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Multi-Omics Marker Analysis
Enables Early Prediction of Breast
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1 Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway, 2 Oslo Centre
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de Médecine Diagnostique et Théranostique, Département de Pathologie, Paris, France, 4 Institute for Molecular Medicine
Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland

Ductal carcinoma in situ (DCIS) is a preinvasive form of breast cancer with a highly
variable potential of becoming invasive and affecting mortality of the patients. Due to the
lack of accurate markers of disease progression, many women with detected DCIS are
currently overtreated. To distinguish those DCIS cases who are likely to require therapy
from those who should be left untreated, there is a need for robust and predictive
biomarkers extracted from molecular or genetic profiles. We developed a supervised
machine learning approach that implements multi-omics feature selection and model
regularization for the identification of biomarker combinations that could be used to
distinguish low-risk DCIS lesions from those with a higher likelihood of progression. To
investigate the genetic heterogeneity of disease progression, we applied this approach
to 40 pure DCIS and 259 invasive breast cancer (IBC) samples profiled with genome-
wide transcriptomics, DNA methylation, and DNA copy number variation. Feature
selection using the multi-omics Lasso-regularized algorithm identified both known genes
involved in breast cancer development, as well as novel markers for early detection.
Even though the gene expression-based model features led to the highest classification
accuracy alone, methylation data provided a complementary source of features and
improved especially the sensitivity of correctly classifying DCIS cases. We also identified
a number of repeatedly misclassified DCIS cases when using either the expression or
methylation markers. A small panel of 10 gene markers was able to distinguish DCIS and
IBC cases with high accuracy in nested cross-validation (AU-ROC = 0.99). The marker
panel was not specific to any of the established breast cancer subtypes, suggesting that
the 10-gene signature may provide a subtype-agnostic and cost-effective approach for
breast cancer detection and patient stratification. We further confirmed high accuracy of
the 10-gene signature in an external validation cohort (AU-ROC = 0.95), profiled using
distinct transcriptomic assay, hence demonstrating robustness of the risk signature.
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INTRODUCTION

Ductal carcinoma in situ (DCIS) is a non-invasive precursor
to invasive breast cancer (IBC) with low risk of progression
(Cowell et al., 2013). Recent advances in breast cancer screening
have resulted in an increasing number of women with detected
DCIS lesions (Virnig et al., 2010; Seely and Alhassan, 2018; van
Seijen et al., 2019), many of which actually will never progress
to invasive disease (Page et al., 1982, 1995; Nielsen et al., 1984;
Collins et al., 2005; Sanders et al., 2005). To distinguish the
DCIS lesions with invasive potential from those that may be
left untreated, there is need for robust biomarkers (or risk
signatures) for accurate classification between high-risk and low-
risk DCIS cases. However, DCIS lesions exhibit heterogeneous
clinical, histopathological, and molecular characteristics that
may vary considerably between the lesions and as a function
of time (Vincent-Salomon et al., 2008). Furthermore, the
underlying mechanisms of progression from DCIS to IBC are
still poorly understood. The diagnostic classification has therefore
considerable uncertainty, and the DCIS lesions may vary from
indolent lesions to tumors on the verge of becoming invasive
(Gorringe and Fox, 2017). Due to this uncertainty, treatment for
DCIS is often extensive, resulting in substantial overtreatment
(Esserman et al., 2014; Groen et al., 2017).

Even though histological grade and growth pattern provide
some information on disease risk, there is a need for more
precise risk prediction methods (Wang et al., 2011; Wallis et al.,
2012; Onega et al., 2017). It has been shown that the “intrinsic”
breast cancer subtypes (luminal A, luminal B, HER2-enriched,
and basal-like) have prognostic significance, and a supervised
risk predictor was developed based on the intrinsic subtypes
and clinical information (Parker et al., 2009). We have also
previously performed comparative analyses across the breast
cancer subtypes and identified molecular differences between
DCIS and IBC for subtype-specific disease progression (Bergholtz
et al., 2020). In these subtype-stratified analyses, prominent
molecular differences were identified especially for the basal-like
DCIS, which was found to be less proliferative and showed a
higher degree of differentiation than the basal-like IBC. However,
for clinical use of the risk signatures, there is a need for cost-
effective and subtype-agnostic biomarker panels that are widely
applicable among diagnosed women regardless of their breast
cancer subtype or other risk classifications that would require
extensive clinical, histopathological, or molecular information.

In this study, we developed a supervised machine learning
approach that implements multi-omics feature selection for the
identification of biomarker combinations to distinguish DCIS
and IBC cases. As a secondary objective, we identified a robust
marker panel to identify those DCIS cases that may have
a higher risk of progression (i.e., DCIS cases susceptible to
invasion). To investigate the molecular, genetic, and epigenetic
heterogeneity of disease progression, we applied the regularized
approach to 40 DCIS and 259 IBC samples, profiled with
genome-wide transcriptomics, DNA methylation, and DNA copy
number variation. For economic clinical implementation, we
further investigated the effect of the number of model features
on the classification accuracy with each omics measurements.

In doing so, we identified a minimal risk signature of 10
highly predictive and subtype-agnostic transcriptomic markers,
originating from a single omics platform (microarrays), which
could be developed as a decision support tool in clinical
practice. We further validated our minimal risk signature in an
independent validation cohort (with RNA-seq data) and studied
how the signature predicted also lesions between DCIS and IBC
classes, as well as relapsing DCIS cases.

MATERIALS AND METHODS

Training Material
As a model training data, we used multi-omics molecular and
genomic profiles combined from three patient cohorts, Oslo2,
Uppsala, and Milan (Muggerud et al., 2010; Fleischer et al.,
2014; Lesurf et al., 2016; Aure et al., 2017; Bergholtz et al.,
2020). Each patient cohort contains three levels of omics data
from gene expression microarrays, DNA methylation, and DNA
copy number. Gene expression was measured with Agilent
Sureprint G3 Human Gene Expression 8 × 60 K microarrays
(G4851A) (Agilent Technologies, Santa Clare, United States),
with Low Input Quick Amp Labeling protocol. The DNA
methylation was profiled using the Illumina Infinium Human
Methylation 450K microarray (Illumina, CA, United States),
following the manufacturer’s instructions, and preprocessed with
subset quantile normalization (Touleimat and Tost, 2012). The
DNA copy number changes were profiled using Affymetrix
SNP 6.0 arrays (Affymetrix, Santa Clara, United States) at
Aros Applied Biotechnology (Aarhus, Denmark), following the
manufacturer’s instructions. In total, there were 370 patients
included in these three cohorts. We included only patients with
all three omics data levels, resulting in 299 patients as our
training material, including 40 DCIS cases and 259 IBC cases
(Supplementary Figure 1 and Supplementary Data 1).

The gene expression and DNA copy number changes were
mapped to protein-coding genes to make it easier to interpret
the results and integrate across the omics data. To investigate
the effect of DNA methylation data processing on predictive
modeling, we considered two versions of the DNA methylation
data. The first option was to use directly the original CpG level
methylation data as model features, and therefore we performed
feature preselection using only CpGs thought to be involved in
important biological variation between breast cancer samples
(N = 44,263 CpGs) (Fleischer et al., 2017). These CpGs were
thought to be involved in one of four breast cancer biological
properties, namely, regulation of estrogen signaling, regulation
of non-estrogen-related proliferation, fibroblast infiltration, or
immune infiltration. The CpGs were located both inside and
outside CpG islands and were enriched in both enhancers and
promoters. The second option used gene-level processing, where
we calculated a methylation score to represent each protein-
coding gene using a principal component analysis (PCA), taking
into account the variation of all CpGs mapped to a gene, similarly
as before (Bergholtz et al., 2020). The second option leads to
gene-level features, whereas in the first option, each gene can be
associated with hundreds of CpGs.
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Validation Material
The validation data set was collected at Institute Curie, France
(referred to as Curie Cohort), where the gene expression was
profiled using RNA sequencing with the Illumina HiSeq2500
sequencer. The read counts were normalized with the rlog
and cpm options in edgeR (v3.1.2) and DESeq2 (v1.4.5)
R-packages, respectively (Robinson et al., 2009; Love et al.,
2017). Pseudocount data were calculated as log10(RNAseq
count + 1), and it was centered for each gene around the
mean of the pseudocounts. The validation cohort included 18
pure DCIS cases and 20 IBC cases, as well as 16 micro-invasive
(MI) DCIS cases, which are DCIS lesions with invasive foci
of maximum 1 mm.

Classification Models
Our main objective was to identify the most discriminating
molecular and genetic differences between DCIS and IBC,
regardless of their intrinsic subtype and the nuclear grade. We
initially constructed Lasso, Support Vector Machine (SVM),
and Random Forest (RF) models based on each type of
omics data (gene expression, DNA methylation, and DNA copy
number). We used the R-package “glmnet” to build Lasso
models, R-package “e1071” to build SVM models, and R-package
“randomForest” to build RF models (Liaw and Wiener, 2002;
Friedman et al., 2010; Meyer et al., 2019). To assess the
classification accuracy, we used 10-fold cross validation (CV),
where the training dataset was divided into 10-fold, testing
on each fold at a time, while the remaining ninefold were
used for the model estimation (sub-training set). Stratified
CV was used to make sure each CV fold had the same
proportion of breast cancer subtypes. To test the generalizability
of the Lasso models, and to avoid selection bias, we used
nested cross-validation, where another 10-fold CV was applied
within each sub-training set to determine the optimal model
regularization parameters, e.g., the lambda and beta values
of the Lasso model. The other model parameters were set
to their default values. When training the SVM models, we
used Recursive Feature Elimination (RFE) implemented in the
R-package “caret” to select the model features (Kuhn, 2008).
The size parameter of RFE was set to a vector (2, 5, 10, and
20), the parameter “number” of the rfeControl function was
set to 5, and the kernel parameter was set to svmRadial to use
the radial kernel. We used 10-fold CV for the SVM models,
and in each fold, RFE was run to select the model features
using nested CV.

Evaluation Metrics
To evaluate the predictive accuracy, we used Area Under
the ROC Curve (AU-ROC) and Area under the Precision-
Recall Curve (AU-PRC) (Supplementary Figure 2). Moreover,
classification cutoff-specific evaluation metrics, such as sensitivity
and specificity, were also recorded to evaluate the trade-off
between correctly classifying either DCIS or IBC cases. For
avoiding overtreatment, it is especially important to correctly
predict true DCIS cases, and therefore we labeled DCIS as positive
and IBC as negative cases. Accordingly, sensitivity TP/(TP+ FN)

refers to the rate of how many DCIS cases are correctly classified,
while specificity TN/(TN + FP) refers to the percentage of
correctly classified IBC cases. Balanced accuracy is defined as the
average of sensitivity and specificity. Precision–Recall analysis
provides an alternative evaluation metric for the unbalanced
classification problem. The AU-ROC and the AU-PRC were
plotted and calculated with the R-packages “PRROC” (Grau
et al., 2015) and “pROC” (Robin et al., 2011), respectively.
As a continuous evaluation metric, we used Mean Squared
Error (MSE), where MSE values close to zero indicate more
accurate models.

Multi-Omics Classifiers
To test whether integrating the three types of omics data
improved the prediction accuracies, we combined gene
expression data, DNA methylation, and DNA copy number data
together in a single Lasso model. The CpG-level and gene-level
methylation data were combined separately with the other data
types to investigate their respective predictive contribution. To
unify the scales between the different data types, we applied
z-score scaling over each feature (gene or CpG) and then
combined the z-scored features into a single model.

Limiting Model Complexity
To test the effect of limiting the maximum allowed number
of model features on the prediction accuracy, we adjusted
the parameter “dfmax” of the glmnet function, which
limits the maximum number of variables in the Lasso-
regularized model (Friedman et al., 2010). We varied the
dfmax parameter from 2 to 51 with each separate omics
data and their combination using nested CV to explore the
most predictive feature subsets and to construct a maximally
sparse, cost-effective, and transparent models for economic
clinical implementation.

Robust Gene Selection
We considered the common features identified by the two
classification models, SVM and Lasso, as robust biological
signatures. To further improve the reliability of these signatures,
and to avoid reporting unstable features, we considered only
those features that were returned more than five times during
the 10-fold CV (i.e., >50% of the folds), where each feature
can be selected up to 10 times. This analysis was limited to the
gene expression data only (without using z-scoring), since gene
expression data was found generally most predictive.

Model Validation
In the validation phase, we trained a new Lasso model using
the subset of 10 most robust genes on the entire training set
and tested its predictive power on the validation set (the Curie
Cohort). Only RNA-seq transcriptomics data were available in
the validation set. We used z-score scaling over each gene
separately in the training and validation sets to normalize their
scales between the microarray and RNA sequencing data. The
model outcome was the predicted class probability in DCIS vs.
IBC classification for each validation case separately.
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Existing Risk Scores
We compared the 10-gene signature against three existing risk
scores. The first was ROR, risk of recurrence after surgical
treatment for IBC, calculated based on expression of the PAM50
genes (Parker et al., 2009). Firstly, the correlation to the four
breast cancer subtypes (Basal-like, Her2-enriched, Luminal A,
and Luminal B) was calculated, and the ROR score was then
defined as a weighted sum of the four correlations. We also
calculated an invasiveness score based on a previously proposed
64-gene signature (Anastassiou et al., 2011). We summarized
the 64-signature using z-score to obtain an invasiveness score
for each sample and then used the mean value of each case
as the final invasive score. As the third comparison score, we
used the Oncotype DX R© DCIS Score that has been suggested
to quantify the risk of developing an ipsilateral breast event
(i.e., local recurrence of DCIS or invasive carcinoma) (Solin
et al., 2013). The original DCIS score was calculated using qPCR
expression values from 12 genes. However, since our training
cohort included normalized microarray expression data, we did
not perform the first step of the DCIS Score calculation, i.e.,
normalizing seven signature genes relative to the expression of
five housekeeping genes. The ROR, invasiveness, and DX R© DCIS
scores were included in the simple linear model using function
“glm” from basic R, where only the score was used when building
these models using 10-fold CV.

Identification of Misclassified DCIS
Cases
Some DCIS cases may never progress to IBC and will remain
intraductal, while other DCIS lesions may have future invasive
potential but were discovered while still intraductal. We
hypothesized that even though some lesions are discovered while
still intraductal, they may carry molecular or genomic changes
that distinguish them from the low-risk DCIS cases that will
never progress. To address the secondary questions of whether
we can divide DCIS samples into two groups, low- and high-risk
DCIS, and how accurately we can find those higher-risk DCIS
cases that might carry the potential for future invasion, we built
additional machine learning models based on gene expression
and DNA methylation data, and the cases incorrectly classified
by more than one model-data combinations were considered for
further scrutiny. Next, we used so-called pseudo labeling, where
the repeatedly misclassified DCIS cases were relabeled as IBC,
then retrained a Lasso model with 10-fold nested CV and checked
whether or not its classification accuracy increased, compared to
the original Lasso model with the original class labeling.

RESULTS

Predictive Model Development in
Multi-Omics Data
We started by testing various prediction algorithms, including
Lasso, SVM, and RF, to classify the patient samples of the training
cohort into two groups, DCIS and IBC. These algorithms were
evaluated in terms of their classification accuracy and robustness

in the heterogeneous omics data (gene expression, DNA copy
number, and DNA methylation). In the initial runs, the classifiers
were allowed to freely make use of an unlimited number of the
omics features (genes and CpGs), and nested CV was then used
to evaluate the predictive power of the models and the selected
feature panels. In this section, we show the results of the Lasso
model that performed generally the best, while the results of RF
and SVM models are provided in Supplementary Tables 2, 3,
respectively, showing similar performance trends with slightly
decreased accuracies.

Notably, gene expression features provided the best overall
accuracy among the single omics datasets when using summary
metrics AU-ROC and AU-PRC (Figure 1). Interestingly, the
CpG-level methylation data provided almost as high AU-ROC
levels, but the Lasso model selected more than three times
the CpG features compared to expression features, and the
CpG model had much a lower AU-PRC value (Figure 1).
DNA copy number variation profiles showed the poorest
performance among the three omics datasets, even though
the Lasso model selected the largest number of copy number
features, suggesting that copy number changes do not contain
a sufficient predictive signal for the classification between DCIS
and IBC cases. All the omics profiles resulted in close to perfect
specificity (Figure 1).

The combined use of the three omics features in a single
Lasso model using z-score scaling resulted in similar AU-
ROC and AU-PRC values when using the gene expression
features alone (Figure 1). However, the sensitivity of correctly
classified DCIS cases increased when using all the omics data
together. In clinical practice, sensitivity is more important for
avoiding overtreatment. Omics data integration also led to higher
levels of balanced accuracy, while the specificity of correctly
classifying IBC cases remained perfect, similar to that when
using the gene expression data only. The two versions of the
DNA methylation data provided a similar contribution to the
multi-omics Lasso model; however, the gene-level methylation
features led to slightly increased performance, especially in
terms of MSE, whereas CpG-level data required less features
(Supplementary Table 1).

The Effect of Limiting the Number of
Features
We next studied the effect of limiting the number of features
of the Lasso model on its predictive accuracy, with the aim
to investigate what are the minimal panels of biomarkers that
could cost-effectively distinguish DCIS cases from IBC. A feature
number limit from 2 to 50 was imposed on each data type
separately and in combination, and for each limit, 10-fold nested
CV was applied to investigate the classification accuracy of the
Lasso models with limited number of features. Notably, already
two gene features provided an almost perfect AU-ROC of 0.95
when using the expression data only (Figure 2), indicating
that sparse models enable accurate classification. However, the
variability of the AU-ROC decreased when using the feature limit
higher than 12 (Supplementary Figure 4), suggesting that the
additional gene features make the classifier more stable.
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FIGURE 1 | The predictive contribution of omics profiles and their combinations to DCIS vs. IBC classification. The bars show the average accuracy over 10 CV
folds, and the error bars indicate the standard error of the mean (SEM). These data correspond to those shown in Supplementary Table 1. ROC and PRCs of CV
folds using various omics data combinations are shown in Supplementary Figure 3.

When considering AU-ROC, the CpG methylation model
performed initially worse, when compared to the gene-level
methylation model, but after 30 CpGs its classification accuracy
increased (Figure 2). The variability of the classification accuracy
was also lower with the CpG-level model compared to the
gene-level methylation model. These results suggest that when
the variance of individual CpGs is large, the model cannot
make reliable classification using only a small number of CpG
features. Since the gene-level methylation signature consists of
many CpGs collapsed to single genes, its variance tends to
be smaller due to measurement noise being canceled out in
the collapsing process. When considering AU-PRC, the gene-
level methylation model remained slightly better than the CpG
model across all the feature numbers (Supplementary Figure 4),
and it also led to increased sensitivity of the multi-omics

model, comparable to that of the gene expression only model
(Supplementary Figure 5).

Since the features were selected in 10-fold nested CV at
each feature number limit, the model may identify in total
more features than the limit, since the different CV folds may
select different features. Figure 2 lists as examples features
that were selected in all the 10 CV folds, suggesting they are
robust to training data subsampling and therefore likely to
present robust classifying features. Such robust features could
not be identified from the copy number data. DNA methylation
profiles identified genes that are distinct from those identified
using the gene expression data, both when using the gene-level
or CpG-level methylation data (and the corresponding genes).
However, a total of four genes (MMP11, RUFY3, UNCX, and
MAMDC2) were selected using both versions of the integrated
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FIGURE 2 | Predictive accuracy of the omics profiles and their combinations when the maximum number of features was limited. The points are average AU-ROC
values over the 10 CV rounds in nested CV. Example feature sets from omics data are shown at limits x = 2, 10, and 30. The gene lists contain the features that were
selected by Lasso in all the 10-fold at that limit. Expression data and integrated data share most genes in common. Black color indicates genes that were selected
by both gene expression and integrated data, the pink color those genes that were selected by integrated data only. Note that the top genes of the two types of
integrated data are the same. No copy number features were selected in all the 10 CV folds (no robust CNV features). See Supplementary Figure 4 for the version
of ROC and PRCs with SEMs included.

data; these are exactly the same genes Lasso model identified
when using the gene expression data only and the feature limit
of 2, further suggesting that transcriptomics alone leads to sparse
and accurate signatures.

Identification of Repeatedly
Misclassified DCIS Cases
We next investigated whether the multi-omics data and the
classification models could identify those DCIS-labeled samples
with a potentially higher likelihood for progressing to an invasive
state. Even if these DCIS samples have been originally labeled
as DCIS in the diagnostic classification, they may still possess
molecular changes that promote invasion later in time. In this
analysis, we used Lasso and RF models, together with gene
expression and CpG methylation profiles, due to their overall
good performance. We considered for further investigation
those DCIS cases in the training cohort that were repeatedly
misclassified by these model–data combinations more than once
(Table 1). Misclassification by one model–data combination may
represent merely technical noise.

Out of the 40 DCIS cases, there were 19 lesions that were
always correctly classified, and 11 DCIS cases were misclassified
once, whereas eight and 2 DCIS cases were misclassified two
or three times, respectively. We next applied so-called pseudo-
labeling, where the repeatedly misclassified DCIS cases were
relabeled as IBC, and then trained a new Lasso model with
nested CV. Notably, such pseudo-labeling slightly increased
the AU-PRC levels in the training cohort, while the AU-ROC
levels remained similar to those with the original class labels
(Supplementary Table 4). The multi-omics patterns provide
evidence that these DCIS cases have molecular signatures more
similar to the IBC cases and may have an increased likelihood to
progress to an invasive disease stage.

The Most Robust Genes for
Classification
Since gene expression was found to be generally the most
predictive among the single omics data, we next identified the set
of common genes selected by both the Lasso and SVM models
using the gene expression features alone. We further required that
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TABLE 1 | Misclassified training samples when using various classification
models and omics data.

Lasso expression Lasso methylation (cpg) RF expression

DCIS033
DCIS038
DCIS026
DCIS051
DCIS052
DCIS053
IBC301

DCIS029
DCIS031
DCIS032
DCIS024
DCIS026
DCIS053
DCIS056
DCIS035
DCIS022
DCIS017

DCIS026
DCIS053
DCIS051
DCIS056
DCIS033
DCIS031
DCIS052
DCIS022
DCIS032
DCIS017
DCIS001
DCIS037
DCIS008
DCIS004
DCIS030
DCIS034
DCIS013

Color coding indicates the number of times any of the 40 DCIS cases were
misclassified as IBC in the training data; green, once; brown, twice; red, three
times. CpG methylation data with the RF model was not used in these analyses
since it misclassified a total of 34 DCIS cases, which was considered too many.
We considered for further investigation only those DCIS cases in the training cohort
that were repeatedly misclassified by these model–data combinations more than
once.

a gene needs to be selected in more than 50% of the CV folds (i.e.,
more than five out of 10-folds), with the aim to guarantee robust
and stable feature selection. In total, we found 10 such common
and robust genes identified as robust risk signature. Notably, each
of the 10 genes had a similar direction of differential expression
between the DCIS and IBC classes across the established breast
cancer subtypes (Figure 3), suggesting that they provide subtype-
agnostic markers for breast cancer risk prediction.

Interestingly, there were marked differences in the expression
levels of the 10 genes across the DCIS cases misclassified as
IBC (Figure 4). For instance, RUFY3, UNCX, PRSS33, and
COL10A1 showed an increasing trend of absolute expression
changes between the DCIS cases as a function of the number
of times the DCIS samples were misclassified by the models.
This further demonstrates the molecular information captured
in the expression profiles. Furthermore, based on the expression
levels of the 10-gene signature, most of the sure DCIS cases
that were always correctly classified were clustered together,
whereas the repeatedly misclassified DCIS cases were scattered
around in the unsupervised hierarchical clustering dendrogram
(Supplementary Figure 6).

We next compared the classification accuracy of the 10-
gene Lasso model against three existing risk signatures relevant
for breast cancer progression: ROR (risk of recurrence), the
invasiveness score (64-gene signature) and seven-gene DX R© DCIS
score (see Methods). Our results showed that none of these
risk scores was able to accurately distinguish between DCIS and
IBC cases in our training cohort (Figure 5). In particular, using
the default Lasso cutoff of 0.5, both the ROR and invasiveness
score always classified all the DCIS lesions as IBC, whereas
the DX R© DCIS Score classified all the IBC cases as DCIS
(Supplementary Table 5). There were three common genes

between the 64-gene invasiveness signature and our 10-gene
signature (COL1A1, COL10A1, and MMP11), hence explaining
its higher classification accuracy compared to ROR.

Validation Set Results
The final step was to validate the 10-gene signature on an external
data set, the Curie Cohort, with the aim to investigate whether the
DCIS classification model generalizes also beyond the training
cohort to an independent validation dataset. The Lasso model
of 10 genes estimated in the full training dataset was shown
to provide highly accurate classification between the DCIS and
IBC cases also in the validation dataset (Figure 6). Notably,
both the AU-ROC and AU-PRC values dropped only slightly
from the training to the validation cohort, further demonstrating
the reliability and robustness of the classification model based
on the 10-gene signature. However, we note that the default
classification cutoff of 0.5 was not optimal in the validation data,
but instead smaller thresholds led to better classification accuracy
(Supplementary Figure 7). This is likely due to the differences
between the microarray gene expression data (training cohort)
and RNA-sequencing data (validation cohort). Although we
performed z-scoring to unify the scales, it cannot correct for
all the distributional differences between microarray and RNA-
sequencing data.

We further tested how the model predicts the microinvasive
(MI) DCIS cases in the validation cohort to explore whether the
10-gene signature could also distinguish the MI cases from pure
DCIS and IBC cases. Interestingly, the classification probabilities
of the MI DCIS cases were in between the pure DCIS and IBC
classes but remained significantly closer to the pure DCIS cases
(Figure 7, left). However, there was a relatively large variability
in the distribution of the predicted probabilities also within the
classes, showing individual variability in the risk scoring based
on the 10-gene signature. This suggests that there are molecular-
level changes in these genes between the classes of pure DCIS,
DCIS-MI, and IBC lesions. Interestingly, there appeared to be
three outlier cases in the DCIS-MI class with the classification
probability comparable to that of the IBC cases. The six genes
that were related to the microenvironment (COL10A1, COL1A1,
MFAP2, PRSS33, PRSS53 and MMP11) showed higher prediction
probability in the recurrent DCIS cases, compared to DCIS
without recurrence, and these became close to those of the IBC
cases (Figure 7, right).

To further investigate the features of the sparse Lasso model,
we plotted the expression distributions of the 10 genes on both
the training and validation cohorts (Figure 8). After z-scoring,
most of the genes showed similar distributions, except for UNCX
and PRSS33. In particular, for UNCX, there were only two
distinct expression values in the test RNA-seq data, and 53
out of 55 cases (96%) corresponded to zero expression in the
original expression data before z-scoring. There were also marked
differences in the expression levels of the 10 genes across the
three disease classes of the validation cohort (Supplementary
Figure 9), mostly differentiating IBC cases from DCIS and DCIS-
MI, even though the differences were not as clear as in the
training cohort (Figure 3). However, regardless of these technical
and biological differences between the training and validation
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FIGURE 3 | Expression levels of the select 10 genes across the established breast cancer subtypes. Basal, basal-like; HER2, HER2-enriched; LumA, luminal A;
LumB, luminal B; Normal, normal-like.

FIGURE 4 | Expression values of the 10 genes across the DCIS cases repeatedly misclassified as IBC. The bars show absolute deviance from the median expression
level of the correctly classified DCIS class for each gene. The median level of the correctly classified DCIS class was subtracted from the other classes to better show
differential expression levels. Supplementary Figure 10 shows the expression differences before subtracting the median level of the correctly classified DCIS class.

cohorts, the 10-gene signature provided accurate classification
performance in both of the datasets, further demonstrating its
robust behavior. Taken together, these results indicate that the 10-
gene signature can reliably identify those DCIS cases that are less
likely to progress to invasive disease.

DISCUSSION

In our multi-omics classification analysis between DCIS and IBC,
we found that the gene expression-based model features led to
the highest classification accuracy alone; however, methylation
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FIGURE 5 | Classification accuracy of the 10-gene signature against existing scores. (A) ROC, (B) PRC. Each signature was calculated based on the training patient
cohort. The ROR score is based on the PAM50 genes (Parker et al., 2009), invasiveness score is based on 64 invasiveness related genes (Anastassiou et al., 2011),
and DX R© DCIS score based on seven genes (Solin et al., 2013). The expression values of the 64 genes were converted to z-score over each gene, and the average
z-score was used as the invasiveness score for each sample. The original DX R© DCIS score was based on qPCR data, but here it was applied to microarray gene
expression data. The curves show the mean sensitivity and specificity over 10 CV folds in the training cohort. See Supplementary Table 5 for the SD of the
AU-ROC and AU-PRC values.

FIGURE 6 | Validation and training cohort accuracies of the 10-gene signature. (A) ROC, (B) PRC. The Lasso model was first estimated based on the full training
dataset using the 10 genes as features, and then the estimated model was applied to the validation cohort. The training cohort model accuracy is overoptimistic as
no cross validation was used and the training and test data are the same; see Figure 5 for cross-validated training cohort model accuracy. For comparison, we
randomly selected 10 genes 100 times, estimated 100 Lasso models in the training cohort, and then tested these random gene classifiers on the validation cohort.
The 10 random gene curve shows the average performance of the random classifiers, and the error bars show the standard error of the mean (SEM). In panel (B),
the dashed horizontal line corresponds to a theoretical random classifier with AU-PRC = 0.473.

data provided a complementary source of predictive signal, and
it improved especially the sensitivity of correctly classifying
DCIS cases, which is important for clinical application of risk
signatures. No better prediction results could be obtained with
any of the two-data combinations, and the gene expression data
was always required for the best prediction results, indicating its

high predictive contribution. Due to the challenges of acquiring
fresh frozen DCIS tissue, the number of DCIS cases was
much smaller in the training cohort, compared to the IBC
cases. We used several computational approaches to take into
account such unbalanced classification setting: (i) we used several
evaluation metrics to provide multiple views into the predictive
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FIGURE 7 | Predicted class probabilities of the validation cohort samples. (A) The probabilities were calculated based on the 10-gene Lasso model estimated on the
full training data. The validation cohort included 18 pure DCIS cases, 20 IBC cases, and 16 micro-invasive (MI) DCIS cases. Note: y-axis is log-scaled for better
visualization. The non-logged version is shown in Supplementary Figure 8. (B) The probabilities were calculated based on the six microenvironment related genes.
The validation cohort included 14 DCIS cases without recurrence, four DCIS recurrence cases, and 20 IBC cases. The y-axes are z-scaled for better comparability of
the prediction probabilities. The horizontal lines in the boxplots indicate median values, the whiskers the interquartile range (IQR) of the cases in each class, and the
error bars show cases withing 1.5xIQR, while the remaining cases are considered outliers.

performance of the models, including precision–recall analysis,
which is often considered more suitable for the unbalanced
classification problem; (ii) we included only those omics features
in the signature that were robustly identified using multiple
algorithms and across several CV rounds; (iii) we carried out
the pseudo-labeling approach to investigate whether relabeling
of some of the recurrently mis-classified cases could increase
the predictive performance of the model and reveal potentially
high-risk DCIS cases; and finally (iv) we validated the predictive
power of the signature in an external validation cohort with more
balanced classes.

Previous studies have found only moderate genomic and
epigenomic differences between DCIS and IBC (Ma et al., 2003;
Hannemann et al., 2006; Fleischer et al., 2014; Abba et al.,
2015; Pang et al., 2017). In this study, we identified 10 genes
using both the Lasso and SVM models that were selected in
>50% of the CV rounds, indicating their robust behavior for
classification between DCIS and IBC cases. We also found that
these genes were differentially expressed between DCIS and IBC
across all the breast cancer subtypes (Figure 3). One should
interpret such gene lists with caution, however, as there may
be other gene combinations with similar predictive power due
to the correlated nature of the gene expression profiles among
genes in the same pathways or biological processes. Nevertheless,
the genes were selected by two independent methods, which

increases the robustness of their biological signal. The 10-gene
signature was also validated in independent test data (Curie
cohort), where the transcriptional profiling was done with RNA-
seq. The high classification accuracy observed for the 10 genes,
originally identified using gene expression microarrays, further
demonstrates the robustness of the signature, although there
remained some variability that is beyond z-score normalization
(Figure 8). We also note that the 10-gene signature was not able
to predict recurrence in the validation cohort, as expected, since
the genes were selected specifically for distinguishing between
DCIS and IBC classes, not the progression of DCIS cases.

The comparison between our 10-gene signature and
traditional breast cancer risk scores further demonstrated the
added value of our 10-gene markers especially for the accurate
DCIS classification (high sensitivity). We note that ROR is
mostly affected by proliferation, and it is highly associated
with breast cancer subtypes (Parker et al., 2009). Our results
therefore indicate that proliferation may not be very important
when distinguishing between DCIS and IBC cases. However, the
invasiveness score has previously been found highly associated
with cancer cell motility and invasiveness of several cancer
types, including non-epithelial cancers such as neuroblastoma
(Anastassiou et al., 2011). This should make it a competitive
biological marker to classify DCIS and IBC. Our results
showed that the invasiveness score achieved a relatively high
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FIGURE 8 | Distribution of expression levels of 10 selected genes over all the individuals in the training and validation cohorts. The scales between the microarray
(training cohort) and RNA-seq (validation cohort) data were harmonized using z-score normalization over each gene separately in the training and validation datasets.
Note: the y-axis density ranges differ between the panels.

classification accuracy (AU-ROC 0.842), but not as high as our
10-gene signature (AU-ROC 0.992). The 64 genes included in
the invasiveness signature had three genes in common with our
10-gene signature (COL1A1, COL10A1, and MMP11). Since
we demonstrated that already two genes can give a relatively
high AUC (Figure 2), and MMP11 is one of the selected genes
when the feature limit was two, the higher performance of the
invasiveness signature was as expected. However, the extended
set of 10 genes provided increased performance especially for
classification sensitivity. Furthermore, measuring 10 genes is
more practical than measuring 64 genes using, for instance,
qPCR-based clinical assays.

Many of the genes included in the model have previously
been identified as differentially expressed between DCIS and IBC
(Lesurf et al., 2016), but there are also some novel genes. Out
of the 10 genes, six are related to the tumor microenvironment
(COL10A1, COL1A1, MFAP2, PRSS33, PRSS53, and MMP11),
and these genes showed predictive power for recurrent DCIS
(Figure 7), although its added value for clinical practice remains
to be investigated on a larger series. COL10A1, COL1A1, and
MFAP2 are constituents of the extracellular matrix remodeling,
which is an important process in breast tumor invasion and
tumor cell dissemination (McSherry et al., 2007). Overexpression
of the genes encoding these proteins is associated with poor breast

cancer survival, and MFAP2 has been shown to promote cell
proliferation, migration, invasion, and epithelial to mesenchymal
transition (Wang et al., 2018; Liu et al., 2018; Zhang et al., 2020).
MMP11 is a proteinase that is involved in extracellular matrix
degradation directly by degrading collagen IV and indirectly
by inhibiting the alpha1-proteinase inhibitor (Pan et al., 2003;
Motrescu et al., 2008. MMP11 has been characterized extensively
for its role in breast cancer and has been shown to be a predictive
factor for tumor invasiveness, hence serving as positive control
here (Ahmad et al., 1998; Zhang et al., 2016). In contrast, the
roles of the serine proteases PRSS33 and PRSS53 have been less
investigated in cancer progression, but there are indications that
PRSS33 may play a role in tumor cell invasion (Jeong et al., 2016).

The remaining four genes in our gene list are not directly
associated with the microenvironment. For instance, RUFY3 is
involved in F-actin-enriched protrusions from the cell surface
and it has been shown to be involved in gastric cancer
cell migration and invasion (Wang et al., 2015). This gene,
however, shows paradoxical expression in our training data
with higher expression in DCIS than in invasive samples
(Figure 3). In the validation cohort, however, the expression
levels of RUFY3 were as expected in the DCIS and IBC
classes (Supplementary Figure 9), especially when focusing
the recurrent DCIS cases (Supplementary Figure 11). UNCX
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was another gene with distinct expression distribution between
training and validation data. It is a homeobox transcription
factor that has been associated with acute myeloid leukemia
(Daniele et al., 2017). MAMDC2 is a known tumor suppressor
involved in glycosaminoglycan binding (Lee et al., 2020), whereas
NPIPB6 has not previously been associated with cancers to the
best of our knowledge. We note that the 64 genes included
in the invasiveness signature are mainly related to epithelial–
mesenchymal transition (EMT) (Anastassiou et al., 2011). The
improved performance of the 10-gene signature indicates that
the molecular changes from DCIS to IBC not only are related
to the EMT process but also involve other biological processes
captured by the 10-gene signature. To further study the biological
processes, larger DCIS cohorts will need to be collected beyond
those in the current training cohort (Sweden, Italy, and Norway).

Since our analyses were performed across the molecular
intrinsic subtypes of breast cancer, the identified genes can
detect DCIS cases, regardless of their subtype. The genes
therefore represent general invasion processes, while the subtype-
specific tumor progression processes may be obscured. A major
proportion of breast cancer samples are Luminal A, and this is
also the case in the training cohort. We have previously shown
that Luminal A DCIS and IBC are highly similar at a molecular
level, while basal-like DCIS differ substantially from basal-like
IBC (Bergholtz et al., 2020). Stratification by subtype prior to
creating the models could yield different results and identify
genes and biological processes relevant within each subtype,
but this approach would, in our high-dimensional analysis, be
limited due to rather low sample size of the current cohorts.
We believe that a subtype-agnostic model should become more
practical for a clinical application of the signature, avoiding the
need for subtype classification of each DCIS case. Additional
genes would need to be included, such as those in the PAM50
signature, if one wants to construct risk signatures separately for
the established subtypes. Furthermore, many studies have found
stromal difference between DCIS and IBC (Dabiri et al., 2013;
Toss et al., 2020), and it would be interesting to investigate how
these 10 genes are expressed in stromal component vs. other
components using spatial gene expression profiling.

Our results of the classification analyses using the two
options to represent DNA methylation (preselected enhancer and
promoter CpGs related to breast cancer biology or PCA-derived
gene-level methylation) suggests that few individual CpGs cannot
capture enough variation for accurate prediction and that a
certain number of CpGs (>30 features) are needed to represent a
meaningful information identifying DCIS from IBC. Moreover,
we observed that CpG-level methylation features show higher
sensitivity than gene-level methylation features using the Lasso
model. This result highlights the importance of both enhancer
and promoter methylation for gene regulation in breast cancer.
On the other hand, the gene-level methylation represents many
CpGs for each gene and thus it captures more variation, but some
important CpGs may be masked by the PCA summarization
approach. Furthermore, classification made using only a few
individual CpGs may be vulnerable to measurement noise, and
this can be overcome by increasing the number of CpGs in
the classifier. Using all the 450,000 CpGs led to a poor class

prediction performance, likely due to model overfitting (data
not shown). Since the optimal processing of DNA methylation
data is still poorly understood, we hope these results will
provide guidance for the community on how to use methylation
features in predictive modeling, either alone or combined with
other omics features.

We initially tested several classification algorithms, Lasso,
SVM, and RF, which all supported the importance of multi-omics
profiles for increased DCIS detection sensitivity (Supplementary
Tables 1–3). The lasso-regularized model generally showed
the best performance and was therefore selected to showcase
the classification results, for instance, when limiting the
maximum number of features in sparse predictive modeling
(Figure 2). Compared to genome-wide measurements, such
minimal predictive signatures may lead to more practical
prediction models for clinical decision tools in the form of cost-
effective signatures for economic implementation. As observed
before, nested CV was found important to avoid selection bias
and reporting of overoptimistic results about the predictive
power of classifier (Ambroise and McLachlan, 2002; Varma and
Simon, 2006). As a future research direction, we plan to make
use of pathway information for mapping the predictive genes that
may potentially lead to even more robust and accurate models
using pathway-level biomarkers (Ben-Hamo et al., 2020; Madani
Tonekaboni et al., 2020). While the present work focused solely
on protein-coding genes, since this enabled better interpretation
of the model results and easier integration among the three
data types, recent work has shown the influence of non-coding
gene expression on cancer progression (Bhan et al., 2017; Chi
et al., 2019; Zhang et al., 2021). As a future development, it
would be interesting to use also non-coding DNA or RNA
as additional source of features in the classification between
DCIS and IBC cases.

In conclusion, our results support the use of the 10-gene
signature to reliably identify those DCIS cases that are less
likely to progress to invasive disease and may therefore have
potential for reducing the current overtreatment in breast cancer.
Longitudinal follow-up data of the DCIS cases will be needed for
prognostic validation of the signature in terms of its accuracy
at identifying high-risk vs. low-risk DCIS cases, and to explore
how many of the initially DCIS diagnosed cases will eventually
progress to an invasive disease or become invasive recurrent.
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