related. However,
applying model checking on specification level to ADAPOS turned out to
be more challenging than it was with ADAPRO. A factor contributing to
the greater difficulty of model checking the specification of ADAPOS is
that ADAPOS deals with data whereas ADAPRO focuses merely on control.
ADAPOS turned out to be more challenging both in terms of the effort

61

spent in writing the model and the computational cost of verifying properties
of the model. As Baier and Katoen [2, p. 15] point out, model checking
generally is better suited for verifying control-intensive rather than data-
intensive systems. The empirical experiences of the author of this thesis are
in agreement with that observation.

There exists prior work on formally verification of systems at CERN, such
as the CMS control system case study [37]. The system under verification in
that study is a relative of ALICE DCS. The process algebra-based approach
with bounded model checking demonstrates a flavour of model checking
different than enumerative model checking that was discussed in this thesis.

As mentioned in Chapter 1, ADAPOS is the successor of the ALICE
offline Shuttle [68] system. The article also mentions conditions data, which
is the kind of data both of these systems deal with. The Shuttle system
helped to identify the problem that ADAPOS tries to solve.

Another piece of technology connected to CERN is the SMI++ frame-
work [23]. It has been used for building control systems, including ALICE
DCS [14, 15]. Like ADAPRO, SMI++ uses automata. In fact, ADAPRO
has taken a little bit of influence from it. Even though not discussed in this
thesis, the FSM mechanism is an important internal technology of ADAPOS.

Cloud technologies such as Apache Kafka, Apache Zookeeper and etcd
can be used for similar data pipelining purposes as ADAPOS. Compared
to these technologies, ADAPOS is much simpler, with less than 3000 lines
of C++14 source code according to David A. Wheeler’s tool sloccount34.
ADAPOS has been confirmed empirically [48] to offer a satisfactory level of
real-time performance in the use case it serves.

7.4 Conclusion

In software engineering, the distinctions between specification, design, and
implementation of software systems tend to be fuzzy. A few lines of text
written in natural language or a handful of diagrams might often be all
the specification available for a program. The typical concern of a software
development organisation is the time to market. Specification and verification
are often seen more as hindrances than essential parts creating value to the
project.

The methods in this thesis diverge from traditional software engineering
conventions. The original plan was to verify both the specification and
the implementation of ADAPOS with respect to both safety and liveness
properties with event count 10 or more. These goals turned out to be quite
ambitious. The amount of work needed for meeting them was found to be
more than what fits in a master’s thesis.

Fortunately, Partial success was achieved and deeper understanding on
34https://dwheeler.com/sloccount/

62

https://dwheeler.com/sloccount/

the specification was obtained. The author learned a great deal more on
modelling software systems. Therefore, the author considers this study to be
successful. It seems that employing formal methods is feasible and beneficial
indeed.

Nevertheless, it seems that the user experience of model checkers such
as Spin and DIVINE still have a long way to go before reaching the level
of usability that professional software engineers are rightfully expecting.
Usability and quality of life improvements are not mere exercise handouts, but
crucial steps toward popularisation of formal methods. It is understandable
that researchers cannot afford putting too much effort in this frontier. Their
job is not to make polished products ready for commercialisation, but rather
to explore the science underlying such tools and tools as well as concepts that
do not exist yet. Still, more collaboration between academia and industry in
this matter would surely benefit both parties.

7.5 Future Prospects

The possibilities for future work are numerous. The correctness of individual
ADAPOS processes on implementation level remains an open research ques-
tion. Completing the model checking of ADAPOS for liveness properties by
finding the suitable fairness assumptions and possible improvements to the
model is another important research question left open by the current study.

The eight particular combinations of different input and output mecha-
nisms investigated in this thesis are not the only possible interpretations how
the network layer beneath ADAPOS works. The input and output side of
ADAPOS are orthogonal. For instance, a variant with direct input and out-
put channels could have been investigated, but the way how different variants
were constructed, was not scalable and sustainable. A better methodology
for maintaining multiple alternative variants would be a valuable direction
for future research. Formalising and verifying the DIM or 0MQ protocols is
a also an open direction.

A modelling language with multiple inheritance (e.g., by object-oriented
classes or functional type classes) could be handy for maintaining many
alternative variants of a model. Subroutines would be very useful as well.
These changes could make model checking much more complicated, similarly
to how interprocedural analyses are more complicated than intraprocedural
analyses [52, Ch. 2.5]. Model checking algorithms that support complex
modelling language may require complex proofs of correctness.

Adding a support for bounded quantifiers or indexed connectives could
be a low-hanging fruit. This could be done by simple preprocessing, i.e.
by defining ∀i ∈ {n, n + 1, . . . , n + k}.P (i) to be a macro expanding to
P (n) ∧ P (n+ 1) ∧ ∧ P (n+ k). Similarly, existential quantification could
be expressed using many disjunctions.

Debugging models with Spin and its verifier executable can be frustrating

63

for beginners. There could be a tool for extracting information, such as the
values of all variables in each state, from traces. Traces and states could be
displayed in adjacent panels similarly to how debugger GUIs work.

7.6 Acknowledgements

The author of this thesis wishes to thank the Finnish Grid and Cloud
Infrastructure (FGCI) for supporting this project with computational and
data storage resources during the early stages of this project. The author of
this thesis is also grateful for CSC – IT Center for Science, Finland, whose
Puhti computing cluster provided resources for producing the final results
discussed in this thesis.

References
[1] Abelev, Betty et al.: Upgrade of the ALICE Experiment: Letter of Intent.

(CERN-LHCC-2012-012. LHCC-I-022. ALICE-UG-002), August 2012.
https://cds.cern.ch/record/1475243.

[2] Baier, Christel and Katoen, Joost Pieter: Principles of Model Checking.
MIT Press, April 2008, ISBN 978-0-262-02649-9. https://mitpress.
mit.edu/books/principles-model-checking.

[3] Ball, Thomas, Cook, Byron, Levin, Vladimir, and Rajamani, Sriram
K.: SLAM and Static Driver Verifier: Technology Transfer of Formal
Methods inside Microsoft. In Boiten, Eerke A., Derrick, John, and
Smith, Graeme (editors): Integrated Formal Methods, pages 1–20, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg, ISBN 978-3-540-24756-2.
https://doi.org/10.1007/978-3-540-24756-2_1.

[4] Baranová, Zuzana, Barnat, Jiří, Kejstová, Katarína, Kučera, Tadeáš,
Lauko, Henrich, Mrázek, Jan, Ročkai, Petr, and Štill, Vladimír: Model
Checking of C and C++ with DIVINE 4. In Automated Technology
for Verification and Analysis, volume 10482 of LNCS, pages 201–207.
Springer, 2017. https://doi.org/10.1007/978-3-319-68167-2_14.

[5] Barnat, Jiři, Brim, Luboš, and Ročkai, Petr: Towards LTL Model
Checking of Unmodified Thread-Based C & C++ Programs. In
Goodloe, Alwyn E. and Person, Suzette (editors): NASA For-
mal Methods, pages 252–266, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg, ISBN 978-3-642-28891-3. https://doi.org/10.
1007/978-3-642-28891-3_25.

[6] Ben-Ari, Mordechai: Principles of the Spin Model Checker.
Springer, 2008, ISBN 9781846287701. https://dx.doi.org/10.1007/
978-1-84628-770-1.

64

https://cds.cern.ch/record/1475243
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-642-28891-3_25
https://doi.org/10.1007/978-3-642-28891-3_25
https://dx.doi.org/10.1007/978-1-84628-770-1
https://dx.doi.org/10.1007/978-1-84628-770-1

[7] Bessey, Al, Block, Ken, Chelf, Ben, Chou, Andy, Fulton, Bryan, Hallem,
Seth, Henri-Gros, Charles, Kamsky, Asya, McPeak, Scott, and Engler,
Dawson: A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World. Communications of the ACM, 53(2):66–75,
February 2010, ISSN 0001-0782. https://doi.org/10.1145/1646353.
1646374.

[8] Bowen, J.P. and Hinchey, M.G.: Ten commandments of formal methods.
Computer, 28(4):56–63, 1995. https://doi.org/10.1109/2.375178.

[9] Bruschi, Danilo, Di Pasquale, Andrea, Ghilardi, Silvio, Lanzi, An-
drea, and Pagani, Elena: Formal Verification of ARP (Address Res-
olution Protocol) Through SMT-Based Model Checking - A Case
Study. In Polikarpova, Nadia and Schneider, Steve (editors): Inte-
grated Formal Methods, pages 391–406, Cham, 2017. Springer Inter-
national Publishing, ISBN 978-3-319-66845-1. https://doi.org/10.
1007/978-3-319-66845-1_26.

[10] Buxton, J. N. and Randell, B. (editors): Software Engineering Tech-
niques. Report on a conference sponsored by NATO Science Commitee,
Rome, Italy, April 1970. http://homepages.cs.ncl.ac.uk/brian.
randell/NATO/.

[11] Cadar, Cristian, Dunbar, Daniel, and Engler, Dawson: KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, pages
209–224, USA, 2008. USENIX Association. https://llvm.org/pubs/
2008-12-OSDI-KLEE.html.

[12] Chandra, Satish, Godefroid, Patrice, and Palm, Christopher: Software
Model Checking in Practice: An Industrial Case Study. In Proceedings
of the 24th International Conference on Software Engineering, ICSE
’02, pages 431–441, New York, NY, USA, 2002. Association for Com-
puting Machinery, ISBN 158113472X. https://dx.doi.org/10.1145/
581339.581393.

[13] Chen, Zhe, Gu, Yi, Huang, Zhiqiu, Zheng, Jun, Liu, Chang, and
Liu, Ziyi: Model Checking Aircraft Controller Software: A Case study.
Software: Practice and Experience, 45(7):989–1017, 2015. https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.2242.

[14] Chochula, P., Augustinus, A., Bond, P. M., Lechman, L. M., Rosinský, P.,
Kurepin, A. N., and Pinazza, O.: Operational Experience with the ALICE
Detector Control System. Proc. of International Conference on Accelera-
tor and Large Experimental Physics Control Systems (ICALEPCS’13),

65

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/2.375178
https://doi.org/10.1007/978-3-319-66845-1_26
https://doi.org/10.1007/978-3-319-66845-1_26
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
https://llvm.org/pubs/2008-12-OSDI-KLEE.html
https://llvm.org/pubs/2008-12-OSDI-KLEE.html
https://dx.doi.org/10.1145/581339.581393
https://dx.doi.org/10.1145/581339.581393
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2242
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2242

San Fransisco, CA, USA, pages 1485–1488, 2013. https://accelconf.
web.cern.ch/ICALEPCS2013/papers/frcoaab07.pdf.

[15] Chochula, P., Jirden, L., Augustinus, A., de Cataldo, G., Torcato,
C., Rosinsky, P., Wallet, L., Boccioli, M., and Cardoso, L.: The AL-
ICE Detector Control System. IEEE Transactions on Nuclear Science,
57(2):472–478, 2010. https://doi.org/10.1109/TNS.2009.2039944.

[16] Clarke, Edmund M., Henzinger, T. A., Veith, Helmut, and
Bloem, Roderick P. (editors): Handbook of Model Checking.
Springer, 2018, ISBN 978-3-319-10574-1. https://doi.org/10.1007/
978-3-319-10575-8.

[17] Clarke, Edmund M., Henzinger, Thomas A., Veith, Helmut, and Bloem,
Roderick P.: Introduction to Model Checking. In Clarke, Edmund
M., Henzinger, Thomas A., Veith, Helmut, and Bloem, Roderick P.
(editors): Handbook of Model Checking., pages 1–26. Springer Inter-
national Publishing, Cham, 2018, ISBN 978-3-319-10574-1. https:
//doi.org/10.1007/978-3-319-10575-8_1.

[18] Dijkstra, Edsger W.: Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communications of the ACM, 18(8):453–457,
August 1975, ISSN 0001-0782. https://doi.org/10.1145/360933.
360975.

[19] Dillinger, Peter C. and Manolios, Panagiotis: Bloom Filters in Proba-
bilistic Verification. In Hu, Alan J. and Martin, Andrew K. (editors):
Formal Methods in Computer-Aided Design, pages 367–381, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg, ISBN 978-3-540-30494-4.
https://doi.org/10.1007/978-3-540-30494-4_26.

[20] Finkel, Alain and Schnoebelen, Philippe: Well-structured Transition
Systems Everywhere! Theoretical Computer Science, 256(1):63–92,
2001, ISSN 0304-3975. https://www.sciencedirect.com/science/
article/pii/S030439750000102X, Special Issue on Infinite-State Sys-
tems.

[21] Fischer, Michael J., Lynch, Nancy A., and Paterson, Michael S.: Im-
possibility of Distributed Consensus with One Faulty Process. Jour-
nal of the ACM, 32(2):374–382, April 1985, ISSN 0004-5411. https:
//doi.org/10.1145/3149.214121.

[22] Fitzgerald, John, Bicarregui, Juan, Larsen, Peter Gorm, and Woodcock,
Jim: Industrial Deployment of Formal Methods: Trends and Challenges.
In Romanovsky, Alexander and Thomas, Martyn (editors): Industrial
Deployment of System Engineering Methods, pages 123–143, Berlin,

66

https://accelconf.web.cern.ch/ICALEPCS2013/papers/frcoaab07.pdf
https://accelconf.web.cern.ch/ICALEPCS2013/papers/frcoaab07.pdf
https://doi.org/10.1109/TNS.2009.2039944
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-540-30494-4_26
https://www.sciencedirect.com/science/article/pii/S030439750000102X
https://www.sciencedirect.com/science/article/pii/S030439750000102X
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121

Heidelberg, 2013. Springer Berlin Heidelberg, ISBN 978-3-642-33170-1.
https://doi.org/10.1007/978-3-642-33170-1_10.

[23] Franek, B. and Gaspar, C.: SMI++ Object Oriented Framework for
Designing and Implementing Distributed Control Systems. In IEEE
Symposium Conference Record Nuclear Science 2004., volume 3, pages
1831–1835, 2004. https://doi.org/10.1109/NSSMIC.2004.1462600.

[24] Gan, Xiang, Dubrovin, Jori, and Heljanko, Keijo: A Symbolic
Model Checking Approach to Verifying Satellite Onboard Soft-
ware. Science of Computer Programming, 82:44–55, 2014,
ISSN 0167-6423. https://www.sciencedirect.com/science/
article/pii/S0167642313000658, Special Issue on Automated
Verification of Critical Systems (AVoCS’11).

[25] Gaspar, C., Dönszelmann, M., and Charpentier, Ph.: DIM, a Portable,
Light Weight Package for Information Publishing, Data Transfer and
Inter-Process Communication. Computer Physics Communications,
140(1):102–109, 2001, ISSN 0010-4655. https://www.sciencedirect.
com/science/article/pii/S0010465501002600, 11th International
Conference on Computing in High-Energy and Nuclear Physics (CHEP
2000).

[26] Gerth, Rob, Peled, Doron, Vardi, Moshe Y., and Wolper, Pierre: Sim-
ple On-the-Fly Automatic Verification of Linear Temporal Logic. In
Dembiński, Piotr and Średniawa, Marek (editors): Protocol Specifica-
tion, Testing and Verification XV: Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing
and Verification, Warsaw, Poland, June 1995, pages 3–18, Boston,
MA, 1996. Springer US, ISBN 978-0-387-34892-6. https://doi.org/
10.1007/978-0-387-34892-6_1.

[27] Gilbert, Seth and Lynch, Nancy: Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-Tolerant Web Services. SIGACT
News, 33(2):51–59, June 2002, ISSN 0163-5700. https://doi.org/10.
1145/564585.564601.

[28] Godefroid, Patrice, Klarlund, Nils, and Sen, Koushik: DART: Directed
Automated Random Testing. SIGPLAN Notices, 40(6):213–223, June
2005, ISSN 0362-1340. https://doi.org/10.1145/1064978.1065036.

[29] Godefroid, Patrice, Levin, Michael Y., and Molnar, David: Auto-
mated Whitebox Fuzz Testing. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2008, San Diego,
California, USA, 10th February - 13th February 2008, November
2008. https://www.microsoft.com/en-us/research/publication/
automated-whitebox-fuzz-testing/.

67

https://doi.org/10.1007/978-3-642-33170-1_10
https://doi.org/10.1109/NSSMIC.2004.1462600
https://www.sciencedirect.com/science/article/pii/S0167642313000658
https://www.sciencedirect.com/science/article/pii/S0167642313000658
https://www.sciencedirect.com/science/article/pii/S0010465501002600
https://www.sciencedirect.com/science/article/pii/S0010465501002600
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/1064978.1065036
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/

[30] Goel, Shilpi, Slobodova, Anna, Sumners, Rob, and Swords, Sol: Verify-
ing X86 Instruction Implementations. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2020, page 47–60, New York, NY, USA, 2020. Association for Com-
puting Machinery, ISBN 9781450370974. https://doi.org/10.1145/
3372885.3373811.

[31] Hinchey, M. and Coyle, L.: Evolving Critical Systems: A Research
Agenda for Computer-Based Systems. In 2010 17th IEEE Interna-
tional Conference and Workshops on Engineering of Computer Based
Systems, pages 430–435, March 2010. https://doi.org/10.1007/
978-3-319-10575-8.

[32] Hoare, Charles Anthony Richard: Communicating Sequential Pro-
cesses. Commununications of the ACM, 21(8):666–677, August 1978,
ISSN 0001-0782. https://doi.org/10.1145/359576.359585.

[33] Holzmann, Gerard J.: An Analysis of Bitstate Hashing. In Dembiński,
Piotr and Średniawa, Marek (editors): Protocol Specification, Testing
and Verification XV: Proceedings of the Fifteenth IFIP WG6.1 Inter-
national Symposium on Protocol Specification, Testing and Verifica-
tion, Warsaw, Poland, June 1995, pages 301–314, Boston, MA, 1996.
Springer US, ISBN 978-0-387-34892-6. https://doi.org/10.1007/
978-0-387-34892-6_19.

[34] Holzmann, Gerard J.: The Model Checker SPIN. IEEE Transactions
on Software Engineering, 23:279–295, May 1997. https://doi.org/10.
1109/32.588521.

[35] Holzmann, Gerard J.: Economics of Software Verification. In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’01, pages 80–89, New York,
NY, USA, 2001. ACM, ISBN 1-58113-413-4. https://doi.acm.org/
10.1145/379605.379681.

[36] Holzmann, Gerard J.: Explicit-State Model Checking. In Clarke, Ed-
mund M., Henzinger, Thomas A., Veith, Helmut, and Bloem, Roderick
(editors): Handbook of Model Checking, pages 153–171. Springer Interna-
tional Publishing, 2018, ISBN 978-3-319-10575-1. https://doi.org/
10.1007/978-3-319-10575-8_5.

[37] Hwong, Yi Ling, Keiren, Jeroen J.A., Kusters, Vincent J.J., Leemans,
Sander, and Willemse, Tim A.C.: Formalising and Analysing the Con-
trol Software of the Compact Muon Solenoid Experiment at the Large
Hadron Collider. Science of Computer Programming, 78(12):2435–2452,
2013, ISSN 0167-6423. https://www.sciencedirect.com/science/

68

https://doi.org/10.1145/3372885.3373811
https://doi.org/10.1145/3372885.3373811
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-0-387-34892-6_19
https://doi.org/10.1007/978-0-387-34892-6_19
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.acm.org/10.1145/379605.379681
https://doi.acm.org/10.1145/379605.379681
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-319-10575-8_5
https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://www.sciencedirect.com/science/article/pii/S0167642312002365

article/pii/S0167642312002365, Special Section on International
Software Product Line Conference 2010 and Fundamentals of Software
Engineering (selected papers of FSEN 2011).

[38] Jhala, Ranjit and Majumdar, Rupak: Software Model Checking. ACM
Computing Surveys, 41(4), October 2009, ISSN 0360-0300. https:
//doi.acm.org/10.1145/1592434.1592438.

[39] Kaivola, Roope, Ghughal, Rajnish, Narasimhan, Naren, Telfer, Am-
ber, Whittemore, Jesse, Pandav, Sudhindra, Slobodová, Anna, Taylor,
Christopher, Frolov, Vladimir, Reeber, Erik, and Naik, Armaghan:
Replacing Testing with Formal Verification in Intel R© CoreTM i7 Pro-
cessor Execution Engine Validation. In Bouajjani, Ahmed and Maler,
Oded (editors): Computer Aided Verification, pages 414–429, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg, ISBN 978-3-642-02658-4.
https://doi.org/10.1007/978-3-642-02658-4_32.

[40] Kant, Philipp, Hammond, Kevin, Coutts, Duncan, Chapman, James,
Clarke, Nicholas, Corduan, Jared, Davies, Neil, Díaz, Javier, Güde-
mann, Matthias, Jeltsch, Wolfgang, Szamotulski, Marcin, and Vino-
gradova, Polina: Flexible Formality Practical Experience with Agile
Formal Methods. In Byrski, Aleksander and Hughes, John (edi-
tors): Trends in Functional Programming, pages 94–120, Cham, 2020.
Springer International Publishing, ISBN 978-3-030-57761-2. https:
//doi.org/10.1007/978-3-030-57761-2_5.

[41] Klein, Gerwin, Elphinstone, Kevin, Heiser, Gernot, Andronick, June,
Cock, David, Derrin, Philip, Elkaduwe, Dhammika, Engelhardt, Kai,
Kolanski, Rafal, Norrish, Michael, Sewell, Thomas, Tuch, Harvey,
and Winwood, Simon: SeL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles, SOSP ’09, page 207–220, New York, NY,
USA, 2009. Association for Computing Machinery, ISBN 9781605587523.
https://dx.doi.org/10.1145/581339.581393.

[42] Kupferman, Orna: Automata Theory and Model Checking. In Clarke,
Edmund M., Henzinger, Thomas A., Veith, Helmut, and Bloem, Roder-
ick (editors): Handbook of Model Checking, pages 107–151, Cham, 2018.
Springer International Publishing, ISBN 978-3-319-10575-8. https:
//doi.org/10.1007/978-3-319-10575-8_4.

[43] Lahtinen, Jussi, Valkonen, Janne, Björkman, Kim, Frits, Juho, Niemelä,
Ilkka, and Heljanko, Keijo: Model Checking of Safety-critical Soft-
ware in the Nuclear Engineering Domain. Reliability Engineering
& System Safety, 105:104–113, 2012, ISSN 0951-8320. https://www.

69

https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://doi.acm.org/10.1145/1592434.1592438
https://doi.acm.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-030-57761-2_5
https://doi.org/10.1007/978-3-030-57761-2_5
https://dx.doi.org/10.1145/581339.581393
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://www.sciencedirect.com/science/article/pii/S0951832012000555
https://www.sciencedirect.com/science/article/pii/S0951832012000555

sciencedirect.com/science/article/pii/S0951832012000555, ES-
REL 2010.

[44] Lamport, Leslie: Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering, SE-3:125–143, 1977. https:
//doi.org/10.1109/TSE.1977.229904.

[45] Lamport, Leslie: How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979, ISSN 0018-9340. https://doi.org/
10.1109/TC.1979.1675439.

[46] Lamport, Leslie: Paxos Made Simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Whole Number 121, December
2001), pages 51–58, December 2001. https://www.microsoft.com/
en-us/research/publication/paxos-made-simple/.

[47] Leroy, Xavier: Formal Verification of a Realistic Compiler. Commu-
nunications of the ACM, 52(7):107–115, July 2009, ISSN 0001-0782.
https://doi.org/10.1145/1538788.1538814.

[48] Lång, John L., Augustinus, André, Bond, Peter M., Chochula, Peter,
Lechman, L. Mateusz, Pinazza, Ombretta, and Kurepin, Alexandr
N.: ADAPOS: An Architecture for Publishing ALICE DCS Conditions
Data. In Proc. of International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’17), Barcelona,
Spain, 8-13 October 2017, number 16 in International Conference on
Accelerator and Large Experimental Control Systems, pages 482–485,
Geneva, Switzerland, January 2018. JACoW, ISBN 978-3-95450-193-9.
https://jacow.org/icalepcs2017/papers/tupha042.pdf.

[49] Lång, John L. and Prasetya, I. S. W. B.: Model Checking a C++
Software Framework: A Case Study. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, pages 1026–1036, New York, NY, USA, 2019. Association for
Computing Machinery, ISBN 9781450355728. https://doi.org/10.
1145/3338906.3340453.

[50] Natarajan, V. and Holzmann, Gerard J.: Outline for an Operational
Semantics of PROMELA. In The SPIN Verification System. Proceedings
of the Second SPIN Workshop 1996., volume 32 of DIMACS. AMS.
American Mathematical Society, 1997.

[51] Newcombe, Chris, Rath, Tim, Zhang, Fan, Munteanu, Bogdan, Brooker,
Marc, and Deardeuff, Michael: How Amazon Web Services Uses Formal

70

https://www.sciencedirect.com/science/article/pii/S0951832012000555
https://www.sciencedirect.com/science/article/pii/S0951832012000555
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/1538788.1538814
https://jacow.org/icalepcs2017/papers/tupha042.pdf
https://doi.org/10.1145/3338906.3340453
https://doi.org/10.1145/3338906.3340453

Methods. Commununications of the ACM, 58(4):66–73, March 2015,
ISSN 0001-0782. https://dx.doi.org/10.1145/2699417.

[52] Nielson, Flemming, Nielson, Hanne Riis, and Hankin, Chris: Principles
of Program Analysis. Springer-Verlag, Berlin, Heidelberg, corrected
2nd edition, 2005, ISBN 3-540-65410-0. https://doi.org/10.1007/
978-3-662-03811-6.

[53] Ongaro, Diego: Consensus: Bridging Theory and Practice. PhD the-
sis, Stanford University, August 2014. https://purl.stanford.edu/
qr033xr6097.

[54] Peled, Doron: Partial-Order Reduction. In Clarke, Edmund M., Hen-
zinger, Thomas A., Veith, Helmut, and Bloem, Roderick (editors):
Handbook of Model Checking, pages 173–190. Springer International Pub-
lishing, 2018, ISBN 978-3-319-10574-1. https://doi.org/10.1007/
978-3-319-10575-8_6.

[55] Pike, Lee, Wegmann, Nis, Niller, Sebastian, and Goodloe, Alwyn: Ex-
perience Report: A Do-It-Yourself High-Assurance Compiler. SIG-
PLAN Notices, 47(9):335–340, September 2012, ISSN 0362-1340. https:
//dx.doi.org/10.1145/2398856.2364553.

[56] Pnueli, Amir: The Temporal Logic of Programs. In 18th Annual Sym-
posium on Foundations of Computer Science (sfcs 1977), pages 46–57,
October 1977. https://dx.doi.org/10.1109/SFCS.1977.32.

[57] Ringer, Talia, Palmskog, Karl, Sergey, Ilya, Gligoric, Milos, and Tatlock,
Zachary: QED at Large: A Survey of Engineering of Formally Veri-
fied Software. Foundations and Trends R© in Programming Languages,
5(2-3):102–281, 2019, ISSN 2325-1107. https://dx.doi.org/10.1561/
2500000045.

[58] Rozier, Kristin Y.: Linear Temporal Logic Symbolic Model
Checking. Computer Science Review, 5(2):163–203, 2011,
ISSN 1574-0137. https://www.sciencedirect.com/science/
article/pii/S1574013710000407.

[59] Ročkai, Petr: Model Checking Software. Doctoral theses, dissertations,
Masaryk University, Faculty of Informatics, Brno, 2015. https://is.
muni.cz/th/tpopu/.

[60] Rupley, Jeff, King, John, Quinnell, Eric, Galloway, Frank, Patton,
Ken, Seidel, Peter Michael, Dinh, James, Bui, Hai, and Bhowmik,
Anasua: The Floating-Point Unit of the Jaguar x86 Core. In 2013 IEEE
21st Symposium on Computer Arithmetic, pages 7–16, 2013. https:
//doi.org/10.1109/ARITH.2013.24.

71

https://dx.doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://purl.stanford.edu/qr033xr6097
https://purl.stanford.edu/qr033xr6097
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1007/978-3-319-10575-8_6
https://dx.doi.org/10.1145/2398856.2364553
https://dx.doi.org/10.1145/2398856.2364553
https://dx.doi.org/10.1109/SFCS.1977.32
https://dx.doi.org/10.1561/2500000045
https://dx.doi.org/10.1561/2500000045
https://www.sciencedirect.com/science/article/pii/S1574013710000407
https://www.sciencedirect.com/science/article/pii/S1574013710000407
https://is.muni.cz/th/tpopu/
https://is.muni.cz/th/tpopu/
https://doi.org/10.1109/ARITH.2013.24
https://doi.org/10.1109/ARITH.2013.24

[61] Sakarovitch, Jacques: Elements of Automata Theory. Cam-
bridge University Press, 2009, ISBN 9780521844253. http:
//search.ebscohost.com/login.aspx?direct=true&db=e000xww&
AN=656957&site=ehost-live&scope=site.

[62] Schmidt, David A.: Programming Language Semantics. In Encyclopedia
of Computer Science, pages 1463–1466, GBR, 2003. John Wiley and Sons
Ltd., ISBN 0470864125. https://dl.acm.org/doi/10.5555/1074100.
1074733.

[63] Sen, Koushik, Marinov, Darko, and Agha, Gul: CUTE: A Concolic Unit
Testing Engine for C. SIGSOFT Software Engineering Notes, 30(5):263–
272, September 2005, ISSN 0163-5948. https://dx.doi.org/10.1145/
1095430.1081750.

[64] Valmari, Antti: The State Explosion Problem. In Reisig, Wolfgang
and Rozenberg, Grzegorz (editors): Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets, pages 429–528, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg, ISBN 978-3-540-49442-3. https://
doi.org/10.1007/3-540-65306-6_21.

[65] Wadler, Philip: Propositions as Types. Communications of the ACM,
58(12):75–84, November 2015, ISSN 0001-0782. https://doi.org/10.
1145/2699407.

[66] Wilcox, James R., Woos, Doug, Panchekha, Pavel, Tatlock, Zachary,
Wang, Xi, Ernst, Michael D., and Anderson, Thomas: Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’15, pages 357–368,
New York, NY, USA, 2015. Association for Computing Machinery,
ISBN 9781450334686. https://doi.org/10.1145/2737924.2737958.

[67] Wolper, Pierre: Expressing Interesting Properties of Programs in Propo-
sitional Temporal Logic. In Proceedings of the 13th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL
’86, pages 184–193, New York, NY, USA, 1986. Association for Comput-
ing Machinery, ISBN 9781450373470. https://dx.doi.org/10.1145/
512644.512661.

[68] Zampolli, Chiara, Carminati, Federico, and Colla, Alberto: The SHUT-
TLE: the ALICE Framework for the extraction of the conditions Data.
In Proceedings of 13th International Workshop on Advanced Comput-
ing and Analysis Techniques in Physics Research — PoS(ACAT2010),
volume 093, page 066, February 2011. https://doi.org/10.22323/1.
093.0066.

72

http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=656957&site=ehost-live&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=656957&site=ehost-live&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=656957&site=ehost-live&scope=site
https://dl.acm.org/doi/10.5555/1074100.1074733
https://dl.acm.org/doi/10.5555/1074100.1074733
https://dx.doi.org/10.1145/1095430.1081750
https://dx.doi.org/10.1145/1095430.1081750
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2737924.2737958
https://dx.doi.org/10.1145/512644.512661
https://dx.doi.org/10.1145/512644.512661
https://doi.org/10.22323/1.093.0066
https://doi.org/10.22323/1.093.0066

A Derivation for Sanity in the Default Mode
In this appendix, it will be shown that in the default mode, no overflows in
the array In occur, if c+ s < 126. In what follows, the byte constant byte s
will be converted implicitly into a natural number when needed by applying
the inclusion mapping from bytes to natural numbers, i.e. by assuming
unrestricted precision. Let

• A ⊆ Ns be an array of natural numbers indexed from 0 to s − 1,
initialised as A[k] = k + 1 for all k ∈ D;

• p ∈ N \ {as|a ∈ N} be a positive natural number coprime to s;

• q = bp/sc be the quotient of p/s; and

• r = p− qs ∈ D be the remainder of p/s.

Consider a generalisation of Algorithm 1 that replaces In with A. This
generalised version of LG will be referred to as the Generalised Load Generator
(GLG).

Lemma A.1. For all s > 1 and p > 0, after p updates, GLG has updated
the index r − 1 last. The values in the array are

A[k] =


p+ s+ k − r + 1 if k ∈ {0, 1, . . . , r − 2}
p+ s if k = r − 1
p+ k − r + 1 if k ∈ {r, r + 1, . . . , s− 1}

. (12)

Proof. By induction on p.
In the base case, p = 1. Thus,

q = bp/sc = b1/sc = 0,

because 1/s < 1 for s > 1. Furthermore,

r = p− qs = 1− 0s = 1.

During the first step of the loop on lines 3 – 6 of the generalised version of
Algorithm 1, A[k] was incremented by s. The variable k was 0 at this point,
so GLG only updated the first value in A, i.e. the value A[0], or A[r − 1].
Hence, after the first update,

A = (1 + s, 2, 3, . . . , s)
= (1 + s, 1 + 1− 1 + 1, 1 + 2− 1 + 1, . . . , 1 + (s− 1)− 1 + 1)
= (p+ s, p+ 1− r + 1, p+ 2− r + 1, . . . , p+ (s− 1)− r + 1),

so the thesis holds when p = 1.

i

For the inductive case, assume that the thesis holds for some p ≥ 1. In
other words, by assumption, after p updates, GLG has updated the index
r − 1 last and the Equation (12) holds. GLG will update the data point at
index (r− 1) + 1 = r with the value A[r] + s next, on line 5 of the generalised
version of Algorithm 1.

By induction hypothesis, the first r − 1 values in A are

(p+ s− r + 1, p+ s+ 1− r + 1, . . . p+ s+ (r − 2)− r + 1).

A[r − 1] can also be written as

p+ s = p+ s+ (r − r) + (1− 1)
= p+ s+ (r − 1)− r + 1.

Thus, for all k < r,

A[k] = p+ s+ k − r + 1. (13)

By induction hypothesis,

A[r] = p+ r − r + 1.

The new value will be

A[r] + s = (p+ r − r + 1) + s

= (p+ 1) + s.
(14)

GLG did not change any of the values A[k] for r < k < s− 1. Hence, for
k ≥ r, the induction hypothesis yields

A[k + 1] = p+ (k + 1)− r + 1.

This can rewritten as

A[k] = p+ k − r + 1, (15)

for r < k < s.
By the base case, equations (13), (14), and (15), and induction, Lemma

A.1 holds for all p > 1 coprime to s. �

Lemma A.1 breaks down when p = as, because then

q = bp/sc = bas/sc = a.

This implies that

r = p− qs = as− as = 0.

Now r − 1 becomes negative. The cases p = 0, p = as, and s = 1 can be
covered with another lemma.

ii

Lemma A.2. After p = as updates for some a ∈ N,

A = (1 + p, 2 + p, . . . , s+ p).

Proof. After p = as updates, GLG has updated every value exactly q = bp/sc
times. Since each update increments the updated value by s, it follows that
after p updates,

A = (1 + qs, 2 + qs, . . . , s+ qs). (16)

Since

qs = bp/scs = bas/scs = as = p,

the claim follows by substituting qs with p in Equation (16). �

The two lemmas above can be used for proving an upper bound for the
values generated by LG.

Theorem A.3. For the default mode LG, the largest value ever stored in In
will be at most c′+s′, with c′ and s′ being the natural numbers corresponding
to the bytes c and s respectively.

Proof. Firstly, note that no other process write into In. Especially the
largest value will be written by LG. Again, let c and s be converted into
natural numbers whenever needed in the following reasoning. In other words,
the primes in c′ and s′ will be dropped.

If c = as for some a ∈ N, then the claim follows immediately from
Lemma A.2. If c 6= as for any a ∈ N, then Equation (12) holds by Lemma A.1.
Consider the cases:

• For k ∈ {0, 1, . . . , r − 2}, the largest value will be

A[r − 2] = c+ s+ (r − 2)− r + 1
= c+ s− 1
< c+ s.

• For k = r − 1, the value will be A[r − 1] = c+ s.

• For k ∈ {r, r + 1, . . . , s− 1}, the largest value will be

A[s− 1] = c+ (s− 1)− r + 1
= c+ s− r
< c+ s,

because c 6= as implies 0 < r < s.

Therefore, the largest value written into A by GLG after c updates will be
exactly c+ s. It is not possible for LG to produce values greater than GLG
does, but due to byte overflows, LG could produce smaller values. �

iii

	Introduction
	Background
	The O2 Project
	ALICE Data Point Service
	Requirements of ADAPOS
	What Makes Testing Insufficient for ADAPOS?
	Why Formal Methods?
	Why Model Checking in Particular?

	Enumerative LTL Model Checking
	Finite State Machines
	Linear Temporal Logic
	Enumerative Model Checking
	State Space Explosion

	The Model of ADAPOS
	Processes in the Model
	Differences Between the Model and the Implementation
	The Base Variant
	Input Counters Variant
	Direct Input Variant
	Direct Input Counters Variant
	Structured Input Variant
	Structured Input and Output Variant
	Input Channels Variant
	Input and Output Channels Variant
	Spin to LaTeX Converter

	The Specification of ADAPOS
	Sanity
	Safety
	Disjointness
	Checksums
	Causality
	Monotonicity
	Combined Effect of the Safety Properties

	Results
	Discussion
	Lessons Learned
	Experiences with Tools and Technologies
	Related Work
	Conclusion
	Future Prospects
	Acknowledgements

	References
	Derivation for Sanity in the Default Mode

