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Abstract
The light-scattering properties of volcanic santleoted in Iceland are studied here to characteheze

sand particles and develop a reference for futamote-sensing observations. While such sand is
common in Iceland, the smaller-size fraction canrdedily transported by winds and found in the
atmosphere at distant locations. The sand appeakswhen deposited on a surface due to the high
optical absorption of the material. Therefore, apieeric regions containing such particles during a
dust storm may absorb sunlight considerably, cgussdistribution of solar energy. Here, we measure
the angular scattered-light intensity and degreknefr polarization from the sand. This is donéhwi
two experimental apparatuses, the Cosmic Dust laabgr (CoDulLab) at the Institute de Astrofisica
de Andalucia (IAA) and the goniospectropolariméteiGIFIGO) at the Finnish Geospatial Research

Institute (FGI). Two scattering-scenarios of preaitiinterest for remote-sensing applications are
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considered: (1) single sand-particles suspendegiiosol as an optically thin cloud, and (2) theesam
particles deposited on a substrate. We also mduel nheasurements with the discrete dipole
approximation to estimate the complex-valued reifvadndexm, where we find thain= 1.6 + 0.01 at

A = 647 nm. Lastly, we present a comparative amalg$ithe polarimetric response of the sand
particles with that reported in the literature fraarbon-soot, another highly absorbing atmospheric

contaminant.

Key words: volcanic sand; remote sensing; polarimetry; raditvy photometry; particulate surface;

aerosols; light scattering; discrete dipole appr@tion; refractive index; soot

1. Introduction

One of the largest uncertainties with regard toitiberaction of solar radiation between the atmesgh
and the Earth-surface, i.e., the Earth’s radiaimergy budget, is associated with aerosols inctudin
dust (Boucheet al., 2013). This work studies Icelandic volcanic saadignificant source of dust in
Northern Europe that is close to arctic glacieoéperoet al., 2012). In particular, our study reveals a
degree of similarity between the optical propert@sicelandic volcanic sand and black carbon
particles; specifically, both particle types strigngbsorb solar radiation thus heating the atmosphe
and reducing the amount of solar energy receivedeaEarth surface. The majority of black carbon in
the atmosphere has anthropogenic origin, whilevtiieanic sand discussed here is natural in origin.
Given its history of volcanic activity, Iceland hasperienced an extended period of absorbing-akeroso
effects as evidenced by the abundance of volcaamd,swhich has led to climatic influences both

locally and regionally across the northern latiside
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Volcanic sand is one of the main dust-soumdseland due to the abundance of rock of volcanic
origin. The weather conditions are favorable faivecsand-formation via the erosion of solidified
flows, and thus, about 20% of Iceland is coverethwblcanic sand (Arnalds, 2015). Sandy deserts
cover large portions of the south coast and glagiatgins of the active volcanic zone from the
Myrdalsjokull glacier to areas northeast of the n&gbkull glacier (Fig. 1). The desert area near the
Myrdalsjokull glacier can be seen in the enlargedIMS satellite image along with a visible portion o
the contaminated glacier. For a more detailed nigpeosand dessert distribution, see Arnalds, 2015
(chapter 11).

Volcanic sand in Iceland consist mostly of basatflass (Arnalds, 2015). Such basaltic
volcanic materials can be found in other volcatycattive areas such as Hawaii and other statéseof
USA and in New Zealand (Edgett & Lancaster, 1998)wever the composition, particle size
distribution, and microphysical properties varyhihe place of origin and sand formation factarss |
also worth noting that Iceland has one of the Isirgelcaniclastic sand-fields (Arnaldsal., 2001).

Frequent dust-storms lift small volcanic-sand p#es off the surface and transport them over
great distances. For instance, they can be degositehigh latitude regions like Svalbard and
Greenland (Groot Zwaaftink, 2017). Unlike desemdsawhich is typically a quartz-mineral (e.g.,
Volten et al., 2001; Nousiaineret al., 2009), the composition of volcanic sand is lesdl weown.
Nevertheless, what is known about the compositfosuspended volcanic sand suggests a significant
impact on the atmosphere, specifically across thahérn latitudes (Dagsson-Waldhauserevail .,
2016) in addition to its contribution to accelengtiglacier melt (Wittmann, 2017).

The transport of volcanic sand by wind contaates both the atmosphere and ground-surface along
its transport path, where suspended particlesiefiily absorb solar radiation leading to simultarseo
heating of the atmosphere and surface. Becauseu$igended particles eventually settle-out, for
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instance, on a pure ice and/or snow surface, tHacgualbedo is altered leading to enhanced heating
and an increase in the surface’s density (Meinaadal, 2014; Peltoniemet al., 2015). This in turn
triggers melting or evaporation of ice and snowestes (Qian, 2009).

Contamination of the atmosphere or icy/snowestrial surfaces by volcanic sand can be detected
with remote-sensing techniques through ground-baset satellite observations (e.g. AERONET,
Holbenet al., 1998, Sinyuk, et al, 2007, GOME-2: Mureal. 2016, CALIOP/CALIPSO: Winkeet
al., 2009). The reflectance and polarization of ghliscattered by atmospheric aerosols contain
important information about the microphysical pndj@s of the particles. Indeed, polarimetry is a
powerful and promising tool for the retrieval anghacterization of these microphysical properties.
Presently, several space instruments have polazs¢nsors and provide Earth observational daga (e
Herman, 2005, Munret al. 2016). Moreover, a number of new space missioaplanned, which will
perform airborne polarimetry (Dubovidt al., 2019). Interpretation of such measurements, kiewe
remains difficult primarily because the measuremeaare simultaneously affected by the particles’
shape, size distribution, and chemical composit©@amparison of satellite data with ground-based
measurements may show significant differences. Yemple is Tacet al., 2017, who demonstrate an
evaluation of the MODIS Deep Blue aerosol algoriinrthe desert region of East Asia and compare to
retrievals with ground-based observations obtamétt China Aerosol Remote Sensing Network.
They find that the MODIS-based retrievals of aeraguical depth can be significantly underestimated
Besides the aerosol optical depth characterisaeysol-type classification is another challengah(K
& Gaitley, 2015). For instance, a set of dust nmesuis used to define the aerosol type in Multiang|
Imaging Spectroradiometer (MISR) retrievals aldoris. Thus, knowledge of the optical properties of

various dust types is critical for the successuchsretrievals. Laboratory studies of the lighttsrang
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properties of dust particles could meaningfully ronge the algorithm inputs and interpretationiof
situ measurements.

In this work, we investigate the reflectanod d@egree of linear polarization of sunlight saaiteby
volcanic-sand particles suspended in air and thee gaarticles deposited on a surface. As such, our
experiment reproduces both of measurement scenagiegant for remote-sensing observations of
volcanic sand, i.e., in the atmosphere or deposdedan ice/snow surface. Previous related
measurements mainly focus on either single-pastioledeposited-particles (Mufioz et al. 2004; 2015;
Hadamcik, 2002; Sun 2014; Peltoniesti al., 2009, Wilkmanet al., 2016). There are only few
examples where both light-scattering scenariosianeltaneously studied (e.g., Shkuragbal., 2004,
2006; Franciset al., 2011) and Icelandic volcanic sand is not encasga in that work. The
measurements in  our work are conducted at two expatal facilities: the
goniospectropolariphotometer (FIGIFIGO) locatedhe Finnish Geospatial Research Institute (FGI)
and Cosmic Dust Laboratory (CoDulLab) at the Ingstitde Astrofisica de Andalucia (IAA). The
FIGIFIGO facility (Fig. 2) is designed to measuhe fight-scattering response from a particle-coated
surface (Peltoniemi et al., 2014), whereas the Qabuacility (Fig. 3) is used to measure the full
scattering-matrix of particles suspended in air {iplu et al., 2012). We also complement our study
with mass spectrometry to infer the elemental casitjpm of the volcanic sand samples used.

Light scattering properties of surface-demasiolcanic sand have, in part, been studied before
Peltoniemiet al. (2015), the sand is used as a highly absorbintaotinant for a snow surface, where
that study focus on how the contamination affdatsreflection and polarization properties of thevgn
In work by Zubkoet al. (2016), the optical properties of high-contrasbt@omponent mixtures
involving volcanic sand are studied, where the sseres as a dark component among two types of
bright components, salt (NaCl) and ferric sulfdte,(SOy)3). Note, however, that the light-scattering
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behavior of volcanic sand is investigated in thselies only when the particles are deposited on a

substrate (particulate surface). The single-partieime of light scattering is not yet investighate

2. Sample description

Volcanic-sand particles mainly consist of poorlystallized glasses of basaltic to andesitic origime
samples we consider are a mixture of glaciofluwalcanic ash originating from beneath the
Myrdalsjokull glacier mixed with ash from the Eyjgfajokull and Grimsvétn eruptions of 2010 and
2011, respectively. We choose this sample becduseaapresentative of materials that are typidal o
aerosol-dust sources in Southern Iceland and theclpa deposited on glaciers or snow in that area
(Arnalds et al., 2013, Arnaldset al., 2016). Specifically, our samples were collectednirthe
Myrdalssandur area in Iceland. The large blackfealoarea in Fig. 1 corresponds to the field of
volcanic sand and the upper layer of this sanduy@ah6 cm thickness) was collected with a shovel.
Wind erosion in the area contributes to the redistion of loose surface material, and according to
Arnalds et al. 2016, the rates of surface transpicaieolian materials is between 500 and 3,000 kf m
year—1. This means that about 0.5-3 tons are blowen a 1 m wide transect each year. The relevant
volcanic sand formation and erosion processeselanc are outlined in more detail, in e.g., (Banato
etal. 2011, Arnald=t al. 2013).

Our sand samples generally divide into thiewihg categories:

1) Natural volcanic sand without processing (exceptifging);

2) Sieved volcanic sand where the size of the pastisléess than 250m, including:
a) Dry sand;
b) Wet sand, where moisture is provided by an atomizer

3) Milled volcanic sand where the particles are grotmgroduce a fine-grained powder.

6
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Samples 1-2 are studied with the FIGIFIGO experialespparatus only. The natural sample (1) is
abundant with coarse, millimeter-sized particlesfdgtunately, with the CoDulLab apparatus, such
particles are too large for a feasible study ofrthght-scattering behavior at the single-partitseel.

The problem arises primarily from the aerosol getwr which becomes jammed by such large
particles. The sieved volcanic sand (2) consistparficle sizes < 17@m is used in the CoDulLab
experiments, although the signal-to-noise ratiddRS) are low. The poor SNRs can be explained as
follows: First, many of the sub-millimeter sievemh®ples remain too large for optimal operation &f th
aerosol generator. Although the generator opecatesiderably better with sample (2) than sample (1)
the amount of suspended dust remains low leadingetik scattering-signals. Second, due to the large
size of the constituent particles, they are muatketan appearance compared to the smaller, micron-
sized particles and this can be seen in Fig. 4eddd the milled sample (3) exhibits a brighter
appearance in Fig. 4 compared to samples (1) andffical-microscope images of the samples are
included in Fig. 4 to highlight the variability phrticle sizes and shapes.

To obtain a more detailed view of the partiolerphology in the natural sand sample (1), the
particles are also examined by scanning electranascopy (SEM) at various magnifications, see Fig.
5. As seen, the particles exhibit a highly irreg@dlad somewhat vesicular morphology. The elemental
composition of these particles is analyzed witha)-spectrometry and the results are presented in
Fig. 6. The analysis is repeated for particles iffeent sizes and it is notable that no significan
variation in the chemical composition is found.

The size distribution of the milled volcan&nsl sample (3) is shown in Fig. 7. The distributi®n
measured at the IAA CoDulLab with tiaster Szer2000 instrument byMalvern Scientific. Note that
the MasterSzer2000 measures the flux of laser light scattered at\eers¢ scattering angle8 near

forward-scattering direction. To retrieve infornaatiabout the particles, it is customary to fit such

7



168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

measurements with the two methods: Fraunhoferadiffon theory or Mie theory (Bohren & Huffman,
1983). As neither of these theories applies wellighly irregular particle shapes in general, fitien
procedure can yield results with error, e.g., wébpect to particle size.

What emerges from Fig. 7 is that for parti@dii > 0.25—-0.3um, both approaches reveal a power-
law size distribution™ that can be fit by = 3.5 in the Fraunhofer framework anchat 3.2 in the Mie
approach. However, we stress that both approadssre idealistic targets (spherical particles) and
therefore, the results should be taken with cautvben applied to the highly irregular particleseher
This point will cause some uncertainty in the estals of the size distribution that should be taikeo

account.

3. Experimental facilities and measurement details.

3.1FIGIFIGO
The Finnish Geodetic Institute goniospectropolatipimeter FIGIFIGO (Fig. 2) is designed to meashee t
reflectance and degree of linear polarization abua surfaces, both in the laboratory and inittlé €onditions
(e.g. Peltoniemgt al., 2015b). A detailed description of the FIGIFIGO tanfound in Peltoniemt al., 2014.
In our study, the sample is deposited on the utfgauniform sprinkling particles on a black siddstiwith a
layer of 0.8 - 1 cm thick. The measurements aentakthe principal plane, i.e., when the surfamenal lies
within the scattering plane and to improve the SiéRepeat the measurements 25 times. To compase-pha
angle dependences of the reflectance and the defra®ear polarization of FIGIFIGO with CoDuLab
measurements, we present FIGIFIGO results obtainte waveband = 642 — 652 nm (hereaftér= 647
nm). The maximum uncertainty, ~3%, appears in ttaimetric measurements at some phase anglesashere
the average uncertainty in the polarimetric respis2%. The uncertainty in the measurementdlettance

is noticeably lower compared to that of the polatiio measurements.

8



191

192 3.2CODULAB

193  The IAA Cosmic Dust Laboratory (CoDuLab) is desigrie measure the light scattering response from
194 aerosol particles, see Fig. 3. We notice that & ¢hse of irregularly shaped particles, the light-
195  scattering response can be described by the ssdo@ix 4) scattering matrix or theMueller matrix

196  consisting of six non-zero elements (see, e.g.y&@ok Huffman 1983):

197

198 F= - 1)

199

200 Using the CoDulLab facility, one can measure all sixa-zero elements over tiseattering angle 6
201 range from 3to 177 at several wavelengths. In our study, we investigfae upper block of non-zero
202 elements. For a detailed description of the CoDulabity refer to (Mufiozt al., 2012).

203  The results presented here are obtaine at647 nm. In particular, we measure thg &nd F;»
204 elements of the scattering matrix for the milledcaoic sand sample (3). The intensity of the soadite
205  sunlightl and its degree of linear polarizatiBrare defined via the elements of the scatteringiras
206 follows: |1 O Fy, P=—FR2/ Ra.

207

208 4. Results and discussion

209 4.1 Reflectance and degree of linear polarization
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We first investigate the difference in light scattg behavior for the sieved sample deposited on a
surface in dry and wet conditions by measuringréflectance and degree of linear polarization as a
function of A. Spectra for the wet and dry sample®9at70 and =140 are shown in Fig. 8. The
reflectance of the wet sample is found, on averdgdjye nearly half of that for the dry sample.
Moreover, the shape of the reflectance curve gleepends on presence of water, which is especially
noticeable forA in the range 500-1000 nm. The reflectance plotalestnates the highly absorbing
property of volcanic sand evidenced by the maxinualue being only ~ 0.044 a=650 nm. The
strongest reflectance response is observed fordtiiesample atd = 17C. Note, that while the
reflectance spectra of this sample differs unantugly at the two scattering angle3=17C and
0=140), a similar difference for the wet sample is lesmagnitude.

In contrast to the reflectance spectra, th@ecshapes and scattering response of the polarzat
spectra are not as sensitive to water content.nasvis later, however, a discrimination between wet
and dry particles is easier at smaBe©On the other hand, the degree of linear polaomatecreases as
the scattering angle grows. This is better segherangular dependence of the polarization in tee w
and dry samples shown in Fig. 9, where the measntrare taken at = 647 nm. We see that the
reflectance of the wet sample (blue curve) decseasasiderably whereas the polarimetric response
becomes noisier. In the latter case, however, tharimetric response for the wet sample (blue curve
is higher compared to the dry sample (black curvkeg difference between the dry and wet samples is
best seen at side scatteriy;~ 90°. Also, the increase of uncertainty in ouram@ements can be
explained by the continuous evaporation of watemduthe measurements. To minimize the effect due
to evaporation, we replenish the water contenthan gample several times during the course of the

experiment with water atomizer.
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Particle size is a dominate factor affectihg light-scattering behavior of a sample, which is
illustrated in Fig. 10 for reflectance and polatiaza at A = 647 nm. Here, the natural and milled
volcanic sand samples (1) and (3), respectively,iduminated at0=148. Near the backscattering
direction, i.e.,0 — 180°, the reflectance of the milled sample appéatse considerably higher than
that of the natural sample. This change is congistéh the so-calletdmov effect or Umov law, which
is the inverse correlation between reflectance reekscattering, i.e., geometric albedo, and the
maximum value that the degree of linear polarizatitay acquire, e.g., see Shkuratov & Opanasenko
1992; Zubkoet al. 2016. According to the Umov effect, greater paiation is expected from the
natural sand compared to the milled sand. Indde rtaximum degree of linear polarization of the
milled sample is ~2.5 times less than that forrthtiral sample. Also note, that the value of negati
polarization near the backscattering directionreater for the milled sample. The Umov effect can b
seen for the near-backscattering reflectance ataripation maximum for the dry and wet sieved
samples presented in Fig. 9.

Comparing the reflectance of the dry sievemigas shown in Fig. 9 with the reflectance for the
natural and milled samples in Fig. 10, one finds the reflectance of the sieved sample is greder
the natural sand and less than the milled sande§uwndingly, the polarization of the sieved sanple
smaller than for the natural sand and greater tifiamilled sand.

Comparative analysis of the light-scatterirpdvior for deposited particles and the same type o
particles suspended in air as an “optically thioud,” i.e., as an aerosol, can provide important
information needed for the interpretation of obséinns of atmosphere and underlying terrain. The
milled volcanic sand is measured in both scenaries,deposited on a surface or as an aerosolthend
results are shown in Fig. 11. Note that for theos@l; it is not feasible to measure an absolute diu

the scattered light. Therefore, we normalize thitectance data ab = 9C°. In the FIGIFIGO
11
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measurements, the deposited particles are illuethatd = 52 with respect to the surface normal.
Due to measurement constraints on@ilrange and the increased intensity of scatteréd figm single
particles near the forward-scattering directiorr, analysis is limited to the range 600 < 177.

In Fig. 11, one can see that the normalizéigéatance for the aerosol is noticeably stronger fo
small ® compared to the data for deposited particles. Wewedhe aerosol data also show a decrease
and become weaker f& > 9C°. The maximum value of the degree of linear poddron appears
greater for deposited particles compared to thesagri.e.,Pmnax = (22.07+ 0.93)% atb,ax = 60° and
Pmax = (18.7% 1.1)% atbyax = 100, respectively. Although this difference is notgey it is detected
with confidence in Fig. 11. FoB < 105, this finding qualitatively differs from that reged in
Shkuratovet al. (2007), for example, where ten different samples iavestigated including clay,
olivine, feldspar, and volcanic ash. All those slapeveal a systematically lower polarization for
deposited samples. Our results, however, are imod ggreement with soot measurements by Francis
et al., 2011, where polarization measured fromasgrpacked particles considerably exceeds that from
the aerosol particles. Notice in Fig. 11 that tlegative polarization branch near backscattering for
deposited particles appears deeper than the agmsbmh is opposite to the conclusions drawn in
Shkuratov et al. (2004). This difference could tefom specific features of our sample of volcanic
sand. It is significant, for example, that our s@chuch darker in appearance than any sampleinsed
Shkuratov et al. (2004; 2007).

The light scattering response for volcanic sanfedifconsiderably from other types of sand
such as desert sand, which is obvious from theuali appearance. While volcanic sand is dark in

appearance (its geometric albedo is ~0.05), deaads are considerably brighter.
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276 In Fig. 12 we plot the normalized reflectance jlaeitd degree of linear polarization (right) as a
277  function of scattering angle for three differeningdes: white-clay, milled volcanic-sand, and thha as
278  particles from the Eyjafjallajokull volcano. Thight scattering properties of white clay and volcan
279  ash were studied with CODULAB by Muna al. in 2011 and Merikallicet al. in 2015. Here we
280 present a comparison of the light scattering prtogeof volcanic sand in this study to the whitaycl
281 and Eyjafjallajokull volcanic ash samples. Whiteaycl mainly consists of illite, kaolinite,
282  montmorillonite, quartz and is an important compana aerosols in the atmosphere. Eyjafjallajokull
283  volcanic ash was collected at 5 km from the sowfter the April 2010 eruption, where the main
284  constituent is silica, S These particle also contain,®, CaO, TiQ, FeO, MgO and N®.

285 As one can see from Fig. 12 there is similaritywlsein the three polarization curves. The
286 refractive indexm of the Eyjafjallajokull ash particles could be danto that in the milled volcanic
287 sand. However, they should differ significantlyrfradhat of the white clay, at least with regardhe t
288 imaginary part, Imf). Nevertheless, the light scattering responselifeaclay particles resembles that
289  of the volcanic sand and ash particles. The resamobl could be explained by a difference in size
290 distribution of the white-clay and volcanic sandl@sh particles that, by coincidence, compenshees t
291  difference in refractive index. The angular prcfilef the reflectance at large scattering-angle®>9
292  clearly differs for the dark samples (volcanic sand ash) and light samples, i.e., the white cGach
293  afeature could be useful in passive remote-sergiagrosol particles.

294 Fig. 13 compares our results to the polawratheasurements obtained for levitated soot-pesticl
295 by Franciset al.(2011) The data adopted from Frangisl. is measured at = 632.8 nm from a dense
296 cloud of levitated agglomerated particles of Polihmgke Methacrylate (PMMA) hereafter called the
297 soot sample. The soot particles are micrometedsagregates, where the constituent grains have a

298 diameter of several tens of nm. The maximum padéion of the volcanic sand is about 19%, while the

13
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soot is about 25%. Based on this, and considehegUmov law, we can conclude that the near-

backscattering reflectance of the soot samplensidhan that of milled volcanic sand.

4.2 Constraint of the complex refractive index of @lcanic sand

An advantage of our study with single-scatteringipias is that interpretation data does not ineolv
common complications due multiple scattering. We davelop a quantitative model describing the
single-scattering particles based on a numeriaigct solution of the Maxwell equations, although
this cannot be done here for the deposited pastidiee ultimate goal of such modeling is retrievfal
the microphysical properties of the particles.

In general, light scattering by submicron andtron-sized particles is dependent on their size
distribution, shape, and complex refractive indey. (However, Zubkaet al. (2015) show that in the
case of highly irregular particles, the effect mesdistribution andn on the light scattering behavior
dominates the effects of particle shape. Furthegmbe size distribution of the milled volcanic das
constrained by th&lasterSzer2000 measurements (Fig. 7) and this allows us to egtimafor the
volcanic sand with the light-scattering model.

Specifically, we model the angular profiles thie scattered intensity and degree of linear
polarizationP for the milled volcanic-sand particles using tlecalledagglomerated debris particles
method (Zubko, 2015, Zubket al. 2015b). Such particles have a disordered morgyolsith a
packing density of the constituent material bein@.236. Six examples of the agglomerated debris
particles are shown in Fig. 14, which are generétedystematically damaging a perfect sphere as
described in Zubket al. (2013). An notable feature of the model partideshat they reproduce
analogous laboratory measurements of a varietyaiptes similar to those considered here, such as
feldspar (Zubkeet al., 2013), forsterite (Zubko, 2015), and olivine (Védest al., 2018). In particular,
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322 the model parameters, i.e., the size distributimhra, applied to these analogous measurements closely
323  match the actual microphysical characteristichefdamples.

324 Analysis of satellite data is typically done withheroidal model-particles, see for example
325 Dubovik et al. However, Dubovik et al. 2006 shotat the use of spheroidal particles could not
326  satisfactorily reproduce laboratory measurementserwhmultiple wavelengths are involved.
327  Furthermore, the microphysical properties retrievath spheroidal particles do not match the true
328 properties of the feldspar particles (refractivelen, size, and aspect-ratio distributions), while
329 agglomerated debris particles is in good quanigatagreement with the true microphysical
330 characteristics of feldspar (Zubkbal., 2013).

331 A particle’s light-scattering behavior depenidspart, on the ratio of its radiugo wavelength\, is

332  commonly called the size parameter= 2rr/A (Bohren & Huffman 1983). In application to an
333 irregularly shaped particle, we assigto a sphere that circumscribes the model panisézl. Then, we
334 compute the relevant light-scattering quantitieagisgglomerated debris particles for X < 32 with

335 the discrete dipole approximation (DDA). The DDA is a flexible technique designed faumerical
336 simulation of light scattering by particles with arbitrary shape (Yurkiret al. 2007). In the DDA
337 framework, the particle is replaced by a set oficutells that reproduces the shape and internal
338  structure, where the size of the cells sufficiently small compared #a As demonstrated in Zubled

339  al. (2010), the DDA yields robust numerical resultsZmd|m|/A < 1. Each cell is then approximated by
340 an electric dipole and, thus, the integral equatiescribing interaction of an electromagnetic wave
341  with the particle is transformed into a systeminédr algebraic equations. This system of equai®ns
342 then solved via an iterative method. In order tmply with the discretization criterion farabove, we
343  consider two cases for each agglomerated debtiiglpab4 x 64 x 64 cells and 128 128x 128 cells.

344  The former is used when< 15 and the latter when> 15. The size parameter is varied in step&xof
15



345 =1for1<x<15andAx = 2 for 16 <x < 32. Given thah = 647 nm in our study, this size-parameter
346  range corresponds to a particle-size rangguth Xk r < 3.3um. As demonstrated in Zublebal. (2013),
347  Zubko (2015), and Videest al. (2018), such a range is sufficient to reproducee lipht-scattering
348 response in a polydisperse system exhibiting a ptavesize distribution with an exponentmog 2.9.

349 To investigate the dependence mnwe apply the DDA to agglomerated debris particdesi6
350 values ofm, with real and imaginary parts spanning the rarigés< Refn) < 2.43 and 0 < Inm() 1,
351 respectively. For every paik,(m) we average the light-scattering response oveiirgmmam of 500
352 random shapes to ensure a statistically relialdalteWe also perform size averaging using a power-
353 law distributionr™ over the full range of considered. Initial values farare inferred from Fig. 7, i.e.,
354 n = 3.2 and 3.5. However, we do not consider thesprecisely known values. Instead, we assume a
355 degree of variation of0.5, which recognizes the uncertainty inherent he size distribution
356 measurements with thdaster Szer 2000 instrument.

357 We investigate all the available refractivdiaes, searching for the best fit to the maximuneaf
358 the degree of linear polarizatidthax = (18.7+ 1.1)% found for the milled-sand sampleBat 100°.
359  When such fit is possible, we then compare thereetingular profiles of and P measured for the
360 given sample with that from the DDA model appliedaigglomerated debris particles (Zulbdtaal.,

361  2013; Zubko, 2015; Videeet al., 2018). As Fig. 14 shows, the best fit for 647 nm is obtained for
362 m=1.6 + 0.0landn = 2.85. As one can see, the intensity is repraodlweell for all 6, whereas the
363 degree of linear polarization tends to agree less backscatteringg(> 140°) where the phenomenon
364  of negative polarization is observed (ile. < I)). The same qualitative behavior is seen for asfedd
365 particle (Zubkoet al., 2013), although the difference is smaller. Overtlle agglomerated debris

366  particle model in other work closely matches the tmicrophysical properties of the measured particl
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(Zubko et al., 2013; Zubko, 2015; Videemt al., 2018). Such performance of the model lends
confidence to our conclusion in Fig. 14 that 1.6 + 0.0Lfor the volcanic sand at= 647 nm.

Finally, consider the question of how the irdd material absorption, i.e., Im( = 0.01,
corresponds to the dark appearance of the millddan@ sand, having a reflectance ~ 0.1 near
backscatterin@ = 175° and presumably ~ 0.126at 180° (see Fig. 11). We draw attention to presiou
laboratory measurements af in powdered kerogen type-ll reported by Khateal. (1990). In
particular, for the red part of the spectrum, ailsinvalue for Im(n) is found, Imfn) = 0.012, whereas
the powder is described as having the dark appeardrhus, our finding that Imy{) = 0.01 for the

volcanic sand agrees well with the visual appeaafthe sand deposited on a surface.

5. Conclusions

Our study of the light-scattering behavior of leelee volcanic sand achieves a quantitative
characterization of this important material. Th8ectance and polarization deposited sand strongly
depends on the particle size-distribution. Accogdimthe Umov law, the maximum of the polarization
degree encodes information on the material’'s obtad@sorption and reflectance. This effect is
demonstrated for the three samples of volcanic semdtaining particles with different size
distributions. The degree of linear polarizatioffets by nearly a factor of three between the mille
and natural-sand samples whereas the polarizagemfer the sieved sample is smaller than the alatur
sand and greater than the milled sand. Howeverwtier added to the sieved sand increases its
polarimetric response considerably, so that at sszadiering angles the response is nearly the same
the natural sand, which consists of larger pagicléis observation may have important implications

for remote-sensing observations of regions witthsand present.
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Our comparative analysis of the reflectanog polarization response of particles suspendedas a

aerosol with those deposited on a surface reveal:

(1) The normalized reflectance of light scattered by #erosols is noticeably stronger at small
scattering-angles compared to that of the depopaetitles.

(2) The positive degree of linear polarization for therosols is greater than for the deposited
particles for 90 <0 < 160.

(3) The maximum polarization is as large Rgax = 22% occurring aBmnax = 60° for deposited
particles, andPmax= 19% atBnax= 100 for the aerosol particles.

(4) The polarization response from the aerosol and sieggbparticles becomes similarGat 95°.

(5) The negative polarization branch of deposited gagiis deeper than that of the aerosol.

Finally, based on discrete-dipole modeling of tleflectance and degree of linear polarization we

estimate the refractive index of the Icelandic aoic sand to ben= 1.6 + 0.0LatA = 647 nm.
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546  Figures
547
548 Figure 1

549  Satellite image of Iceland obtained with MODIS (8IMarble from August 2004). Enlarged image of
550 the selected area is taken from MODIS 08.07.2009).
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557  Figure 2
558
559  Scheme ofinnish Geospatial Research Institute goniospemtaiophotometer FIGIFIGO setup
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565 Figure 3
566
567 Scheme of IAA Cosmic Dust Laboratory setup
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575  Figure 4
576

577  Appearance of milled, sieved, and natural volcaaled samples along with optical-microscope images
578  of the same samples.
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584 Figure 5
585
586  Scanning electron microscopic images of the nasasalple
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Figure 6

Element composition of natural volcanic sand pkasi@nalyzed with the X-ray spectrometry
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598 Figure 7

600  Size distribution of the milled volcanic sand pegs on linear scale on the right and log scalthen
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606  Figure 8
607

608 Reflectance and degree of linear polarization astfan of wavelength of sieved wet and dry volcanic
609  sand particles deposited on the surface.
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Figure 9

Reflectance and degree of linear polarization efdty and wet sieved volcanic sand as a function of
scattering angle at wavelength of 647 nm
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625  Figure 10
626

627 Reflectance and degree of linear polarization efdty natural and milled volcanic sand as functian
628 phase angle at wavelength of 647 nm
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635 Figure 11

636  The scattering angle dependence of the normaleféettance and degree of linear polarization
637  obtained for the surface and aerosol of the mili@ldanic sand.
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650

Figure 12

The normalized reflectance and degree of lineaarfration as a function of scattering angle foeéhr
different samples: white-clay, milled volcanic-saadd the ash particles from the Eyjafjallajokull

volcano.
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651  Figure 13
652

653  Comparison of the polarization response of volcaaimd\ = 647 nm and soot particles)at 632.8
654 nm (data adopted from Franeisal. 2011) suspended into the air.
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657 Figure 14
658

659  On the top: Six examples of the modeled agglomémébris particles. On the bottom: Intengdifleft)
660 and degree of linear polarizati®(right) as a function of the scattering an@le the milled volcanic
661 sand and their model (blue curvenat 2.85 andn= 1.6 + 0.0L
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Resear ch Highlights

*  Wereport angular scattered-light intensity and polarization from the volcanic sand
» Light scattering by volcanic sand is studied in single-particle and deposited modes
* Refractive index of volcanic sand is estimated

» Polarimetric response of volcanic sand is compared to that in carbon-soot



