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Abstract.  This review is the counterpart of a 2018 Chemical Reviews article that examined the 

mechanisms of chemical glycosylation in the absence of stereodirecting participation.  Attention is now 

turned to a critical review of the evidence in support of stereodirecting participation in glycosylation 

reactions by esters from either the vicinal or more remote positions.  As participation by esters is often 

accompanied by ester migration, the mechanism(s) of migration are also reviewed.  Esters are central to 

the entire review, which accordingly opens with an overview of their structure and their influence on the 

conformations of six-membered rings.  Next the structure and relative energetics of dioxacarbeniun ions 

are covered with emphasis on the influence of ring size.  The existing kinetic evidence for participation is 

then presented followed an overview of the various intermediates either isolated or characterized 

spectroscopically.  The evidence supporting participation from remote or distal positions is critically 

examined and alternative hypotheses for the stereodirecting effect of such esters is presented.  The 

mechanisms of ester migration are first examined from the perspective of glycosylation reactions, and 

then more broadly in the context of partially acylated polyols. 
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1.  Introduction 

In a recent issue of this journal we reviewed the mechanisms of glycosylation reactions with emphasis on 

the experimental evidence for reactions taking place at the SN1-SN2 interface.1 To complement that review 

we now present and critically assess the evidence in support of glycosylation reactions taking place with 

participation by a neighboring (vicinal, proximal) or a more remote (distal) ester on the framework of the 

glycosyl donor, which we term remote or distal participation. As ester migration is frequently a side 

reaction in glycosylations conducted with the aid of neighboring group participation and more generally 

in partially acylated carbohydrates, we also review the mechanisms of migration and the evidence 

supporting them. 

The concepts of neighboring group participation and anchimeric assistance are frequently used 

interchangeably in the literature.  In this review we espouse a narrower usage of Winstein’s term,2 as 

defined in the IUPAC Gold Book and other compendia and reviews of physical organic chemistry,3-5 

according to which anchimeric assistance denotes an increase in rate due to neighboring group 

participation. 

The notion of stereodirecting neighboring group participation in glycosylation reactions is long-known and 

was discussed by Frush and Isbell,6 before the broad general concept was introduced to organic chemistry 

as a whole by the Winstein laboratory,7 and has been reviewed with varying degrees of rigor multiple 

times.8-21  It has been practiced as a tool in glycosylation reactions since the discovery of the Koenigs-Knorr 

reaction22 and as such the number of examples of its use, even in a single year,23 are far too numerous to 

list here. Stereodirecting participation by more remote groups has also been very widely invoked in 

glycosylation reactions, since its introduction in the 1970’s,24,25 and has been reviewed in recent 

years,16,26,27 such that, again, no attempt is made to comprehensively treat all implied examples of it. 

Rather we present a critical survey of the literature covering the experimental evidence for or against 
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participation, neighboring or distal, and the mechanisms of the associated migrations.28,29  We also discuss 

alternative mechanisms for the stereodirecting effects of remote esters that do not involve participation 

in the classical sense. Ester migration between hydroxy groups of partially acylated carbohydrates is an 

important corollary to migration during glycosylation: it has been briefly reviewed recently28 but is 

covered here in detail with emphasis on mechanism. 

Beyond the concept of ester migration during participation, it is commonly known that acyl groups in 

organic molecules are prone to intramolecular migration between the hydroxy groups, as first 

demonstrated for carbohydrates by Fischer in 1920.30 Several studies providing closer insights into the 

actual migration process have been performed since,28 mostly in monosaccharide derivatives, although 

also larger carbohydrate molecules have been addressed, albeit less frequently.31-34 The often 

spontaneous migration, particularly under basic conditions, significantly hampers the use of partially 

acylated carbohydrate derivatives in synthesis and must always be considered in all isolation, 

characterization and identification processes of both synthetic compounds and natural products.28,35-39 

As esters are central to the entire review we begin with an analysis of the configuration and conformation 

of the ester group and of the influence of esters on the conformations of pyranoside rings.  We continue 

with an overview of the structure and relative energetics of cyclic dioxocarbenium ions in general before 

addressing participation by esters in glycosylation reactions from all aspects.  Consideration of the 

evidence presented for and against participation then leads to a critical evaluation of the likelihood of 

participation by remote esters and the presentation of alternative hypotheses in explanation of the 

experimental results.  We then continue with a discussion of ester migration in the course of glycosylation 

reactions before addressing the broader issue of ester migration in partially acylated carbohydrates from 

a mechanistic viewpoint.  Finally, a brief conclusion is offered. 

2.  Conformations of Esters and the Influence of Esters on the Conformational Dynamics of Sugars 
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It is well established from the examination of crystallographic databases that carboxylate esters 

overwhelmingly adopt the Z-conformation about the C-O bond (Figure 1).40-42  Albeit not strictly correct, 

esters in the Z-conformation are commonly called trans-esters.  Spectroscopic and computational studies 

agree with the crystallographic data and suggest Z,E free energy differences of ~5 kcal.mol-1 for methyl 

formate and ~8 kcal.mol-1 for methyl acetate in the gas phase or in low polarity solvents.43-50  The 

predominance of the Z-conformation is such that in a 2005 survey of X-ray structures of secondary 

acetates, only 13 of almost 7000 acetates adopted the E-conformation.42  The difference between the two 

conformations is less pronounced in polar media owing to the higher polarity of the E-conformation. 

Gas phase computations indicate a barrier of ~13 kcal.mol-1 for the interconversion of the Z- and E- 

conformers of methyl acetate,51 consistent with the experimental barrier of 13.8 kcal.mol-1 separating the 

Z- and E- conformers of formic acid.52   

 

Figure 1.  E and Z-conformations of methyl acetate. 

Following on from a limited 1965 survey by Mathieson,40 Schweitzer and Dunitz surveyed X-ray structures 

of secondary alkyl esters in the Cambridge Crystallographic Database in 1982.41 They found that in 102 of 

the approximately 170 structures considered, the α C-H bond of the ester was within 30° of eclipsing the 

carbonyl oxygen, and was within 60° of it in the remaining structures (Figure 2).  This preference for an 

eclipsed conformation in secondary esters is distinct from that in both primary and tertiary esters, both 

of which prefer the staggered conformation.41 
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Figure 2.  Preferred eclipsed conformation of secondary esters. 

A subsequent 2005 survey by Anderson and coworkers covered some 1546 structures of cyclic secondary 

alkyl acetates resulting in the conclusion that the H-C-O-Ac torsion angle τ is a function of the degree of 

substitution of the two vicinal positions flanking the ester function.42  In the absence of such substitution, 

the distribution of τ values displayed in Figure 3 was found indicating the typical H-C-O-C=O torsion angle 

to be between 30 and 40° in such cases.  When one flanking equatorial substituent was present the mean 

torsion angle τ was 18.8° for the 192 cases when the CO group was rotated toward the substituent, and 

27.8° for the 330 cases when it was rotated away from the substituent. 

 

Figure 3.  Distribution of H-C-O-C(=O) torsion angles τ in secondary cyclic acetates lacking flanking 

substituents. 

The presence of a flanking equatorial substituent on either side of the ester function, as is commonly the 

case in carbohydrate esters, afforded a much narrower distribution of τ that approached the eclipsed 
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conformation.  Thus, for the 493 equatorial acetates the mean τ was 11.9° while for the 63 cases of axial 

acetates it was 17.8° (Figure 4). 

 

Figure 4.  Distribution of H-C-O-C(=O) torsion angles τ in secondary cyclic acetates with two flanking 

substituents. 

Calculated energy barriers for rotation through a perfectly eclipsed conformation were in all cases studied 

≤1 kcal.mol-1, whereas those for rotation to the much less common anti-conformation of the ester bond 

in which τ = 180° varied between 4 and 12 kcal.mol-1 depending on the degree of substitution.42   

Finally, with the aid of computed conformations for a limited range of cyclohexyl acetates with differing 

substitution patterns at the vicinal positions, a Karplus relationship was derived for the 3J heteronuclear 

coupling constant between the α-proton in the ester moiety and the carbonyl carbon 3J(1H-C-O-13C=O).42  

However, as the range of coupling constants for 0<τ<60° was small (2.5-4.6 Hz) caution should be 

exercised in the extension of these values to more complex systems, particularly to systems carrying 

electronegative substituents in view of the well-known influence of the latter on the magnitude of 

coupling constants.53,54 
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It is well established that cyclohexane rings carrying acyloxy substituents exhibit a greater propensity for 

the axial conformation than do the corresponding alkoxy substituted systems.  For simple ester derivatives 

of cyclohexanol, Kleinpeter and coworkers established by a combination of low temperature NMR studies 

and ab initio computations that the proportion of the axial conformer increases with the electronegativity 

of the ester, such that the cyclohexyl benzoates contain approximately 20% of the axial conformer.55,56  It 

was reasoned that the axial conformation is stabilized by hyperconjugative interactions with the axial 

vicinal protons (σC-H → σ*C-O hyperconjugation), which are greater than the corresponding 

hyperconjugative interactions with the corresponding C-C bonds in the equatorial conformer (σC-C → σ*C-O 

hyperconjugation) (Figure 5).  Further, it was found in a series of aliphatic esters that increasing the steric 

bulk of the ester results in an increased population of the axial conformer.55  While the exact nature of 

the steric interactions destabilizing the equatorial ester are not clear, it is evident that they are greater 

than any increased steric destabilization of the axial conformer, consistent with the minimally strained 

nature of cyclohexanes carrying axial C-O bonds found in a survey of X-ray crystal structures.57   

 

Figure 5.  σC-H → σ*C-O and σC-C → σ*C-O Hyperconjugative stabilization of axial and equatorial esters. 
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These electronic trends were accentuated in the esters of trans-1,4-cyclohexanediol, which was attributed 

by the authors to increased polarity,58 and by Alabugin to unfavorable double hyperconjugation in the 

equatorial conformer where two σ*C-O orbitals compete for hyperconjugation with the same σC-C orbital.  

In contrast, esterification of trans-1,2-cyclohexanediol leads to an enhanced preference for the 

diequatorial conformer, with respect to the corresponding dimethyl ether, because of the reinforcement 

of the gauche effect by the increased electronegativity.59  To our knowledge, there is no published work 

on the cyclohexane-1,3-diols. However, by extrapolation of the trends seen in the corresponding 

dihalides, where computational work suggests that 1,3-cis-difluoride exhibits a significantly greater diaxial 

population than the corresponding dichloride and dibromide,60 it can be concluded that esterification in 

the cis-series will lead to an increased population of the diaxial conformer. 

The presence of a sp2-hybridized atom in the cyclohexyl moiety as in 4-exo-methylenecyclohexyl benzoate 

also reduces the energy difference between the axial and equatorial conformers, with respect to the 

saturated system. In the 4-acyloxycyclohexanones the axial conformer is even further stabilized: it has 

been found that 4-(4-chlorobenzoyloxy)cyclohexanone is favored by 0.71 kcal.mol-1 over the equatorial 

conformer in deuteriochloroform solution, and crystallizes as the axial conformer.58  Clearly, the flattening 

of the ring by the insertion of the sp2 center has a stabilizing effect on the axial conformer, and this is 

accentuated by the electron-withdrawing effect of the ketone, leading the authors to suggest a polar 

effect as the main factor at play. Importantly, in the crystal structure the ester moiety of 4-(4-

chlorobenzoyl)cyclohexanone adopts the standard conformation with the carbonyl group eclipsing the  C-

H bond (Figure 6).  Any electrostatic stabilization of this axial conformation therefore involves the electron 

density on the ester oxygen and not that on the carbonyl oxygen. Pertinently, the presence of the sp2 

center also serves to lower the barrier to ring inversion in both the 4-exo-methylene and 4-keto series of 

cyclohexyl esters.58 
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Figure 6.  Conformation of 4-(4-chlorobenzoyloxy)cyclohexanone adopted in the crystal structure. 

The increased propensity of saturated six-membered rings for conformations carrying axial ester groups 

relative to comparable ethers manifests itself most clearly in peresterified pentopyranosyl and related 

structures.61-63  Thus, methyl 2,4-di-O-methyl-3-deoxy-β-L-erythropentopyranoside preferentially adopts 

the all equatorial conformation, whereas the corresponding diacetate takes up a predominant 

conformation that is close to the all axial one, in all solvents studied (Figure 7).64   

 

Figure 7.  Approximate conformations of the dimethyl ether and diacetyl ester of methyl 3-deoxy-β-L-

erythropentopyranoside. 

The effect is most widely studied in the peresterified β-D-xylopyranosyl halides, for which it has long been 

reported that the 1C4 conformation with all substituents axial is preferred in solution.61,62  This early and 

widespread assignment of the 1C4 conformation for many xylopyranosides was critically re-examined by 

Lichtenthaler and Lindner who found substantial deviation from the ideal chair conformation in most 

cases.65 Thus, for example, per-O-benzoyl β-D-xylopyranosyl chloride and the corresponding methyl 

glycoside adopt the 2So twist boat conformation in the crystal, while the fluoride, bromide and benzoate 

approach the ideal 1C4 chair but are nevertheless distorted toward the 5Ho half-chair as manifested by 

substantial deviations (≤42°) from the ideal 180° 1,2-trans-diaxial torsion angles (Figure 8).  In solution, on 

the basis of the averaged vicinal coupling constants, the same authors considered the various per-O-
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benzoyl β-D-xylopyranosyl derivatives to exist as interconverting mixtures of 4C1 and 1C4 conformers 

whose relative proportions depended on the anomeric substituent and the solvent.65  In a more recent 

treatise, Grindley reported on the percentage of the 4C1 conformer present for each member of a series 

of pentopyranosyl derivatives (α- and β-anomers, with and without esterification) without specifying the 

other conformations that make up the balance (Table 1).63 Whatever the actual nature of the 

conformations adopted in the various β-D-pentopyranosyl systems, it is clear that the anomeric effect is 

the main force away from the 4C1 and toward the 1C4 conformation.  This conclusion is reinforced by the 

fact that per-O-benzoyl-1,5-anhydroxylitol, which lacks an anomeric substituent, takes up the 4C1 

conformation with all substituents equatorial in the crystal and only populates the inverted 1C4 

conformation to the extent of 19% in d6-acetone solution.66   

 

Figure 8.  X-ray crystallographically-derived conformations of per-O-benzoyl xylopyranosyl derivatives 

highlighting the importance of the anomeric substituent. 

Table 1.  Population Distribution of the 4C1 Conformation in Selected Pentopyranose Derivatives61,63 

Configuration Methyl 2,3,4,-tri- 

O-acetyl 

1,2,3,4-Tetra- 

O-acetyl 

2,3,4-Tri-O-acetyl 

chloride 

β-arabino 3 4 2 

β-ribo 39 43 6 

β-xylo 81 72 21 

 

Inverted conformations placing the anomeric substituent in a pseudoequatorial position and the esters in 

pseudoaxial ones have also been widely reported for peresterified pyranosyl pyridinium and related 

imidazolinium ions, and are the origin of the now abandoned concept67-71 of the reverse anomeric 



12 
 

effect.61-63,72 Thus for example, tri-O-acetyl-α-D-xylopyranosyl pyridinium bromide is reported to adopt 

the 1C4 conformation in the crystal to accommodate the bulky pyridinium group in an equatorial position, 

thereby placing all three esters axial (Figure 9).73  Closer inspection, however, reveals distortion from the 

ideal chair conformation such that the O3-C3-C4-O4 torsion angle is ~170°. Likewise, neutral tri-O-acetyl-

α-D-xylopyranosyl imidazole adopts a distorted 1C4–like conformation in the crystal, so as to place the 

bulky imidazole ring (unprotonated) in an equatorial position; the distortion from the ideal chair of this 

structure is apparent from the O3-C3-C4-O4 torsion angle of 161°.74  It is noteworthy that all of the ester 

groups in the pyridinium salt adopt the standard conformation in which the carbonyl group is more or less 

eclipsed with the C-H bond. The corresponding unprotected xylopyranosyl pyridinium salts populate the 

inverted conformations to a lesser extent.75 

 

 

Figure 9.  X-ray crystallographic conformations of tri-O-acetyl-α-D-xylopyranosyl pyridinium bromide and 

tri-O-acetyl-α-D-xylopyranosyl imidazole 

Careful study of the solution conformations of the glycosyl imidazolinium ions by Perrin and coworkers 

led to the conclusion that the populations of 1C4 conformations in such molecules assigned by previous 

investigators are not reliable.68 Inaccurate limiting coupling constants for the different conformations, 

required to compute the relative populations, are one likely reason for the apparent errors in the earlier 

work as noted earlier by Finch and Nagpurkar.75 Other contributing factors include distortions from the 

ideal 1C4 chair, either by twisting or flattening as apparent in the various X-ray structures, and the differing 

basicities of the pseudo-axial and equatorial anomeric heterocycles.68   
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It is appropriate to recall that the preferred diequatorial conformation of trans-vicinal esters in the 

cyclohexanes is reinforced by the gauche effect,59 and that the inverted diaxial conformer only benefits 

from a single σC-H → σ*C-O hyperconjugation that stabilizes a single axial ester group.55  Taken to the 

extreme in the all axial conformation of a 1,2,3-tri-acyloxy substituted system, such as the 1C4 

conformation of the xylopyranosyl derivatives, the central ester does not benefit at all from σC-H → σ*C-O 

hyperconjugation.  As such, although the xylopyranoside configuration is the most widely studied class of 

inverted chair conformations, perhaps because it is the most striking with a full set of pseudo-axial esters, 

it should not be the configuration in which the effect is most pronounced. The corresponding inverted 

arabino and ribopyranosyl derivatives retain both the stabilizing gauche effect and at least one σC-H → σ*C-

O hyperconjugation to an axial C-O bond in the 1C4 conformation, as is apparent from the much reduced 

population of the 4C1 conformers manifested by the β-arabino and β-ribo-pyranosides as compared to 

their xylo-isomers (Table 1).61,63  This same tendency toward the increased population of an “inverted” 

conformation is seen in the protonated α-mannopyranosyl imidazolides as compared to the 

corresponding α-glucopyranosyl imidazolides.75 

Structural studies of trichloroacetimidates are rare, but an X-ray crystal structure of an iduronic acid donor 

reveals a standard ester-like conformation in which the C=NH double bond eclipses the anomeric C-H 

bond (Figure 10).  As expected, all esters in this molecule are in the standard trans-conformation with the 

carbonyl C=O eclipsing the equatorial C-H bond on the ring. 

 

Figure 10.  X-ray crystallographically-derived structure of an iduronyl trichloroacetimidate showing the 

conformation of the trichloroacetimdate moiety. 
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3.  Structures of Dioxocarbenium Ions 

The X-ray crystal structure of the 2-methyl-1,3-dioxolan-2-ylium ion, the parent structure common to 

vicinal participation by acetate esters, was determined by Paulsen and Dammeyer as its perchlorate salt.76  

Obtained by treatment of acetoxy-2-bromoethane with silver perchlorate in toluene, this salt was 

crystallized from acetonitrile by trituration with ether and tetrachloromethane and had a melting point of 

176.5-178 °C.  In the solid state, the dioxolanylium ring is planar and carries two identical sets of eclipsed 

vicinal C-H bonds.  In deuterioacetonitrile solution C2 resonates at δ 191.8 in the 13C NMR spectrum (Figure 

11).  The 13C NMR spectra of multiple other mono-, di-, tri- and tetra-substituted 2-methyl-1,3-dioxolan-

2-ylium ions prepared in a similar manner were also reported by Paulsen and Dammeyer,76 and more 

detailed analyses were presented subsequently by Paulsen and Schüttpelz.77 cis-Fusion of the parent 

structure to cyclopentane affords a structure, whose tetrafluoroborate salt revealed little distortion from 

planarity in the heterocyclic ring (O1-C5-C4-O3 = 5°) and an envelope conformation for the all carbon ring 

with an endo-pucker of the flap in its X-ray crystal structure (Figure 11).78  cis-Fusion to a cyclohexane ring 

on the other hand results in substantial distortion of both rings: the heterocyclic ring of the perchlorate 

was found to adopt a twist conformation with a O1-C5-C4-O3 torsion angle of 25.9° while the cyclohexane 

ring was distorted from a chair toward a half-chair.79  It has been reported that 1,3-dioxolan-2-ylium rings 

trans-fused to six-membered rings have been obtained by dehydration of the corresponding trans-2-

acetoxy alcohols with trifluoromethanesulfonic acid or directly from the corresponding trans-1,2-

diacetoxy systems also with trifluoromethanesulfonic acid.80  However, the formation of these substances 

was not confirmed directly, but rather inferred from their hydrolysis products. The 1H and 13C NMR 

parameters of 2-methyl-1,3-dioxan-2-ylium cations obtained from acetoxy-3-bromoalkanes were also 

investigated by Paulsen and Schüttpelz and interpreted with the aid of semi-empirical calculations (Figure 

11).77  The parent system was considered to adopt a rapidly inverting envelope conformation in which the 

flap was raised some 10° out of the plane of the other five atoms.  Substitution in the propylene chain of 
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the 1,3-dioxan-2-ylium ring was considered to lead to a preference for conformations with 

pseudoequatorial groups, but this preference was computed to be considerably lower than in the 

corresponding cyclohexanes.   

 

Figure 11.  Preferred conformations of monocyclic and cis-fused bicyclic dioxalan-2-ylium ions and of a 

monocyclic dioxan-2-ylium ion and their key 13C NMR resonances. 

In an impressive series of studies summarized in a 1976 review article, Paulsen and coworkers studied the 

rearrangements of peresterified polyols and the related intermediate acyloxyalkyl dioxolanylium and 

dioxanylium ions.81  Such experiments enabled them to determine, inter alia, the relative stabilities of 

various 2-substituted-1,3-dioxolan-2-yl-ium ions as a function of the substituent at the 2-position, and 

also to tease out the influence of ring size on stability. Pertinently, the equilibrium between the five and 

six-membered cyclic ions was found to favor the smaller to the extent that only one form was observable, 

leading to the conclusion that dioxolanylium rings are more stable than dioxanylium rings (Figure 12).81,82  

A similar conclusion regarding the relative stabilities of dioxolanylium and dioxanylium ions was reached 

by Larsen and Ewing who measured the heats of formation of the cyclic ions on dissolution of the 

corresponding open chain acyloxyalkenes.83 
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Figure 12.  Equilibration reveals the thermodynamic stability of a dioxolanylium ion over a dioxanylium 

ion.  

Ramsey and Taft recorded the NMR spectra of a series of mono-, di-, and trialkoxyalkyl carbenium ions in 

sulfuric acid, sulfur trioxide in sulfuric acid and in trifluoroacetic acid and measured a barrier to rotation 

of 11±4 kcal.mol-1 in the 1,1-dimethoxyethyl carbenium ion.84  Further NMR studies of tetrafluoroborate 

salts were conducted by Borch in deuteriochloroform solution, and corroborated by Dusseau and 

coworkers who generated the dialkoxyalkyl cations in the form of bromide salts from the reaction of 

bromine with the corresponding orthoesters in liquid sulfur dioxide.85 The NMR spectra of the 1,1-

diethoxyethyl cation at -30 °C showed a single isomer with non-equivalent ethyl groups consistent with 

the E,Z-isomer (Figure 13).  The NMR spectra of the corresponding dialkoxymethyl cations displayed a ~ 

90:10 mixture of the predominant E,Z and a minor isomer, presumably the E,E-isomer.86 According to 

Deslongchamps the Z,Z-isomer benefits from two stereoelectronic interactions arising from the 

antiperiplanar nature of the remaining oxygen lone pairs and the geminal C-O bonds, but suffers from 

unfavorable steric interactions. The E,E-isomer on the other hand suffers from a repulsive interaction 

between the two lone pairs; consequently the E,Z-isomer in which both steric and dipolar interactions are 

minimized, and one stereoelectronic interaction retained, is the most stable configuration.87 

 

Figure 13.  Relative energies and barrier to inversion in the 1,1-diethylethyl carbenium ion. 
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Woerpel and co-workers prepared and obtained the X-ray crystallographic structures of two 

dialkoxycarbenium ions; both adopted the E,Z-configuration and not the alternative E,E-isomer (Figure 

14).88  DFT-computational work by Whitfield, Boons and their coworkers with a series of related six-

membered cyclic 1-alkoxy oxocarbenium ions are consistent with this observation, and indicate that the 

E,Z-isomer is preferred over the E,E-configuration by >2 kcal.mol-1 in all cases studied.89  Of further note 

in the X-ray (and NMR solution) structure of the benzyloxy-substituted ion is the pseudoaxial orientation 

adopted by the remote benzyl ether.  As no evidence for actual bridging was observed, this is considered 

evidence for the through-space electrostatic stabilization of the positive charge by the C-O bond88 to 

which we return later. 

 

Figure 14.  X-ray crystallographically-derived conformations of two tetrahydropyran-based 

dioxocarbenium ions. 

4.  Kinetic Studies on Participation 

The importance of kinetics in the determination of reaction mechanisms cannot be over-emphasized, with 

glycosylation reactions being no exception to the rule.1 With regards to the effects of participation in 

glycosylation reactions, in recent years efforts have focused mainly on the determination of ratios of 

recovered starting material or of products in competition reactions.  Earlier investigators, however, did 

conduct extensive kinetic studies on solvolysis reactions of esterified donors as summarized in various 

books and reviews.8,13,18  Unfortunately, these early studies were conducted under solvolytic conditions 

that are not relevant to modern oligosaccharide synthesis.  Pertinent examples are nevertheless discussed 

here as they illustrate how mechanisms can change significantly with changes in reagents and conditions. 

Schroeder and coworkers determined initial rate constants for the solvolysis of 2,3,4,6-tetra-O-acetyl-α-

D-glucopyranosyl bromide in a series of primary and secondary alcohols as solvent, and investigated the 
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influence of temperature and of added salts on the kinetic parameters.90  It was found that added lithium 

bromide (0.1 M) increased the rate of consumption of the substrate approximately twice as much as the 

identical concentration of added lithium chloride, while at the same time increasing the proportion of the 

α-glycosides in the reaction mixture. It was suggested that the added bromide might act by promoting 

orthoester formation, but a more reasonable explanation involves catalysis by formation of the more 

reactive β-bromide.  In the absence of strong electrophilic catalysts, this β-bromide would be susceptible 

to anchimeric assistance from the 2-O-acetate resulting in a significant overall rate increase. Direct 

solvolysis of the β-bromide by the alcohol explains the increased formation of the α-glycoside (Table 2). 

Table 2.  Effect of Added Lithium Bromide and Lithium Perchlorate on the Solvolysis of 2,3,4,6-Tetra-O-

acetyl-α-D-glucopyranosyl Bromide 

 

Additive (0.1 M) ksubs consumption (106k s-1) Initial β:α ratio 

- 24.2 18-43:5 

LiClO4 30.2 22-39:5 

LiBr 55 23:19 

 

In a further study of the influence of acyl protecting groups on the solvolysis of α-D-glucopyranosyl 

bromides, Eby and Schuerch investigated the behavior of 6-O-acetyl-2,3,4-O-(N-phenylcarbamoyl)-α-D-

glucopyranosyl bromide and its per-N-methylated derivative in an acetone/methanol mixture at 23 °C.91  

Pseudo first order rate constants for the two derivatives showed only a minor acceleration of the N-phenyl 

derivative over the N-methyl-N-phenyl analog, but the product ratio was dramatically different with the 

former affording only the β-glycoside and the latter a 7:3 β:α mixture (Table 3).  The authors considered 

that the N-phenyl derivative controlled the stereochemical outcome of the reaction by neighboring group 
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participation following oxocarbenium ion generation, whereas the N-methyl-N-phenyl derivative was 

unable to participate, resulting in the observed stereoisomeric mixture of products.  The differences in 

rate, which cannot be attributed to anchimeric assistance in this 1,2-cis series, suggest stabilization of an 

oxocarbenium ion-like transition state for solvolysis by the participating N-phenylcarbamoyl group. 

Table 3.  Rate Constants and Product Ratios in the Solvolysis of N-Phenyl and N-Methyl-N-phenyl 

carbamoyl α-D-glucopyranosyl Bromides 

 

R k (s-1) β:α ratio 

NHPh 3.24 x 10-5 1:0 

NMePh 2.60 x 10-5 7:3 

 

Wulff and Röhle studied the activation of acetobromoglucose by insoluble silver salts in a range of 

solvents. The time profile of consumption of acetobromoglucose was studied at 0 °C enabling half-lives to 

be determined in the presence and absence of a single molar equivalent of methanol (Table 4). The 

differences in half-lives in the presence and absence of methanol in acetone, ethyl acetate and especially 

diethyl ether revealed the involvement of methanol in the rate determining step of the reaction, leading 

the authors to propose a bimolecular mechanism taking place on the surface of the insoluble silver salt 

(Figure 15).92 Reactions conducted in dichloromethane, the most widely applied solvent in modern 

oligosaccharide synthesis, also exhibited methanol dependent half-lives indicative of a bimolecular 

mechanism.  The rates of reactions conducted in tetrahydrofuran were not sensitive to the addition of 

methanol.  In further work on reactions conducted in THF with silver salicylate as promoter, Wulff and 

Schmidt isolated 4-bromobutyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside leading them to propose the 

participation of THF via an O-glycosyl oxonium ion (Figure 16).93 Indeed, this and a related paper by 
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Helferich and Zirner, who isolated the same THF-derived glycoside when conducting mercuric bromide-

activated glycosylations with acetobromoglucose in THF,94 provide some of the most direct and convincing 

evidence for the oft-proposed participation of ethers in glycosylation reactions. In contrast, the very 

significant change in half-lives recorded in diethyl ether (Table 4) argues strongly against participation by 

ether, at least, under this set of reaction conditions. 

Table 4.  Half-lives and Product Distributions for the Consumption of Acetobromoglucose by Silver 

Carbonate With and Without Equimolar Amounts of Methanol 

  

Solvent Product with methanol t1/2 with 

MeOH (min) 

t1/2 without 

MeOH (min) 

 Glucoside 

(%) 

Orthoester 

(%) 

  

Et2O 40 1 15 >1000 

THF 0 50 70 70 

EtOAc 10 10 10 25 

CH2Cl2 30 10 15 50 

acetone 5 30 10 15 

 

 

 

Figure 15.  Proposed transition state for the reaction of methanol with acetobromoglucose promoted by 

insoluble silver salts. 
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Figure 16.  Oxonium ion intermediate proposed for participation by THF. 

 

Wallace and Schroeder made a careful study of the reaction of mercuric cyanide promoted coupling of 

cyclohexanol with 2-O-acetyl-3,4,6-tri-O-methyl-α-D-glucopyranosyl bromide in 1:1 

nitromethane:benzene.95  The reaction was determined to be first order in both the glycosyl bromide and 

mercuric cyanide but zero order in cyclohexanol, leading the authors to postulate Hg(II) assisted 

dissociation of the bromide ion to afford an oxocarbenium ion/bromide ion pair as the rate determining 

step. Analysis of the product distribution as a function of the alcohol concentration, however, revealed 

the importance of acceptor concentration in the product forming step: higher concentrations of 

cyclohexanol afforded greater proportions of the β-glycoside at the expense of those of the orthoester 

and of the α-glycoside which decreased. On this basis it was proposed that stereoselective trapping of an 

initial contact ion pair by the acceptor affording the β-glycoside competes with ring closure to the 

dioxalenium ion, affording the orthoester, and equilibration of the ion pair with solvent, leading to 

formation of the α-glycoside (Scheme 1).  A time course study of the reaction conducted with 6 x 10-3 M 

substrate and promoter but 9 x 10-2 M cyclohexanol revealed a build-up of the orthoester in the early 

stages of the reaction, followed by its gradual conversion to the β-glycoside after complete consumption 

of the substrate (Scheme 1).95 

Scheme 1.  Mercuric Cyanide Promotion of the Reaction of Cyclohexanol with 2-O-Acetyl-3,4,6-tri-O-

methyl-α-D-glucopyranosyl Bromide in 1:1 Nitromethane:Benzene 
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The contrast between the mechanism for β-glycoside formed in Table 4 and Scheme 1 from the identical 

substrate is striking and illustrates the critical role played by solvent and promoter in glycosylation 

reactions.  What is perhaps even more striking is the fact that the concentration of the acceptor plays a 

critical role in both reactions, in the one case intervening directly in the rate determining step and so 

influencing the reaction kinetics and its stereochemical outcome, and in the other case only in the product 

forming step where it nevertheless impinges directly on stereoselectivity. Thus, whether the reaction 

proceeds via an SN1 or SN2-like mechanism the concentration of the acceptor correlates with 

stereoselectivity. 

An early study of the influence of remote esters on glycosylation rates was conducted by Glaudemans and 

Fletcher who studied the rates of methanolysis of 5-O-(4-nitrobenzoyl)-2,3-di-O-benzyl-α-D-

arabinofuranosyl chloride and of 3,5-di-O-(4-nitrobenzoyl)-2-O-benzyl-α-D-arabinofuranosyl chloride in 

comparison to that of 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride in dichloromethane under 

pseudo-first order conditions.96 This study is prescient in that it raises the possibility of remote 

stereodirecting participation by the esters at the 5- and especially 3-position of the donor, but also notes 

the reduced likelihood of participation by the electron-deficient p-nitrobenzoates employed.  We are not 
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aware of any further kinetic measurements on the influence of remote esters on the rates of glycosylation 

reactions. 

5.  Orthoesters as Intermediates in Glycosylation Reactions Directed by Vicinal Esters 

The trapping of dioxalenium ions arising from the participation of carboxylate esters at the 2-position of 

glycosyl donors by a wide variety of nucleophiles is one of the classical reactions of carbohydrate 

chemistry, with many hundreds of examples reported in the literature, and constitutes some of the 

strongest and most long-standing evidence for neighboring group participation.9,13-15,97-99  Orthoesters can 

be isolated in high yield from a variety of systems, provided activation is carried out in the presence of a 

non-nucleophilic base.100-103  This process, which is a prerequisite to the use of orthoesters as donors in 

glycosylation reactions, also provides a practical means of regioselective protection of pyranoses,104 but 

is perhaps most widely known as a problematic side reaction in neighboring group assisted glycosylation 

reactions under basic conditions and with unhindered primary alcohols.105 Other than to note that 

participation by 2-O-carboxylate esters leading to the formation of intermediate dioxalenium ions and 

orthoesters applies even to sterically bulky esters, such as pivalates,98 and to electron-deficient esters 

including the chloro- and bromoacetates106 albeit not necessarily to the very electron-deficient trichloro 

and trifluoroacetates,107 no attempt is made here to catalogue the many descriptions of orthoester 

isolation, nor of their rearrangement to glycosides.   

It is generally considered that such orthoesters are the kinetic products of glycosylation under conditions 

of neighboring group participation, with the nucleophilic alcohol most rapidly attacking the dioxalenium 

ion at the site of maximum positive charge density.95,101-103  This hypothesis is supported by computational 

work by Whitfield and coworkers.108  In the absence of a buffering base, rearrangement then takes place 

to give the glycoside.  The stability of glycosyl orthoesters and the rate at which they rearrange to the 
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corresponding glycosides is a function of the type of ester (acetate, benzoate, etc), with some authors 

indicating that benzoates are less problematic than acetates.102,109,110 

Several groups have studied the influence of steric and electronic effects in the participating ester on 

conversion of the intermediate dioxalenium ion to the glycoside with a view to suppressing orthoester 

formation and other deleterious side reactions including erosion of stereoselectivity, hydrolysis, and acyl 

transfer.106,110-119  In this regard, a recent report by Sun and coworkers according to which the 2-O-[2,2-

dimethyl-2-o -nitrophenyl)acetyl group provides complete stereoselectivity in formation of glycosides, 

without competing orthoester formation, is noteworthy.120  On the basis of the proximity of the nitro 

group to the carbonyl carbon in X-ray crystal structures, the experimental requirement for an o-, as 

opposed to a p-nitro group, and of quantum mechanical calculations, it was suggested that the nitro group 

intercepts and stabilizes the bridging dioxacarbenium ion (Scheme 2). Unfortunately, no direct 

comparison was made of the relative reactivity of anomerically pure α- and β-trichloroacetimidates, such 

that it is not possible to comment on the presence or absence of anchimeric assistance in this system. 

Interestingly, computational analysis of participation by the same ester group from the 6-position 

revealed the lowest energy structure to involve direct participation by the nitro group at the anomeric 

center (Figure 17).120  It must be noted, however, that these computations (Scheme 2 and Figure 17) were 

conducted in the absence of the obligatory triflate counterion, and therefore it is not possible to estimate 

the stability of the various bridged intermediates relative to the alternative glycosyl triflate. 

Scheme 2.  Intramolecular Orthoester Formation by a 2-O-[2-(o-Nitrophenyl)isobutyroyl]glucopyranosyl 

Donor 
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Figure 17.  DFT computed relative energies of alternative participation modes by a 6-O-[2-(o-

nitrophenyl)isobutyroyl] ester. 

Kinetic measurements of the tetramethylurea-buffered, triflic acid-catalyzed rearrangement of a methyl 

L-rhamnopyranosyl orthoester in deuteriochloroform to the corresponding 1,2-trans-glycoside revealed 

first order kinetics with respect to the orthoester and a large negative entropy of activation. On this basis 

it was suggested that the rearrangement follows an intramolecular path via a contact ion pair in which 

the migrating alcohol remains in close contact with the dioxalenium ion before ultimate recombination 

with ring opening to give the glycoside (Scheme 3).121 DFT computational work by Whitfield and coworkers 

on the rearrangement of a methyl orthoester in the 6-O-acetyl-3,4-O-isopropylidene-D-galactopyranose 
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series using continuum dielectric model for solvation arrived at an analogous conclusion, albeit no 

counterion was included in the computation.108 

Scheme 3.  Kinetically-Derived Intramolecular Mechanism for Orthoester to Glycoside Rearrangement 

 

The alternative mechanism is one involving complete dissociation of the alcohol, or its complex with the 

activating Lewis acid, from the dioxalenium ion prior to recombination with ring opening and glycosidic 

bond formation. This latter mechanism was demonstrated by the Yu laboratory by means of an elegant 

cross-over experiment (Scheme 4) for rearrangement mediated by TMSOTf.122  The higher proportions of 

the two galactopyranosyl products were attributed to the inherently greater reactivity of galactosyl 

donors over their glucopyranosyl counterparts. 
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Scheme 4.  Cross-over Experiment Demonstrating Intermolecular Rearrangement of Glycosyl Orthoester 

to the Corresponding Glycoside at 11 °C (and at -78 °C) 

 

We are not aware of any examples of orthoesters arising from the trapping of dioxenium or larger bridging 

dioxacarbenium ions by external nucleophiles in the course of participation from distal ester groups. 

6.  Anchimeric Assistance 

It has long been recognized on the basis of kinetic and isotopic exchange reactions that 1,2-trans-per-O-

acetyl glycopyranoses and 1,2-trans-per-O-acetyl glycopyranosyl halides undergo anomerization more 

rapidly than the corresponding cis-isomers.12,123,124 As discussed by Lemieux, this phenomenon is best 

interpreted by anchimeric assistance from the trans-ester in the displacement of the anomeric leaving 

group resulting in the formation of the cis-fused dioxalenium ion as intermediate. As also discussed by 

Lemieux, reaction of the cis-isomer is retarded by the presence of the electron-withdrawing β-acetoxy 

group.12 In a similar vein, Lemieux and Morgan deduced that orthoesters are formed in the presence of 

pyridine and related bases from the per-O-acyl α-glucosyl halides by initial halide-catalyzed epimerization 

to the corresponding per-O-acyl β-glucosyl halides followed by ring closure to afford the dioxalenium ions 

(Scheme 5).98,125,126 
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Scheme 5.  Halide Ion Catalyzed Orthoester Formation from α-Acetobromoglucose 

 

 

Paulsen and Herold studied the formation of the fused acetoxonium ion from both anomers of 

acetochloroglucose and of peracetyl glucopyranose and of related benzoates with SbCl5 in a variety of 

solvents.127  In tetrachloromethane solution the β-chloride was rapidly converted to the acetoxonium ion, 

which precipitated in 80-90% yield. With the corresponding α-chloride the yield of precipitated 

acetoxonium ion was reported as 25-40% under the same conditions (Scheme 6).   

Scheme 6.  Anomer-Dependent Formation of an Acetoxonium Ion from Acetochloroglucose in 

Tetrachloromethane 

 

When the β-chloride was activated with SbCl5 in dichloromethane solution on the other hand, the D-ido-

configured 4,6-acetoxonium salt crystallized from solution in 94-98% yield (Scheme 7).  This observation 

was rationalized in terms of initial formation of the 1,2-gluco acetoxonium ion followed by a series of 

rearrangement reactions involving displacement with inversion by the proximal acetate, with the 

equilibrium driven by crystallization of the less soluble ido-isomer.  The α-chloride and the β-acetate were 

reported to behave similarly.  In contrast, the α-acetate did not provide the product under these reaction 
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conditions.127  Clearly, anchimeric assistance is required to activate the anomeric acetate under these 

conditions, just as it facilitates activation of the β-chloride.  The fact that both anomers of the chloride are 

activated by SbCl5, albeit at apparently different rates, while only the β-acetate is activated under the 

same conditions, suggests that anchimeric assistance plays a greater role in more weakly activated 

systems. When the reaction was conducted in nitromethane at 20 °C, and when all components were 

soluble, the equilibrium ratio of the ions was determined to be gluco:manno:altro:ido = 53:18:7:17, clearly 

indicating the greater stability of the 1,2-dioxalenium ion over the dioxapenium ion. 

Scheme 7.  Leaving Group and Configuration Dependent Formation of Acetoxonium Ions from Per-O-

acetyl-D-glucopyranosyl Derivatives 
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Konradsson reported the relative rates of activation by N-bromosuccinimide of pairs of anomers in a series 

of pentenyl glycosides. It was observed that donors carrying esters at the 2-position showed a greater 

difference in relative rates of activation than systems protected with benzyl ethers (Table 5, comp of 

entries 1 and 2, and of 3 and 4), which was attributed to neighboring group participation (anchimeric 

assistance) by the ester in the case of the 1,2-trans-series.128   

Table 5.  Relative Rates of Activation of Anomeric Pairs of Pentenyl Glycosides by NBS 

Entry Pentenyl Glycosides Rel Rates (β/α) 

 of Reaction 

1 

 

1.70 

2 

 

5.19 

3 

 

1.45 

4 

 

3.71 

 

Boons and coworkers reported that glycosylation of methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside by a 

1:1 anomeric mixture of dicyclohexylmethyl per-O-benzoyl-D-thioglucopyranoside with N-

iodosuccinimide and triflic acid, under conditions in which anomerization of the thioglycosides was not 

observed, afforded 45% of the expected disaccharide as a single equatorial anomer and 52% of the 

recovered donor in the form of a 3:1 α:β mixture, indicating the β-donor to be the more reactive of the 

two (Scheme 8).129 As in the corresponding tetra-O-benzyl thioglucosides, where the α-anomeric donor 
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was the more reactive, these results were interpreted in terms of anchimeric assistance facilitating the 

activation of the benzoylated β-donor. 

Scheme 8.  Anchimeric Assistance in NIS/TfOH-Mediated Glycosylation by Dicyclohexylmethyl Per-O-

benzoyl-D-thioglucopyranoside 

 

Crich and coworkers studied the glycosylation of cyclohexanol with both anomers of phenyl 2,3,4-tri-O-

benzoyl-D-thioxylopyranoside activating with benzenesulfenyl triflate at low temperature in the presence 

of the hindered base DTBMP.103 All reactions smoothly afforded an orthoester product in high yield 

(Scheme 9). When the corresponding anomeric bromides were activated with silver triflate in 

dichloromethane at -40 °C the β-xylopyranosides were formed cleanly from both anomers with no 

significant configuration-dependent differences in reactivity (Scheme 9). Clearly, in these more reactive 

pentopyranosyl systems (lacking the extra electron-withdrawing C-O bond of the corresponding 

hexopyranosides), with activation by the powerful sulfenyl triflate,130 triflic anhydride131 or silver triflate 

mediators, anchimeric assistance does not play a significant role.  The difference in the product spectrum 

between the two lines of Scheme 9 was demonstrated to be due to the presence or absence of DTBMP in 

the reaction mixture: the initial orthoester is stabilized in the presence of this mild base, but rapidly 

rearranges to the glycoside in its absence.103 
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Scheme 9.  Configuration Independent Activation of Anomeric Per-O-benzoyl Xylopyranosyl 

Thioglycosides and Bromides with Benzenesulfenyl Triflate and Silver Triflate 

 

Following up on work by Demchenko and coworkers,132 Crich and Li studied the influence of anomeric 

configuration in the coupling of benzoxazolyl thioglucosides to a standard glycosyl acceptor with 

activation by copper triflate over a standard 14 h time period (Table 6).133  Comparison of entries 1 and 2 

of Table 6 reveals the lack of influence of anomeric configuration on the rate of reaction in the 2-O-benzyl 

series, with both anomers affording comparably low yields of the product.  Replacement of the 2-O-benzyl 

ether by a benzoate ester in the 1,2-trans-configured donor results in a dramatic increase in conversion 

as well as the complete reversal of anomeric configuration in the product (Table 5, cf entries 1 and 3).  In 

this weakly activated system the 2-O-benzoate ester is therefore “arming”134 in the 1,2-trans-

configuration. In contrast, the corresponding 1,2-cis-donor carrying a 2-O-benzoate is completely 

unreactive (Table 6, entry 4). These results clearly reveal the importance of anchimeric assistance in 

weakly activated systems and warn against the uncritical application of the Fraser-Reid armed-disarmed 

concept. 
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Table 6.  Coupling of Benzoxazolyl Thioglycosides to 1,2;3,4-Di-O-isopropylidenegalactopyranose with 

Activation by Cu(OTf)2 in CH2Cl2 at Room Temperaturea 

Entry Donor Product, % yield,  

β:α ratio 

1 

 

 

2 

 

 

3 

 

 

4 

 

No reaction  

(95% recovered donor) 

a) ROH = 1,2;3,4-di-O-ispropylidene-α-D-galactopyranose 

Extrapolating from the results presented in Table 5, the selective activation of a disaccharyl S-

benzothiazolyl type donor and its coupling to a monosaccharyl acceptor bearing an S-benzoxazolyl group 

(Scheme 10) is clearly the result of anchimeric assistance in a weakly activated system,133 and not of 

differential stabilization of an intermediate oxocarbenium by the ring oxygen as proposed originally.132  It 

was subsequently demonstrated that the preferential activation of 1,2-trans 2-O-benzoyl-3,4,6-tri-O-

benzyl over per-O-benzyl benzoxalzoyl thioglucosides extends to the galactopyranosyl series when using 

the mild dimethyl(methylthio)sulfonium triflate (DMTST) activating system; a consistent but much smaller 

difference in reaction was observed in the 1,2-trans-configured mannopyranose series.135,136   
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Scheme 10.  Selective Activation of a 2-O-Benzoyl S-Box Donor in the Presence of a 2-O-Benzyl Donor Due 

to Anchimeric Assistance. 

 

It was subsequently shown by Demchenko and coworkers that the preferential activation of 1,2-trans-

3,4,6-tri-O-benzyl-2-O-benzoyl-D-glucopyranosyl donors relative to the corresponding per-O-benzyl series 

benefits from anchimeric assistance in some but not all classes of donor/activator pairs (Table 7).137 

Table 7.  Donor/Activator Pairs Benefitting from Anchimeric Assistance 

 

XR Activator 

O-(Benz-1,3-oxazol-2-yl) Cu(OTf)2 and DMTST 

O-5-pentenyl IDCP, but not NIS, NBS, or NIS/TfOH 

S-Et MeOTf, DMTST, I2, but not IDCP 

S-Ph and S-tolyl I2, no significant difference 

S-(1,3-thiazolin-2-yl) I2, no significant difference 

 

Wong and coworkers determined the relative reactivity values (RRVs)138,139 of tolyl tri-O-benzyl-β-D-

thioglucopyanosides carrying a single acetyl or benzoyl group at different positions (Figure 18).  Although 

none of the systems studied had an RRV comparable to the per-O-benzylated donor, the most reactive 

monoesters had the ester at the 2-position.  As the strongly electron-withdrawing effect of the ester will 

be maximized when the ester is located at the 2-position, these results strongly support anchimeric 
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assistance by the 2-O-acetyl and 2-O-benzoyl groups in these 1,2-trans-configured donors under the 

NIS/TfOH conditions used for RRV determination.140  Comparing their results to those of Demchenko and 

coworkers with the analogous benzoxazolyl thioglucosides (Table 6), the authors commented that the 

arming tendency of the 2-O-acyl group is strongly modulated by the leaving group and probably by the 

solvent and activator as well.   

 

Figure 18. Relative reactivity values (RRVs) for the activation of assorted tolyl mono-O-acyl-tri-O-benzyl-

β-D-thioglucopyranosides by NIS and TfOH in dichloromethane at 0 °C (all values are relative to tolyl tetra-

O-acetyl-α-D-thiomannopyranoside). 

Zhu and coworkers investigated the relative reactivity of a series of ethyl D-thioglucopyranosyl donors 

carrying various combinations of benzyl ethers, acetate and benzoate esters, with activation by NIS and 

trimethylsilyl triflate in dichloromethane between -78 and -20 °C and established a reactivity sequence 

(Figure 19).141 Consistent with the work of Crich and Liu and the intervention of anchimeric assistance,133 

the 1,2-trans-configured donors are more reactive than their 1,2-cis-counterparts when carrying an ester 

at the 2-position. On the other hand, for donors with a 2-O-benzyl ether it is the 1,2-cis thioglycosides that 

are the more reactive. 
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Figure 19.  Reactivity sequence in a series of ethylthio glucopyranosides revealing the role of anchimeric 

assistance. 

Following up on the work of Demchencko and coworkers (Table 7),137 Jensen and coworkers examined 

the relative reactivity of pairs of 1,2-trans-3,4,6-tri-O-benzyl-thio-D-glucopyranosides, carrying either 

benzyl ethers or benzoate esters at the 2-position by different activating systems. They found that in the 

S-phenyl and S-ethylthio series the use of NIS/TfOH as promotor results in preferential activation of the 

2-O-benzyl ethers over the 2-O-benzoate esters (Table 8).142 In contrast, in the S-(benzoxazolyl) series the 

2-O-benzoate was activated preferentially over the corresponding 2-O-benzyl ether by NIS/TfOH, DMTST, 

TfOH, and MeOTf (Table 8). Whether studying the S-phenyl or S-Box series, the authors found that the 

relative rates of activation between the 2-O-benzoyl esters and the 2-O-benzyl ethers on treatment with 

the mild DMTST reagent varied significantly depending on the presence or absence of the mild base TTBP. 

Strikingly, in the presence of TTBP neither of the S-Box donors were activated at all, leading the authors 

to suggest that S-Box activation is dependent on the presence of triflic acid.142  Whatever the mechanism 

of activation, it is clear that in the S-Box series anchimeric assistance from the 2-O-benzoate ester 

accelerates activation to the extent that the 2-O-ester is more reactive than the 2-O-ether. For the more 

reactive S-phenyl and S-ethyl series any increase in rate provided by the presence of a 1,2-trans-ester is 

not sufficient to outweigh the generally more electron-withdrawing effect of the ester. In contrast to 

Demchenko and coworkers, and indeed to Crich and Li (Table 6), the Jensen lab found that Cu(OTf)2 did 

not result in more rapid activation of the 2-O-benzoyl S-Box donor over the corresponding 2-O-benzyl, 
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rather the inverse was observed. In view of the importance of triflic acid revealed by the Jensen lab for 

the activation of S-Box donors, it seems likely that the lack of reproducibility from lab to lab is a function 

of the type, quality and quantity of molecular sieves added to the reactions.1,143,144 

Table 8.  Comparison of Thioglycoside Reactivities by the Jensen Lab 

 

R Activator (temp) Rel Reactivity 

Ph NIS/TfOH (-78 → 0 °C) Bn>Bz 

Ph DMTST (0 °C) Bn<Bz 

Ph DMTST + TTBP (0 °C) Bn>Bz 

Et NIS/TfOH (-78 → 0 °C) Bn>Bz 

Box NIS/TfOH (0 °C → rt) Bn<Bz 

Box DMTST (0 °C) Bn<Bz 

Box DMTST + TTBP (0 °C) No reaction 

Box TfOH (0 °C → rt) Bn<Bz 

Box MeOTf (0 °C → rt) Bn<Bz 

Box Cu(OTf)2, rt Bn>Bz 

 

The Jensen lab then conducted a more complete set of competition experiments with both anomers of 

the ethyl and phenyl 3,4,6-tri-O-benzyl-D-thioglucopyranosides using the NIS/TfOH activating system 

(Table 9).145 Reaffirming their initial results, it was found that any anchimeric assistance afforded in the 

1,2-trans-series is not sufficient to overcome the electron-withdrawing effect of the benzoate ester (Table 

9, entry 1). The apparent rate acceleration due to anchimeric assistance on switching from the 1,2-cis to 

the 1,2-trans-series of 2-O-benzoates is greater for the ethyl thioglucoside donor than for the 
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corresponding phenyl thioglucoside (Table 9, entry 2).  This difference however is due to multiple factors 

and not simply to anchimeric assistance. Thus, while it was found that for the 2-O-benzyl ethers the axial 

anomer is more reactive than the equatorial one, the difference in rate was demonstrated to be less 

pronounced for the ethyl thioglucoside than for the phenyl thioglucoside (Table 9, entry 3).  Furthermore, 

the extra electron-withdrawing effect of the benzoate ester over the benzyl ether is more important in 

the 1,2-cis-series than in the 1,2-trans-series, and is significantly larger for the ethyl thioglycosides than 

for the phenyl thioglycosides (Table 9, entry 4).   

An analogous series of competition experiments was then conducted in the mannopyranose series.145  As 

in the glucopyranosyl series, the simple switch of a 2-O-benzyl ether for a 2-O-benzoate ester results in a 

significant drop in relative reaction rate, for both the axial or equatorial phenyl thiomannosides (Table 9, 

entries 5 and 6).  The difference in reaction rates between the axial and equatorial thiomannosides in the 

2-O-benzoyl series is small (Table 9, entry 7), but interpretation is complicated by the fact that, in contrast 

to the glucopyranoside series, the equatorial thiomannoside is more reactive than its axial anomer in the 

presence of a 2-O-benzyl ether (Table 9, entry 8).   

Overall, while these experiments from the Jensen laboratory clearly demonstrate the existence of 

anchimeric assistance, they underline the difficulty of deconvoluting its magnitude from that of the 

inherent electron-withdrawing effect of the ester.145 They also nicely bring out the importance of not 

extrapolating from one class of donor to another, with even ethyl and phenyl thioglycosides showing 

marked differences in otherwise identical systems.   
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Table 9.  Ratio of Recovered Donors in Competition for Activation by Substoichiometric NIS and Triflic 

Anhydride in Dichloromethane between -78 and 0 °C     

Donor 1 Donor 2 Ratio recovered 1:2 

R = Ph R = Et 

  

1:2 = 1:2 1:2 = 1:2 

 
 

1:2 = 1:2 1:2 = 1:20 

 
 

1:2 = 1:4 1:2 = 1:1.1 

  

1:2 = 1:12 1:2 = 1:60 

  

1:2 = 1:24 - 

  

1:2 = 1:13 - 

 
 

1:2 = 1:1.2 - 

 
 

1:2 = 1:2.5 - 

 

In a further study, Demchenko and coworkers conducted a competition experiment in which an equimolar 

mixture of the two anomers of phenyl 6-O-benzyl-2-O-benzoyl-3,4-di-O-tert-butyldimethylsilyl-D-

thioglucopyranoside, both of which were judged to exist in a twist boat conformation, was activated with 

a single molar equivalent of N-iodosuccinimide and catalytic triflic anhydride in the presence of excess 

cyclohexanol as acceptor, with quantification of the unreacted recovered thioglycosides.  Only 20% of the 

1,2-trans-configured donor was recovered whereas 90% of the 1,2-cis-donor did not react, clearly 
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indicating the 1,2-trans-system to be the more reactive of the two (Scheme 11). However, as a further 

competition between the 2-O-benzoyl trans-configured donor and the corresponding 2-O-benzyl ether 

revealed the latter to be the more reactive, it was concluded that the difference in reactivity between the 

two epimeric 2-O-acyl thioglycosides could not be due to anchimeric assistance. This conclusion rests on 

the assumption that anchimeric assistance necessarily increases the rate of activation to a greater extent 

than replacement of the participating ester by a less electron-withdrawing benzyl ether, for which there 

is no basis. The conclusion was further supported by the unlikely argument that backside attack by the 

ester on the activated thioglycoside was not possible owing to the twist boat conformation, despite the 

observation of excellent 1,2-trans-selectivity in actual coupling reactions.146  It appears more likely that 

the difference in rates of activation of the two anomeric 2-O-acyl thioglycosides is due to the action of 

anchimeric assistance in the 1,2-trans-system, albeit the acceleration due to this anchimeric assistance in 

this highly activated, indeed super-armed to use the author’s terminology, is only modest. 

Scheme 11.  Influence of Anomeric Configuration and Protecting Group at the 2-Position on the Relative 

Rate of Consumption of Super-armed Thioglucopyranosides 

 

To probe the intervention of anchimeric assistance in the activation of phenyl 3,4,6-tri-O-benzyl-2-O-

benzoyl-β-D-glucopyranosides, shown above to be less reactive than the corresponding tetra-O-benzyl 

donors on activation with NIS and triflic anhydride at low temperature, Jensen and coworkers studied the 
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relative rates of activation of a series of p-substituted 2-O-benzoates by competition methods.147 In the 

series of compounds studied, only the 2-O-(4-pyrrolidinobenzoyl) system was more reactive than the 

corresponding per-O-benzyl-protected donor. Nevertheless, the negative log10 of the relative rate 

constant ratios displayed a linear correlation with the Hammett σp constant indicative of the build-up of 

positive charge on the ester moiety during the rate determining step, and so strongly supportive of 

anchimeric assistance (Figure 20). The possibility that the observed trend arose from the difference in 

electron-withdrawing abilities of the different esters as opposed to anchimeric assistance was discarded 

on the grounds that the observed trends were much greater in the 1,2-trans-series than in the 

corresponding 1,2-cis-series where anchimeric assistance is not possible.147   

 

 

Figure 20.  Hammett correlation of the logarithmic rate constant ratio with σp supportive anchimeric 

assistance in the activation of the phenyl 3,4,6-tri-O-benzyl-2-O-(4-substituted-benzoyl)-β-D-

thioglucopyranosides. 
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Finally Bols and coworkers, noting that anchimeric assistance is potentially applicable in the hydrolysis of 

glycosidic bonds as well as in their formation, studied the acid catalyzed hydrolysis of both anomers of a 

series of methyl glucopyranosides carrying assorted functionality at the 2-position (Table 9).148 For every 

pair of anomers, the equatorial glycoside was hydrolyzed more quickly than the axial glycoside consistent 

with the anomeric effect.  Hydrolysis was strongly retarded by the presence of a 2-O-mesylate consistent 

with the strongly inductive electron-withdrawing effect of this group and the absence of participation.  

More generally, the absence of any correlation of the hydrolysis rates with Hammett parameters or field 

effects (F) pointed to the intervention of another factor beyond simple inductive effects. To separate the 

retarding inductive electron-withdrawing effect of the substituents from any accelerating effect due to 

anchimeric assistance, the authors estimated the rates of hydrolysis based solely on the inductive effect 

of the different groups. Comparison of these theoretical numbers with the experimental rates then 

afforded a measure of the rate acceleration due to participation. The accelerations determined in this 

manner (Table 10) ranged from 2-45 and were mostly compensated for by the inductive electron-

withdrawing effect of the various groups. As there was only a minor difference in the estimated rate 

accelerations between any given pair of anomers, the authors concluded that these effects were due to 

stabilization of the developing positive charge rather than to any push from the participating group. 

Table 10.  Relative Rates of DCl-Catalyzed Hydrolysis in D2O at 60 °C, and Estimated Accelerations from 

Participation 

Substrate Rel Rate Field Effect 

Parameter 

Acceleration 

due to 

Participation 

 

1 0 - 

 

1.5 0 - 
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0.5 0.01 - 

 

1.3 0.01 - 

 

0.02 0.59 - 

 

0.04 0.59 - 

 

0.3 0.34 3 

 

0.4 0.34 2 

 

1.3 0.26 7 

 

4.1 0.26 13 

 

2.5 0.35 25 

 

7.8 0.35 45 

 

Overall, as discussed previously by ourselves and others,140,149 anchimeric assistance appears to play a 

greater role in more weakly activated systems, whether due to a weak leaving group, weak coordination 

between the promoter and leaving group, or inadequate transition state stabilization by the solvent or 

counter ion.  In such cases the extra push from the vicinal ester helps to overcome the barrier for loss of 
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the leaving group. The corollary of this observation is that it is in such weakly activated systems that vicinal 

esters capable of anchimeric assistance are least likely to be disarming. 

7.  Anchimeric Assistance by Distal Esters 

Albeit anchimeric assistance from a 4-O-benzoyl ester in the course of glycosylation by a fucopyranosyl 

donor has recently been suggested,150 we are not aware of any published examples of kinetic evidence 

demonstrating anchimeric assistance from a distal ester in any glycosylation reaction. Rather, the 

comparable yields and levels of conversion in entries 1 and 2 of Table 6 indicate the absence of anchimeric 

assistance from the 3-O-benzoate in the 1,3-trans-system (Entry 2) and from the 4-O-benzoate in the 1,4-

trans-system (Entry 1). This is noteworthy as it is in such a weakly activated system that anchimeric 

assistance would be most expected. Similarly, Wong’s RRV values of donors carrying esters at the 3-

position of otherwise perbenzylated glucopyranosyl donors are significantly smaller than that of the fully 

benzylated donor (Figure 18), and so argue against anchimeric assistance from that position.   

8.  Isolation of Cyclic Intermediates and Products 

Crich and coworkers introduced the tert-butyloxycarbonate group as a probe for participation by remote 

esters. In this system cyclization affords an initial cyclic trioxocarbenium species, which then loses the 

tert-butyl cation to afford the observed cyclic carbonates.151 The viability of this probe was established by 

isolation of a 1,2-O-cyclic carbonate in 75% yield on activation of a 2-O-Boc protected glucopyranosyl 

thioglycoside (Table 11, entry 1) under typical glycosylation conditions. More recently Mikula and 

coworkers, based on precedent from the Descotes and other laboratories,152,153 observed analogous 

cyclizations from 2-O-benzyloxycarbonyl protected glucosyl donors, be they thioglycosides (Table 11, 

entry 2) or a trichloroacetimidate (Table 11, entry 3) in the course of a series of exclusively β-selective 

glycosylation reactions directed by the Cbz group.154  In the glucopyranosyl series, Crich and coworkers, 

building on precedent work by Lemieux and Hindsgaul,155 similarly employed the 2-O-(o-carboxybenzoate) 
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as a further probe of participation and isolated the anticipated spirocyclic ortho ester in high yield (Table 

11, entry 4).151  The 2-O-Boc system also proved its effectiveness in the mannopyranosyl series of donors 

(Table 11, entry 5).151  Turning to the possibility of participation by esters at the 3-position, particularly in 

the 4,6-O-benzylidene-protected mannopyranosyl donors where they have such a striking effect on 

anomeric selectivity,156 α-selective glycosylation was not interpreted by cyclic carbonate formation 

leading the authors to rule out participation (Table 11, entry 6).151 In more conformationally flexible 

systems, however, it is established that both equatorial amides and trichloroacetimidates at the 3-position 

are able to capture activated donors with the formation of bridged bicyclic oxazines under typical 

glycosylation conditions (Table 11, entries 7 and 8).157,158  

Turning to participation from axial derivatives at the 3-position, carbamates and carbonates proved to be 

suitable probes and established the stereoelectronic feasibility of participation in such systems (Table 11, 

9 and 10).151,159 By means of an isotopically labelled probe, Yu and coworkers demonstrated that the 

formation of a tricyclic orthoester isolated in the course of glycosylation reactions with a per-O-acetyl 

glucopyranosyl donor is initiated by participation of an acetate at the 4-position (Table 11, entry 11).160  

Subsequently, it was determined that a 4-O-trichloroacetimidate can capture an activated glucopyranosyl 

donor resulting in the formation of a bridged bicyclic imidate in high yield (Table 11, entry 12). However, 

the authors of this publication were careful to point out that this cyclic intermediate did not function as a 

glycosyl donor, thus ruling out its role as an actual glycosylation intermediate under the conditions 

employed.161 A bridged bicyclic imidate was also isolated in good yield on activation of a 2,6-

mannuronolactone-based donor carrying an trichloroacetimidate group at the 4-position (Table 11, entry 

13).162  It was noted, however, that the analogous system carrying a Boc group at the 4-position did not 

undergo cyclization to a bridged bicyclic carbonate thereby establishing the superior nucleophilicity of the 

imidate group and raising concerns about its use as a probe of remote participation. This latter 



46 
 

observation is consistent with the results of Crich and coworkers who found that an equatorial 4-O-Boc 

group did not intervene in glycosylation reactions (Table 11, entries 14 and 15).151 

Turning to 4-substituted galactopyranosyl donors, it was found by Crich and coworkers that a Boc group 

is not able to capture an activated donor in the absence (Table 11, entry 16) or presence (Table 11, entry 

17) of an acceptor.151 Similarly, the o-carboxybenzoate probe failed to provide evidence for the formation 

of a bridged tricyclic orthoester derived by participation of the benzoate functionality.  Rather, a bridged 

bicyclic system arising from participation by the o-carboxy moiety pendant to the benzoate was observed 

(Table 11, entry 18).151 Finally, probing for participation from the 6-position, Crich and coworkers 

employed a 6-O-Boc protected glucopyranosyl donor. In the presence of an acceptor alcohol only the 

glycoside was observed (Table 11, entry 19), while in the absence of an acceptor a macrocyclic dicarbonate 

was isolated indicating that intermolecular participation by the Boc group was favored over the 

intramolecular variant (Table 11, entry 20).151 Kim and coworkers attempted to take advantage of the 

superior nucleophilicity of the trichloroacetimidate group over the Boc moiety and employed a 6-O-

imidoyl probe and reported the isolation of trace amounts of a cyclic product (Table 11, entry 21).  

However, as the only evidence in support of the bridged bicyclic product was the observation of the 

molecular ion in the mass spectrum, this result must be viewed with caution as simple proton loss from 

the oxocarbenium ion to afford a glycal is equally consistent with the reported data.158,163  
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Table 11.  Use of Carbonates, Carbamates, Esters, and Imidates as Probes for Stereodirecting Participation 

Entry Donor Promoter Conditions Product (% yield) Lit. 

1 

 

NIS, AgOTf CH2Cl2, -10 °C 

 

151 

2 

 

i. I2 

ii. AgOTf 

iii. NIS, TfOH 

R = Et, CH2Cl2, 20 °C 

R = 2-pyrimidinyl, CH2Cl2, 0 °C 

R = Et, CH2Cl2, -10 °C 
 

154 

3 

 

TMSOTf CH2Cl2, -10 °C 

 

154 

4 

 

NIS, TMSOTf CH2Cl2, -30 °C 

 

151 

5 

 

BSP, Tf2O CH2Cl2, -60 °C 

 

151 

6 

 

Tf2O, TTBP, 

cC6H11OH 

CH2Cl2, -60 °C 

 

151 
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7 

 

NBS CH2Cl2, rt 

 

157 

8 

 

BSP, Tf2O CH2Cl2, -60→0 °C 

 

158 

9 

 

AcOH 

or TsOH 

Δ or 1:1 C6H6:CH2Cl2, rt 

 

159 

10 

 

BSP, Tf2O, 

cC6H11OH 

CH2Cl2, -60 °C 

 

151 

11 

 

Tf2NAuPPh3 CH2Cl2, rt 

 

160 

12 

 

TMSOTf CH2Cl2, 0 °C 

 

161 
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13 

 

TMSOTf CH2Cl2, 0 °C 

 

162 

14 

 

BSP, Tf2O, TTBP, 

iPrOH 

CH2Cl2, -40 °C 

 

151 

15 

 

BSP, Tf2O, TTBP i) CH2Cl2, -60 °C 

ii) Ac2O 

 

151 

16 

 

BSP, Tf2O, TTBP i) Et2O, -60 °C 

ii) Ac2O 

 

151 

17 

 

BSP, Tf2O, TTBP, 

cC6H11OH 

CH2Cl2, -60 °C 

 

151 

18 

 

NIS, TMSOTf CH2Cl2, -30 °C 

 

151 

19 

 

NIS, TfOH, iPrOH CH2Cl2, 0 °C 

 

151 
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20 

 

NIS, TfOH CH2Cl2, 0 °C 

 

151 

21 

 

BSP, Tf2O CH2Cl2, -60→0 °C 

 

158,163 
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In a further attempt to probe the interaction of axial esters of pyranosides with the anomeric center, Crich 

and coworkers attempted trapping of the putative intermediate bridging dioxacarbenium ion with 18O-

labelled water (Scheme 12).151 Trapping of the bridging dioxacarbenium ion by the labelled water was 

anticipated to provide a labelled hemiorthoester that would undergo decomposition to two regioisomeric 

esters, one at the 4-position and one at the anomeric position, both with the label in the carbonyl oxygen.  

In the event, and arguing strongly against the likelihood of productive interaction of the ester with the 

anomeric center, the labelled oxygen atom was only found in the hemiacetal oxygen of the hydrolyzed 

product, which necessarily arose from direct capture of an intermediate glycosyl triflate or a closely 

related ion pair. 

Scheme 12.  18O-Labelling Experiment Discounting Remote Participation form the 4-Position in the 

Galactopyranosides     
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9.  Participation by 2-O-Alkoxyacetyl Ethers and Phenacyl Ethers 

Boons and coworkers conducted a series of glycosylation reactions with glucopyranosyl donors, bearing 

R- or S-configured ethoxycarbonylbenzyl ethers at the 2-position capable in principle of participating 

through six-membered cyclic dioxenium ions.89,164  It was envisaged that the R-isomer would preferentially 

form a cis-fused decalinoid bridging structure leading ultimately to the stereoselective formation of an 

equatorial glycoside, while the S-isomer would participate via a trans-decalinoid system eventually 

providing the axial glycoside. In both cases the preferred ring fusion, cis- or trans-, of the anticipated 

intermediate bridging ion derives from the equatorial location of the phenyl group in the chiral auxiliary 

(Scheme 13). These predictions of selectivity were largely borne out in a series of glycosylations conducted 

by activation of the glycosyl trichloroacetimidates at -78 °C in dichloromethane by the addition of TMSOTf 

followed by warming to room temperature (Scheme 13). Thus, for donors bearing acetyl, benzoyl, or 

allyloxycarbonyl groups at the 3-position, excellent selectivity for formation of the axial glycosides was 

observed in the presence of the S-configured auxiliary, whereas their R-configured diastereomers gave 

the equatorial glycosides albeit typically with somewhat reduced selectivity. With the corresponding 

donors protected with an allyl ether at the 3-position, the same overall trends were observed but 

selectivities did not exceed 5:1 for either the R- or S-configured system, and in the case of a less reactive 

glucosyl 4-OH acceptor were even inverted in the S-series.  Although only limited examples were studied 

and selectivities were modest, two related R- and S-configured galactosyl donors carrying 3-O-acetates 

gave analogous results to those seen in the glucosyl series.89  DFT calculations were conducted to 

complement the experimental work and were generally supportive of it, albeit the triflate counter ion was 

not included.  
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Scheme 13.  Extent of Stereodirecting Participation from the 2-Position via Six-Membered Cyclic 

Dioxenium Ions is Dependent on the Functionality at the 3-Position  

 

Building on the work of the Boons laboratory, Wen and Crich investigated a series of mannosyl donors 

carrying various 2-(oxoalkyl)ethers in which the intended nucleophilic carbonyl group is poised to 

intercept the activated glycosyl donor without need for extensive conformational distortion of the 

pyranoside ring.165  In these experiments stereodirecting participation was envisioned to afford the axial 

glycosides, while its absence was expected to afford the equatorial glycosides by the well-established 

glycosyl triflate mechanism. In the event, activation of the 2-O-phenacyl-mannosyl thioglycoside with 

triflic anhydride and diphenyl sulfoxide at -78 °C in dichloromethane followed by the addition of 1-

adamantanol resulted in the isolation of a cyclic product in 33% yield, thereby establishing that the 

stereoelectronic requirements for participation were met by this class of probe (Scheme 14).  With the 

more electron-deficient 2,4-trifluoromethylphenacyl analog activation was achieved with 1-

benzenesulfinyl piperidine and triflic anhydride and the glycoside was observed as the major reaction 

product. Comparable results were observed on activation of the corresponding glycosyl sulfoxides with 

triflic anhydride at low temperature.  The excellent equatorial selectivity observed in these reactions ruled 

out participation as a major stereodirecting pathway. 



54 
 

Scheme 14.  Stereodirecting Participation by 2-O-Phenacyl Groups is Dependent on the Electron Density 

of the Aryl Group 

 

Attention was then turned to the related methoxy and tert-butoxyacetyl ethers, for which initial activation 

of the glycosyl sulfoxides with triflic anhydride was followed by the addition of a glycosyl acceptor.  In the 

case of the methyl ester, the equatorial glycosides were formed exclusively and in high yield (Scheme 15).  

Comparable results were observed on activation of the corresponding thioglycoside with benzenesulfinyl 

piperidine and triflic anhydride. With the tert-butyl ester, the major product, that of ring closure followed 

by loss of the tert-butyl cation, was accompanied by a low yield of the equatorial glycoside. These results 

suggest that while participation by the ester is possible, as revealed by the formation of the lactone from 

the tert-butyl ester, the incipient bond from the carbonyl group to the anomeric position is weak and the 

main glycosylation pathway flows through the typical glycosyl triflate (Scheme 15).165 This conclusion 

cannot be extrapolated directly to the analogous Boons system (Scheme 13)89 because of the presence of 

the additional phenyl substituent in the latter, which potentially accelerates cyclization through a Thorpe 

Ingold-gem-dimethyl type conformational effect.  
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Scheme 15.  Trapping of a Cyclic Intermediate by Loss of a tert-Butyl Cation Does Not Guarantee 

Stereodirecting Participation    

 

10.  Spectroscopic and Computational Identification of Intermediates 

In addition to the early studies on the characterization of simple 1,3-dioxalenium ions by NMR 

spectroscopy, such ions were observed in the course of neighboring group participation by the Crich 

laboratory.103 In this study, a 13C-labelled tri-O-benzoyl xylopyranosyl thioglycoside was activated with 

benzenesulfenyl triflate in deuteriodichloromethane in both the presence and absence of the mild, 

sterically hindered base DTBMP at -78 oC.  Direct observation of the reaction mixture by 13C NMR 

spectroscopy at -78 oC revealed the formation of a single predominant species characterized by a sharp 

resonance at δ 180.3 assigned to the dioxalenium ion, consistent with literature chemical shift values for 

simple 2-phenyl-1,3-dioxalenium ions.166 When methanol was added to this ion formed in the presence 

of DTBMP, the signal at δ 180.3 was replaced by one at δ 121.1, taken as indicative of formation of an 

orthoester. On the other hand, when methanol was added to a solution of the dioxalenium ion prepared 
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in the absence of the base, no orthoester was observed suggesting that the β-glycoside was formed 

directly (Scheme 16). 

Scheme 16.  Observation of a Xylopyranosyl Dioxalenium Ion and its Trapping Products by 13C NMR 

spectroscopy 

 

Huang and coworkers studied the activation of a set of three thioglycosides by p-tolylsulfenyl triflate by 

1H and 13C NMR spectroscopy in deuteriochloroform at -60 oC.167  With a tetra-O-benzoyl galactosyl system 

they observed the formation of the α-galactosyl triflate, characterized by its anomeric 13C chemical shift 

of δ 104.4 and the presence of four resolved carbonyl resonances at δ 166.4, 165.9, 165.8, and 165 ppm.  

In contrast, with the corresponding 3,4,6-tri-O-benzyl-2-O-benzoyl system the main species observed was 

the dioxalenium ion arising from participation of the benzoate ester. Finally, with a tetra-O-acetyl 

glucopyranosyl thioglycoside a temperature-dependent equilibrium of a mixture of an α-glucosyl triflate 

and a dioxalenium ion was observed, with higher temperatures favoring the covalent species (Scheme 

17). Comparable experimental observations (δ values and VT effects) were also recorded by Crich and Sun 

on activation of the corresponding tetra-O-acetylglycopyranosyl phenylsulfoxide with triflic anhydride in 

deuteriochloroform.168 Clearly, there is a delicate protecting group-dependent balance between 
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dioxalenium triflates and glycosyl triflates at low temperatures in relatively non-polar solvents, which 

Huang and coworkers attributed to the destabilization of the charged dioxalenium ions by the non-

participating esters, with benzoates being more electron-withdrawing than acetates.167 The contrast 

between the per-O-benzoyl xylopyranosyl system, which favors the dioxalenium ion, and the 

corresponding galactopyranosyl system, which favors the covalent triflate, was attributed to the extra 

electron-withdrawing C-O in the latter and its destabilizing influence on the charged dioxalenium ion.  

Scheme 17.  Influence of Protecting groups on the Dioxalenium Ion Glycosyl Triflate Equilibrium  

 

Williams and coworkers studied the activation of tolyl 2,3,4,6-tetra-O-mesitoyl-β-D-thiogalactopyranoside 

by NIS/TfOH in deuteriochloroform in comparison to that of 3,4,6-tri-O-acetyl-2-O-mesitoyl-β-D-

thiogalactopyranoside.114  Activation was conducted at -60 °C and was followed by warming to 0 °C before 

observation of the 13C NMR spectra. In the case of the 3,4,6-tri-O-acetyl-2-O-mesitoyl system resonances 

indicative of both the glycosyl triflate and the bridging dioxalenium ion were observed, whereas with the 

2,3,4,6-tetra-O-mesitoyl protected donor only the dioxalenium ion could be detected (Scheme 18).  

Clearly, there is a subtle balance between the stabilities of the bridging dioxalenium ion and the 
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corresponding glycosyl triflates following activation of the peresterified donors and it cannot be assumed 

that the dioxalenium ion is the most stable intermediate in each case. 

Scheme 18.  Influence of Distal Esters on the Dioxalenium Ion Glycosyl Triflate Equilibrium in the 

Galactopyranoside Series 

 

In related work, looking to probe the influence of electron-withdrawing groups at O3 and O4 in a series 

of otherwise perbenzylated gluco and galactopyranosyl donors, Jeon, Seeberger, Kim and their coworkers 

activated thioglycosides with 1-benzenesulfinyl piperidine and triflic anhydride in 

deuteriodichloromethane at -60 °C with observation by 1H and 13C-NMR spectroscopy. In all cases the 

spectra reported were consistent with the predominance of covalent glycosyl triflates: no evidence was 

provided for the observation of bridging esters from either the 3- or the 4-positions in the glucose series 

and from the 4-position in the galactose series.169 

Nifantiev and coworkers found the α-selectivity of a series of 2-O-benzyl fucopyranosyl donors to be 

increased by the presence of a benzoate ester at either the 3- or the 4-positions, and especially by the 

presence of benzoate esters at both the 3- and 4-positions, with respect to the corresponding benzyl 

ethers (Scheme 19).170,171 They hypothesized that the ester-dependent selectivity arose from participation 
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by the remote esters and provided supporting molecular mechanics and limited DFT calculations, which 

revealed the greater stability of the bridging ions than of the simple glycosyl oxocarbenium ions (Figure 

21).  In particular, the correlation between α-selectivity and computed stability of the bridging ion in a 

small series of p-substituted benzoate esters at the 4-position was advanced in favor of the remote 

participation mechanism. 

Scheme 19. Dependence of Anomeric Selectivity on the Protecting Groups at O3 and O4 in 

Fucopyranosylation   
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Figure 21.  MM+ (and DFT) Energies of representative bridging ions relative to the corresponding 3H4 

oxocarbenium Ion in the fucopyranosyl series (kcal.mol-1). 

In a closely related study, Kalikanda and Li described the influence of distal esters and of temperature on 

the selectivity of 2-azido-2-deoxy galactosylation reactions.172,173 A series of axial trichloroacetimidate 

donors were prepared and their glycosylation reactions studied with a standard primary acceptor 

featuring activation in dichloromethane with TMSOTf at temperatures from -78 °C to room temperature 

(Scheme 20). The authors found the peracetylated donor to be more α-selective than the corresponding 

perbenzylated donor and to exhibit a greater positive dependence on temperature, with α-selectivity 

increasing with increased temperature (Scheme 20). Control experiments ruled out equilibration and 

confirmed the observed selectivities to be kinetic. In common with the work of Nifantiev in the fucose 

series (Scheme 19), the greatest α-selectivity however was found with the donor carrying only two acetyl 

groups at the 3- and 4-positions. The least α-selectivity was observed with the donor carrying a single 

acetyl group at the 6-position. The authors concluded that esters at the 3- and 4-positions promoted α-

selectivity by stabilization of the glycosyl oxocarbenium ion by the formation of bridging intermediates, 

whereas esters at the 6-position were detrimental to the stability of the oxocarbenium ion. A pair of esters 

at the 3- and 4-positions were considered to act synergistically and improve the overall α-selectivity, albeit 

no mechanism for this synergy was advanced. 

Scheme 20. Dependence of Anomeric Selectivity on the Protecting Groups at O3 and O4 in 

Galactopyranosylation 
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Like Nifantiev and coworkers, in support of their arguments the authors computationally derived relative 

energies of the anticipated bridging ions relative to the oxocarbenium ion, which in each case was found 

to prefer the 4H3 conformation (Figure 22).   

 

 

Figure 22.  DFT Energies of representative bridging ions relative to the corresponding 4H3 oxocarbenium 

Ion in the galactopyranosyl series (kcal.mol-1). 

While the calculations presented in Figures 21 and 22 obviously support the greater stability of 

dioxocarbenium ions relative to oxocarbenium ions, they do not account for the stabilization of glycosyl 
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oxocarbenium ions in the form of glycosyl triflates, and the evident fine balance observed between 

bridging ions and covalent glycosyl triflates noted experimentally by the Huang and Williams groups 

(Schemes 17 and 18).  When the stability of the glycosyl triflates and the temperature dependence of the 

reactions is taken into account a more complex picture necessarily emerges, and the attractiveness of 

mechanisms involving remote participation are downgraded relative to those based on the displacement 

of covalent intermediates. In fairness it must be noted that the ability to compute ion pairs of 

oxocarbenium ions with triflate anions was not developed until several years later.174-176  Unfortunately, 

neither the Nifantiev group nor Kalikanda and Li made any attempt to study their hypothetical bridged 

intermediates experimentally. The synergy between a pair of vicinal cis-esters at the 3- and 4-positions in 

promoting selectivity noted by Kalikanda and Li (Scheme 20 and Figure 22) is presumably related to the 

stabilization of inverted and non-chair conformers by the presence of multiple esters as discussed earlier.  

Blériot and coworkers reported that per-O-acetyl-α-D-glucopyranose and per-O-acetyl-2-acetamido-2-

deoxy-α-D-glucopyranose exist as the fully protonated starting materials in superacidic HF/SbF5 solution 

at -40 oC as determined by NMR spectroscopy. With the corresponding β-anomers, however, the 

dioxalenium and oxazolinium ions were observed (Scheme 21),177 clearly demonstrating both the 

importance of solvent polarity and potentially anchimeric assistance in the formation of such cyclic 

intermediates. These studies were subsequently extended to the β-D-galactopyranosyl and β-D-

mannopyranosyl series.178  With respect to the galactosyl system, participation took place from the 2-

position and the dioxalenium ion was the only species observed: no evidence was found for long range 

participation by the axial ester at the 4-position.  In the mannosyl series, a mixture of the fully protonated 

substrate and the dioxalenium ion resulting from participation by the 2-O-acetate was observed (Scheme 

21).  

Scheme 21.  NMR Spectroscopic Observation of Fused Dioxalenium Ions in a Superacid Medium 
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IR characterization of participating esters has been realized by the use of hybrid MS/IR techniques. Thus, 

Boltje and coworkers, following electrospray ionization, used collision-induced dissociation to fragment 

the ammoniated parent ion from a per-O-acetyl-α-D-mannopyranosyl thioglycoside followed by isolation 

of the fragment ion in a quadrupole trap and its interrogation by IR spectroscopy.  The experimental data 

fit closely with the computed spectrum for participation by the 2-O-acetyl group, as opposed to 
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participation by the 3-, 4- and 6-O-acetyl groups, resulting in assignment of the dioxalenium ion (Scheme 

22).179 Two mannuronate ester thioglycosides were similarly analyzed: in the first of these, which 

contained only methyl ether protecting groups, the observed IR spectrum was consistent with 

participation from the ester group through a six-membered methoxypyranium ion. In the second example, 

which carried an acetate ester at the 4-position in addition to methyl ethers at the 2- and 3-positions, a 

more complex IR spectrum was obtained. This spectrum was best interpreted as a composite of two 

species arising from participation by the side chain ester and by the 4-O-acetyl group. The IR spectra of 

these ions did not contain the stretching absorption anticipated for a simple mannosyl oxocarbenium ion, 

whose existence was demonstrated experimentally with the per-O-methyl ether (Scheme 22), confirming 

the stability of the doubly stabilized carbenium ions with respect to the simple oxacarbenium ion. 
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Scheme 22.  Fused and Bridging Dioxacarbenium Ions Observed by IR Spectroscopy in the Gas Phase  

 

Using an alternate and cryogenic hybrid MS/IR technique Seeberger and coworkers collected fragment 

ions from the dissociation of the parent thioglycoside-derived molecular ions in a hexapole trap, from 

which they were then flowed in cryogenic liquid helium droplets at 0.4 K for IR examination.180  In this 

method IR excitation by multiple photons causes evaporation of the helium droplets and results in the 

spectrum of the naked gas phase ions at cryogenic temperatures.  The 4- and 6-O-acetyl galactopyranosyl 

thioglycosides carrying benzyl ethers at the non-acylated positions were examined in this manner, and in 
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each case the IR spectra generated supported the formation of bridging ions from participation by the 

remote acetyl groups as the major species.  The spectra were generally of higher resolution than those 

obtained by Boltje and coworkers, owing to the much lower temperatures employed, but were otherwise 

in excellent agreement with them when the comparable species were studied. 

A purely computational study by Kononov and coworkers employing DFT methods, and taking note of the 

influence of protecting groups on stereoselectivity in sialidation reactions,181,182 determined the relative 

energies of two chair conformers of the putative sialyl oxocarbenium ion and the bridging ions derived 

from participation by a 5-N-trifluoroacetyl group and by a 7-O-acetyl group (Scheme 23).183 

Scheme 23.  DFT Computed Relative Energies (kcal.mol-1) of Oxocarbenium Ions and of Bridging Ions in 

the Sialic Acid Series 

 

The lowest energy conformation of the oxocarbenium ion was found to be the E5 conformer, which closely 

approximates the 2C5 conformation of sialic acid glycosides with all substituents at sp3-hybridized C in the 

pseudoequatorial configuration.  The 5H4 half-chair conformation of the oxocarbenium ion, considered to 

experience through-space electrostatic stabilization by the pseudoaxial acetoxy and trifluoroacetamido 

groups,184,185 was found to be some 7.7 kcal.mol-1 higher in energy, presumably because of the pseudoaxial 

orientation of the bulky side chain.  Participation by acetate groups at the 4- and 7-positions, however, 

was found to provide bridging dioxenium and dioxapenium ions some 2.3 and 3.8 kcal.mol-1 lower in 
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energy than the most stable oxocarbenium ion. Unfortunately, these computations were conducted in 

the absence of counter ion, and we consider it unlikely that the relative energetics favoring the formation 

of bridged intermediates would be maintained in the presence of a typical counter ion such as the triflate 

anion that will differentially stabilize the oxocarbenium ion. Participation by the trifluoroacetamido group 

was found to be energetically unfavorable even in the absence of a counter ion rendering participation by 

this group highly unlikely (Scheme 23).   

11.  Role of the C2-O2 Rotor in Dioxalenium Ion Formation 

Following up on their earlier computational study of dioxalenium ion formation and cleavage in the 

galactopyranosyl series,108 Whitfield and coworkers studied the role of ring conformation and of the C2-

O2 rotor in formation of dioxalenium ions from glycosyl oxocarbenium ions.  In the 3,4-O-isopropylidene 

galactopyranose series it was found, by means of dynamic DFT calculations, that the oxocarbenium ion 

purportedly formed on activation of the donor and undergoes a series of conformational changes leading 

to a OS2 skew boat in which the C2-O2 bond is pseudoaxial, and, in which the carbonyl group continues to 

eclipse the C2-H2 bond as in the ground state ester conformation. In this boat conformation, only a 

minimal rotation of the C2-O2 bond lines the carbonyl group for attack on the oxocarbenium ion and leads 

to ring closure (Figure 23).186 

 

Figure 23.  DFT-transition state for dioxalenium ion formation in the 3,4-O-isopropylidene 

galactopyranosyl system. 

In the 3,4,6-tri-O-methyl-glucopyranosyl series on the other hand, the lowest energy conformation of the 

oxocarbenium ion was found to be a 5S1 conformer in which the carbonyl carbon also eclipses the C2-H2 
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bond.  In order for ring closure to take place, it was determined that a pseudorotation to the 3S1 conformer 

and a rotation of the C2-O2 bond of 110° was required, with the latter considered the main component 

of the activation barrier of 6.6 kcal.mol-1 (Figure 24).187  A similar picture emerged for the corresponding 

mannopyranosyl oxocarbenium ion with rotation about the C2-O2 forming the main component of the 

barrier to closure of the dioxalenium ion from a preformed oxocarbenium ion.187 Albeit these studies were 

conducted in the absence of a counterion, and presume the unlikely existence of free oxocarbenium ions, 

they reveal the importance of the role played by the conformation of the ester in the formation of 

dioxalenium ions. 

 

Figure 24.  DFT-transition state for dioxalenium ion formation in the 3,4,6-tri-O-methyl-glucopyranosyl 

system. 

12.  Stereodirecting Participation and Anchimeric Assistance from the Exocyclic Position of Ketoses 

Very few studies have been conducted on the possibility of stereodirecting participation by esters at the 

exocyclic position of ketoses.  Vasella and coworkers, building on early observations by Pacsu,188 observed 

the formation of two diastereomeric spirocyclic orthoesters as byproducts in the silver-mediated 

glycosylation of methanol by a per(4-nitrobenzoylated) fructopyranosyl chloride (Scheme 24).189  The 

authors, however, focused on the rigorous identification of the spirocyclic products and did not address 

the possibility of stereodirecting participation. 
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Scheme 24.  Formation of Spirocyclic Orthoesters Demonstrating the Possibility of Participation from the 

Exocyclic Position in Fructopyranosyl Systems 

 

Subsequently, Lin and coworkers, operating in the fructofuranosyl series, isolated a pair of orthoesters on 

the attempted glycosylation of a N-phenyl trifluoroacetimidate donor with allyl alcohol on activation with 

TMSOTf in dichloromethane between -20 °C and room temperature (Scheme 25).190 The possibility of 

stereodirecting participation by the exocyclic ester was raised by the authors, but as it was not possible 

to fully elucidate the structure of the orthoester (spirocyclic incorporating the 1-O-benzoate or fused 

encompassing the 3-O-benzoate), no firm conclusions could be drawn. 
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Scheme 25.  Alternative Structures of an Orthoester Isolated in the Fructofuranosyl System 

 

Working in the N-acetylneuraminic acid series, Haberman and Gin designed an amide-based auxiliary 

tethered via the acid moiety and intended to provide stereodirecting participation via a six-membered 

spirocyclic imidonium ion (Scheme 26).191 While moderate to good equatorial selectivities exceeding those 

seen with the standard methyl esters were obtained with simple and primary carbohydrate acceptors 

with several activating systems, no physical evidence was provided for the suggested mechanism. 

Moreover, as each of the reactions was conducted at sub-zero temperatures, the suggested mechanism 

is unlikely as it requires the C1 carboxylate to adopt the unstable cis-ester configuration. Rather, the 

enhanced selectivity of the system over that seen with the simple methyl esters likely arises from the 

inductively electron-withdrawing effect of the appended amide functionality, which destabilizes the 

oxocarbenium ion and promotes a concerted mechanism either with direct displacement of the activated 

leaving group or of an intermediate glycosyl triflate. This hypothesis is supported by recent work from 

Schmidt, Sun, and coworkers who, as a result of extensive experimental and computational investigations, 

determined that the enhanced stereoselectivities observed in sialidations with picolinyl as compared to 

methyl esters of 4,7,8,9-tetra-O-acetyl-5-azido-5-deoxyneuraminic acid thioglycosides is likely due to the 

stabilization of an anomeric triflate rather than to participation by the picolinyl group (Figure 25).192  

Indeed, there is increasing experimental evidence from several groups that, at least under some 

conditions, the phenomenon of hydrogen bond mediated aglycone delivery discovered by the Demchenko 
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laboratory193 is due to protonation of the picolinyl group, or its complexation with a Lewis acid, which 

renders it more powerfully electron-withdrawing.194-196 This has the effect of destabilizing oxocarbenium 

ion-like transition states for glycosylation and consequently of promoting bimolecular SN2-like 

mechanisms. 

Scheme 26.  Mechanism for α-Sialidation via Spirocyclic Participation Requiring Adoption of a Disfavored 

cis-Ester Conformation for Cyclization. 
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Figure 25.  Sialyl triflate stabilized by a strongly electron-withdrawing protonated picolinyl ester, and the 

alternative high energy intermediate arising from intramolecular participation.  

13.  Evidence for participation through 6- and 7-membered rings from the non-carbohydrate literature 

Dolby and Schwarz studied the acetolysis of cis- and trans-2-acetoxymethylcyclohexyl brosylate with an 

18O-label in the carbonyl group.  After saponification of the reaction mixture, 76% of the label was retained 

implying that a major portion of the product was derived via formation of a six-membered intermediate 

dioxalenium ion (Scheme 27).197  It was also reported that solvolysis of the corresponding tosylate in 

ethanol afforded 20% of the ethyl orthoester (Scheme 28), thereby providing further support for the 

formation of the dioxalenium ion.198 The same ortho ester was also reported, albeit in 70% yield, on 

solvolysis of the regioisomeric cis-acetoxy tosylate (Scheme 28),199 indicating that the degree of 

participation is sensitive to substrate structure even when a common ion is formed. Treatment of the 

latter acetoxy tosylate with silver tetrafluoroborate in dichloromethane enabled isolation of the 

crystalline dioxenium ion tetrafluoroborate salt in almost quantitative yield (Scheme 28).200 

Scheme 27.  18O-Labelling Experiment Demonstrating Participation by Acetate Through a Dioxenium Ion 

 

Scheme 28.  Trapping Experiments and Isolation of a Dioxenium Ion 
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An 18O-labelling experiment was also employed by Wilen and coworkers to demonstrate the participation 

of acetate through 5-, 6-, and 7-membered rings.  In this experiment a series of diols was acetylated with 

18O-labelled acetyl chloride and then exposed to aluminum chloride resulting in the formation of the 

corresponding acetoxyalkyl chlorides. The extent of participation was judged by the level of incorporation 

of the label following hydrolysis (Scheme 29). For the ethylene and propylene-based systems, it was 

estimated that >95% of the label was found in the product, indicative of very high levels of participation 

via 5- and 6-membered cyclic ions, respectively. For the butylene-based system on the other hand, 18O-

incorporation into the diol was estimated at between 20 and 56% suggesting that while participation via 

a 7-membered dioxapenium ion is one pathway to the product, simple displacement competes effectively.  

In support of this argument it was noted that the butylene-based substrate was consumed more slowly 

than the propylene-based substrate, which in turn reacted more slowly than the ethylene glycol 

derivative.201 Overall this series of experiments, while establishing that participation through a 7-

membered dioxapenium ion is possible, clearly demonstrates it to be much slower than participation 

through the lower homologs to the extent that intermolecular competition readily intervenes 
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Scheme 29.  Labelling Experiment Demonstrating the Relative Rates of Participation through Dioxalenium, 

Dioxenium, and Dioxapenium Ions 

 

A more recent example of high yield participation of a carboxylate ester through a 6-membered dioxenium 

ion was reported in the synthesis of a complex natural product. Thus, acid-mediated dehydration of an 

allylic alcohol resulted in the formation of a dioxenium ion that was trapped intramolecularly by a vicinal 

alcohol to yield a cyclic orthoester in 90% isolated yield (Scheme 30).202  The ease of this transformation 

evidently arises from the pseudoaxial nature of the benzoate group which predisposes it to participation, 

but presumably also from the tertiary nature of the ester, which eliminates the usual conformation 

preference of secondary esters.  
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Scheme 30.  Participation of a Tertiary Benzoate through a Dioxenium Ion 

 

14.  Participation by Other Functional Groups 

The advancement of participation by a proximal or distal functionality as a rationale for stereocontrol is 

by no means limited to esters. Indeed, stereodirecting participation by halides, ethers, thioethers, 

nitrogen heterocycles, and an array of o-functionalized benzyl ethers, through cyclic ions of varying size, 

has been invoked on many occasions in the literature of glycosidic bond formation, with important work 

by the Boons,203,204 Fairbanks,205-208 Demchenko,209,210 and Turnbull211-214 laboratories, among many 

others.215-219 As the focus of this review is on the mechanisms of stereodirecting participation by esters, 

and as a review has recently appeared on participation by ether type groups,220 this extensive area is not 

covered here other than to note the parallels with participation by esters. Thus, important issues involve 

the possible involvement of fused and bridging ions versus that of glycosyl oxocarbenium ions and/or 

reactive intermediates such as glycosyl triflates in the transition state for glycosidic bond formation, with 

evidence presented both for, and against, dependent on the system and conditions under study.177,178,221-

229 This delicate balance between stereodirecting participation and alternative mechanisms is a prominent 

feature of the involvement of esters in glycosylation and apparent from the comparison of a recent study 

on 1,2-trans-glycosylation directed by the presence of 2-O-alkoxymethyl methyl groups,230 and one of the 

many instances of intramolecular aglycone delivery,231 a common strategy for 1,2-cis glycoside formation 

(Scheme 31).232-234 
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Scheme 31.  Neighboring Group Participation versus Intramolecular Aglycone Delivery 

 

15.  Analysis of Participation from Distal Positions. 

Stereodirecting participation by remote esters has been invoked frequently in glycosylation reactions.  The 

subject has been reviewed recently,26,27 and examples continue to be advanced in the context of a wide 

variety of glycosyl donors.150,161,162,235-242 Unfortunately, in most cases the reports are limited to 

observations of changes in selectivity, often relatively minor, when switching between a remote ether 

type protecting group and an ester. We have suggested elsewhere,151 and maintain here, that such 

participation by distal esters via bridged intermediates is improbable despite its attractiveness on the 

basis of extrapolation from participation by proximal esters.   

Two extreme mechanisms can be envisaged for participation by remote esters, the first being an SN1 type 

process with initial formation of a glycosyl oxocarbenium ion followed by cyclization onto the distal ester 

and formation of the bridging dioxacarbenium ion. The second mechanism is one of direct displacement 

of the anomeric leaving group by the participating ester leading in a single reaction step to the bridging 
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dioxacarbenium ion. These mechanisms are illustrated for the most commonly invoked case of α-D-

galactopyranosides with assistance from the axial ester at O4 in Schemes 32 and 33.  The SN1 mechanism 

must ultimately involve generation of the glycosyl oxocarbenium ion in a suitable conformation, coupled 

with the population of a high energy conformation of the participating ester, for ring closure to take place. 

The barrier for ring closure must therefore be a composite of three energetically unfavorable steps, each 

with its unfavorable equilibrium constant: ionization (K1); conformational reorganization of the 

oxocarbenium ion (K2); and conformational reorganization of the ester (K3); before the final, ultimately 

favorable ring closure (K4). The apparent rate constant (k) for ring closure from the glycosyl donor will 

therefore be a composite of four equilibria, only one of which is favorable (Scheme 32). The exact 

sequence of the steps in Scheme 32 will depend on the relative energetics of the individual steps, but the 

overall analysis holds whatever the sequence of events leading up to the final ring closure.  It is impossible 

to escape the conclusion that the formation of bridging ring-closed dioxacarbenium ions from a glycosyl 

donor is kinetically slow and that consequently, alternative mechanisms will dominate.  This analysis does 

not contradict the spectroscopic observation of bridging ring-closed ions in the gas phase (or perhaps 

eventually in the condensed phase in superacidic media), but simply emphasizes the fact that the 

thermodynamic stability of a dioxacarbenium relative to an oxocarbenium ion is only a part of a 

significantly more complex overall picture. 

Scheme 32.  Stepwise Mechanism for Bridging Ion Formation via an Intermediate Oxocarbenium Ion. 
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A similar analysis pertains to the SN2-like ring closure, where at the very least, a high energy conformation 

of the pyranoside suitable for cyclization and a high energy conformation of the ester must be accessed 

simultaneously (Scheme 33). Bridging ion formation will therefore necessarily be a kinetically slow process 

and other mechanisms can be expected to predominate.   

Scheme 33.  Mechanism for SN2-like Formation of a Bridging Dioxacarbenium Ion 

 

Similar analyses can be made for bridging ion formation from equatorial esters at the 3-position, 

equatorial esters at the 4-position and esters at the 6-position of pyranoside rings, leading to the 

conclusion that each will be kinetically slow, however favorable the relative stabilities of the various ions, 

and that alternative mechanisms will dominate.   

Remote participation by either of the mechanisms illustrated in Schemes 32 and 33 will become 

increasingly likely as one or more of the equilibria for ionization, conformational reorganization of the 

carbohydrate framework and of the ester become more favorable. Thus, as furanosyl oxocarbenium ions 

are more stable than comparable pyranosyl oxocarbenium ions, and as the barriers to pseudorotation of 

furanosides are lower than those for the inversion of pyranosides, stereodirecting remote participation in 

the furanoside series is less unlikely. Septanosides,243-245 again because of the lower barriers to 

conformational equilibration of the ring, can similarly be expected to be moderately more conducive to 

remote participation. Donors carrying multiple esters, particularly cis-configurated vicinal esters, will have 
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a lower overall barrier to participation because of the greater propensity to the population of non-chair, 

or inverted chair conformations found in such systems. 

Axial esters at the 3-position of pyranosyl donors also present a far more likely case for stereodirecting 

participation than their equatorial counterparts or esters at the 4- or 6-positions.  In the SN1 scenario this 

is because i) little distortion of the oxacarbenium ion from the usual half-chair or envelope conformations 

will be required for ring closure, and ii) because a rotation of only ~120°about the C3-O3 bond is required 

to line the ester carbonyl up for cyclization (Scheme 34).  In the SN2 manifold, in addition to the reduced 

rotation required about the C3-O3 bond (not illustrated), it will be appreciated that the anomeric 

equilibrium favors the β-anomer of the donor to a greater extent, because of minimization of 1,3-diaxial 

interactions (Scheme 34). Indeed, a number of likely examples of participation from such esters have been 

presented.159,246-248  Moreover, it has proven possible to trap such bridging intermediates under conditions 

of actual glycosylation reactions (Table 10). 
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Scheme 34.  SN1 and SN2 Manifolds for Bridging Ion Formation from an Axial Ester at the 3-Position 

 

16.  Comparison of the Relative Ease of Participation by Proximal and Distal Esters. 

The most obvious exception to the above analysis of participation by distal esters is that of participation 

from the 2-position, ie, classical neighboring group participation.  Several factors contribute to the relative 

ease of participation from the proximal position. The first of these is the greater exothermicity of the 

transformation of a glycosyl oxocarbenium ion to a fused dioxalenium ion.  This increase in exothermicity 

is the result of two factors, the first of which itself can be traced to two factors: first, the evidence that 5-

membered cyclic dioxalenium ions are more thermodynamically stable than their higher homologs is 

incontrovertible both in simple models (Figure 12) and on sugar frameworks (Scheme 7), and is well-

supported computationally (Figures 21 and 22, and Schemes 22). The second factor in the greater 

exothermicity of ring closure of proximal esters onto oxocarbenium ions as opposed to that from distal 

esters arises from the differential electron-withdrawing, destabilizing influence of proximal and distal 

esters on glycosyl oxocarbenium ions.: it is very well documented that esters at the 2-position exert a 
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much stronger disarming influence on the oxocarbenium ion than those at more remote positions.96,138,249  

Thus, dioxalenium ion formation from a 2-O-acyl oxocarbenium ion begins from a higher energy species 

and ends with a lower energy species than comparable ring closures involving esters at the 3-, 4-, and 6-

positions. The change in entropy on ring closure also plays an important role. Thus fewer degrees of 

freedom are lost on cyclization of a proximal ester to give a fused bicyclic system, than are lost on the 

closure of a more remote ester to afford a conformationally more rigid bridged bicyclic system, something 

that is especially pertinent to participation by esters in the side chain which constrains the previously 

freely rotating exocyclic bond. Finally, it requires only a minimum rotation about the C2-O2 bond away 

from the ground state ester conformation in order to achieve suitable overlap with the oxocarbenium ion 

for ring closure. 

17.  Alternative Hypotheses for the Influence of Remote Esters 

The broadest alternative explanation for the influence of remote esters and other electron-withdrawing 

protecting groups simply builds on the general mechanism for glycosylation, and the ability of protecting 

groups to influence the key covalent donor – ion pair equilibria.1  Thus, as first advanced by van Boeckel 

and coworkers250 building on earlier work by the Paulsen lab,251 the more electron-withdrawing a 

protecting group is, the more it will destabilize glycosyl oxocarbenium ions and ion pairs incorporating 

them, and shift glycosylation mechanisms toward the SN2-end of the mechanistic continuum (Scheme 35).  

The van Boeckel hypothesis is supported in the gluco- and mannopyranoside series by their observation 

of the correlation of increased β-selectivity with the electron-withdrawing ability of esters at the 4-

position. Strong-supporting evidence is also provided by the work of Kim and coworkers.163,252 A 

comparable analysis holds for the influence of protecting groups at the 6-position. 
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Scheme 35.  Influence of Remote Protecting Groups on Covalent Donor – Ion Pair Equilibria 

 

In the galacto and related fucosyl and KDO series, esters at the 4-position clearly do enhance α-selectivity.  

As discussed by van Boom and coworkers, this is still consistent with enhancement of the SN2-like reaction 

manifold provided it is coupled with a Lemieux-type253 rapid in situ anomerization and preferential 

displacement of the leaving group from the equatorial position.254  Alternatively, the change in selectivity 

seen with 4-O-acyl protected donors on going from the gluco and manno series to the galacto series is 

consistent with a switch in mechanism from SN2-like in the former to SN1-like in the latter.   

The most convincing and oft-cited evidence for participation by axial esters at the 4-position comes from 

the laboratories of Nifantiev and Boons.  Nifantiev and coworkers studied the selectivity of series of 4-O-

benzoyl-, 4-O-p-methoxybenzoyl-, and 4-O-p-nitrobenzoyl- 2,3-di-O-benzyl-α,β-L-fucopyranosyl bromides 

toward a common acceptor on activation with a combination of mercuric cyanide and mercuric bromide 

in dichloromethane.171  They found the p-methoxybenzoate to afford the highest, and the p-nitrobenzoate 
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the lowest levels of α-selectivity, which they argued was consistent with stereodirecting participation by 

the remote group and for which computational support was advanced (Scheme 19 and Figure 21). 

Contemporaneously, Boons and coworkers found that 4-O-benzoyl protected galactopyranosyl donors 

afforded increased α-selectivity when compared to alkanoyl esters.  Furthermore, electron rich benzoates 

were more α-selective than electron poor ones and, in the alkanoyl series, a pivaloate was more α-

selective than an acetate, which in turn was more selective than either a trichloroacetate or a 

trifluoroacetate (Table 12).255 These observations drove Boons and coworkers to favor an SN1-like 

mechanism and argue in support of participation by the distal ester as the underlying cause of the 

observed α-selectivity (Figure 26).  However, it can just as easily be argued that the more electron-

donating an ester group, the greater will be its ability to stabilize developing positive charge by through 

space electrostatic interaction (Figure 26).  This latter hypothesis, which also applies to the fucopyranosyl 

and KDO series, builds on the generally accepted explanation1,184,185,256 of the increased reactivity and α-

selectivity of galactopyranosyl donors over their glucopyranosyl analogs and importantly does not require 

the ester to deviate from its low energy conformation. The influence of the electron-donating or 

withdrawing ability of the p-substituent on the ester is perhaps most easily visualized in terms of the no-

bond resonance form involving an acylium ion alkoxide pair. Through space stabilization of electrostatic 

charge at the anomeric center by the ground state ester is consistent with the enhanced population of 

the axial conformer of 4-(4-chlorobenzoyloxy)cyclohexanone, relative to the cycloalkane (Figure 6).  

Finally, electrostatic stabilization of positive charge at the anomeric center by the ground state ester also 

satisfactorily explains the solvent effects noted by Boons and coworkers, with 1,4-dioxane/toluene 

mixtures affording better -selectivity than dichloromethane, and confirmed by numerous groups 

subsequently.237  Yet others have argued that “electrostatic effects”, rather than remote participation, 

underlie the marginal increase in α-selectivity observed with a 4-O-acetyl-2-azido-3,6-di-O-benzyl-2-



84 
 

deoxy-β-D-galactopyranosyl fluoride on activation with dicyclopentadienylhafnium dichloride in 

dichloromethane as compared to the corresponding 4-O-pentafluoropropionyl donor.107,257 

Table 12.  Influence of Esters at the Galactopyranoside 4-Position on Anomeric Selectivity 

 

R % 
yield 

α:β  
ratio 

σp
258 F258 gg/gt/tg 

H 68 1.7/1 0 0 21.9/34.4/43.7 

Me 90 2.9/1 -0.17 0.01 - 

CH2Ph 91 2.2/1 -0.09 -0.04 13.2/22/6/64.2 

CH2CF3 58 2.3/1 0.09 0.15 11.7/21.7/66.7 

COMe 76 7.2/1 0.50 0.33 16.4/31.0/52.6 

COCMe3 74 16/1 0.32 0.26 15.0/28.6/56.4 

COCCl3 72 4.5/1 - - 6.9/18.8/74.3 

COCF3 71 3.0/1 0.46 0.58 7.7/19.2/73.0 

COPh 72 17/1 0.43 0.31 15.6/30.5/53.9 

COC6H4-4-Me 82 18/1 - - 15.4/32.0/52.5 

COC6H4-4-OMe 85 33/1 - - 16.2/32.5/51.3 

COC6H4-4-NO2 87 14/1 - - 17.3/23.5/59.1 
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Figure 26.  Correlation of α-selectivity with increased electron-donating potential of esters at the 

galactopyranosyl 4-position is consistent with remote participation and with through space electrostatic 

stabilization of positive charge at the anomeric position. 

A further hypothesis advanced by Crich and coworkers, and based on the well-documented influence of 

side chain conformation on the reactivity and selectivity of glycosyl donors,259-263 postulates that changes 

in the protecting group at the 4-position result in changes in the conformation of the side chain and so 

have an indirect influence on selectivity.264 Indeed, in an NMR spectroscopic study of side chain 

conformation of the same series of phenyl 2,3,6-tri-O-benzyl-β-D-thiogalactopyranosides employed by 

Boons and coworkers, distinct changes in the distribution of the side chain conformation among the three 

staggered gg, gt, and tg conformers on changing the O4 protecting group were observed (Table 12, last 

column).  Of particular note is the high proportion of the strongly disarming tg conformer observed with 

the highly electron-withdrawing trichloroacetyl and trifluoroacetyl esters; similarly in the series of 4-

substituted benzoate esters it is the most electron withdrawing 4-nitrobenzoate that has the highest 
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proportion of the tg conformation.  Albeit a different pattern was found, the side chain conformation of 

phenyl 2,3,6-tri-O-benzyl-β-D-thioglucopyranosides was also found to be modulated by the protecting 

group at the 4-position. While these effects were out of necessity only observed on covalently bound 

unactivated donors, it can be anticipated that similar, and likely, more substantial effects will occur in 

glycosylation transition states as summarized in Figure 27. Clearly, this hypothesis does not extend to the 

fucopyranosyl series in which the side chain consists of a simple methyl group, nor to the pentopyranosyl 

series which lacks a side chain altogether. 
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Figure 27.  Abbreviated glycosylation mechanism showing the influence of the protecting group at the 4-position on the side chain conformation. 
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Turning to equatorial esters at the 3-position, significant differences are found in anomeric 

stereoselectivity with the corresponding donors carrying ethers at the same position.  Thus, van Boeckel 

and coworkers noted in 1984 that the presence of an acetyl or trichloroacetyl protecting group at the 3-

position of glucopyranosyl bromides carrying ethers at the 2- and 4-positions gave predominantly the α-

glycosides on activation by silver silicate, whereas the corresponding 3-O-benzyl ethers gave the opposite 

selectivity.250  Numerous related examples in the glucopyranosyl series were later presented by Nifantiev 

and coworkers, working with thioglycosides and or glycosyl sulfoxides, who also noted that the coupling 

of protecting group changes at the 3-position with those at the 6-position.265,266  Similar effects have also 

been noted in the rhamnopyranosyl series, albeit with an unusual solvent dependence.267  However, the 

most remarkable changes in selectivity due to the change of an ether for an ester protecting group have 

been noted in the 4,6-O-benzylidene protected mannopyranosylation reaction. Thus, in contrast to the 

excellent β-selectivity seen with 2,3-di-O-benzyl-4,6-O-benzylidene protected mannopyranosyl donors of 

all types and attributed to the SN2-like displacement of a covalent α-mannosyl triflate,1,268,269 it was found 

that the corresponding 3-O-acyl-2-O-benzyl protected donors were highly α-selective.156,270  The extent of 

this change is most apparent in the course of a synthesis of a repeating unit from a bacterial 

lipopolysaccharide, when two mannopyranosyl donors differing only in the protecting group at O3 gave 

completely opposite selectivity (Scheme 36).271 

Scheme 36.  Inversion of Selectivity in Mannopyranosylation on Replacement of a 3-O-Benzyl Ether by a 

3-O-Carboxylate Ester 
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Initially, the α-selectivity imposed by the presence of the carboxylate at the 3-position was considered to 

be the effect of remote participation by that ester,156 and this explanation is still upheld by some authors 

in a more general sense.26,27,252  Subsequently, Crich and co-authors suggested that repulsion between the 

parallel dipoles of the ester at the 3-position and of the anomeric C-O bond would destabilize the usual 

α-mannosyl triflate and promote alternative mechanisms of a more dissociative nature, or possibly 

involving the intervention of a transient β-mannosyl triflate (Figure 28).272 Later, recognizing the 

importance of the ester group at the 3-position in their chiral auxiliary directed α-glucopyranosylation and 

galactopyranosylation reactions, Boons and coworkers proposed with computational support that the 

function of the ester is to serve as a hydrogen bond donor to the incoming acceptor alcohol and so direct 

it to the α-face of the donor (Figure 28).204 Both hypotheses displayed in Figure 28 have the distinct 

advantage of retaining the ground state conformation of the ester linkage, and a synergy between the 

two effects seems likely. The role of donor-acceptor hydrogen bonding and proton transfer in glycosidic 

bond formation has been studied from a computational perspective by Whitfield as summarized in a 

recent review.273 

 

Figure 28.  Two hypotheses for the α-directing effect of 3-O-carboxylates. 

18.  Ester Migration during Participation 

Ester migration during the course of glycosylation steered by participation of a vicinal ester is one of the 

common glycosylation side reactions.105  It can take place intramolecularly to the anomeric position or 

intermolecularly to the acceptor alcohol; in either case it has a negative impact on yield and complicates 

product isolation. Many examples have been described in the literature, many of which are listed in the 
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work of Whitfield and coworkers.108,117,274  Efforts to limit acyl group transfer parallel those used to limit 

orthoester formation, and mainly rely on the use of sterically bulky participating groups.106,110-119  

Consistent with this, it has been demonstrated that the relative ease of migration in glycosylations with 

2,3,4,6-tetra-O-acyl galactopyranosyl trichloroacetimidates is benzoyl << isobutyryl ~ acetyl.117  In a more 

extensive series of 2-O-acyl-3,4,6-tri-O-benzyl galactopyranosyl trichloroacetmidates the relative ease of 

migration of the acyl group was determined to be benzoyl = pivaloyl << levulinoyl < acetyl < formyl.117 

Mechanistically, it has been demonstrated through use of regioselective deuterium-labelling that in 

glycosylations with acetobromogalactose, it is the ester from the 2-position that is transferred (Scheme 

37),275 in broad agreement with the idea of acyl transfer as a byproduct of participation by a proximal 

ester.95,101,102  A related experiment leading to the same conclusion has been described by Kochetkov and 

coworkers.276 

Scheme 37.  Use of Deuterium Labelling to Demonstrate the Origin of a Migrating Ester Group. 

 

Following on from their work on the acid-catalyzed hydrolysis of 3,4,6-tri-O-methyl-1,2-

(ethoxyethylidene)-α-D-glucopyranose,277 a mechanism for acyl transfer was offered by Wallace and 

Schroeder.95  Thus, according to these authors, acyl transfer is the result of protonation of the orthoester 

on what was originally the carbonyl oxygen of the migrating ester.  Ring opening with assistance from the 

pyranosyl ring oxygen then affords a glycosyl oxocarbenium ion that is trapped on either face by a further 

equivalent of the acceptor alcohol resulting overall in the formation of glycosides carrying a 
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hemiorthoester on the 2-position; decomposition of this latter species completes the acyl transfer step 

(Scheme 38). 

Scheme 38.  Mechanism Advanced by Wallace and Schroeder for Acyl Transfer 

 

Building on work from Kochetkov and coworkers,278 who noted the greater basicity of O2 (as opposed to 

O1 in orthoesters) making it the most likely site of protonation, Whitfield and coworkers conducted a DFT 

computational study of the mechanism of acyl transfer in the 3,4-O-isopropylidene galactose series, which 

they found to be particularly susceptible to this reaction.117,274  As a result of this computational study it 

was postulated that the key step in acyl transfer is proton transfer within a three component complex of 

the dioxalenium ion and two molecules of acceptor (Scheme 39). Important aspects of this relay 

mechanism were considered to be the initial generation of the acyl transfer product in the higher energy 

cis-conformation for all cases, except in the transfer of a pivalate group, and the avoidance of an 

orthoester as a key intermediate. Barriers to the formation of the initial three component hydrogen 

bonded assembly were found to vary significantly with the type of orthoester and ranged from 7.2 

kcal.mol-1 for R = H (orthoformate) to 18.7 kcal.mol-1 (R = Ph), thereby explaining the relative ease of acyl 

migrations.  Conversely, the relative energy of the second transition state ranged from 9.6 – 22.0 kcal.mol-

1, with the pivalate having the lowest barrier, consistent with its formation directly in the trans-ester 

configuration, and the benzoate the highest barrier.  
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Scheme 39.  Alternative Mechanism for Acyl Transfer During Glycosylation Eliminating the Need for Prior 

Orthoester Formation  

 

The mechanism of intramolecular acyl migration to the anomeric position during the course of 

glycosylation reactions is readily understood277 in terms of attack of water on the intermediate 

dioxalenium ion and is not further discussed here. 

Finally, we are not aware of any examples of acyl migration directly from a remote position to either the 

aglycone (intermolecular transfer) or the anomeric position (intramolecular transfer) during the course of 

glycosylation reactions, despite rigorous attempts to identify at least the latter (Scheme 12).151 

19.  Ester Migration in Partially Acylated Polyols 

In addition to migration during the course of neighboring group directed glycosylation reactions, esters 

also migrate in partially acylated polyols under a variety of acidic, basic, neutral and enzymatic conditions.  

The actual migration path in monosaccharides has been subject to several investigations; it is often 

presumed to be intramolecular and clockwise between two adjacent hydroxy groups via cyclic five- or six-

membered intermediates. Migrations over one or more monosaccharide hydroxy groups in pyranoses, 

such as O2→O4 in glucopyranose have been proposed,279,280 but lack direct experimental evidence. 

Theoretically, when other possible pathways are blocked, non-adjacent migration could take place, 
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provided that a suitably low energy conformation with a sufficient lifetime is accessible. Potential non-

adjacent migration was studied, but not observed, in a myo-inositol derivative (Figure 29) in which only 

transannular migration is possible; in the boat conformation the acetyl group would appear to approach 

the free hydroxy group across the ring at sufficiently short distance, but consideration of the ground state 

conformation of the ester group reveals that this is not the case.281 Similarly, in D-mannopyranose the 

potential O2→O6 migration has been investigated, but not experimentally observed.282 

 

Figure 29.  Migration from a distal group is unlikely even in a boat conformation.  

In general, the acyl groups in carbohydrates migrate toward a primary hydroxy group, if present, from 

where hydrolysis may take place. Under strongly acidic conditions, the acyl group may also be cleaved 

directly without migration. Steric hindrance induced by substitution pattern and the stereochemical 

axial/equatorial relationships of the secondary hydroxy groups are other contributing factors to the 

overall migration path. In acetyl α-D-glucopyranose, for example, the ester sequentially migrates to O6 via 

the O2, O3 and O4 (Scheme 40).283 Similar migrations are observed for O2-acylated D-galactopyranose284 

and D-mannopyranose.285  

Scheme 40. Acetyl Group Migration in D-Glucose in Deuterated buffer at pH 7.2-7.3 and 30 °C. 

 

The stability of acyl groups at primary hydroxy groups over secondary ones also becomes evident from 

studies with neuraminic acid,286,287 1,2-O-isopropylidene-α-D-hexofuranoses,288 and glycerol.289 In the 
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absence of primary hydroxy groups, the positional preference and outcome of migration are less 

straightforward and depend on steric and electronic factors. Axial verses equatorial influences were 

investigated early on by Angyal and Melrose who studied the axial verses equatorial preference of acetyl 

groups in myo-inositol derivatives.281 In a myo-inositol derivative where the only possible migration was 

between a single axial and an equatorial hydroxy group, only minimal preference for the equatorial 

position was observed in pyridine:water 50:50 (Scheme 41). In parallel, it was demonstrated that for 

pentaacetylated myo-inositol the equatorial preference of the acetyl groups increases with increasing 

amounts of pyridine.  

Scheme 41.  Axial Equatorial Equilibrium Ratio in a myo-Inositol Derivative. 

 

Due to its important biological role, several studies have addressed the acyl migration in D-glucuronic acid, 

a compound lacking primary hydroxy groups. Starting from the β-anomer, migration away from O1 is fast, 

while the reverse migration back to O1 is typically not observed.290,291 As shown by Blanckaert and 

coworkers, the O3 position is the most favored followed by O2 and O4.292 Nicholls has demonstrated by 

means of a series of  positional isomers of trifluoromethylbenzoyl esters, that the most favored position 

in glucuronic acid depends on the nature of the acyl group.293 

Mastihubová and Biely investigated acetyl group migration in D-xyloses containing both one and two 

acetyl groups.294 It was shown that with one acetyl group the order of positional stability was O4 > O3 > 

O2 in a phosphate buffer at pH 6. A similar pattern was observed for the di-O-acetyl D-xylopyranose 

derivatives, with O3,O4 being the most favorable positions, followed by O2,O4 and O2,O3. Filice and 

coworkers have studied tetraacetylated D-glucosamine and D-galactosamine with acetyl groups located at 

their N, O1, O3 and O4-positions in phosphate buffer at pH = 8.5 at 4 °C.295,296 Following the initial 
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migration from O4 to O6, equilibration of the fourth acetyl group between the O3 and O4 positions takes 

place. For the glucosamine derivative a positional preference for O3 was clearly observed, while in 

galactosamine the acetyl group partitions between O3 and O4 with only slight preference for the prior 

(Scheme 42).296  

Scheme 42. Equilibrium Ratios of Positional Isomers in Partially Acetylated Glucosamine and 

Galactosamine in Phosphate Buffer at pH 8.5, and 4 °C 

 

The rate of acyl migration significantly depends on the relative configuration (cis or trans) of the parent 

diol. While multiple conformations are available to a primary hydroxy group enabling alignment for 

possible migration, considerably fewer degrees of freedom are available for secondary functionalities. 

Illustrative examples are migrations in galactopyranose and mannopyranose. For D-mannopyranose, a 

study of migration rate constants in D2O buffer at pD = 8 clearly indicated faster migration between the 

O2 and O3 positions than between O3 and O4, with an average rate constant for migration between the 

cis-vicinal hydroxy groups 7.5 times that for migration across the trans-diol (Scheme 43).285 For D-

galactopyranose on the other hand, the O3–O4 migration is four times faster than the O2–O3 migration 

under similar conditions.284 These examples clearly demonstrate the importance of favorable distances 

and close contacts between the adjacent hydroxy groups for the rate of migration. 
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Scheme 43.  Relative Rate Constants for Migration Between cis- and trans-Vicinal Diols in 10 mM 

Deuterated Phosphate Buffer at pH 8, and at 25 °C. 

 

Migration processes in furanoses have been less investigated. Chevallier and Migaud studied the potential 

O1→O5, O2→O5 and O3→O5 migration in ribose, the corresponding O2→O5 migration in arabinose, and 

O3→O5 migration in xylose by blocking other potential migration pathways (Scheme 44).297 By changing 

the migration conditions, solvent and the base, it was shown that the O1→O5 migration takes place when 

the O1 and C5 share a cis-relationship, but also that the O3→O5 migration requires a cis-relationship 

between O3 and C5. This is due to the rigid structure of the isopropylidene constrained furanoses, which 

prevents the trans migration between trans-diols. 

Scheme 44.  Long Range Migrations in Furanoses in THF in the Presence of Tetrabutylammonium Fluoride.  
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In a mannodisaccharide, an equilibrium between O2 and O3 is established in 5 hours at 25 °C in a 

phosphate buffer with pD 8.285 In the corresponding trisaccharide, however, slow inter-residue migration 

to the non-adjacent primary hydroxy group was observed recently, as evidenced by NMR spectroscopy 

(Scheme 45). 

Scheme 45. Inter and Intra-Residue Acetyl Migration in a Mannotriose in 10 mM Deuterated Phosphate 

Buffer at pH 8 and Room Temperature. 

 

20.  Mechanism of Ester Migration in Polyols 

While several hypotheses have long been presented for the acyl group migration,30 experimental evidence 

has been lacking. In recent years computational calculations have backed up some of the suggested 

mechanisms,285,298,299 and experimental evidence has begun to emerge.285,300 Most studies address O→O 

acyl group migration, but corresponding S→O and S→N migrations have also been observed.301 In buffer, 

one main mechanism has been proposed under basic conditions,302 while in organic solvents two 

mechanisms have been suggested: one under acidic conditions,299 and one using silver or cesium salts in 

combination with iodine.303  

Under basic conditions, subtly different mechanisms have been suggested. In 1972, Oesterling and 

Metzler proposed deprotonation of the acyl-receiving hydroxy group as the first step, followed by 
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cyclization to a hemiorthoester (Scheme 46).302 Notably, a comparable orthoester intermediate was 

suggested by Fischer in the original publication on acyl migration.301 Further, according to Casinovi et al.,304 

the negative charge on the deprotonated hydroxy group would be stabilized by acceptance of a hydrogen 

bond from an adjacent hydroxy group, or for an O2 alkoxide,  by the electron-withdrawing effect of the 

anomeric carbon.  

Scheme 46. Anionic Mechanism for Acyl Group Migration. 

 

Experimental evidence has been acquired to support the hemi-orthoester and deprotonation components 

of the mechanism. A hemi-orthoester has been isolated by Petrović, demonstrating that an O2,O3-

orthoester in galactopyranose is a stable intermediate in pivaloyl migration in PBS buffer (pH = 7.2 at 37 

°C).300 This intermediate could then be acetylated and isolated, so confirming the identity of the product 

and supporting the notion of orthoester formation during the migration process. Evidence for 

deprotonation as the first mechanistic step in migration was recently acquired from kinetic isotope effect 

studies.285 By investigating the acyl migration rates of methyl 2-O-acetyl-α-D-mannopyranoside in both 
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D2O and H2O buffers, it was shown that the average rate was 2.5 times faster for the protio than for the 

deuterio-substrate (Scheme 47). 

Scheme 47.  Kinetic Isotope Effects Consistent with Deprotonation as Rate Determining Step in 10 mM 

Phosphate Buffer (Deuterated or Non-Deuterated) at pH 8, and 25 °C. 

  

It has been further demonstrated in buffers, that the migration rates are highly dependent on the pH of 

the reaction medium.284,305,306 Leino and coworkers investigated acetyl, benzoyl and pivaloyl group 

migration in benzyl α-D-galactopyranoside in buffers at varying pH.284 They found that for all acyl groups 

the migration is retarded as the reaction mixture pH approaches neutral and that no migration takes place 

at pH 1; conversely at pH 10 the migration is very fast. Illing and Wilson have demonstrated that the 

migration of isoxepac in D-glucuronic acid takes place at pH 6 and accelerates with increasing pH.306 

Furthermore, Khan and coworkers have shown that for D-glucuronic acid some migration of ifetroban 

takes place at pH = 5 but not at pH ≤ 4.307 In a study by Brecker et al., even small differences in pH were 

shown to influence the migration rate, with a clear difference in migration rates in O-acetyl glucopyranose 

between pH = 7.2 and 7.3.283 A study by Mortensen and coworkers showed the differences in the 
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migration rates of R- and S-naproxen 1-O-acyl-β-D-glucuronic acid in buffers with pH:s 7.00, 7.40, and 8.00 

(Figure 30).305 Here, the rate increases exponentially with increasing pH. Overall, concentration of the OH 

ions in the buffer is important for the migration rate and, therefore, the deprotonating ability of the 

solution is of significance. 

 

Figure 30. pH Profile of migration rate constants for R- and S-naproxen 1-O-acyl-β-D-glucuronic acid in 

100 mM phosphate buffer and at 37 °C. 

Computational studies have further contributed to the understanding of the migration mechanism under 

basic conditions. Rangelov et al. investigated formyl migration in a model system, cis-tetrahydrofuran-3,4-

diol, by DFT methods.298 Three possible mechanisms, concerted, stepwise and monoanionic were 

considered in addition to the influence of solvent (Scheme 48). The suggested stepwise mechanism 

proceeds via a hemi-orthoester intermediate, while the concerted mechanism takes place in one step. 

The stepwise mechanism is preferred over the concerted one by 10.8–11.5 kcal.mol-1, although the 

activation energy is high for a spontaneous reaction (45 kcal.mol-1) in vacuum. When solvents (chloroform, 
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acetonitrile, methanol and water) were considered in the calculations, all energies decreased. While the 

monoanionic mechanism has a higher activation energy than the stepwise one in vacuum, it is favored 

when solvents are taken into consideration due to stabilization of the hemiorthoester-like transition state. 

By introduction of the solvents, the ortho acid intermediate is 3.6–7.2 kcal.mol-1 more stable than either 

the initial or final alkoxides. Consequently, these calculations provide support for the monoanionic 

mechanism being the most likely. The addition of ammonia and trimethylamine to the energy calculations 

of the mechanism in acetonitrile further lowered the deprotonation energy to 32.8 and 22.4 kcal.mol-1, 

respectively, from the initial 66.3 kcal.mol-1. This indicates that the ability of solutions to generate 

alkoxides is essential for migration to take place.  

Scheme 48.  Concerted, Stepwise, and Monoanionic Mechanisms for Migration. 

 

Martin and Hedrick have suggested a similar mechanism for S→O acetyl group migration as observed for 

O→O migration under basic conditions.301 Furthermore, a mechanism for S→N migration, a critical 

component in the synthesis of peptides and proteins by native chemical ligation,308 was presented where 

deprotonation of the amine takes place after the N-C bond has been formed, followed by sequential 
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protonations at O and S. Finally, deprotonation of the hydroxy group takes place followed by cleavage of 

the S-C bond (Scheme 49).301 

Scheme 49. Proposed Mechanisms for S→O and S→N Acetyl Migration. 

  

Several migration mechanisms have been suggested for acyl migration under acidic conditions. Horrobin 

and coworkers selectively removed the 6-O-acetyl group of peracetyl glucopyranose and then followed 

the subsequent acetyl migrations in toluene:AcOH (100:1) to obtain 1,2,3,6-tetra-O-acetyl-D-

glucopyranose.  Analogous studies were conducted in the galactopyranose, mannopyranose, and methyl 

2,3,6-tri-O-acetyl-α-D-glucopyranoside, galactopyranoside and mannopyranoside series.299 It was 

hypothesized that under acidic conditions an oxonium ion is formed in the rate-limiting step, followed by 

nucleophilic attack by the acetyl-accepting hydroxy group (Scheme 50). Energy calculations at the MMX 

level, suggested more favorable O4→O6 migration in glucopyranose compared to O3→O4 by 4.3 kcal.mol-

1, due to the highly strained nature of the trans-fused five-membered ring required for the latter.  

Scheme 50. Acid-Catalyzed O4→O6 and O3→O4 Acetyl Migration in the Glucopyranose Series. 
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In another mechanistic investigation, Deng and coworkers studied promotion by iodide in combination 

with CsO2CCF3 or Ag2O in DMF.303 The salts act as a Lewis base and acid to allow the migration to take 

place. The suggested mechanism commences by nucleophilic addition of the hydroxy group to the 

carbonyl functionality (Scheme 51). A Lewis base then deprotonates the O2, followed by nucleophilic 

attack of iodide to the Lewis acid-hemiorthoester complex, reforming the carbonyl functionality and 

breaking the C-O bond.  
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Scheme 51.  Dual Acid and Base Promotion of Acyl Migration. 

 

21.  Acyl Group Scope in Migration Along Polyols 

On a general level, the migration rate has been shown to depend on both the steric and electronic 

properties of the acyl group and the glycone. The influence of the acyl group on the migration rate has 

been most extensively studied in glucuronides, where the degradation rate (migration rate) is of great 

significance for evaluating the performance and safety profiles of drugs.293,307,309,310 One of the most 

detailed studies to date was conducted by Yoshioka and Baba in 2009.311 They studied the degradation 

kinetics in a large set of structurally diverse carboxylate esters of glucuronic acid. In all cases, the ester 

was located at the anomeric position in the β-configuration; the acyl groups included four NSAIDs, sixteen 

substituted benzoates, three arylacetates, six 2-arylpropionates, 3-phenylpropionate and 4-

phenylbutyrates. The reaction kinetics were reported to be first-order and the rate constants varied 

significantly (60-fold) within the studied library. Similar findings were reported for a large number of 1-O-

glucuronide drugs in which the half-lives varied between 0.26 and 79 h.312 These studies revealed that 

electron withdrawing substituents enhance the electrophilicity of the carbonyl group (increase in acidity 

of the corresponding carboxylic acid) and are accompanied by accelerated migration rates. In addition, 

increasing the steric bulk close to the ester carbonyl group (e.g., the o-position in benzoates and bulky 
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substituents at the α-position of aliphatic esters) was shown to decrease the migration rate. These findings 

are consistent, considering that a nucleophilic attack from a neighboring hydroxy group/alkoxide ion 

would be favored by increased electrophilicity at the carbonyl carbon and disfavored by steric hindrance. 

A more surprising finding, also reported by other investigators,290,313 is the difference in migration rate 

between stereoisomers in which the α-carbon of the acyl group is mono-substituted and constitutes a 

stereogenic center. In general, the (S)-isomers degrade more slowly than the corresponding (R)-isomers. 

This phenomenon has been observed in 1-O-glucuronide derivatives of ibuprofen, naproxen, fenoprofen, 

benoxaprofen, flunoxaprofen and beclobric acid.290,305,311,312 The difference in migration rates has been 

proposed to be due to a difference in energies of the diastereomeric transition states, for which 

computational support has been provided.313 

While most of the studies on 1-O-acyl glucuronides have focused on the degradation rate of the parent 

molecules, some have also addressed subsequent migrations that take place following the initial shift to 

give a 2-O-acyl pyranose derivative.293,309 In all cases, the half-lives of the 2-O-acyl, 3-O-acyl and 4-O-acyl 

derivatives are longer than those of the initial 1-O-glucuronide. The relative stability order of the migration 

products is, however, not as clear as for the 1-O-acyl derivatives. While the acyl groups have been 

reported to be most stable at either the O2 or O3 positions, the relative stability is greatly influenced by 

the structural features of the acyl groups.309 

Structural changes in the carbohydrate core have been reported to have a marginal effect on the 

migration rates. This was confirmed by Stachulski et al. in a comparison of the acyl migration kinetics 

between glucosides and glucuronides.291 A large number of migration studies have been performed on 

carbohydrates other than glucuronic acid. Most of the studies have focused on the migration of acetyl, 

benzoyl or pivaloyl groups which are widely applied temporary protective groups in carbohydrate 

chemistry.295,296,314-320 Acetylated carbohydrates are found in nature, which provides additional motivation 
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to study their explicit migration behavior.32,285,321-326 Reports on the migration of fatty acid esters,31,303,327 

stilbene,328 levulinoyl,329 alkyloxycarbonyl,330 formyl,283 and benzoyl derivatives33 can be found in the 

literature. However, only a few of these studies have featured a direct comparison between the migration 

behavior of different acyl groups. Leino et al. compared the migration behavior of acetyl, benzoyl and 

pivaloyl groups in 2-O-acyl substituted galactopyranose derivatives.284 The pivaloyl group was found to 

have the slowest migration rates while similar rates were observed for benzoyl and acetyl groups at all 

stages except in the O4→O6 migration and the subsequent hydrolysis (Table 13). It is puzzling that the 

O4→O6 migration is considerably slower for the benzoyl group, while the O6 hydrolysis rate is significantly 

faster. Apparently, the electronic and steric properties of the acyl groups and the surrounding chemical 

environment affect the stability order at various positions in the carbohydrate backbone. A comparison 

of the migration rates of formyl and acetyl groups has been reported in glucosides, but the results were 

compromised by the rapid hydrolysis of the formates.283 Unfortunately, most other reported studies have 

been conducted under differing experimental conditions such that direct comparisons cannot be made. 

In order to shed light on the electronic and steric factors that govern the acyl migration, a more coherent 

series of acyl groups would need to be screened under similar experimental conditions on a wider set of 

glycones. 

Table 13. Relative Migration Rate Constants for Acetyl, Benzoyl and Pivaloyl Groups in 2-O-Acyl 

Substituted Galactopyranose Derivatives at pD = 8.0. n.d. = not determined.   

k (h–1) Acetyl Benzoyl Pivaloyl 

k23 4.91  0.032 2.92  0.07 0.06  0.004 

k32 2.65  0.068 4.11  0.32 0.10  0.04 

k34 17.6  0.44 18.8  2.1 0.61  0.13 

k43 12.5  0.46 10.3  1.56 0.26  0.09 

k46 10.4  0.14 1.91  0.06 n.d. 
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k64 2.48  0.06 0 n.d. 

k6hydrolysis 0.04  0.005 1.54  0.1 n.d. 

22.  Solvents Effects on Ester Migration in Polyols 

While the effect of pH on the acyl migration reaction has been well documented (see Scheme 38 and 

associated discussion),283,284,305,307 there are relatively few systematic studies addressing the effects of 

solvents.298,331 It can be expected that solvents that stabilize the charged orthoester intermediate should 

be accompanied by an increase in the migration rate, while solvents that destabilize the ionic species 

should have an adverse detrimental effect on the migration rate. Despite these theoretical underpinnings, 

the conducted studies have yielded conflicting results. 

In myo-inositol dibenzoates,331 the effect of solvent polarity was studied using pyridine and sodium 

carbonate as bases, and toluene, water, DMF and THF as solvents. Based on these studies it was concluded 

that the tetrahedral intermediate is better stabilized in a polar solvent environment, which enhances the 

migration rate. The effect of water on the reaction rate was proposed to be due to its polarity rather than 

its protic nature. The amount of pyridine needed has been studied by Angyal and Melrose281 in partially 

acetylated substrates where water:pyridine mixtures in different proportions ranging from 5:95-95:5 

were screened. Increasing the pyridine concentration above 90% slowed down the migration significantly. 

In the same study, the migration was reported to be significantly slower with silver oxide in chloroform 

than with pyridine in water, however, equilibrium could be achieved in both cases. This is an indication 

that solvent polarity does indeed affect the migration rate. Further evidence was supplied from a study 

of ester migrations on the methyl 6-O-trityl-glucopyranoside framework in benzene solution with 0.2 M 

sodium hydrogen carbonate as base. Long reaction times were needed for equilibrium to be reached, for 

which the apolar nature of the solvent was suggested as a possible reason. In addition, acetyl migration 

has been reported to be slower in DMSO than in water.332 While these experimental studies all support 

the postulation that solvent polarity may have a significant effect on the migration rate, one of the few 
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computational studies reported on the subject did not provide significant supporting evidence.298 In 

comparing the influence of water, methanol, acetonitrile and chloroform, the results revealed that the 

energy barrier for migration decreases with increasing dielectric constant of the solvent (vacuum > 

chloroform > acetonitrile > methanol > water). This is an indication of the ability of the solvent to stabilize 

the charge (Scheme 52), however, the relative stabilities of the intermediates were not influenced by the 

solvent’s presence. In addition, the solvent effect was reported to be negligible when compared to the 

effect of prior deprotonation of a hydroxy group. Consequently, the migration rates appear to be 

governed by the acidity or basicity of the reaction mixture rather than the solvent alone. 

Scheme 52. Influence of Solvent Polarity on Migration in Tetra-O-acetyl glucopyranose   

  

23.  Effect of Temperature on Ester Migration in Polyols 

The literature results suggest a major contribution of temperature to the acyl migration rate with even 

small changes having a potentially large effect. Blanckaert and coworkers have studied acyl group 

migration in glucuronic acid, stored in buffer at pH 7.8: the migration rate was reduced significantly on 
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cooling from 37 to 0 °C.292 Approximately 10% of the starting 1-O-acyl glucuronic acid remained after 3 h 

at 37 °C, while at 0 °C 70% of the starting material was unchanged after 22 h. In another study, for triolein 

the migration rate for mono- and disubstituted glycerides increased 6-10 fold on increasing the 

temperature from 30 °C to 55 °C (Table 14).333  

Table 14. Migration in Mono- and Disubstituted Glycerides in 0.1 mM Phosphate Buffer at pH 6.8.a  

 

 

T (°C) k1 (h-1) k2 (h-1) k3 (h-1) k4 (h-1) 

30 0.013 0.008 0.045 0.005 

37 0.025 0.015 0.152 0.007 

45 0.045 0.027 0.274 0.013 

55 0.128 0.078 0.581 0.028 

 

In the N-acetylneuraminic acid series acetyl group migration from O7 to O9 was investigated by Kamerling 

and coworkers.286 It was shown that at 0 °C almost no migration takes place after 100 min, while at 27 °C 

50% of the starting compound is consumed and at 37 °C only 30% of the initial ester remained. Filice and 

coworkers have investigated the O6→O4 and O4→O3 migration in tetraacetylated glucopyranosamine in 

order to obtain the free hydroxy group at O4.295 Two temperatures 4 °C and 22 °C were studied at pH 9.5 

and 8.5. At the higher temperature of 22 °C, 98% conversion of the starting material was reached in 10-

15 min, while at 4 °C 90 min was required for the migration to reach a 93─98% conversion. Under both pH 

values, the migration progressed further to the C3-OH at 22 °C, clearly illustrating the significant role of 
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temperature in facilitating the acyl migration process. Hasegawa et al. have demonstrated, using both 

(2ʹR)- and (2ʹS)-1-O-(2ʹ-phenylpropanoyl)-β-D-glucuronide in a phosphate buffer with pH 7.4, that an 

increase in temperature from 27 to 47 °C increased the average rate of O1→O2 migration 9–10 times.290 

The migration rate from O1 to O2 doubles between 27 and 32 °C, and increases further by 1.6 fold 

between 42 °C and 47 °C. This indicates an exponential increase in the migration rate with increasing 

temperature (Figure 31). 

 

Figure 31.  Influence of temperature on the O1→O2 migration of R- and S-2-phenylpropionate in the 

glucuronide. 

For S→O acetyl migrations a similar trend is observed, as investigated by Martin and Hedrick with S-

acetylmercaptoethanol and the corresponding acetylthio propanol.301 It was shown that the migration 

rate for S-acetylmercaptoethanol increases 14 fold when the temperature is increased from 15 to 35 °C, 

and for S-acetylmercaptopropanol 8 fold when the temperature increases from 18.5 to 35 °C. Similarly, 

the S→N acetyl group migration was also investigated in the same study using S-

acetylmercaptoethylamine. By varying the pH and the temperature (15, 25 and 35 °C), it was shown that 
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at lower pH the rate increase is much higher (13 times) compared to high pH (3 times), when the 

temperature was increased from 15 °C to 35 °C. 

24.  Effect of Additives on Ester Migration in Polyols 

Most studies of migration have been carried out in buffers or with a base in organic solvents. Typically, 

however, such migrations are not sufficiently selective for synthetic purposes, and consequently additives, 

such as metal salts and boranes, have been used in order to improve the selectivities. The addition of salts 

may influence the equilibrium position in a migration process. Deng et al. used various additives, including 

silver, zinc, copper, iron and cesium salts with TBAI in DMF in an investigation of acyl migrations between 

O2 and O3 in D-glucopyranose and D-galactopyranose derivatives.303,327 It was found that Ag2O and 

CsO2CCF3 were the best alternatives for directing the O3→O2 acyl group migration in phenyl 4,6-O-

benzylidene-1-thio-β-D-galactopyranoside and the O2→O3 acyl group migration in phenyl 4,6-O-

benzylidene-1-thio-α-D-glucopyranside (Table 15). Good yields of the 2-O-acyl galactopyranose 

derivatives and the 3-O-acyl glucopyranose derivatives were obtained with a wide range of acyl groups. 

In a similar study, Ren et al. studied the use of Ag2O additive with NaBr in acetonitrile for influencing the 

migration between O2 and O3 in mannopyranose, galactopyranose and glucopyranose derivatives.319 

Acetyl and benzoyl groups located at O3 in the starting compounds, and in the case of methyl α-D-

glucopyranoside at O2, were investigated. In the absence of either Ag2O or NaBr no migration took place, 

and for selective reaction the combination was needed. In most cases, fair to good yields were obtained 

(Table 16). While in Deng’s work 1 equivalent of Ag2O was used,303 in the study by Ren 0.1 equivalents 

were employed,319 yielding nevertheless similar results, especially for the mannopyranose and 

glucopyranose derivatives. 
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Table 15. The O3O2 Migration in Protected Acyl Galactopyranosides and the O2O3 Migration in 

Protected Acyl Glucopyranosides.a 

Compound Methoda Temp. 

(°C) 

Time 

(h) 

Product Yield 

(%) 

 

A 75 7 

 

80 

B 75 

 

8 83 

 

A 40 10 

 

77 

B 40 12 79 

 

A 60 7 

 

76 

B 50 12 76 

 

A r.t. 48 

 

68 

B 45 24 71 

 

A 75 7 

 

74 

B 50 17 78 

 

A r.t. 48 

 

60 

B r.t. 24 67 

 

A r.t. 48 

 

70 



113 
 

 

A 50 24 

 

71 

B 50 12 72 

aMethod A: Ag2O, TBAI, DMF; Method B: CsO2CCF3, TBAI, DMF. 

Table 16. Acetyl and Benzoyl Migration in Protected Carbohydrates.a 

Compound Acyl 

group 

Product Yield 

(%) 

 

Ac 

 

63 

Bz 83 

 

Ac 

 

69 

Bz 50 

 

Ac 

 

32 

Bz 44 

 
Ac 

 

65 

Bz 84 

aReaction conditions: Ag2O, NaBr, r.t.-40 °C, AcN, 24 h. 

Ahn and Chang investigated the influence of added boronic acid derivatives on benzoyl migration in chiro-

inositol derivatives.334  Starting from 1,4-di-O-benzoyl-chiro-inositol, by use of large excess of 

phenylboronic acid, 3,4-di-O-benzoyl-chiro-inositol was isolated in 82% yield after 7 h under basic 

conditions. The phenylboronic acid additive favored the cis-relationship upon coordination to the hydroxy 

groups, thereby leaving only two positions free for the benzoyl group migration (Scheme 53). 
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Scheme 53. Phenylboronic Acid-Controlled Benzoate Migration in a chiro-Inositol Derivative. 

 

For myo-inositol, the same authors also demonstrated that different boranes could yield different 

products.335 Starting from 1,4,5-tri-O-benzoyl-myo-inositol, a 94% yield of 2,4,6-tri-O-benzoyl-myo-

inositol was obtained by use of boronic acid as additive. With phenylboronic acid, however, 1,4,6-tri-O-

benzoyl-myo-inositol was first obtained as the main product in 82% yield, but after 7 h, 2,4,6-tri-O-

benzoyl-myo-inositol was the main product in 96% yield (Scheme 54). This observation is consistent with 

1,4,6-tri-O-benzoyl-myo-inositol being the kinetically favored product when phenylboronic acid is used as 

an additive while 2,4,6-tri-O-benzoyl-myo-inositol is favored thermodynamically.  
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Scheme 54. Kinetic and Thermodynamic Pathways in Phenylboronic Acid-Mediated Benzoate Migration 

in Tri-O-benzoyl-myo-inositiol. 

 

25.  Conclusions 

An overview of the structures of carboxylate esters and of dioxacarbenium ions provides the background 

for a critical review and analysis of all aspects of stereodirecting participation by esters, whether proximal 

or distal, in glycosylation reactions.  It is concluded that while long range participation is structurally 

feasible on the basis of the isolation and characterization of various intermediates, it is necessarily 

kinetically slow and subject to competition by other mechanisms.  A major consideration in the analysis 

of both participation and migration, and one that is frequently overlooked by workers in the field, is the 

kinetic barrier provided by the ground state conformation of the ester in which the carbonyl bond brackets 

a conformation in which it eclipses the RCO2-C(-H)R1R2 C-H bond.  Overall, it is clear that modern 

carbohydrate chemistry has gained much from and will continue to benefit from the critical investigation 
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and analysis of reaction mechanisms and from their juxtaposition with the broader field of organic 

chemistry in general. 
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