
1 
 

The landscape of persistent human DNA viruses in femoral bone 1 

Mari Toppinen1, Diogo Pratas1,2,3, Elina Väisänen1, Maria Söderlund-Venermo1, Klaus Hedman1,4, 2 

Maria F. Perdomo1* and Antti Sajantila5, 6 * 3 

  4 

1 Department of Virology, University of Helsinki, Finland 5 

2 Department of Electronics, Telecommunications and Informatics, University of Aveiro, Portugal 6 

3 Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal 7 

4 HUSLAB, Helsinki University Hospital, Finland 8 

5 Department of Forensic Medicine, University of Helsinki, Finland 9 

6 Forensic Medicine Unit, Finnish Institute of Health and Welfare, Finland 10 

 11 

* Shared last authorship 12 

 13 

Keywords: DNA viruses, femoral bone, NGS, human provenance, parvovirus B19 genotype 2 14 

 15 

corresponding authors:  Maria F. Perdomo maria.perdomo@helsinki.fi 16 

Antti Sajantila antti.sajantila@helsinki.fi 17 

18 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/479166757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 19 

The imprints left by persistent DNA viruses in the tissues can testify to the changes driving virus 20 

evolution as well as provide clues on the provenance of modern and ancient humans. However, the 21 

history hidden in skeletal remains is practically unknown, as only parvovirus B19 and hepatitis B 22 

virus DNA have been detected in hard tissues so far. Here, we investigated the DNA prevalences of 23 

38 viruses in femoral bone of recently deceased individuals. To this end, we used quantitative PCRs 24 

and a custom viral targeted enrichment followed by next-generation sequencing. The data was 25 

analyzed with a tailor-made bioinformatics pipeline. Our findings revealed bone to be a much richer 26 

source of persistent DNA viruses than earlier perceived, discovering ten additional ones, including 27 

several members of the herpes- and polyomavirus families, as well as human papillomavirus 31 and 28 

torque teno virus. Remarkably, many of the viruses found have oncogenic potential and/or are likely 29 

to reactivate in the elderly and immunosuppressed individuals. Thus, their persistence warrants 30 

careful evaluation of their clinical significance and impact on bone biology. Our findings open new 31 

frontiers for the study of virus evolution from ancient relics as well as provide new tools for the 32 

investigation of human skeletal remains in forensic and archeological contexts.  33 
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Introduction 34 

DNA viruses commonly establish persisting infections in humans, remaining thus, their genetic 35 

material imprinted in the tissues throughout life. These DNAs exhibit phylogeographies resembling 36 

those of humans[1], pointing to shared evolutionary and dispersal paths that can, together, add to 37 

the understanding of human population history and migrations[2–8]. In addition, the specific 38 

geographical distributions of DNA viruses, in both global[2,9] and local[10–12] scales, may provide 39 

new insights into the origins of unidentified individuals. 40 

In this regard, the most widely studied virus is JC polyomavirus (JCPyV), a highly prevalent pathogen 41 

with three main phylogenetic clusters spread across Africa, Asia, and Europe. JCPyV´s genotype-42 

specific global spread has been proposed as an indicator of the provenances of both modern[12] 43 

and ancient humans[13–15]. Although its timescale of evolution has been debated[16–18], recent 44 

work by Forni et al.,[8] based on ~1100 worldwide strains, supports co-dispersal of this virus with 45 

major human migratory routes as well as its co-divergence with human mitochondrial and nuclear 46 

markers.  47 

In addition to the spatial and temporal dimensions, viruses also display intriguing age-dependent 48 

distributions[19–21]. This is the case with genotype 2 of parvovirus B19, the traces of which went 49 

missing in Europe around 1970s. Thus, contemporary DNA findings of this virus variant in tissues 50 

are confined to elderly individuals or historic human remains[22]. 51 

Despite these encouraging data, the utility of the viral DNAs has not been fully addressed in forensic 52 

and anthropological settings. Reasons for this include the lack of a comprehensive picture of the 53 

overall distribution of viral DNAs in various organs, limiting the use of some human tissues in versatile 54 

scenarios, and most importantly, the fact that their prevalences in bones and teeth are almost entirely 55 

unknown.  56 

Of the latter, we were the first to detect parvovirus B19 DNA in bones from soldiers of World War 57 

II[23], followed by findings of this same virus[24] and of hepatitis B[25,26] virus in archaeological 58 

remains dated from the Neolithic to medieval times. These singular discoveries confirm the presence 59 

and preservation of viral DNA in hard tissues and call for the investigation of the full landscape of 60 

viral DNAs that here persist. 61 

In this study, we searched for 38 highly prevalent DNA viruses in the femoral bones of recently 62 

deceased individuals. To this end, we used in-house quantitative PCRs (qPCRs) and virus-targeted 63 

enrichment coupled with next-generation sequencing (NGS). 64 

Our findings significantly expand the present knowledge on the virome of human bone, opening new 65 

frontiers for the study of virus evolution as well new tools for the investigation of forensic and 66 

anthropological cases. 67 
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Materials and methods 68 

Study subjects 69 

The study cohort consisted of 27 deceased individuals of Finnish origin, aged 36 to 85 years (mean 70 

67.6) with a male:female ratio of 19:8. The postmortem interval ranged from 4 to 30 days (mean 8). 71 

The manners of death were disease (n=19), occupational disease (n=1), injury (n=5), and suicide 72 

(n=2). In none of the cases the medical records revealed the use of immunosuppressants or pre-73 

conditions related to infectious-diseases, except for one with a history of herpes-zoster a few weeks 74 

before death. The mode and cause of death are presented in Figure 2. The study protocol was 75 

reviewed by the Ethics Committee of Helsinki and Uusimaa Hospital District (approval 76 

164/13/03/00/2014). 77 

Specimen collection and preparation 78 

A 5-10 cm piece of the femoral diaphysis was collected and cut longitudinally with an oscillating tip 79 

saw. The bone was cleaned using a toothbrush and washed sequentially in distilled water, 0.1 % 80 

sodium hypochlorite, and 96.1 w/w ethanol. The bones were let to dry for 5 to 7 days at room 81 

temperature under flow in a laminar hood. From each individual, the external and internal surfaces 82 

of femoral bone were sampled using a dentist drill (Schick Qube) except for three cases, in which 83 

the bone was cryomilled (Spex 6775 Freezer/mill; Spex). The sample preparations and drillings were 84 

performed in enclosed dedicated facilities, using full-body protection suits. 85 

DNA extraction 86 

Approximately 0.1-0.4g of bone powder were lysed and extracted as specified before[23] and eluted 87 

in a final volume of 50-100 µl. The DNA extractions were performed in enclosed facilities, dedicated 88 

to the extraction of human DNA. No viral work is performed in these rooms. 89 

The total DNA was quantitated with Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher 90 

Scientific). 91 

The quality of the total DNA was evaluated with the Genomic DNA Reagent Kit in a LabChip  GX 92 

Instrument (Perkin Elmer). 93 

Quantitative PCRs 94 

The quantifications of parvovirus B19, Merkel cell, JC and BK polyomaviruses, and nine human 95 

herpesviruses as well as of the human single-copy gene RNase P were performed with in-house 96 

quantitative PCRs (qPCRs) as described[27–30] [Pyöriä et al. in press]. The quantification of 97 

hepatitis B virus and human papillomavirus type 31 DNAs were performed with commercial kits 98 

(Hepatitis B Virus PCR Kit, GeneProof; Genesig Human papillomavirus 31 Standard kit, 99 

PrimerDesign) according to the manufacturer instructions. 100 
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For the quantification of torque teno virus, a qPCR was optimized[31,32] to amplify and detect the 101 

conserved untranslated region (UTR) of the virus using the following primers: AMTS fwd (5'-102 

GTGCCGNAGGTGAGTTTA-'3), AMTAS rev (5'-AGCCCGGCCAGTCC-'3), AMTASgr4 rev (5'-103 

AGCCCGGCCAGACC-'3) and AMTPTU probe (5'-FAM-TCAAGGGGCAATTCGGGCT-BHQ1-'3). 104 

The qPCR reaction consisted of 1x Maxima probe qPCR Master mix (Thermo Fisher Scientific) with 105 

0.03 µM of ROX passive reference dye, 0.5 µM of each of the primers, 0.4 µM of the probe, 5 µl of 106 

the template, and nuclease-free water to a final volume of 25 µl. After initial denaturation at +95°C 107 

for 10 min, the qPCR cycles were +95 °C for 15 s and +55 °C for 1 min for 45 cycles. 108 

The qPCR amplicons were 63 to 154 nucleotides in length.  109 

Plasmid dilution series were used in all the qPCR runs as positive controls and to create standard 110 

curves for quantification. The plasmids of parvovirus B19, human herpesvirus 1-8, Merkel cell, JC 111 

and BK polyomaviruses, and RNaseP are described elsewhere[33][Pyöriä et al. in press]. For torque 112 

teno virus, a plasmid, named 10B, containing 1184 nucleotides of the virus was cloned from a healthy 113 

blood donor’s plasma (GenBank MT448658).  114 

The virus amplifications were completed with AriaMx Real-Time PCR System except for those of 115 

torque teno virus, RNaseP, and human papillomavirus 31 that were analyzed with Stratagene 116 

Mx3005P qPCR System (both Agilent). 117 

The qPCR mixes, sample handling, plasmid dilutions, and amplifications, were performed each in 118 

completely separate rooms, following strict protocols and work-flows to prevent contamination. 119 

Negative controls (PCR-grade water) were included in every step starting from the DNA extraction. 120 

PCR inhibition tests 121 

PCR efficiency due to carryover of inhibitors following DNA extraction was controlled using DNA 122 

extracts from bone together with or in parallel to a pre-quantified RNaseP plasmid[33].  123 

To evaluate the performance of different polymerases and the quantification accuracy, four different 124 

commercial master mixes were tested. From this, Maxima probe qPCR master mix was selected 125 

and used throughout the study.  126 

The impact of residual EDTA on the qPCR performance was examined by testing varying EDTA 127 

concentrations in the lysis buffer (0.5 to 500 nM) and by adding excess EDTA (0.05 to 50 nM) to the 128 

qPCR reaction. In addition, pre-quantified plasmid dilutions were extracted following the bone 129 

extraction protocol (i.e. lysis buffer containing 500 nM EDTA). 130 

The impact of residual Ca2+-ions from bone in the extracts was investigated by addition of MgCl2 to 131 

the qPCR reactions (in final concentrations of 4 to 7 mM). 132 

 133 



6 
 

Library preparation, viral enrichment, and sequencing 134 

The sequencing libraries were prepared on 10 to 1000 ng of total DNA using the KAPA HyperPlus 135 

library preparation kit (Roche), following the manufacturer protocol with two modifications: 1) 136 

mechanical fragmentation with a Covaris E220 of the DNA with target fragments of 200 nt and 2) the 137 

use of xGen Dual Index UMI Adapters (Integrated DNA Technologies). 138 

After sonication, the fragment length distributions were analyzed with the DNA High Sensitivity 139 

Reagent Kit in a LabChip GX Instrument (Perkin Elmer). 140 

The viral enrichment was performed using two consecutive rounds of hybridization on individual 141 

samples following recommendations for low input DNA (MyBaits v4 kit; Arbor Biosciences). For each 142 

library, 200 ng per round of biotinylated RNA-baits were used. The baits were 100 nt in length and 143 

designed with 2X tiling (Supplementary Table 1 for a list of viruses).  xGen Universal Blockers-TS 144 

Mix (Integrated DNA Technologies) were used to block unspecific binding to the adapters during 145 

hybridization. 146 

During library preparation and viral enrichment, the libraries were amplified 3x13-25 cycles. The 147 

clean-up steps were performed with either KAPA Pure Beads (Roche) or MinElute PCR Purification 148 

Kit (Qiagen). 149 

The enriched libraries were quantified with KAPA Library Quantification Kit (Roche) using Stratagene 150 

3005P qPCR System (Agilent) and subsequently pooled for sequencing on NovaSeq 6000 (SP 151 

PE151 reagent kit; Illumina). 152 

NGS data analysis  153 

The viral genomic sequences were reconstructed after removal of PCR duplicates, using a 154 

customized bioinformatics pipeline (TRACESPipe; [Pratas et al. in revision; available for download 155 

at https://github.com/viromelab/tracespipe). 156 

The consensus, as well as single sequences (when in low coverage), were confirmed by BLAST 157 

(NCBI). The highest similarity was used to classify the virus genotype. For parvovirus B19, the 158 

sequences covering >70 % of the viral genome (n=7) were aligned with previously published full or 159 

near-full length sequences in EMBL-EBI Clustal Omega and analyzed with Bioedit v.7.2.5 (Ibis 160 

Biosciences). 161 

For the following viruses, the consensus sequences will be available in GenBank with respective 162 

accession numbers: parvovirus B19 (7 sequences; MT410184-MT410190); human papillomavirus 163 

type 31 (MT410191); hepatitis B virus (MT410192); Merkel cell polyomavirus (MT410193). 164 

 165 
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Statistical analysis 166 

The differences in viral or cell copy numbers in the external and internal surfaces of femoral bone 167 

were calculated with Student’s t-test in RStudio (version 1.0.153). 168 

Results 169 

Viral DNA prevalences in the external and internal surfaces of the femoral bone. 170 

To determine the most optimal site for sampling, we first investigated the differences in prevalence 171 

and quantity of persisting viral DNAs in the external and internal surfaces of 27 femoral bones (Fig 172 

1). To this end, we examined three ubiquitous viruses (torque teno, parvovirus B19, and Epstein-173 

Barr virus) known to infect >70% of the global population and to persist in several soft tissues in the 174 

body. To control for bias by uneven amounts of DNA in the extracts, we performed in parallel a qPCR 175 

for the human single-copy gene RNAse P. We found no significant differences in the viral DNA 176 

prevalences (p>0.1) nor copy numbers (p values >0.5) between these two surfaces. Hence, 177 

subsequent analyses were performed only on samples taken from the external surface. 178 

 179 

Fig 1. Viral loads in the external and internal surfaces of the femoral bone. The numbers of cells as well 180 
as the DNA copies of torque teno virus (TTV), parvovirus B19 (B19V), and Epstein-Barr virus (EBV) from the 181 
external and internal surfaces of femoral bone were determined. No significant differences between these two 182 
locations were observed (p> 0.5). The cell counts are expressed per 1 µl of DNA extract and the viral DNA 183 
copy numbers per 1E6 cells. 184 

Viruses are highly prevalent in human femoral bone 185 

We then investigated the prevalences of altogether 38 persistent virus genomes using targeted 186 

enrichment and confirmatory qPCRs.  Overall, the 27 study subjects harbored on average 2.6 virus-187 
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types in their femoral bones, with a maximum of seven in one individual. Altogether, we detected 12 188 

different virus-types in 92.6 % of the bones, with only two individuals (> 60 years of age) being 189 

completely negative for all viruses tested. The viral findings are presented in Table 1 and Figure 2. 190 

The viruses most prevalent in bone were torque teno virus and parvovirus B19 with genoprevalences 191 

of 81.5% and 74.1%, respectively (Table 1). The third most prevalent was Merkel cell polyomavirus 192 

at 33.3%, followed by Epstein-Barr virus (25.9%), human papillomavirus (22.2%), human 193 

herpesvirus 7 (18.5%) and JC polyomavirus (14.8%). Other viral sequences detected were of herpes 194 

simplex 1, varicella-zoster, cytomegalovirus, human herpesvirus 6B, and hepatitis B virus. 195 

The median viral copy numbers per one million cells were 1.9E4 for torque teno virus, 2.4E3 for 196 

parvovirus B19, 8.7E3 for Merkel cell polyomavirus, and 2.1E1 for Epstein-Barr virus (Table 1). 197 

The most common co-occurrences were of parvovirus B19 and torque teno virus, found in 70.3% of 198 

the samples. Interestingly, we detected in the bone of one individual three cancer-associated viruses: 199 

hepatitis B virus, human papillomavirus type 31, and Merkel cell polyomavirus. 200 

Table 1. Viral DNA prevalence in human femoral bone 201 

Family Virus Genome 
size 
(kb) 

Geno- 
prevalence  

NGS+ 
cases 

qPCR+ 
cases 

Breadth coverage 
(range or value of 
single sample) 

Viral load 
(copies/ 
million cells) 

Parvoviridae B19V 5.6 74.1 % 17 16 4.5-100.0 % 2.4E3 
Herpesviridae 
 
 
 
 
 
Polyomaviridae 

HSV1 152 3.7 % 1 1 3.4 % 4.9E1 
VZV 125 3.7 % 1 1 13.6 % 2.0E0 
EBV 170 25.9 % 6 4 1.0-3.3 % 2.1E1 
CMV 236 3.7 % 0 1 - 9.8E1 
HHV6B 162 11.1 % 3 0 2.0-3.1 % - 
HHV7 150 18.5 % 5 0 4.8-12.0 % - 
JCPyV 5.1 14.8 % 3 2 3.7-14.8 % 2.7E1 
MCPyV 5.4 33.3 % 9 4 1.4-58.6 % 8.7E3 

Papillomaviridae HPV 8 22.2 % 6 1* 1.8-89.6 % 8.7E3 
Hepadnaviridae HBV 3.2 7.4 % 2 1 15.6-44.5 % 1.7E3 
Anelloviridae TTV 3.8 81.5 % 9 22 2.1-56.3 % 1.9E4 

* Only HPV type 31 qPCR was performed.  B19V: parvovirus B19; HSV1: herpes simplex virus-1; VZV: varicella-zoster virus; EBV: 202 
Epstein-Barr virus; CMV: cytomegalovirus; HHV6B: human herpesvirus 6B; HHV7: human herpesvirus 7; JCPyV: JC polyomavirus; 203 
MCPyV: Merkel cell polyomavirus; HPV: human papillomavirus; HBV: hepatitis B virus; TTV: torque teno virus 204 

We verified the accuracy of the qPCR results by examining the patterns of DNA fragmentation in the 205 

extracts and by evaluating the impact of potential inhibitors carried over during lysis and extraction. 206 

The quality of the total DNA in each sample was analyzed with a LabChip GX Instrument, which 207 

revealed 100 to 500 nt fragments in addition to intact genomic DNA (≤40 kb; Fig 3). We found no 208 

PCR inhibition accountable to excess EDTA or Ca2+ in the extracts. 209 

 210 

 211 

 212 
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 213 

Fig 2. Viral DNA occurrence by NGS and qPCR in bone per study subject. The viral findings are 214 
presented as green (NGS+, qPCR+), yellow (NGS+, qPCR-), orange (NGS-, qPCR+), and white 215 
(NGS-, qPCR-). *The cause of death (COD) is given according to the WHO ICD10 classification. 216 
^The manner of death (MOD) is presented as 1=disease, 2=occupational disease, 3=injury, 217 
5=suicide. The results are presented from left to right according to the highest and lowest virus 218 
prevalences in bone. B19V= parvovirus B19; HSV1=herpes simplex virus-1; VZV= varicella-zoster 219 
virus; EBV= Epstein-Barr virus; CMV= cytomegalovirus; HHV6B= human herpesvirus 6B; HHV7= 220 
human herpesvirus 7; JCPyV= JC polyomavirus; MCPyV= Merkel cell polyomavirus; HPV= human 221 
papillomavirus; HBV= hepatitis B virus; TTV= torque teno virus. 222 

 223 

Fig 3. DNA fragment analysis of total DNA. Fragment length distribution of patterns of genomic 224 
DNA for four representative samples as established with LabChip GX. 225 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

COD* F10 I35 C34 F71 W19 ??? I25 W19 W19 F10 I25 T36 I11 I25 I25 I35 F50 I25 W79 G30 I25 F10 C32 X74 I25 J84 I25

MOD^ 1 1 2 1 3 5? 1 3 3 1 1 3 1 1 1 1 1 1 3 1 1 1 1 5 1 1 1

B19V

HSV1

VZV

EBV

CMV

HHV6B

HHV7

JCPyV

MCPyV

HPV

HBV

TTV

cases
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Viral capture and sequence analysis 226 

As established from the qPCR results, the persisting viral DNA quantities were far below 1% of total 227 

DNA present in a sample. Thus, to enrich this fraction, we performed in-solution capture with 228 

biotinylated RNA oligonucleotides prior to sequencing in Novaseq 6000. Subsequently, we analyzed 229 

the NGS data with a custom pipeline, TRACESPipe (Pratas et al. in revision), which reconstructs the 230 

viral sequences using both reference-based alignment and de-novo assembly. 231 

We reconstructed a total of 15 viral genomic sequences, with a minimum of 15% breadth coverage. 232 

The highest qualities were attained for parvovirus B19 (n=7; average breadth coverage 86.1%), 233 

human papillomavirus (n=1; breadth coverage 89.6%), Merkel cell polyomavirus (n=1; breath 234 

coverage 58.6%), JC polyomavirus (n=1; breadth coverage 14.8%), hepatitis B virus (n=2; breadth 235 

coverages 44.5% and 15.6%), and torque teno virus (n=3; breadth coverages 56.3%, 30.6% and 236 

24.9%). The breadth and depth coverages of representative viruses are presented in Figure 4. 237 
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 238 

Fig 4. Coverage profiles of reconstructed viral DNA sequences. NGS coverage profiles (breadth and 239 
depth) of representative viruses. 240 
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By NCBI BLAST, we found close relation of the reconstructed genomes to previously published 241 

sequences. We recovered seven full/near-full B19V genomic sequences, three of which were of 242 

genotype 1 (95.16% to 99.61% similarity to AY504945.1) and four of genotype 2 (90.1% to 98.6%, 243 

similarity to AB550331.1). The latter genotype represents an extinct form of this virus and was found 244 

in the present study exclusively in individuals older than 68 years. Of this genotype, only a single 245 

full-length sequence has ever been published (AB550331.1). We found that this genotype’s hairpins 246 

present similar flip and flop configurations to those of genotype 1. 247 

The human papillomavirus sequence showed 99.1% similarity to type 31 (KU298889.1); Merkel cell 248 

polyomavirus 98.7% to the European/Caucasian type (KF266963.1) and JC polyomavirus 100.0% 249 

to genotype 1 (MF662198.1). The two hepatitis B virus sequences matched 99.4% and 99.6% to 250 

genotypes D (JX898691.1) and A (MN507849.1), respectively; and the torque teno virus sequences 251 

showed 90.2%, 99.0% and 96.2% similarity to strains AF122920.1, KT163880.1 and FR751497.1, 252 

respectively. 253 

Moreover, we confirmed by BLAST unique sequences (mean length 100 nt) mapping to the following 254 

viruses: herpes simplex 1 (1 case, 28 reads), varicella-zoster (1 case, 362 reads), Epstein Barr (6 255 

cases, altogether 270 reads), human herpesvirus 6B (3 cases, total of  66 reads), human herpesvirus 256 

7 (5 cases, total of 274 reads), JC polyomavirus (3 additional cases, total of 13 reads), Merkel cell 257 

polyomavirus (8 additional cases, total of 15 reads), human papillomavirus (5 additional cases, total 258 

of 14 reads), torque teno virus (6 additional cases, total of 26 reads), and parvovirus B19 (10 259 

additional cases, total of 673 reads). 260 

Discussion 261 

The analysis of viral DNAs shows great potential as complementary markers for human identification 262 

as well as for estimation of provenance and migration. However, one limitation of their use in these 263 

contexts is insufficient knowledge of the landscape of viruses persisting in the host, in particular in 264 

human bone, with only parvovirus B19[23,24] and hepatitis B[25] virus having been detected in this 265 

tissue so far. 266 

To this end, we systematically explored the prevalences of 38 ubiquitous viruses in human femoral 267 

bone. We discovered an unprecedented number of viral DNAs, detecting up to seven per individual. 268 

Besides the already known, we report here on ten new viruses including several members of the 269 

herpesvirus family (herpes simplex-1, varicella-zoster, Epstein-Barr, cytomegalovirus, human 270 

herpesviruses 6B and 7), JC- and Merkel cell polyomaviruses, human papillomavirus 31, and torque 271 

teno virus. Intriguingly, a common feature shared by these viruses (except for HHV-6B) is their 272 

persistence in soft tissues in episomal form[34]. Although the methods used in this study prevent us 273 

from confirming whether this is also the case in bone, the low copy numbers detected are indicative 274 

of a quiescent infection. Moreover, some of them (e.g. herpes-, polyoma-, and papillomaviruses) are 275 
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known to establish latency as densely packed nucleosomes, as mechanism to regulate gene 276 

expression[35,36]. Thus, the circular form and the tight histone packaging may confer DNA viruses 277 

superior preservation in relation to the host DNA (nuclear and mitochondrial)[37–39]. In this regard, 278 

the analysis of viral DNA could be of utmost value for forensic investigations or studies of ancient 279 

human remains dealing with highly compromised samples. 280 

One challenging factor in the study of the human virome continues to be its extremely low proportion 281 

in relation to other sources of DNA. With this in mind, we carried out our screening using two 282 

approaches, qPCR and NGS. We found that the viral DNAs were exceeded on average a 1000-fold 283 

by the nuclear DNA alone, in line with the loads reported for persisting viruses in soft tissues[40–42]. 284 

By targeted enrichment and NGS we identified a higher number of viruses than by qPCR, an 285 

observation that can in part be explained by moderate DNA fragmentation in the samples. The only 286 

exception was torque teno virus (TTV), for which we found a significantly higher number of positive 287 

samples by qPCR. This circular ssDNA virus exhibits substantial heterogeneity[43], which was 288 

under-represented by the three reference sequences upon which our baits were designed. Hence, 289 

a better characterization of it could require a broader bait coverage of its five genogroups together 290 

with analysis at the amino acid level, as certain motifs are more likely to be shared by different TTVs. 291 

The qPCR on the other hand, targeted the conserved UTR region, to recognize a wide a repertoire 292 

of TT-viruses. 293 

Unsurprisingly, larger genome coverages were recovered from the viruses with the highest copy 294 

numbers (~log3 copies/million cells). However, many of the viral loads fell below this threshold, 295 

whereby, follow-up singleplex enrichments may be beneficial to increase the analytical resolution of 296 

the data. Importantly, even for the low coverage genomes, we confirmed the sequences retrieved to 297 

be virus-specific and hence, genuine findings of the femoral bone. 298 

In all, we unveil that the human femoral bone is a much richer source of persistent DNA viruses than 299 

earlier known. We propose that a “Human Virome Panel” could be built as an efficient tool for 300 

assessment of human provenance in conjunction with the standard human DNA profiling. Indeed, 301 

the phylogeographical distributions of JC[13,14,44], BK[2], varicella-zoster[7], and Epstein Barr[6] 302 

viruses have been examined in this context and shown to add power to forensic cases and 303 

anthropological studies. Undoubtedly, larger cohorts, both global and local, are required to validate 304 

the benefits and boundaries of such panel in multiple taphonomic conditions. This work could also 305 

help to identify patterns in the age distributions of certain viruses and their genotypes[19,20], to 306 

support biometric estimations. 307 

Moreover, our data raise intriguing questions on the clinical significance of the long-term presence 308 

of these viruses – or their genomes – in the human skeleton. Indeed, many of the viruses we found 309 

can reactivate, and several have oncogenic potential. Among the latter, we detected Merkel cell 310 
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polyomavirus and human papillomavirus 31, two oncoviruses which, remarkably, are 311 

mucocutaneous. Certainly, these unexpected findings warrant further studies on the transcriptional, 312 

translational and reactivation potential of these pathogens as bone residents, particularly among the 313 

elderly and immune suppressed. 314 

Conclusions 315 

Our work substantially expands the current knowledge on the spectrum of DNA viruses persisting in 316 

human bone and opens new perspectives on their applicability in the investigation of human skeletal 317 

remains. It also supports the search for viruses from ancient relics, which can foreseeably remodel 318 

our understanding of virus evolution. 319 
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