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   practices of reducing, reusing, and recycling the products  

   (Kirchherr, Reike & Hekkert 2017, 221) 

 

CO2 emissions  Carbon dioxide emissions 

 

CO2e emissions Carbon dioxide equivalent emissions, which describe the total 

   impacts of CO2 and other GHG emissions (Clément et al. 2020, 

   1) 

 

Direct effects  Emissions and resource usage that stem from production, use, and 

   disposal (Bieser & Hilty 2018, 1.) 

 

E-waste  Electronic waste (Kahhat 2012, 5) 

 

Flowchart  Documentation of the activities and the flows between these  

   activities in the analyzed system (Baumann & Tillman 2004, 26) 

 

Functional unit Quantified performance of a product system that can be used as a 

   reference unit (ISO 14040 2006, 16-17) 

 

GHG emissions Greenhouse gas emissions (Bieser & Hilty 2018, 11) 

   

GWP   Global warming potential (Clément et al. 2020, 1) 

 

IC   Integrated circuit (Clément et al. 2020, 3) 

 

ICT   Information and communication technology (Bieser & Hilty 

   2018, 1) 
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   other domains than ICT. (Bieser & Hilty 2018, 1) 

 

LCA   Life cycle assessment is a methodological approach, in which the 
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   extraction to disposal phase (Baumann & Tillman 2004, 19) 
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   collected and the relevant inputs and outputs of the product  

   system are calculated (ISO 14040 2006, 32–33) 

 

LCIA   Life cycle impact assessment is a stage of LCA, where the  

   magnitude of environmental impacts is evaluated (ISO 14044 

   2006, 14-15) 

 

LCD   Liquid-crystal display (André et al. 2019, 270) 

 



 

LED   Light-emitting diode (André et al. 2019, 270) 

 

PaaS   Product-as-a-service is a procurement model where the supplier 

   retains the product’s ownership and the customer procures them 

   as a service (Vermunt et al. 2018, 893) 

 

PC-ABS  Polycarbonate/acrylonitrile butadiene styrene plastic (Meyer & 

   Katz 2015, 372) 

 

PCB   Printed circuit boards (Clément et al. 2020, 5) 

 

PCR   Post-consumer recycled materials (Meyer & Katz 2015, 381) 

 

PWB   Printed wiring board (Kasulaitis et al. 2015, 2) 

 

sLCA   Streamlined life cycle assessment refers to qualitative or semi-

   quantitative form of LCA, or a quantitative LCA that is based on 

   already existing data (Pesonen & Horn 2013, 1782) 

 

SLR    Systematic literature review is used for finding, picking out,  

   evaluating, and combining all relevant research that is related to 

   the research question (Bettany-Saltikov 2012, 5) 

 

WEEE   Waste electrical and electronic equipment (Kahhat 2012, 5) 
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1 Introduction 
 

Electronic waste is the fastest growing type of waste stream in the world. This develop-

ment is related to rapidly accelerating digitalization, which causes the electronic devices 

to become obsolete on an accelerating speed. Growing waste volumes and rapid manu-

facturing of new and more powerful devices cause significant stress for the environment, 

for example in terms of carbon dioxide equivalent (CO2e) emissions and material con-

sumption. (Ojala, Mettälä, Heinonen & Oksanen 2020, 24, 75.) The significance of these 

impacts is extensively associated with the end-of-life disposal options (see subsection 

5.1.3). It is important to find solutions for a more comprehensive utilization of this waste, 

as it is likely that the acceleration of the digitalization continues in the future (e.g. Schwab 

2016, 12). 

 

Circular economy has been proposed as a measure for redesigning the linear consumption 

patterns. It is a systematic approach, in which the aim is to preserve the value of the 

materials in the circulation as efficiently as possible. In contrast to a so-called linear eco-

nomic model, in which the raw materials are collected in order to make a product, which 

is then used, and finally disposed as a waste, in circular economy the goal is to form 

closed material cycles. (e.g. Ellen MacArthur Foundation 2013.) The problem with the 

concept of circular economy is its ambiguous nature, but very often it is associated with 

a so-called 3R framework, which consists of the practices of reducing, reusing, and recy-

cling the products (Kirchherr, Reike & Hekkert 2017, 221). One form of implementing 

circular economy is the so-called product-as-a-service (PaaS) business model, in which 

the supplier retains the ownership of the products, and the customer procures them as a 

service (Vermunt et al. 2018, 980). This has been argued to extend the useful life of prod-

ucts due to the product take-back programs (Kerdlap, Gheewala & Ramakrishna 2020, 

331). Circular economy has been proposed as a solution to the overconsumption of natural 

resources and to CO2e emissions that exert pressure on biodiversity (Ellen MacArthur 

Foundation 2019B, 9, 26). Thus, it is important to study the potential of this approach in 

reducing the environmental impacts of ICT devices. 

 

In order to comprehend the total impacts of ICT devices, it is necessary to understand the 

impacts that occur at every different life cycle stage. Life cycle assessment (LCA) is a 
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methodological approach, in which the products’ environmental impacts are mapped 

from raw material extraction to disposal phase (Baumann & Tillman 2004, 19), and by 

utilizing this approach it is possible to assess the ICT devices’ most relevant components, 

life cycle phases, and environmental impacts. Several researchers also argue that there is 

a research gap in the studies considering environmental impacts of implementing circular 

economy, due to the lack of real-world business-related case studies (André, Söderman 

& Nordelöf 2019, 269). This study aims to advance the filling of this gap by providing 

information about the environmental savings potential of circular economy utilization in 

ICT procurements, focusing on opportunities that exist in the real-world business context. 

 

Cities have been identified as especially important actors for advancing the transition 

from linear economy to circular economy (Häikiö & The ORSI consortium 2020), and 

large shares of natural resource consumption, greenhouse gas emissions production, and 

global waste generation take place in cities (Ellen MacArthur Foundation 2019A, 3). 

Therefore, studying the environmental saving potential of the product-as-a-service solu-

tions in the context of cities’ procurement operations is highly relevant. In this thesis, the 

object is to study the environmental savings potential of these solutions in the context of 

the City of Helsinki’s ICT procurements. Finland is one of the world’s leading countries 

in digitalization (Ojala et al. 2020, 13) and the City of Helsinki is the largest public pro-

curement operator in Finland (Helsinki 2020, 5). Thus, studying the City of Helsinki’s 

procurement alternatives provides an excellent target for a case study, in which the aim 

is to understand the environmental impacts of these procurement model options. 

 

This thesis is conducted as a commission work for the City of Helsinki, and the objective 

of this study is to provide support for procurement related actions that are declared in The 

City of Helsinki’s (2020) Roadmap for Circular and Sharing Economy. These actions 

include transition to service-based procurement model for those product groups that it is 

sensible and increasing understanding of procurement models that are smart in terms of 

life cycle impacts. (City of Helsinki Urban Environment Division 2020, 13.) The focus 

of this study is on the environmental impacts of laptops and tablets, and on the most 

significant life cycle stages and components of these devices, in terms of the most relevant 

impact categories. The differences between the life cycle impacts of these devices are 

assessed in the case of ownership-based procurement model and product-as-a-service-

based procurement model. 
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In this study, two alternative ICT supplier companies’ operations and environmental im-

pacts are assessed. One of these companies states to follow the principles of circular econ-

omy, and to operate as a platform for service-based product procurements. Since the prin-

ciples of a circular economy can mean many different things, this study also compares 

the company’s operations to the most common definitions of the circular economy. This 

thesis is carried out as streamlined life cycle assessment case study, which is based on the 

ISO 14040 (2006) and ISO 14044 (2006) -standards, which provide a systematic ap-

proach for conducting the life cycle assessment. The data that is used for carrying out the 

LCA is collected by conducting a systematic literature review of the already existing 

studies, and by interviewing the representatives of the supplier companies. 

 

The goal is to provide an answer to the following research questions: 

 

RQ1. What are the most important stages and components in laptops’ and tablets’ life 

cycles, in terms of CO2e emissions and material consumption? 

RQ2. How are these stages and their impacts different in ownership-based procurement 

model and service-based procurement model? 

 

The need for a shift from linear to circular economy has also been recognized in the City 

of Helsinki’s strategy papers. In the Helsinki City Strategy for 2017–2021, it is stated that 

circular economy projects will be implemented in cooperation with companies, and in 

Carbon-neutral Helsinki 2035 Action Plan one of the declared actions is that the city 

would be implementing a carbon-neutral circular economy by 2050. (City of Helsinki 

Urban Environment Division 2020, 4.) Additionally, in the City of Helsinki’s new pro-

curement strategy it is stated that it is important to actively analyze the supplier markets 

in order to find new service models early on (Helsinki 2020, 9). This thesis will provide 

an extensive support for the city’s several target programs, and it can assist in a transition 

to more sustainable operating models. 

 

The thesis contains seven main chapters. The second chapter of this thesis is the analytical 

framework, which will introduce the reader to the theoretical assumptions and perspec-

tives that motivate the need for this study. The third chapter will provide information 
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about the City of Helsinki’s state of affairs in the context of this study. The selected meth-

odological approaches and the utilized data will be introduced to the reader in the fourth 

chapter, and the fifth chapter will provide the results that were obtained by these methods. 

The sixth chapter will consider the limitations of this research, and in this chapter the 

results are also linked to the theoretical assumptions that were introduced in the second 

chapter. Finally, in the seventh chapter the main finding and conclusions of this study will 

be made.  
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2 Analytical framework 
 

The first aim of this chapter is to review the topical nature of technological development. 

This will be the focus of the first section 2.1. This section is divided into subsections 2.1.1 

where the exponential growth of technological acceleration will be considered through 

various descriptions presented by different scholars and intellectuals, and to 2.1.2 where 

the implications of this development for a highly digitalized welfare state will be ana-

lyzed. The following section 2.2 will consider the sustainability challenges that are related 

to ICT. The section is divided into two subsections in which the most significant environ-

mental challenges of ICT will be presented. Subsection 2.2.1 will focus on the increasing 

greenhouse gas emissions and energy consumption and subsection 2.2.2 on the increasing 

material consumption. The last section of this chapter, 2.3, will present the concept of 

circular economy, and consider it as a possible solution for the environmental challenges 

that are related to ICT procurements. 

 

2.1 Technological and social development 

 
Technological development is one of the most important social phenomena, as technol-

ogy has started to blend into almost every aspect of life and manifests as various social 

trends that each shape the society (Ahmed, Naeem & Iqbal 2016, 43; Dufva 2020, 2, 39; 

Røpke & Christensen 2012, 349). One of the key features of technological development 

has been its long-lasting exponential acceleration (e.g. Mollick 2006; Brynjolfsson and 

McAfee 2014), which indicates that the impact on society could also accelerate in the 

future. To some extent these impacts can be seen to contribute to socially pursued goals, 

such as economic and social progress, but on the other hand, technological development 

also poses various risks for the society and the environment (e.g. Dufva 2020, 40–42; 

Ojala et al. 2020). Technological acceleration is an important concern when considering 

opportunities for a more circular economy, since it entails a rapid pace of change in ma-

terials and products. 

 

2.1.1 Technological acceleration 
 
On the 1960s Intel’s former chairman Gordon Moore predicted that the number of tran-

sistors that can be fitted into a microchip would double every year or two, which later 
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became known as Moore’s law. While no longer valid as a ’law’, the prediction of expo-

nential technological development has remained rather successful for several decades. 

(Mollick 2006, 62; Brynjolfsson and McAfee 2014, 40–41; Lange, Pohl & Santarius 

2020, 5.) This exponential development speed has in recent decades revolutionized the 

society in many ways, but according to many scholars, the greatest revolutions are yet to 

come. 

 

Klaus Schwab (2016, 7), the founder and executive chairman of the World Economic 

Forum, has for example argued that we are in the middle of the fourth industrial revolu-

tion, which can be characterized as “a profound shift across all industries”. Correspond-

ingly, according to Schwab (2016, 12) and Massachusetts Institute of Technology (MIT) 

Professors Brynjolfsson and McAfee (2014), we are now on an inflection point, after 

which the effects of technological development really start to manifest. Brynjolfsson and 

McAfee (2014) argue of the significance of the force of change, by referring to the current 

period as the second machine age. This concept refers to an idea, that computers have 

started to do the same thing for mental work that steam engines did for muscle work; that 

is to exceed the previous limitations. Technological acceleration can also be seen as a 

self-propelling process, because economic operators are under the pressure to adopt the 

latest technology, as otherwise they will be outdated (Rosa & Scheuerman 2009, 88–89). 

 

In addition to exponentially increasing computer speed, a crucial assumption of Moore’s 

law is the affordability of computing power. Moore noticed that computing power ob-

tained per every spent dollar doubled yearly from 1962 to 1965. (Ahmed et al. 2016, 43; 

Brynjolfsson & McAfee 2014, 40–41; Mollick 2006, 65.) The reason why the improve-

ment of computers has been so radical, is that the physical limitations in digital world are 

much looser than in many other forms of manufacturing. In addition, engineers have been 

able to find many ways to overcome the obstacles that physics have set for development. 

(Brynjolfsson & McAfee 2014, 42.) Next, the aim is to review how this constant increase 

in computing power, and decrease in its price, has affected people and society in Finland, 

which is one of the world’s leading countries in digitalization (Ojala et al. 2020, 13). 
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2.1.2 Information society and sustainability in a Finnish context 
 
The internet and the development of ICT devices have increased labor productivity 

(Brynjolfsson & McAfee 2014, 98–99; Castells & Himanen 2002, 2, 21; Lange, Pohl & 

Santarius 2020, 2). Various studies show that ICT development has a positive impact on 

a country’s economic growth and this relation seems to be especially pronounced in high-

income countries (Lange, Pohl & Santarius 2020, 5). Finland has been regarded as a prime 

example of a Nordic information society and as one of the world’s leading countries in 

digitalization, because of the strong information and communication sector. (Ojala et al. 

2020, 13; Castells & Himanen 2002, 5). The Finnish model has been a target of academic 

interest as different scholars have contemplated the reasons behind the success (see e.g. 

Castells & Himanen 2002; Miettinen 2013). 

 

According to the studies by Castells & Himanen (2002, 141–146) and Miettinen (2013, 

2), Finland has been able to form a self-reinforcing system, in which social and economic 

sustainability goals are being achieved in a mutually supportive way. However, although 

Finland has ranked globally well in terms of various measures of well-being, it has not 

been as successful in terms of ecological sustainability (Ojala et al. 2020, 13). According 

to the ORSI joint project, the current level of social welfare in Finnish society cannot be 

considered as being on an environmentally sustainable basis, because the carbon dioxide 

emissions and the use of natural resources are on a high level compared to the rest of the 

world. Finland is not alone with this challenge, since no other welfare state has presented 

a credible plan for transition to eco-welfare state yet either. (Häikiö & The ORSI 

consortium 2020.) 

 

Finland aims to be carbon neutral by 2035, which requires that emissions are reduced in 

all sectors. There is a need for coherent and transparent measures for tackling the 

environmental and climate impacts of the ICT sector, as the sector has continued to 

advance, and the environmental impact has continued to increase. (Ojala et al. 2020, 12–

13.) As a later review shows, the environmental impacts of ICT sector contribute to those 

challenges that have been remarked by ORSI joint project as especially challenging for 

Finland (Häikiö & The ORSI consortium 2020; Dufva 2020, 42; Ojala et al. 2020, 24). 

Changes in consumption patterns are an essential measure for a state’s ability to reach the 

sustainability goals of Agenda 2030, that Finland as a member state of the United Nations 
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has agreed on (Ministry for Foreign Affairs of Finland 2020). Cities are considered as 

important drivers of this change (Häikiö & The ORSI consortium 2020.), as they account 

for 75% of the natural resource consumption and produce 50% of the global waste and 

60–80% of greenhouse gas emissions (Ellen MacArthur Foundation 2019A, 3). 

 
 

 

2.2 Sustainability challenges of ICT 

 

The economic development and growing middle classes are driving changes in Earth’s 

life support system (WWF 2018, 23; Ellen Macarthur Foundation 2013, 14), and as 

mentioned in the subsection 2.1.2, no technologically advanced welfare state has been 

able to provide their standard of living on an environmentally sustainable basis (Häikiö 

& The ORSI consortium 2020). The technological progress is an important driver of 

social and economic development, but it is important to understand its true costs. 

Moreover, as the progress is accelerating, the environmental risks should be mapped 

expeditiously, as there is a chance that they also worsen with an accelerating pace in the 

future. 

 

The environmental impacts of the ICT sector have only recently begun to arouse public 

interest, and the focus has so far been mainly on the digitalization’s potential in emission 

reductions (Ojala et al. 2020, 12, 14). The ICT sector provides enormous potential in 

lowering other sectors’ carbon emissions through optimizing, replacement of physical 

products, and resource efficiency enhancing (Ojala et al. 2020, 23; Lange, Pohl & 

Santarius 2020, 4–5), but it is also associated with significant negative environmental 

impacts. The most significant of them are related to greenhouse gas (GHG) emissions that 

stem from growing energy use and material consumption (Dufva 2020, 42; Ojala et al. 

2020, 24), which will be considered in the following subsections 2.2.1 and 2.2.2. In the 

context of Finland, the consumption of data has been growing exponentially in 

approximately two years cycles (Wirén, Vuorela, Müller & Laitinen 2019, 9–10). The 

demand for energy is also increasing exponentially (Ahmed et al. 2016, 43), and therefore 

it is likely that the environmental impacts of digitalization will continue to increase in the 

future. 
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2.2.1 Increasing greenhouse gas emissions and energy consumption 
 
The environmental impacts of ICT have been studied since the early 1990s, and special 

focus has been put on energy consumption (Røpke & Christensen 2012, 348). The 

progress in digitalization has had a positive correlation with increases in energy 

consumption and GHG emissions during the last decades, which is a problem as a great 

proportion of the global electricity production is generated by burning fossil fuels (Ojala 

et al. 2020, 27). This increase has resulted from the rising production, use and disposal of 

ICT devices. (Lange et al. 2002, 2.) Improving energy efficiency and increasing the share 

of low-emission electricity have been proposed as direct means for reducing the 

environmental impacts of ICT (Ojala et al. 2020, 98). Energy efficiency on the ICT sector, 

has continuously improved during the last decades, but as the sector’s growth has been 

more significant than the growth in efficiency, the energy consumption has not been 

decreasing (Lange et al. 2020, 4). 

 

A situation, in which increase in energy efficiency does not lead to decrease in energy 

consumption, is referred to as the Jevons’ paradox. The notion was put forward by an 

economist William Stanley Jevons (1865), and the original context of the paradox was 

the increasing demand of the British coal resources. Later this finding has been cited in 

various contexts, and the concept of a rebound effect has been used as an umbrella term 

for such mechanisms (Sorrell 2009, 1456–1457). As mentioned in the previous chapter, 

the mechanisms seem to also apply to energy efficiency on the ICT sector, as the sector 

has grown more rapidly than its energy efficiency (Lange et al. 2020, 4). Yet, many 

governmental and non-governmental operators still assume that the efficiency lowers 

consumption and the environmental impacts (Alcott 2005, 9). If the apparent mechanism 

explains the growing energy use on ICT sector, it would have profound implications for 

the discussion of carbon emissions (Sorrell 2009, 1456). There is still not a unanimous 

perception of whether this is the case, but the majority of the rebound effect researchers 

argue that the effect is significant enough to prevent sufficient reduction in energy use 

(Lange et al. 2020, 5). It is important that the governmental and non-governmental 

operators adopt a critical standpoint, when studying the potential environmental impacts 

of energy efficiency. This does not imply that the focus on energy efficiency should be 

neglected in reviews, but the existence of the rebound effect must be recognized when 

designing sustainability measures for the ICT sector. 
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Another important factor influencing the environmental impacts of ICT is the source of 

the energy being used. Electricity is often produced by burning coal, natural gas, or oil 

(Ahmed et al. 2016, 43–44), which generates carbon dioxide (CO2) missions. ICT 

companies can reduce their CO2 footprint by utilizing renewable electricity (Ojala et al. 

2020, 28), and some scholars argue that due to the rebound effect, this measure is more 

effective in coping with the ICT related CO2 emissions than focusing on the energy 

efficiency (Herring 2006). Globally only 20–25% of the total energy is collected from 

hydro, nuclear or renewable sources, so internationally compared, the electricity 

consumed in Finland is relatively carbon-free, as approximately 35% comes from 

renewable sources and 27% is produced by nuclear power (Ahmed et al. 2016, 44; Ojala 

et al. 2020, 27, 143). 

 

There are different research results on the distribution of energy consumption in the ICT 

sector. According to some studies, it is precisely the role of data centers in energy 

consumption that is significant, and according to others, the consumption takes mostly 

place in consumer devices. (Ojala et al. 2020, 25.) In addition, the use of ICT also 

increases energy consumption through the production and running of the products (Røpke 

& Christensen 2012, 349). It is undeniable that due to digitalization, a larger share of the 

societal energy use will be in a form of electricity. However, this development is crucial, 

since ICT has an important role in making the infrastructures more energy efficient. 

(Ahmed et al. 2016, 45.) 

 
 

2.2.2 Increasing material consumption 
 
In addition to growing CO2 emissions and energy consumption, the construction and use 

of ICT infrastructure also consume an increasing amount of materials. The extraction of 

raw materials is a significant cause of greenhouse gas (GHG) emissions, but it also has 

other environmental impacts, such as habitat loss and deterioration. (Ojala et al. 2020, 

22.) Electronic waste (e-waste) contains toxic elements, such as lead, mercury, and 

chromium, that can potentially harm humans and nature if the waste is being placed on 

municipal solid waste landfills (Kahhat 2012, 7–8). It has been estimated that the amount 

of e-waste continues to grow as much as 6.5% annually, which makes it the fastest 

growing waste stream in the world (Ojala et al. 2020, 75). In order to reduce the material 
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consumption, it is important to locate the different processes of the life cycle, in which 

the material consumption is formed. 

 

The material basis of ICT devices forms in a so-called upstream and downstream 

processes. Upstream processes refer to mining and extraction, refining, and production of 

the raw materials, production of components, and lastly the product itself. Downstream 

processes, again, refer to the use of the product, material recovery, and disposal. (Wäger, 

Hischier & Widmer 2014, 3.) The largest share of the materials that are used in terminals 

are metals, polymers, and glass. Some of the most commonly used metals are aluminium, 

copper, and iron. In addition, the devices contain scarce metals, such as gold, indium, 

platinum group metals, and rare earth elements. (Ojala et al. 2020, 78; Wäger et al. 2014, 

2.) Laptops and tablets are considered as the most valuable form of e-waste, due to the 

high content of essential metals in relation to their size. Being more compact, tablets have 

a very high content of those materials, but the compactness also makes it more 

challenging to recycle the devices. (Cucchiella et al. 2015, 265.) 

 

The problem with the material consumption is that a large proportion of the materials 

does not end up in a circulation at the end of the device’s life cycle, even though they 

have a lot of value embedded in them. Printed circuit boards (PCBs), for example, are 

components that are significant in terms of their environmental impacts (see later 

subsection 5.1.5). Yet, 40% of them end up in landfills, because recycling is difficult due 

to their complex composition and structure (Cucchiella et al. 2015, 265). As a result of 

the rapidly evolving performance of the devices, new devices are introduced and old ones 

are discarded at an accelerating rate, and a rather large proportion of the discarded devices 

would still be usable. (Ojala et al. 2020, 75.) 

 
 

2.3 Circular economy 

 
The growing amount of e-waste reflects the issue that the value of the resources that are 

used in products are not fully utilized, after the product has come to the end of its life 

cycle. These kinds of problems are related to the so-called linear consumption model, 

which relies on take-make-dispose principles. Linear consumption creates supply chains 

that are material and energy intensive, as the material flows come to a dead end by the 
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end of the product’s life cycle. In order to meet the current level of material demand, 

circular economy has been proposed as a key to a system level redesign. Such transition 

could not only lower the pressure on resource supply, but also lead to significant economic 

opportunities. (Ellen MacArthur Foundation 2013, 5, 14, 23–24.) 

 

Circular economy is an economic model that is restorative by intension and the aim in 

this model is to manage material flows carefully. The goal of minimizing the amount of 

waste is already considered in the product design phase, since the product’s life cycle is 

mainly determined already during its development. The technical materials and 

components are already in this stage designed in a way that they can be recovered, 

refreshed, or upgraded if needed. Reducing, reusing, and recycling form a taxonomy of 

the so-called 3R practices. (Ellen MacArthur Foundation 2013, 26; Sihvonen & Ritola 

2015, 639–640.) Reducing refers to extending the product’s life cycle, for example by 

making it high-quality or emotionally attachable, so that the need to purchase new 

products decreases. Reusing refers to using either the whole product or its components 

again for example by repairing, refurbishing, or remanufacturing them. Reusing can also 

be carried out for example by reselling the product for a lower price into a different market 

segment. Recycling refers to any operation, in which the waste material is transformed 

into new products or materials. Sometimes also a fourth R has been added to the 

taxonomy, standing for recovery, which refers to the practices that recover, for example, 

valuable or hazardous materials after the product’s life cycle. (Sihvonen & Ritola 2015, 

640–642.) 

 

However, the problem with the concept of circular economy is its ambiguous nature. In 

their study, Kirchherr et al. (2017, 221) mapped out 114 definitions for circular economy, 

and the most common depiction was the 3R framework. The ambiguity is especially 

important to highlight when conducting a case study of a company that portrays itself as 

an operator that follows the principles of circular economy. Based on the extensive 

mapping by Kirchherr et al. (2017) the most important determinants for circular economy 

principles are following the practices of the 3Rs. 

 

One way of implementing circular economy is the so-called product-as-a-service model, 

in which the supplier retains the ownership of the products, and the customer procures 

them as a service. This model is essentially linked to the reducing practices of the 3R 
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framework, as it redefines how the products are used. (Vermunt et al. 2018, 893.) Utilizing 

this business model can lead to an extension of the product’s lifespan due to the 

companies’ product take-back programs that keep the products in use as long as they have 

service value (Kerdlap et al. 2020, 331). In some circular business model taxonomies, the 

product life cycle extension has also been considered as a separate business model, which 

is mostly related to the reusing practices in the 3R framework (Vermunt et al. 2018, 893). 

Although the life cycle extension category has been separated as a distinct circular 

business category in some taxonomies, PaaS-based business models can still often lead 

to product’s life cycle extension as well. 

 

Implementing circular economy -based business solutions is not only related to lowering 

the products’ material impacts, but it also provides significant potential in reducing the 

CO2e emissions of key industrial materials, such as steel, aluminium, and plastics (Ellen 

MacArthur Foundation 2019B, 26). As mentioned in previous subsections, the most 

important environmental impacts of ICT sector are CO2e emissions and material 

consumption. Thus, as the principles of circular economy have been proposed to provide 

solutions for both environmental challenges of ICT, it is important to study the potential 

environmental savings of implementing circular economy principles in the ICT sector. 
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3 The City of Helsinki and the research context 
 

As mentioned in subsection 2.1.1, cities offer a great potential for supporting the 

transition to more sustainable procurement practices due to their exceptionally large 

procurement volumes. In the case of the City of Helsinki, for example, the annual 

procurement volume is approximately four billion euros, making the City of Helsinki the 

largest public procurement operator in Finland (Helsinki 2020, 5). Thus, reviewing the 

environmental savings potential of the ICT procurements in the context of the City of 

Helsinki can have significant environmental impact potential, contributing not only to the 

city’s strategies but also on a country level to the Carbon-neutral Finland by 2035 

programme. 

 

Many large cities around the world have started to notice the capability of circular 

economy solutions in promoting their environmental, social, and economic interests 

(Crocker et al. 2018, 3). The need for a shift from linear economy into circular economy 

in solving the global sustainability challenges has also been recognized by the City of 

Helsinki. In the Helsinki city strategy for 2017–2021, circular economy projects were 

stated to be implemented in cooperation with companies and citizens, and the Carbon-

neutral Helsinki 2035 Action Plan was approved in 2018. One of the declared actions of 

this action plan was to form a roadmap for circular and sharing economy. 

 

The aim of this thesis is to support the City of Helsinki in achieving the circular economy 

goals of this roadmap in terms of procurements, which has been defined as one of the key 

target areas. These actions include moving to service-based procurement model for those 

product groups that it is rational and increasing understanding of procurement models that 

can provide savings in terms of life cycle impacts. (City of Helsinki Urban Environment 

Division 2020, 13.) Additionally, the city’s procurement strategy has been updated in 

2020 into a form that takes responsibility in procurements more extensively into account. 

In the new procurement strategy, it is stated, that in order to recognize the available 

solutions early on, it is important to actively analyze the supplier markets and build 

market dialogue with different suppliers (Helsinki 2020, 9). 

 

Conducting this study provides the City of Helsinki a chance to have a deeper review of 

the two procurement types, that are representing different business models. The first 
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supplier was selected for the review, because the City of Helsinki was already familiar 

with the company’s ICT services, and it was considered to be a supplier whose services 

could potentially be utilized in the future. The second company, on the other hand, had 

been noticed by the City of Helsinki’s procurement officers, as it markets itself as an ICT 

company that follows the principles of circular economy and operates as a platform for 

service-based product procurements. Assessing the environmental impacts of the two 

companies’ operations will support the City of Helsinki’s pursuit of lowering the 

environmental impacts of their ICT procurements. However, as mentioned in subsection 

2.3, the problem of the concept of circular economy is its ambiguous nature. Thus, to truly 

understand whether the operations of the Company 2 correspond with the general 

understanding of circular economy, it is important to consider the products’ and their 

components’ life cycles in both procurement options (see figures 2 and 3). 

 

Carbon-neutral Helsinki 2035 Action Plan states that in order to achieve its goal, it is 

necessary to implement circular economy principles in all of the possible procurement 

areas (Helsinki 2020, 11). The City of Helsinki procures approximately 20,000 laptops 

each year, and as the typical office laptop weighs around 1.8 kg, the city’s annual laptop 

procurements weigh around 36,000 kg (Lehtinen 2018, 7). Furthermore, focusing on the 

environmental impacts of the ICT procurements is especially important, because as stated 

in subsection 2.2.2, e-waste is one of the fastest growing forms of waste, and the laptops 

and tablets are the most valuable form of e-waste. Therefore, studying the life cycle 

impacts of alternative laptop and tablet procurement measures can provide an 

exceptionally influential approach for affecting the city’s environmental footprint. 

 

The city has formed a fixed term contract with the current supplier, who takes care of the 

secure disposal of the equipment. The minimum responsibility requirements for the 

supplier in tenders is that they accept as many old devices for secure and environment 

friendly recycling as they have provided as new ones. Once the devices are delivered, 

they are entered into the ICT equipment register and the maintenance and repair are taken 

care of by the warranty provider. Currently the most common reason for disposal is that 

the device has become unusable due to damage or end of service life.  (Lehtinen 2018, 5–

7.) 
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However, the city is not obligated to return the used devices back to the supplier. A part 

of the disposed devices has been directed to the Uusix workshop, which is a work 

rehabilitation center operating under the City of Helsinki’s Social Services. There the 

devices are repaired and security processed, after which they are directed for reuse. Some 

of the working components of the otherwise unusable devices have been used in repairing 

other devices. According to the foreman of Uusix, during 2018 around 8500 items had 

gone through their accounts. Of those items a relatively larger share was reused than 

disposed. (Lehtinen 2018, 7–8.) 

 

However, information presented in here can be considered to some extent outdated, as it 

reflects the situation in 2018. In order to gain more recent information, the original plan 

was to interview the foreman of Uusix as a part of this study. However, as Uusix operates 

under the City of Helsinki’s Social Services, the unit’s need for a research permit would 

have caused broad scheduling challenges for the progress of this study. For this reason, 

information related to Uusix was based on an internal report by Lehtinen (2018), in which 

the cycle of the City of Helsinki’s ICT devices is reviewed. 

 

As Lehtinen (2018) points out, the City of Helsinki is already engaging in circular econ-

omy of ICT devices to some extent, by utilizing the services of the Uusix workshop for 

extending the products’ life cycles. Yet, the procurement volumes are relatively large, 

and only a portion of the disposed devices is reused through Uusix. Therefore, it is im-

portant to study the differences in environmental impacts of implementing different pro-

curement models and the end-of-life treatments that are related to them. 
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4 Methods and data 
 
In this chapter the reader will be familiarized with the methods and data that are used in 

this study. The study is conducted as a streamlined life cycle assessment (sLCA), and the 

focus of this approach is on the two of the devices’ most significant impact categories, 

CO2e impacts and material consumption. The principles of life cycle assessment (LCA) 

are presented in section 4.1, and subsections 4.1.1 and 4.1.2 provide more details about 

the stages, simplifying, and limitations of the process. The first step of this study is to 

understand the most important stages and components in laptops’ and tablets’ life cycles, 

in terms of CO2e emissions and material consumption. In this step, a systematic literature 

review (SLR) of already existing LCA articles is conducted, as it is often an efficient way 

to start LCA by utilizing data that has been already collected in previous studies 

(Baumann & Tillman 2004, 94). SLR is often used to support other research measures 

(Salminen 2011, 9–10), and it offers a good basis for the later steps of this study. Thus, 

the aim of the SLR step is to provide answers to the RQ1 and to guide in the creation of 

the devices’ flowcharts in different end-of-life treatment options (see subsection 5.1.1). 

SLR as a research measure is presented in section 4.2, and section 4.3 considers the actual 

screening process, in which the inclusion and exclusion criteria will be defined, and the 

selected search terms and database will be presented. At the end of the section the actual 

literature search is also conducted, but the analysis will be presented in chapter 5. 

 

The second step of the sLCA is to assess the differences in the life cycle stages and their 

impacts in the context of the ownership-based procurement model and service-based 

procurement model. The conduction of this step relies on expert interviews, in which the 

representatives of the case specific companies are interviewed about the procedures that 

their companies use at the end of the devices’ life cycles. One of the case companies 

represent a business model, in which the customer owns the devices, and the other case 

company represents service-based business model, in which the customer procures the 

devices as a service. The interview questions are formed based on the findings of the SLR, 

and the results of the expert interviews put the information that is obtained by the SLR, 

into the context of the City of Helsinki’s procurement choices that are under 

consideration. Section 4.4 will provide details about the expert interviews as a scientific 

method. The companies, who’s representatives are being interviewed, will be presented 

in section 4.5. The aim of the interviews is to provide information about the devices’ life 
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cycles in the different procurement contexts. Based on this information, it is possible to 

answer the RQ2. 

 

 

4.1 Life cycle assessment 

 

Life cycle assessment (LCA) is a method that is used to track the product’s or service’s 

environmental impacts during its whole life cycle, for example, from raw material 

extraction to disposal phase (Baumann & Tillman 2004, 19). This measure can be used to 

support the decision-making process, when the operator is considering between different 

alternative operating models (Baumann & Tillman 2004, 40; Kjaer, Pigosso, McAloone 

& Birkved 2018, 666–667). LCA principles have been assembled as ISO 14040 standard 

series, and the most important standards for working with LCA are undoubtedly the ISO 

14040 and ISO 14044 standards (Beemsterboer, Baumann & Wallbaum 2020, 2160). 

These standards offer a terminologically and methodologically systematic review for the 

implementation of LCA, by focusing on principles and main features of the LCA, and the 

requirements and guidelines for conducting it (ISO 14040, 2006; ISO 14044 2006). 

Environmental impacts are difficult to estimate on a very detailed level, and transparent 

reporting of research phases is important, in order for the reader to understand the possible 

complexities and shortcuts that have been taken in the process (Baumann & Tillman 2004, 

21, 207). Obtaining all the data that is required for documentation can also be difficult, 

and the use of assumptions to fill data gaps is not unusual. Informing the reader about 

missing information is also important, so that the process remains transparent (Baumann 

& Tillman 2004, 228.) 

 

Using a full LCA is not always a possible or suitable methodological solution, due to the 

lack of time or resources, and LCA has been simplified into many different versions 

(Pesonen & Horn 2013, 1781–1782). Streamlined LCA is a concept that refers to 

qualitative or semi-quantitative form of LCA, or a quantitative LCA that is based on 

already existing data. The streamlined version is particularly suitable for supporting 

decision-making, and for detecting the aspects that need to be optimized in terms of 

organizations’ sustainability and life cycle perspectives. Also, it should be highlighted 

that the researchers’ finding that have been obtained by these measures, have led to actual 



 19 

changes in the ways that the studied organizations have been operating. (Pesonen & Horn 

2013, 1781–1783.) 

 

4.1.1 Stages of LCA 
 
In this study, the ISO 14040 (2006) and ISO 14044 (2006) standards are used as 

guidelines for conducting the LCA, as they offer a reliable and high-quality framework 

for the work. According to these standards, the LCA process can be divided into four 

different phases, which are: 1. the goal and scope definition phase, 2. the inventory 

analysis phase, 3. the impact assessment phase, and 4. interpretation phase (ISO 14040 

2006, 8–9; ISO 14044 2006, 8–9). 

 

Considering the subject and the intended use for the study is important, when defining 

the goal and scope of the study. In this first phase, the functions of the compared systems, 

the limitations of the study, the assumptions taken, the functional unit, and the data re-

quirements are defined. The data is collected in the life cycle inventory (LCI) analysis 

phase. Relevant objects for data gathering are the inputs, waste, and emissions that are 

related to the products or services under consideration. In the third step, the life cycle 

impact assessment (LCIA), the aim is to assess the potential environmental impacts, based 

on the results of LCI. The limitation of LCIA is that it only focuses on the environmental 

aspects that are reviewed and it cannot provide information about all the environmental 

aspects that are related to the product or service. There also is not a generally accepted 

method for accurately connecting the LCI data into potential environmental impacts. The 

last phase of the LCA is interpretation, and in this phase the conclusions and recommen-

dations are made. If the LCA is conducted for a third party and LCIA is included, it is 

important to inform the reader about the data quality, selection process of impact catego-

ries, and other relevant aspects that might impact the quality of the assessment. (ISO 

14040 2006, 30–41.) 

 
 
4.1.2 LCA in the context of this study 
 
The public sector is often assumed to be a pioneer in sustainable procurements, and LCA 

is a suitable environmental tool for supporting this goal (Baumann & Tillman 2004, 293), 

which is why it is chosen as a methodological approach for providing answers to the 

research questions. The LCA being conducted in this study is a streamlined version of the 
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LCA. The reason for selecting this approach is the shortage of time and data for 

conducting a full scale LCA of the case companies. Pesonen & Horn (2013, 1781) for 

example state that sLCA is a faster assessment tool than full LCA and provides results 

that are easier to understand by the stakeholders. 

 

The sLCA in this study is simplified in terms of excluding the assessment of the impacts 

of life cycle stages that are similar in both procurement models. According to ISO 14044 

(2006, 24–25), it is important to also present the excluded stages when such approach is 

taken and articulate why they can be left out of the review. As the aim of this thesis is to 

review the differences of the impacts in different procurement models, it is sensible to 

only focus on the stages that differ. The excluded stages are presented for the reader in 

the devices’ flowcharts (see subsection 5.1.1). Another simplifying strategy that is taken 

in this sLCA, is to include only those impact categories, that are considered in chapter 2 

as the most significant ones in the case of the devices in question. These categories are 

CO2e emissions and material consumption. However, it is worth highlighting that by 

focusing only on specific impact categories, the ability to predict the total environmental 

impacts suffers. (Beemsterboer et al. 2020, 2157–2158; Baumann & Tillman 2004, 25.). 

 

An important step of the LCA study is to define the functional unit, to which the LCIA is 

related, as it determines what is being studied and ensures that all analyzes are relative to 

a similar unit. (ISO 14040 2006, 22–23.) The functional unit in this study is ”one year of 

access to the device”. Although it can be argued that reused devices are not functionally 

equivalent to new ones, similar functional unit was taken in a resembling study by André 

et al. (2019), which is included into the SLR. In this study, André et al. (2019, 270) argue 

that due to the devices’ as-new condition and the subjective nature of the functionality, 

the devices’ can be considered functionally equivalent even after the first life cycle. 

 

The proceeding of this LCA is conducted by following the stages that are presented in the 

ISO 14040 (2006) standard, but in an order that fits better to the structure of a thesis work 

(see appendix 1). The first step is to define the goal and scope of the study, which are 

defined in the introduction chapter. The limitations of the study and the assumptions taken 

are presented later in section 6.1, the functional unit is defined in this subsection, and the 

functions of the compared systems are presented in section 5.2. The second stage is the 

LCI, in which the data is collected. For this stage, systematic literature review (SLR) is 
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used for gathering data of the environmentally most impactful components and stages of 

life cycle of the devices in question. In the case of ICT, it can be difficult to collect all the 

needed data, as the products are very complex. However, during the last two decades it 

has become possible to utilize already available databases or already existing LCA 

studies. (Beemsterboer et al. 2020, 2158–2159; Baumann & Tillman 2004, 94.) 

 

After the data has been collected, it is used to support the creation of the interview frames 

(appendix 4 and 5) for the expert interviews, which provide data of the context related 

differences in different procurement models. Analyzing the differences becomes more 

efficient, if the most impactful stages of the life cycle can be known in advance 

(Beemsterboer et al. 2020, 2157). The third stage is the LCIA, in which the potential 

environmental impacts are assessed. This assessment is carried out in section 5.3. The last 

stage is the interpretation phase, in which the conclusions and recommendations are 

made. This stage is presented in subsection 5.3.3. 

 

 

4.2 Systematic literature review as a research method 

 
The general characterization of a literature review is that it is a research method intended 

to gather results from other scientific sources in order to create new results. The process 

needs to follow precise rules and guidelines, as otherwise it might lack systematicity and 

reproducibility. (Salminen 2011, 1, 5.) The aim is to collect and retrieve the available 

evidence of a specific topic, and to obtain a comprehensive understanding of what is 

known about it. Comparing and reviewing the results of an individual study with several 

studies on the same topic can also be seen to add value to an individual piece of research, 

as it is seen in a broader context. (Aveyard 2014, XV.) Literature review is not a lightly 

discussed bibliography, but the quality is measured by the depth, precision, consistency, 

and the effectiveness of the analysis and synthesis. (Hart 1998, 1.) 

 

There are several reasons for selecting a literature review as a research method. It can be 

used, for example, in cases where the aim is to build a comprehensive picture of a 

particular issue or identify problems that should be addressed (Salmela 2011, 3). 

Literature review is a hypernym for several measures, and it is often distributed into three 

different subcategories: descriptive literature review, meta-analysis, and systematic 
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literature review (SLR). The aim of the SLR measure is to find, pick out, evaluate, and 

combine all relevant research that is related to the research question (Bettany-Saltikov 

2012, 5). Along with the meta-analysis, the SLR is the most detailed form of literature 

review, as the process follows a strict protocol and a search strategy (Aveyard 2014, 10–

11). In addition, for being used as a research method on its own, often it is also used as a 

measure to support other study methods and to build an introduction for a study. Due to 

the rapid growth of the amount of information available, using SLR is practical solution 

in case there is a need to collect information that supports decision-making process. 

(Salminen 2011, 9–10.)   

 

As the aim of this study is to support the City of Helsinki’s decision-making in selecting 

an environmentally sustainable ICT procurement measure, using systematic literature 

review is a relevant method for mapping the products’ life cycles and life cycle impacts. 

It allows an extensive assessing of the existing literature that is relevant for the topic and 

provides a basis for conducting the expert interviews. Also, due to the exponential growth 

of technological development (e.g. Mollick 2006; Brynjolfsson and McAfee 2014; Lange, 

Pohl & Santarius 2020), it is well reasoned to assume that the data collection should 

proceed systematically, as the studies being utilized must represent current state of affairs. 

It is also generally considered that if literature review is being used as a research method 

in a thesis or dissertation, the approach should be systematic (Aveyard 2014, XVI). Lastly, 

it is possible to save a lot of effort when conducting a LCA, if the data collection can be 

implemented by relying on studies that have already been carried out (Baumann & 

Tillman 2004, 98). 

 

The systematic protocol of conducting SLR can be divided into separate steps. The so-

called Fink’s (2005, 3–5) model is presented in the work by Salminen (2014, 10–11), and 

in this model the process of conducting a SLR is divided into seven distinct steps. Another 

comparatively similar modeling is presented by Bettany-Saltikov (2012), but in this 

model the steps are arranged in a slightly different manner. The steps presented in this 

paper are formed based on these two comparatively similar models, and they are 

presented in figure 1. Due to the slight differences in order of the steps presented by Fink 

(2005) and Bettany-Saltikov (2012), the steps produced by the combination of these 

models formed a six-step procedure for SLR conduction. 
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The first step is to choose a research topic and to form a research question. The question 

should be answerable and focused, and it should be justified why it is worth investigating. 

The second step is to form a study plan and to introduce the background for the study. 

Forming a study plan minimizes the risk of bias, as the researcher should not change the 

way they review the papers after seeing the results. Introducing the background, again, 

outlines the context of the study and the reasons why investigating it is important. The 

third phase is to choose the inclusion and exclusion criteria that will be used in the 

screening. The criteria can concern for example the articles’ publishing year, language, or 

content, and they should be transparently reported to allow the study’s reproducibility. 

The fourth step is to select the databases and the search terms. By selecting the proper 

databases and search terms, the material being examined is more likely to answer the 

research question. Usually, it is useful to utilize multiple databases, and the keywords 

being used can be either single words or phrases. 

 

The fifth step is to conduct the literature search. The aim is to examine the scientific 

quality of the articles and their suitability for review and filter out any irrelevant articles. 

The sixth step is to conduct the actual study and to analyze the selected papers’ content, 

which is usually the most challenging stage of SLR. The aim is to gather all the 

information from the articles that is relevant in answering the research question. For the 

results to be valid and the process to be systematic, it is helpful to create a data extraction 

form that describes the article-specific results (see appendix 2 and 3). Lastly, the seventh 

step is to synthesize and summarize the results that arise from the selected papers. Current 

information and demonstration of research needs are being reported, and the similarities 

and differences in data are being examined. These different steps are portrayed in figure 

1 (Fink 2005, 3–5; Salminen 2014, 10–11; Bettany-Saltikov 2012.)   
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Figure 1. The steps of conducting a SLR (Fink 2005, 3–5; Salminen 2014, 10–11; 

Bettany-Saltikov 2012) 

 

By this paragraph, the first two steps have already been conducted. The remaining steps 

are more focused on the actual screening process (Salminen 2014, 10), and the steps from 

three to five will be presented in the next section. The last two steps will be presented in 

chapter 5. The data extraction forms will also be displayed in the appendices (appendix 2 

and 3). 

 
 

4.3 Screening 

 
Strictly and transparently reported inclusion and exclusion criteria are a precondition for 

a high-quality systematic literature review. Setting them allows one to target only to the 

papers that are relevant to the research question and to exclude the irrelevant ones. 

(Bettany-Saltikov 2012, 55.) It also ensures that the focus stays on answering the research 
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questions, and that the study does not start to stray too far from the original emphasis. As 

the aim of this review is to map the laptops’ and tablets’ life cycle, and the environmental 

impact on different stages of the cycle, the inclusion and exclusion criteria must also be 

selected in a way that supports this matter. 

 

One important criterion in this context is the publishing year. As ICT devices develop on 

an accelerating speed (e.g. Mollick 2006; Brynjolfsson and McAfee 2014; Lange, Pohl 

& Santarius 2020), it is important that the reviewed papers are published recently, as the 

relevance of an ICT related paper can become obsolete quickly. In addition, financial 

constraints limit the accessibility in a context of this thesis, which adds another criterion 

of a free access to the resource. Material review is also limited to electronic databases 

only, and only publications in English are included in the review in order to ensure a clear 

understanding of the content. The last criterion for the inclusion is the methodological 

approach that has been taken. As one goal of the SLR is to collect and combine 

information from already implemented LCA studies, it is important that the articles that 

are included in the SLR are methodologically equivalent. Thus, only those articles that 

use LCA, or a LCA related methodological approach, are included into this review.   

 

Table 1. Inclusion and exclusion criteria for the literature 

Inclusion criteria Exclusion criteria 

- Published in/after 2015 

- Access available 

- In English 

- LCA or LCA related research 

method 

- Published before 2015 

- Access unavailable 

- In other language than English 

- Not LCA related method 

 

A systematic literature review was conducted by utilizing Scopus, which is an enormous 

electronic reference database, that covers many other well-known databases (e.g. 

Kuusniemi 2013). As several different research methods are being used in this thesis, it 

is practical to rely on one large database, due to the schedule and the intended scope of 

the study. An important aim of SLR is to provide systematic theoretical background for 

the implementation of the expert interviews. Therefore, it should be thoroughly and 

carefully conducted, but also in a way that it does not use up too much resources, affecting 

thus other parts of the study. 
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Keywords for the literature search were selected based on their suitability for finding 

articles on the life cycles of laptops and tablets, as well as finding out about the 

environmental impacts that are caused during the life cycles. Potential synonyms for these 

words were also examined by utilizing www.thesaurus.com -website. Both, literature 

search from the Scopus database and synonym search from Thesaurus, were conducted 

in October 19, 2020.  As the goal of the SLR was to combine already published LCA 

related studies, both “life cycle assessment” and “LCA” were selected as search terms, 

since it is likely that these measures have been used in many relevant papers. Other LCA 

related keywords that were used were “ISO 14040”, “life cycle impact assessment”, and 

“LCIA”. 

 

Different keywords were selected to target the devices under consideration. The term 

“information communication technology” (ICT) was considered to give important search 

results that are related to laptops and tablets, and for that reason both “information 

communication technology” and “ICT” were selected as keywords. Another keyword 

that was added was “laptop”. Thesaurus provided few synonyms for laptop, such as 

“desktop computer” and “workstation”, which were ranked as the most relevant ones 

according to the website. However, test searches revealed that the use of these search 

terms generated results that did not refer to laptops, which is why they were not included 

in the actual search. According to Thesaurus, the synonyms for the word “tablet” were, 

for example, “pad” and “notebook”. However, neither of these terms were utilized in the 

actual search, as the test search “LCA AND Pad” or “LCA AND Notebook” did not appear 

to provide relevant search results on Scopus. All the used search terms are presented on 

table 2. 

 

Table 2. Used search terms 

 

 

Life cycle and life cycle impact Devices 

life cycle assessment 

LCA 

ISO 14040 

life cycle impact assessment 

LCIA 

ICT 

information communication technology 

laptop 

tablet 
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Based on these search terms, the following search query was formed: (ICT or 

“information communication technology” or laptop or tablet) AND (LCA or “life cycle 

assessment” or LCIA or “life cycle impact assessment” or “ISO 14040”). The search was 

targeted to the articles’ title, abstract and keywords. This search provided 207 results. 

After this, the other inclusion criteria were added to the search. Limiting the searched 

articles’ publishing year to 2015 onwards and language to English generated a new search 

query: TITLE-ABS-KEY (( ict  OR  "information communication technology"  OR  

laptop  OR  tablet )  AND  ( lca  OR  "life cycle assessment"  OR  lcia  OR  "life cycle 

impact assessment"  OR  "ISO 14040" ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2020 )  OR  

LIMIT-TO ( PUBYEAR ,  2019 )  OR  LIMIT-TO ( PUBYEAR ,  2018 )  OR  LIMIT-

TO ( PUBYEAR ,  2017 )  OR  LIMIT-TO ( PUBYEAR ,  2016 )  OR  LIMIT-TO 

( PUBYEAR ,  2015 ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" )). 

 

This query provided 82 results, which were first screened based on the title and the 

abstract. After selecting the topic relevant articles, 32 articles were chosen for further 

screening. Of these 32 articles 11 were inaccessible freely, which further limited the 

sample size to 21 articles. Lastly each of these articles were carefully read, and 11 articles 

were selected to form the research material. The selection was based on the relevance of 

the used methods and the relevance of the targeted product groups. Some of the articles 

that were selected made references to other articles in terms of information that was 

considered valid for this study. The articles that were referred to were also included as 

secondary references. The data extraction form, which also presents the secondary 

references’ primary articles can be found as an appendix 2. When secondary articles are 

included, a total amount of 16 articles were included into the SLR analysis. The results 

of the SLR are presented and analyzed in section 5.1. The articles that were included as a 

research material, and the key findings are also presented as an appendix 2 by the end of 

this thesis. 

 

 

4.4 Expert interviews 

 
Expert interviews are the second method that is used in this study. The results that are 

obtained from the SLR can be used in constructing the interview guides, and 

correspondingly, through the interviews it is possible to link the SLR’s results into the 
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context of the companies under consideration. The idea of the expert interviews is to 

collect data about the devices life cycle stages in a given context. 

 

Expert interviews are an efficient and concentrated measure for data collection (Bogner, 

Littig & Menz 2009, 2), and as for example in this section the aim is to understand the 

processes of individual companies, it provides an easy access to the case specific 

information. If the experts have practical insider knowledge, the measure can be 

considered as extremely efficient (Bogner et al. 2009, 3). Expert interviews are often 

carried out as semi-structured interviews (Alastalo, Vaittinen & Åkerman 2017), and this 

approach is also taken in this study. In semi-structured interviews, the addressed topics 

are pre-determined, but the interviewees are given a lot of freedom in the wording and 

length of the answers, and they are encouraged to tell things in their own words (Packer 

2011, 43). 

 

Expert interviews also contain some special features that, compared to other forms of 

interviews, must be given an extra thought. The importance of groundwork is emphasized 

for many reasons. If enough background information has not been collected, it is 

challenging to bring up problems from the data, as the answers might be given on a very 

general level (Alastalo & Åkerman 2010). Another challenge that might occur, is that the 

interviewee discusses the organization they represent on a PR (public relations) manner 

and focuses only on the positive aspects of the organization. However, thorough 

preparation allows the interviewer to get deeper into the matters. (Alastalo et al. 2017.) 

 

In this study, two ICT supplier companies were selected for the interviews. One of the 

companies represented a procurement model that is based on equipment ownership, and 

the other company represented a procurement model that is argued to be based on the 

principles of circular economy. Both companies are Finnish owned. A different amount 

of information was found in advance for them, and for this reason the interview guides 

could also be formed slightly differently for each company. The articles that were 

included in the SLR were used in designing the interview guides, and in the case of the 

service-based company, the company’s sustainability report was also used in this 

designing process. As answering some of the interview questions required information 

that is not directly related to the interviewees’ positions, the interview guides were sent 

in advance, so that the interviewees could seek the information if necessary. 
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Conducting the interviews face to face, and possibly visiting on site would have been 

convenient, but due to the ongoing COVID-19 pandemic, the interviews were carried out 

through Microsoft Teams, and recorded into Microsoft Stream. The recordings were 

stored in the interviewer's password-protected profile, and later on they were transcribed 

with the precision that was necessary for describing the companies’ device-specific 

practices. The interviews were carried out in Finnish, but in this study their content is 

referred to in English, while still trying to preserve the original content as well as possible. 

The interview guides, translated into English, can be found at the end of the thesis as 

appendices (appendix 4 and 5). 

 
 

4.5 Selection of interviewees and ethical considerations 

 
In both interviews, the main focus was to study the end of the devices’ life cycles. Until 

the point when the devices are delivered to the customer, the devices’ life cycles can be 

considered to be identical, as in both procurement models the production and assembly 

are conducted by the manufacturer (figures 2 and 3). According to the SLR results (see 

section 5.1), the manufacturing phase is the most important stage of the life cycle in terms 

of environmental impacts, and an efficient way to decrease the environmental impact of 

small electronic devices, is to reuse or recycle them (Clément, Jacquemotte & Hilty 

2020). The results of the SLR also highlighted the devices’ most important components 

in terms of environmental impacts, and thus the focus of the interview could be directed 

especially into the treatments of those components. 

 

Company 1 was selected for the study to represent a procurement model, that is based on 

the customer’s ownership of the devices. This company is referred to as C1. The 

representative of the company was contacted by e-mail and the time for the interview was 

arranged through phone. The company was interviewed about its practices in general, 

about its possible reuse practices, and about the recycling measures for the most important 

materials. The representative of this company is referred to as R1 (Representative 1). 

 

Company 2 was selected into the study to represent a service-based procurement model, 

which provides devices through leasing. This company is referred to as C2. In the case of 
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this company, it was challenging to define a suitable person for contacting, so the 

interview was arranged by calling into the company’s general phone number. We agreed 

on a group interview with two experts, who are suitable for the interview due to their job 

description. In this study they are referred to as R2 (Representative 2) and R3 

(Representative 3). The company's sustainability report 2019 provided valuable 

information, which could be used for modifying the interview guide to be more precise. 

However, the main themes were identical to those of the other interview. 

 

All the representatives were informed about the ethical principles of the research before 

the interviews. They were informed about their right to leave any question unanswered 

and right to withdraw from the interview any time. It was also clarified that the interview 

would be recorded to Microsoft Stream for transcription, where it would be stored pass-

word protected till the research is ready. The interviewees were also informed that the 

recordings would be deleted afterwards and that they, and the companies that they repre-

sent, would be anonymized. Finally, they were informed that the City of Helsinki will 

utilize the results to support their procurements and that the representatives will have a 

right to read the research once it is ready. 
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5 Analysis and results 
 

In this chapter the analysis processes and achieved results will be presented. These stages 

are presented individually for each used method. In section 5.1, the results of the SLR are 

presented and the aim of this section is to answer to the first research question. In section 

5.2, again, the interview results are presented, and the general practices and end-of-life 

treatment operations of the case companies are reviewed. Lastly, in section 5.3 the 

previous results are combined in order to describe the case companies’ functional unit 

specific environmental impacts in terms of CO2e emissions and material impacts. Finally, 

the differences between the case companies in terms of these impacts are assessed. The 

goal of this section is to answer to the second research question. 

 

 

5.1 Results of the SLR 

 

In this chapter the results that emerged from the SLR are reviewed. A systematic screening 

process was targeted to answer RQ1: “What are the most important stages and 

components in laptops’ and tablets’ life cycles, in terms of CO2e emissions and material 

consumption?”. In subsection 5.1.1 the life cycle stages, and the most impactful 

components of laptops and tablets are presented and visually demonstrated by creating 

flowcharts of the devices and their end-of-life treatments. In subsection 5.1.2, the focus 

is put on the environmental impacts of the phases of raw material extraction, production, 

assembly and use. Subsection 5.1.3 focuses on the impacts of solution options for the 

treatment at the end of the products’ life cycles, and finally subsections 5.1.4 and 5.1.5 

describe the concrete impacts in terms of CO2e emissions and material consumption. 

 

However, it is important to notice that ICT’s environmental impacts can be divided into 

direct and indirect effects. Direct effects include the emissions and resource usage that 

stem from production, use, and disposal. Indirect effects refer to the ICT-induced changes 

in consumption and production patterns in other domains than ICT. (Bieser & Hilty 2018, 

1.) In this analysis, the focus is only on the direct effects, as the assessment of indirect 

effects is not possible within the scope of this study. 
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5.1.1 Life cycle stages and the most impactful components 
 

Laptop and tablet production is based on resource and energy intensive processes (André 

et al. 2019, 268; Kasulaitis, Babbitt, Kahhat, Williams & Ryen 2015, 2). As a result of 

technological acceleration, along with other factors, such as manufacturers’ planned 

obsolescence and predominating values and norms (Sabbaghi & Behdad 2017, 1), the 

devices become prematurely obsolescent and are being underutilized by consumers 

(André et al. 2019, 268). The growing markets of ICT devices cause a need to find more 

sustainable production measures (Meyer & Katz 2015, 369), as the waste electrical and 

electronic equipment (WEEE) are one the fastest growing forms of waste. WEEE can 

cause many social and environmental hazards if not treated properly, but it also provides 

enormous resource potential if utilized efficiently. (Van Eygen, De Meester, Tran & 

Dewulf 2015, 53.) In order to understand better the environmental impacts of laptops and 

tablets, it is important to form a comprehensive picture of the life cycle impacts, so that 

the measures can be targeted to the environmentally most harmful phases and components 

of the cycle. Several researchers also argue that there is an important gap at the studies 

considering environmental impact of circular economy measures, due to the lack of real-

world commercial business-related case studies (André et al. 2019, 269). 

 

The lack of transparent LCA studies for tablets is especially critical, and according to 

Clément et al. (2020, 3), the only previous studies available are from Teehan and 

Kandlikar (2013) and Hischier, Achachlouei & Hilty (2014A). In the approach that is 

taken by Teehan and Kandlikar (2013), the component life cycles are divided into life 

cycle phases, after which the most significant sources of impact were considered for these 

stages. Lastly, they measured the impact of the components in terms of CO2 emissions 

and electricity consumption. In their article, Clément et al. (2020, 2) take a similar 

approach, but due to the lack of data, they could not observe the electricity consumption 

in the use phase. A similar approach is also taken in this part of this study, as the already 

formed formula offers a systematic procedure for analyzing the results of the SLR. 

However, in this study the impacts will be directly reviewed as CO2e emissions instead of 

assessing the electricity consumption. The data is collected from already conducted LCA 

studies, and in these studies the material impacts and the CO2e emissions for different 

stages and components are readily available. However, it should be noted that the impacts 
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of electricity consumption are directly linked to the burning of fossil fuels (see subsection 

2.2.1). 

 

The first step of the SLR is to identify the life cycle phases of the devices’ components 

and the significance of their impact. In their article André et al. (2019, 271) present a 

flowchart for the life cycle of a new laptop. In this flowchart the life cycle is divided into 

phases of raw material extraction and production, assembly, use, and disposal. Disposal 

phase is divided into WEEE recycling and landfilling. The life cycle review by André et 

al. (2019) is based on dividing the device into several components, and the significance 

of their impacts is separately considered. The separate components that were taken into 

consideration were printed circuit boards (PCBs), casing, liquid-crystal display (LCD) 

screen’s light-emitting diode (LED) backlights, LCD module, and cables. Based on an 

extensive literature review, the impacts of these components were considered to represent 

the majority and diversity of laptop’s environmental impacts. For some of the components 

the greenhouse gas emissions from production stage are significant, and for some of them 

the impact is related to the material composition. (André et al. 2019, 269–270.) 

 

Clément et al. (2020, 3) also conclude that in the case of tablets the PCBs, displays, and 

integrated circuits (ICs) are the most significant greenhouse gas emission sources, 

followed by the casing and the battery. The difference between the two studies seems to 

be that in the case of tablets, the battery has a relatively higher impact significance than 

in the case of the laptops, as they were excluded from the review by André et al. (2019). 

However, it is worth noticing that there is a lot of variance in ICT related LCA studies 

considering the component specific impacts. This can occur, for example, due to the 

modelling uncertainties, such as limited access to representative data, uncertainties 

caused by technological development, or any other factors that force the researchers to 

rely on estimations (André et al. 2019, 269). 

 

Other studies that have been included into this SLR confirm the significance of some of 

these components. According to Alcaraz et al. (2018, 822) displays, ICs, and printed 

wiring boards (PWBs) account for large shares of the tablets’ CO2e impact, ICs being 

especially impactful. Kasulaitis et al. (2015, 7) again highlight the significance of 

motherboards, which consists of a large share of the laptop’s ICs and semiconductor 

materials. Despite the small differences in the stand of the included studies, the most 
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impactful components in the case of laptops and tablets seem to be relatively similar, 

those being PCBs/PWBs, ICs, display, and casing. 

 

In addition to mapping out the devices’ most impactful components, it is also important 

to map out the devices’ life cycle stages and their significance for the total life cycle 

impact. In their study, André et al. (2019, 271) present flowcharts of scenarios where the 

laptop is either recycled or reused. The life cycle stages in both models consist raw 

material extraction and production, assembly, use, and end-of-life treatments. If the 

devices are not reused, the end-of-life treatment consists of alternative terminals for the 

components, which are landfill or WEEE recycling. If the device is reused, preparation 

for reuse and reuse are extra stages before these terminals. (André et al. 2019, 271.) The 

articles that were included in the SLR did not provide a similar flowchart for tablets. 

However, the article by Andrae & Vaija (2017, 6) present the most significant stages of a 

tablet’s life cycle, which are part production, use, and end-of-life treatments. Clément et 

al. (2020, 3–4) add transportation as another stage for tablet’s life cycle, yet they state 

that the production and use phases represent over 90% of the devices’ total impact. There 

is still no reason to assume that the tablet’s life cycle would not contain assembly phase, 

and it can be concluded that the life cycle stages of laptops and tablets are identical. The 

most impactful components and the life cycle phases in different end-of-life treatments 

are presented in figures 2 and 3. Figure 2 represents the operation model, in which the 

devices are recycled, and figure 3 represents a model, in which the devices are also reused. 

Both figures are applied versions of the flowcharts presented by André et al. (2019, 271), 

and they are modified to represent both devices in question. 
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Figure 2. Flowchart of laptop’s/tablet’s life cycle if only recycled (applied from André et 

al. 2019, 271) 

Figure 3. Flowchart of laptop’s/tablet’s life cycle if reused (applied from André et al. 

2019, 271) 
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5.1.2 Raw material extraction, production, assembly, and use 
 

According to Alcaraz et al. (2018, 819), the materials and manufacturing phase drive the 

environmental impacts of the tablets’ life cycle, ICs and PWBs being especially impactful 

in this stage of the product’s life cycle. Alcaraz et al. (2018, 822) indicate that the ICs 

account for over 15% of the total impacts in the material and manufacturing stages. The 

main contributors in the case of IC manufacturing are the water and energy that are needed 

in production. However, the amount of available data is limited and for this reason there 

are uncertainties and differing results related to the impacts of IC production. The largest 

IC manufacturers are located in South-Korea and Taiwan, and these countries rely on 

energy production sources with high GHG emissions. The electricity mix has also an 

important role for the impacts in the case of PCBs. (Clément et al. 2020, 3–8.) Fossil 

carbon dioxide emissions are the most important contributors to climate change, and the 

ICs that are contained in the PCBs are responsible for approximately a third of all the 

laptop’s climate change impacts (André et al. 2019, 273). PCBs also contain a lot of 

precious metals, and the concentration can be over ten times higher compared to the 

respective metal ores (Van Eygen et al. 2015, 53). Climate change, resource use, and 

human toxicity are considered as the most important impact categories of the devices in 

question. (André et al. 2019, 272). The human toxicity can be effectively mitigated by 

proper end-of-life treatment processes (Clément et al. 2020, 3). Yet, due to the scope of 

this study, the impacts are only considered in the impact categories of climate change and 

material resource consumption. 

 

Of the four different components that were selected for this review, displays represent a 

group of which there was the least amount of information available. According to Andrae 

and Vaija (2014), the GHG emissions in LCD production are mainly linked to the 

electricity production (Clement et al. 2020, 4). For the casing again, the climate change 

impacts are mainly linked to the production of the magnesium alloy, which forms a 

relatively large mass of the component (André et al. 2019, 272; Meyer & Katz 2015, 61). 

Casing can be made of different materials, and Meyer and Katz (2015) have compared 

the environmental impacts of polycarbonate/acrylonitrile butadiene styrene (PC-ABS) 

plastic and aluminium casings. For both materials, the impacts in different categories can 

be decreased by increasing the share of post-consumer recycled (PCR) materials (Meyer 

& Katz 2015, 381). However, a large share of the PC-ABS plastics is still landfilled rather 
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than recycled, as it is challenging to separate different polymers of the waste stream. 

Aluminium has a significantly higher recycling rate (see subsection 5.1.5). (Van Eygen et 

al. 2015, 57–60.) 

 

The broad scale of impact categories that were taken into consideration by Meyer and 

Katz (2015, 375) were ozone depletion, global warming, smog, acidification, 

eutrophication, carcinogenics, non-carcinogenics, respiratory effects, ecotoxicity, and 

fossil fuel depletion. The preferability of aluminium versus PC-ABS use in casings 

depends on the share of PCR in these materials. If the share of PCR in aluminium is as 

low as reported in the econinvent database (32%), then PC-ABS causes lower impacts in 

terms of smog formation, acidification, eutrophication, carcinogenics, non-carcinogenics, 

respiratory effects, and ecotoxicity. If the PCR share of PC-ABS is 60%, it becomes a 

better option also in terms of fossil fuel depletion. However, the share of PCR in 

aluminium casings can also be increased, which would decrease the need for primary 

metal extraction. (Meyer & Katz 2015, 379–381.) 

 

The impacts of the assembly phase were not comprehensively considered in the articles 

that were selected for this review. Hischier et al. (2014B, 8) argue that the impacts are 

very marginal compared to the more impactful stages. However, according to André et al. 

(2019, 274), in the case of laptops, the impacts are to certain extent significant in terms 

of climate change (see table 3). The arrows in figures 2 and 3 represent the transportation 

processes, which are also presented very briefly in the literature. However, according to 

André et al. (2019, 274) the impacts are very minimal, even when compared to assembly. 

 

In addition to raw material extraction and production, use is another highly impactful 

phase of the life cycle and together they are undoubtedly the most contributing phases. 

Different results show that approximately 85–90% of the total impacts are caused by the 

manufacturing and use phases. The most important factor for the variation in use phase is 

the energy mix being used and this applies also for the production phase. Other relevant 

variables that effect the impacts of the use phase are device’s lifetime, charger efficiency, 

duration of the battery’s lifetime, and charger’s plugged-in time. (Alcaraz et al. 2018, 

822–823; Clément et al. 2020, 1–2.) However, in the case of small electronic devices, 

such as laptops and tablets, the production phase is more dominant than the use phase in 

terms of environmental impacts (Boldoczki, Thorenz & Tuma 2020, 1). 
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5.1.3 End-of-life stages 
 
The end-of-life treatments options are reusing the device, recycling it, or disposing it to 

the landfill (e.g. André et al. 2019; Boldoczki et al. 2020). These alternative treatments 

are presented in figures 2 and 3. The most preferable option is usually considered to be 

reusing the device, because the materials maintain the highest value in this solution. 

However, this is not the case for all electronic equipment. For some devices, the main 

environmental impacts stem from the high energy consumption that is related to the use 

of the product. Therefore, in this case replacing the device with new and more energy 

efficient version can actually be a more sustainable option than reusing it. (Boldoczki et 

al. 2020, 1.) The preferable option depends on the device in question. The worst-case 

option, however, is disposal to landfill (Meyer & Katz 2015, 373), because in this option 

the value of the materials is wasted. Compared to landfilling, recycling of a laptop saves 

approximately 87% of natural resources (Van Eygen et al. 2015, 53, 62). In North Europe, 

around half of the laptops are being recycled, but there are no reliable estimates available 

about the other pathways (Buchert et al. 2012). 

 

In the case of small electronic devices, such as laptops and tablets, production is 

environmentally a more impactful phase than the use phase. As a result, for these devices 

reusing is a better alternative than recycling in various impact categories, such as global 

warming, mineral resource scarcity, and terrestrial ecotoxicity. (Boldoczki et al. 2020, 1–

2.) The benefits of using second-hand laptops, however, depend on the length of use 

extension and reuse efficiency. A typical use extension is approximately 2–3 years, and 

the length of the first use is around 3–5 years. If the first use period is for example three 

years, and the reuse period is four years, almost half of the production impacts of a laptop 

can be reduced by the reuse activity. (André et al. 2019, 270, 273, 276.) However, the 

used product may not be functionally equivalent to a new one, but this can be also seen 

to some extent as a matter of user preferences, as a significant number of completely 

working devices are disposed every year, because the owners consider them to be obsolete 

(e.g. Raghavan 2010; André et al. 2019, 269). 

 

The process of WEEE recycling is usually divided into three steps, which are collecting 

and sorting, dismantling and mechanical separation, and end-processing. Dismantling and 

separation is an important phase, as it defines the amounts of materials that end up in an 
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efficient end-of-life processing. Some components, such as PCBs, are directly sent for 

end-processing, while some components, such as displays, are further separated to differ-

ent materials. In the last step of the recycling, the materials are turned into secondary raw 

materials. The treatment for preparing the components for end-processing can be carried 

out in different ways. PCBs, for example, are shredded and send into smelter, as well as 

parts that are made of steel, aluminium, magnesium, or copper. Plastic polymers are also 

separated and processed into pellets. (Van Eygen et al. 2015, 54–55, 57.) First the plastics 

are shredded and put into a froth flotation process, in which the different plastics are 

separated and finally they are formed into a PCR resin. The use of PCR plastic has sig-

nificant benefits over virgin materials in terms of environmental impacts. (Meyer & Katz 

2015, 370, 373.) However, as the separation of plastics is relatively difficult (Van Eygen 

et al. 2015, 60), it is currently not often economically viable to recycle them (Meyer & 

Katz 2015, 373). In addition to the difficulties in plastic recycling, the low collection rate 

of WEEE is another bottleneck for efficient ICT recycling. Lastly, the improved pre-

treatment of PCBs could decrease the share of precious metals that end up in the landfill. 

(Van Eygen et al. 2015, 57, 60) The most significant benefits of efficient recycling are 

related the impact categories of resource consumption and human toxicity (André et al. 

2019, 269). 

 
 
5.1.4 CO2e impacts per functional unit 
 
In this section, the functional unit specific CO2e impacts are considered in terms of 

different life cycle stages and components. CO2e refers to carbon dioxide equivalent 

emissions, which describe the total impacts of CO2 and other GHG emissions (Clément 

et al. 2020, 1). The impacts of laptops are presented first, and the results are rather 

extensively based on the article by André et al. (2019), which has the most similar 

research design with this study (see appendix 2). The article does not present detailed 

quantitative information about the CO2e impacts, but it contains a figure showing the 

functional unit specific emissions approximately on an accuracy of one kilogram. The 

functional unit for of this study is also one year of laptop use. The information of the 

article is based on ecoinvent data, literature sources, and data that is provided by a 

Swedish IT refurbishment company (André et al. 2019, 272). The figure by André et al. 

(2019, 274) provides information about CO2e impacts of PCBs, display, casing, assembly, 
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transportation, end-of-life treatment, and the total CO2e impact of a laptop. The 

magnitudes of the impacts are presented in tables 3 and 4. 

 

In their article Hischier et al. (2014B, 8) provide information about the climate impacts 

of laptop’s production, use, and end-of-life treatment phases. In terms of end-of-life 

treatment, the results support those that are provided by André et al. (2019). Hischier et 

al. (2014B) do not provide quantitative information either, but they present a figure of the 

life cycle phase specific shares of non-renewable energy consumption and global 

warming potential (GWP). The shares between these two categories are relatively 

identical, and it can be assumed that the share of non-renewable energy consumption and 

GWP also describe the relative shares of CO2e emissions, as the emissions are directly 

related to the share of fossil-fuel based energy in the electricity mix (see subsection 2.2.1). 

The product life cycle stage impacts are based on an assumption that the life cycle of a 

laptop would be four years, and it would be used daily for two hours. The share of 

production phase is approximately 65–70% and the share of use phase is approximately 

30–35%. End-of-life treatment does not cause significant CO2e emissions. (Hischier et al. 

2014B, 8.) 

 

As the total CO2e impact of a laptop is approximately 54 kgCO2e per one functional unit 

(André et al. 2019, 274), and the share of production for non-renewable energy 

consumption and GWP is 65–70% (Hischier et al. 2014B, 8), the share of production 

causes approximately 36.5 kgCO2e emissions in one functional unit. Again, as the share 

of use is 30–35% in the same impact categories, the share of use causes approximately 

17.5 kgCO2e emissions in one functional unit. Although the ICs contribute significantly 

to the devices’ total environmental impacts, the articles that were included into this study 

did not provide information about the share of the CO2e emissions of these components. 

However, as mentioned in subsection 5.1.2, the ICs on the laptop’s PCBs are responsible 

for approximately a third of the device’s total climate change impacts (André et al. 2019, 

273). Therefore, an assumption is taken that the CO2e emissions of the ICs are 18 kgCO2e 

per one functional unit. 

 

As mentioned in subsection 5.1.1, there are only very few LCA studies available about 

the impacts of tablets. Alcaraz et al. (2018, 823) state that there are also large brand 

specific differences in terms of the impacts. For example, one of the devices that they 
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present in their study is a tablet device by Dell, for which the total emissions are 45 

kgCO2e, and 45% of the emissions are caused by manufacturing, 15% by transportation, 

and 40% by use. Again, other tablets that they examine are Apple devices, for which the 

total emissions are 270 kgCO2e and 170 kgCO2e. The device which has an impact of 270 

kgCO2e has larger screen size, but the significant differences can also be partly explained 

by the discrepancies between different studies. In the case of these devices, 86% of the 

emissions are caused by production, 3% by transportation, 10% by use, and 1% by 

recycling. (Alcaraz et al. 2018, 823.) 

 

For all of these devices, the order of the impact significance is the same, but there are 

large differences on the percentage shares. Based on the results of Alcaraz et al. (2018, 

823) the average percentage shares for the CO2e impacts of the reviewed tablets are 65.5% 

for manufacturing, 9% for transportation, 25% for use, and 0.5% for recycling. The study 

by Clément et al. (2020, 3) provides similar results for the share of manufacturing, stating 

that the share is 68.4 ± 21.3% of the total impacts. While Alcaraz et al. (2018) compare a 

relatively narrow selection of different devices, Clément et al. (2020, 5) compare the total 

CO2e emissions of 30 different tablet models. There are also relatively broad differences 

among these models, but the median emissions are approximately 120 kgCO2e. Due to 

the broadness of the comparison by Clément et al. (2020), this amount is assumed to 

represent the total emissions of tablet’s life cycle. 

 

An average life cycle of a tablet is approximately three years (Clément et al. 2020, 3). 

The CO2e emissions per functional unit are then acquired, when the 120 kgCO2e emissions 

are divided by three. As the emissions per functional unit for a laptop are approximately 

54 kgCO2e, the 40 kgCO2e impact per functional unit of tablets would support the 

estimation by Hischier et al. (2014B, 13), according to which the share of non-renewable 

energy consumption is approximately ¾ for tablets compared to the laptops. When the 

total CO2e impact per functional unit is divided into the percentage shares of different life 

cycle stages (Alcaraz et al. 2018, 823), the life cycle stage specific emissions can be 

calculated for one functional unit. These shares are presented in the table 3. 

 

Clément et al. (2020, 5) also present the CO2e emissions for the tablet’s components, but 

as the model specific differences are relatively large, there are also differences in 

component specific emissions. However, the device that represents the median emissions 
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of those 30 devices that were assessed by Clément et al. (2020), also represents relatively 

accurately the typical emission shares of different components, when compared to the 

other devices under consideration. Approximately 36 kgCO2e of these emissions are 

caused by ICs, 30 kgCO2e by PCBs, 33 kgCO2e by display, and 18 kgCO2e by casing. The 

functional unit specific shares are acquired when these amounts are divided by three. 

According to Clément et al. (2020, 5), the assembly phase does not produce significant 

amount of emissions. Yet, this stage is likely to cause certain amount of emissions, which 

is why it was marked as not available in the table 3. 

 

The estimated CO2e emissions for different life cycle stages and components are presented 

below in the tables 3 and 4. Despite the variation between different studies and different 

devices, it seems that when the impacts of different stages are summed up together, the 

results correspond relatively well with the total emissions. Same applies when the impacts 

of different components are summed up together. However, as some of the ICs are 

mounted into PCBs/PWBs (André et al. 2019, 269), they should not be counted as sepa-

rate shares of emissions. The article specific differences are still visible. For example, in 

the case of tablets the transportation and end-of-life treatment were assumed to cause 

emissions (Clément et al. 2020, 5), while in the case of laptops it was estimated that these 

stages do not cause emissions (André et al 2019, 274). However, these stages are not 

emission-free stages, which is why instead of giving them a value of 0, the information 

was marked as not available in the table 3. 
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Table 3. Life cycle stage specific emissions (kgCO2e) per functional unit 

  Laptop Tablet 

Production 36.5* 26**** 

Transportation N/A 3.5**** 

Assembly 4** N/A 

Use 17.5* 10**** 

End-of-life treatment N/A 1**** 

Total (approx.) 54** 40*** 

 

* When laptop is used 2 hours/day 

(Hischier et al. 2014B, 8) 

       **André et al. (2019, 273–274) 

       *** Clément et al. (2020, 3–5) 

       **** Alcaraz et al. (2018, 823) 

 

Table 4. Component specific emissions (kgCO2e) per functional unit 

 Laptop Tablet 

PCBs/PWBs 31** 10* 

ICs 18** 12* 

Casing 14** 6* 

Display 4** 11* 

Total (approx.) 54** 40* 

 

* Clément et al. (2020, 3–5) 

       **André et al. (2019, 273–274) 

 

 
5.1.5 Material impacts per functional unit 

 
In this subsection, the devices’ material impacts are considered for one functional unit. 

As the devices consist of a variety of different materials, it is challenging to create very 

precise estimations of the impacts for all of the materials that are included in the devices. 

Different studies also highlight the importance of different materials, depending on the 

definition of being impactful. For example, some metals are considered important 

because of their scarcity, while others are considered important because of the 

environmental impacts that are related to extraction and production processes (André et 

al. 2019, 269). Despite the challenges of forming an impact assessment for all of the 
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different materials, it is still possible to use certain materials, whose significance is 

mentioned in several studies, for demonstrating the material savings that can be achieved 

from implementing different end-of-life-treatment options. 

 

Of those articles that were included into this review, a relatively smaller share focused on 

material impacts compared to CO2e emissions, when considering the devices’ life cycle 

impacts. The significance of recycling is higher for material consumption impact category 

than for the CO2e emissions (André et al. 2019, 269). Reusing can even be a worse option 

than recycling in terms of material impacts, because if reusing takes place in a country 

that does not have an effective recycling system, the materials will go to waste after the 

second life cycle. Compared to landfilling, laptop recycling saves approximately 87% of 

the material resources. (Van Eygen et al. 2015, 55, 62.) 

 

For this reason, it is important to also consider the role of recycling for the devices’ 

material impacts. As only a certain share of the materials is not efficiently treated, 

mapping out the recycling rates will help in understanding the shares that are actually 

wasted per one functional unit. In order to understand the impact of the recycling shares, 

it is also important to review how large the device specific shares of different materials 

are. The differences between the material composition of devices from different model 

years are relatively low, but there are large differences depending on the size of the device. 

For example, comparison by Kasulaitis et al. (2015, 5) demonstrates that the product 

weight loss is less than 2% annually when comparing different model years, while the 

dematerialization for HP’s smallest and largest laptop is approximately 30%. Kasulaitis 

et al. (2015, 5) also point out that when comparing laptops from 1999 to those from 2007, 

the relative material shares have remained rather similar, and the biggest change is a shift 

from plastic casings to aluminium casings. 

 

As mentioned in subsection 2.2.2, the largest share of the materials that are used in the 

devices are metals, polymers, and glass. The most common metals are aluminium, copper, 

and iron. In addition, the devices contain scarce metals, such as gold or platinum group 

metals. However, there is a lack of information concerning scarce metals used in the tablet 

devices (Clement et al. 2020, 3), so the present study only covers aluminium, copper and 

plastics for tablets, whereas precious metals are additionally included in the analysis for 

laptops. As mentioned in the previous paragraph, device’s size has a significant impact 
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on its material consumption. In this study the laptop’s material composition is studied by 

first reviewing material composition of 1000 kg of disposed laptops, following the 

procedure demonstrated by Van Eygen et al. (2015, 60). Then the material composition is 

calculated for a single 14.1-inch laptop, that weights approximately 2.5 kg (Kasulaitis et 

al. 2015, 5). In the case of tablets, again, the material composition is reviewed for a 10-

inch LCD tablet device, and the material shares are based on the results of Hischier et al. 

(2014A, 29–30). 

 

The material of the casing makes up the biggest share of a laptop’s mass, and aluminium 

and plastics are some of the most commonly used casing materials (Van Eygen et al. 2015, 

57). The material shares of a laptop and the recycling rates are based on the results of Van 

Eygen et al. (2015, 60). However, it should be still noticed that the study focuses on the 

recycling rates in Belgium in 2013, which is why it does not offer an exact estimation for 

the context of this study. However, according to The Global E-Waste Statistics 

Partnership (2021) tracking, the collection rates for e-waste in Belgium and Finland have 

been relatively similar between the years 2015 to 2019. During this period the e-waste 

recycling rate in Belgium has stayed in 55%, while for Finland the percentage has varied 

from 57% to 61%. 

 

In terms of tablets, the study by Hischier et al. (2014A, 29–30) only provides information 

about the material specific recycling rates for aluminium, which is why the material 

specific recycling rates that are provided by Van Eygen et al. (2015, 60) are also used in 

assessing the tablets’ material impacts. Hischier et al. (2014A, 29–30) estimate that 

approximately 51% of tablet’s total weight can be directly recycled and approximately 

15% of the remaining aluminium can be taken into material recycling. Thus, it is 

estimated that the recycling rate for aluminium in the case of tablets is approximately 

58.4%. 

 

Material specific shares of weight, recycling rates, and the shares of materials that are 

wasted are presented in the table 5 for a 14.1-inch laptop and a 10-inch LCD tablet. In 

addition, functional unit specific shares of wasted material are presented by dividing the 

amounts of wasted materials by the average length of the device’s lifespan. A typical life 

cycle for a laptop is approximately 4 years (André et al. 2019, 270; Hischier et al. 2014B, 

8) and the average life cycle for a tablet is estimated to be 3 years (Clément et al. 2020, 
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3). Because the laptop’s device specific material shares are calculated from the results of 

Van Eygen et al. (2015,60), the shares are presented in percentages and grams. However, 

in the case of tablets the material shares are only presented in grams, since Hischier et al. 

(2014A, 29–30) provide information about the device specific shares. 

 

 

Table 5. Laptop’s and tablet’s material composition, recycling rates and share of materials 

that are wasted in recycling 

 

Materials Laptop (2.5kg) Tablet 

Aluminium   

 Share of weight (%) 8.45* N/A 

Weight in one device (g) 211 135** 

Recycling rate (%) 75* 58.4** 

Wasted material/one device (g) 53 57 

Wasted material/functional unit (g) 13.25 19 

Copper   

 Share of weight (%) 6.85* N/A 

Weight in one device (g) 171 12.5** 

Recycling rate (%) 85* 85* 

Wasted material/one device (g) 26 2 

Wasted material/functional unit (g) 6.5 0.66 

Plastic   

 Share of weight (%) 40.6* N/A 

Weight in one device (g) 1000 17** 

Recycling rate (%) 13* 13* 

Wasted material/one device (g) 870 15 

Wasted material/functional unit (g) 217.5 5 

Precious metals   

 Share of weight (%) 0.029* N/A 

Weight in one device (g) 0.7 N/A 

Recycling rate (%) 63* N/A 

Wasted material/one device (g) 0.26 N/A 

Wasted material/functional unit (g) 0.065 N/A 

Source: *Van Eygen et al. 2015, ** Hischier et al. 2014A 
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5.2 Interview results: reuse and recycling practices in the two 

case companies 

 
The focus of this chapter is to review the company-specific processes at the end of the 

devices’ life cycles. The aim of this chapter is to define how the life cycles’ stages differ 

in traditional ownership-based procurement model and service-based procurement model. 

Subsection 5.2.1 focuses on the C1 (Company 1), and subsection 5.2.2 focuses on the C2 

(Company 2). The interviews were divided into three sections, which contain the 

company’s repair practices, company’s reuse practices, and company’s recycling 

practices. 

 

5.2.1 Company 1: Ownership-based model 
 
A. Repair practices of Company 1 

 

By repairing the broken devices, it is possible to extend their life cycle. According to the 

3R framework (see section 2.3), life cycle extension provides an efficient way to mitigate 

the product’s environmental impacts. However, if the costs of the repairing activities 

exceed a certain threshold, consumers are unwilling to do so, and they replace the product 

instead (Sabbaghi & Behdad 2017). Thus, it is important to study the warranty policies in 

both companies. 

 

According to the R1 (Representative 1), the warranty period is defined by the 

manufacturer, and different manufacturers have differing warranty periods. C1 also 

provides different warranty solutions for their devices. A typical warranty time is three 

years for the laptops and one year for tablets. Clients have, for example, an option to pay 

for extra warranty, which extends the warranty time, or it is possible to purchase a service 

that provides a repairing within 24 hours. In terms of volume, only very few office devices 

need to be repaired, while the difference with student devices is clear. 

 

“Well, they are not repaired very often considering the volume … the difference is like 

night and day. When talking about student devices, we talked about thousands annually … 

when used by adults we talk about few dozen devices, which are repaired.” 
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The devices have only very few hardware failures that are independent from the 

consumer. R1 describes that they only appear on 1% or less of the devices. The most 

common repairing operations that C1 takes care of outside of the warranty are, that the 

user has spilled something on the keyboard, or that the screen or keyboard has broken due 

to the cable or pencil that has been forgotten between them. For example, replacement of 

screens and keyboards are done very often, because it is cost-effective in relation to the 

value of the device. In the case of a more extensive damage, the repairing costs may turn 

out to be very expensive and it is not profitable to repair the device. 

 

“Motherboard defects are not repaired … if some liquid has gone there, because the 

motherboard is almost as expensive, if not more expensive, than buying a completely new 

device”. 

 

C1 receives devices that are considered as removals by the customers, and they are 

securely recycled. According to R1, the main reason why the devices are returned by 

customers as removals is, that they have become to the end of their life cycle, or the 

warranty time has ended and they are irreparable. When asked for further details for the 

meaning of the end of the life cycle, they specified: 

 

“Well, it is the devices age. So of course the programs develop, despite if it is city or 

municipality or whatever, so the old devices become to the end of their life cycle so to 

speak. So PC is that kind of device that… well of course updates are also being made, but 

to the old devices it simply is pointless to conduct them. And then, some of them are rather 

worn, and like I said, in student use they are pretty dented and scratched, and then when 

they stop working we conduct this [cyber] secure recycling for them.” 

 

R1 thought that a typical length for the devices’ life cycles is difficult to define, because 

there are differences between manufacturers. However, for tablets, the lifespan is from 

two to three years, and most often the reason for withdrawal is a screen related problem. 

In terms of laptops, the lifespan for student devices is approximately from three to four 

years, but in office use the devices can have a significantly longer lifespan, such as four 

to five years. 
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B. Reuse practices of Company 1 

 

After a device no longer serves the consumer, it is possible to lower the environmental 

impact by reusing or recycling the device, or its components. In the case of small 

electronic devices, such as laptops and tablets, it is more convenient to reuse than recycle 

the devices, as the main source of their impact is not the use, but the manufacturing 

(Boldoczki et al. 2020). For this reason, it is important to review how companies 1 and 2 

carry out the possible reuse or recycling operations. 

 

According to R1, C1 does not provide a service, in which the used devices would be 

updated and sold again, because typically the devices that are collected after the use are 

in such a condition, that they can be considered to be at the end of their life cycle. 

However, the subcontractor, who is responsible for handling the recycling, repairs few of 

the devices for reusing them. R1 did not have information about where these repaired 

devices go, but they assumed that they are sold somewhere in large batches. The main 

processing treatment is recycling. 

 

“We do not have this kind of arrangement for the city, that we would, like, update the 

devices and sell them to the workers, so these devices that come to us are, as I said, mainly 

pretty much at the end of their life cycle. They do go to reuse from us, yeah, so our partner, 

who we do this together with ... like some of the devices are in such a condition that you 

cannot really save anything from them, other than the memory comb, and the rest is 

recycled. … It [preparing for reuse] is being done by the subcontractor who repairs the 

devices if possible, and tries to get them back on track, so to speak, but the material that 

comes is pretty old. … Mainly it is recycling, pretty rarely they go to reuse, but of course 

it also happens. But that is a demanding process, like the hardware is renewed and it 

requires investments to put it back on track. … I cannot really say how it happens, but I 

have understood that they are sold in bigger quantities … I have understood that for 

example Swedes and Danes use old PC devices in the school world. But I cannot give you 

any specific address where they go.” 

 

R1 was also asked if they know if C1 has had discussion about starting to provide reuse 

services. R1 said that they had personally discussed with clients about the possibility that 

the devices that are still working would be updated and new hardware would be installed, 
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and that the devices would be returned to the customers’ use. The last discussion, 

regarding customers’ devices in student use, had been two-three months prior to the 

interview. 

 

C. Recycling practices of Company 1 

 

Apart from reuse, one way to impact devices’ environmental footprint is to recycle them, 

and therefore it is also important to review the companies’ recycling practices. The 

recycling in C1 has been conducted through a partner, which is a recycling company, that 

has ISO 19001, ISO 14001, and OHSAS 18001 certificates. Recycling is conducted 

securely, which means that the components that contain memory are crushed. Of those 

memory-containing components R1 mentions SSD disks, that are mainly made of plastic. 

Metals are separated from the crush, and according to R1, the crush is used for example 

in producing containers. However, more detailed information was not available, as 

reflected in the following quote. 

 

“I have heard that for example the hard drive powder can be used for making 

containers. … Not for food sector, but for some other sectors … I cannot describe it more 

precisely, but once I just for fun asked how the crush is reused, and they answered that it 

can be used for [making] some kind of containers.” 

 

C1 often receives broken screens, which cannot be repaired. R1 estimates that 

approximately 94% of the screens’ materials can be recycled, 4% is used in energy 

production, and 2% go to disposal. Microcircuits and printed circuit boards are reportedly 

sorted properly, and the recycling rate of precious metals is good. Aluminium is collected 

and sorted, and the material is simple to reuse. Plastic materials are melted and used for 

making recycled plastic. For more precise information R1 recommended to contact the 

recycling partner. However, within the scope of this study, it was not possible to conduct 

extra interviews. 

 
 

5.2.2 Company 2: Product-as-a-service-based model 
 

C2 represents a procurement model, which according to the company, follows the 

principles of circular economy. In this model the devices are leased for the customer, and 
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after the customer no longer uses them, C2 offers them a second life. Two representatives 

of C2 were interviewed, and they are referred to as R2 (Representative 2) and R3 

(Representative 3). R2 is responsible for marketing, communication, and responsibility 

for the company’s Finnish operations. R3 is responsible for the company’s relations with 

public administration. The interview was divided into three different themes, which are 

the company’s operating model in general, the company’s reuse activities, and the 

company’s recycling activities. 

 

A. The operating model of Company 2 in general 

 

The company’s operating strategy is that they purchase the devices from the supplier and 

rent them for the customer. The supplier and the devices are selected by the customer, and 

in the case of municipalities, procurement takes usually place on a competitive basis. The 

winner of the tendering is selected as the supplier, and the leasing contract allows a more 

even distribution of the ICT related costs for the customer. According to R2, the 

company's operating model does not include warranty repairs, but the equipment supplier 

is responsible for repairs during the warranty period. C2 takes care of other forms of 

devices’ life cycle management, for example by maintaining device register, which sorts 

the organization’s devices, their users, whether latest software and application updates 

have been conducted successfully, and if the antivirus protection is up to date. According 

to R2, monitoring and anticipation make it possible to avoid broader maintenance 

procedures. 

 

“So we are brand independent actor, so the customer themselves choose devices and 

where they want to purchase them. So we do not, kind of, have a role in defining this for 

the customer, for example, like deciding which devices and from which channel … So we 

do not have, like R3 said, that kind of maintenance role, but then again … we do have this 

device registry maintenance, in which these customers’ devices are registered, so then 

again, we can know how they work, if the updates have gone through properly and if like 

the whole fleet that the customer has, is properly used and optimized, and so on. And then 

from this, the customer gains valuable information, like the IT people, so they can 

anticipate and ... anticipate possible maintenance.” -R2 
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The other operating model that C2 has, is to buy the existing devices from the customer. 

The customer receives money from selling the devices, and if they want, they can also 

rent the devices back after selling them. This will free up resources, while the same 

devices will remain in use. Also, in this case the life cycle management is taken care of 

by the company in a similar manner as in their other operating model. Compared to many 

other IT-companies, the difference of C2 is that their business model is based on reselling 

the devices after the customer no more uses them. Another difference is that the supply 

chains processes, such as logistics and the treatments for the devices are carried out by 

C2, as it does not use subcontractors in these processes. However, it is worth mentioning 

that it does use a subcontractor for the recycling processes. 

 

“Well, we provide two different services. … We purchase the devices from the customer, 

we also give money for them, but then they are retrieved, packed, secured, the same way 

as these devices that return from leasing.” - R3 

 

Typical first service life is three to four years for the laptops and two to three years for 

the tablets. The length of the rental agreement depends for example on the intended use. 

Devices that are in office use last longer than those that need to be actively travelled with. 

According to R3, cities and municipalities normally procure devices that have relatively 

high-quality components, which partly increases the service life, and encourages the use 

for the second service life. Customers have an option to decide, whether they want for 

example three or four years cycle for the device renewing, and having the same devices 

longer decreases the monthly rent. 

 

“Municipalities and cities also procure, good professional laptops, corporate level 

laptops, so then you have better memory, better battery, better hard drives, processors. 

So they are like different devices than like maybe these consumer devices. And and, well, 

the intended use also … how long they last … well, they last longer with office workers 

than those kinds of workers who move a lot, use it a lot, and are not at the office. … So, 

so, the professional devices also serve still well on the second use cycle.”  - R3 

 

According to the representatives, a surprisingly large share of the devices, that are in the 

ownership of the customer, does not return to the second-hand markets, but remain unused 

in a storage. Thus, by having rental devices, the customer does not have to think about 
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the end-of-life treatment, but the devices are returned into the market by C2. This way 

resources, that would risk being untapped, are held in circulation. Also, if other customer 

organizations do not have a need for brand-new equipment, they can save natural 

resources by offering a second life for the devices, instead of buying new devices. 

 

“We have studied if as many devices end up to the secondhand markets as new ones are 

procured. And surprisingly large amount of the devices, laptops, tablets and phones, 

never return to recognized secondhand markets.” -R3 

 

B. Reuse practices of Company 2 

 

“We collect them from the customer and practically pack them for the customer, so that 

they remain operational. They come to our logistics center, where we inventory them, 

after which we overwrite the data, and conduct a quality assessment, regarding what kind 

of condition the returning devices are in. And then we sell those reconditioned devices 

forward, into the secondhand markets.” - R3 

 

According to the representatives, approximately 97–98% of the devices can be reused 

after C2 has made the necessary updates to them. The representatives could not provide 

very specific details about these updating processes, but they note that the processes can 

relate for example to renewing the components, such as battery or the hard drive. Both 

new and used components are used in these repairing activities, and some of the 

components of those devices that cannot be repaired anymore, can still be used as a spare 

parts. R2 states that of those 2–3% of the devices that cannot be repaired anymore, 80% 

can still be used as spare parts. 

 

“Approximately 80% of those devices that have basically been stated not to work can be, 

in one way or another, in our so-called repair program to, well, be reused and used … so 

that we can fix the devices, which means that we reduce 56% of the e-waste through these 

activities.” -R2 

 

When selling the used devices, C2 also checks the customer's backgrounds, and there are 

several requirements that need to be met. C2 does not sell to countries that are not covered 

by the e-waste scheme, and mainly operates with reliable long-term partners. Most of the 
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customers are from Europe, and the main markets are in Poland and Sweden. Some of the 

customers are also from Asia. The representatives did not have very detailed information 

about what kind of use the devices go into, but they assumed that they mainly go to 

companies and schools. Reusing typically doubles the total period that they are being 

used. R3 points out that the authorities require that the devices going on sale abroad are 

still intact. C2 also ensures that all the data on the device has been deleted and that the 

reselling is secure. 

 

“It is also a part of being responsible, that when we acquire the devices, we are very strict 

about who we resell them to. So, so, we have there checking that one is not on any banned 

list and we check the backgrounds and cooperate with long-term business partners. So 

we also do not sell them for everyone. … The main markets are specifically in Europe … 

It is very strictly supervised by authorities that the devices that are leaving from Finland 

are actually working.” - R3 

 

C. Recycling practices of Company 2 

 

The remaining 2–3% of the devices are so damaged that they cannot be reused, and are 

sent to the recycling center, which is the same subcontractor that C1 uses. According to 

R2, the components are crushed and the materials are separated at the center. Circuit 

boards are sorted separately, and non-ferrous metals, copper and aluminium are melted 

and utilized as raw materials, for example for the automotive and electronics industries. 

R2 was not sure but recalled that 95% of the materials can be reused as they go through 

the recycling center’s treatment. 

 

“From all of the devices the renewable metals and minerals are collected into utilization 

in there, through these different programs, very well. … I do not know about percentage, 

but I know that at least the aluminium and copper are melted and then they go further 

into an automotive and electronic industries to be used as raw materials, and the circuit 

boards are treated, like completely as an own form of waste.”  - R2 

 

“I do not remember very precisely but was it that 95% of those acquire a new life of those 

2% that goes through the recycling center’s program. … So even if they are not used as 

computers anymore, but they can be used as raw materials, and then … So there are 
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pretreatments and crushing and then there are different immersing, floating and 

crushing … and these kinds of [measures], through which the different raw materials go 

into reusing.” - R2 

 
 

5.3 Impact assessment 

 

In this section the differences between companies 1 and 2 are examined based on the 

information that was obtained through conducting the SLR and the interviews. The 

functional unit specific CO2e impacts are first assessed for both companies in subsection 

5.3.1 and in subsection 5.3.2 the focus is on the functional unit specific material impacts. 

Finally, in subsection 5.3.3 the differences between the companies are assessed in terms 

of CO2e and material impacts. The goal of this chapter is to respond to the second research 

question. 

 
 

5.3.1 CO2e impacts of alternative procurement options 
 
In order to calculate the functional unit specific CO2e impacts for the devices in both 

procurement options, the total CO2e impacts of these devices must be divided by the 

length of the devices’ lifespans in both procurement options. The end-of-life treatments 

that are practiced by the companies have an important role in defining the average lifespan 

of the devices. The practices of C1 does not include reuse practices, but as it was pointed 

out in chapter 3, the City of Helsinki also carries out reuse operations through the Uusix 

workshop if the devices are owned by the city. Due to this option, even if the devices are 

not reused by the supplier company, the ownership-based procurement model allows 

reusing of some of the devices through Uusix, which expands the average lifespan. 

 

As it was not possible to interview the foreman of Uusix, it is challenging to estimate the 

share of the devices that is annually made reusable by the workshop. However, according 

to the report by Lehtinen (2018, 7) the annual procurement volume for the City of 

Helsinki is approximately 20,000 workstations and the number of objects that Uusix had 

processed was approximately 8500 in year 2018. In the report, it is also stated that a larger 

share of these 8500 devices was reused than recycled (Lehtinen 2018, 8). Based on this 

information, it is possible to define an interval, for which the reusing rate could potentially 
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settle. If it is assumed that for example 5000–7000 devices are reused annually, it means 

that 25–35% of the annual procurements of 20,000 devices would be reused through 

Uusix. The same way as C1, also Uusix steers the nonreusable devices and components 

into WEEE recycling (Lehtinen 2018, 8). This indicates that the remaining share of the 

devices would be recycled efficiently in both procurement options. 

 

R1 states that typical life cycle for their laptops in office use is approximately 4–5 years, 

which corresponds with the SLR results. There is no information available about the 

length of the life cycle extension period by Uusix, but R3 from C2 argues that reusing 

practices can double the length of the life cycle. Due to the slight difference between the 

results of SLR (see subsection 5.1.3) and the view of R3, it can be estimated that the 

second life cycle for laptops would be approximately 3 years. If 25–35% of the devices 

gain these additional life cycle years, the average life cycle for a laptop would be 5.4 

years if it is procured from Company 1. 

 

As pointed out in subsection 5.1.4, various articles propose that the average life cycle for 

tablets is 3 years. This corresponds with the answer by R1, who states that the average 

life cycle for the tablets is approximately 2–3 years. The articles that were included into 

SLR did not provide information about the life cycle extension that can be acquired if a 

tablet is reused. The only estimation that is available for this information is the statement 

by R3 from C2, who argues that the devices’ life cycles can be twice as long with the 

reusing practices. If the lifespan can be doubled for a similar share of the devices by 

Uusix, the average life cycle for tablet in this procurement option is 3.25 years. Based on 

the calculations that are presented in appendix 6, it can be estimated that the functional 

unit specific CO2e impacts in this procurement option are approximately 40 kgCO2e for 

laptop and 37 kgCO2e for tablet. Considering the argument that non-renewable energy 

consumption is approximately ¾ for tablets compared laptops (Hischier et al. 2014B, 13), 

it may seem surprising how similar the functional unit specific CO2e emissions for the 

devices are. However, this is mainly because the service life of the tablets is considerably 

shorter. 

 

In the case of C2, the devices’ life cycles resemble figure 3, which presents a flowchart 

for devices that are being reused. It should be mentioned, however, that the share that 

goes to landfills or even recycling in the preparation for reuse phase, is very small for C2. 
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According to R3, the first service life for laptops is typically 3–4 years. They also mention 

that municipalities usually procure devices that are relatively high-quality and as they are 

in office use, they tend to last for a relatively long time. For this reason, in this review it 

is assumed that the contract would be four years. 

 

As mentioned earlier, R3 argues that reusing can double the devices life cycle. In order 

to maintain comparability between companies, it is assumed that the life cycle extension 

would be three years, as it was expected to be in the case of Uusix. However, the share of 

the devices that are reused is significantly higher for the C2. According to R2, 

approximately 97–98% of the devices are being reused, and 80% of the remaining 2–3% 

can still be reused as components. This makes the total reuse share 99.5%. Using a similar 

calculation as was being used for C1, the functional unit specific CO2e emissions for 

laptops are approximately 31 kgCO2e (see appendix 6). 

 

According to R3, the first use cycle for tablets is 2–3 years also in this procurement 

option. Separate reuse percentages were not offered for tablets, so in this review an 

identical reuse share of 99.5% is also assumed for tablets.  It is also assumed that doubling 

the life cycle through reuse practices is also possible for tablets, as it was assumed in the 

case of C1. Based on these evaluations, the functional unit specific CO2e emissions for 

tablets are approximately 24 kgCO2e in this procurement option. 

 

Table 6. Companies’ reuse shares, devices’ average lifetimes, and CO2e emissions per 

functional unit (calculations based on appendix 6) 

  

Company 1 

(reuse through Uusix) 

Company 2 

Laptops     

Share of devices reused (%) 30 99.5 

Average lifetime of device (years) 5.4 7 

Device’s total emissions (kgCO2e) 216 216 

CO2e/one year of use (kg/device) 40 31 

Tablets     

Share of devices reused (%) 30 99.5 

Average lifetime of device (years) 3.25 5 

Total emissions (kgCO2e) 120 120 

CO2e/one year of use (kg/device) 37 24 
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5.3.2 The material impacts of alternative procurement options 
 
In this subsection, the functional unit specific material impacts in different procurement 

options are reviewed. The reviews are based on similar assumptions that were taken in 

the previous subsection, considering the reuse shares carried out by Uusix and C2, and 

the life cycle extensions that are achieved through these reuse practices. The problem is 

that it was not possible to interview the recycling partner that the companies use, and thus 

it was not possible to acquire context specific information about the companies’ material 

recycling shares. For this reason, recycling share estimations are based on the results of 

the SLR. 

 

As it was pointed out by Boldoczki et al. (2020, 1–2) reusing the devices is a better option 

than recycling in terms of various impact categories, such as mineral resource scarcity. 

However, Van Eygen et al. (2015, 55) argue that in some cases reusing can also be a worse 

option than recycling in terms of material impact, if the devices are shipped to be reused 

in a country with poor recycling facilities. The devices that are reused by Uusix stay in 

Finland. R3 also pointed out that C2 is very strict about who they resell the devices to, 

and they are only shipped to countries that cover an e-waste scheme. According to R3, 

the main markets for used devices are in Sweden and Poland. The data from The Global 

E-Waste Statistics Partnership (2021), demonstrates that the e-waste collection rate in 

Poland has been 61% from 2017 to 2019, and for Sweden the rate has been 70%. As the 

similar rate for Finland was 61%, it can be assumed that in the case of C2, the devices are 

recycled after second life cycle as efficiently as those that are recycled after the first life 

cycle. 

 

The functional unit specific shares of material consumption in different procurement 

options can be calculated by dividing the devices’ total material waste by the devices’ life 

cycle lengths in these procurement options. The total shares of wasted material are 

presented in table 5 and the average lifespans of the devices in these procurement options 

are presented in table 6. The functional unit specific material impacts are presented below 

in table 7. In reality, the material impacts do not occur annually through the use, but as 

the devices’ are updated to new ones after the life cycle, longer life cycle decreases the 

material waste that stems from the old devices’ recycling process, while also decreasing 

natural resource consumption. 
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Table 7. Functional unit specific material impacts (grams) in different procurement 

options 

  Company 1 Company 2 

Laptops     

Aluminium wasted/functional unit 9.8 7.6 

Copper wasted/functional unit 4.8 3.7 

Plastic wasted/functional unit 161 124 

Precious metals wasted/functional unit 0.05 0.04 

Tablets     

Aluminium wasted/functional unit 17.5 11.4 

Copper wasted/functional unit 0.6 0.4 

Plastic wasted/functional unit 4.6 3 

 

 
 

5.3.3 Interpretation 
 

Finally, in this subsection the functional unit specific differences between the 

environmental impacts in different procurement options are reviewed in terms of CO2e 

emissions and material impacts. This review is based on the City of Helsinki’s annual 

procurement volumes. However, it is again important to highlight that due to the lack of 

context specific information, several assumptions had to be taken to provide a basis for 

this review stage, and it might not perfectly mirror the context of the case studied 

companies. 

 

The City of Helsinki is estimated to procure 20,000 laptop devices annually (Lehtinen 

2018, 7) and the functional unit specific CO2e emissions for a single laptop in the case of 

buying it from C1 and utilizing the reuse services of Uusix are 40 kgCO2e. Therefore, the 

total annual impact of applying this option is worth of 800,000 kgCO2e emissions. Due to 

the laptop’s longer lifespan in the case of procuring them from C2, the functional unit 

specific emissions for a single laptop are approximately 31 kgCO2e. Considering the 

annual volume of the procurements, the total impact in this option is approximately 

620,000 kgCO2e. The difference between these options is 180,000 kgCO2e annually, 

which denotes a 22.5% decrease if the devices are reused more regularly in the latter 

option. However, it should be noticed that even if the devices are owned by the city, the 
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difference can also be mitigated by extending the contract period or utilizing the services 

of Uusix more comprehensively. 

 

There was no exact information available about the City of Helsinki’s procurement 

volumes for tablets.  However, it was estimated by the city’s IT specialist that the 

procurements are probably between 5000 to 6000 devices annually. Thus, it can be 

expected that the annual procurement volume is approximately 5500 tablet devices. If the 

devices are procured from C1 and the services of Uusix are utilized in reusing a share of 

them, the functional unit specific impact of a tablet is approximately 37 kgCO2e. Thus, 

the total annual impact that stem from this procurement option is 203,500 kg worth of 

CO2e emissions. The similar annual impact for a single device in the case of procuring it 

from C2 is 24 kgCO2e emissions, and therefore the total annual impact is 132,000 kg 

worth of CO2e emissions. When the total annual impacts in both procurement options are 

considered, it seems that the higher extent of reused devices decreases the CO2e emissions 

by 71,500 kg annually. 

 

Table 8. Annual CO2e emission and the differences between the procurement options 

 Laptops Tablets 

Company 1: Total annual emissions (kgCO2e) 800000 203500 

Company 2: Total annual emissions (kgCO2e) 620000 132000 

Difference (kgCO2e) 180000 71500 

 

 

The functional unit specific material impacts were measured for laptops by focusing on 

the material shares that are wasted due to the recycling inefficiencies. When procuring 

the laptops from C1 and utilizing Uusix for reusing some of the devices, it was estimated 

that approximately 9.8 g of aluminium, 4.8 g of copper, 161 g of plastic, and 0.05 g of 

precious metals go to waste annually per one laptop. When these quantities are multiplied 

by the procurement volume of 20,000 devices, it can be estimated that approximately 196 

kg of aluminium, 96 kg of copper, 3220 kg of plastic and 1 kg of precious metals are 

annually wasted if this procurement option is utilized. 

 

The annual quantities of wasted materials are smaller in the case of C2, as a larger share 

of the devices are reused. It was estimated earlier (see subsection 5.3.2) that in this option 



 61 

approximately 7.6 g of aluminium, 3.7 g of copper, 124 g of plastic, and 0.04 g of precious 

metals are annually wasted per laptop. When these quantities are correspondingly 

multiplied by the procurement volume, estimated 152 kg of aluminium, 74 kg of copper, 

2480 kg of plastic, and 800 g of precious metals are annually wasted when utilizing this 

procurement option. To conclude, the material waste shares in this option are smaller, as 

44 kg of aluminium, 22 kg of copper, 740 kg of plastic, and 200 g of precious metals are 

annually saved compared to the first option. 

 

The shares of the annually wasted materials were smaller for tablets, and in the first 

procurement option an estimated quantities of 17.5g of aluminium, 0.6 g of copper, and 

4.6 g of plastic are annually wasted per device due to the recycling inefficiencies. As the 

city’s annual procurement volume is approximately 5500 tablets, the total annual material 

impacts in the first procurement option are approximately 96 kg of aluminium, 3.3 kg of 

copper, and 25.3 kg of plastic. Similar device specific material impact shares in the second 

procurement option were 11.4 g of aluminium, 0.4 g of copper, and 3 g of plastic. Thus, 

the total annual impact in this option is 62.7 kg of aluminium, approximately 2.2 kg of 

copper, and 16.5 kg of plastic being wasted. Based on these calculations, it can be 

estimated that in the case of tablets, the total annual material saving potential is 33.3 kg 

of aluminium, 1.1 kg of copper, and 8.8 kg of plastic, when the devices are reused more 

systematically in the second procurement option. 

 

However, it should be highlighted that in reality the material waste does not occur 

annually during the product’s life cycle, but the waste shares that stem from recycling 

inefficiencies were only fitted into the format of the functional unit as part of this study. 

In addition, the recycling shares and the shares of wasted materials do not accurately 

represent the case specific context of the studied companies, but they are estimations that 

were based on the results of the SLR. However, as mentioned in subsection 5.1.5, the e-

waste collection rates in Belgium, which was used as a reference for the recycling rates, 

and the collection rates in Finland are relatively similar. Defining the recycling rates of 

the subcontractor who is responsible for the companies recycling practices was not 

possible to carry out within the schedule of this study. Furthermore, there was no 

information available about the recycling operators that are used by Uusix or those who 

purchase the devices from C2 as secondhand. It should be noticed that despite the positive 
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environmental impacts of reusing the devices, it also makes it more challenging to track 

the devices’ material flows, as the devices are circulated internationally. 

 

Table 9. Annual material impacts and the differences between the procurement options 

 Company 1 Company 2 Difference 

Total aluminium waste in a year (kg)     

Laptops 196 152 44 

Tablets 96 62.7 33.3 

Total copper waste in a year (kg)     

Laptops 96 74 22 

Tablets 3.3 2.2 1.1 

Total plastic waste in a year (kg)     

Laptop 3220 2480 740 

Tablets 25.3 16.5 8.8 

Precious metals in a year (kg)     

Laptops 1 0.8 0.2 
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6 Discussion 
 
 
In this chapter, the limitations of this study are considered and the results that have been 

obtained are linked to the broader social implications that were presented in chapter 2. 

The assumptions and limitations are acknowledged in section 6.1, and it is typical for 

LCA studies that there are several data gaps that require assumption making (Baumann 

& Tillman 2004, 228). The social implications of the results of this study are discussed in 

section 6.2. 

 

6.1 Assumptions and limitations 

 
A research process always contains certain limitations, but as it was mentioned in section 

4.1, it is important to report the complexities and shortcuts in a transparent manner. This 

also allows the reader to be aware of the motives for different solutions that have been 

made. The limitations section of this study is relatively broad, because conducting an 

LCA study requires certain number of assumptions to be taken due to the data gaps. As it 

was also mentioned in section 4.1, it is also important to notify the reader about the 

missing pieces of information, but this is mainly done already in the method sections. The 

limitations of this research are presented separately for each method in the following 

paragraphs. 

 

The challenge for this study was the relatively large scope considering the timetable. As 

the time available had to be utilized as effectively as possible, it was necessary to keep 

the individual methods relatively succinct. Only one broad database was used in the SLR, 

as it provided an access to multiple databases and thus saved time. A broader literature 

review could have provided a larger amount of suitable articles, because now a relatively 

large share of the laptop related information was obtained from the article by André et al 

(2019) and for tablets the information was rather extensively based on the article by 

Clément et al. (2020). However, as it is highlighted several times in this study, the problem 

is that the amount of suitable LCA studies is still limited. It seems, especially in the case 

of tablets (see e,g, Clément et al. 2020, 3), that even a broader SLR would not have 

provided a significantly higher number of relevant articles, while it would have still 

consumed time. In addition, both previously mentioned articles, for example, utilized 
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several data sources in their studies. Despite relying only on Scopus, the SLR section 

provided an extensive amount of information in relation to the time that was invested. 

 

One limitation of the study was the extent of the impact categories, in which the impacts 

were studied in. For example, human toxicity is a relevant impact category for ICT 

devices life cycle impacts, but the scope of this study did not allow studying the 

differences in all of the relevant categories. The decision to focus on CO2e emissions and 

material impacts was based on the report by Ojala et al. (2020) which was used in chapter 

2 as a background material for designing the content and the structure of this study. This 

report states that according to previous reviews, the most significant environmental 

impacts of ICT are energy and material consumption (Ojala et al. 2020, 24), while some 

of the articles in SLR also include human toxicity into the most significant impacts (see 

e.g. André et al. 2019, 272). However, the CO2e emissions and material consumption were 

not excluded in any of the articles that considered most important impacts, but including 

human toxicity is also highly relevant to consider in similar studies that are conducted in 

the future. 

 

In addition, the scope of this study was limited only to direct emissions, which rise from 

production, use, and disposal (Bieser & Hilty 2018, 1). Including the indirect emissions 

was not possible within the scope of this study, but in order to achieve a more 

comprehensive impact assessment of the devices in question, it is also important to study 

these indirect impacts in the future. Finally, for some of the devices’ components there 

was no CO2e impact information available from SLR articles. In order to form a chart 

about the life cycle stages’ and components’ CO2e emissions that is as illustrative as 

possible, certain assumptions had to be taken. For some components or life cycle stages 

the information that was obtained from different articles seemed to be in conflict, as 

different devices were used in comparisons. Using a median of the model specific CO2e 

emissions as an assumed standard was not an ideal mean, but due to large device specific 

differences, it was considered to be the best solution available. In addition, the assessment 

of the laptops’ life cycle stage specific CO2e impacts was based on an assumption that the 

devices are only used daily for two hours. In the office use, however, the devices are often 

used much more and thus it should be noticed that in terms of CO2e impacts the 

significance of use stage is likely to be higher in the context of this study. It was also 

assumed that the devices are functionally equivalent during their second life cycle. 
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Similar assumption was made in the study by André et al. (2019), but it should be still 

noticed that even if the devices are in as-new condition, different organizations have 

different requirements for the devices. 

 

Certain limitations were also related to the measuring of the material impacts. As it was 

mentioned in subsection 5.1.5, different studies have different approaches for defining 

the importance of certain materials, and some of them highlighted material scarcity, while 

others focused on materials’ environmental impacts (André et al. 2019, 269). For this 

reason, the focus on this study was put on several materials, and some of them are 

considered important because of the scarcity, while others are considered important 

because of their large share in devices. 

 

In this study, the material composition of a laptop was based on the general composition 

of disposed laptops, and this approach might neglect the device specific differences that 

stem, for example, from different casing materials and device sizes. On the other hand, 

this approach allows independence from these differences, and focusing only on the 

composition of one device would give a biased understanding of the laptops’ general 

composition. Another limitation that was related to the laptops’ material impacts was the 

limited amount of information about the recycling shares. The study that was used in this 

section (Van Eygen et al. 2015) was based on information that was collected in Belgium 

in 2013. As the study is relatively old, the recycling efficiency might have improved and 

there might also be company specific differences in the WEEE recycling efficiency, 

although the e-waste collection rates are relatively similar between the countries in 

question. For this reason, interviewing the recycling company that both of the case 

companies use, would have provided more context specific information, but unfortunately 

it was not possible to carry out this interview as a part of this study within the schedule. 

In the case of C2 it was only stated that the main markets for the used devices are in 

Poland and Sweden. Although it is possible to consider the e-waste recycling rates of 

these countries, it is still difficult to get precise information of the end-of-life treatments 

that are used for these reused devices. However, this is a relevant observation, because it 

highlights the importance of supply chain transparency, if the end-of-life treatments are 

carried out through international cooperation. 
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An important limitation for studying the material impacts of tablets was the lack of 

previous studies. Clément et al. (2020, 3) state that there are only two previously existing 

transparent LCA studies of tablets, and only one of them focused on the material impacts. 

For this reason, there were no studies available that could be used for comparing the 

results by Hischier et al. (2014A). The article by Hischier et al. (2014A) did not provide 

material specific recycling shares for tablets, and for this reason the recycling shares had 

to be based on those for laptops. However, it is possible that these shares differ between 

different devices and in the future it is important to study how efficiently different 

materials are recycled for tablets as well. Despite these limitations, this study provides an 

illustration of the recycling shares, device specific material shares, and impacts of some 

of the key materials that are used in these devices. On a general level, it can be said that 

in addition to the suppliers’ practices, for example, the size and casing materials of the 

devices have also a key role for the material impacts when considering procurements. 

 

It is also worth noticing that only two companies were included into the study, and thus 

it should be kept in mind that the interview results only represent the practices of these 

case companies and cannot be used for making generalizations about other ICT 

companies’ practices. Quantitative information concerning Company 2’s reuse shares was 

drawn from the company’s sustainability report and verified through an interview with 

company representatives. As it was pointed out by André et al. (2019, 269) there is a lack 

of real-world business-related case studies of circular economy measures. In that sense 

this study, despite the narrowness, provided valuable information on a topic that has not 

yet been extensively studied. 

 

Another challenge that emerged during the interviews was that the company’s 

representatives had limited knowledge of how the recycling company would carry out the 

recycling operations. In this sense it would have been beneficial to interview the recycling 

company’s representative, but this realization came up only when the company interviews 

were already carried out and at that stage it was already too late to include extra 

interviewees. However, asking these questions from the case companies’ representatives 

was also important because it allows the identification of knowledge gaps. For C1 only 

one representative was interviewed, while for C2 there were two interviewees. This might 

also create an imbalance on how much the representatives are able to tell about the 

company that they represent. 
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It would have also been more convenient to conduct the interviews face to face, but due 

to the ongoing COVID-19 pandemic they were conducted on Microsoft Teams. Another 

interview setting related challenge was that the thesis is carried out in English, while 

interviews were carried out in Finnish.  Selecting Finnish as an interview language made 

the interview situation flow more naturally, than it probably would have, if the interviews 

would had carried out in English. It was assumed that a possibility to answer the interview 

questions in one’s native language would have a positive impact on quality of the answer. 

The original interview questions and answers were translated into English in such a way 

that the original meaning was preserved as well as possible, but the meanings always 

change slightly due to the translation process. As the focus of the interviews was to obtain 

factual information about the companies’ practices, the translating could be done well 

without changing the most essential information content. 

 

As it was pointed out by Alastalo et al. (2017) there is also a risk that when companies’ 

representatives are interviewed, they have an incentive to describe the company’s 

practices from public relations (PR) point of view. This challenge was acknowledged 

during the interviews. However, the most important factors that were obtained from the 

interviews for the impact assessment were the devices’ life cycles in years and the 

companies’ reuse rates for these devices. These pieces of information that were provided 

by the representatives about the life cycles, seemed to correspond with the results of the 

SLR. For C2 the reported reuse rates corresponded with their sustainability report. For 

C1 there were no clear estimations about the reuse rates that their recycling operator 

carries out, thus these operations were excluded from the impact assessment. As C2 uses 

the same recycling partner, the impact assessment was still balanced, as these possible 

reuse operations were excluded for both companies. 

 

In addition, it would have been convenient to interview the representative of the Uusix 

workshop. The original intention was to carry out this interview as well, but neither the 

author of this thesis nor thesis commissioners were aware that conducting this interview 

would require a research permit. Acquiring this permit would have taken too long in terms 

of the research schedule and the interview had to be left out. It was fortunately possible 

to find relevant information about Uusix from the report by Lehtinen (2018). However, 

as this report was carried out in 2018, it is possible that some of the information, such as 
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reuse rates, can be outdated. Also, as there is no clear number for the share of reused 

devices, the impact assessment had to be based on an estimation that was based on the 

information that was available. The report by Lehtinen (2018, 8) also states that Uusix 

recycles the nonreusable devices through a company that accepts electronic waste, but 

there is no further information about the company available. 

 

Lastly, there were certain limitations related to the conduction of the LCA. However, 

making assumptions is a distinctive feature for LCA studies and it has been observed that 

even LCA studies that focus on similar subjects can provide very different results (Andrea 

& Vaija 2014, 410). A precise modeling of impacts is always difficult and using databases 

always involve limitations (Teehan & Kandlikar 2013, 3998). Many of the LCA related 

limitations of this study were related to the limitations of the methods that were used to 

collect the data, such as scarcity of previous studies and uncertainties in context specific 

recycling shares. As the information was collected from several different articles, there 

might be different article specific assumptions that were taken in these earlier LCA 

studies.  

 

Yet, streamlined LCA, which relies on already existing data, has been described as a 

particularly suitable tool for supporting organizations’ decision-making. Conducting a 

full LCA is often not possible because of the time limitations (Pesonen & Horn 2013, 

1781–1783.), and relying on a streamlined version was considered as an optimal measure 

for the purpose of this study. It should still be noticed that when the procurement volumes 

are as large as they are in this study, the significance of estimation errors multiplies. 

Therefore, the results of the streamlined LCA should be considered as guidelines, rather 

than as precise quantitative measures. 

 
 

6.2 Results and the analytical framework 

 

Finally, it is important to regard what the broader social implications of the results of this 

study are and how the results can be linked to the theoretical perspectives that were 

presented in chapter 2. As mentioned in chapter 2, e-waste is the fastest growing form of 

waste (Ojala et al. 2020, 75) and energy consumption is increasing exponentially due to 

rapid digitalization (Ahmed et al. 2016, 43). Thus, it is likely that the environmental 
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impacts of this progress will continue to accelerate in the future. In chapter 2, circular 

economy was proposed as a potential reform to cope with these challenges, and the 3R 

framework, consisting of practices of reducing, reusing, and recycling, was presented in 

the chapter. Although this study mainly focused on assessing the environmental savings 

that can be acquired through reusing and recycling practices, the reducing step was also 

indirectly considered through the interview results. 

 

The length of the devices’ life cycles has a key role in defining the functional unit specific 

environmental impacts and in addition to reusing the devices, the lifespan can also be 

prolonged by extending the contract period. During the interview, R1 mentioned the 

possibility to update the devices in order to keep them in use longer without having to sell 

them for second life cycle. Correspondingly R3 mentioned that extending the contract 

period also decreases the monthly costs, which means that reducing the need to procure 

new devices is not only environmentally more sustainable, but also more cost efficient. 

 

However, R1 also highlighted that if the repairing activities are too expensive, consumers 

are instead more willing to replace them with new ones. This observation relates to the 

notion by Sabbaghi & Behdad (2017, 1) about how the manufacturers’ planned 

obsolescence and the values and norms lead to the underutilization of the devices, as the 

repairing activities are generally considered from the perspective of economic viability. 

Differing norms were also visible in the interviews, as R1 considered the devices to be at 

the end of their life cycle when they are collected back from the consumer, while R3 

argued that the devices’ lifespans can be even doubled through reusing practices. The 

defining factor for the possibilities to extend the lifespan are the requirements that the 

consumers set for the devices’ capacity. R3 noted that not all organizations need very 

powerful devices, which is why the circulation can be extended by selling them to another 

market segment (Sihvonen & Ritola 2015, 641). 

 

The conflict between the environmental and economic savings that can be acquired by 

extending the devices’ contract period and the capacity requirements for the devices 

applies also in the case of the City of Helsinki. More powerful ICT devices increase the 

labor productivity (Brynjolfsson & McAfee 2014, 98–99; Castells & Himanen 2002, 2, 

21; Lange, Pohl & Santarius 2020, 2), but more regular renewal of the devices also 

increases the environmental burden. For this reason, it is important to define what the 
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organizational requirements for the devices are and whether these requirements could be 

given in for achieving environmental savings. This disharmony relates to the standpoint 

of Rosa and Scheuerman (2009, 88–89), who argue that organizations are under the 

pressure to adopt the latest technologies in order to avoid becoming outdated. 

Furthermore, according to Moore’s law, the computing power not only increases 

exponentially, but it also becomes more affordable in an accelerating speed (Ahmed et al. 

2016, 43; Brynjolfsson & McAfee 2014, 40–41; Mollick 2006, 65). Thus, the incentive 

to renew the devices more often is also greater due to this factor. In the future it has been 

estimated that the digitalization continues on an exponentially growing acceleration 

(Schwab 2016, 12; Brynjolfsson & McAfee 2014) and it is possible that the dilemma 

between increasing efficiency and the environmental burden will become even more 

urgent. 

 

Although it is important to consider the possibilities of lowering the environmental 

impacts by reducing the need for new devices, the main purpose of this study was to focus 

on the environmental impacts of reusing and recycling practices. The results of SLR 

demonstrated that as the main impacts stem from the production phase, reusing is a better 

option than recycling in both impact categories, as long as it is ensured that the devices 

will be treated properly after the second life cycle. According to Boldoczki et al. (2020), 

for some electronic devices it can also be a more environmentally sustainable option to 

replace them with more energy efficient versions, but this is the case if the impact mainly 

stems from the use phase. For this reason, energy efficiency should not be considered as 

a valid argument for renewing in the case of laptops and tablets. As mentioned in chapter 

2, it can also be the case that increasing energy efficiency does not lead to decreasing 

energy consumption due to the Jevon’s (1865) paradox. 

 

The devices’ functional unit specific impacts can be decreased by extending their lifespan, 

and as it was mentioned earlier in this section, this can be achieved also by selling the 

devices to another market segment that has lower criteria for the devices’ capacity 

(Sihvonen & Ritola 2015, 641). According to R3, this ensures that the devices are not 

forgotten in storages after the first life cycle, which often happens to be the case with the 

devices that are owned by customers. This leads to a situation where the devices become 

obsolete, and the use potential is wasted. Thus, if reducing the need for new devices, for 

example through longer contract periods, is not considered possible by the City of 



 71 

Helsinki, it is possible to extend the devices’ life cycles by reselling them to an operator 

that does not have such strict requirements for the capacity. 

 

Lastly, the devices’ impacts can be decreased by recycling them. Recycling mainly 

decreases the material impact, while the effect on CO2e emissions is lower (André et al. 

2019, 269). For the material impact, it is important that the devices are also recycled 

efficiently after the second life cycle if they are reused. This appeared to be the case for 

both of the reuse providers in this study, but it should be noticed that reselling the devices 

internationally also makes it more challenging to receive information about the recycling 

efficiencies that the devices are dealt with. The additional fourth R, standing for recovery, 

is also directly related to recycling, as it extensively defines how efficiently for example 

the valuable and hazardous materials are collected. 

 

Given the assumptions on which this sLCA is based, it was important that different life 

cycle stages’ and components’ impacts were mapped in this study, so that the measures 

for lowering the environmental impact can be targeted as effectively as possible. To 

conclude, the most significant measures for tackling the impact take place at the end of 

the life cycle. These measures reduce the need to produce new devices, which is the most 

impactful stage of the devices’ life cycles. However, use is another relevant life cycle 

stage in terms of the devices’ GHG emissions. The energy mix that is used in the use 

phase has also an important role in defining the emissions (Clément et al. 2020, 2–3.) and 

if the goal is to lower the total environmental footprint, it is also important to utilize 

renewable forms of energy in the use phase. 
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7 Conclusions 
 

This final chapter presents the conclusions that can be made from this research. The aim 

of this study was to provide evidence-based support for the City of Helsinki for mitigating 

the environmental impacts of their ICT procurements. This assessment was carried out 

by examining how the circular economy -based solutions impact the environmental 

burden in the case of laptops and tablets. This topic was approached through two research 

questions: 1. What are the most important stages and components in laptops’ and tablets’ 

life cycles, in terms of CO2e emissions and material consumption? 2. How are these stages 

and their impacts different in ownership-based procurement model and service-based 

procurement model? 

 

The study was conducted as a streamlined life cycle assessment, which was based on 

already existing data. The data was collected from previous ICT related LCA studies by 

using systematic literature review. The goal of the SLR was to answer the first research 

question by providing information about the most impactful life cycle stages and 

components. Based on this information it was possible to create the devices’ flowcharts 

for both procurement options and illustrate the magnitude of the impacts in the considered 

impact categories. To answer the second research question, it was necessary to interview 

the representatives of the case companies about their practices in the 3R framework. The 

information that was obtained through expert interviews was used for conducting the 

context specific impact assessments and interpretation, which were carried out in order 

to answer the second research question. 

 

It is common that the researcher faces several data gaps and is forced to rely on 

assumptions and estimations when conducting an LCA study. This was also the case in 

this study, and it was not possible to carry out impact assessment on a very detailed level, 

because some of the context specific data was not available. However, this does not mean 

that the study could not provide valuable results, and despite these shortcomings, sLCA 

is considered to be a particularly suitable tool for supporting organizations’ decision-

making when their aspiration is to optimize their operations in terms of sustainability and 

life cycle perspectives. Previous sLCA studies have also demonstrated that the results that 

have been obtained by using the measure can lead to actual changes in the ways that the 

organizations operate. (Pesonen & Horn 2013, 1781–1783.) In addition, it was important 
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to study the impacts in the context of ICT, because of the research gaps that considered 

the life cycle assessments of the tablets and the real-world business-related case studies. 

 

Despite the inexactness of the impact assessment phase, various concrete results were 

obtained. The results indicate that the most important impact categories that should be 

considered in the case of laptops and tablets are CO2e emissions and the material impacts, 

human toxicity being another relevant impact category in terms of end-of-life impacts. 

The most impactful life cycle stages are production and use, and some of the most 

impactful components are PCBs/PWBs, ICs, display, and casing. The functional unit 

specific impacts are strongly impacted by the device’s lifespan and thus reusing can be 

considered as a better option for both impact categories, as long as the devices are also 

efficiently recycled after the second life cycle. C2 was able to provide second life cycle 

for almost all of the devices that are procured through them, and they had also taken into 

account the recycling intensity after the second life cycle. C1 does not provide reuse 

services, but in their case the City of Helsinki can organize reuse by utilizing the services 

of Uusix workshop. Lastly, the lifespan can also be extended by lengthening the contract 

period if the devices’ capacities are still considered as functionally sufficient. 

 

These pieces of information support the City of Helsinki in achieving the targets of the 

procurement related actions of The City of Helsinki’s Roadmap for Circular and Sharing 

Economy. The results also support the City of Helsinki in their other strategies, such as 

Helsinki City Strategy for 2017–2021, Carbon-neutral Helsinki 2035 Action Plan, and 

the new procurement strategy. Cities have been considered as especially important drivers 

for the transition to circular economy, and changes in city level practices will also impact 

the transition on a country level. Finland being one of the most highly digitalized 

countries in the world, and the City of Helsinki being the largest public procurement 

operator in Finland, it is possible for the City of Helsinki to act as a leading example in 

the circular economy transition process. Due to the significant procurement volumes of 

the city, changes in procurement practices can lead to significant environmental savings 

in both studied impact categories. According to various scholars, digitalization will 

continue to accelerate in the future, and early reacting to this societal development allows 

effective mitigation of the environmental impacts that stem from this development. 
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Due to the lack of real-world business-related case studies of the potential environmental 

savings that can be acquired through circular economy -based measures, it is important 

to carry out more such studies in the future. The concept of circular economy is still 

relatively ambiguous, and although the conceptualization of circular economy in different 

studies has already been assessed, it is also important to assess how it is being 

conceptualized by different companies that argue to follow the principles of circular 

economy in their operations. Precise definition of the concept makes it more challenging 

to use the concept as a tool for green washing, and it clarifies the desired tendencies of 

this societal transition. Tablet being relatively new kind of terminal, it is also important 

to carry out more research about the material impacts of tablets and their components. As 

digitalization is considered to be an accelerating process, it is important that the research 

field actively seeks to keep up to date with this development and its consequences. Further 

research needs to also focus on the impacts of ICT devices on human toxicity, as it is 

another relevant impact category that was not assessed as a part of this study. 

 

Finally, it is important for the City of Helsinki to actively keep track of their procurement 

volumes and the course of their devices. If the end-of-life treatments are not carried out 

in a systematic manner, there is a risk that after the first life cycle the devices remain 

unused in a storage and the remaining use potential will be wasted. The companies that 

were interviewed did not have detailed information about the recycling efficacy of their 

subcontractor and in the future it is important that in order to achieve transparency, both 

companies and the City of Helsinki should require this information. In addition to life 

cycle management, it is also important to consider the role of the electricity mix in 

defining the environmental impacts of the use phase and aim to utilize renewable energy. 

If the devices are sold to secondhand markets, it is also essential to ensure the recycling 

efficiency that the devices will ultimately be treated with. This will make the reusing 

practices and the material cycles more transparent. 
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Appendices 
 

Appendix 1. Proceeding of the study 
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Appendix 2. Results of SLR 

 

Article and 

publishing 

information 

Theme/Topic Methods Key findings/results 

for this study 

Alcaraz, M., 

Noshadravan, A., 

Zgola, M., Kirchain, 

R. & Olivetti, E. 

(2018) 

 

Streamlined life cycle 

assessment: A case 

study on tablets and 

integrated circuits. 

 

Journal of Cleaner 

Production, Vol. 200, 

819–826. 

To carry out the 

structured under-

specification and 

probabilistic triage 

method and to develop 

metrics for determining 

when enough data has 

been collected to carry 

out reliable streamlined 

LCA. The efficiency of 

this method is 

demonstrated on a case 

study on tablets. 

Streamlined life cycle 

assessment/Structured 

under-specification 

and probabilistic 

triage 

- Most impactful 

components for 

tablets. 

- Manufacturing 

phase is most 

important in terms of 

the devices’ 

environmental 

impacts. 

- Shares of different 

life cycle stages for 

the devices’ total 

CO2e emissions. 

- Variables that define 

the impact of the use 

phase. 

- There are brand 

specific differences in 

terms of the devices’ 

impacts. 

Andrae, A. & Vaija, 

M. (2017) 

 

The life cycle 

assessments of an 

optical network 

terminal and a tablet: 

Experiences of the 

product 

environmental 

footprint 

methodology. 

 

Advances in 

Environmental 

Research. 

To use product 

environmental footprint 

method (PEF) to study 

the impact of two 

goods: optical network 

terminal (ONT) and a 

tablet device. 

Screening life cycle 

assessment 

 

Product 

environmental 

footprint method 

- The most significant 

stages of tablets’ life 

cycle in terms of 

climate change. 

- Tablets’ 

environmental 

impacts are mostly 

found in production 

phase 

 

 

 

André, H., Söderman, 

M–L. & Nordelöf, A. 

(2019) 

 

Resource and 

environmental 

impacts of using 

How the use of second-

hand laptops reduces 

different types of 

environmental impact, 

through reuse and 

recycling, compared to 

use of new ones. 

Life cycle assessment -  The devices become 

prematurely 

obsolescent and are 

being underutilized 

by consumers. 

-  There is an 

important gap at the 
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second-hand laptop 

computers: A case 

study of commercial 

reuse. 

 

Waste Management, 

Vol. 88, 268–279. 

studies considering 

environmental impact 

of circular economy 

measures, due to the 

lack of real-world 

commercial business-

related case studies. 

- Flowcharts for 

recycled and reused 

laptops. 

- Consideration of the 

impact of different 

laptop components. 

- There is lots of 

variance in the results 

of different ICT 

related LCA studies. 

- ICs and PCBs are 

responsible for 

significant share of 

the laptop’s impacts. 

- The most important 

impact categories for 

laptops are climate 

change, resource use, 

and human toxicity. 

- Climate change 

impact of the casing 

is mainly linked to 

production of 

magnesium alloy. 

- The impacts of 

transportation are 

very minimal. 

- Different end-of-life 

treatment options. 

- The most significant 

benefits of recycling 

are not related to 

climate change, but to 

material consumption 

and human toxicity. 

- Total CO2e impact of 

a laptop. 

- The significance of 

different materials are 

considered important 

for different reasons 

in different studies. 



 84 

- Typical life cycle for 

a laptop is 

approximately 4 years 

and the second life 

cycle is 

approximately 2–3 

years. 

Bieser, C. & Hilty, L. 

(2018) 

 

Assessing Indirect 

Environmental 

Effects of Information 

and Communication 

 

Technology (ICT): A 

Systematic Literature 

Review. 

Sustainability, Vol. 10 

(8). 

To assess different 

approaches that have 

been taken in studies 

considering indirect 

environmental impacts 

of ICT. 

Systematic literature 

review of existing 

assessments of ICT’s 

indirect 

environmental 

impacts. 

- Definitions of direct 

and indirect ICT 

emissions. 

Boldoczki, S., 

Thorenz, A. & Tuma, 

A. (2020) 

 

The environmental 

impacts of 

preparation for reuse: 

A case study of 

WEEE reuse in 

Germany 

 

Journal of Cleaner 

Production Vol. 252. 

Exploring the potential 

benefits of preparation 

for reuse (PfR) to other 

waste management 

options, including a 

review for laptops. 

Life cycle assessment - For small electric 

devices, such as 

laptops, the 

production phase is 

most dominant, and 

reuse leads to large 

savings in almost 

every impact 

category. 

- The optional end-of-

life treatments. 

- Recycling can be 

more beneficial than 

reusing, if the 

emissions are mainly 

caused by use phase. 

But if the 

manufacturing phase 

is the main cause, 

reuse is better option 

in terms of 

environmental 

impacts. 

Clément, L–P., 

Jacquemotte, Q. & 

Hilty, L. (2020) 

 

Sources of variation 

in life cycle 

Analysing the studies 

that report the 

environmental impacts 

of smartphones and 

tablets. Identifying the 

Literature review of 

LCA studies/Meta-

analysis of LCAs 

 

- Production phase is 

the most important 

part of the tablet’s life 

cycle in terms of 

environmental 

impacts. Together 
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assessments of 

smartphones and 

tablet 

computers. 

 

Environmental Impact 

Assessment Review, 

Vol. 84. 

main sources of 

variation in their LCAs. 

with use phase they 

account for over 90% 

of the total impacts. 

- There are only two 

previously conducted  

transparent LCA 

studies for tablets. 

- The most impactful 

components of tablets 

and their CO2e 

emissions. 

- The electricity mix 

that is used has also 

important role for the 

impacts. 

- Average life cycle of 

a tablet is 

approximately 3 

years. 

- Assembly phase 

does not contribute 

significantly to the 

CO2e emissions. 

Hischier, R., 

Coroama, V–C., 

Schien, D. & 

Achachlouei, M– A. 

(2014B) 

 

Grey Energy and 

Environmental 

Impacts of ICT 

Hardware. 

 

In: ICT Innovations 

for Sustainability, eds. 

Hilty, L. & Aebischer, 

B., 171–189, 

Springer, Cham. 

To form a more 

comprehensive picture 

of the total energy 

requirement and 

releases during the 

whole life cycle of the 

assessed ICT devices. 

Life cycle assessment - The impacts of 

assembly and end-of-

life treatment phases 

are not significant. 

- Impacts of the most 

important life cycle 

stages of laptops. 

- Compared to a 

laptop, the share of 

non-renewable energy 

being used with tablet 

is smaller by the 

factor of ¾. 

- Typical life cycle for 

a laptop is 

approximately 4 

years. 
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Kasulaitis, P., Babbitt, 

C., Kahhat, R. & 

Williams, E. (2015) 

 

Evolving materials, 

attributes, and 

functionality in 

consumer electronics: 

Case study of laptop 

computers. 

 

Resources, 

Conservation and 

Recycling, Vol. 100, 

1–10. 

To study material 

intensity of laptop 

computer for different 

model years and to 

understand the variance 

and dematerialization 

that occurs due to 

product development. 

Also, to study potential 

of life cycle inventory 

approximations for 

consumer electronics. 

Life cycle assessment 

 

Bill of attributes 

- Semiconductor 

manufacturing 

contributes 

significantly to 

electronic products’ 

environmental 

impacts, and majority 

of these are contained 

e.g. in motherboard. 

- Product weight loss 

is less than 2% 

annually between 

different model years, 

but there are 

significant differences 

between different 

sized devices. Most 

significant change is 

the shift from plastic 

casings to aluminium 

casings. 

- An average laptop 

weights 

approximately 2.5 kg. 

Meyer, D. & Katz, J. 

(2015) 

 

Analyzing the 

environmental 

impacts of laptop 

enclosures using 

screening-level life 

cycle assessment to 

support sustainable 

consumer electronics. 

 

Journal of Cleaner 

Production, Vol. 112, 

369–383. 

To form a better 

understanding of 

promoting 

environmentally 

sustainable electronics 

by using different 

laptop case materials. 

Different materials are 

compared, such as 

plastic, bamboo, and 

aluminium. 

Screening life cycle 

assessment 

- Majority of laptop’s 

CO2 emissions stem 

from manufacturing. 

- A large share of the 

plastic in the casings 

ends up in the 

landfills, as the 

separation of plastics 

is difficult and not 

economically viable. 

- Use of PCR has 

significant 

environmental 

benefits compared to 

the use of virgin 

materials. 

-  Using recyclable 

aluminium is not 

better option than 

using plastic, if the 

post-consumer 

recyclability is too 

low. 

Sabbaghi, M. & 

Behdad, S. (2017) 

To investigate the 

environmental impact 

Life cycle assessment - Consumer behavior 

is affected by 



 87 

 

Environmental 

Evaluation of Product 

Design Alternatives: 

The Role of 

Consumer’s Repair 

Behavior and 

Deterioration of 

Critical Components. 

 

Journal of Mechanical 

Design, Vol. 139. 

of components’ 

deterioration and 

consumers’ decisions to 

repair the devices. 

manufacturer’s 

planned obsolescence 

and the release time 

of new technologies. 

- If the repair costs 

exceed a threshold, 

consumers are not 

willing to repair their 

devices. 

- The decision to 

repair a device is also 

impacted by the 

norms, values, and 

beliefs. 

Van Eygen, E., De 

Meester, S., Tran, H-

P. & Dewulf, J. 

(2015) 

 

Resource savings by 

urban mining: The 

case of desktop and 

laptop computers in 

Belgium. 

 

Sustainable Materials 

Management, Report 

no. 17, Leuven. 

Assessing the 

performance of WEEE 

recycling of laptops 

and desktop computers 

in Belgium. 

Life cycle assessment 

 

Material flow analysis 

(MFA) 

 

Cumulative Exergy 

Extraction from the 

Natural Environment 

(CEENE) method 

- PCBs contain lots of 

precious metals. 

- Large share of PC-

ABS plastics is 

landfilled. 

- Recycling a laptop 

saves approximately 

87% of the natural 

resources compared 

to landfilling. 

- Recycling 

treatments for 

different components 

and materials. 

- Casing material 

forms the biggest 

share of the laptop’s 

materials. 

- Material 

composition of 1000 

kg of disposed laptops 

and their recycling 

rates. 

- Reusing can also be 

worse option than 

recycling in terms of 

material impact, if the 

devices are not treated 

properly after the 

second life cycle. 
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Appendix 3. Results of the secondary references 

 

Article and 

publishing 

information 

Primary reference Theme/Topic Methods Key 

findings/results for 

this study 

Buchert, M., 

Manhart, A., 

Bleher, D. & 

Pingel, D. (2012) 

 

Recycling Critical 

Raw Materials 

from Waste 

Electronic 

Equipment. 

 

Öko-Institut eV, 

Freiburg. 

André, H., 

Söderman, M–L. & 

Nordelöf, A. 

(2019) 

 

Resource and 

environmental 

impacts of using 

second-hand laptop 

computers: A case 

study of 

commercial reuse. 

 

Waste 

Management, Vol. 

88, 268–279. 

To produce a 

life cycle 

inventory of the 

critical raw 

materials in 

different 

electronic 

devices. 

Life cycle 

inventory 

analysis 

-  In North Europe, 

around half of the 

laptops are being 

recycled, but there is 

not enough 

information 

available about the 

other pathways. 

Andrae, A. & 

Vaija, M. (2014) 

 

To which degree 

does sector specific 

standardization 

make life cycle 

assessments 

comparable? - The 

case of global 

warming potential 

of smartphones. 

 

Challenges, Vol. 5 

(2), 409–429. 

Clément, L–P., 

Jacquemotte, Q. & 

Hilty, L. (2020) 

 

Sources of 

variation in life 

cycle assessments 

of smartphones and 

tablet 

computers. 

 

Environmental 

Impact Assessment 

Review, Vol. 84. 

To demonstrate 

how the 

methodological 

decisions 

impact the 

results in LCA 

studies. 

Comparing 

the 

differences 

between the 

results of 

different 

LCA 

modelings. 

- The GHG 

emissions in LCD 

production are 

mainly linked to the 

electricity 

production. 

Hischier, R., 

Achachlouei, M.A. 

& Hilty, L.M., 

(2014A). 

 

Evaluating the 

sustainability of 

electronic media: 

Strategies for life 

cycle inventory 

data collection and 

Clément, L–P., 

Jacquemotte, Q. & 

Hilty, L. (2020) 

 

Sources of 

variation in life 

cycle assessments 

of smartphones and 

tablet 

computers. 

 

To demonstrate 

how the 

methodological 

decisions 

impact the 

results in LCA 

studies. 

Comparing 

the 

differences 

between the 

results of 

different 

LCA 

modelings. 

- The material 

specific shares of a 

tablet device. 

- Approximately 

51% of the tablet’s 

weight can be 

directly recycled and 

approximately 15% 

of the remaining 

amount can be taken 

into material 

recycling. 
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their implications 

for LCA results. 

 

Environmental 

Modelling & 

Software, Vol. 56, 

27–36. 

Environmental 

Impact Assessment 

Review, Vol. 84. 

Teehan, P. & 

Kandlikar, M. 

(2013) 

 

Comparing 

embodied 

greenhouse gas 

emissions of 

modern computing 

and electronics 

products. 

 

Environmental  

Science & 

Technology, Vol. 

47(9), 3997–4003. 

Clément, L–P., 

Jacquemotte, Q. & 

Hilty, L. (2020) 

 

Sources of 

variation in life 

cycle assessments 

of smartphones and 

tablet 

computers. 

 

Environmental 

Impact Assessment 

Review, Vol. 84. 

To estimate and 

compare GHG 

emissions of 

different ICT 

devices, 

including 

laptops and 

tablets. 

Life cycle 

assessment 

- Methodological 

guidance for this 

study. 

- The shortcomings 

of currently existing 

studies that focus on 

the impacts of ICT. 

Raghavan, S. 

(2010) 

 

Don’t Throw It 

Away: The 

Corporate Role in 

Product 

Disposition. 

 

Journal of 

Business Strategy, 

Vol. 31 (3), 50–55. 

Sabbaghi, M. & 

Behdad, S. (2017) 

 

Environmental 

Evaluation of 

Product Design 

Alternatives: The 

Role of 

Consumer’s Repair 

Behavior and 

Deterioration of 

Critical 

Components. 

 

Journal of 

Mechanical 

Design, Vol. 139. 

To understand 

consumers’ 

disposal 

decisions from 

environmental 

and marketing 

perspectives. 

Literature 

review 

- Significant amount 

of working products 

are disposed every 

year, because 

consumers consider 

them to be obsolete. 
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Appendix 4. Interview questions in English for the Company 1 

 

Section 1: General practices 

 

1. Could you describe Company 1’s warranty policies for the devices? (Is it common 

that the devices that are in the office use need to be repaired during the warranty period? 

If so, can you say what kind problems are most typically repaired within the warranty 

period?) 

 

2. Can you tell me about the reasons why a laptop or tablet computer purchased from 

the Company 1 most often arrives back to you as a disposal? (Is it more often, for 

example, that the pre-defined service life of the equipment has been reached, or that the 

equipment has broken down after the warranty period, or for some other reason?) 

 

3. What is the average length of the life cycle of the laptops or tablets, after which they 

will be returned to you as disposals? 

 

4. Can you name a certain manufacturer or model that would have been particularly 

popular in office use, and which represents a significant proportion of the equipment 

provided by Company 1? 

 

Section 2: Reuse of the devices 

 

5. Does the Company 1 provide some kind of reuse service for incoming devices, such 

as replacing damaged components and reselling the device for a lower price? 

 

5.1 If yes, 

 

5.1.1 Are there any specific components that need to be most often renewed in order to 

make the device reusable? Could you estimate a percentage share for the devices that 

need these kinds of replacements in order to make them reusable? 

 

5.1.2 Do you use new or used components for making the devices reusable? 

 

5.1.3 How long are the second life cycles for reused laptops and tablets? 

 

5.1.4 How big is the share of discarded laptops and tablets that can be given a second 

life cycle by replacing components? 

 

5.1.5 Which customer groups are mainly interested in purchasing reused equipment? 

Would you be able to estimate the percentage shares of these customer groups? 

 

5.2 If no, 

 

5.2.1 In your opinion, what are the main challenges for the provision of reuse services 

from the perspective of the IT-device supplier? 

 

5.2.2 Can you say whether there has been a discussion about the possibility to provide 

reuse services by the Company 1? 
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Section 3: Recycling of the devices 

 

6. Could you describe the recycling process for those laptops and tablets, that have 

arrived back to you as disposal? (Which components are distinguished from the devices 

for separate recycling treatments? What happens to those components that are not 

distinguished? How it is ensured that the recycling partner operates responsibly, and do 

they have environmental certificates?) 

 

6.1 Recycling of printed circuit boards and integrated circuits 

 

6.1.1 What happens to the devices’ printed circuit boards and integrated circuits during 

the recycling process? 

 

6.1.2 How are the components that are sent for secure recycling treated in further 

processing? (Are metals contained in printed circuit boards and integrated circuits 

collected for reuse for example? If so, can you estimate how much of the value of the 

metals is returned to the material cycle and for which metals the collection is 

particularly successful?) 

 

6.1.3 How are the non-security sensitive (PCB/IC) components treated in further 

processing? (Are metals contained in printed circuit boards and integrated circuits 

collected for reuse for example? If so, can you estimate how much of the value of the 

metals is returned to the material cycle and for which metals the collection is 

particularly successful?) 

 

6.2 Recycling of displays and casings 

 

6.2.1 Can you indicate what proportion of the recycled devices are equipped with a 

plastic/aluminium casings? 

 

6.2.2 How are the plastic and aluminium casings recycled? How effectively are the 

plastic and aluminium casings utilized in the production of recycled materials? 

 

6.2.3 How are the devices’ displays recycled? Is it possible to collect materials for 

displays in order to produce recycling materials? 
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Appendix 5. Interview questions in English for the Company 2 

 

Section 1: General practices 

 

1. Can you tell what is the most common length for laptops and tablets first life cycle 

(or for the leasing period)? How common it is that the devices break, and thus have to 

be renewed in the middle of the contract period? 

 

2. Could you describe Company 2’s warranty policies for rental devices? (Is it common 

that the devices that are in the office use need to be repaired during the warranty period? 

If so, can you say what kind problems are most typically repaired within the warranty 

period?) 

 

3. Can you name a certain computer manufacturer or model that would have been 

particularly popular in office use, and which represents a significant proportion of the 

equipment provided by Company 2? 

 

4. Can you name other companies that are similar to Company 2 and supply IT-

equipment in a similar manner? 

 

Section 2: Reuse of the devices 

 

5. Could you describe the Company 2’s reuse services for the devices that arrive to you 

as a removals from the customers? 

 

5.1 Are there any specific components that need to be most often renewed in order to 

make the device reusable? Could you estimate a percentage share for the devices that 

need these kinds of replacements in order to make them reusable? 

 

5.2 Do you use new or used components for making the devices reusable? 

 

5.3 How long are the second life cycles for reused laptops and tablets? 

 

5.4 How big is the share of discarded laptops and tablets that can be given a second life 

cycle by replacing components? 

 

5.5 Which customer groups are mainly interested in purchasing reused equipment? 

Would you be able to estimate the percentage shares of these customer groups? 

 

5.6 In your opinion, what are the main challenges for the provision of reuse services 

from the perspective of the IT-device supplier? 

 

 

Section 3: Recycling of the devices 

 

6. Could you describe the recycling process for those laptops and tablets, that have 

arrived back to you as disposal and for which the reusing is not possible? (Which 

components are distinguished from the devices for separate recycling treatments? What 

happens to those components that are not distinguished? How it is ensured that the 

recycling partner operates responsibly, and do they have environmental certificates?) 
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6.1 Recycling of printed circuit boards and integrated circuits 

 

6.1.1 What happens to the devices’ printed circuit boards and integrated circuits during 

the recycling process? 

 

6.1.2 Are the metals that are contained in printed circuit boards and integrated circuits 

collected?  If yes, can you estimate how much of the value of the metals is returned to 

the material cycle and for which metals the collection is particularly successful? For 

which metals the recycling is particularly challenging? 

 

6.2 Recycling of displays and casings 

 

6.2.1 Can you indicate what proportion of the recycled devices are equipped with a 

plastic/aluminium casings? 

 

6.2.2 How are the plastic and aluminium casings recycled? How effectively are the 

plastic and aluminium casings utilized in the production of recycled materials? 

 

6.2.3 How are the devices’ displays recycled? Is it possible to collect materials for 

displays in order to produce recycling materials? 
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Appendix 6. Calculations for the functional unit specific CO2e impacts in different 

procurement options 

 

Company 1 
 

Laptops 216 kgCO2e ÷ {(4.5+3)x[(0.25+0.35)÷2]+4.5x[(0.75+0.65)/2]}= 40 kgCO2e 

Tablets 120 kgCO2e ÷ {(2.5+2.5)x[(0.25+0.35)÷2]+2.5x[(0.75+0.65)/2]}≈ 37 kgCO2e 

Company 2 
 

Laptops 216 kgCO2e ÷ {[(4+3)x0.995]+(4x0.005)}≈ 31 kgCO2e 

Tablets 120 kgCO2e ÷ {[(2.5+2.5)x0.995]+(2.5x0.005)}≈ 24 kgCO2e 

 

 

 

 

 

 


