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CpGmotifs: a tool to discover DNA motifs 
associated to CpG methylation events
Giovanni Scala1, Antonio Federico2,3 and Dario Greco2,3,4*   

Background
DNA methylation aberration has been associated with several pathological conditions 
and, more recently, recognized as an important therapeutic target [1]. One of the most 
interesting aspects related to DNA methylation regards the ability of a CpG site to be 
more or less susceptible to changes in its methylation status. In fact, the propensity of 
CpG sites to de novo methylation is notably heterogeneous over the whole genome [2]. 
The reasons for such a discrepancy have been widely investigated. For instance, it has 
been demonstrated that a quantitative relationship exists between the DNA sequence 
composition and the stability of the associated methylation patterns [3, 4]. While this 
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Background:  The investigation of molecular alterations associated with the conserva-
tion and variation of DNA methylation in eukaryotes is gaining interest in the biomedi-
cal research community. Among the different determinants of methylation stability, the 
DNA composition of the CpG surrounding regions has been shown to have a crucial 
role in the maintenance and establishment of methylation statuses. This aspect has 
been previously characterized in a quantitative manner by inspecting the nucleotidic 
composition in the region. Research in this field still lacks a qualitative perspective, 
linked to the identification of certain sequences (or DNA motifs) related to particular 
DNA methylation phenomena.

Results:  Here we present a novel computational strategy based on short DNA motif 
discovery in order to characterize sequence patterns related to aberrant CpG meth-
ylation events. We provide our framework as a user-friendly, shiny-based application, 
CpGmotifs, to easily retrieve and characterize DNA patterns related to CpG methylation 
in the human genome. Our tool supports the functional interpretation of deregulated 
methylation events by predicting transcription factors binding sites (TFBS) encompass-
ing the identified motifs.

Conclusions:  CpGmotifs is an open source software. Its source code is available on 
GitHub https://​github.​com/​Greco-​Lab/​CpGmo​tifs and a ready-to-use docker image is 
provided on DockerHub at https://​hub.​docker.​com/r/​greco​lab/​cpgmo​tifs.
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quantitative relationship has been extensively studied [5, 6], the existence of qualitative 
features between a particular DNA sequence and its methylation status has not been 
fully explored. The concept of DNA motif can be used to associate CpG methylation 
changes to their DNA context [1]. The usage of DNA motifs allows researchers to easily 
explore families of closely related DNA sequences that are over-represented in a set of 
sequences of interest. Such an approach has been used in [7] to identify DNA motifs that 
regulate DNA methylation, in [8] to identify transcription factor-based epigenetic sig-
natures in neural cells and in [1] DNA sequences associated to changes in methylation 
patterns in different cancer types. The concept of methylation related motifs analysis has 
already been implemented in several other tools in the literature. For example, SEM-
plMe [9] uses motif analysis to predict the effects of methylation patterns measured in 
a BS experiment within binding site regions derived from a ChIP-seq experiment. Also, 
MotifMaker [10] identifies motifs associated with SMRT output methylation sequences. 
Here, we propose a strategy aimed to identify DNA motifs over-represented in a set of 
aberrantly methylated DNA sequences, obtained from a microarray-based DNA meth-
ylation experiment. This allows the user to pinpoint DNA motifs which are prone to 
undergo aberrant methylation in a certain biological condition. Moreover, our tool pre-
dicts transcription factor binding sites (TFBS) encompassing the identified motifs hence 
facilitating the exploration of possible consequences of specific DNA methylation pat-
terns on the downstream gene transcriptional regulation. In this way, our tool supports 
the user in the biological interpretation of the results of a DNA methylation experiment. 
We developed CpGmotifs, an interactive tool based on a Graphical User Interface (GUI) 
implemented in R-Shiny. CpGmotifs provides a seamless and straightforward analytic 
flow to researchers investigating DNA motifs associated with methylation changes.

Implementation
Input

The input is constituted by one or more foreground sets of CpGs of interest (TargetCpGs) 
and one background set (BackCpGs). Each TargetCpG set is provided as a tab separated 
file containing 3 mandatory columns and an optional column. Each TargetCpG set con-
sists of a table where each CpG is annotated with its methylation status (hyper-methyl-
ated or hypo-methylated). The background set represents the universe, typically defined 
as the whole set of tested CpGs, from which the TargetCpG set is derived. A flanking 
region size around each CpG site is used to retrieve the flanking sequences of each CpG 
site in the reference genome. The choice of the region size depends on various factors 
that are related to (1) the particular biological question, (2) the chosen motif search algo-
rithm, and (3) the computational resources. In the next step, the tool retrieves the target 
and background flanking sequence sets using the BSgenome R package (https://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​BSgen​ome.​html).

Motif discovery

The target and the background sequence sets are then provided as the input to a de 
novo DNA motif search tool. For this task, we make use of the DREME [11] tool from 
the MEME suite, which provides in output enriched DNA motifs. Once the enrich-
ment analysis is completed, statistically significant motifs, along with corresponding 

https://www.bioconductor.org/packages/release/bioc/html/BSgenome.html
https://www.bioconductor.org/packages/release/bioc/html/BSgenome.html
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information, are collected. In particular, for each significant motif, the following infor-
mation is retrieved by parsing the DREME output xml file in R: (1) the motif consensus 
sequence; (2) the motif enrichment e-value; (3) the number of sequences carrying the 
motif in the TargetCpGs-seqs set; (4) the number of sequences not carrying the motif in 
the TargetCpGs-seqs set. For each discovered motif, the tool retrieves the correspond-
ing list of CpGs containing the motif in their flanking sequence. This is accomplished 
by retrieving from the TargetCpGs sequences set all the motif consensus sequences 
reported in the DREME output. Once this set is obtained, the tool annotates the dis-
covered motifs with the following additional fields (as reported in Additional file  1: 
Table S1):

•	 The number of hyper-methylated CpGs in the supporting set;
•	 The number of hypo-methylated CpGs in the supporting set;
•	 The methylation ratio of the supporting set (number of hyper-methylated CpGs/

number of hypomethylated CpGs);
•	 The methylation unbalance p-value, computed by using an enrichment test over the 

contingency matrix built with hyper(hypo)-methylated CpGs in the supporting set 
and hyper(hypo)-methylated CpGs in the background set.

Motif characterization

Once the annotated motifs are retrieved, it is possible to compare the obtained motifs 
among different experimental conditions or the different methylation trends, in order 
to get an insight on the specificity of the phenomenon under consideration. By using the 
pairwiseAlignment function from the Biostrings R package (https://​bioco​nduct​or.​org/​
packa​ges/​relea​se/​bioc/​html/​Biost​rings.​html), the tool computes the distance between 
two motifs using their consensus sequence (provided as IUPAC codes) and a nucleotide 
substitution matrix obtained through the nucleotideSubstitutionMatrix function from 
the Biostrings R package. The obtained similarity scores are normalized in the interval 
[0–1] using min-max normalization and the corresponding distance is computed as its 
complement to 1. Once the distance between all pairs of motifs has been obtained, a 
distance matrix is computed and used to perform clustering analysis. Hierarchical clus-
tering is applied and the results are represented by means of a dendrogram adorned with 
methylation information from each motif by using the functions provided by the den-
dextend R package [12].

Regulatory annotation

DNA motifs are primarily used to search for affinities between binding sites of mol-
ecules interacting with the DNA, including transcription factors (TFs). In this setting, 
they can be used to study which TFs show affinity with the discovered motifs, and how 
their function is modulated by the methylation status of the associated CpG. CpGmo-
tifs interrogates public databases of known motifs such as JASPAR [13], using the Tom-
tom [14] tool from the MEME suite and the obtained motifs as input. A list of highly 
similar motifs along with significance p-value and the corresponding binding proteins is 
returned and associated with each discovered motif (Fig. 1).

https://bioconductor.org/packages/release/bioc/html/Biostrings.html
https://bioconductor.org/packages/release/bioc/html/Biostrings.html
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CpGmotifs tool

The CpGmotifs tool is built as a user-friendly and intuitive interface in order to allow the 
users to have a smooth experience throughout the entire analysis. A typical CpGmotifs 
analysis goes through three main steps, performed by using the three tabs located on 
the left side of the main interface. The first step consists of loading the required files and 
annotations, as shown in Fig. 2 (1). In particular, the user first selects the proper annota-
tion (2) that is needed to associate genomic coordinates (and associated sequences) to 
CpG IDs. The user can then choose between the Illumina Infinium Human Methyla-
tion 450K (https://​suppo​rt.​illum​ina.​com/​array/​array_​kits/​infin​ium_​human​methy​latio​
n450_​beadc​hip_​kit.​html) and the Infinium MethylationEPIC (https://​www.​illum​ina.​
com/​produ​cts/​by-​type/​micro​array-​kits/​infin​ium-​methy​lation-​epic.​html) annotations or, 
alternatively, load a custom hg19 annotation. Next, the user uploads a CpG background 
file (3) containing all the CpG sites representing the enrichment background, including 
their genomic location. Similarly, the user provides one or more target CpG files (4) con-
taining the CpGs of interest for the motif enrichment analysis. All of the uploaded files 
must be in tab separated format. Finally, the user may set the size of the CpG flanking 
region where the tool will search for enriched motifs (5).

The second step of the analysis consists in the detection of enriched CpG motifs, as 
shown in Fig. 3. The user can perform the analysis by selecting the “Motif analysis” tab 
(6), where, before starting the motifs search (7), the user has the possibility to set several 
parameters in order to filter and annotate the results of the motif analysis. In particu-
lar, the “motif p-value threshold” field (8) indicates the p-value of the Fisher’s Exact test 
for the enrichment of the positive motifs over the background sequences. The “motifs 

Fig. 1  Search and analysis of DNA motifs related to CpG methylation events. Each box represents one of the 
intermediate steps of the proposed analysis. For each arrow, the required parameters are reported on the 
right side, while the employed tools to carry out the step are shown on the left side

https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit.html
https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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e-value threshold” field (9) indicates the motif p-value times the number of candidate 
motifs tested. The “methylation unbalance threshold” field (10) indicates the percent-
age of methylated or unmethylated CpG in order to consider a certain motif as methyl-
ated, unmethylated or neutral. The “Unbalance Fisher p-value threshold” refers to the 
Fisher’s test p-value for the enrichment of methylated/unmethylated CpGs in the set 
of CpG sites carrying the motif. As a result, the tool provides a table reporting all the 

Fig. 2  Files loading interface. Input files loading interface of the CpGmotifs tool

Fig. 3  Motif analysis interface of the CpGmotifs tool. Panel A: Parameters setting bar. Panel B: Table reporting 
the analysis output. Panel C: Heatmap summarizing the analysis results. Panel D: hierarchical clustering of 
motifs and methylation status annotation bar
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enriched motifs, including their sequence, length, methylation trend and all the informa-
tion regarding the statistical tests. By pressing the “Export Summary” button (12) the 
user can export the results table in .csv format. Along with the table, the tool produces 
two graphical representations of the results through a heatmap and a clustering dendro-
gram showing the motifs sequence similarity and their methylation trends. A clustering 
example is provided in Additional file 1: Figure S1.

The third step of the analysis consists in the identification of putative TFBS overlap-
ping with the significant motifs. Also, in this case the user has the possibility to fine tune 
the parameters for the statistical analysis and filter the output of the analysis. In detail, 
the TF p-value threshold field (15) indicates the p-value threshold of the Tomtom TF 
enrichment test. The TF e-value threshold (16) indicates the E-value of the Tomtom TF 
enrichment test. TF q-value threshold (17) indicates the Benjamini & Hochberg cor-
rected p-value, while the TF overlap threshold (18) indicates the minimum overlap (in 
the optimal alignment) of the TFBS with a certain motif to be included in the analysis. 
The user has the possibility to download the summary table of the obtained results as 
.csv file (19). Moreover, the user is provided with a heatmap reporting the TFs for which 
a TFBS has been identified on the columns and the samples on the rows. A transcription 
factors annotation example is provided in Additional file 1: Figure S2 and Table S2.

Results and discussion
Case study

We showcase the functionalities of CpGmotifs on five sets of differentially methylated 
probes in isolated cells from whole blood in selected susceptibility genes for inflamma-
tory diseases, from the catalog of published genome-wide association studies (http://​
www.​genome.​gov/​gwast​udies/) [15], and reanalysed in [16]. The included diseases were 
asthma, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus, type 1 
and type 2 diabetes. Through the analysis of these differentially methylated probes we 
sought to identify whether overrepresented DNA motifs (or motifs families) exist in the 
context of the deregulated probes. Moreover, we aim at identifying the overall methyla-
tion trend of the identified motifs and to infer the regulatory implications of the meth-
ylation unbalance through the TFBS prediction.

In order to perform the analysis, the Infinium Human Methylation 450K annotation 
was chosen. The input to the CpGmotifs tool were 5 target CpG files in tab delimited 
format (Additional file  1) containing the probes of interest for the five above men-
tioned inflammatory conditions and the CpG background file  containing all the probes 
reported in the selected annotation. The flanking region size was set to 20. The motif 
analysis was performed with the following parameters:

•	 Motif p-value threshold: 0.05;
•	 Motif e-value threshold: 0.05;
•	 Methylation unbalance threshold: 0.7;
•	 Unbalance Fisher p-value threshold: 1;

We obtained 7 significantly enriched DNA motifs over all the 5 conditions. Of these 
motifs, 1 was derived from asthma, 1 from rheumatoid arthritis and 1 from systemic 

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
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lupus erythematosus, while 2 motifs derived from both type 1 and type 2 diabetes. Over-
all, 4 motifs were characterized as mainly hyper-methylated, 1 motif as hypo-methylated 
and 2 as neutral. To the best of our knowledge, none of the motifs were previously asso-
ciated with the relative diseases, meaning that our results could represent an unexplored 
ground of investigation. The Fig. 3 shows a heatmap based on the sequence similarity of 
the motifs, while the clustering dendrogram underlines the methylation unbalance trend 
for each motif.

Subsequently, we the TFBS analysis was performed with the following parameters:

•	 TF p-value threshold: 0.05;
•	 TF e-value threshold: 10;
•	 TF q-value threshold: 1;
•	 TF overlap threshold: 1;

As a result, a total of eight TFBS were found to be significantly associated with the iden-
tified DNA motifs (Fig. 4). Of these TFs, three were associated with the motif TGA​WAA​
A deriving from the asthma dataset. Three TFs were associated with the motif AAA​YGA​
AA deriving from type 1 diabetes, while 1 TF is associated with rheumatoid arthritis 
and 1 from systemic lupus erythematosus. The 3 TFs identified in the asthma dataset 
are EOMES, NFATC2, and NFAT5 and are known to regulate gene expression during 
immune responses. In the immune system, Eomes can positively influence the expres-
sion of IFNγ in CD8+ T-cells [17]. NFAT5 regulates the expression of the TNFα , par-
ticipating in specific aspects of host defense by upregulating genes of the TNF family 
and other target genes in T cells subjected to osmotic stress [18]. On the other hand, 
NFATc2 is a key transcription factor to the pathogenesis of allergic responses [19]. It 
has been demonstrated that its deficiency leads to increased airway hyperresponsive-
ness (AHR), both after sensitization and in the absence of exogenous allergen challenge. 
The 3 TFs identified in type 1 diabetes are IRF1, IRF2, IRF7. Aberrations in IRF signaling 
cascade can lead to increased expression of type I interferon (IFN) genes, IFN-stimu-
lated genes (ISGs), and other pro-inflammatory cytokines/chemokines, leading to the 
development of numerous diseases, including ones of autoimmune origin, such as type 

Fig. 4  TFBS motif analysis interface of the CpGmotifs tool. Panel A: Parameters setting bar. Panel B: Table 
reporting the analysis output. Panel C: Heatmap summarizing the analysis results
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1 Diabetes. Transcription factor interferon regulatory factor 1 (IRF1), is a downstream 
target of IFN-gamma/signal transducer and activator of transcription (STAT)-1 and is 
actively involved in immune-mediated beta cell destruction. It is typically induced by 
IFN-γ via binding of STAT-1 to the IFN-γ-activation site in the IRF-1 promoter, but 
other cytokines and hormones can also trigger its expression. IRF-1 is involved in insulin 
secretion and, especially, in the modulation of chemokine expression by beta cells [20]. 
IRF2 is a negative regulator of IFN-mediated gene expression. IRF2 suppresses the activ-
ity of IRF1 by competing for binding sites. IRF7 has also been implicated in the patho-
genesis of type 1 diabetes through the upregulation of inflammatory gene networks [21]. 
Abnormal expression of Fli-1 is important in the etiology of autoimmune diseases such 
as systemic lupus erythematosus and systemic sclerosis. Fli-1 is expressed in peripheral 
blood mononucleated cells and its overexpression correlates with severity of disease in 
lupus patients [22].

Conclusions
Here, we presented a novel bioinformatic procedure along with an intuitive graphical 
interface software to perform the analysis of the sequence context of regions related to 
DNA methylation events. The comprehension of the relationship linking DNA methyla-
tion alterations and proximal DNA sequences is an important step in understanding of 
the DNA methylation mechanisms and to better identify therapeutic targets in diseases 
related to methylation aberrations. The technique presented here can be applied to a 
wide range of public data sets, since it only requires a list of CpGs along with their meth-
ylation status. The current implementation supports CpG lists derived from relatively 
small (hundreds of thousands) set of tested CpGs from the human genome like data 
derived from the Illumina Infinium 450k or Epic platforms. However, our tool is also 
able to process CpG lists derived from Whole Genome or Targeted Bisulphite Sequenc-
ing. We focused the analysis on CpG methylation events, being the most studied DNA 
modification, but the analysis can seamlessly be applied to other cytosine modifications 
in the CHG and CHH contexts.

Availability and requirements
Project name: CpGmotifs

Project home page: https://​github.​com/​Greco-​Lab/​CpGmo​tifs
Operating system(s): Cross Platform
Programming language: R
Other requirements: Docker
License: GPL
Any restrictions to use by non-academics: For commercial use and modifications 

please contact the corresponding author.
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