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Abstract

Previous research has shown that using population-specific reference panels has a significant effect on downstream population
genomic analyses like haplotype phasing, genotype imputation, and association, especially in the context of population isolates.
Here, we developed a high-resolution recombination rate mapping at 10 and 50 kb scale using high-coverage (20-30x) whole-
genome sequenced data of 55 family trios from Finland and compared it to recombination rates of non-Finnish Europeans (NFE).
We tested the downstream effects of the population-specific recombination rates in statistical phasing and genotype imputation in
Finns as compared to the same analyses performed by using the NFE-based recombination rates. We found that Finnish
recombination rates have a moderately high correlation (Spearman’s p = 0.67-0.79) with NFE, although on average (across all
autosomal chromosomes), Finnish rates (2.268 + 0.4209 cM/Mb) are 12-14% lower than NFE (2.641 +0.5032 cM/Mb). Finnish
recombination map was found to have no significant effect in haplotype phasing accuracy (switch error rates ~2%) and average
imputation concordance rates (97-98% for common, 92-96% for low frequency and 78-90% for rare variants). Our results
suggest that haplotype phasing and genotype imputation mostly depend on population-specific contexts like appropriate reference
panels and their sample size, but not on population-specific recombination maps. Even though recombination rate estimates had
some differences between the Finnish and NFE populations, haplotyping and imputation had not been noticeably affected by the
recombination map used. Therefore, the currently available HapMap recombination maps seem robust for population-specific
phasing and imputation pipelines, even in the context of relatively isolated populations like Finland.

Supplementary information The online version of this article (https:// I d .
doi.org/10.1038/541431-020-00768-8) contains supplementary ntroduction
material, which is available to authorized users.

Recombination is not uniform across the human genome
with large areas having lower recombination rates, so-called
‘coldspots’, which are then interspersed by shorter regions
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genome sequencing (WGS)-based collaborations like the
1000 Genomes Project, provided genetic variation data for
20 worldwide populations [7]. This led to further refinement
of the recombination maps coupled with methodological
advances of using coalescent methods for recombination
rate [8, 9].

With the rise of international collaborative projects, it
was realised that founder populations can often have very
unique LD patterns [10], subsequently also displaying
unique increased genetics-driven health risks [11], sug-
gesting that population-specific reference datasets should
be used to leverage the LD patterns to better detect disease
variants in the downstream genetic analysis [12]. Geno-
mic analysis methods like haplotype phasing and imput-
ing genotypes require recombination maps and other
population genetic parameters as input to obtain optimal
results [13-16].

In this study, we set to test this by (1) estimating
recombination rates along the genome in Finnish population
using ~55 families of whole-genome sequenced (20-30x)
Finns, (2) comparing these rates to some other European
populations, and (3) comparing the effect of using Finnish
recombination rate estimates and cosmopolitan estimates in
phasing and imputation errors in Finnish samples.

Materials and methods
Datasets used
Finnish migraine families collection

Whole-genome sequenced trios (n =155) consisting of the
parent-offspring combination were drawn from a large
Finnish migraine families collection consisting of 1589
families totalling 8319 individuals [17]. The trios were used
for the recombination map construction using LDHAT
version 2. The families were collected over 25 years from
various headache clinics in Finland (Helsinki, Turku,
Jyviskyld, Tampere, Kemi, and Kuopio) and via adver-
tisements in the national migraine patient organisation web
page (https://migreeni.org/). The families consist of differ-
ent pedigree sizes from small to large (1-5+ individuals).
Of the 8319 individuals, 5317 have a confirmed migraine
diagnosis based on the third edition of the established
International Classification for Headache Disorders (ICHD-
3) criteria [18].

EUFAM cohort
To check the phasing accuracy of our Finnish recombina-
tion map, we used an independently sourced 49 trios from

the European Multicenter Study on Familial Dyslipidemias
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in Patients with Premature Coronary Heart Disease
(EUFAM). Finnish familial combined hyperlipidemia
families were identified from patients initially admitted to
hospitals with premature cardiovascular heart disease
diagnosis who also had elevated levels of total cholesterol,
triglycerides (TG), or both in the >90th Finnish population
percentile. Those families who had at least one additional
first-degree relative also affected with hyperlipidemia were
also included in the study apart from individuals with ele-
vated levels of TG [19-21].

FINRISK cohort

The imputation accuracy of the Finnish and previously
published HapMap based recombination maps [8, 9] was
subsequently tested on an independent FINRISK CoreEx-
ome chip dataset consisting of 10,481 individuals derived
from the national-level FINRISK cohort. Primarily, it
comprises of respondents of representative, cross-sectional
population surveys that are conducted once every S5 years
since 1972 to get a national assessment of various risk
factors of chronic diseases and other health behaviours
among the working-age population drawn from 3 to 4 major
cities in Finland [22].

FINNISH genomic reference panel cohort

The whole-genome sequenced samples used were
obtained from PCR-free methods and PCR-amplified
methods, which was followed by sequencing on an Illu-
mina HiSeq X platform with a mean depth of ~30x. The
obtained reads were then aligned to the GRCh37 (hgl19)
human reference genome assembly using BWA-MEM.
Best practice guidelines from Genome Analysis Toolkit
(GATK) were used to process the BAM files and variant
calling. Several criteria were used in this stage for sample
exclusion: relatedness (identity-by-descent (IBD)>0.1),
sex mismatches, among several others. Furthermore,
samples were filtered based on other criteria such as non-
reference variants, singletons, heterozygous/homozygous
variants ratio, insertion/deletion ratio for novel indels,
insertion/deletion ratio for indels observed in dbSNP, and
transition/transversion ratio.

After this stage, some exclusion criteria were applied to
set some variants as missing: GQ < 20, phred-scaled geno-
type likelihood of reference allele <20 for heterozygous and
homozygous variant calls, and allele balance <0.2 or >0.8
for heterozygous calls. A truth sensitivity percentage
threshold of 99.8% for SNVs and of 99.9% for indels was
used based on the GATK Variant Quality Score Recali-
bration to filter variants with, quality by depth <2 for SN'Vs
and <3 for indels, call rate <90%, and Hardy—Weinberg
equilibrium p-value <1x10-9. Some other variants like
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Fig. 1 Flowchart. Overview of the analyses and comparisons performed.

monomorphic, multi-allelic, and low-complexity regions
[23] were further excluded.

The final reference dataset (SISu v2) used in this study
for imputation consisted of high-coverage (20-30x) whole-
genome sequence-based reference panel of 2690 individuals
from the SISu project (Sequencing Initiative Suomi,
http://www sisuproject.fi/, [24]). Here, SISu v2 refers to in-
house version 2 (with 2690 individuals) of our SISu
imputation reference panel.

Recombination map construction

Coalescent-based fine-scale recombination map construc-
tion [8] is greatly eased by using trios which provide more
accurate haplotype phasing resolution [25]. Hence, we used
trio data (n =55, 110 independent parents) from the Finnish
Migraine Families Cohort described above. These were
filtered primarily using VCFtools [26] and custom R scripts.
Firstly, sites were thinned with within 15 bp of each other
such that only one site remained followed by a filtering step
of removing variants with a minor allele frequency of <5%
[27]. The resultant data were then phased using a family-
aware method of SHAPEIT [28] using the standard Hap-
Map recombination map [8, 9], which was then split into
segments of ~10,000 SNPs with a 1000 SNP overhang on

each side of the segments. LDhat version 2 was run for 10’
iterations with a block penalty of 5, every 5000 iterations of
them of which the first 10% observations were discarded
[8, 29]. The CEU based maps, used here for comparison,
were obtained similarly using LDhat [29].

However, LDHat is computationally intensive, and cal-
culations suggest that the 1000 Genomes OMNI dataset
[30] would be too much computationally intensive to
complete [31], hence limiting the maximum number of
haplotypes which could be used.

To overcome this and make the recombination map
independent of the underlying methodology, we used a
machine learning method implemented in FastEPRR
[31, 32]. It supports the use of larger sample sizes, than
LDHat and the recombination estimates for sample sizes
>50, yields smaller variance than LDHat-based estimates
[31]. The method was then applied to each autosome with
overlapping sliding windows (i.e., window size, 50 kb and
step length, 25kb) under default settings for diploid
organisms. As seen in [31] both methods produce similar
estimates, with variance of the estimate of mean being
different.

The output of LDHat and FastEPRR is in terms of
population-recombination rate (p) and to convert them into
per-generational rate (r) used in phasing/imputation

SPRINGER NATURE
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Fig. 2 Average (xstandard deviation) recombination rates of Finnish v/s CEU per autosome measured in cM/Mb and correlation between
Finnish and CEU recombination rates across all chromosomes. The comparisons are made for similar physical positions.

algorithms we used optimal effective population size values
derived from our testing (as explained in the Supplementary
Text). The estimates from LDHat and FastEPRR were then
averaged, to obtain a new combined estimate with the
lowest variance amongst all the three [31].

Phasing and imputation accuracy

To test whether the usage of different recombination maps
affects the efficiency of haplotype phasing and imputation,
we used the aforesaid Finnish genotype data to evaluate:
(i) switch error rates (SER) across all chromosomes and
(ii) imputation concordance rates for chromosome 20.

Phasing accuracy

The gold standard method to estimate haplotype phasing
accuracy is to count the number of switches (or recombi-
nation events) needed between the computationally phased
dataset and the true haplotypes [33]. The number of such
switches divided by the number of all possible switches is
called SER.

SPRINGER NATURE

For testing the influence of recombination maps on
phasing accuracy, we used three different recombination
maps: HapMap, fine-scale Finnish recombination map, and
a constant background recombination rate (1 cM/Mb), to
phase the 55 offspring haplotypes without using any
reference dataset. To check whether reference panels
used during haplotype phasing made any impact on the
SER, we used the Finnish SISU based reference (n = 2690),
to check whether the size of the reference panel made any
impact on the results in phasing the offspring’s haplotypes
(Fig. 1).

The SER in the offspring’s phased haplotypes were then
calculated by determining the true offspring haplotypes
using data from the parents (98 individuals) with a custom
script [34].

Imputation accuracy

Imputation concordance was used as the metric for calcu-
lating the imputation accuracy. For this, we randomly
masked FINRISK CoreExome chip data consisting of
10,480 individuals [22] from chromosome 20. To test the
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Fig. 3 Statistical comparison of switch error rates across all
autosomes calculated for all children in the trios using different
recombination maps with respect to different reference panel

role of reference panel size in influencing the imputation
accuracy in conjunction with varying the population
genetics parameters, we imputed the masked dataset with
BEAGLE [15] using the Finnish reference panel (n=
2690). The concordance was then calculated between the
imputed genotypes and the original masked variants.
Masking was done by randomly removing ~10% of variants
from the chip dataset.

The influence of recombination maps on imputation
accuracy was checked by calculating the concordance
values between imputed and original variants, using the
Finnish reference panel in various combinations of recom-
bination maps (constant rate, HapMap, Finnish map)
during the imputation (Fig. 1). Constant rate map used here
consisted of a constant recombination rate of 1cM/Mb,
used as a control condition for testing the statistical
differences.

SISU_2700

Kruskal-Wallis, p = 4.7e-10
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[ |
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Map
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conditions (absent or present). The p-values are shown at the top of
each panel from Kruskal Wallis ANOVA testing between panel groups
and ones between boxplots for within-group comparisons.

Results

Finnish recombination map and its comparison to
the HapMap recombination map

The primary aim of our study was to derive a high-
resolution genetic recombination map for Finland and use it
for comparative tests in commonly used analyses like
haplotype phasing and imputation. To derive a population-
specific Finnish recombination map, we used the high-
coverage WGS data and an average of different estimation
methods (LDHat and FastEPRR). We used the Ne value of
10,000 derived from our extensive testing of different Ne
values (See Supplementary Text) to get the per-generation
recombination rates. The average recombination rates of
Finnish population isolate depicted 12-14% lower values
(autosome-wide average 2.268 +0.4209 cM/Mb) for all

SPRINGER NATURE
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Fig. 4 Imputation concordance (NO reference panels). Comparison across different minor allele frequency (MAF) groups for a range of
different recombination map combinations phased with no reference panels.

chromosomes compared to CEU based maps (2.641 +
0.5032 cM/Mb) (Fig. 2).

These differences in average recombination rates are
reflected in the correlation values across all chromosomes
(Spearman’s p ~0.67-0.79) between the developed
Finnish map and HapMap based one (Fig. 2). We also
present a direct comparison between the two maps, of the
recombination rates at 5 Mb scales, which presents a similar
visual pattern of rates across the genome (Supplementary
Fig. 1).

Effects of the population-specific recombinations
map on haplotype phasing

Variation in population-specific recombination maps (and
effective population sizes) can affect the downstream

genomic analyses like haplotype phasing and imputation.

SPRINGER NATURE

We tested the Finnish map, HapMap map, and a constant
recombination rate map (1 cM/Mb) to understand the effects
of population-specific maps on downstream genomic ana-
lyses. The phasing accuracy was tested under two different
conditions: using no additional reference panel and using a
population-specific SISu v2 reference panel (n =2690) in
phasing. We observed that, on average, SER ranged
between 1.8 and 3.7% (Supplementary Fig. 2) across the
different chromosomes and recombination maps. We found
statistically significant differences within both no reference
panel and the Finnish reference panel results (Kruskal
Wallis, p-value=5.3e—10 and 4.7e—10, respectively;
Fig. 3). The constant recombination map (1 cM/Mb) had
significantly higher SER values when compared to the
Finnish map or the HapMap map (Fig. 3) both when no
reference panels were used (p-value =2.9e—11 and 2.6e
—09, respectively) and when the Finnish reference panel
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Fig. 5 Imputation concordance (WITH reference panels). Comparison across different minor allele frequency (MAF) groups for a range of

different recombination map combinations phased with reference panels.

was used (p-value =2.9e—11 and 9.5e—13, respectively).
The choice of recombination maps mattered more when no
reference panel was used (p-value =0.0046), however
when using the Finnish reference panel, the difference in
SER was statistically insignificant (p-value = 0.25).

Effects of the population-specific recombinations
map on genotype imputation

Imputation accuracy was similarly tested using the reference
panel under three different recombination map settings. We
observed that when the imputation target dataset was
phased and imputed using the Finnish reference panel (n =
2690) irrespective of the population-specific recombination
maps, it had a high imputation accuracy (overall con-
cordance rate ~98%, Fig. 4) across MAF bins (>0.1%).
Though some differences in concordance rates are seen in

for rare variants (MAF < 0.1%). The concordance rate was
lower when the test dataset was phased without reference
panels (concordance rate 72—-77%, Fig. 5).

Discussion

Population isolates like Finland, have had a divergent
demographic history as compared to the outbred Non-
Finnish European populations, with lower migration rates,
more fluctuating population sizes and higher incidences of
bottleneck events and founder effects [35, 36] This unique
demographic history then affects different population
genetic parameters, like recombination rates [37]. It has
been shown previously that using population-specific
genomic reference panels augmented the accuracy of
imputation accuracy leading to better mapping of diseases

SPRINGER NATURE
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specific variants in GWAS [12]. Since recombination rates
(in the form of recombination maps), features in much of
the downstream genomic analyses’ methods like imputation
and haplotype phasing [15, 34], we wanted to study their
effect on downstream analyses.

Firstly, we characterised the Finnish recombination map
using high-coverage (~30x) WGS samples from large SISu
v2 reference panel (n=2690). Previously used recombi-
nation maps hail from the HapMap and 1000 Genomes
projects which used sparse genotypic datasets or low-depth
sequencing samples. This is a first attempt in creating a
recombination map for Finland using population-specific
WGS samples. We used two different methods in estimating
the recombination rates, to achieve accurate estimates with
lower variance [29, 31]. We also estimated effective
population sizes using IBD based methods [15] for both
Finnish and CEU based datasets. The obtained recombina-
tion map was then used to test their role and importance in
two selected downstream genomic analyses—haplotype
phasing and imputation concordance. Since the recombi-
nation rate determination requires effective population
size estimates, we also tested the role of varying effective
population size on these two analyses (See Supplementary
Text). The extensive testing of Ne yielded the estimate
of 10,000 originally derived theoretically [38] and
most used commonly for humans fits quite rightly for the
recombination map.

The Finnish recombinational landscape when compared
to the HapMap based map, showed, on average, a high
degree of correlation across scales (10, 50 kb, and 5 Mb),
however, on average, Finnish recombination rates across
chromosomes were found to be lower. Such moderate to
high correlations (Fig. 2) and similar recombinational
landscape (Supplementary Fig. 1) could be due to high
sharing of recombinations in individuals from closely
related populations. The degree of dissimilarity in the
population-level differences between Finnish and mainland
Europeans in terms of recombination rates could be due to
population-specific demographic processes like founder
effects, bottleneck events and migration [39], and other
biological processes directly affecting the recombination
rate [40]. The broad similarity in terms of correlational
structure observed here reflects a shared ancestral origin of
Finns and mainland Europeans [41]. Other studies on
population isolates like Iceland [9] have previously found a
high degree of correlation with CEU based maps, albeit
with substantial differences as seen here. Previous studies
[42] have additionally explored the relationship between
recombination rate differences between populations and
allele frequency differences, with evidence suggesting that
the differences between rates show the selection impact in
the past 100,000 years since the out-of-Africa movement of
humans.

SPRINGER NATURE

As seen in previous studies, much of the downstream
genomic analyses like getting more refined GWAS hits or,
accurate copy number variants imputation, can be highly
improved with the addition/use of population-specific
datasets [12]. To test this in the context of population-
specific recombination maps, we used them to test the
haplotype phasing and imputation accuracy and observed
that despite substantial differences in the effective popula-
tion sizes between populations, it did not affect the tested
metrics. One possible explanation for the insignificant effect
seen here is that the role of parameters like effective
population size and recombination maps is to scale over the
haplotypes for efficient coverage of the whole genome.
However, when sufficiently large, population-specific
genomic reference panels are available with tens of thou-
sands of haplotypic combinations, such scaling over for
specific populations, does not yield in substantial
improvements. As we showed here, the selection of refer-
ence panel size could play an important role in the down-
stream genomic analyses and for most cases, the current
practice of using the standard HapMap recombination map
can be reasonably used. Another point of interest here is that
the use of different Ne parameters during phasing/imputa-
tion might be redundant as we observed no change in the
accuracy of our estimates on varying the Ne parameters.
Similarly, when using population-specific recombination
maps in haplotype phasing or genotype imputation, we did
not find any tangible benefits in using them over the current
standard maps based on the HapMap data. On the other
hand, population-specific recombination rates could be
quite important for other population genetic processes and
their estimators.

One of the main limitations of our study comes from the
LD-based methods used in the estimation of population-
specific recombination rates. Several studies have shown
that different demographic history between populations, can
askew/bias the estimates derived therein [43-45]. Several
recent methods do exist which overcome this limitation
history [46, 47], and using them might lead to slightly
unbiased different estimates. Hence, even though we do find
a difference in autosomal-wide recombination rates between
Finnish and NFE, these could also be interpreted as due to
the inherent bias in the estimation of population-
recombination rate (rho). Our study suggests a couple of
important points for future studies: (a) varying effective
population size for downstream genomic analyses, such as
phasing and imputation, might have a relatively small
impact, and it might be better to use the default option of the
particular software; (b) when available, it is beneficial to use
a population-specific genomic reference panel as they
increase the accuracy; (c) HapMap can be used for current
downstream genomic analyses like haplotype phasing or
genotype imputation in European-based populations. And,
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if need be, can be substituted for using population-specific
maps, as the accuracy rates are quite similar to the
population-based maps.

Though the sample used here is from a disease cohort but
is nevertheless representative of Finland’s population and
hence provides a reasonable recombination rate estimates.
On the other hand, our reliance on disease cohorts could
lead to minor variation in the resultant recombination.

To conclude, even though our estimates of recombina-
tion rates had some differences between the Finnish and
NFE populations, and the effective population size may
vary between these two populations, we did not observe that
the downstream analyses of haplotyping and imputation had
been noticeably affected by the recombination map or the
values of effective population size used.
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