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“The future belongs to those who believe in the beauty of their dreams.”

Eleanor Roosevelt

“Education is the most powerful weapon to change the world.”

Nelson Mandela



5

To Miha,



6

CONTENTS
CONTENTS� 6
LIST OF ORIGINAL PUBLICATIONS� 9
ABBREVIATIONS� 10
ABSTRACT� 12
1. INTRODUCTION� 14
2. REVIEW OF THE LITERATURE� 15

2.1. Diabetes� 15
2.1.1. Definition of diabetes� 15
2.1.2. Diagnosis of diabetes� 15
2.1.3. Classification of diabetes� 15
2.1.4. T1DM definition and diagnosis� 16
2.1.5.  Epidemiology of T1DM� 17
2.1.6. Pathogenesis of T1DM� 17

2.2. Diabetic complications� 19
2.2.1. Definition and classification� 19
2.2.2. Diabetic nephropathy� 21
2.2.3. Cardiovascular disease� 28

2.3. Link between renal complications, cardiovascular disease and mortality� 32
2.4. Glomerular biomarkers for DN and CVD in T1DM� 33
2.5. Limitations of glomerular biomarkers and need for other biomarkers� 36
2.6. Tubular biomarkers for DN in T1DM� 38

2.6.1. Distal tubular biomarkers� 38
2.6.2. Proximal tubular biomarkers� 39
2.6.3. Novel candidates� 42

3. AIMS� 45
4. MATERIAL AND METHODS� 46

4.1. Subjects and study design� 46
4.2. Baseline visit� 46

4.2.1. Smoking status� 47
4.2.2. Anthropometric measures� 47
4.2.3. Blood pressure� 47
4.2.4. Fasting blood measurements� 47
4.2.5. Urinary measurements� 48

4.3. Biomarker measurements� 48
4.3.1. Urinary L-FABP� 48
4.3.2. Urinary adiponectin� 48
4.3.3. Urinary KIM-1� 49

4.4. Genotypes� 49
4.5. Follow-up time� 49
4.6. Definition of outcomes� 49

4.6.1. Renal outcomes� 49
4.6.2. Cardiovascular outcomes� 49
4.6.3. Mortality� 50

4.7. Data collection and management system� 50



7

4.8. Statistical analysis� 50
4.8.1. Descriptive statistics� 50
4.8.2. Determinants of each urinary biomarker’s level� 51
4.8.3. Evaluation of each biomarker’s ability to predict the outcomes� 52
4.8.4. Correction for multiple testing� 53
4.8.5. Assessment of each biomarker’s predictive clinical  
benefit as to progression of DN� 53
4.8.6. Causality between biomarkers and eGFR – a Mendelian  
randomization (MR) approach or instrumental variable (IV) analysis� 54
4.8.7. Statistical software� 56

5. RESULTS� 58
5.1. Study I – Urinary L-FABP and progression of DN� 58

5.1.1. Baseline determinants of urinary L-FABP at each stage of DN� 59
5.1.2. Prediction of DN progression by urinary L-FABP� 60
5.1.3. Urinary L-FABP’s diagnostic performance and added  
clinical benefit for prediction of DN progression� 61
5.1.4. Urinary L-FABP and causality for DN progression� 64

5.2. Study II – Urinary adiponectin and progression of DN� 65
5.2.1. Baseline urinary ADP determinants at each stage� 66
5.2.2. Prediction of progression of DN by urinary ADP� 67
5.2.3. Urinary ADP’s diagnostic performance and added clinical  
benefit for prediction of progression to ESRD� 68
5.2.4. Urinary ADP and causality for DN progression� 71

5.3. Study III – Urinary KIM-1 and DN progression� 71
5.3.1. Baseline determinants of KIM-1 levels at each stage� 72
5.3.2. Prediction of DN progression by urinary KIM-1� 73
5.3.3. Urinary KIM-1’s diagnostic performance for prediction  
of progression and added clinical benefit� 74
5.3.4. Urinary KIM-1 and causality for DN progression –  
Mendelian Randomization approach� 76

5.4. Study IV – Urinary biomarkers and prediction of  
macrovascular complications and mortality� 82

5.4.1. Prediction of CVD, CAD, PVD, stroke and mortality  
by the tested urinary biomarkers� 83
5.4.2. L-FABP’s diagnostic performance and added clinical  
benefit for prediction of stroke and mortality� 83
5.4.3. L-FABP and causality for stroke or mortality� 88

6. DISCUSSION� 89
6.1. Methodological evaluation – strengths and weaknesses of the studies� 89

6.1.1. Outcome measures used in the studies� 89
6.1.2. FinnDiane data collection and follow-up� 91
6.1.3. Samples, storage and biomarker measurement and biovariability� 91
6.1.4. Generalizability (external validity), internal validity (study power)� 92
6.1.5. Developments in statistical methods for evaluation of biomarkers� 93
6.1.6. Other aspects of the statistical analysis� 95

6.2. Clinical implications and interpretation of the results� 95
6.2.1. Study I – Urinary L-FABP prediction of DN progression� 95



8

6.2.2. Study II – Urinary ADP and DN progression� 97
6.2.3. Study III – Urinary KIM-1, DN progression and loss of eGFR� 98
6.2.4. Study IV – Urinary L-FABP, macrovascular  
complications and mortality� 100

6.3. Pathophysiological perspective of the results� 101
6.3.1. Urinary L-FABP� 101
6.3.2. Urinary ADP� 104
6.3.3. Urinary KIM-1� 105
6.3.4. Common pathophysiological perspective� 106

6.4. Therapeutic perspective of the results� 108
7. CONCLUSIONS AND FUTURE DIRECTIONS� 109

7.1. Conclusions� 109
7.2. Future directions� 109

ACKNOWLEDGEMENTS� 111
REFERENCES� 112
	



9

LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following publications:

I	 Panduru NM, Forsblom C, Saraheimo M, Thorn L, Bierhaus A, Humpert 
PM, Groop PH; FinnDiane Study Group. Urinary liver-type fatty acid-binding 
protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 
2013;36(7):2077-83. PubMed PMID: 3687279.

II	 Panduru NM, Saraheimo M, Forsblom C, Thorn LM, Gordin D, Wadén 
J, Tolonen N, Bierhaus A, Humpert PM, Groop PH; FinnDiane Study Group. 
Urinary adiponectin is an independent predictor of progression to end-stage renal 
disease in patients with type 1 diabetes and diabetic nephropathy. Diabetes Care. 
2015;38(5):883-90. PubMed PMID: 25720601.

III	 Panduru NM, Sandholm N, Forsblom C, Saraheimo M, Dahlström EH, Thorn 
LM, Gordin D, Tolonen N, Wadén J, Harjutsalo V, Bierhaus A, Humpert PM, Groop 
PH; FinnDiane Study Group. Kidney injury molecule-1 and the loss of kidney 
function in diabetic nephropathy: a likely causal link in patients with type 1 diabetes. 
Diabetes Care. 2015;38(6):1130-7. PubMed PMID: 25784666.

IV	 Panduru NM, Forsblom C, Saraheimo M, Thorn LM, Gordin D, Elonen N, 
Harjusalo V, Bierhaus A, Humpert PM, Groop PH; FinnDiane Study Group. Urinary 
liver-type fatty acid binding protein is an independent predictor of stroke and 
mortality in individuals with type 1 diabetes. Diabetologia. 2017;60(9):1782-1790. 
PubMed PMID: 28601908.

The publications are referred to in the text by the corresponding Roman numerals 
as mentioned above.



10

ABBREVIATIONS

ACR	 albumin to creatinine ratio 

ADP 	 adiponectin 

AER 	 albumin excretion rate

A1 	 normal AER (normal to mildly increased AER)

A2 	 microalbuminuria (moderately increased AER)

A3 	 macroalbuminuria (severely increased AER)

AUC 	 area under the curve

BM 	 basic model

B2M 	 Beta 2-microglobulin 

BMI 	 body mass index

BTP 	 beta-trace protein 

CAD 	 coronary artery disease 

CD40 	 cluster of differentiation 40 protein

CKD 	 chronic kidney disease 

CKD-EPI 	 Chronic Kidney Disease Epidemiology Collaboration

cNRI 	 continuous net reclassification index for logistic model

CRP 	 C-reactive protein 

CVD 	 cardiovascular disease 

DBP 	 diastolic blood pressure

DC 	 diabetic cardiomyopathy 

DCCT 	 Diabetes Control and Complications Trial 

DKD 	 diabetic kidney disease 

DN 	 diabetic nephropathy 

DNA 	 deoxyribonucleic acid 

EGF 	 epidermal growth factor 

eGFR 	 estimated glomerular filtration rate 

eNOS 	 endothelial nitric oxide synthase

ESRD 	 end stage renal disease

GDM 	 gestational diabetes mellitus

GWAS 	 genome-wide association studies  

HBA1C 	 glycated hemoglobin A1C 

HDL-C 	 high-density lipoprotein cholesterol 



11

IDI 	 integrated discrimination improvement

IDIS-5 	 integrated discrimination improvement calculated  
	 for survival data at 5 years survival

IDIS-10 	 integrated discrimination improvement calculated  
	 for survival data at 10 years

IV 	 instrumental variable 

KIM-1 	 kidney injury molecule-1

LDL-C 	 density lipoprotein cholesterol 

L-FABP 	 liver-type fatty acid binding protein

MAF 	 minor allele frequency

MR 	 Mendelian randomization 

N/A 	 not applicable

NEFAs 	 non-esterified fatty acids 

NO 	 nitric oxide 

NRI 	 net reclassification index

NRIS-5 	 generalized net reclassification index calculated  
	 for survival data at 5 years survival

NRIS-10 	 generalized net reclassification index calculated  
	 for survival data at 10 years survival

NT 	 not tested 

PCs 	 principal components

PVD 	 peripheral vascular disease

RAAS 	 renin-angiotensin-aldosterone system 

RBP 	 Retinol-binding protein 

ROC 	 receiver operating characteristic

SBP 	 systolic blood pressure

SD 	 standard deviation 

SE 	 standard error

SNP 	 single nucleotide polymorphism

T1DM 	 type 1 diabetes mellitus

T2DM 	 type 2 diabetes mellitus

TGF-β 	 transforming growth factor beta 

WHR 	 waist to hip ratio



12

ABSTRACT

Introduction: Diabetic nephropathy (DN) is a devastating diabetes complication 
affecting 20 to 40% of individuals with type 1 diabetes mellitus (T1DM). DN is 
associated with a competitive risk of either progression to a worse stage of DN 
or premature mortality. Mortality is mainly due to cardiovascular events. DN 
progression as well as cardiovascular events can be predicted by either a high 
albumin excretion rate (AER), a low estimated glomerular filtration rate (eGFR) 
or both. These biomarkers, commonly employed in clinical practice, are mainly 
glomerular biomarkers and reflect various degrees of kidney damage, although they 
have limitations not only at the early stages of DN but also at later stages of the 
disease. The limitations arise mainly from the fact that in addition to the glomerular 
damage, tubular dysfunction also plays an important role in the pathogenesis of 
DN. It is worth mentioning, too, that eGFR is a rather insensitive marker of early 
dysfunction. However, at the later stages eGFR is a useful tool to assess the residual 
kidney function and the risk of further complications. Tubular dysfunction is present 
early in the course of T1DM and most likely even before there is an increase in the 
AER. Furthermore, tubular damage plays a major role in the final loss of kidney 
function. This aspect is highlighted by the fact that proximal tubular damage has a 
key role in the acute loss of kidney function (acute kidney injury [AKI]). Therefore, 
biomarkers that would be able to better reflect the precise nature of the tubular 
dysfunction both at the early and the later stages of DN could significantly bolster 
early identification of DN, prediction of DN progression as well as screening for risk 
of cardiovascular events.

Aims: The main aim of this study was to investigate, in individuals with T1DM, 
if three urinary biomarkers [liver-type fatty acid binding protein (L-FABP), kidney 
injury molecule 1 (KIM-1) and urinary adiponectin (ADP)] could outperform the 
currently available biomarkers for the prediction of DN development and progression, 
or even be causally related to the loss of kidney function. An additional objective was 
to examine whether these biomarkers could predict cardiovascular disease (CVD) 
Pand premature mortality, as also whether they are able to add clinical benefit to the 
biomarkers used in clinical practice for prediction of CVD and premature mortality.

Subjects and methods: All individuals with T1DM included in this research were 
enrolled between January 1998 and December 2002. The studies were part of the 
Finnish Diabetic Nephropathy Study (FinnDiane), a nationwide cohort of individuals 
with T1DM followed prospectively at more than 80 centers throughout Finland. The 
aim of the FinnDiane is to identify clinical, biochemical and genetic risk factors of 
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DN. For two of the four current studies, a group of individuals without diabetes and 
without any family history of kidney disease or diabetes were also enrolled. Blood 
and urine samples were collected at baseline and stored at −20°C until measured in 
2008. The participants were followed for a median of 5.8 to 14.1 years, and clinical 
outcomes were evaluated prospectively. All studies were performed with the approval 
of the local ethics committees in accordance with the revised Declaration of Helsinki, 
and every participant signed an informed consent.

Results: In study I, L-FABP was shown to be an independent predictor of 
progression of DN, irrespective of the disease stage. However, L-FABP used alone or 
together with AER did not improve the risk prediction of DN progression, compared 
with actual biomarkers, in individuals with T1DM. In study II, urinary ADP was 
an independent predictor of progression to end-stage renal disease (ESRD) and 
performed even better than AER, and as well as eGFR. In addition, urinary ADP 
added significant predictive benefit when used together with either AER or eGFR. 
In study III, KIM-1 did not predict the progression to ESRD independently of AER 
and did not add any prognostic benefit to currently used biomarkers. However, 
the Mendelian randomization (MR) analysis showed that the inverse association 
of increased KIM-1 concentrations with lower eGFR is likely to represent a causal 
link. In study IV, L-FABP was an independent predictor of stroke and premature 
mortality but did not add any predictive benefit on top of AER and eGFR. In fact, 
L-FABP was not a predictor of other cardiovascular endpoints (coronary artery 
disease, peripheral vascular disease and overall CVD events) when adjusted for AER. 
It is noteworthy that urinary ADP and AER were common determinants of all the 
tested biomarkers, suggesting a complex interaction between tubular, glomerular 
and systemic mechanisms. 

Discussion and conclusions: Through their ability to predict the progression 
of DN, the tested tubular biomarkers established that tubular dysfunction is an 
important part of DN progression. However, judging by the baseline determinants 
of their concentrations, the studied tubular biomarkers represent much more than 
tubular injury, capturing also glomerular damage as well as systemic factors. The 
fact that L-FABP was as good a predictor as eGFR or AER of stroke or premature 
mortality, while the other biomarkers predicted various other cardiovascular 
outcomes, confirms the potential role of these biomarkers for the prediction of CVD. 
A causal relationship between these biomarkers and loss of kidney function could 
be demonstrated only for KIM-1, but this particular observation confirms a causal 
role of tubular dysfunction in the DN progression. Future studies in individuals with 
T1DM are needed to explore the predictive potential and causal relationship between 
these biomarkers and loss of eGFR over time.
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1 INTRODUCTION

Since the discovery of insulin, the development of chronic renal and cardiovascular 
complications due to diabetes has become the main challenge in individuals with 
T1DM. Compared with the general population, individuals living with T1DM have a 
higher risk of CVD (1, 2). In addition, the risk of premature death from cardiovascular 
causes is already higher early in the course of the disease (3). Furthermore, DN 
increases the risk of CVD and premature mortality along with the severity of kidney 
dysfunction (4, 5). DN and CVD thus progress in parallel and share a large number 
of common risk factors and pathogenic mechanisms (6). 

Early screening and detection of DN is based on an increase of the AER or a lower 
eGFR. These commonly used biomarkers in clinical practice are mainly glomerular 
biomarkers. However, eGFR is a rather insensitive biomarker, as the eGFR may still 
be in the normal range despite advanced tissue damage. Thus, these biomarkers 
have inherent limitations both at the early and the late stages of DN. This is further 
highlighted by the fact that in addition to the glomerular damage, tubulointerstitial 
injury has also been demonstrated to play a major role in the pathogenesis of DN (7). 
In this context, it is an attractive approach to study the molecules linked to tubular 
dysfunction. They may serve as potential new biomarkers for the detection of the 
onset and progression of DN and may also provide additional information about the 
clinical course or the prognosis of individuals with T1DM. Such molecules may also 
enable an even earlier diagnosis than achieved by AER, and consequently provide an 
opportunity to tailor the treatment suitably at a stage when there may be a possibility 
of preventing further damage to the kidneys.

Despite their limitations, AER and eGFR are also strong predictors of DN in 
individuals living with T1DM (8). The same is true for the prediction of CVD. Given 
that DN and CVD progress in parallel and share risk factors and mechanisms, it is 
possible that the discovery of clinically useful biomarkers for the prediction of DN 
may also provide a tool for earlier prediction of risk of CVD. Therefore, this study 
aimed to examine the role of novel tubular biomarkers for the prediction of onset 
and progression of DN as well as of CVD.
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2 REVIEW OF THE LITERATURE
2.1. Diabetes
2.1.1. Definition of diabetes
Diabetes is a syndrome comprised of a heterogeneous group of disorders with 
a common characteristic—an increase in the blood glucose concentration. 
Heterogeneity of diabetes arises from the considerably variable clinical presentation, 
disease progression and underlying causes. The main causes of diabetes are relative 
or absolute insulin deficiency, as well as resistance to the action of insulin.

2.1.2. Diagnosis of diabetes
A diabetes diagnosis can be made using fasting plasma glucose, 2-hour postprandial 
plasma glucose during a standardized oral glucose tolerance test, glycated hemoglobin 
A1C (HbA1C) or by random plasma glucose (in individuals with clear symptoms of 
hyperglycemia). The diagnostic criteria are presented in Table 1.

Table 1. The diagnostic criteria of diabetes (9).

Diagnostic test§ Diagnostic threshold

Fasting plasma glucose (FPG)* ≥ 126 mg/dl (7.0 mmol/l)
2-h postprandial plasma glucose (2-h PPG) ⁑ ≥ 200 mg/dl (11.1 mmol/l)
HbA1C

⁂ 6.5 % (48 mmol/mol)
Random plasma glucose (RPG) ⁑⁑ 200 mg/dl (11.1 mmol/l)
§ In the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing.
* Fasting – no caloric intake for at least 8 h.
⁑ 2-h postprandial plasma glucose (2-h PG) is considered the plasma glucose measured at 2 hours during a standardized 
oral glucose tolerance test (OGTT) performed according to World Health Organization (WHO), using 75 g anhydrous 
glucose or an equivalent glucose load dissolved in water.
⁂ The method should be National Glycohemoglobin Standardization Program (NGSP) certified and Diabetes Control and 
Complications Trial (DCCT) standardized
⁑⁑ In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis

2.1.3. Classification of diabetes
Diabetes can be classified into four major categories: T1DM, type 2 diabetes mellitus 
(T2DM), gestational diabetes and other types of diabetes (10).

T1DM is the consequence of an autoimmune attack on the insulin producing 
pancreatic β-cells. The attack is associated with five types of autoantibodies that can 
be identified in the serum of individuals with T1DM: glutamic acid decarboxylase 
antibodies (GADA), islet cell antibodies (ICA), islet cell autoantibodies (IAA), protein 
tyrosine phosphatase antibodies (IA-2A) and zinc transporter 8 antibodies (ZnT8A). 
T1DM is considered to represent absolute insulin deficiency and based on the 
presence or absence of antibodies is classified into type 1A or type 1B (11). A special 
subtype of autoimmune mediated T1DM is the latent autoimmune diabetes in adults 
(LADA). LADA shares phenotypical features with T2DM but is characterized by the 
following general characteristics: presence of circulating islet autoantibodies; age of 
diabetes diagnosis > 30 years; no need for insulin treatment for at least 6 months 
after the diagnosis (12).
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T2DM usually appears on a background of insulin resistance in genetically 
predisposed individuals who have impaired β-cell function and who fail to secrete 
sufficient amounts of insulin to keep the blood glucose levels within the normal 
range. T2DM is often associated with a relative decline in insulin secretion over 
time. These individuals may therefore require insulin treatment at some stage if the 
insulin secretion is greatly diminished (13).

Gestational diabetes mellitus (GDM) is defined as any degree of dysglycemia 
that is first recognized during pregnancy. If GDM is diagnosed during the first 
trimester it is considered to represent preexisting diabetes, while in those 
diagnosed during the second or third trimester of their pregnancy it represents 
more probably true gestational diabetes. GDM is associated with insulin resistance 
and hyperinsulinemia. In addition, GDM is associated with adverse neonatal and 
maternal outcomes during pregnancy and delivery. GDM is also associated with an 
increased maternal risk of diabetes after birth, as well as long term adverse health 
consequences for the infant (10).

Other specific types of diabetes may be due to monogenic defects of beta cell 
function, genetic defects of insulin action, other genetic syndromes sometimes 
associated with diabetes, diseases of the exocrine pancreas, endocrinopathies, 
infections, uncommon forms of immune-mediated diabetes or diabetes induced by 
drugs or chemicals (14). 

Correct differentiation between T1DM, T2DM, LADA, monogenic forms of 
diabetes or other forms of diabetes has important implications for appropriate 
treatment and education, for appropriate follow up, as well as for the long-term 
prognosis of each individual diagnosed with diabetes. For a correct classification, 
additional diagnostic tools are necessary, on top of plasma glucose, HbA1C or OGTT. 
Examples of such additional tests are: C-peptide concentration in serum or urine, 
homeostatic model assessment for insulin resistance (HOMA IR), HOMA β and 
autoantibodies (GADA, IAA, ICA, IA-2 or ZnT8) or gene sequencing. Based on these 
tests, insulin secretion or insulin resistance can be calculated, as well as the risk of a 
few monogenic forms of diabetes maturity onset diabetes of the young – (MODY). In 
addition, based on six variables (GADA, age at diagnosis, BMI, HbA1C, and HOMA), 
five subgroups of diabetes have also been described.

2.1.4. T1DM definition and diagnosis
T1DM is an autoimmune disorder characterized by hyperglycemia due to destruction 
of beta cells of the Langerhans islets (15). Consequently, the autoimmune destruction 
of the beta cells (low/absent serum C peptide and the presence of autoantibodies) 
could be considered to confirm T1DM (type 1A) beyond clinical features (11). The 
absence of insulin treatment during the first 6 months after diagnosis in an individual 
without a negative C-peptide, but with the presence of autoantibodies, could be used 
to rule out T1DM (12).

However, the absence of autoantibodies together with the presence of clinical and 
metabolic features of overt hyperglycemia cannot rule out T1DM (type 1B), and is 
then considered idiopathic (11).
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2.1.5.  Epidemiology of T1DM
In 2015 the global prevalence of diabetes was 9.3%, with a projection of 10.9% by 
2040 (16). It is estimated that 7 to 12% of all individuals with diabetes will have 
T1DM. In addition, 5 to 15% of the individuals with T2DM will in fact have either 
T1DM or LADA (17). There is an annual increase in T1DM incidence of approximately 
3% (16). Notably, there are no sex differences in the incidence or prevalence of T1DM 
(13). However, there are regional differences both in Europe and across the world 
(18). One explanation for this variation could be ethnic differences, while another 
possible cause might be the geographical latitude gradient (19, 20).

2.1.6. Pathogenesis of T1DM
It is assumed that on a background of genetic predisposition to autoimmunity the 
action of an environmental factor may trigger the autoimmune process, leading to 
beta-cell destruction and a decline in insulin secretion (21).

Individuals with a family history of T1DM carry a higher risk of the disease compared 
with the general population. This risk is about 6 % in offspring, 5 % in siblings and 50 
% in identical twins, while in subjects without family history the risk is about 0.4% 
(22). Consequently, the heritability of T1DM is maximum 40% in monozygotic twins, 
while other mechanisms (epigenetic, environmental, etc.) account for the remaining 
risk. The HLA (human leukocyte antigen) gene loci contribute with approximately 
50% of the genetic risk of T1DM, while other non-HLA loci may be responsible for the 
other 50% of the genetic risk. In total, more than 40 genes have been identified that 
contribute to the genetic T1DM susceptibility (23).

The autoimmune attack is conducted by self-reactive B and T cells reactive to 
various antigens. While the role of the T cells is quite clear in the pathogenesis of 
T1DM, it seems that the B cells are not necessarily required for the development of 
the disease (24). The autoreactive T cells with epitopes derived from insulin and/
or IGRP (islet-specific glucose-6-phosphatase catalytic subunit-related protein) 
or reactive with other antigens are critical for the initiation, maintenance and 
progression of the disease (25). Usually, IAA are the first antibodies detected in the 
serum of children with T1DM (26). Other important antibodies are: GADA, ICA, IA-
2A and ZnT8A (27). Several additional autoantibodies could also be present in T1DM, 
being directed against the following antigens: ICA69 (islet cell autoantigen 69 kDa), 
IGRP, ChgA (chromogranin A), insulin receptor, heat shock proteins, jun-B antigen, 
peripherin and GFAP (glial fibrillary acidic protein) (28). A crucial organ implicated 
in the development of the T cell tolerance to tissue-restricted self-molecules is the 
thymus (29). However, the initiating factor of the tolerance dysregulation is not 
known. It is presumed that either late/low mRNAs expression of insulin and other 
islet cell autoantigens (GAD65, ICA69, IA-2) in human thymus or molecular mimicry 
between GAD65 and viral proteins could be responsible (30, 31).

Some pregnancy-related and perinatal factors are associated with T1DM: 
maternal age above 25 years, pre-eclampsia, neonatal respiratory disease, jaundice, 
birth weight (33, 34). In addition, several environmental factors such as bovine 
serum albumin from cow’s milk, early exposure to cereals and nitrites have been 
associated with a higher risk of T1DM, while vitamin D and omega-3 fatty acids 
supplementation may be protective (35-39). 
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Figure 1. The genetic loci for T1DM.
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Figure 2. Early and late stages of T1DM. On the Y axis the % of the functional beta cell mass is 
presented. Adapted from (13, 40).

Based on these pathogenic features, the natural history of T1DM can be divided 
into four stages: presymptomatic T1DM with normoglycemia, presymptomatic T1DM 
with dysglycemia, symptomatic T1DM and T1DM with chronic complications. At the 
first stage, “presymptomatic T1DM with normoglycemia,” individuals with one or 
two antibodies present in the serum are still normoglycemic. At the second stage, 
“presymptomatic T1DM with dysglycemia,” the number of beta cells declines and 
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the glucose level starts to rise, but it is still below the diagnostic threshold for diabetes 
(40). At this stage, multiple antibodies are present, together with impaired fasting 
glucose and/or impaired glucose tolerance. The HbA1C values are between 5.7 and 
6.4%, or an increase in the HbA1C of more than 10% can be diagnosed (13). However, 
the clinical symptoms are absent. At this stage, the 5-year probability of overt diabetes 
is 75% (41). At the third stage the affected subjects become symptomatic and T1DM is 
diagnosed according to biochemical criteria. At this stage, the individuals encounter 
polyuria, polydipsia, weight loss and fatigue, while DKA (diabetic ketoacidosis) is 
usually present at diagnosis (13, 40). In general, after 5 or more years from diabetes 
onset chronic complications start to appear and the individuals with T1DM may 
enter the fourth stage — “T1DM with chronic complications” (Figure 2).

2.2. Diabetic complications

2.2.1. Definition and classification
Diabetic complications are those long-term diseases that appear only in individuals 
with diabetes or which appear much faster than in the general population. A potential 
risk estimation of the most important chronic outcomes in T1DM can be performed 
using the Archimedes model or the EURODIAB model (42, 43). Other models of risk 
estimation for chronic complications have also been proposed (44, 45). 

The chronic complications are mainly triggered and/or accelerated by poor glycemic 
control. Poor glycemic control primarily affects the blood vessels independently 
of their caliber. Other factors such as high blood pressure, dyslipidemia or the 
prothrombotic status may also contribute. The diabetes complications are divided 
into microvascular complications (when the small blood vessels are damaged) and 
macrovascular (when the larger blood vessels are injured).

Microvascular diabetic complications include damage to the eyes (diabetic eye 
disease or diabetic retinopathy), the kidneys (diabetic kidney disease or DN) and the 
nerves (diabetic neuropathy). Diabetic eye disease leads to retinopathy, cataract and 
glaucoma which are the leading causes of blindness (46). DN involves glomerular 
and tubular damage that leads to a relentless decline in the kidney function and 
ultimately renal failure. 

Diabetic neuropathy can affect somatic neurons (peripheral and/or central) 
as well as vegetative neurons (sympathetic and/or parasympathetic). Thus, 
diabetic neuropathy can affect any somatic neuron, leading to distal symmetric 
polyneuropathy, mononeuropathy or radiculopathy, frequently leading to diabetic 
foot disorders and to toe/limb amputations. In addition, by affecting the autonomic 
nervous system, it can lead to autonomic neuropathy, which can affect any organ 
with sympathetic or parasympathetic innervation such as the heart, stomach, bowel 
and urogenital organs, among others. The clinical consequences of autonomic 
neuropathy are usually represented by hypotension or sudden death, diarrhea/
constipation, genital organ dysfunction, neurogenic bladder, sudomotor dysfunction 
or hypoglycemia unawareness (47).
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Other emerging complications presumed to be linked to microvascular damage 
are diabetic cardiomyopathy and diabetic encephalopathy. Diabetic cardiomyopathy 
(DC) is ‘‘a distinct entity characterized by the presence of abnormal myocardial 
performance or structure in the absence of epicardial coronary artery disease, 
hypertension, and significant valvular disease’’(48). DC was first reported in 1972 
in individuals with T2DM but is also present in those with T1DM. An understanding 
of its complex mechanisms is still elusive (49). The main clinical consequence of DC 
is left ventricular hypertrophy (LVH), together with a variable degree of diastolic 
dysfunction, leading to heart failure with preserved ejection fraction (50). Diabetic 
encephalopathy (diabetic cognitive dysfunction/impairment) (DE) refers to the 
deleterious long-term effects of diabetes on central nervous system function and 
cognition. The clinical consequence is a more rapid decline in the cognitive function 
compared with the general population, due to structural and functional changes in 
the brain (51, 52). The mechanisms behind the cognitive impairment in diabetes 
are far from being clear, but it seems that both hyper- and hypoglycemia have a 
triggering and/or accelerating effect (53, 54).
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Figure 3. Principal stages of type 1 diabetes mellitus and its natural history in regard to blood 
pressure, GFR, CVD, DN and mortality. Adapted from (13, 40).

Macrovascular complications include cardiovascular diseases such as coronary 
artery disease (CAD), cerebrovascular disease or stroke and peripheral vascular 
disease (PVD). CAD is defined as coronary artery damage followed by inadequate 
blood supply of oxygen and nutrients to the myocardium. The pathogenic 
mechanism involves cholesterol containing deposits (atherosclerotic plaque) in the 
coronary walls, while the clinical consequence of ischemia may vary from stable to 
unstable angina, myocardial infarction and sudden death (55). Stroke is defined as 
a neurological deficit attributable to vascular damage that leads to a focal injury in 
the central nervous system (CNS). Such CNS injuries are represented by cerebral 
infarction, intracerebral hemorrhage or subarachnoidal hemorrhage (56). Both in 
the general population and in individuals with diabetes, stroke is a major cause of 
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disability and death (57). PVD is defined as chronic obstructive arterial disease of the 
lower extremities. Arterial occlusion is due to atherosclerosis and leads to decreased 
lower extremity arterial perfusion. The clinical consequence of chronic ischemia is 
intermittent or permanent pain at the lower limbs during walking or at rest (58). 
Individuals with diabetes have a 3.5 to 6 times higher risk of PVD (3.6 for women 
and 6.1 for men) compared to the general population (59).

Other likely long term diabetic complications are periodontal disease, infertility, 
diabetic myonecrosis, altered immune responses, diabetic pneumopathy (respiratory 
infections and restrictive lung disease), dermatologic manifestations, insulin 
treatment related lipohypertrophy, frozen shoulder, tunnel carpal syndrome, etc. 
(60-68).

2.2.2. Diabetic nephropathy

2.2.2.1. Definition and classification
DN is defined by structural and functional changes in the kidney triggered and 
sustained by diabetes, followed by severe clinical manifestations at the late stages 
of the disease. 

Typical structural changes are represented by mesangial expansion, podocyte 
injury, glomerular basement membrane thickening and at the late stages by 
glomerular sclerosis. In addition, atypical tubular atrophy, advanced glomerular 
arteriolar hyalinosis and global glomerular sclerosis with mild or absent mesangial 
expansion could be present (69). Based on the histological findings, at least two 
classifications have been published (70, 71).

The most important functional changes are represented by glomerular endothelial 
cell dysfunction, glomerular hemodynamic changes, podocyte and basement 
membrane injury, proximal tubular dysfunction and altered tubulo-glomerular 
feedback (72).

The clinical consequences of these functional changes are a persistent and 
gradual increase in AER together with a progressive decline of the kidney function 
assessed by eGFR, a progressive increase in the blood urea nitrogen (BUN) and the 
development of anemia. Finally, when the kidney function is severely impaired, 
the blood pressure becomes very difficult to manage, the need for insulin or other 
antidiabetic medications to control the glucose concentration starts to decline, and 
symptoms like morning sickness, nausea and/or vomiting, weakness, paleness or 
itching start to appear.

The first consequence of diabetic kidney damage is progressive increase in 
albuminuria, which can be measured in a 24 hour or overnight urine collection 
(AER) as well as in a spot urine sample [albumin to creatinine ratio (ACR)]. The 
upper limit of normal urinary AER rate is 30 mg/24h or 20 μg/min, while a normal 
ACR is up to 30 mg/g (73). Microalbuminuria (moderately increased albuminuria) 
is defined as an AER of 30 to 300 mg/24h (20 – 200 μg/min or an ACR of 30 – 
300 mg/g). Macroalbuminuria (severely increased albuminuria or proteinuria) 
represents a urinary AER above 300 mg/24h or 200 μg/min or an ACR >300 mg/g. 
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Because the AER has a coefficient of variation (CV) of approximately 40% in the 
same individual, 2 out of 3 consecutive urine samples with elevated AER, over 3 to 6 
months, are necessary to conclude that the AER is persistently abnormal (74).

The second clinical consequence of DN is the progressive decline of kidney function. 
Assessment of kidney function by GFR can be measured directly or estimated. Direct 
measurement of GFR can be performed by diverse methods that use filtration markers 
such as inulin, iohexol, 125I-iothalamate, 99mTc-diethylenethiaminepenta-acetic acid 
(DTPA) or 51Cr-ethylenediaminetetra-acetic acid (EDTA) (75, 76). However, these 
methods are cumbersome and difficult to use in clinical practice and therefore the 
most popular method to assess kidney function is an estimation of the GFR (eGFR). 
The GFR estimation can be done by various mathematical formulas that are based 
on the serum/plasma creatinine or cystatin C values. The most commonly used are 
the MDRD (Modification of Diet in Renal Disease Study Equation) and the CKD-
EPI (Chronic Kidney Disease Epidemiology Collaboration) formulas (77-79). eGFR 
has a coefficient of variation over 2 to 4 months of 6.3% to 16%, according to the 
method or the formula used for the estimation (80-82). These variations are due to 
physiological variations in the urinary creatinine excretion and creatinine production 
(81, 83). In addition, in acute situations these eGFR variations may be even higher 
for short periods. Consequently, to make a definitive diagnosis of chronic change in 
the kidney function, two creatinine measurements are necessary over 3 months (73).
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Figure 4. Kidney function classification into five stages according to Kidney Disease Improving 
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Based on AER, DN could “classically” be diagnosed in an individual with diabetes 
based on “persistent albuminuria of >300 mg per 24h or a ACR >300 mg/g, the 
presence of diabetic retinopathy, and the absence of any clinical or laboratory 
evidence of other kidney or renal tract diseases” (84). Importantly, other potential 
extrarenal causes of increased AER should be excluded, such as poor glycemic control, 
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strenuous physical exercise, elevated blood pressure, heart failure, pregnancy, 
menstruation or acute illnesses with fever, before a definitive diagnosis is made (85). 
However, in the mid-1980s microalbuminuria was already considered “incipient 
nephropathy” (86). This classical definition was independent of any other kidney 
damage markers of chronic kidney disease (CKD) or of eGFR, while the appearance 
of persistent macroalbuminuria was considered the point of ‘no return’ for disease 
progression (87).

Based on the clinical and structural renal alterations, DN in T1DM can be 
divided into five stages: 1) early renal hypertrophy—hyperfunction, 2) renal lesions 
without clinical signs, 3) incipient DN (microalbuminuria), 4) clinical overt DN 
(macroalbuminuria), 5) ESRD (88). The main clinical feature mirroring the 
progression of DN in this classification is urinary AER. In addition, at the very early 
stages hyperfiltration is present.

Based on the eGFR values, kidney function also is divided into five stages: 1) >90 
ml/min/1.73m2 — normal GFR or hyperfiltration, 2) 60–89 ml/min/1.73m2 — mild 
renal dysfunction, 3) 30–59 ml/min/1.73m2—moderate renal dysfunction, 4) 15–29 
ml/min/1.73m2 — severe renal dysfunction, 5) <15 ml/min/1.73m2 or dialysis — 
renal insufficiency (89, 90).

Even if AER and eGFR both mirror the progression of DN, the use of just one 
of them for the risk stratification could miss out individuals progressing towards 
ESRD. It is worthy of note that the true significance and independent existence of 
hyperfiltration has been debated (91, 92). Others have supported the idea of an early 
decline in kidney function, even within the normal GFR range, as a better clinical 
predictor of progression (93). Furthermore, the presence of a long asymptomatic 
period with normal eGFR, but with clear histological kidney abnormalities, has 
been widely accepted (88). Last but not the least, 2 to 4% of individuals with 
T1DM have low eGFR and normal AER, while up to 23% of individuals with T2DM 
have non-albuminuric chronic kidney disease (94-96). Therefore, screening and 
diagnosis of renal complications in diabetes should include both eGFR and AER 
(Fig.4) (73). According to the latest KDIGO guideline, in most individuals with 
diabetes CKD should be attributable to diabetes if: macroalbuminuria is present; or 
microalbuminuria is present in the presence of diabetic retinopathy or in T1DM of 
at least 10 years’ duration (97).

2.2.2.2. Epidemiology
Before discussing the epidemiology of DN, it is important to understand the 
differences in the diagnostic methods. Until the beginning of the 1980s, DN was 
diagnosed based on the presence of proteinuria, since there was no other diagnostic 
method available (98). The concepts of microalbuminuria and incipient DN appeared 
in 1982 (99-101). Because of this novel and early biomarker of kidney damage, 
the diagnosis could be made even before the “point of no return,” and with newer 
treatments (angiotensin converting enzyme inhibitors, lipid lowering treatment, 
blood pressure control) the progression could be slowed down considerably.

Early studies showed that 40% of the individuals with T1DM developed proteinuria 
with an incidence peak at 15 years of diabetes duration and a prevalence peak at 
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25 years of diabetes duration (102). Newer studies have shown similar cumulative 
incidence rates for proteinuria, but with 5 to 15 years delay, suggesting the beneficial 
effects of early diagnosis and treatment (103-105). In addition, similar trends in the 
cumulative incidence are observed when looking at the progression to ESRD, which 
nowadays also occurs at older ages (5, 106, 107).

In T2DM, the prevalence of diabetic kidney disease (DKD) ranges between 38 
and 50% at 15 years of diabetes duration (108, 109). The number of individuals with 
T2DM receiving renal replacement therapy (RRT) has increased five-fold since 1993. 
Notably, today T2DM is the leading cause of ESRD, representing 1/3 of individuals 
with ESRD (110).

2.2.2.3. Clinical risk factors
The most important treatable clinical risk factors for DN include an unfavorable 
glycemic control, high blood pressure and dyslipidemia. In addition, several other 
factors could also play a role in the pathogenesis of DN, e.g. smoking (111), lack of 
physical exercise (112) and genetic propensity (113).

Glycemic control
Glycemic control can be assessed by using its two main components—the average 
glycemic control and its variability. In addition, other factors responsible for the 
biological variation in protein/hemoglobin glycosylation could also play a role in its 
estimation.

The average glycemic control can in the short term be evaluated by using self-
monitoring of blood glucose (SMBG) or continuous glucose monitoring (CGM) 
systems. With these methods the blood glucose values can be translated into an 
estimated average glucose (eAG) and subsequently into HbA1C values to estimate the 
long-term average glycemic control (114). A satisfactory short term glycemic control 
means fasting glycemia of 70 to 130 mg/dl (3.8 – 7.2 mmol/l) and postprandial 
glycemia below 180 mg/dl (10 mmol/l), which can be translated into an average 
glucose of 154 mg/dl (8.5 mmol/l) or a HbA1C of less than 7% (53 mmol/mol) (115). 
Glycemic control evaluated by its average is the main risk factor for DN in individuals 
with T1DM and for DKD in individuals with T2DM (116, 117). Other important metrics 
of average glycemic control derived from ambulatory glucose profiles or CGM are 
target range and time in range. In individuals with diabetes if the glycemic values are 
in target range for more than 50% of the time HbA1C will be less than 7% (118).

Short-term glycemic variability can be measured by multiple indexes. There is a 
consistent association between short-term glycemic variability and the microvascular 
complications in individuals with T2DM. However, the association of short-term 
glycemic variability with chronic complications in individuals with T1DM is less 
clear (119). 

Long-term glycemic variability refers to fluctuations in the glycemic control 
from one visit to another and is most commonly evaluated by the HbA1C variability 
(120). HbA1C variability can be assessed by its standard deviation (SD) or using the 
HbA1C variability score (121, 122). In T1DM, long-term variability of HbA1C is a risk 
factor for microalbuminuria and DN progression (123, 124). Also in individuals with 
T2DM the long-term HbA1C variability is associated with DKD (125). Other factors 
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associated with the biological variation in protein/hemoglobin glycosylation are 
the hemoglobin glycosylation index (HGI) and the glycation gap (GG). Both these 
indexes predict DN in individuals with T1DM and DKD in T2DM (126, 127).

Blood pressure
Blood pressure is another important risk factor for DN. The treatment targets for 
an optimal blood pressure control in most individuals with diabetes are a systolic 
blood pressure <140 mmHg and a diastolic blood pressure <90 mmHg (128). In 
addition to the systolic and the diastolic blood pressure, other components of the 
blood pressure also have been associated with DN. One component is the visit-to-
visit blood pressure variability, which was shown to be an independent risk factor 
for microvascular complications in diabetes (129-131). An altered circadian rhythm, 
and in particular an elevated nocturnal blood pressure, has also been associated 
with the onset and the progression of DN (132-134).

Lipid profile
The relationship between the lipid profile and risk of DN is often complex (135). In 
individuals with T1DM, there are conflicting reports that usually show an association 
between single components of the lipid profile and DN, while the other components 
have either not been reported or have not been associated with DN (136-139). 
However, a low high-density lipoprotein cholesterol (HDL-C) concentration has 
constantly been associated with the onset and progression of DN (140). In addition, 
serum triglycerides and apolipoprotein C3 (ApoC-III) have also been associated 
with DN progression (141-143).

In individuals with T2DM, higher triglycerides and lower HDL-C, though not 
low‐density lipoprotein cholesterol (LDL‐C), have been associated with DKD (144). 
Other prospective studies have demonstrated that triglycerides and LDL-C predict 
not only eGFR decline but also the onset of albuminuria (145).

Other factors
In addition to the above-mentioned well-known risk factors, age, age of onset of 
diabetes, sex, BMI, smoking, family history and ethnicity, genetic background, low 
vitamin D level, uric acid, puberty, pregnancy, hormonal status, hyperfiltration, 
oxidative stress and subclinical inflammation have also been associated with DN 
(135, 146, 147).

2.2.2.4. Pathogenesis

Biochemical mechanisms
Biochemical mechanisms involved in the pathogenesis of DN are classically asso-
ciated with oxidative stress, which triggers a range of molecular signaling pathways 
that first lead to functional changes and then to structural changes in the kidneys.

Oxidative stress reflects an imbalance between the systemic manifestation 
of reactive oxidative species (ROS) and the ability to detoxify the reactive 
intermediates or to repair the resulting damage. During hyperglycemic conditions 
there is overproduction of mitochondrial superoxide (ROS), which suppresses the 
antioxidant systems and induces oxidative stress and subsequent damage to the 
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nuclear deoxyribonucleic acid (DNA). Such DNA damage leads to activation of the 
DNA repair enzyme poly-ADP-ribose polymerase-1 (PARP-1), which is an enzyme 
that inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the glycolysis. 
The inhibition results in increased levels of glyceraldehyde-3-phosphate (GAP) and 
other glycolytic intermediates and glucose. Accumulation of these molecules in the 
cell stimulates pro-oxidative pathways like the advanced glycation end product 
(AGE) and protein kinase C (PKC) pathways due to increased levels of GAP, but 
also the hexosamine and polyol pathways due to increased levels of fructose-6-
phosphate and glucose. All four pathways are involved in the pathogenesis of diabetic 
complications (148). The mitochondrial ROS overproduction is a consequence of 
intracellular hyperglycemia in the microvasculature, but in contrast a consequence 
of increased oxidation of fatty acids in the large blood vessels and the heart (149).

Another source of ROS is the activation of the renin-angiotensin-aldosterone 
system (RAAS) that could also contribute to the increased oxidative stress alongside 
the hyperglycemia (150). Increased amounts of ROS and oxidative stress lead to 
uncoupling of eNOS (endothelial nitric oxide synthase), which in turn decreases 
nitric oxide production and results in endothelial dysfunction (vasoconstriction 
and leucocyte adherence). In addition, oxidative stress promotes glomerular cells’ 
apoptosis (151).

Oxidative stress activates several intracellular signaling pathways such as 
mitogen activated protein-kinase (MAPK), Janus kinase-signal transducer and 
activator of transcription (JAK-STAT), phosphatidylinositol 3-kinase (PIK3) and the 
Protein Kinase B (Akt/PKB) pathway (152-154). Then, through activation of several 
transcription factors such as nuclear factor kB (NF-kB), activator protein 1 (AP1), 
signal transducer and activator of transcription (STAT), the production of growth 
factors is enhanced [mainly transforming growth factor beta (TGF-β), connective 
tissue growth factor (CTGF)] (155). Finally, increased expression of extracellular 
matrix proteins (type IV collagen, laminin and fibronectin), secondary hypertrophy 
of the mesangial cells and decreased expression of matrix metalloproteinases 
leads to deposition of extracellular matrix (155-157). Mesangial cell expansion and 
deposition of extracellular matrix are the first structural changes that appear in DN.

In addition, through multiple signaling pathways induced by oxidative stress, 
the podocytes suffer cytoskeleton rearrangement and foot process effacement with 
subsequent loss of the slit diaphragm (158). One important step in this process is 
also the loss of nephrin, an important protein of the slit diaphragm (157). Moreover, 
increased ROS production has been implicated in podocyte apoptosis (159). Podocyte 
foot process effacement and apoptosis together with nephrin and slit diaphragm loss 
are the most important changes leading to proteinuria.

At the tubular level, hyperglycemia and oxidative stress trigger activation 
of RAAS, hypoxia, apoptosis and fibrosis (160). Hyperglycemia increases the 
production of citric acid intermediates such as alpha-ketoglutarate, which in turn 
activates G-protein-coupled receptor 91(GPR91) (161). Activation of GPR91 in 
endothelial juxtaglomerular cells triggers changes in cytosolic Ca2+, nitric oxide 
(NO) and prostaglandin E2 (PGE2), and increases the release of renin. Renin further 
increases the angiotensin I, which finally leads to high levels of angiotensin II (162). 
Binding of angiotensin II to its angiotensin II receptor type 1 (AT1) receptors in the 
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endothelial glomerular cells, mesangial cells, podocytes and endothelial tubular cells 
triggers vasoconstriction, increased intraglomerular pressure, hypoxia, increased 
production of  TGF-β and extracellular matrix proteins (163).

Kidney hypoxia as a consequence of hyperglycemia by itself induces oxidative 
stress, a change in the oxygen-hemoglobin dissociation curve, impaired stabilization 
of hypoxia-inducible factor 1-alpha (HIF-1α) and growth factor production, 
abnormalities in red blood cells as well as tubular cell apoptosis. An immediate effect 
of tubular and peritubular cell apoptosis is a decrease in the activation of vitamin D 
and production of erythropoetin. Low vitamin D also activates the renin production, 
while low erythropoetin exacerbates the hypoxia (164, 165).

Tubular cell exposure to growth factors leads to “tubular cell activation” with 
subsequent secretion of chemokines [monocyte chemoattractant protein-1 (MCP-
1), regulated upon activation normal T cell expressed and presumably secreted 
(RANTES)] and growth factor peptides [platelet derived growth factor (PDGF-B)] 
into the interstitium as well as the attraction of monocyte and macrophages, 
with interstitial microinflammation and fibrosis as the net result (166). Finally, 
extensive remodeling of the mesangium and tubulointerstitial fibrosis will appear 
due to sustained TGF-β activity and exacerbation of oxidative stress secondary to 
AT1 receptor activation (167, 168). Tubular atrophy and interstitial fibrosis are the 
leading tubulointerstitial lesions in DN. 

Both glomerular and tubular cell damage can also be triggered and sustained by 
high intracellular fatty acid (FA) concentrations that lead to lipotoxicity through 
complex mechanisms (169). 

Finally, the tubulo-glomerular feedback is one of the several mechanisms by 
which the kidney regulates the renal blood flow and the glomerular filtration rate. 
Sodium and glucose are reabsorbed by the sodium-glucose co-transporter 2 (SGLT2) 
in the proximal tubule, and during hyperglycemic conditions there is a maladaptive 
increase in the glucose and sodium reabsorption, leading to less sodium reaching 
the macula densa, a collection of densely packed epithelial cells at the junction of 
the thick ascending limb and distal convoluted tubule. Sodium chloride is sensed by 
the apical Na-K-2Cl cotransporter in the macula densa, and an increase in the distal 
tubular sodium chloride concentration causes basolateral release of adenosine from 
the cells in the macula densa. Adenosine is a strong vasoconstrictor in the afferent 
arteriole and leads to reduced renal blood flow, increase in the renal vascular 
resistance and ultimately a decrease in the GFR (170).

Mechanical stress
Mechanical stress on the mesangial cells activates the expression of GLUT-1 (glucose 
transporter 1) and results in increased glucose uptake, oxidative stress and excess 
TGF-β production (171). In addition, mechanical stress contributes to podocyte foot 
process effacement and podocyte detachment (172).

In conclusion, the diabetic milieu (high glucose, oxidative stress, glycated 
proteins) together with lipid accumulation and hypertension-induced mechanical 
stress triggers angiotensin II, inflammatory cytokines and growth factors production. 
Therefore, glomerular and tubular injury develops as a consequence of complex 
remodeling of the glomerular and tubular structures, with proteinuria and renal 
function decline as the net result.
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2.2.3. Cardiovascular disease
CVD is a major chronic comorbidity of diabetes, and individuals with diabetes have 
more than 10-fold increase in the risk of CAD compared with the non-diabetic 
population (173). CVD comprises the following disorders: CAD, DC, heart failure, 
stroke and PVD. Compared with T2DM, heart failure and DC are much less prevalent 
in T1DM, this being the reason why I will mainly discuss CAD, PVD and CVD or 
stroke below (174, 175). 

2.2.3.1. Definition
CAD is usually defined as coronary artery damage followed by inadequate blood 
supply of oxygen and nutrients to the myocardium (55). Stroke is defined as a 
neurological deficit attributable to cerebrovascular damage leading to a focal injury of 
the CNS that could be represented by cerebral infarction, intracerebral hemorrhage 
or subarachnoidal hemorrhage (56). PVD is defined as a chronic obstructive arterial 
disease affecting the lower extremities, with decreased lower extremity arterial 
perfusion leading to pain, ulcers, gangrene and ultimately amputations (58).

An estimation of the cardiovascular risk can be performed by using the United 
Kingdom Prospective Diabetes Study (UKPDS) cardiovascular risk calculator for 
individuals with T2DM or using either the Swedish National Diabetes Register 
(NDR) model or the Steno T1 Risk Engine for individuals with T1DM (44, 176, 177).

2.2.3.2. Epidemiology
In individuals with T1DM, CVD events occur earlier compared with nondiabetic 
subjects (178). In addition, individuals with T1DM have a 10 times higher risk of 
CVD compared with the general population (179).

The annual incidence of CAD is reported to be on average around 1% per year 
in those with T1DM, with a maximum cumulative incidence of 19% after 15 years of 
follow-up (180). Age-adjusted incidence rates for major CAD events in individuals 
with T2DM are 1.5% for women and 1.6% for men, with differences according to age, 
geographical area and presence of other diabetic complications (181). 

The exact incidence and prevalence of PVD is very difficult to estimate, since it 
varies according to the diagnostic criteria used [symptoms of claudication, palpation 
of peripheral pulses or ankle-brachial index (ABI) calculation], age, type of diabetes 
and country. Consequently, the PVD incidence varies between 1.3% and 2.1%, while 
the prevalence also varies between 8 and 38% (182).

The annual incidence of stroke in individuals with T1DM varies between 0.3% 
and 0.74% per year depending on the population studied (180, 183). The incidence 
rate in T2DM starts from 5% and rises up to 15% in those with a previous history of 
CVD (184). These rates are much higher than in the general population, which are 
usually between 0.2 and 0.3% per year (185).
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2.2.3.3. Clinical risk factors for CVD
Similar to DN, glycemic control, lipids and blood pressure are important risk factors 
for CVD.

Glycemic control
In the UKPD Study, after a median follow up of 10.4 years, each 1% reduction of 
the HbA1C, a measure of the average of glycemic control, was associated with a risk 
reduction of 21% for any end point related to diabetes, of 21% for deaths related to 
diabetes, of 14% for myocardial infarction, of 12% for fatal and non-fatal stroke and 
a 43% decrease in the risk of amputations. No threshold of risk was observed for 
any of the endpoints (186). Later studies in individuals with long standing T2DM 
and high cardiovascular risk suggested a non-linear relationship between mean 
HbA1C and all-cause mortality or cardiovascular events, with a suggested threshold 
of 7% (187). Further studies in T2DM showed that at the same HbA1C level the risk 
reduction was dependent on the drug classes used to achieve the mean glycemic 
control, irrespective of the diabetes duration (188-193).

In T1DM, the HbA1C values are also an important risk factor for CVD. In the DCCT 
Trial, intensive treatment reduced the risk of CVD endpoint by 42 to 57 %, with 
durable effects at 30 years of follow up (173, 194).

Short-term glycemic variability assessed by fasting plasma glucose has been 
associated with cardiovascular mortality. Although studies exploring the impact 
of postprandial glucose are very few, they do point in the same direction (195). In 
addition, daily glycemic variability was positively associated with cardiovascular 
autonomic neuropathy, subclinical atherosclerosis and central blood pressure (196-
198). Hypoglycemia, another part of the glycemic variability, has also been linked to 
cardiovascular outcomes both in T1DM and T2DM (190, 199, 200). Furthermore, 
hypoglycemia was demonstrated to be linked not only with cardiovascular events but 
also with mortality, especially in T1DM (201).

Long-term glycemic variability estimated as a visit-to-visit variation of fasting 
glycemia or HbA1C (SDs and coefficients of variation) was positively associated with 
micro- and macrovascular complications independently of the HbA1C level, both in 
T1DM and T2DM (121, 202).

Blood pressure
The best-known components and therapeutic targets of blood pressure (systolic and 
diastolic blood pressure) are well established risk factors for CVD in individuals with 
diabetes (203, 204). However, blood pressure is much more complex than these two 
components (205). Some of the other components of the blood pressure such as the 
pulse pressure and the arterial stiffness are also predictive measures of CVD (206, 
207). It is worth mentioning that these measures are also influenced by the glycemic 
control (208, 209).

In addition to long-term HbA1c variability, visit-to-visit systolic blood pressure 
variability was associated with mortality in individuals with T1DM (210). 
Furthermore, long-term systolic and diastolic blood pressure variability was also 
associated with cardiovascular disease in individuals with T2DM (211, 212).
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Other components of blood pressure such as orthostatic hypertension may also 
contribute to the risk of CVD (213).

Figure 5. Cardiovascular risk pyramid and risk factors.
Adapted for T1DM after Khambhati J and de Ferranti SD (180, 223). AMI — acute myocardial infarction, CAD —

coronary artery disease, PVD — peripheral vascular disease, Srage — soluble form of receptor for advanced
glycation end products, MetS — metabolic syndrome, CD40 — cluster of differentiation 40 protein.

Lipid profile
Similar to the general population, dyslipidemia is a risk factor for CVD in individuals 
with diabetes (180, 214). However, which fraction of the lipids and the lipoproteins 
may contribute to the higher risk in individuals with T1DM is still debated. 
Furthermore, better glycemic control may significantly improve the lipid values, 
thereby complicating the role of the lipids in the CVD prediction, especially in 
individuals with T1DM (215).

The HDL-C metabolism is altered in individuals with T1DM due to abnormal 
hepatic lipase and vascular lipoprotein lipase (216, 217). Although a linear decrease 
in the incidence of CAD was observed with increasing HDL-C concentration in men, 
the incidence increased in women, when the HDL-C concentration was either below 
47 mg/dl (1.22 mmol/l) or above 80 mg/dl (2.07 mmol/l) (218). However, not all 
HDL-C subclasses are associated with the same risk of CVD (219).

LDL-C was strongly associated with CVD in individuals with T2DM, but 
its relationship with CVD in T1DM is less clear (220-222). However, different 
subfractions of LDL, such as oxidized LDL (Ox-LDL), advanced glycation end 
products LDL (AGE-LDL) or lipopolysaccharides-derived LDL (LSP-derived LDL) 
particles seem to have a major impact on the progression of subclinical CVD in 
T1DM (137, 220).

Triglycerides were also demonstrated to be strong predictors of CVD in type 2 
diabetes, but in T1DM their role in CVD prediction is still debated (224).
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Other lipid fractions or indexes such as non-HDL  cholesterol, non-HDL/non-
LDL cholesterol, Ox-LDL, AGE-LDL, atherogenic index of plasma, apoC3 and 
lipoprotein B:C3 (LpB:C3), apolipoprotein B, lipoprotein(a) and apolipoprotein B/
apolipoprotein A-I ratio have also been studied (220, 224-230).

Visit-to-visit lipids variability of fasting HDL-cholesterol, triglycerides and LDL-
cholesterol has been demonstrated to predict cardiovascular events, especially in 
T2DM (231, 232).

Other risk factors
Other traditional risk factors for CVD are sex, diabetes duration, obesity and insulin 
resistance, smoking, kidney disease and probably ethnicity (180). The association 
of microalbuminuria, inflammation and smoking with CVD is relatively similar 
in T1DM and T2DM, while obesity, insulin resistance and lipids are less strongly 
associated with CVD in T1DM compared with T2DM (180). The gender effect on 
CVD is clear in T2DM, while in T1DM the protective role of the female sex seems 
to be lost, especially in those with DN (233, 234). Finally, family history of T2DM 
seems to play a role in the CVD risk generation in T1DM (235). Other non-traditional 
risk factors are presented in Figure 5.

2.2.3.4. Pathogenesis
Similar to what is seen in DN, risk factors such as hypertension, lipids, hyperglycemia 
or cigarette smoking seem to trigger increased ROS production in the vascular wall, 
leading to oxidative stress (236, 237). ROS are produced from molecular oxygen 
triggered by the above-mentioned risk factors by multiple enzymes: nicotinamide 
adenine dinucleotide phosphatase (NADPH) oxidase, xanthine oxidase, enzymes of 
the mitochondrial respiratory chain and inducible endothelial NO synthase (238). 

Enzymes that detoxify ROS include are superoxide dismutase, catalase, 
glutathione peroxidase, etc. (239). The disequilibrium between the production and 
neutralization of ROS leads to oxidative stress and activation of different pathways 
leading to accelerated atherosclerosis in the vascular wall (148). Hyperglycemia leads 
to ROS overproduction and activation of the hexosamine pathway, which further 
inhibits more than 60% of the endothelial NO synthase activity (240). Furthermore, 
hyperglycemia activates PKC, which in turn inhibits the insulin-stimulated eNOS 
activity and stimulates the endotelin-1 that has vasoconstrictor properties (241). 
Finally, high glucose exposure of endothelial cells triggers eNOS uncoupling through 
the Nox4-NADPH subunit with subsequently enhanced superoxide production and 
decrease of the NO production, thereby causing vasoconstriction and blood flow 
abnormalities (242).

Endothelial cells exposed to LDL cholesterol also show eNOS uncoupling (243, 
244). High glucose levels accelerate the lipid oxidation, with formation of small, 
dense LDL particles and ox-LDL, especially in individuals with hypertriglyceridemia 
(245, 246).  Some other key players besides glucose also influence lipid peroxidation 
and eNOS uncoupling, e.g., free fatty acids, leucocyte myeloperoxidase and 
smoking (247, 248). Ox-LDL activates NADPH and xanthine oxidase, with a boost 
of oxidative stress generation (249). Activation of NAPH further enhances eNOS 
uncoupling, on top of the native LDL effect (242-244). Lipid peroxidation in the 
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arterial wall together with leucocyte/macrophage chemoattraction and oxidative 
stress favors LDL deposition in the vessel walls that in turn leads to atherosclerotic 
lesions (248). Multiple dysfunctionalities of the HDL-C metabolism further favor the 
atherosclerotic process (219). Vasoconstriction and atherosclerotic plaque are the 
main mechanisms of cardiovascular disease. 

Hyperglycemia activates the RAAS through multiple mechanisms, leading to 
exacerbated oxidative stress, endothelial dysfunction and hypertension (162, 250). 
Hyperglycemia further induces the release of renin (162). Furthermore, hyperglycemia 
increases the activity of the angiotensin converting enzyme, upregulates the AT1 
receptors and downregulates the angiotensin receptors type 2 (AT2)(250). Activation 
of AT1 receptors by angiotensin II leads to activation of NAD(P)H oxidase and 
xanthine oxidase with oxidative stress exacerbation, downstream activation of other 
pathways, endothelial dysfunction and vasoconstriction, hypoxia, inflammation 
and vascular remodeling (250, 251). All these mechanisms lead to hypertension and 
blood flow abnormalities. The resulting hemodynamic shear stress accelerates the 
plaque formation and the plaque rupture with subsequent thrombosis – the major 
culprits in CVD (252). 

Hypoglycemia is also involved in CVD and cardiovascular mortality (253). The 
vascular consequences of acute hypoglycemia reside in an increase in the diastolic 
blood pressure “with a relatively late reduction of the diastolic blood pressure,” 
“and a reduction of the plasma volume, reflected by an increase in the haematocrit” 
by resetting the baroreflex working range (254). In addition, activation of alpha 
adrenoreceptors leads to an increase in the number of lymphocytes and platelets 
together with platelet activation. Furthermore, acute hypoglycemia leads to a 
marked increase in C reactive protein, coagulation factor VIII activity as well as 
the von Willebrand factor and thrombin generation (255, 256). Thus, by multiple 
mechanisms (capillary closure, thrombosis and atherogenesis) hypoglycemia 
promotes cardiovascular complications (257). Furthermore, hypoglycemia has 
important effects on the heart such as increased heart rate, prolonged QT interval 
and cardiac arrhythmia, potentially leading to sudden death (258-260).

In conclusion, hyperglycemia and lipid abnormalities trigger hypertension and 
together cooperate to produce the atherosclerotic background, while hypoglycemia 
may lead to acute cardiovascular events in individuals with diabetes.

2.3. Link between renal complications, cardiovascular 
disease and mortality
There are multiple links between the renal complications, CVD and premature 
mortality, which are clearly highlighted by their common risk factors and pathogenic 
mechanisms. The common risk factors, among others, are hyperglycemia, 
hypoglycemia, unfavorable lipid and lipoprotein profiles, high blood pressure, 
smoking, endothelial dysfunction and hypoxia. The clinical proofs of the links are: 
1) diabetes increases the risk of CVD; 2) the presence of DN (either a low eGFR or 
increased AER or both) enhances the risk of CVD and premature death; 3) treatment 
of both DN and CVD targets the hyperglycemia, lipid levels, hypertension, smoking 
and endothelial dysfunction.
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2.4. Glomerular biomarkers for DN and CVD in T1DM
The glomerular wall has 3 layers: endothelial cells (fenestrated endothelium), 
glomerular basement membrane and epithelial cells (podocyte slit diaphragm) (261). 
These 3 layers together with the glycocalyx (syndecan, heparin sulphate, chondroitin 
sulphate, hyaluronan) and a few other podocyte proteins (nephrin, podocalyxin) are 
responsible for the electrical charge and the selectivity of the glomerular filtration 
barrier (262). This barrier is damaged in DN, and plasma proteins that are not 
normally filtered at the glomerular level (e.g., albumin) show up in the urine (263). 
The main protein present in the urine is albumin. As a consequence, albuminuria 
does not reflect only kidney (glomerular basement membrane and epithelial cells) 
damage but also endothelial damage (264-267). By reflecting the kidney and the 
general endothelial status in individuals with diabetes, albuminuria (proteinuria) 
may predict not only kidney disease, but also CVD (180).

Figure 6. Glomerular biomarkers of DN. 
Adapted after Moresco RN (270) and Lee YS (271).

Serum albumin (65 kDa) is filtered at the glomerular level and then reabsorbed at 
the tubular level and represents the major source of urinary albumin. Albuminuria 
may reflect also the tubular reabsorptive capacity, apart from the glomerular and 
endothelial function. Therefore, albumin in the urine is one of the first asymptomatic 
clinical signs of microvascular complications. Based on the urinary albumin 
concentration in relation to the time the urine was collected (either overnight or 
24 hours), the AER can be calculated. According to the AER, DN has been divided 
into: microalbuminuria (moderately increased albuminuria) and macroalbuminuria
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(severely increased albuminuria) (268). Persistent microalbuminuria appears 
usually 5 or more years after the diabetes diagnosis and predicts, in more than 80% 
of cases, progression to overt proteinuria and ESRD in individuals with T1DM, but 
also in T2DM (99, 269). In addition, it is an important predictor of cardiovascular 
outcomes both in T1DM and T2DM (270).

Transferrin (76.5 kDa) has a similar molecular weight as albumin but is less 
anionic and may be filtered at the glomerular level more easily than albumin (272). 
Cross-sectional studies in T1DM have shown that transferrin may be an early marker 
of glomerular damage (273). However, no prospective studies have been performed 
to evaluate the predictive value of transferrin in T1DM, although in T2DM urinary 
transferrin was shown to predict the onset of microalbuminuria (274). There are no 
studies on transferrin and CVD.

Glycosaminoglycans (GAG) are important components of the endothelial 
glycocalyx. These GAGs play an important role in the endothelial dysfunction in 
diabetes (275). However, the use of urinary GAG as biomarkers for the diagnostics 
or the prediction of DN has not shown any promising results so far (271, 276).

Lipocalin-type prostaglandin D synthase/β-trace (L-PGDS/BTP) (26kDa) is 
an enzyme secreting prostaglandin D2 (PGD2). It is secreted by the choroid plexus 
into the cerebrospinal fluid and then into the blood stream (277). Due to its low 
molecular weight, L-PGDS is normally filtered at the glomerular level and an 
increase in its urinary concentration is considered a marker of increased endothelial 
permeability (278). No study on its predictive properties in individuals with T1DM 
has been performed so far, but in T2DM L-PGDS was shown to predict the onset 
and progression of DKD (279). Furthermore, urinary L-PGDS was associated 
with essential hypertension in the general population and with vascular injury in 
individuals with T2DM, though no data are available for T1DM (280, 281).

Type IV collagen (~ 540 kDa) is a major component of the mesangial matrix, 
the glomerular and tubular basal membranes and is minimally affected by its serum 
levels (282, 283). Urinary type IV collagen was proposed to be an indicator of the 
matrix turnover rate and to serve as a biomarker for early DN in T1DM (284). 
Furthermore, the urinary type IV collagen to albumin ratio has been suggested to 
be a useful tool to differentiate DN from non-diabetic kidney damage in individuals 
with diabetes (285). Type IV collagen was associated with kidney function decline in 
individuals with T1DM, as well as in T2DM (286, 287). In addition, type I collagen 
fragments predicted the progression to macroalbuminuria 3 to 5 years in advance in 
individuals with T1DM (288). Finally, the panels of biomarkers based on collagen 
fragments have also been associated with CAD (289).

Laminin is a large glycoprotein (~ 900 kDa), without glomerular passage, 
present in the glomerular and tubular basement membranes and acting as a cellular 
adhesion molecule (290). Its presence in urine is suggested to represent glomerular 
basement membrane remodeling and laminin turnover (291). The L-P1 fragment 
of laminin was found to be increased in individuals with diabetes, while the LG1M 
[a specific MMP-9-generated neo-epitope fragment of LAMC1 (laminin γ1 chain)] 
predicted the progression of CKD in non-diabetic individuals (291, 292). No studies 
in individuals with T1DM with DN or CVD are available.
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Urinary immunoglobulins (Ig), and especially immunoglobulin G and IgG4 
(~ 150 kDa), have been proposed as biomarkers of early loss of glomerular charge 
selectivity in individuals with normal AER (293, 294). Other studies have shown 
different patterns of immunoglobulins in normoalbuminuric and microalbuminuric 
individuals with T1DM (295). Their utility as indicators of glomerular membrane 
selectivity was questioned when IgG expression in podocytes was demonstrated 
(296). However, their clinical importance as a predictor of microalbuminuria was 
reconfirmed (274, 295, 297). With regard to CVD, so far, only IgM has been shown 
to be predictive of cardiovascular events in individuals with T1DM, independently of 
AER (297).

Nephrin (~180 kDa) is a podocyte trans-membrane protein and its presence 
in urine was suggested to represent podocyte injury (298). In individuals with 
diabetes, nephrinuria has been associated with albuminuria and lower eGFR even in 
normoalbuminuric individuals (299). Messenger RNA expression of other podocyte 
related proteins such as podocin, synaptopodin, WT-1 (Wilms’ tumor suppressor 
protein) and alpha-actinin-4 is higher in individuals with DN than in healthy 
controls (300).

MicroRNAs (miRNAs) are short (~22 nucleotide long), antisense, non-coding 
RNAs present in cells with an important post-transcriptional regulatory role of gene 
expression (301). Different miRNAs have been found to be up/downregulated in the 
urine of individuals with DN compared with those without DN or have been shown 
to be predictive of the development of DN (302-305). 

Extracellular matrix proteins such as fibronectin, matrix metalloproteinases 
or TGF-β-induced protein h3 have also been proposed as biomarkers for DN. 
Fibronectin (~440 kDa) is a structural protein of the glomerular extracellular matrix. 
In cross-sectional studies it was found to be increased in individuals with T1DM 
and macroalbuminuria, as well as in those with T2DM and microalbuminuria (306). 
Matrix metalloproteinases (MMP-2 and MMP-9) were correlated with albuminuria 
in individuals with T1DM (307, 308). Finally, urinary MMP-2 and MMP-9 were 
increased in individuals in the general population with atherosclerosis or CAD, but 
no data are available for T1DM (309). 

People with T1DM have been shown to have higher urinary levels of the 
profibrotic growth factors and inflammatory chemokines such as tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10). However, 
only the urinary TNF-α was independently associated with the severity of 
albuminuria (310). In addition, the levels of soluble tumor necrosis factor-α 
receptor 1 (sTNFR1) are strongly independent predictors of progression to ESRD 
(311). Monocyte chemoattractant protein-1 (MCP-1) was predictive of changes in 
kidney interstitial volume (312). MCP-1 also correlated with the eGFR decline at 
the late stages of DN (313). 

Individuals with T1DM with poor glycemic control have been demonstrated to 
have higher plasma levels of C-reactive protein (CRP), IL-6, MMP-9 and soluble CD40 
(cluster of differentiation 40 protein). However, these levels were not elevated due 
to a decreased excretion by the kidneys, since their urinary levels were also elevated, 
suggesting increased production (314). There are no studies on urinary CD40 and 
DN progression, despite the fact that CD40 alters the glomerular permeability (315). 
Urinary sTNFR1, sTNFR2 and sIL-6R were associated with the severity of heart 
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failure in the general population (316). However, no studies were found on sTNFR1, 
sTNFR2, sIL-6R, MCP-1 or CD40 and CVD in individuals with T1DM.

Hyperglycemia has been associated with oxidative stress and subsequent 
endothelial dysfunction (317). Markers of oxidative stress were therefore proposed 
as predictors of chronic complications in T2DM, but no systematic studies have been 
performed in individuals with T1DM and DN (318, 319). However, in some studies 
free urinary pentosidine predicted the progression of DN (320, 321). A few urinary 
markers of oxidative stress have been associated with CHD, cardiovascular and all-
cause mortality in people with diabetes (322, 323).

Based on the two endogenous biomarkers serum creatinine and cystatin C, a 
GFR can be estimated by using different equations. During the last 50 years, more 
than 70 mathematical equations have been developed to estimate the GFR (324). 

2.5. Limitations of glomerular biomarkers and need for 
other biomarkers
Albuminuria is the only glomerular urinary biomarker that has made it into clinical 
practice as a predictor of DN. Despite its prediction of DN progression towards 
ESRD or its prediction of CVD, albuminuria also has several limitations (325), as 
presented in Table 2.

Table 2. Main characteristics and limitations of albuminuria relating to DN and CVD.  
Modified after Tuttle RK (325)

Major advantages
Diabetic nephropathy

Higher AER is associated with faster eGFR decline
Lowering of AER by treatment lowers the risk of clinical events and DN progression

Cardiovascular disease 
Independently predicts events and mortality
Regression reduces the risk

Major limitations
Diabetic nephropathy

Low eGFR can be present without increased AER
Cardiovascular disease

Categorical nomenclature not reflecting the continuous nature of CVD or DN
General

Non-standardized measurement and reporting
- Assay variability approximately 40%
- Reporting variability - concentrations, timed excretion, ratio to creatinine

Individual variability
- Day to day variability approximately 40%
- Influenced by: high protein diet, glycemic control, blood pressure, heart failure, exercise, urinary tract infections, fever, etc.

The gold standard of kidney function assessment is the measurement of GFR. 
GFR measurement can be performed by using several methods with administration 
of different substances such as: inulin, chromium-51 labeled ethylenediamine 
tetraacetic acid (51Cr-EDTA), 99Tc-pentetic acid (DTPA), iohexol or iothalamate 
(324). To avoid the administration of such substances, the glomerular filtration rate 
in clinical practice has been measured by 24-hour endogenous creatinine clearance. 
In this case, urine was collected over 24 or 12 hours and the serum creatinine 
was measured at the beginning and at the end of the collection. Based on these 
determinations the creatinine clearance could be calculated (326). When considered 
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for implementation in routine clinical practice, all methods designed to measure 
GFR have been impractical, difficult to perform, burdensome and time-consuming. 
The main advantages and disadvantages of the GFR measurement methods are 
summarized in Table 3.

Table 3. Main advantages and disadvantages of GFR measurement methods. 
Modified after Schaeffner E et al. (334)

Major advantages
Inulin

“Gold standard among Gold standards”
No side effects

Iothalamate
Inexpensive assay
Long half-life period
No urinary clearance needed

Iohexol
Inexpensive and sensitive assay
It allows a low dose administration
More precise than iothalamate clearance and similar to inulin clearance (if multiple samples are taken)
No urinary clearance needed
Single-sample technique possible
Simplified by dried blood spot testing

51Cr-EDTA
Reliable alternative to inulin
Widely available in Europe

99Tc- DTPA
Widely available in Europe

Major limitations
Inulin

Expensive
Urinary clearance needed
Complex procedure

Iothalamate
Expensive
Contains iodine
Potential tubular secretion
Complex procedure

Iohexol
Contains iodine

51Cr-EDTA
Radiolabeled substance
Complex procedure

99Tc-DTPA
Radiolabeled substance
Complex procedure

51Cr-EDTA – chromium ethylenediaminetetraacetate;
99Tc-DTPA – diethylenetriaminepentaacetic acid

The “true” kidney function can also be estimated by using different equations 
(327). In 20 to 80% of individuals with diabetes, the eGFR error was more than ± 
30% of measured GFR (328). The problem of imprecise GFR estimation appears 
both at the low and the high ends of the range. Imprecision at high eGFRs is of 
particular concern at the early stages of kidney damage in diabetes, which can be 
associated with an elevated eGFR (potential hyperfiltration). However, the lack of 
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precision is also important at the late stages (329). Imprecise estimation lies less 
in the mathematical methods and more in the performance of the two biomarkers 
creatinine and/or cystatin C used in these equations (328).

Resulting from the non-enzymatic degradation of muscle creatine, creatinine 
is a small metabolite (113 Da) (330). Creatinine is not bound to any proteins, and 
it is freely filtered at the glomerular level (331). These features overlap with the 
characteristics of an ideal filtration marker. Despite these common characteristics, 
however, creatinine is not an ideal filtration marker, since it suffers from tubular 
secretion and reabsorption, while its production rate is variable depending on the 
muscle mass and protein intake (331). Creatinine’s tubular secretion is less than 
10% of the urinary creatinine secretion under normal conditions. However, when 
kidney function declines the tubular secretion increases up to 80 – 100% at late 
stages of kidney disease. Thus, in advanced CKD this massive tubular secretion 
masks the true GFR reduction, making creatinine a less appropriate marker for GFR 
estimation (332). Furthermore, extra-renal clearance and recycling of creatinine are 
also present when the renal function declines, contributing to an overestimation of 
the kidney function (333).

Cystatin C is a small protein (13 kDa) freely filtered at the glomerular level (335). 
In contrast to creatinine, cystatin C is present in all nucleate cells being produced by 
a “housekeeping” gene (CST3) at an approximately constant rate (336). In addition, 
it has no tubular secretion, but is largely reabsorbed and metabolized by the proximal 
tubular cells (337). These characteristics make cystatin C a better filtration marker 
than creatinine, but even so it is far from being an ideal filtration marker. In contrast 
to ideal filtration markers, though, cystatin C may reflect other factors in addition to 
the kidney function. Even if produced at an approximately constant rate, its levels 
are higher in individuals with hypertension, obesity, metabolic syndrome or T2DM 
(338). Also unlike an ideal marker is its significant tubular degradation, which 
prevents its urinary clearance measurement (335, 336). Finally, its small coefficient 
of variation and its curvilinear relation with the measured GFR may seriously 
influence the Cystatin C based eGFR (339).

2.6. Tubular biomarkers for DN in T1DM 
Since the 1980s, tubular dysfunction has been accepted as an important early 
mechanism of DN and many tubular biomarkers have been studied (340). Important 
evidence suggests that tubular dysfunction is indeed as important as glomerular 
damage for the DN progression to ESRD (341-343). 

2.6.1. Distal tubular biomarkers
In almost all kidney disorders the last step towards ESRD is hypoxia, acidosis and 
loss of kidney function, which are all associated with distal tubular damage (344, 
345). Thus, urinary biomarkers reflecting injury in the distal tubules have also been 
studied as potential biomarkers for the progression of DN.

Tamm-Horsfall protein (THP), also known as uromodulin (UMOD), is a 
glycoprotein encoded by the UMOD gene, and derived from the thick ascending limb 
of Henle. This glycoprotein is the most abundant protein excreted into the urine, 
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and a specific biomarker for the distal tubule. Studies have shown increased urinary 
excretion of this protein from the first year after onset of T1DM up to 14 years of 
diabetes duration (346). Furthermore, THP proteins also increased in those with 
microalbuminuria and hyperfiltration (347).

Epidermal growth factor (EGF) is a protein that stimulates cell growth and 
differentiation by binding to its receptor EGFR. The proteins of the EGF-family 
bind to ErbB (EGFR)-family receptors that play an important role in the regulation 
of various fundamental cell processes in many organs including the kidney, where 
they are suggested to play important para- or autocrine roles in tubular repair (348). 
Major EGF production sites in the kidney are the thick ascending limb of Henle’s loop 
and the distal convoluted tubule (348). EGF was shown to predict CKD progression 
in a renal biopsy transcriptome-driven approach from the European Renal cDNA 
Bank (ERCB) (349). Its clinical utility was assessed in more than 600 participants of 
the Edinburgh Type 2 Diabetes Study, who had a normal AER and preserved kidney 
function at baseline. A lower urinary EGF to creatinine ratio was associated with 
new-onset eGFR less than 60 ml/min/1.73 m2, a rapid decline in renal function or 
the composite of both outcomes (350). Whether EGF would be a useful biomarker 
for the identification of new-onset and progression of DN in individuals with T1DM 
is not known. However, the data from T2DM are interesting and suggest the need for 
further studies in T1DM.

Urinary heart-type fatty acid binding protein (H-FABP) was suggested as a 
distal tubular biomarker. In a study on approximately 100 individuals with diabetes, 
urinary H-FABP concentrations were significantly elevated in individuals with 
diabetes and normal AER, compared with healthy subjects. In addition, H-FABP 
was associated with eGFR independently of AER and other clinical risk factors. 
Therefore, urinary H-FABP may be a promising marker of distal tubular damage 
and kidney function (351).

2.6.2. Proximal tubular biomarkers
Even though the distal tubular dysfunction and acidosis may be the last step towards 
ESRD, in early DN other tubular biomarkers have also been shown to be elevated 
(352). That is because in DN the proximal tubule is affected first and then triggers the 
dysfunction of the distal tubule (353). Indeed, initial reports in the 1980s suggested 
that proximal tubular biomarkers are present in early T1DM, when albuminuria 
is still in the normal range (346). In a diabetic milieu the proximal tubules suffer 
structural changes (peritubular capillary rarefaction, interstitial fibrosis or tubular 
atrophy) by many mechanisms, in parallel with the eGFR decline (354). Thus, 
quite a few proximal tubular biomarkers have been studied in order to reflect these 
pathogenic mechanisms.

Alpha 1-microglobulin is a protein that was first identified in the urine of persons 
with tubular proteinuria (356). It is freely filtered at the glomerular level and 99% is 
reabsorbed by the proximal tubular cells, thus being a potential marker of proximal 
tubular injury. It is interesting that an elevation of urinary alpha 1-microglobulin was 
one of the first observations suggesting that tubular injury is present in people with 
T1DM (340, 357). Alpha 1-microglobulin showed 89.0% accuracy, 86.3% sensitivity 
and 94.2% specificity in distinguishing between normoalbuminuric people with 
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diabetes and people without diabetes (358). Its role in DN was studied in a urinary 
discovery-phase proteomics study in individuals with T1DM (359). Whether it can 
predict onset and progression of DN in individuals with T1DM is still not known.

Beta 2-microglobulin (B2M) is a small protein normally present on the cell 
membranes of all nucleated cells and released into the circulation at a constant rate 
(360). It is filtered and is almost fully reabsorbed by the proximal tubular cells (361). 
In T2DM, urinary B2M did not improve the prediction of DN progression (362), 
although some studies in T2DM have reported higher urinary levels in individuals 
with T2DM and albuminuria (363). Expression of B2M in cells of the urinary 
sediment of 51 individuals with T1DM was higher in those with DN compared to 
healthy controls (364). Interestingly, in normoalbuminuric T1DM individuals an 
increased excretion of χ light chains was found despite normal excretion of B2M 
(365). Thus, it is still not known whether urinary excretion of B2M is an early or late 
phenomenon of DN, or whether it could serve as a true predictor of the onset and 
progression of DN.

Proximal convoluted tubule
Cystatin - C
Albumin
Pentosidine
Alpha 1-microglobulin
Beta 2-microglobulin
N-acetyl-ß-glucosaminidase (NAG)
Neutrophil gelatinase-associated lipocalin (NGAL)
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Figure 7. Tubular biomarkers for DN studied using a candidate biomarker approach.
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Urinary N-acetyl-b-(D)-glucosaminidase (NAG) is a large protein present in the 
lysosomes of the proximal tubule epithelial cells. Due to its high molecular weight 
(130 kDa), it is considered to be present in the urine exclusively because of secretion 
from the proximal tubular cells (366). Urinary NAG was shown to be elevated in 
individuals with T1DM when compared with healthy control subjects, and the 
amount correlated with the glycemic control (367). Further increase was found in 
people with microalbuminuria, while lower NAG concentrations were associated 
with the regression of microalbuminuria (368, 369). Despite these promising results, 
its ability to predict DN progression is still debated (370).
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Neutrophil gelatinase-associated lipocalin (NGAL) is a 22 kDa protein that was 
initially identified in mature neutrophil granules but has since been described in 
many other cell types. The binding of NGAL to siderophores-small, high-affinity 
iron chelating compounds secreted by microorganisms is important for the innate 
immune response to bacterial infections. When encountering invading bacteria, 
toll-like receptors on the immune cells stimulate the synthesis and secretion of 
NGAL. The reason why NGAL is used as a biomarker of renal injury is because it is 
rapidly released into urine in response to tubular damage. In addition, it is stable 
and resistant to proteases and as a consequence is the biomarker of choice for the 
diagnosis of acute kidney injury (371). In T1DM urinary NGAL was not associated 
with the decline of renal function, while in T2DM its role is still debated (372, 373).

Growth Hormone (GH) and Insulin-Like Growth Factor -1 (IGF-1) are two small 
proteins with molecular weights of 22 and 28 kDa, respectively. The major sites 
of their production are the pituitary gland and the liver, although the kidneys too 
produce these proteins. It appears that glomerular filtration and tubular reabsorption 
contribute to their urinary concentrations. Both molecules play an important role in 
the pathogenesis of glomerular lesions in individuals with kidney disease but may 
also reflect proximal tubular damage (374). Urinary IGF-1 was shown to be associated 
with kidney volume, a marker of glomerular hypertrophy (375), and urinary GH with 
tubular function and glycemic control (376). Both urinary IGF-1 and urinary GH 
were associated with microalbuminuria in individuals with T1DM (377). Whether 
they predict the onset or progression of DN has not been studied.

Retinol-binding protein (RBP), a member of the lipocalin super-family, which 
carries vitamin A precursors, is a low molecular weight protein (21 kDa). Like all 
small proteins, RBP is filtered, but to limit its filtration it circulates in plasma bound 
to another protein – transthyretin (TTR) (378). Filtered RBP undergoes subsequent 
catabolism in the proximal renal tubules. Thus, the urinary level of RBP may reflect 
tubular function (379). In individuals with T1DM but without microalbuminuria, RBP 
was increased in comparison with healthy individuals, suggesting that this molecule 
may be an early marker of DN (380). More recent studies have shown that RBP is 
a marker of progression of DKD in individuals with T2DM and macroalbuminuria 
(381). However, its predictive value if any in T1DM is not known.

L-PGDS, also named beta-trace protein (BTP), is a low molecular weight protein 
(23–29 kDa) (please see also page 32). L-PGDS/BTP transports retinoids and other 
molecules and catalyzes the transformation of prostaglandin H2 to prostaglandin 
D2. It is produced at constant rates, is stable and not influenced by acute phase 
reactions, is almost completely filtered and reabsorbed by the proximal tubular 
cells (382, 383). These characteristics makes L-PGDS/BTP an ideal tubular marker 
(384). Indeed, L-PGDS/BTP showed similar accuracy as creatinine but was no better 
than cystatin C for the prediction of early GFR decline in people without diabetes, 
while in Pima Indians with T2DM this protein was associated with ESRD (385, 386). 
Furthermore, increased urinary L-PGDS/BTP excretion was associated with renal 
injury in a cross-sectional analysis of more than 600 individuals with T2DM and 
predicted renal injury during follow up (279). Significantly, it is not only a kidney 
function biomarker, but also a predictor of CVD (387). However, no data from people 
with T1DM are available at this moment.
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The role of RAAS in the onset and progression of DN is well established. The 
triggering factor in the proximal tubular cells is glucose, which via increased oxidative 
stress increases angiotensinogen production (388). Thus, urinary angiotensinogen 
(AGT) may be a useful tubular biomarker. Indeed, AGT was associated with 
B2M, albuminuria and annual decline of eGFR in individuals with T2DM with or 
without DKD. AGT was also predictive of cardiovascular events in individuals with 
microalbuminuria (389, 390). In T1DM the urinary angiotensinogen/creatinine ratio 
was greater in 28 individuals with T1DM than in 21 control subjects and preceded 
the increase in albuminuria (391). However, these data need to be confirmed in 
larger populations.

The concept of proximal tubule injury as a major player in the onset and 
progression of kidney disease has led to a large number of studies testing specific 
tubular biomarkers for early detection of DN and their predictive potential regarding 
DN progression (Table 4). As shown above, these studies have involved a large 
number of molecules holding potential as biomarkers and also various populations 
with T1DM or T2DM. However, despite promising findings, none of the above have 
emerged as top candidates for use in clinical practice. This is of course to a large 
extent due to inconclusive and insufficient data, and further studies are needed to 
arrive at any conclusions regarding these biomarkers.

2.6.3. Novel candidates
Some new candidates have emerged from studies on acute kidney injury. Two of 
these novel biomarkers, the KIM-1 and the L-FABP, have drawn particular attention 
due to their pathogenic implications and their clinical relevance for the assessment 
of AKI. It is also worth mentioning that DN, CKD and AKI are all considered a 
continuum, sharing similar risk factors and mechanisms, and therefore biomarkers 
that work in the diagnosis of AKI may also work for DN and CKD. Accordingly, these 
two novel candidates are a major focus of the current thesis.

L-FABP is a low molecular weight protein (15 kDa) member of the FABP family 
of intracytoplasmatic lipid chaperones that coordinate lipid responses in cells and 
are strongly linked to metabolic and inflammatory pathways (392, 393). L-FABP 
expression is particularly increased in cells exposed to non-esterified fatty acids 
(NEFAs) or hypoxia, and promotes fatty acid metabolism and acts as an endogenous 
antioxidant that mitigates the effects of hypoxia and high lipid levels (394, 395). 

L-FABP shows high expression levels in the liver, too. Thus, similar to the other 
low molecular weight proteins, L-FABP may be filtered at the glomerular level 
and reabsorbed at the tubular level. Interestingly, in CKD the urinary L-FABP 
concentrations were not influenced by its serum concentrations, probably because 
the urinary L-FABP originates mainly from the tubular cells (396).

In the tubular cells, L-FABP’s main intracellular function is to carry FAs – the main 
energy source for the proximal tubular cells (397). The FFAs are bound to albumin, 
and when massive albuminuria is present they are filtered at the glomerular level and 
reabsorbed by the proximal tubular cells (398, 399). As a consequence, in individuals 
with albuminuria, L-FABP’s expression in the proximal tubule cells is triggered by the 
FFA overload. Such FFA overload in the proximal tubular cells has also been reported 
in relation to hyperglycemia, hypertension, hypoxia and toxins (400-402).



43

Initially, urinary L-FABP was shown to predict acute kidney injury and non-
diabetic kidney disease progression (403, 404). In individuals with diabetes and 
normal AER, hyperglycemia leads to kidney hypoxia (a very early event), which 
triggers L-FABP expression and increases the urinary L-FABP concentrations (165). 
The urinary concentrations are also influenced by lipid lowering and antihypertensive 
medications, and are increased early in the course of diabetes (405, 406). In early 
T1DM and T2DM, urinary L-FABP predicted the progression to microalbuminuria 
and was further associated with DN (407, 408). However, no well-powered studies 
have been performed in individuals with T1DM, investigating the ability of L-FABP 
to predict DN progression or elucidating whether there is a causal relationship 
between increased L-FABP concentrations and new-onset DN. Furthermore, its role 
in cardiovascular risk prediction in individuals with T1DM is also unclear.

KIM-1 is a small transmembrane glycoprotein (14-kD membrane-bound 
fragment of KIM-1), also known as hepatitis A virus cellular receptor 1 (HAVcr-1) or 
as T-cell immunoglobulin and mucin domain 1 (TIM-1). KIM-1 is expressed mainly 
in the liver and the proximal tubules, but also in the glomerular epithelial cells. In 
the tubular cells the expression goes normally undetected but is increased in AKI 
(409). However, an increase in the urinary concentrations of KIM-1 was triggered 
by a variety of causes, one of them being hypoxia (410-412). At the early stages 
of AKI, urinary KIM-1 was demonstrated to be a valuable biomarker of proximal 
tubular damage (413). In addition to AKI, KIM-1 was also considered to be a 
potential biomarker of CKD (414). In individuals with diabetes, urinary KIM-1 was 
elevated compared with healthy controls and correlated with other biomarkers of 
kidney function (351, 415-417). It is of note that in some prospective studies, KIM-
1’s predictive value with respect to DN was studied, but the data are contradictory 
(369, 418, 419). Furthermore, its causal relationship, if any, with the loss of kidney 
function has not been studied in individuals with T1DM. Finally, its predictive 
abilities for the prediction of cardiovascular events have not been evaluated, either. 
Given the strong evidence of KIM-1 as a biomarker for AKI and CKD, the potential 
for its use to predict DN is still there and deserves further studies.

Adiponectin (ADP) is a small protein primarily expressed in adipocytes with no 
apparent expression in the kidneys (420). Serum ADP has three molecular isoforms: 
low molecular weight (LMW – 90 kDa), medium molecular weight (MMW – 180 
kDa) and high molecular weight (HMW – 300 kDa). The ADP molecule has a 
wide range of well-known protective effects against insulin resistance, vascular 
dysfunction, atherosclerosis and inflammation (421). Importantly, serum ADP was 
inversely correlated with eGFR (422). In T1DM, serum ADP was further shown 
to be increased and to predict the progression to ESRD (423). Notably, ADP was 
abundantly present in biopsy specimens of both nondiabetic and diabetic human 
kidneys (422, 424), and was suggested to be a regulator of albuminuria and podocyte 
function (425). Being a protein molecule, ADP may be filtered at the glomerular level 
and excreted into the urine, thereby reflecting glomerular damage. Indeed, various 
ADP isoforms can be detected in the urine (424, 425). In addition, urinary ADP 
has also been linked to renal tubular injury (426). Thus, urinary ADP may reflect 
both glomerular and tubular damage. In T1DM, urinary ADP excretion increases 
with increasing albuminuria (427). Despite all this evidence, there are no large 
prospective studies on the predictive abilities of urinary ADP, or whether ADP can 
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provide added benefit on top of commonly used biomarkers or if there is a causal 
relationship between increased urinary ADP concentrations and loss of kidney 
function in T1DM. Neither is there any information on whether urinary ADP can 
predict CVD events or mortality.

There is mounting evidence that diabetes increases cardiovascular risk. In 
addition, the risk of cardiovascular events and death increases with the decline of GFR 
(428). Therefore, a better reflection of kidney function could lead to a more accurate 
assessment of CVD risk. Glomerular biomarkers reflect progression of DN, but also 
the CVD risk. Despite their exceptional qualities, actual glomerular biomarkers are 
still not perfect. One explanation could be that in DN tubular dysfunction may also 
be present in addition to glomerular damage. Therefore, having novel biomarkers 
that also reflect tubular injury may be one way of improving prediction of both DN 
and CVD.
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3. AIMS

The main aims of this study were to investigate, in individuals with T1DM, the 
following aspects of three common tubular urinary biomarkers, namely, L-FABP, 
KIM-1 and ADP:

I.	 Their ability to predict AER based progression of DN
II.	 Whether they add any benefit to actual clinically available biomarkers in 

predicting AER based progression of DN
III.	Whether they play a causal role in the loss of kidney function in individuals with 

T1DM
IV.	 Their ability to predict CVD and premature mortality
V.	 Whether they add any benefit to actual clinically available biomarkers in 

predicting CVD and premature mortality.
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4. MATERIAL AND METHODS

4.1. Subjects and study design
These studies were part of the Finnish Diabetic Nephropathy Study (FinnDiane) 
– a prospective, ongoing study with the eventual goal of unraveling the clinical, 
biochemical, environmental and genetic risk factors for DN and other chronic 
diabetic complications, in individuals with T1DM. The FinnDiane Study is a national 
multicenter study performed in approximately 80 centers across Finland. The study 
has collected data from more than 20% of all Finnish individuals with T1DM. The 
complete study protocol was approved by the local ethics committees and the Ethical 
Committee of the Helsinki and Uusimaa Hospital District. All participants signed an 
informed consent at enrolment and the study was performed in accordance with the 
revised Helsinki Declaration (429).

Participants included in the FinnDiane Study fulfilled the following criteria: 
presence of T1DM and age above 18 years at study baseline. T1DM was defined as 
disease onset before the age of 40 years with permanent insulin treatment initiated 
within the first year after the diagnosis. In addition, the diagnosis was confirmed by 
a fasting C-peptide level below 0.3 nmol/l.

The first cross-sectional phase of the study was conducted between 1997 and 
2006. During this phase, participants were enrolled according to a baseline visit 
protocol.

The second phase comprised an investigation of parents and siblings of the 
study participants. However, no data from this phase has been used in the studies 
presented here.

The third phase is still ongoing and comprises follow up of existing participants 
combined with the continued baseline enrolment of additional participants. Two 
approaches are used for the follow up. The first approach, especially for participants 
living in the Helsinki area, is to have follow-up visits that are almost identical to 
the enrolment visits, thereby collecting similar data as well as blood and urine 
samples. For participants residing outside the Helsinki area an alternative approach 
is used and consists of collection of all existing follow-up data from their medical 
files. This approach includes visits by the FinnDiane investigators to all medical 
centers that had originally enrolled participants to the FinnDiane Study as well as a 
comprehensive review of the individual’s medical files at the hospital archives. For 
the studies reported in this thesis all available follow-up data at the time of each 
study were used.

4.2. Baseline visit
At the baseline visit, comprehensive data were collected in a uniform fashion. Each 
participant’s attending physician completed a standardized questionnaire with data 
based on the participant’s medical file and reviewed and verified in detail by the 
attending physician. The questionnaire comprised questions on detailed patient 
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history, medication, chronic diabetic complications and comorbidities as well as 
on potential risk factors for complications (e.g., smoking). A clinical examination 
was performed on each participant, including anthropometric and blood pressure 
measurements. In addition, fasting blood samples were drawn for routine laboratory 
tests (creatinine, HbA1c, lipids, etc.), and at least three timed, overnight and/or 24-
hour urine collections were performed for baseline determination of renal status. 
The blood and urine samples collected at the baseline visit were stored at -20°C for 
the determination of various biomarkers.

4.2.1. Smoking status
According to their smoking habits the participants were considered a) current 
smokers, b) having a history of smoking or c) non-smokers. A current smoker was an 
individual who had smoked at least one cigarette per day at the time of the baseline 
visit. A history of smoking was considered in those individuals who had quit smoking, 
but had been smoking at least one cigarette per day for at least 3 months at one point 
in their life before enrolment to the FinnDiane Study. Non-smokers were those who 
had never smoked.

4.2.2. Anthropometric measures
The anthropometric parameters were represented by height, weight, waist-to-hip 
ratio (WHR) and BMI. Height was measured using a stadiometer with an accuracy 
of less than 1 cm. Weight was determined using a standardized scale with an error 
of less than 0.1 kg. Waist was considered the abdominal circumference at the mid-
distance between the lowest rib and the iliac crest. Hip was the longest measured 
circumference in the gluteal region. WHR was calculated by dividing the waist by 
the hip circumference, measured in centimeters. BMI was calculated by dividing the 
weight (kg) with the square of the height (m2).

4.2.3. Blood pressure
Blood pressure was measured twice, at 2-minute intervals. The measurements were 
performed in the sitting position, after an initial 10 minutes of rest. The average of 
the two measurements was used for all analyses. Participants were considered to be 
under antihypertensive treatment if it was prescribed and the participant currently 
used at least one antihypertensive medication.

4.2.4. Fasting blood measurements
In fasting blood samples obtained at the baseline visit, the following measurements 
were performed from serum and plasma.

HbA1C was measured locally by a standardized assay at the FinnDiane centers 
throughout Finland.

The serum lipid profile (total cholesterol, HDL-cholesterol, triglycerides) was mea-
sured by a Cobas Mira analyzer (Hoffman-La Roche, Basel, Switzerland) at the Helsinki 
University Hospital. LDL cholesterol was calculated using the Friedewald formula.
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Serum creatinine was measured until January 2002 by a kinetic Jaffé reaction 
using a Hitachi 911 E analyzer (Boehringer Mannheim, Mannheim, Germany). 
Since 2002 a photometric, enzymatic (isotope dilution mass spectrometry – IDMS) 
method was used. The new method was performed using a Hitachi 917 analyzer 
(Boehringer Mannheim/Roche Diagnostics, Basel, Switzerland). The inter-method 
correlation coefficient was 0.98. eGFR was calculated by the creatinine based CKD-
EPI formula (78).

4.2.5. Urinary measurements
The 24-hour urine samples collected were used for the measurements of AER and 
urinary creatinine. AER was determined in the 24-hour urine collections using a 
radioimmunoassay (Pharmacia, Uppsala, Sweden). Urinary creatinine was measured 
using a Cobas Mira analyzer.

4.3. Biomarker measurements
The three urinary biomarkers L-FABP, KIM-1 and ADP were measured from a single 
24-hour urine sample collected at the initial visit and then frozen at -20°C until the 
actual measurement. All three urinary biomarkers were measured in 2009.

4.3.1. Urinary L-FABP
Urinary L-FABP was quantified in a single, frozen 24-h urine collection using a 
research L-FABP Elecsys assay on a Cobas Elecsys 411 Immunoanalyzer (Roche 
Diagnostics GmbH, Mannheim, Germany). The complete description of the urinary 
L-FABP determination method is provided elsewhere (430). The lower detection 
limit of the assay was < 0.1 ng/ml, and no cross-reactivity was observed for other 
FABP types. For the statistical analyses, the urinary L-FABP values were normalized 
with urinary creatinine and presented as urinary L-FABP to creatinine ratio.

4.3.2. Urinary adiponectin
We measured ADP in a single 24-h urine collection using an ALPCO Diagnostic 
kit (Salem, NH, USA) for the quantitative measurement of multimeric ADP. The 
protocol was modified for urine samples, without protease pre-treatment. The ADP 
levels were normalized for urinary creatinine and presented as ADP to creatinine 
ratio.

4.3.3. Urinary KIM-1
Urinary KIM-1 was measured using a DuoSet ELISA Development kit from 
R&D Systems from frozen 24-h urine samples. The same Cobas Elecsys 411 
Immunoanalyzer (Roche Diagnostics GmbH, Mannheim, Germany) was used for the 
measurement process. A complete description of the detection technique is provided 
elsewhere (431). Urinary KIM-1 levels were normalized with urinary creatinine and 
depicted as urinary KIM-1 to creatinine ratio.
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4.4. Genotypes
Genotyping was performed in 3,651 samples using an Illumina 610Quad assay. After 
quality control, genotypic data for 3,546 individuals at 549,530 SNPs across the 
autosomal genome were available. Imputation was performed with the HapMapII 
CEU samples as reference panel and resulted in ~2.4×106 SNPs.

4.5. Follow-up time
The median follow-up time differed between the studies. For the studies on DN 
progression the follow-up was 6.0 years (IQR 4.45 – 6.88). For the study that 
investigated the prediction abilities of the studied biomarkers on cardiovascular 
events and mortality the median observation period was 9.1 years (IQR 6.2 – 12.4). 
During follow-up, all participants were managed by their own physicians, without 
any intervention from the FinnDiane Study group members.

4.6. Definition of outcomes

4.6.1. Renal outcomes
The baseline renal status was defined based on several AER values. For the 
classification of each individual, we used at least two out of three urine samples 
collected. Accordingly, the participants were divided into one of the following three 
AER categories: normal AER (<30 mg/24-h or <20 µg/min), microalbuminuria 
or moderately increased albuminuria (30–300 mg/24-h or 20-200 µg/min) and 
macroalbuminuria or severely increased albuminuria (>300 mg/24-h or >200 µg/
min). ESRD was considered if the participants were undergoing dialysis or had 
received a kidney transplant. In all studies the participants with ESRD at the initial 
visit were excluded.

Progression of DN was defined as the passage from one AER category to the 
next one, according to the above-mentioned thresholds. Progression of DN was an 
outcome in studies I, II and III.

Progression to ESRD was defined as de novo requirement of dialysis or kidney 
transplantation. Information about dialysis and kidney transplantation was identified 
from the participant’s medical file and cross-checked with the Finnish Registry for 
Kidney Diseases and the Finnish Hospital Discharge Register (FHDR) as well as the 
center databases. Progression to ESRD was an outcome in studies I, II and III.

Kidney function in the Mendelian Randomization study was defined as the eGFR 
at the study enrolment (baseline visit).

4.6.2. Cardiovascular outcomes
For the cardiovascular endpoints, all data regarding cardiovascular events present as 
of September 18th, 2011 in the Finnish Hospital Discharge Registry (HDR) on all the 
FinnDiane participants were retrieved (22, 23). The cardiovascular outcomes were 
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documented from the HDR by using the participants’ individual hospital admission, 
treatment procedures and discharge diagnoses based on the International Statistical 
Classification of Diseases and Related Health Problems – the 9th and 10th revision 
together with the Nordic Classifications of Surgical Procedures. 

History of either ischemic or hemorrhagic stroke was considered if the 
corresponding ICD codes (ICD8 or ICD9: 430 - 438 and ICD10: I60 – I64) were 
recorded in the HDR. 

CAD was defined as a history of acute myocardial infarction (ICD8 or ICD9 code 
410; ICD10 codes I21, I22) or a coronary artery procedure (bypass grafting surgery 
or angioplasty). 

PVD was considered if a limb amputation or if a peripheral artery procedure 
(bypass grafting surgery or angioplasty) had been performed. 

CVD events were defined as an outcome that included any of the three endpoints: 
stroke, CAD and PVD.

The full description of the cardiovascular outcomes used in the FinnDiane Study 
is presented elsewhere (23). All individuals with cardiovascular events at baseline 
were excluded from the analysis of study IV.

4.6.3. Mortality
The ascertainment of all-cause mortality was performed by linking the FinnDiane 
data with all the data present at September 18th, 2011 in the Finnish Cause of Death 
Registry (CDR) as previously described (22, 23).

4.7. Data collection and management system
For all five studies, we used the clinical data collected at the baseline visit as well as 
prospective clinical data regarding the progression of DN, eGFR loss, cardiovascular 
outcomes or mortality. All data were stored in the BC/SNPmax database system 
(Biocomputing Platforms Ltd, Espoo, Finland) developed by FinnDiane together 
with the commercial company. All collected data were centralized in BC/SNPmax, 
integrating each individual’s genetic, phenotypic and pedigree data into one 
database. Doctors and researchers can access the database by user and password 
codes through a user-friendly web-browser interface. The web-browser based 
platform can be connected to a local network and then be used from any workstation 
(PC, UNIX or Mac etc.) without the need to install any local software. In addition, 
the platform can be used in conjunction with various types of analysis tools and 
programs. The data security is “bank quality” and all web traffic is encrypted and 
cannot be “eavesdropped”.

4.8. Statistical analysis

4.8.1. Descriptive statistics
Descriptive statistics were similar in all studies in this thesis, as described below. All 
continuous variables were tested for normal distribution-based skewness, kurtosis, 
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normality tests and histogram of their values. Skewness and kurtosis values between 
-3 and 3 were considered sufficient for a normal distribution. For all the tests for 
normal distribution, a Shapiro-Wilk p-value greater than 0.05 suggested normal 
distribution. Graphical inspection of the distribution of the variable values was also 
performed by using histograms (432). A generalized extreme Studentized deviate 
test (α = 0.05 and no outliers < 15) was used for outlier detection and exclusion.

Continuous variables that were normally distributed are presented as mean ± SD. 
Non-normally distributed variables are presented as median and interquartile range. 
Normally distributed variables were compared between groups using independent 
two-sample t-test or one-way ANOVA, while for non-normally distributed variables 
group comparison was performed using Mann-Whitney U test or Kruskal-Wallis test 
for non-parametric distributions. 

Categorical variables are presented as percentages, while the comparisons 
between groups of categorical variables were done by χ2 test.

For all the statistical tests, the urinary biomarker to creatinine ratio was 
transformed to the natural logarithm and presented as ln(biomarker), except in 
the descriptive statistics tables, in which the raw urinary biomarker to creatinine 
ratios are presented. In addition, all non-normally distributed variables were 
logarithmically transformed and then used in the statistical analyses if needed, while 
the normally distributed variables were used as raw values.

For all tests in the descriptive statistics section a p-value < 0.05 was considered 
statistically significant. 

4.8.2. Determinants of each urinary biomarker’s level
At first, for each stage of DN, the clinical and biochemical determinants of each 
biomarker’s levels were assessed using a linear regression model with stepwise 
selection of covariates. 

Most Important
Clinical Determinants
Age of T1DM onset
Age of baseline
T1DM duration
History of smoking
Current smoking
BMI
WHR
Systolic blood pressure
Diastolic blood pressure
Insulin units per kg
eGDR

Stepwise selection of covariates
Stepwise selection of covariates

Stepwise selection of covariates

FINAL
MODEL

OF
DETERMINANTS

Most Important
Biochemical Determinants
eGFR
HbA1c
Triglycerides
Total cholesterol
LDL cholesterol
HDL cholesterol
C-reactive protein
ADPs
AER
The other 2 urinary biomarkers

Figure 8. Assessment strategy for most important determinants of each biomarker’s level
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For the clinical determinants, at each stage of DN, the following variables were 
tested: age of diabetes onset, age at baseline, diabetes duration, history of smoking, 
current smoking, BMI, WHR, systolic and diastolic blood pressure, insulin per 
kilogram and estimated glucose disposal rate (eGDR).

Then, for each DN stage, the biochemical determinants of each biomarker’s 
level were tested by using another linear regression model with stepwise selection 
of covariates. This model included the following variables: eGFR, HbA1C, serum 
triglycerides, serum total cholesterol, HDL-cholesterol LDL-cholesterol, C reactive 
protein, serum ADP, urinary biomarkers AER, L-FABP, KIM-1 and ADP.

Finally, the two models were combined and followed by a stepwise selection of 
variables, resulting in a list of determinants for each urinary biomarker and at each 
stage of DN.

4.8.3. Evaluation of each biomarker’s ability to predict the 
outcomes
Assessment of the biomarkers’ ability to predict each study outcome was performed 
using Cox proportional hazard models, with each biomarker as an explanatory 
variable. The dependent variables used in the Cox proportional hazard models were 
as follows:

-	 Progression from normo- to microalbuminuria: Studies I, II and III
-	 Progression of DN from micro- to macroalbuminuria: Studies I, II and III
-	 Progression of DN from macroalbuminuria to ESRD: Studies I, II and III
-	 CVD, CAD, PVD, stroke and mortality: Study IV

For all studies, a test of the biomarkers’ prediction of outcomes was performed by 
using simple Cox proportional hazard models without any adjustment. Thereafter, 
adjustment models for each study were built as described below.

For studies I, II and III all variables present in the database were tested for 
their prediction of DN in simple Cox proportional hazard models. All variables with 
p<0.25 after individual testing were later introduced into the Cox regression models 
with backward selection of covariates. The variables retained in the models after this 
backward selection represented the basic models (BM) for the progression at various 
stages of DN. As a result, different basic Cox models for the progression were built 
for each stage of DN. Further adjustments for AER and/or eGFR were also used, 
apart from the basic model of progression.

In study IV a different approach was used and included the building of a single 
model from traditional cardiovascular risk factors (TRF) for all endpoints (CVD, 
CAD, PVD, stroke and mortality). The traditional Cox proportional hazard models 
for the prediction of cardiovascular outcomes and mortality comprised the following 
variables: age, sex, diabetes duration, HDL-C, triglycerides, HbA1C, history of 
smoking, mean systolic blood pressure, BMI and proliferative retinopathy. Besides 
these traditional risk factors, further adjustments for eGFR and AER were also 
performed. 

To test the independent predictive potential of the biomarkers for studies I, II and 
III, we adjusted the initial Cox proportional hazard models with the basic models 
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of progression at each stage. Finally, these models were also adjusted for AER to 
test the biomarker’s independence of AER. In study IV the same approach was used 
to test the independent predictive abilities for each cardiovascular endpoint (CVD, 
CAD, PVD and stroke) by adjusting the model for traditional risk factors and finally 
for AER and eGFR.

All available interactions between the variables included in the models were 
tested. Cox’s models fit was assessed by cumulative Cox–Snell residuals to (-log) 
Kaplan–Meier estimates. The validity of the model assumption was tested by 
checking the normal distribution of the model’s residuals by using the D’Agostino–
Pearson test. The potential for multiple co-linearity was also evaluated based on 
the variance inflation factor (VIF) and tolerance. Values of VIF less than 10 and of 
tolerance higher than 0.5 were considered acceptable (433). The validity of each 
model’s assumption was tested by evaluating the normal distribution of the residuals 
(434).

To test the potential influence of the competing risk between death and each 
outcome on the results we also performed for each study a Fine and Gray regression 
analysis. This analysis extends the Cox proportional hazard models to competing risk 
data by consideration of the sub-distribution hazard (435, 436). In the competing 
risk analysis, the same sequential analysis and models used in the Cox regression 
analysis were employed.

For all these tests a p-value of less than 0.05 was considered statistically 
significant.

4.8.4. Correction for multiple testing
In study IV, since urinary L-FABP was tested regarding the prediction of multiple 
cardiovascular outcomes and premature mortality, the most stringent Bonferroni 
correction was applied even if less than 20 outcomes were tested. The p-value for 
the prediction of outcomes was considered significant if < 0.01 (αBonferroni = α/m 
= 0.05/5, where m = the number of tested hypotheses).

4.8.5. Assessment of each biomarker’s predictive clinical benefit 
as to progression of DN
The clinical predictive value of the tested biomarkers was assessed using the 
following methods: ROC curve analysis, net reclassification improvement (NRI), the 
integrated discrimination improvement (IDI).

4.8.5.1. Diagnostic abilities for prediction
At first, we tested the average diagnostic abilities for prediction using an ROC curve 
analysis with estimation of the area under the curve (AUC) for every biomarker and 
each studied outcome, also considering the follow-up time. Then, we compared the 
diagnostic abilities by comparing the AUCs of each urinary biomarker with AER 
used alone. We then compared the AUCs of the models comprising both the urinary 
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biomarker and AER with the AUC of either the urinary biomarker alone or AER 
alone. Finally, we compared the variation of AUCs at different time points during 
follow up using a time dependent ROC curve analysis with 5 time points. Evaluation 
of the standard errors (SE) of the AUC, confidence intervals of AUCs (95% CI) and 
of the differences between AUCs was performed by the method described by Delong 
et al. (1988) (437).

4.8.5.2. Improvement of prediction
The improvement of prediction obtained by the addition of each biomarker to either 
AER alone or to the basic progression models plus AER was assessed by calculating 
NRI and IDI (438, 439).

NRI is the difference in percent moving up and down risk strata (i.e., reclassified) 
after the inclusion of the investigated urinary biomarker in the above-mentioned 
multivariable models. In this way the NRI differentiates the movement in the correct 
direction, (i.e., the proportion of subjects being reclassified to a higher risk category 
among those reaching the outcomes or to a lower risk category among those without 
events). Since no well-established risk categories existed at the time of the analyses 
(studies I, II, III), it was considered more prudent to use a version of the NRI that 
does not require categories, rather than trying to create them. Consequently, in these 
studies the category-less or continuous NRI (NRI (>0) or cNRI) was used, which 
is the relative increase in the predicted probabilities for subjects who experienced 
events, and the decrease for subjects who did not, when a biomarker was added to 
the models. cNRI and IDI were obtained by 10-fold cross-validation using 1000 
bootstrap repetitions of the whole data set. In study IV, three relevant thresholds 
(5%, 10% and 20%) for cardiovascular risk decision making were used (440), and the 
same cut-offs were used also for the mortality analysis. In addition, in all studies we 
calculated the NRI generalized for survival data at 5 (NRIS-5) and 10 (NRIS-10) years of 
follow up. All types of NRIs were presented as a percentage (%) (438, 439).

IDI is the increase of the difference in average predicted probabilities between 
cases and controls, when one urinary biomarker was added to the previously 
presented models, without considering any risk thresholds. In addition, in all studies 
we calculated IDI generalized for survival data at 5 (IDIS-5) and 10 (IDIS-10) years of 
follow up. IDI was also presented as a percentage (%) (439).

For all tests regarding improvement of prediction, a p-value less than 0.05 was 
considered statistically significant.

4.8.6. Causality between biomarkers and eGFR – a Mendelian 
randomization (MR) approach or instrumental variable (IV) 
analysis
The Mendelian randomization approach was used to test the causality between 
biomarkers and the eGFR loss during lifetime. This method is a type of instrumental 
variable analysis, which explores the causality between the biomarker’s levels 
(“modifiable exposure”) and an outcome (eGFR) (Figure 9) (441, 442).
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Figure 9. Investigation of the causal link between a biomarker and eGFR –  
MR analysis or IV analysis. 

The IV analysis has three assumptions: 1) the IV is strongly associated with 
the modifiable exposure [A]; 2) the IV is independent of confounding factors that 
may confound the association between the modifiable exposure and the outcome 
[B]; 3) the IV affects the outcome only through the modifiable exposure and not by 
other biological pathways (Figure 9). It is expected that no other pathway is found. 
However, if there is a possible direct association between the IV (genetic variant) 
and the outcome (eGFR) [C], it should disappear when adjusted for the modifiable 
exposure.

At first, all three assumptions of the MR analysis were tested to see if they were 
fulfilled. After the fulfilment of these assumptions the effect sizes were estimated by 
two methods: a conventional linear regression and a two stage least squares method 
(the IV analysis). Finally, the endogeneity was tested to see if there is any difference 
between the two estimates (the conventional estimate from the linear regression and 
the IV estimate from the IV analysis).

4.8.6.1. First assumption – identification of the IV by genome-
wide association analysis
In the MR approach, the IV is either a SNP or a genetic score comprising multiple 
SNPs. To identify the most suitable IV for these studies a genome-wide association 
study (GWAS) was performed to detect the genetic variants associated with the 
modifiable exposure (X or urinary biomarker’s level) according to the previous 
description (Figure 9) (113). For each biomarker, the GWAS data for all subjects 
that had measurements for the urinary biomarker available were utilized. The 
association analysis between each biomarker’s levels and the imputed allele dosage 
data was carried out using linear regression, assuming an additive association model, 
as implemented in Plink (v1.07) (443). The models were adjusted for sex, diabetes 
duration and the two first principal components (PCs) to fulfil the first assumption. 
Further analyses were performed only for the signals with genome-wide significance 
(p-value < 5 x 10-8). The imputed allele dosage data were converted to the most likely 
genotypes, accepting genotype calls with >0.9 genotype likelihood as estimated by 
the MACH imputation software (444). 
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4.8.6.2. Second assumption
Since genetic variants are assumed to be randomly distributed before birth, MR 
assumes that the IV (Z or SNP genotype in this case) is regarded as independent of 
confounders, a priori fulfilling the second assumption. 

4.8.6.3. Third assumption
To test if the association between the eGFR (outcome, Y) and the genetic variant/
genetic score (IV, Z) is mediated through the biomarker’s levels, a multiple regression 
between the SNP and eGFR was performed. If mediated through the biomarker, this 
association should disappear completely after adjustment for the biomarker’s levels. 
To test the existence of other pathways, all variables in the database were evaluated 
to see if they were associated with the IV (SNP genotype) by simple linear regressions 
or χ2 test. The distributions of all residuals were tested for normality.

4.8.6.4. Effect size estimation for the association between 
biomarker’s levels and GFR
Linear regression or the conventional estimate that evaluated the association 
between the biomarker’s levels and eGFR was then adjusted for diabetes duration, 
and additionally for AER. Since age and sex are included in the eGFR formula, they 
were not used as covariates in the models.

Two-stage least squares method (2SLS) or the IV estimate (the causal estimate) 
was used for the IV analysis. At first the raw estimators were obtained and then they 
were adjusted for diabetes duration. Finally, the estimates were also adjusted for 
AER. F-statistics from the first-stage regression of the 2SLS was used to evaluate 
whether the combination of instrument strength and sample size is adequate. A value 
of F≥10 was considered sufficient to ensure the validity of the IV analysis (445).

4.8.6.5. Endogeneity testing
Finally, the endogeneity was tested to see if there is any difference between the two 
estimates (the conventional estimate from the linear regression and the IV estimate 
from the 2SLS analysis)(446, 447). A p-value <0.05 was considered statistically 
significant.

4.8.7. Statistical software
For prediction analyses as well as for the evaluation of clinical diagnostic abilities 
and prediction benefit, MedCalc 12.1.3.0 (MedCalc Software BVBA, Mariakerke, 
Belgium) and Stata/MP2 software (Version 13, StataCorp LP, College Station, 
Tx) were used. The ROC curve analysis was performed using MedCalc 12.1.3.0 
(MedCalc Software BVBA, Mariakerke, Belgium) and Stata/MP2 software (Version 
13, StataCorp LP, College Station, Tx) and the ‘timeROC’ package implemented in 
RStudio (version 1.0.136, Boston, MA, USA). cNRI and IDI were tested via the ‘incrisk’ 
Stata module (Studies I, II, III and IDI in study IV). Estimation of NRI in relation 
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to the cardiovascular outcomes was performed using ‘nri’ Stata module (440). In 
addition, the NRI and IDI generalized for survival data at 5 and 10 years of follow 
up were calculated using the ‘nricens’ and ‘survIDINRI’ packages implemented in 
RStudio (version 1.0.136, Boston, MA, USA).

For evaluation of the first assumption of the MR approach using the genetic 
data analyses the following software was used: Plink (v1.07) EIGENSTRAT 
software (EIGENSOFT v. 3.0) and MACH imputation software (443, 444, 448). For 
evaluation of causality by MR analyses the two-stage 2SLS or the IV estimate (the 
causal estimate) was employed using the IV analysis, implemented in Stata/MP2 
software (Version 13, StataCorp LP, College Station, Tx).
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5. RESULTS

5.1. Study I – Urinary L-FABP and progression of DN
The baseline clinical features of the individuals with T1DM and the healthy control 
subjects included in study I are presented in Table 4. The average follow-up time in 
this study was 5.8 years (95% CI 5.7 - 5.9) and during this period there were 112 new 
cases of microalbuminuria, 46 new cases of macroalbuminuria and 78 new cases of 
ESRD.

Table 4. Clinical baseline data for individuals enrolled in study I.

Variable Healthy controls Normoalbuminuric 
individuals

Microalbuminuric 
individuals

Macroalbuminuric 
individuals

Number of individuals (M/F) 208 (106/102) 1549 (732/817) 334 (195/139) 363 (199/164)
Age (years) 35.9 ± 11.3 36.2 ± 12.3 38.8 ± 12.7 41.8 ± 10.5 
Age of onset (years) - 17.4 ± 9.3 13.0 ± 9.1 12.5 ± 8.5
Duration (years) - 18.8 ± 11.7 25.7 ± 11.1 29.3 ± 8.1
BMI (kg/m2) 24.0 ± 3.0 24.9 ± 3.5 25.6 ± 3.6 26.2 ± 4.1

WHR 
Men 0.92 ± 0.06 0.89 ± 0.07 0.92 ± 0.07 0.94 ± 0.07
Women 0.83 ± 0.05 0.80 ± 0.06 0.83 ± 0.07 0.84 ± 0.07

History of Smoking (%) 22.3 41.2 52.4 60.4
SBP (mmHg) 126 ± 15 130 ± 16 136 ± 17 143 ± 20
DBP (mmHg) 77 ± 9 78 ± 9 81 ± 10 83 ± 10
HbA1C (%) 5.5 ± 0.4 8.2 ± 1.4 8.8 ± 1.5 9.0 ± 1.6
Total cholesterol (mmol/l) 4.75 ± 0.88 4.80 ± 0.90 4.97 ± 0.88 5.39 ± 1.09
HDL cholesterol (mmol/l) 1.55 ± 0.33 1.35 ± 0.37 1.30 ± 0.39 1.21 ± 0.37
LDL cholesterol (mmol/l) 2.76 ± 0.82 2.95 ± 0.81 3.08 ± 0.80 3.39 ± 0.89
Triglycerides (mmol/l) 0.90 (0.84 - 0.97) 0.94 (0.92 - 0.97) 1.08 (1.02 - 1.14) 1.36 (1.27 - 1.46)
AER (mg/24h) 3 (2 - 3) 8 (7 - 8) 50 (43 - 58) 453(371 - 584)
eGFR (ml/min/1.73 m2) 111 ± 36 101 ± 24 90 ± 24 60 ± 40
Urinary L-FABP (µg/µmol) 0.014 (0.008 - 0.020) 0.039 (0.036 - 0.044) 0.091 (0.074 - 0.107) 0.504 (0.426 - 0.643)

M/F – male / female

Figure 10. A. Urinary L-FABP levels in non-diabetic subjects as well as in individuals with T1DM at 
the study baseline. B. Urinary L-FABP levels according to baseline DN stage and progression status.
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Compared with any other group of individuals with T1DM, healthy control 
subjects presented with significantly lower urinary L-FABP (p < 0.001). Urinary 
L-FABP increased by worsening stage of DN and compared with each previous DN 
stage (p < 0.001). Regardless of their initial DN stage, when compared with non-
progressors, all progressors had significantly higher levels of urinary L-FABP (p < 
0.001) (Figure 10).

5.1.1. Baseline determinants of urinary L-FABP at each stage of DN
A 3-step methodology was used to assess the most important determinants of 
each biomarker’s baseline level at each stage of DN (please see the Material and 
Methods section 4.8.2). In the first step, the most important clinical determinants 
of urinary L-FABP levels were identified. Then, the most important biochemical 
determinants were evaluated. In the third step, the two models were joined, and the 
final determinants were selected through a stepwise selection process (please see the 
Material and Methods section, Figure 8). In individuals with normal AER, the most 
important clinical determinants of urinary L-FABP were: eGDR (estimated glucose 
disposal rate), age of diabetes onset, BMI and current smoking (data not shown). The 
most important biochemical determinants, at this stage, were HbA1C, CRP, AER and 
urinary ADP (data not shown). When both clinical and biochemical variables were 
combined into a single model the most important determinants of urinary L-FABP 
were: AER, HbA1C, urinary ADP, CRP, BMI and age of diabetes onset (Table 5).

Table 5. Baseline determinants of urinary L-FABP levels at each stage of DN in Study I.

Variable Beta SE p
Normal AER

AER (mg/24h) 0.001 0.0001 0.0001
HbA1C (%) 0.007 0.003 0.01
Urinary ADP (µg/g) 0.04 0.007 0.0001
CRP (mg/l) 0.002 0.001 0.002
BMI (kg/m2) -0.003 0.001 0.005
Age of onset (years) -0.001 0.0004 0.006

Microalbuminuria
AER (mg/24h) 0.001 0.0001 0.0001
Urinary ADP (µg/g) 0.236 0.018 0.0001
History of smoking 0.066 0.03 0.02

Macroalbuminuria
HbA1C (%) 0.305 0.083 0.0001
Triglycerides (mmol/l) 0.370 0.124 0.003
Total cholesterol (mmol/l) 0.334 0.137 0.01
Serum ADP (mg/l) -0.023 0.013 0.08
eGFR (ml/min) -0.022 0.005 0.0001
AER (mg/24h) 0.001 0.005 0.0001
Urinary ADP (µg/g) 0.142 0.021 0.0001

Similarly, in individuals with microalbuminuria at baseline, the most important 
clinical and biochemical determinants associated with the urinary L-FABP values 
were identified. The most important clinical determinants, at this stage, were 
WHR and current smoking (data not shown). The most important biochemical 
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determinants were HDL cholesterol, AER and urinary ADP (data not shown). When 
the two models were combined and a step-wise selection of variables was applied, 
the most important determinants associated with urinary L-FABP were AER, urinary 
ADP and history of smoking (Table 5).

Finally, in the individuals with macroalbuminuria at baseline the most important 
clinical determinants of urinary L-FABP were: SBP, DBP and insulin sensitivity 
(eGDR) (data not shown). The most important biochemical variables and final model 
associated with urinary L-FABP, at this stage, were: HbA1C, serum triglycerides, 
serum total cholesterol, serum ADP, eGFR, AER and urinary ADP (Table 5).

It is worth mentioning that both AER and urinary ADP were selected among the 
most important determinants of urinary L-FABP levels across all stages of DN. In 
addition, HbA1C was also a significant determinant of urinary L-FABP in individuals 
with normal AER and macroalbuminuria (Table 5).

5.1.2. Prediction of DN progression by urinary L-FABP
Urinary L-FABP predicted progression of DN at all stages when tested using Cox 
models.

When the adjusted models were built the variables selected in the BM for 
progression to microalbuminuria were: WHR, history of smoking, HbA1C and total 
cholesterol. The BM of progression to macroalbuminuria comprised of WHR, HbA1C 
and triglycerides. The BM of progression to ESRD included eGFR and triglycerides 
(data not shown).

Table 6. Prediction of DN progression by urinary L-FABP

Unadjusted Adjusted for BM Adjusted for BM and AER

HR 95% CI p HR 95% CI p HR 95% CI p

Normal AER

AER (mg/24h) 1.02 1.01 - 1.02 < 0.0001 1.02 1.01 - 1.02 < 0.0001 1.01 1.01 - 1.02 < 0.0001

Urinary L-FABP (µg/µmol) 4.10 2.31 - 7.29 < 0.0001 3.22 1.74 - 5.96 0.0002 2.97 1.50 - 5.90 0.002

Microalbuminuria

AER (mg/24h) 1.01 1.01 - 1.02 < 0.0001 1.01 1.01 - 1.02 < 0.0001 1.01 1.01 - 1.02 < 0.0001

Urinary L-FABP (µg/µmol) 1.49 1.20 - 1.85 0.0003 1.41 1.10 - 1.79 0.006 0.67 0.48 - 0.95 0.03

Macroalbuminuria

AER (mg/24h) 1.01 1.01 - 1.02 < 0.0001 1.01 1.01 - 1.02 < 0.0001 1.01 1.01 - 1.02 0.02

Urinary L-FABP (µg/µmol) 1.24 1.20 - 1.29 < 0.0001 1.20 1.14 - 1.26 < 0.0001 1.17 1.10 - 1.24 < 0.0001

At each stage, after adjustments with the BM of progression, urinary L-FABP was 
still an independent predictor of progression. Finally, even when AER was added to 
each model, urinary L-FABP was still an independent predictor of progression to 
the next DN stage, including the progression to ESRD (Table 6). After adjustments 
with the risk factors from the basic risk factor models, one logarithmic unit increase 
in urinary L-FABP was associated with a 50% higher risk of progression from 
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micro- to macroalbuminuria as well as a 24% increase in the risk of progression 
from macroalbuminuria to ESRD. Surprisingly, after adjustment for AER in the 
individuals with microalbuminuria at baseline, one logarithmic unit increase in 
urinary L-FABP was associated with a 33% decrease in the risk of progression to 
macroalbuminuria (Table 6).

The results did not change when the competing risk analysis was performed, with 
death as a competing event for progression at any stage.

5.1.3. Urinary L-FABP’s diagnostic performance and added 
clinical benefit for prediction of DN progression
When the average diagnostic performance for prediction of DN progression over 
time was considered, urinary L-FABP was no better than AER when adjusted for the 
basic model of progression to microalbuminuria. 

Table 7. Average diagnostic performance over time using 
ROC curves analysis for prediction of DN progression

ROC AUC 95%CI

Normo-
albuminuria

AER 0.772 0.750 - 0.793
L-FABP 0.669 0.645 - 0.693
L-FABP+AER 0.770 0.749 - 0.791
BM+AER 0.778 0.756 - 0.799
BM+L-FABP 0.735 0.711 - 0.757
BM+L-FABP+AER 0.786 0.765 - 0.807

Micro-
albuminuria

AER 0.839 0.795 - 0.877
L-FABP 0.720 0.668 - 0.767
L-FABP+AER 0.839 0.795 - 0.877
BM+AER 0.847 0.803 - 0.884
BM+L-FABP 0.777 0.728 - 0.821
BM+L-FABP+AER 0.841 0.797 - 0.879

Macro-
albuminuria

AER 0.793 0.748 - 0.833
L-FABP 0.822 0.779 - 0.860
L-FABP+AER 0.851 0.810 - 0.886
BM+AER 0.862 0.818 - 0.898
BM+L-FABP 0.850 0.806 - 0.888
BM+L-FABP+AER 0.863 0.820 - 0.900

L-FABP+AER – Cox regression model with urinary L-FABP and AER; BM+L-FABP – Urinary L-FABP adjusted with the BM; 
BM+AER – AER adjusted with the BM; BM+L-FABP+AER – Cox regression model with urinary L-FABP plus AER and BM.

However, when both urinary biomarkers were included in addition to the basic 
model of progression to microalbuminuria, the AUC of urinary L-FABP used together 
with AER was not significantly larger (ΔAUCs = 0.008, p = 0.09) than the AUC of AER 
(Table 7). In individuals with baseline micro- or macroalbuminuria, when the AUCs 
of urinary L-FABP and AER were compared regarding progression to the next stage, 
again AER performed better than urinary L-FABP (Table 7). 
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Table 8. ROC curves analysis at different time points (quintiles of follow-up time)
for the main progression models in study I.

Progression from normo- to microalbuminuria
Time points (years) 3.75 4.37 5.40 6.30 6.83
Cases / controls (number) 72/1186 78/1038 92/741 100/444 101/297
ROC AUC SE AUC SE AUC SE AUC SE AUC SE
AER 81.01 2.89 80.02 2.76 76.09 2.86 74.59 2.89 73.92 3.01
L-FABP 68.53 3.18 69.73 3.06 66.58 2.91 64.60 3.17 63.61 3.29
L- FABP+AER 81.19 2.64 81.41 2.52 76.67 2.84 74.29 2.93 73.64 3.06
BM+L-FABP 74.77 3.10 76.55 2.92 75.88 2.88 75.17 2.99 75.38 3.03
BM+AER 80.32 2.63 81.08 2.46 80.18 2.42 78.72 2.76 79.07 2.79
BM+L-LFABP+AER 81.33 2.57 82.30 2.40 80.99 2.38 79.27 2.69 79.31 2.74

Progression from micro- to macroalbuminuria
Time points (years) 3.75 4.52 5.71 6.65 7.16
Cases / controls  (number) 22/262 27/228 37/164 42/99 43/66
ROC AUC SE AUC SE AUC SE AUC SE AUC SE
AER 82.99 5.45 78.92 5.23 82.41 3.94 86.41 3.33 87.20 3.36
L-FABP 75.49 4.76 71.77 5.11 68.32 4.94 70.52 4.81 71.90 5.05
L-FABP+AER 82.97 5.45 78.89 5.24 82.45 3.94 86.43 3.33 87.06 3.39
BM+L-FABP 76.42 6.09 73.63 5.62 73.82 4.64 75.96 4.49 81.38 4.30
BM+AER 84.97 4.67 80.94 5.13 80.98 4.53 84.89 4.02 88.93 3.74
BM+L-LFABP+AER 84.53 4.42 80.62 4.93 81.15 4.52 84.76 4.00 89.23 3.73

Progression from macroalbuminuria to ESRD
Time points (years) 3.42 4.48 6.23 6.98 7.37
Cases / Controls (number) 30/224 40/196 51/140 54/84 56/56
ROC AUC SE AUC SE AUC SE AUC SE AUC SE
AER 84.05 3.59 78.01 4.49 74.83 4.46 75.04 4.50 75.20 4.77
L-FABP 88.44 4.03 82.46 4.22 81.29 4.06 80.08 4.14 81.52 4.21
L-FABP+AER 90.58 2.97 84.12 3.71 83.56 3.51 82.74 3.71 83.41 3.91
BM+AER 91.79 2.89 91.02 3.53 89.98 2.97 85.81 4.19 82.96 5.04
BM+L-FABP 92.51 3.52 90.94 3.03 89.86 2.84 85.25 4.05 83.13 4.78
BM+L-LFABP+AER 92.62 3.40 90.99 2.91 90.64 2.67 86.30 3.98 83.98 4.78

L-FABP+AER – Cox regression model with L-FABP and AER; BM+L-FABP – Urinary L-FABP adjusted with
the BM; BM+AER – AER adjusted with the BM; BM+L-FABP+AER – Cox regression

model with urinary L-FABP plus AER and BM

When the diagnostic performance and added clinical benefit of urinary L-FABP 
for the prediction of progression to the next DN stage using time dependent ROC 
curve analysis by quintiles of follow-up time was assessed, the AUC for urinary 
L-FABP was no better than AER at any time point or at any stage (Table 8). Moreover, 
when urinary L-FABP and AER were added to basic models for progression to the 
next stage, the difference was not statistically significant (Table 8 and Figure 11). 
Variation in the AUC over time in individuals with normal AER at baseline showed 
that AUCs of the BM for progression to next stage together with either AER or 
AER+LFABP are almost constant in individuals with normal AER. In individuals 
with microalbuminuria at baseline, the discrimination of progressors starts to 
increase from 4.5 years, while in individuals with macroalbuminuria at baseline the 
diagnostic ability drops significantly after 6 years for both models (Figure 11).
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Figure 11. Variation over time of diagnostic performance (AUC) for identification of progressors (A), 
as well as variation of the difference between AUCs (added clinical benefit) (B) for the following two 
models: BM+AER and BM+AER+L-FABP. BM+AER – basic models for progression to next stage plus AER, 
BM+AER+LFABP – basic models for progression to next stage plus AER and urinary. L-FABP. Continuous lines 

represent the mean difference. Dotted lines represent the 95% CI.

Reclassification analysis is a different way to estimate the added clinical benefit 
compared with the AUCs comparison and uses NRI and IDI (please see the Material 
and methods section). When NRI was calculated in individuals with normal AER at 
baseline, urinary L-FABP added significant benefit to basic progression models and 
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AER at five years follow up. When IDI was analyzed, an added predictive benefit was 
observed also in individuals with baseline normal AER or macroalbuminuria, at 5 
years follow up (Table 9).

Table 9. Evaluation of added clinical benefit using reclassification analysis for the main comparisons 
between progression models.

cNRIlm NRIS-5 NRIS-10 IDIlm IDIS-5 IDIS-10

Progression to microalbuminuria

L-FABP+AER vs AER 0.245* 0.383* 0.166 0.005 0.012* 0.005

AER+BM vs BM 0.747*** 0.104 0.052 0.101*** 0.028* 0.030

L-FABP+BM vs BM 0.300*** 0.251* 0.192 0.009 0.006* 0.007

L-FABP+AER+BM vs AER+BM 0.254** 0.295* 0.216 0.007 0.007 0.012

Progression to macroalbuminuria

L-FABP+AER vs AER 0.453 0.045* -0.213 -0.004 0 -0.001

AER+BM vs BM 0.899*** -0.021 -0.665 0.197*** 0 0

L-FABP+BM vs BM 0.197 0.022 -0.996 0.009 0 0

L-FABP+AER+BM vs AER+BM 0.601 0.041 -0.649 -0.003 0 0

Progression to ESRD

L-FABP+AER vs AER 0.800*** 0.928* NA 0.081** 0.111* NA

AER+BM vs BM 0.822*** -0.415 NA 0.122*** 0.110* NA

L-FABP+BM vs BM 0.652*** -0.159 NA 0.118*** 0.201* NA

L-FABP+AER+BM vs AER+BM 0.304 0.127 NA 0.048* 0.110* NA

BM – basic model for progression; L-FABP+AER – Cox regression model with urinary L-FABP and AER; BM+L-
FABP – model with urinary L-FABP added to BM; BM+AER – model with AER added to BM; L-FABP+AER –
model with urinary L-FABP plus AER and BM, * - significant p-value (p < 0.05), ** - significant p-value (p < 0.01), 

*** - significant p-value (p < 0.001).

5.1.4. Urinary L-FABP and causality for DN progression
Causality, using the Mendelian randomization approach, could not be investigated 
since no SNP or genetic score was sufficiently strongly associated (p < 5 x 10-8) with 
the modifiable exposure (urinary L-FABP levels) in our GWAS (Table 10). Thus, the 
first assumption of the Mendelian randomization approach was not fulfilled and no 
further analysis could be performed.

Table 10. Top SNPs associated with urinary L-FABP values

CHR SNP BP A1 A2 MAF β 95% CI P

1 rs2811982 23817438 G - 0.236 0.15 0.08 – 0.21 7.81 x 10-6

5 rs13172069 8184880 G - 0.175 0.13 0.08 – 0.19 4.18 x 10-6

21 rs7281691 29104983 T - 0.151 0.34 0.19 – 0.49 5.55 x 10-6

22 rs137885 48805358 C - 0.388 0.12 0.07 – 0.16 3.45 x 10-6

22 rs137888 48806623 G - 0.362 0.13 0.08 – 0.17 2.23 x 10-7

Models were adjusted for diabetes, gender, duration and two first PCs. A significant association is considered if p < 5 x 10-8.
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5.2. Study II – Urinary adiponectin and progression of 
DN

For this study, the following individuals had the necessary data and samples 
at enrolment visit: 1451 individuals with no albuminuria, 319 individuals with 
microalbuminuria and 320 with macroalbuminuria. In addition, 111 urine samples 
from healthy subjects were available for urinary ADP and urinary creatinine 
measurements. Urinary ADP values were expressed as values of urinary ADP 
normalized for urinary creatinine (please see the Material and methods section).

The baseline characteristics of individuals included in Study II are shown 
in Table 11. The median follow-up was 5.8 (IQR: 4.4 – 6.9) years. During follow-
up, 214 individuals progressed to a higher stage: 101 to microalbuminuria, 42 to 
macroalbuminuria and 71 to ESRD. With each higher DN stage as well as with 
progression of DN, individuals presented longer diabetes duration as well as higher 
age, BMI, WHR, SBP, DBP, total cholesterol, triglycerides, HBA1C, AER, CRP, serum 
and urinary ADP (Table 11).

Table 11. Clinical baseline data for individuals enrolled in Study II.

Variable Healthy controls Normoalbuminuria Microalbuminuria Macroalbuminuria
Number of individuals (M/F) 111 (41/70) 1451 (688/763) 319 (185/134) 320 (178/142)
Age (years) 39.6 ± 11.9 37.0 ± 12.3 39.1 ± 12.6 42.1 ± 10.5
Age of onset (years) - 17.4 ± 9.4 13.7 ± 9.4 12.8 ± 8.3
Diabetes duration (years) - 19.6 ± 11.7 25.4 ± 10.8 29.3 ± 7.8
BMI (kg/m2) 23.8 ± 2.8 24.9 ± 0.14 25.7 ± 3.7 26.2 ± 4.1

WHR 
Men 0.94 ± 0.05 0.89 ± 0.07 0.92 ± 0.07 0.94 ± 0.07
Women 0.84 ± 0.04 0.80 ± 0.06 0.83 ± 0.07 0.84 ± 0.07

History of Smoking (%) 27.0 42.5 53.7 60.6
SBP (mmHg) 126 ± 14 130 ± 16 137 ± 17 144 ± 20
DBP (mmHg) 77 ± 9 78 ± 9 81 ± 10 83 ± 10
HbA1C (%) 5.6 ± 0.3 8.3 ± 1.4 8.8 ± 1.5 9.1 ± 1.6
Total cholesterol (mmol/l) 4.82 ± 0.93 4.83 ± 0.90 4.97 ± 0.90 5.39 ± 1.10
HDL cholesterol (mmol/l) 1.56 ± 0.32 1.36 ± 0.38 1.30 ± 0.38 1.21 ± 0.37
LDL cholesterol (mmol/l) 2.80 ± 0.84 2.96 ± 0.81 3.07 ± 0.82 3.39 ± 0.87
Triglycerides (mmol/l) 0.90 (0.69 - 1.17) 0.94 (0.73 - 1.29) 1.06 (0.81 - 1.52) 1.37 (1.02 - 2.05)
AER (mg/24h) 3 (1- 4) 7 (5 - 12) 51 (25 - 100) 440 (176 - 1207)
eGFR (ml/min/1.73 m2) 92 (76 - 111) 87 (72 - 107) 81 (64 - 101) 46 (28 - 69)
CRP(mg/l) 1.04 (0.53 - 2.37) 1.87 (1.13 - 3.55) 2.16 (1.27 - 4.70) 2.68 (1.66 - 5.81)

Serum ADP  
(mg/l)

All 9.69 (7.33 - 12.17) 10.69 (7.96 - 14.82) 10.78 (7.92 - 15.08) 14.7 (10.26 - 22.00)
Males 7.60 (5.26 – 9.65) 8.80 (6.67 - 11.53) 10.01 (7.24 - 13.19) 12.45 (9.05 - 15.87)
Females 10.80 (8.37 - 13.40) 13.14 (9.71 - 16.70) 12.55 (9.04 - 19.07) 18.68 (12.67 - 26.27)

Urinary ADP 
(µg/g)

All 0.34 (0.21 - 0.66) 0.56 (0.26 - 1.31) 0.97 (0.39 - 2.42) 5.52 (1.53 - 22.9)
Males 0.23 (0.15 - 0.50) 0.43 (0.21 - 0.99) 0.82 (0.32 - 2.23) 5.03 (1.51 - 20.14)
Females 0.42 (0.26 - 0.83) 0.72 (0.32 - 1.54) 1.07 (0.50 - 2.62) 5.95 (1.77 - 24.67)

Urinary L-FABP (μg/μmol) 0.01 (0.00 - 0.04) 0.04 (0.01 - 0.09) 0.09 (0.03 - 0.18) 0.52 (0.19 - 1.97)
Urinary KIM-1 (ɳg/mmol) 37.3 (18.6 - 58.3) 26.2 (12.2 - 48.7) 34.5 (16.4 - 62.0) 48.5 (27.3 - 88.7)

M/F – male / female 



66

Figure 12.  Urinary ADP levels across the study groups at the baseline. A – Urinary ADP levels 
across baseline DN stages. B – Urinary ADP levels according to baseline DN stage

and progression status.

Urinary ADP was higher in individuals with diabetes without albuminuria 
compared to non-diabetic subjects (p < 0.0001). In addition, urinary ADP increased 
with progression of DN stage (p < 0.0001). Moreover, urinary ADP was always higher 
in progressors to a higher stage of DN compared with non-progressors (Figure 12).

5.2.1. Baseline urinary ADP determinants at each stage
To investigate the most important determinants associated with baseline urinary 
ADP at each baseline stage of DN, we tested clinical and biochemical parameters 
present in our database (please see the Material and methods section). 

In individuals with baseline normal AER the most important variables associated 
with urinary ADP after combining models and stepwise selection were: age at 
diabetes onset, BMI and sex together with AER, urinary KIM-1, urinary L-FABP, 
serum ADP and HbA1C (Table 12). Of these variables, gender, urinary L-FABP and 
HbA1C explained most of the urinary ADP variation (65%), while the rest of the 
variables in the model explained another 1% of urinary ADP variation. 

In individuals with baseline microalbuminuria the following variables were 
finally associated with urinary ADP: gender, BMI as well as urinary KIM-1, urinary 
L-FABP, AER and HbA1C (Table 12). At this stage, HbA1C, urinary L-FABP and gender 
explained most of the urinary ADP variation. 

Finally, in individuals with baseline macroalbuminuria the most important 
determinants of baseline urinary ADP were: age of diabetes onset, BMI together 
with urinary KIM-1, urinary L-FABP, AER, GFR, HbA1C, LDL cholesterol and serum 
ADP. Out of these variables, LDL, HbA1C and urinary L-FABP explained most of the 
urinary ADP variability (Table 12).

The common urinary ADP determinants across all stages were BMI, urinary 
KIM-1, urinary L-FABP, AER and HbA1C, while gender was a determinant only 
for individuals with normal AER or microalbuminuria. In addition, eGFR and 
LDL cholesterol remained in the final model only in individuals with baseline 
macroalbuminuria (Table 12).
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Table 12. Determinants of urinary ADP according to DN stage at baseline of Study II.

Predictor variables β SE p
Normal AER

Age of onset (years) -0.013 0.004 <0.001
BMI (kg/m2) -0.020 0.011 0.07
Urinary KIM-1 (ɳg/mmol) 0.005 0.001 <0.0001
AER (mg/24h) 0.013 0.003 <0.0001
HbA1C (%) 0.147 0.025 <0.0001
Urinary L-FABP (μg/μmol) 0.137 0.066 0.04
Sex (M/F) 0.366 0.078 <0.0001
Serum ADP (mg/l) 0.033 0.007 <0.0001

Microalbuminuria
BMI (kg/m2) -0.039 0.021 0.07
Urinary KIM-1 (ɳg/mmol) 0.005 0.002 0.04
AER (mg/24h) 0.002 0.001 0.03
HbA1C (%) 0.159 0.048 0.001
Urinary L-FABP (μg/μmol) 2.134 0.245 <0.0001
Gender (M/F) 0.481 0.149 0.002

Macroalbuminuria
Age of onset (years) -0.019 0.008 0.02
BMI (kg/m2) -0.048 0.020 0.02
Urinary KIM-1 (ɳg/mmol) 0.002 0.001 0.06
eGFR (ml/min/1.73m2) -0.018 0.003 <0.0001
AER (mg/24h) 0.001 0.0001 <0.0001
HbA1C (%) 0.103 0.051 <0.05
Urinary L-FABP (μg/μmol) 0.079 0.026 0.003
LDL (mmol/l) -0.196 0.090 0.03
Serum ADP (mg/l) 0.015 0.007 0.03

β - the degree of change in urinary ADP for every 1 unit of change in the predictor variable,  
SE – standard error, p – statistical significance, M / F – male / female

5.2.2. Prediction of progression of DN by urinary ADP
In simple Cox analysis as well as in gender adjusted analysis, urinary ADP predicted 
progression to a higher stage regardless of the DN category at baseline.

The basic Cox proportional hazard models for progression (basic models of 
progression – BM) at every stage were built according to the methodology described 
in the Material and methods section. The BM for progression to microalbuminuria 
comprised the following variables: total cholesterol, history of smoking, HbA1C and 
WHR. The BM for progression to macroalbuminuria included HbA1C, WHR and 
triglycerides, while the BM for progression to ESRD had just two components - 
triglycerides and eGFR (data not shown).

When adjusted with the BM models for each stage, urinary ADP predicted 
progression to a higher stage with or without adjustments for gender. When further 
adjustment with AER was applied, however, urinary ADP independently predicted 
progression only to ESRD. It is noteworthy also that urinary ADP’s ability to predict 
ESRD was independent of gender, urinary L-FABP, urinary KIM-1 or serum ADP 
(Table 13). 
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Table 13. Prediction of DN progression by urinary ADP
Va

ria
ble

Ad
jus

tm
en

t
Unadjusted or 

adjusted for sex
Adjusted for 

BM

Adjusted for BM 
and 
AER

Adjusted for
BM and 

Urinary KIM-1

Adjusted for 
BM and 

Urinary L-FABP

Adjusted for  
BM and 

Serum ADP
HR p HR p HR p HR p HR p HR p

Normal AER
Urinary 
ADP 
(µg/g)

None 1.32 < 0.001 1.22 0.02 0.98 0.80 0.96 0.76 0.98 0.90 1.22 0.07

Sex 1.39 < 0.001 1.25 0.01 0.99 0.91 0.97 0.81 1.01 0.94 1.26 0.04

Microalbuminuria
Urinary 
ADP 
(µg/g)

None 1.38 0.007 1.34 0.03 1.01 0.95 1.31 0.07 1.02 0.92 1.30 0.14

Sex 1.46 0.001 1.35 0.02 1.02 0.89 1.31 0.06 1.04 0.83 1.29 0.15

Macroalbuminuria
Urinary 
ADP 
(µg/g)

None 2.03 < 0.001 1.51 < 0.001 1.30 0.03 1.47 < 0.001 1.36 0.002 1.39 0.001

Sex 2.05 < 0.001 1.52 < 0.001 1.37 0.01 1.29 0.001 1.39 0.001 1.36 0.001

The results were similar when the competing risk analysis considering death as a 
competing event for progression at any stage was performed.

5.2.3. Urinary ADP’s diagnostic performance and added clinical 
benefit for prediction of progression to ESRD
The average diagnostic performance over time for urinary ADP and AER was assessed 
also by AUC of each biomarker or model only for prediction of progression to ESRD. 
In individuals with baseline macroalbuminuria, urinary ADP identified on average 
another 5.7% of progressors to ESRD compared to AER (p = 0.04). In addition, 
urinary ADP added to AER identified on average another 5.6% of progressors to 
ESRD (p = 0.02), compared with AER alone. Finally, when we compared the average 
AUCs of urinary ADP with eGFR there was no difference (p = 0.79), although when 
urinary ADP was added to eGFR there was again an increase in AUC (p = 0.03), 
meaning an average extra 2.9% of progressors were identified by using urinary ADP 
together with eGFR, compared with eGFR alone (Table 14).

We assessed only the clinical diagnostic benefit of urinary ADP for prediction 
of progression to ESRD using time dependent ROC curve analysis at quintiles of 
follow-up time, since urinary ADP was an independent predictor only for progression 
to ESRD. The diagnostic ability of urinary ADP increased slightly over time, while 
diagnostic capability of both AER and eGFR presented a constantly declining AUC in 
individuals with macroalbuminuria at baseline. Thus, the AUC of urinary ADP was 
significantly larger than the AUC of AER only after 5.5 years of follow-up. However, 
the AUC of urinary ADP was no better than the AUC of eGFR at any point. Finally, 
when urinary ADP was added to basic models for progression to ESRD with or 
without AER, the models were similar at all time-points. The constant decline in 
predictive capability for AER and eGFR could not entirely be prevented by addition 
of urinary ADP to the models (Table 15 and Figure 13).
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Table 14. Average diagnostic performance over time using ROC curves analysis for prediction of DN 
progression by urinary ADP, AER and eGFR.

ROC AUC 95%CI

AER 0.786 0.736 - 0.829

Urinary ADP 0.842 0.798 - 0.880

eGFR 0.853 0.809 - 0.890

AER+ADP 0.842 0.797 - 0.880

eGFR+ADP 0.882 0.841 - 0.915

BM 0.853 0.809 - 0.890

BM+AER 0.880 0.840 - 0.914

BM+ADP 0.884 0.843 - 0.917

BM+AER+ADP 0.887 0.847 - 0.919

ADP+AER – Cox model formed by urinary ADP and AER used together; ADP+eGFR – Cox model formed by 
urinary ADP and eGFR used together

Table 15. ROC curves analysis at quintiles of follow-up time for  
the main progression models in Study II.

Progression from macroalbuminuria to ESRD

Time points (years) 3.54 4.60 6.16 6.97 7.38

Cases / controls 36/256 47/224 57/160 61/96 63/64

ROC AUC SE AUC SE AUC SE AUC SE AUC SE

AER 81.43 4.13 79.55 4.11 75.12 4.26 75.52 4.20 75.55 4.42

eGFR 93.02 2.60 92.21 2.51 90.83 2.32 85.86 3.61 83.15 4.51

ADP 84.48 4.17 84.00 3.42 82.51 3.21 85.19 3.15 85.52 3.50

ADP+AER 84.77 4.18 84.01 3.52 82.22 3.30 84.40 3.24 84.79 3.57

ADP+eGFR 92.46 2.38 92.48 2.12 91.52 1.99 88.75 2.89 86.11 3.87

BM 92.76 4.42 92.36 2.43 90.84 2.27 85.46 3.76 82.70 4.69

BM+AER 93.43 2.20 93.01 2.08 91.66 1.93 87.46 3.24 84.84 4.22

BM+ADP 92.46 2.45 92.55 2.13 91.50 2.02 88.51 3.00 85.84 3.93

BM+AER+ADP 93.01 2.29 93.01 2.04 91.96 1.90 88.49 3.01 85.84 3.95

ADP+AER – Cox regression model with urinary ADP and AER; BM+ADP – Cox regression model of urinary ADP 
and the BM; BM+AER – Cox regression model of AER adjusted with the BM; BM+AER+ADP – Cox regression 

model of urinary ADP adjusted with AER and BM.

Since urinary ADP was not an independent predictor of progression to micro- 
and macroalbuminuria, for these baseline stages, NRI and IDI were not calculated. 
When NRI or IDI were calculated, in individuals with baseline macroalbuminuria, 
urinary ADP used on top of AER added a significant reclassification benefit (added 
clinical benefit) for prediction of progression to ESRD. Urinary ADP added to AER 
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correctly reclassified 54.9% of individuals at 5 years when NRIS-5 was calculated 
and 9.2% of individuals when IDIS-5 was estimated. However, no added clinical 
benefit was seen by adding urinary ADP to BM plus AER. Furthermore, urinary 
ADP improved the prediction of progression to ESRD, compared with eGFR alone in 
logistic models, but not at 5 years. Of note is the fact that neither NRIS-10 nor IDIS-10 
could be estimated, since at 10 years’ follow up there was no survival of individuals 
with baseline macroalbuminuria (Table 16). 

Figure 13. Variation over time of predictive ability (AUC) for identification of progressors to ESRD 
(A, C, E). Variation of the differences between the AUC of urinary ADP and AER (B) or GFR (D).  

Variation of the difference between the AUC of BM+AER and BM+AER+ADP (F). BM+AER – basic
 models for progression to ESRD plus AER, BM+AER+ADP – basic models for 

progression to ESRD plus AER and ADP.
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Table 16. Urinary ADP added reclassification benefit analyzed using NRI and IDI.

Variables cNRI NRIS-5 NRIS-10 IDI IDIS-5 IDIS-10

Progression to ESRD

ADP+AER vs AER 0.794* 0.549* NA 0.115*** 0.092* NA

ADP+eGFR vs eGFR 0.637*** 0.188 NA 0.087*** 0.039 NA

ADP+BM vs BM 0.674*** 0.299 NA 0.084*** 0.046 NA

BM+AER+ADP vs BM+AER 0.420 0.079 NA 0.015 -0.007 NA

ADP+AER – Cox regression model with Urinary ADP and AER; ADP+AER – Cox regression model with 
urinary ADP and eGFR; BM+ADP – Cox regression model of urinary ADP and the BM; BM+AER – Cox 

regression model of AER adjusted with the BM; BM+AER+ADP – Cox regression model of
urinary ADP adjusted with AER and BM. * - significant p-value (p < 0.05),

** - significant p-value (p < 0.01), *** - significant p-value (p < 0.001).

5.2.4. Urinary ADP and causality for DN progression
Because no SNP was sufficiently strongly (p < 5 x 10-8) associated with the modifiable 
exposure (urinary ADP levels), the first assumption of a Mendelian randomization 
study was not fulfilled. Thus, no further analysis could be performed to test causality 
using the Mendelian randomization approach (Table 17).

Table 17. Top SNPs associated with urinary ADP values.

CHR SNP BP A1 A2 MAF β 95% CI P
1 rs1052607 46272113 G A 0.054 0.20 0.11 – 0.28 4.77 x 10-6

2 rs4140872 169734842 G A 0.223 0.10 0.06 – 0.15 8.44 x 10-6

8 rs17624806 16963457 A G 0.112 0.12 0.07 – 0.17 4.12 x 10-6

Models were adjusted for diabetes, gender, duration and two first PCs.  
A significant association is considered if p < 5 x 10-8.

5.3. Study III – Urinary KIM-1 and DN progression
In Study III, all eligible individuals with full baseline data and available measurement 
for urinary KIM-1 at the enrolment visit were included. These 1572 individuals 
were divided into three groups: 953 individuals with normal AER, 269 with 
microalbuminuria and 350 individuals with macroalbuminuria.

At baseline, the following variables: diabetes duration, BMI, WHR, SBP and DBP, 
HbA1C, total cholesterol and AER registered higher values with more advanced stage 
of DN. The complete clinical characteristics at the enrollment visit are presented in 
Table 18. Urinary KIM-1 values increased also with the severity of DN at baseline 
(Table 18 and Figure 14A). 

After a median follow-up time of 6.0 years (IQR 5.7 – 6.4), 174 individuals 
progressed to the next stage. No difference in KIM-1 levels was observed between 
progressors to microalbuminuria and non-progressors. Urinary KIM-1 levels were 
higher, however, for progressors from microalbuminuria to macroalbuminuria and 
from macroalbuminuria to ESRD (Figure 14B).
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Table 18. Clinical data at baseline visit for individuals enrolled in Study III.

Variable Normoalbuminuria Microalbuminuria Macroalbuminuria
Number of individuals (M/F) 953 (407/546) 269 (163/106) 350 (190/160)
Age (years) 40.1 ± 12.1 39.2 ± 12.7 41.1 ± 10.5
Diabetes duration (years) 24.2 ± 9.9 26.4 ± 10.7 29.1 ± 8.0
BMI (kg/m2) 25.2 ± 3.4 25.6 ± 3.5 26.0 ± 3.8

WHR 
Men 0.90 ± 0.07 0.92 ± 0.07 0.94 ± 0.07
Women 0.80 ± 0.06 0.83 ± 0.07 0.84 ± 0.07

History of smoking (%) 39.9 52.8 60.4
SBP (mmHg) 131 ± 16 137 ± 17 144 ± 20
DBP (mmHg) 78 ± 9 81 ± 10 83 ± 10
HbA1C (%) 8.2 ± 1.2 8.8 ± 1.5 9.1 ± 1.6
HDL cholesterol (mmol/l) 1.37 ± 0.37 1.29 ± 0.37 1.21 ± 0.37
LDL cholesterol (mmol/l) 3.03 ± 0.79 3.11 ± 0.79 3.35 ± 0.89
Triglycerides (mmol/l) 0.92 (0.70 - 1.24) 1.08 (0.82 - 1.61) 1.36 (1.01 - 2.05)
AER (mg/24h) 7 (5 - 11) 59 (29 - 110) 453 (168 - 1210)
eGFR (ml/min/1.73 m2) 88 ± 28 88 ± 38 50 ± 30
Urinary KIM-1 (ɳg/mmol) 27.8 (13.6 - 50.3) 33.1 (16.6 - 63.9) 49.5 (26.9 - 92.4)

Normally distributed variables are presented as means ± SD, non-normally distributed variables
are presented as median (interquartile range). M / F – male / female.

Figure 14. Urinary KIM-1 levels across study groups at baseline. A: Urinary KIM-1 levels according to 
baseline DN stages. B: Urinary KIM-1 levels at baseline according to DN 

stage and progression status.

5.3.1. Baseline determinants of KIM-1 levels at each stage
For each baseline stage of DN, all clinical and biochemical variables present in the 
database were tested for association with baseline urinary KIM-1 concentration 
(please see the Material and methods section for tested variables).

In individuals with baseline normal AER, the most important variables associated 
with urinary KIM-1 were: age at enrollment, current smoking status, BMI, CRP, 
AER and urinary ADP. Of these variables, current smoking, urinary ADP and age at 
study baseline explained most of the urinary KIM-1 variation (57%). The remaining 
variables in the model explained another 1% of the urinary KIM-1 variation. In 
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individuals with baseline microalbuminuria, gender, history of smoking and urinary 
ADP explained 89% of urinary KIM-1 variation. In addition, HbA1C explained 
another 9% of its variability. Finally, in individuals with baseline macroalbuminuria 
the most important determinants of urinary KIM-1 were again current smoking 
status, AER and urinary ADP. In addition, serum ADP, serum triglycerides, HbA1C 
and eGFR were also among the most important determinants of urinary KIM-1 levels 
in individuals with baseline macroalbuminuria (Table 19). 

Table 19. Determinants of urinary KIM-1 according to baseline stage of DN in Study III.
Variables β SE p

Normal AER
Age (years) 0.112 0.003 0.0001
Current Smoking (Y/N) 0.310 0.080 0.0001
BMI (kg/m2) -0.021 0.010 0.048
CRP (mg/l) 0.066 0.036 0.06
AER (mg/24h) 0.083 0.046 0.07
Urinary ADP (ɳg/mmol) 0.257 0.030 0.0001

Microalbuminuria
Sex (M/F) 0.323 0.116 0.006
History of Smoking (Y/N) 0.351 0.113 0.002
HbA1C (%) 0.090 0.041 0.03
Urinary ADP (ɳg/mmol) 0.220 0.047 0.0001

Macroalbuminuria
Current Smoking (Y/N) 0.211 0.116 0.07
eGFR (ml/min/1.73m2) 0.006 0.002 0.01
HbA1C (%) 0.070 0.037 0.06
Triglycerides (mmol/l) 0.557 0.135 0.0001
Serum ADP (mg/l) 0.420 0.124 0.001
AER (mg/24h) 0.159 0.056 0.005
Urinary ADP (ɳg/mmol) 0.111 0.047 0.02

The common determinants of urinary KIM-1 levels across all DN stages were 
smoking and urinary ADP. Other common determinants retained in two out of three 
stages of DN at baseline were HbA1C and AER (Table 19).

5.3.2. Prediction of DN progression by urinary KIM-1
In simple Cox regression, urinary KIM-1 was not predictive for progression to 
microalbuminuria (p = 0.86). In unadjusted analysis, one logarithmic unit increase 
in urinary KIM-1 was associated with a 4.14 times higher risk of progression from 
microalbuminuria to macroalbuminuria, as well as a 2.08-fold increase in the risk of 
progression from macroalbuminuria to ESRD.

After adjusting for basic models of progression, urinary KIM-1 still predicted 
progression to ESRD (P < 0.0001). However, after further adjustments with AER, 
urinary KIM-1 was no longer an independent predictor of progression to ESRD (p = 
0.17) (Table 20).
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Table 20. Prediction of DN progression by urinary KIM-1

Variable
Unadjusted Adjusted with BM Adjusted with

BM and AER
HR 95% CI p HR 95% CI p HR 95% CI p

Normal AER
Urinary KIM-1 (ɳg/mmol) 1.06 0.54 - 2.08 0.86  0.98 0.49 - 1.97 0.96 0.80 0.39 - 1.64 0.54

Microalbuminuria
Urinary KIM-1 (ɳg/mmol) 4.14 2.75 - 6.23 < 0.0001 1.61 0.69 - 3.74 0.27 1.07 0.43 - 2.64 0.89

Macroalbuminuria
Urinary KIM-1 (ɳg/mmol) 2.08 1.66 - 2.62 < 0.0001 1.78 1.41 - 2.56 < 0.0001 1.20 0.92 - 1.57 0.17

Variables included in the basic model of progression to microalbuminuria after backward selection of covariates 
were HbA1C, serum triglycerides and WHR. The basic model for progression to macroalbuminuria included 

HbA1C, serum triglycerides and WHR. Finally, the basic progression model to ESRD comprised serum 
triglycerides and systolic blood pressure.

5.3.3. Urinary KIM-1’s diagnostic performance for prediction of 
progression and added clinical benefit
Urinary KIM-1 predicted progression only to ESRD, and even then it was not 
independent of AER. We therefore assessed urinary KIM-1’s diagnostic performance 
and added benefit only for prediction of progression to ESRD.

Table 21. Average diagnostic performance over time using ROC curves analysis for prediction of DN 
progression by urinary KIM-1, AER, eGFR and other progression models.

ROC AUC 95%CI
AER 0.797 0.751 – 0.838
eGFR 0.861 0.821 – 0.896
KIM-1 0.735 0.686 – 0.781
AER+KIM-1 0.797 0.751 – 0.838
eGFR+KIM-1 0.876 0.825 – 0.899
BM 0.699 0.648 – 0.747
BM+AER 0.809 0.764 – 0.849
BM+eGFR 0.861 0.820 – 0.896
BM+KIM-1 0.772 0.724 – 0.815
BM+AER+KIM-1 0.818 0.773 – 0.857
BM+eGFR+KIM-1 0.879 0.839 – 0.911

AER+KIM-1 – model comprising urinary KIM-1on top of AER; eGFR+KIM-1 - model comprising urinary KIM-1on top of eGFR; 
BM – basic progression model to ESRD comprised serum triglycerides and systolic blood pressure; BM+AER – basic models 
for progression to ESRD plus AER; BM+eGFR – basic models for progression to ESRD plus eGFR; BM+AER+eGFR – basic 
models for progression to ESRD plus AER and eGFR; BM+AER+eGFR+KIM1 – basic models for progression to ESRD plus 

AER, eGFR and urinary KIM-1.

The diagnostic performance of urinary KIM-1 for prediction of progression to 
ESRD over time was assessed using time dependent ROC curve analysis. As expected, 
since it was not independent of AER, KIM-1’s diagnostic ability was not superior 
compared to AER or eGFR at any time point or as an average in the time dependent 
ROC curve analysis (Table 21, Table 22 and Figure 15).
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Figure 15. Variation over time of diagnostic performance for prediction (AUC) of progressors to ESRD (A, 
C, E), as well as variation of the difference between AUCs (B, D, F) for urinary KIM-1 and AER (A and B), 
urinary KIM-1 and eGFR (B and C) as well as for BM+AER+eGFR and BM+AER+eGFR+KIM1 (E and F). 

BM – basic progression model to ESRD comprised serum triglycerides and systolic blood pressure; 
BM+AER+eGFR – basic models for progression to ESRD plus AER and eGFR; BM+AER+eGFR+KIM1 – basic 

models for progression to ESRD plus AER, eGFR and urinary KIM-1.Δ

In reclassification analysis, undertaken using NRI or IDI generalized for survival 
data, there was no reclassification benefit at 5 or 10 years’ follow up with regard to 
prediction of progression to ESRD (Table 23).
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Table 22. ROC curves analysis at quintiles of follow-up time for the main models of progression to 
ESRD in Study III.

Time points (years) 3.53 4.55 6.15 6.92 7.34
Individuals (cases/controls) 40/274 52/240 63/171 66/103 68/69
ROC AUC SE AUC SE AUC SE AUC SE AUC SE
AER 81.84 3.84 80.27 3.78 77.37 3.90 77.67 3.92 77.07 4.19
eGFR 95.31 1.72 94.38 1.89 91.01 2.38 85.79 3.56 82.86 4.48
KIM1 72.05 4.69 72.34 4.06 69.54 4.09 67.48 4.24 67.77 4.67
KIM1+AER 81.94 3.93 80.68 3.71 77.81 3.81 77.84 3.84 77.42 4.14
KIM1+eGFR 94.66 1.69 94.32 1.71 91.21 2.28 86.06 3.54 83.10 4.50
BM 72.68 4.53 73.83 4.01 70.44 3.95 67.38 4.46 69.40 4.67
BM+AER 83.09 3.90 82.46 3.61 79.47 3.64 79.06 3.84 78.73 4.09
BM+eGFR 95.04 1.67 94.53 1.82 91.02 2.31 85.50 3.66 82.85 4.57
BM+KIM1 77.50 4.39 78.40 3.76 75.54 3.85 72.13 4.24 73.31 4.45
BM+AER+KIM1 83.34 3.95 82.74 3.61 79.74 3.64 79.12 3.88 79.17 4.12
BM+AER+eGFR+KIM1 94.72 1.59 94.66 1.59 91.52 2.19 85.98 3.63 83.18 4.54

AER+KIM-1 – model comprising urinary KIM-1on top of AER;  eGFR+KIM-1 - model comprising 
urinary KIM-1on top of eGFR; BM – basic progression model to ESRD comprised serum triglycerides 
and systolic blood pressure; BM+AER – BM for progression to ESRD plus AER; BM+eGFR – BM 
for progression to ESRD plus eGFR; BM+AER+eGFR – BM for progression to ESRD plus AER and eGFR; 

BM+AER+eGFR+KIM1 – BM for progression to ESRD plus AER, eGFR and urinary KIM-1.

Table 23. KIM-1 added reclassification benefit for progression to ESRD analyzed using NRI and IDI.

Variables cNRI NRIS-5 NRIS-10 IDI IDIS-5 IDIS-10

KIM1+AER vs AER 0.264 -0.010 NA 0.024 0.003 NA
KIM1+eGFR vs eGFR 0.627*** -0.063 NA 0.079*** 0.014 NA
KIM1+BM vs BM 0.544*** 0.413* NA 0.099*** 0.051 NA
KIM1+AER+BM vs AER+BM 0.243 -0.174 NA 0.023 0.001 NA
KIM1+eGFR+BM vs eGFR+BM 0.465** 0.098 NA 0.063** 0.008 NA
KIM1+eGFR+AER+BM vs KIM1+eGFR+AER 0.327 -0.273 NA 0.020 -0.001 NA

BM – basic progression model (Cox model formed by serum triglycerides and systolic blood pressure); KIM-
1+AER – Cox model formed by urinary KIM-1 and AER; KIM-1+eGFR – Cox model formed by urinary KIM-1 and 
eGFR; AER+BM – Cox model formed by AER and BM; eGFR+BM – Cox model formed by eGFR and BM; KIM-
1+BM – Cox model formed by urinary KIM-1 and BM; KIM1+AER+BM – Cox model formed by urinary KIM-1, AER 
and BM; KIM1+eGFR+BM – Cox model formed by urinary KIM-1, AER and BM; * - significant p-value (p < 0.05), 

** - significant p-value (p < 0.01), *** - significant p-value (p < 0.001).

5.3.4. Urinary KIM-1 and causality for DN progression

5.3.4.1. Identification of the instrumental variable and the first 
assumption – GWAS on KIM-1
The GWAS on ln (KIM-1) identified 49 SNPs with a p-value < 5 x 10-8 (the genome-
wide significance). All SNPs were on chromosome 5q33.3 in the region that includes 
the KIM1 gene (HAVCR1: hepatitis A virus cellular receptor 1) (Figure 16 and Table 
24). The strongest association was observed for rs2036402 with P = 6.5×10-38  
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(ß = -0.51, i.e., each copy of the minor G allele decreases ln(KIM-1) by 0.51; 95% CI 
-0.47 – -0.54) (Figure 16). After conditional analysis on rs2036402, no other SNP 
reached genome-wide significance, suggesting that rs2036402 explains most of the 
association seen on the locus (Table 24 and Table 25). 

Table 24. Top SNPs associated with urinary KIM-1 levels. Models were adjusted for diabetes, gender, 
duration and two first PCs.

CHR SNP BP A1 A2 MAF Β 95% CI P
p

adjusted for 
rs2036402

5 rs2036402 156396820 C T 0.24 -0,51 -0,47 – -0,54 6.48 x 10-38 NA
5 rs6889164 156399356 C T 0.24 -0,51 -0,47 – -0,54 6.83 x 10-38 NA
5 rs13173581 156402386 T C 0.24 -0,5 -0,47 – -0,54 7.71 x 10-38 NA
5 rs1039438 156409348 A G 0.24 -0,5 -0,47 – -0,54 7.81 x 10-38 NA
5 rs12522248 156412004 C T 0.26 -0,49 -0,46 – -0,53 4.45 x 10-37 0.18
5 rs11740496 156367980 G A 0.24 -0,5 -0,46 – -0,54 1.29 x 10-36 0.73
5 rs11740499 156364319 A G 0.24 -0,5 -0,46 – -0,54 1.54 x 10-36 0.71
5 rs12515585 156362728 G A 0.24 -0,5 -0,46 – -0,54 1.76 x 10-36 0.68
5 rs7719994 156362654 C T 0.24 -0,5 -0,46 – -0,54 1.79 x 10-36 0.68
5 rs13169621 156359552 A G 0.23 -0,51 -0,48 – -0,56 2.46 x 10-36 0.93
5 rs13181803 156361755 G C 0.24 -0,5 -0,46 – -0,54 4.05 x 10-36 0.50
5 rs13169465 156359494 A G 0.24 -0,5 -0,46 – -0,54 4.40 x 10-36 0.49
5 rs13169155 156359241 A G 0.24 -0,5 -0,46 – -0,54 4.55 x 10-36 0.48
5 rs6863148 156339221 A G 0.24 -0,5 -0,46 – -0,54 8.76 x 10-36 0.43
5 rs7700944 156298759 A G 0.21 -0,51 -0,47 – -0,55 5.11 x 10-32 0.89
5 rs6555760 156297944 A T 0.21 -0,51 -0,47 – -0,55 6.36 x 10-32 0.89
5 rs2862058 156287953 G A 0.21 -0,51 -0,47 – -0,55 7.24 x 10-32 0.89
5 rs1345617 156284081 C G 0.21 -0,51 -0,47 – -0,55 8.47 x 10-32 0.89
5 rs1345618 156283925 C T 0.21 -0,5 -0,46 – -0,55 8.97 x 10-32 0.89
5 rs2279804 156411782 T C 0.42 -0,4 -0,37 – -0,43 3.04 x 10-29 0.0001
5 rs953568 156410210 A T 0.42 -0,4 -0,37 – -0,43 3.61 x 10-29 0.0001
5 rs953569 156409978 G T 0.41 -0,4 -0,37 – -0,43 4.39 x 10-29 0.0006
5 rs6555820 156404727 A C 0.41 -0,4 -0,37 – -0,42 5.47 x 10-29 0.0007
5 rs868529 156363714 T A 0.40 -0,39 -0,36 – -0,42 8.52 x 10-28 0.002
5 rs1393206 156362231 A T 0.20 -0,47 -0,43 – -0,51 6.05 x 10-26 0.08
5 rs7732745 156279792 T C 0.18 -0,42 -0,38 – -0,46 6.72 x 10-21 0.12
5 rs10070224 156278313 C T 0.16 -0,47 -0,42 – -0,52 7.45 x 10-21 0.69
5 rs12187482 156269565 G A 0.16 -0,47 -0,42 – -0,52 7.48 x 10-21 0.69
5 rs7720464 156268109 G A 0.15 -0,49 -0,44 – -0,54 2.05 x 10-20 0.62
5 rs4704821 156267542 A C 0.15 -0,49 -0,44 – -0,55 8.16 x 10-20 0.58
5 rs2116787 156432559 G A 0.15 -0,43 -0,39 – -0,47 1.97 x 10-18 0.86
5 rs1501909 156398757 T G 0.45 0,3 0,28 – 0,32 6.39 x 10-17 0.02
5 rs17054137 156405508 A G 0.45 0,3 0,28 – 0,32 6.52 x 10-17 0.02

β on ln(KIM-1) was estimated per one copy of A1. p – statistical significance of the association between SNPs and 
ln(KIM-1) was calculated for models adjusted with diabetes duration and two first PCs; p adjusted for rs2036402 
– statistical significance of the association between SNPs and ln(KIM-1) was estimated after addition to the 
previous model of rs2036402, as an independent covariate. P values considered statistically significant were 

less than 5 x 10-8.

Finally, the IV was rs2036402, a SNP in the HAVCR1 gene, with the strongest 
independent association with the urinary KIM-1 levels. The imputed rs2036402 
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Figure 17. Urinary KIM-1 levels according to genotypes and the Mendelian randomization second 
assumption fulfilment. KIM-1 levels were significantly different among different genotypes (p < 0.0001). 
Consequently, at birth all subjects are randomly assigned to different levels of urinary KIM-1. It is assumed that if 
KIM-1 is causal for the loss of kidney function and it acts for a long enough period (time from birth to study baseline), 

then those individuals with high levels of urinary KIM-1 should have lower eGFR values at the first study visit.

Since the study subjects are randomly allocated to different levels of urinary KIM-
1 long before birth, the second assumption of the Mendelian randomization analysis 
is considered a priori true (Figure 17).

5.3.3.3. The third assumption fulfillment
To test if the association between the eGFR (outcome, Y) and KIM1 SNP (IV, Z) 
is mediated only through urinary KIM-1 levels, two conditions must be fulfilled: a) 
the IV (rs2036402) is not associated with any other variable in our database; b) the 
IV (rs2036402) is either not associated with eGFR, or if associated this association 
should disappear when adjusted with urinary KIM-1 levels.

For the first condition, rs2036402 was tested for association with all the variables 
present in the database by simple linear regressions or χ2 test. No variable was 
associated with rs2036402, except for urinary KIM-1 levels (p < 0.0001). This result 
validated the first condition from the last assumption of the MR approach (Table 
26).

To check the validity of the second condition of the last assumption that the IV 
(rs2036402) acts on the outcome (eGFR) only through the exposure (urinary KIM-
1) without pleiotropic effects we performed a regression of the IV on eGFR. This 
regression showed that rs2036402 was associated with GFR in unadjusted analysis 
(p = 0.02). When this association was adjusted with urinary KIM-1 levels, the 
association completely vanished (p = 0.48), suggesting that the rs2036402 acts on 
eGFR through urinary KIM-1. Association between rs2036402 and eGFR was also 
adjusted for duration, PCs and AER, but the effect did not vanish as in the case of 
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urinary KIM-1. These results confirmed a weak association between rs2036402 and 
eGFR, but the SNP acted on eGFR only through urinary KIM-1 levels, as initially 
assumed. Thus, the last assumption of the MR study, that the IV (rs2036402) acts 
through the exposure (KIM-1) without pleiotropic effects, was fulfilled.

Table 26. Variables associated with rs2036402 present in the database.

Variable
Association with

rs2036402
β SE p

Age (years) -0.009 0.005 0.06
Age of onset (years) -0.004 0.006 0.46
Duration (years) -0.009 0.006 0.12
BMI (kg/m2) -0.016 0.015 0.29
History of smoking (%) - - 0.68
SBP (mmHg) -0.003 0.003 0.32
DBP (mmHg) 0.003 0.006 0.62
HbA1C (%) 0.005 0.038 0.90
Total cholesterol (mmol/l) 0.004 0.057 0.94
HDL cholesterol (mmol/l) 0.066 0.143 0.64
LDL cholesterol (mmol/l) -0.002 0.066 0.97
ln(Triglycerides) -0.190 0.108 0.08
ln(AER) 0.004 0.027 0.88
ln(KIM-1) -0.460 0.059 <0.0001
Sex (M/F) - - 0.81
WHR -0.942 0.642 0.14

Table 27. Association between KIM-1 genetic variant and eGFR, 
presented with different adjustments.

Adjustment covariates for rs2036402 Β 95% CI P
Unadjusted 3.25 0.49 – 6.00 0.02
Ln(KIM-1) 1.05 -1.83 – 3.93 0.48
Duration 2.55 -0.07 – 5.17 0.07
Duration and PCs 2,68 0,20 – 36,86 0.05
Duration and ln(AER) 2.03 -0.13 – 4,74 0.06
Duration, PCs and ln(AER) 2,03 0,18 – 23,49 0.11
Duration, PCs and ln(KIM-1) 0,69 0,04 – 10,79 0.62

The effect β on GFR was estimated per one copy of rs2036402 minor C allele.  
PCs represented the first 2 PCs.

5.3.3.4. Causal link between KIM-1 and eGFR
The conventional (observational) estimate of the relationship between KIM-1 and 
eGFR was obtained using a linear regression. In the linear regression one logarithmic 
unit increase in urinary KIM-1 was associated with a 4.52 ml/min lower eGFR. This 
inverse association remained significant after different adjustments such as diabetes 
duration or HbA1C, but disappeared after adjusting for AER (p = 0.70) (Table 28).
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Table 28. Comparison of estimates from instrumental analysis and observed association between 
KIM-1 and eGFR.

Instrumental variable (IV) F
IV estimate Observational estimate

E (p)
Β 95% CI p Β 95% CI p

Unadjusted -4.522 -6.238 – -2.807 < 0.001
rs2036402 93.66 -6.786 -12.027 – -1.546 0.01 0.37
Duration -4.066 -5.699 – -2.434 < 0.001
rs2036402 63.05 -5.654 -10.647 – -0.661 0.03 0.51
Duration+HbA1c -3.827 -5.493 – -2.161 < 0.001
rs2036402 64.67 -5.667 -10.681 – -0.655 0.03 0.45
Duration+AER 0.325 -1.305 – 1.956 0.70
rs2036402 113.93 -5.044 -9.865 – -0.224 0.04 0.02
Duration+HbA1c+AER 0.114 -1.525 – 1.755 0.89
rs2036402 103.23 -5.106 -9.920 – -0.292 0.04 0.02

Instrumental analysis (2SLS) was performed for calculation of the 2-stage estimator for the causal effect of the 
modifiable exposure (urinary KIM-1) on the outcome (eGFR), using rs2036402 in KIM-1 gene as the IV. Association 
between urinary KIM-1 levels and eGFR was evaluated with a multiple linear regression. The differences between 
the IV estimators and the conventional regression based estimators (endogeneity) were tested by a Durbin-Wu 
test, to see if the differences were statistically significant. The covariates used for adjustments were the following: 
Duration – diabetes duration; Duration+HbA1C – diabetes duration and HbA1C; Duration+HbA1C+AER – diabetes 
duration, HbA1C and AER; Duration – duration of T1DM; F (first-stage regression) – F-statistics from the first-stage 
regression of the 2SLS; The causal effect (β) of urinary KIM-1 on eGFR was estimated per one standard deviation 

of ln(KIM-1). Statistical significance (p) was considered significant at values of less than 0.05.

The causal estimate (or the IV estimate) of the effect of KIM-1 on eGFR was 
obtained using a 2SLS.  The 2SLS showed that one logarithmic unit increase in urinary 
KIM-1’s levels was associated with a 6.79 ml/min (95% CI -12.03 – -1.55) lower 
eGFR in the unadjusted analysis. Urinary KIM-1 increase remained independently 
associated with a lower eGFR even after adjustment with diabetes duration, HbA1C, 
AER or all of them (p = 0.038). In comparison with the linear regression, the IV 
estimated effect sizes of urinary KIM-1 on eGFR were consistent with and without 
adjustments, ranging from -6,79 ml/min in unadjusted analysis to -5.11 ml/min in 
full adjusted analysis (Table 28).

Finally, the F-statistics from the first regression of the 2SLS, evaluating the 
strength of the IV, were far higher than 10, confirming that the balance between our 
sample size and the strength of the IV was sufficient for this type of study (Table 28).

5.3.3.5. Endogeneity testing
The endogeneity was non-significant in the unadjusted analysis (p = 0.37) and 
after adjustment for diabetes duration (p = 0.51) or HbA1C (p = 0.45). This result 
could be interpreted as no difference between the observed estimator (from linear 
regression) and the IV estimator. However, when the 2SLS model was adjusted for 
AER, significant endogeneity was found (p < 0.05), indicating a significant difference 
between the two estimators (Table 28).
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5.4. Study IV – Urinary biomarkers and prediction of 
macrovascular complications and mortality

Study IV comprised individuals with T1DM without ESRD or a previous cardiovascular 
event. 

Table 29. Clinical characteristics at baseline for individuals enrolled.

Variable  Value
Sex (M/F) 1174 / 1155
Age (years) 37.17 ± 11.8
Diabetes duration (years) 21.2 ± 11.4
BMI (kg/m2) 25.1 ± 3.6

WHR
Male 0.90 ± 0.07
Female 0.81 ± 0.06

History of smoking (%) 49.9
Current smoking (%) 25.6
SBP (mmHg) 132 ± 17
DBP (mmHg) 79 ± 10
HbA1C (%) 8.4 ± 1.5
Total cholesterol (mmol/l) 4.90 ± 0.92
LDL cholesterol (mmol/l) 3.03 ± 0.82
HDL cholesterol (mmol/l) 1.34 ± 0.38
Triglycerides (mmol/l) 0.99 (0.75 – 1.40)
AER (mg/24 h) 10 (6 – 36)
eGFR (ml/min/1.73 m2) 84 (68 – 103)
CRP (mg/l) 4.30 (1.19 – 3.89)
Proliferative retinopathy (%) 26.2
Antihypertensive medication (%) 36.6
Diabetic nephropathy (%) 28.1
Urinary L-FABP (μg/μmol) 0.05 (0.01 – 0.13)
Urinary ADP (µg/g) 0.40 (0.03 – 0.22)
Urinary KIM-1 (ɳg/mmol) 29.8 (13.6 – 53.8)

Categorical data are presented as numbers or percentages (%). Continuous data are presented as 
means ± SD if they are normally distributed or as median (inter- quartile range) for non-normally 
distributed variables. M / F – male / female, CAD – coronaryartery disease, PVD - peripheral vascular 

disease, CVD  – cardiovascular disease.

The median age of the 2329 individuals was 37 years, and the duration of diabetes 
at baseline was 16 years. Of these individuals, a large number were male (1174 vs 
1155), 25.6% were currently smoking, while 49.9% of them had a history of smoking. 
The overall mean BMI was 25 kg/m2. The clinical characteristics of this population 
are presented in Table 28.

The median follow-up time in study IV was 14.1 years (IQR 12.5 – 16.0). During 
follow-up 240 (10.1%) individuals presented CAD, 116 (5%) presented PVD, 133 
(5.8%) suffered a stroke, 15.1% had CVD, while 269 (11.3%)  of them died.
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5.4.1. Prediction of CVD, CAD, PVD, stroke and mortality by the 
tested urinary biomarkers

5.4.1.1. CAD, PVD and CVD
All urinary biomarkers had higher levels in those experiencing an incident CAD, 
PVD or CVD event (Table 30).

In addition, in simple Cox regressions, as well as after adjustment with the model 
of TRF, all biomarkers predicted incident CVD, CAD or PVD events. After further 
adjustments with eGFR, all biomarkers predicted CVD and PVD, while only urinary 
ADP predicted CAD. After further adjustments with AER were performed, urinary 
ADP and urinary KIM-1 predicted CVD, while urinary KIM-1 was the only biomarker 
predicting PVD after Bonferroni correction was applied (Table 30).

5.4.1.2. Stroke
Compared with those without incident strokes, individuals who experienced an 
incident stroke had higher levels for all 3 urinary biomarkers.

Urinary ADP predicted incident strokes independently of the TRF model, as well 
as when supplementary adjustment for eGFR was applied. However, when further 
adjustments with AER were applied, urinary ADP was no longer an independent 
predictor of stroke after Bonferroni correction was applied.

Urinary KIM-1 predicted incident stroke in unadjusted analysis as well as after 
adjustment with the TRF model.

Urinary L-FABP was the only biomarker that independently predicted stroke 
after adjustment with TRF as well as after further adjustment with eGFR and AER 
(Table 31).

5.4.1.3. Mortality
Again, all baseline levels of the 3 biomarkers were higher in individuals who died 
during follow up, compared with the survivors’ levels. 

All biomarkers predicted mortality in unadjusted analysis as well as after 
adjustments with TRF. After further adjustment with eGFR, however, only urinary 
L-FABP and urinary ADP still predicted mortality. Finally, only urinary L-FABP 
independently predicted mortality when adjusted with TRF, eGFR and AER (Table 
31).
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Table 30. Comparison between each biomarker’s levels for each outcome.

Coronary artery disease
Variables No CAD CAD p
Urinary L-FABP (μg/μmol) 0.051 (0.100 – 0.125) 0.123 (0.032 – 0.542) < 0.0001
Urinary ADP (µg/g) 0.081 (0.032 - 0.200) 0.149 (0.045 - 0.576) < 0.0001
Urinary KIM-1 (ɳg/mmol) 27.727 (13.043 - 51.521) 40.870 (18.679 - 66.222) < 0.0001

Peripheral vascular disease
Variables No PVD PVD p
Urinary L-FABP (μg/μmol) 0.050 (0.010 – 0.054) 0.243 (0.069 – 1.349) < 0.0001
Urinary ADP (µg/g) 0.081 (0.032 - 0.203) 0.256 (0.082 - 1.213) < 0.0001
Urinary KIM-1 (ɳg/mmol) 27.713 (13.044 - 51.429) 49.787 (26.810 - 79.335) < 0.0001

Stroke
Variables No Stroke Stroke p
Urinary L-FABP (μg/μmol) 0.051 (0.010 - 0.128) 0.1681 (0.044 - 0.813) < 0.0001
Urinary ADP (µg/g) 0.081 (0.032 - 0.208) 0.222 (0.067 - 0.889) < 0.0001
Urinary KIM-1 (ɳg/mmol) 28.148 (13.103 - 51.521) 45.652 (20.916 - 73.257) < 0.0001

Cardiovascular disease
Variables No CVD CVD p
Urinary L-FABP (μg/μmol) 0.046 (0.008 - 0.112) 0.129 (0.037 - 0.669) < 0.0001
Urinary ADP (µg/g) 0.074 (0.031 - 0.186) 0.1719 (0.058 - 0.831) < 0.0001
Urinary KIM-1 (ɳg/mmol) 26.633 (12.446 - 49.161) 43.333 (20.000 - 72.813) < 0.0001

Mortality
Variables Survivors Dead p
Urinary L-FABP (μg/μmol) 0.048 (0.009 - 0.119) 0.175 (0.051 - 0.987) < 0.0001
Urinary ADP (µg/g) 0.078 (0.032 - 0.194) 0.201 (0.062 - 1.017) < 0.0001
Urinary KIM-1 (ɳg/mmol) 27.273 (12.873 - 50.870) 43.431 (20.548 - 74.018) < 0.0001

Biomarkers levels are presented as median (interquartile range). Comparison between groups was 
performed using Mann-Whitney test for independent samples. Statistically significant difference was 

considered if p < 0.01 (according to Bonferroni correction for 5 outcomes).

5.4.2. L-FABP’s diagnostic performance and added clinical benefit 
for prediction of stroke and mortality
Urinary L-FABP was an independent predictor for stroke and mortality. For these 
two outcomes, we performed further analysis on urinary L-FABP’s diagnostic 
performance and added clinical benefit.

The average predictive performance (AUC) for stroke of urinary L-FABP was similar 
to that of eGFR (p = 0.72) or AER (p = 0.56), and superior to other well-known 
cardiovascular predictors (Table 32) (450). Notably, adding urinary L-FABP to the 
TRF model improved the diagnostic performance for stroke (p = 0.04). The added 
diagnostic benefit (increment in AUC) of urinary L-FABP used on top of the TRF was 
similar to that of AER. Finally, used on top of the TRF models already containing AER 
or eGFR, urinary L-FABP no longer improved the prediction of stroke (Table 32).
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Table 32. Average diagnostic performance using ROC curves analysis for prediction of stroke and 
mortality by urinary L-FABP in comparison with well-known risk factors.

Variable AUC 95%CI
L-FABP

Diff. p
Stroke

HDL cholesterol 0.520 0.499 - 0.541 0.188 < 0.0001
LDL cholesterol 0.584 0.563 - 0.604 0.124 0.01
HbA1C 0.596 0.575 - 0.616 0.112 0.008
SBP 0.686 0.667 - 0.706 0.022 0.68
eGFR 0.710 0.689 - 0.730 -0.002 0.72
AER 0.709 0.688 - 0.729 -0.001 0.56
Urinary L-FABP 0.708 0.687 - 0.728 - -

Mortality
HDL cholesterol 0.556 0.535 - 0.576 0.168 < 0.0001
LDL cholesterol 0.576 0.555 - 0.596 0.148 < 0.0001
HbA1C 0.587 0.566 - 0.607 0.137 < 0.0001
SBP 0.689 0.670 - 0.708 0.035 0.13
eGFR 0.743 0.724 - 0.760 -0.019 0.37
AER 0.727 0.709 - 0.746 -0.003 0.82
Urinary L-FABP 0.724 0.705 - 0.742 - -

Table 33. Average diagnostic performance using ROC curves analysis for the main comparisons 
between models used in the study.

Variable AUC 95%CI
Stroke

TRF 0.805 0.786 - 0.819
TRF+eGFR 0.810 0.788 - 0.821
TRF+AER 0.824 0.799 - 0.831
TRF+L-FABP 0.822 0.804 - 0.839
TRF+eGFR+AER 0.824 0.806 - 0.841
TRF+eGFR+L-FABP 0.822 0.804 - 0.839
TRF+AER+L-FABP 0.826 0.809 - 0.843
TRF+eGFR+AER+L-FABP 0.826 0.809 - 0.843

Mortality
TRF 0.833 0.815 - 0.849
TRF+eGFR 0.840 0.822 - 0.856
TRF+AER 0.848 0.831 - 0.864
TRF+L-FABP 0.849 0.832 - 0.865
TRF+eGFR+AER 0.849 0.832 - 0.864
TRF+eGFR+L-FABP 0.850 0.834 - 0.866
TRF+AER+L-FABP 0.851 0.835 - 0.867
TRF+eGFR+AER+L-FABP 0.852 0.835 - 0.867

TRF – traditional risk factors model; TRF+GFR – Cox model formed by TRF and GFR; TRF+AER – Cox model 
of TRF and AER; TRF+L-FABP – Cox model of TRF and urinary L-FABP; TRF+GFR+AER – Cox model of TRF 
together with GFR and AER; TRF+GFR+L-FABP – Cox model of TRF together with GFR and urinary L-FABP; 
TRF+AER+L-FABP – Cox model of TRF together with AER and urinary L-FABP;   TRF+GFR+AER+L-FABP – Cox 

model of TRF together with GFR, AER and urinary L-FABP.
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Table 34. ROC curves analysis at quintiles of follow-up time for progression models.

Time points (years) 12.1 13.4 14.5 16.0 16.2
Cases / controls 102/2125 125/1858 138/1328 147/797 150/531
ROC AUC SE AUC SE AUC SE AUC SE AUC SE

Stroke
eGFR 71.03 3.42 69.87 3.21 71.46 3.03 72.51 2.96 72.28 3.02
AER 70.39 3.15 68.97 2.93 68.05 2.98 65.27 2.99 64.57 2.99
Urinary L-FABP 68.10 3.06 67.38 2.75 65.83 2.79 62.88 2.95 61.99 2.90
TRF 84.61 1.85 83.21 1.95 84.72 1.76 85.02 1.84 84.27 1.99
TRF+eGFR 84.58 2.05 83.01 2.04 84.66 1.84 85.32 1.82 84.80 1.94
TRF+AER 86.14 1.73 84.38 1.84 85.53 1.71 86.09 1.73 85.19 1.89
TRF+L-FABP 86.41 1.71 83.39 2.10 85.29 1.90 85.77 1.87 85.07 1.99
TRF+eGFR+AER 86.04 1.77 84.29 1.85 85.57 1.70 86.22 1.71 85.38 1.87
TRF+eGFR+L-FABP 86.06 1.83 83.12 2.12 85.16 1.90 85.79 1.86 85.18 1.97
TRF+AER+L-FABP 86.62 1.71 83.94 2.00 85.51 1.84 86.19 1.81 85.39 1.94
TRF+eGFR+AER+L-FABP 86.55 1.72 83.86 2.01 85.52 1.83 86.21 1.80 85.48 1.93

Mortality
eGFR 69.97 2.35 29.47 2.26 26.69 2.05 26.99 2.09 27.26 2.19
AER 71.56 2.23 71.16 2.19 69.83 2.18 68.56 2.25 67.46 2.36
Urinary L-FABP 68.81 2.31 68.74 2.22 67.92 2.18 66.39 2.82 65.20 2.39
TRF 81.68 1.71 82.35 1.62 83.56 1.51 83.59 1.54 84.26 1.63
TRF+eGFR 81.64 1.79 82.31 1.70 83.88 1.55 83.87 1.56 84.51 1.63
TRF+AER 82.78 1.72 83.57 1.63 84.49 1.52 84.48 1.53 84.73 1.63
TRF+L-FABP 83.06 1.65 83.78 1.56 84.77 1.45 84.60 1.49 84.77 1.60
TRF+eGFR+AER 82.60 1.75 83.40 1.65 84.52 1.52 84.53 1.54 84.82 1.62
TRF+eGFR+L-FABP 82.88 1.69 82.60 1.59 84.83 1.46 84.61 1.50 84.80 1.60
TRF+AER+L-FABP 83.06 1.69 83.87 1.59 84.84 1.48 84.75 1.51 84.90 1.61
TRF+eGFR+AER+L-FABP 82.97 1.70 83.81 1.60 84.88 1.48 84.78 1.51 84.94 1.61

TRF – traditional risk factors model; The abreviation of the main models used in the study are presented in the 
legend of Table 33.

Urinary L-FABP’s average AUC for prediction of mortality when compared with 
eGFR (p = 0.37) or with AER (P = 0.82) was similar (Table 32). Addition of urinary 
L-FABP to the model comprising the TRF added a significant clinical benefit for 
prediction (p = 0.001) and the increment was like the one of AER (p = 0.76) (Table 
33). Notably, the average diagnostic performance of urinary L-FABP for prediction 
of mortality was much better when compared with other well-known cardiovascular 
risk factors (Table 32) (450).

Urinary L-FABP’s clinical diagnostic performance variation for prediction of 
stroke and mortality was also assessed using time dependent ROC curve analysis 
at quintiles of follow-up time (Table 34 and Figure 18). For both outcomes of study 
IV and at any time point urinary L-FABP was no better than AER or eGFR, while 
TRF was at all time points superior to urinary L-FABP, AER or eGFR . Urinary 
L-FABP used on  top of TRF, eGFR and AER provided no added diagnostic benefit 
for prediction of stroke or mortality. 

When NRI and IDI for logistic model were calculated, there was no added 
reclassification benefit on top of AER or eGFR for any of the two outcomes in study 
IV (Table 35).
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When NRI and IDI generalized for survival data were calculated, the largest 
reclassification benefit for stroke was observed on top of TRF at 5 years (NRI3-S5 = 
14.6%). However, there was no reclassification benefit of adding L-FABP on top of 
AER and/or eGFR (Table 35).

Table 35. Urinary L-FABP added predictive benefit.

Models NRI3-lm SE p NRI3-S5 NRI3-S10 IDIlm SE p IDIS5 IDIS10

Stroke

TRF+L-FABP vs TRF 0.179 0.050 < 0.001 0.146 0.073 0.013 0.004 0.001 0.026 0.041

TRF+ eGFR vs TRF 0.010 0.040 0.01 0.040 0.061 0.008 0.002 < 0.001 0.006 0.005

TRF+AER vs TRF 0.062 0.028 0.03 0.044 -0.132 0.008 0.001 < 0.001 0.011 0.022

TRF+L-FABP+eGFR vs 
TRF+eGFR 0.076 0.033 0.04 -0.156 -0.027 0.007 0.003 0.02 0.020 0.035

TRF+L-FABP+AER vs 
TRF+AER 0.073 0.032 0.02 -0.057 -0.100 0.005 0.002 0.01 0.011 0.022

TRF+eGFR+AER+L-FABP vs 
TRF+eGFR+AER 0.045 0.027 0.10 -0.053 -0.101 0.005 0.002 0.01 0.010 0.022

Mortality

TRF+L-FABP vs TRF 0.074 0.027 0.005 0.203 0.078 0.043 0.007 < 0.001 0.036 0.041

TRF+eGFR vs TRF 0.086 0.040 0.03 -0.026 0.056 0.007 0.002 < 0.001 0.003 0.005

TRF+AER vs TRF 0.014 0.020 0.47 -0.064 -0.057 0.006 0.002 < 0.001 0.004 0.022

TRF+L-FABP+eGFR vs 
TRF+eGFR 0.064 0.023 0.006 -0.226 -0.051 0.028 0.005 < 0.001 0.031 0.035

TRF+L-FABP+AER vs 
TRF+AER 0.026 0.020 0.20 -0.218 -0.099 0.010 0.003 0.001 0.024 0.022

TRF+eGFR+AER+L-FABP vs 
TRF+eGFR+AER 0.027 0.019 0.16 -0.239 -0.089 0.009 0.003 0.004 0.023 0.021

NRI3-lm - net reclassification index with 3 thresholds for logistic model; NRI3-S5 - net reclassification index with 
3 thresholds generalized for survival data (calculated for 5 years survival); NRI3-S10 - net reclassification index 
with 3 thresholds generalized for survival data (calculated for 10 years survival); IDI – integrated discrimination 
improvement; IDIS5 - integrated discrimination improvement generalized for survival data (calculated for 
5 years survival); NRIS10 - integrated discrimination improvement generalized for survival data (calculated for 
10 years survival); 95% CI – 95% confidence interval; p –statistical significance; TRF – traditional risk factors 
model; TRF+eGFR – Cox model formed by TRF and eGFR used together; TRF+AER – Cox model formed by 
TRF and AER used together; TRF+L-FABP – Cox model formed by TRF and urinary L-FABP used together; 
TRF+eGFR+AER – Cox model formed by TRF together with eGFR and AER; TRF+eGFR+L-FABP – Cox model 
formed by TRF together with eGFR and urinary L-FABP; TRF+AER+L-FABP – Cox model formed by TRF together 
with AER and urinary L-FABP; TRF+eGFR+AER+L-FABP – Cox model formed by TRF together with eGFR, AER.

5.4.3. L-FABP and causality for stroke or mortality
Causality could not be assessed because the first assumption of the Mendelian 
randomization analysis was not fulfilled. For further details please see the Study I.
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6. DISCUSSION

6.1. Methodological evaluation – strengths and 
weaknesses of the studies

6.1.1. Outcome measures used in the studies

6.1.1.1. DN progression based on AER – early stages of DN
In studies I, II and III the individuals with T1DM were classified as “incipient” DN 
(microalbuminuria), clinical overt DN (macroalbuminuria) and ESRD, while passage 
to a higher stage was considered as progression of DN. The AER-based progression 
of DN, however, has some limitations, both at the early and the late stages of the 
disease. At the early stages DN progression is based on AER. The AER increase over 
time usually mirrors the DN progression towards ESRD for the majority of affected 
individuals (88). Some, however, can progress to ESRD without having any increase 
at all in AER (94, 451, 452).

An increase in AER is mainly regarded as a reflection of progression of glomerular 
injury (453). Consequently, any attempt to predict such progression by novel tubular 
biomarkers has 3 practical problems. First, the prediction of glomerular injury by 
using biomarkers of tubular injury implies a relationship between the two apparently 
independent processes. Second, when the outcome is progression of DN, based on 
AER change to a higher category, it is difficult for any other biomarker to outperform 
the gold standard outcome, the AER. Third, by using the AER-based progression of 
DN as an outcome we are practically testing our biomarkers for prediction of only 
one phenotype of DN. This is problematic, since it is well-known that DN has two 
phenotypes – one phenotype based on AER and the other based on eGFR decline – 
and they do not fully overlap (96, 108).

Considering these aspects, prediction of AER-based progression of DN using 
novel biomarkers should be of even higher clinical value, if the prediction would 
be independent of AER. In addition, a biomarker that does not predict AER-based 
progression of DN independently of AER may have a glomerular component or 
alternatively may reflect a tubular component of AER. Finally, a biomarker that does 
not predict AER-based progression of DN may still predict progression of DN based 
on the slope of the renal function decline.

One option to overcome these limitations would be to also test the other 
phenotype of DN, which is based on the decline of eGFR. This phenotype may better 
reflect the ultimate outcome of DN than AER does. Unfortunately, the slopes of 
renal decline were not yet available at the time of this analysis. However, even if this 
second phenotype of DN progression was not tested, the results are still relevant, 
considering that the AER-based progression of DN is widely used in clinical practice.
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6.1.1.2. DN progression based on ESRD outcome – the late stage 
of DN
In studies I, II and III, progression to ESRD was considered when the individuals 
with T1D started dialysis or received a kidney transplant (430, 431, 454). The start 
of dialysis is widely used in clinical research and considered to be a hard endpoint. 
However, the timing of dialysis initiation is variable, being a complex interplay 
between at least 3 interrelated and dynamic processes (physician practices and 
local guidelines, acute medical episodes or procedures and patient–physician 
dynamics) (455, 456). Similarly, kidney transplantation is also a hard endpoint, 
but again the timing of transplantation may vary, being influenced by age, access 
to transplantation, type of transplant procedure and organ availability (457, 458). 
Thus, even if both are relevant outcomes, the time to the event may vary in both 
cases. Therefore, the reflection of the clinical or biochemical status of kidney function 
may not be accurate when considering these two outcomes, because of the variable 
time-to-event information (459). 

Figure 18. Histogram of the time differences in years between the time of ESRD and the time of 
the first eGFR value < 10 ml/min/1.73m2 in individuals with macroalbuminuria at baseline from the 

FinnDiane Study.

These notions should be kept in mind when interpreting the results regarding the 
prediction of progression at the late stages of DN. On the other hand, progression at 
these late stages of DN should be tested using other potential outcomes that better 
reflect the kidney function. The need for other outcomes is confirmed by partial 
posthoc analysis of the FinnDiane participants with macroalbuminuria at baseline. 
The analysis of the macroalbuminuric individuals with regard to the time between 
the occurrence of the first eGFR value lower than 10 ml/min/1.73m2 and the time 
of ESRD outcome showed important differences (Figure 18). Approximately 15% of 
the subjects reaching ESRD had an eGFR below 10 ml/min/1.73m2 at least 6 months 
prior to the ESRD, while 5% had an eGFR below 10 ml/min/1.73m2 at least one year 
before ESRD. In contrast, in 10 to 15% of the subjects the decision to start dialysis 
more than 6 months earlier was probably not because of an eGFR below 10 ml/
min/1.73m2. Only in about 35% of the macroalbuminuric individuals who reached 
ESRD was the dialysis started ± 6 months from the first eGFR value being below 10 
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ml/min/1.73m2. Other outcomes such as the decline in renal function also predict 
progression to renal insufficiency in individuals with DN (93).

Despite its limitations, however, the definition of the ESRD outcome as used in 
studies I, II and III was still considered a hard clinical outcome as widely accepted 
in observational and clinical trials. Furthermore, at the time of publication of these 
papers the data on the slopes of renal function decline in the FinnDiane study were 
not available.

6.1.1.3. CVD and mortality outcomes
The cardiovascular and mortality outcomes were obtained by linking the FinnDiane 
database with two national registries – the Finnish HDR and the Finnish CDR. 
The Finnish HDR has a high level of accuracy and completeness of the collected 
cardiovascular data (460). The Finnish CDR also reflects the mortality statistics 
accurately (461). It is worth noting that linking of the FinnDiane database with these 
two registries had previously been done and validated (462).

6.1.2. FinnDiane data collection and follow-up
The FinnDiane Study represents a high-quality sample collection and is at the 
moment probably one of the largest collections of data on T1DM with and without DN 
in the world. The number of individuals carefully characterized exceeds 8000, and 
blood, serum, plasma, urine and DNA samples are available for research purposes.

The collection system for the FinnDiane database is provided by the BC Platform, 
a world leader in providing powerful data management and analysis solutions 
for biomedical research and healthcare information technologies (http://www.
bcplatforms.com/).

Follow up of the participants is done by careful review of the medical records or 
by using extensive data from the Finnish registries (comorbidities, cardiovascular 
and renal events, causes of death, use of medications).

All the characteristics above (large number of participants, long follow-up and 
high-quality phenotypic characterization) are considered important strengths of this 
study.

6.1.3. Samples, storage and biomarker measurement and 
biovariability
One potential limitation may be the fact that the samples were collected from 1997 
onwards, while the actual biomarkers were not measured until 2009. During this 
time, however, all samples were stored at stable -20°C conditions. The quality and 
stability of the storage was verified by comparing the baseline urinary creatinine 
concentration with the urinary creatinine concentration at the time the biomarkers 
were measured, with a 0.99 correlation coefficient.

To our knowledge there are no studies regarding the effect of storage on urinary 
ADP variability. However, storage at -30°C for 33 months or three cycles of freezing/
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defreezing had no discernible effect on serum adiponectin levels (463). It is worth 
mentioning that in the present study it was not possible to measure the various 
urinary ADP isoforms, but previous studies have shown that the high molecular 
weight (HMW) ADP is the main Urinary ADP isoform in individuals with diabetes 
(424, 464).

Regarding the urinary L-FABP and KIM-1 stability, we found only one study with 
different processing conditions at sample collection or during storage. This study 
showed that both urinary biomarkers have high short-term stability, independent of 
storage or processing protocols (465).

However, all three urinary biomarkers are peptides, which can be compared for 
example to C-peptide. C-peptide was much more stable in urine than in the serum 
after 72h at room temperature or after storage, due to the absence of proteases in 
urine (466). 

Another potential limitation could be that the biomarker values are based on a 
single measurement from a 24h urine sample collected at baseline. However, there 
have been no studies so far regarding the biovariability of the three studied urinary 
biomarkers. In addition, regarding their serum concentrations the available studies 
suggest minimal short- and long-term variability (467, 468). To decrease the potential 
variability of the studied biomarkers, all measured values were normalized with 
urinary creatinine (even if the samples were measured from 24h urine collections). 

Since there are studies showing that the concentrations of these biomarkers can be 
influenced by the presence of leukocyte esterase, nitrite, hematuria or proteinuria in 
the tested urine sample, a concomitant urine sample for urinalysis was also collected 
and tested (468). If in this second urine sample there was any sign of infection or 
acute abnormality, additional tests were performed, and sampling was repeated 
after proper treatment.

Finally, since no critical variability of the tested biomarkers has been described 
and measures were taken to ensure similar sampling conditions, additional 
measurements would only strengthen the results.

6.1.4. Generalizability (external validity), internal validity (study 
power)
The FinnDiane Study is a large multicenter cohort from more than 80 centers 
comprising almost 25% of the individuals with T1DM in Finland. The large number 
of individuals enrolled, together with the nationwide spread of the study, which 
mirrors the distribution of the Finnish population, makes this study representative 
of the Finnish population with T1DM.

Given the unique genetic characteristics of the Finnish population, however, the 
results from this study may need to be replicated in other populations before they 
can be considered globally generalizable.

We conducted these studies without determining the sample size and study 
power necessary for the study, but we were indeed using all available samples for 
the biomarker measurements, as well as the complete follow-up data available at 
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the time of the studies. However, in order to provide a correct interpretation of the 
results and to avoid any pitfalls regarding negative results, we tested the power of 
each study in a post-hoc analysis (469). Since our studies could not always reject the 
null hypothesis with a power of 0.8, the negative results from these studies should 
be interpreted with caution. Thus, even stronger emphasis needs to be placed on the 
positive results and the predictive ability of the studied biomarkers.

6.1.5. Developments in statistical methods for evaluation of 
biomarkers 
In recent decades the statistical methods for the analysis of biomarkers have evolved 
from binary cross-sectional outcomes to time to event analyses. In addition, given 
the multitude of biomarkers, additional indexes have been developed and statistical 
tests have gone from discriminant analysis to regressions and then to survival and 
competing risk analyses (435, 470, 471). 

Over the last 10 years, time-to-event analysis has come to be widely used for the 
evaluation of biomarker prediction ability, although other statistical tests also have 
become necessary. Initially, the ROC analysis and C-statistics were necessary for 
discrimination between individuals with and without events for a certain biomarker 
(472). The ROC curve analysis was adapted for survival data as an average and at 
different time-points (473, 474). Then, in another step in the evolution, due to the 
multitude of biomarkers the reclassification analysis was required to evaluate the 
added reclassification benefit of a new biomarker compared with the current gold 
standard. Thus, new indexes have been published for logistic models such as the 
NRI and IDI (438, 475). Furthermore, adaptations of these indexes have also been 
developed (continuous NRI, IDI generalized for survival data, NRI generalized for 
survival data, etc.) to overcome the limitations of the initial indexes in relation to the 
time-to-event analysis (476). Despite all these adaptations and generalizations, the 
debate is still ongoing, as to whether they are appropriate for the assessment of a 
biomarker’s added benefits (477). 

The developments in the statistical methods used in studies I to IV took place 
during the 5-year period when our studies were conducted. Therefore, the latest 
adaptations of these statistical methods were used in study IV. Additional calculations 
of all the indexes according to the procedures in study IV have also been done in 
this thesis. It should, however, be pointed out that even if the additional indexes 
for the prediction and reclassification were calculated in order to provide a uniform 
presentation of the data in this thesis, the results did not change to any significant 
extent, thereby underlining their robustness.

The latest development in biomarker assessment beyond the added reclassification 
benefit is the evaluation of causality. Causality can be evaluated either by a 
randomized controlled trial (intervention with a drug that influences the biomarker 
level) or by a MR approach, which was done in studies I–IV.

The MR can be considered a “natural” form of a randomized controlled trial: the 
subjects are randomly allocated before birth to different “treatment groups” (i.e., 
different concentrations of a biomarker) according to their genotype and followed 
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up from birth until the moment of the outcome measurement (i.e., baseline visit in 
these studies). If the biomarker is causal, then the individuals with low levels of the 
biomarker should have a different outcome compared with those with high levels of 
the biomarker.

The basic assumption of the MR analysis, that a genetic variant(s) (instrument, 
IV) modifies the exposure to a certain risk factor (modifiable exposure = biomarker 
of interest) by changing its levels, unrelated to any confounding factors, has largely 
been accepted (478). 

However, the “lifetime effect” interpretation commonly seen in MR studies has 
been challenged by some researchers (479, 480). They claim that a lifetime effect 
is not statistically justified in the case of time-varying exposures or nonlinear 
relationships between the IV and the exposure. To exclude a non-linear relationship 
between our instrument and urinary KIM-1 we performed, in addition to verification 
of the linear regression assumption and after the publication of the manuscript, 
the Ramsey Regression Equation Specification Error Test (RESET) to see whether 
polynomial terms are needed. At RESET test, no unlinear relationship was seen 
between rs2036402 and urinary KIM-1 (p = 0.19) or between urinary KIM-1 and 
eGFR (p = 0.09). Consequently, in our study there is no time-varying exposure and 
no need to specify a period average causal effect.

In addition, reverse causation as another potential bias in the MR studies was 
also suggested (481). However, for many reasons it may not be possible in a MR 
study for the variant-outcome association to suffer from reverse causation (random 
allocation of genetic variants during meiosis, time does not flow backwards, etc.). 
However, the reverse causation between the outcome variable (eGFR) at an earlier 
timepoint or a proximal precursor of the outcome (AER) and the risk factor (urinary 
KIM1), which can bias estimates of the effect of the risk factor on the outcome, may 
not be excluded. To overcome this potential bias we adjusted the final analysis for 
AER and the causality was still valid. Unfortunately, we had no data regarding eGFR 
at birth in order to completely exclude this criticism, but there are unlikely to have 
been important eGFR differences at birth in this study since all patients with kidney 
disease from other causes except diabetes were excluded from the study. Moreover, 
the reverse causality is quite improbable in this case, since in the pathophysiological 
pathway the increase of urinary KIM-1 concentrations appears before eGFR decline.

However, the MR analysis may fall into a series of analytical traps such as using a 
weak IV, pleiotropy, linkage disequilibrium, etc., mainly because of the large volume 
of genetic variants and exposures available. It is attractive to compute genetic risk 
scores to better explain the phenotype and to increase the power of the study, but 
when these risk scores are not completely understood, the risk of pleiotropy and 
other inferential complications increases (482). To avoid these problems, the option 
used here was to test a single genetic variant, to analyze its independence from other 
SNPs and to verify any potential pleiotropy. In study III we took all these precautions 
into account to avoid any likely pitfalls.

Although study III probably represents one of the largest studies regarding the 
DN progression analysis, it may still be considered small for a MR analysis. This 
is, however, compensated by accurate clinical measurements together with a strong 
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IV, more than sufficient for our sample size, as proved by the large F-statistic 
values. Additionally, to increase the precision of our IV and to reduce any probable 
instrument bias, we adjusted the 2SLS analysis with other measured covariates 
(diabetes duration, HbA1C and AER), which are not on the causal pathway between 
the exposure and the outcome, but which could explain the variation of the outcome.

6.1.6. Other aspects of the statistical analysis
One limitation of the studies regarding the urinary L-FABP may be that we had no 
data on anemia. Anemia may have been present already at the early stages of DN 
and could increase urinary L-FABP, if it is severe enough (32,33). However, severe 
anemia at least was not an issue in these studies, since no subject was receiving 
erythropoietin or any other treatment for anemia, and all participants with ESRD at 
baseline were excluded.

One limitation in study II on adiponectin could be that there were some gender 
differences in the urinary ADP concentrations. However, to diminish the influence of 
gender on the Cox regression analysis, all results are presented adjusted for gender. 

Despite all the potential limitations described above, these do not influence 
the results or their interpretation to any significant extent, while on the other 
hand the multiple strengths of the studies make them unique, reliable and highly 
representative of the Finnish population, thus driving the possibility of replication 
in other populations.

6.2. Clinical implications and interpretation of the results

There are two important findings unveiled by these studies. First, the tubular 
biomarkers predict the progression of DN at different stages, and KIM-1 is very likely 
to play a causal role in the loss of kidney function, broadening the glomerulocentric 
view of DN. The movement from a glomerulocentric view of DN progression to a 
more global view involving also the tubular function is based on the following results: 
(1) Urinary L-FABP predicted the AER-based progression of DN at all stages, while 
urinary adiponectin predicted only the progression to ESRD. (2) Urinary KIM-1 very 
likely plays a causal role in the loss of kidney function, independently of AER and 
HbA1C.

Second, the tubular biomarkers may also reflect cardiovascular disease 
development. This statement is based on the following results: (1) Urinary L-FABP 
is a predictor of stroke, but not the other cardiovascular outcomes such as CAD, PVD 
or CVD. (2) Urinary KIM-1 predicted PVD and CVD, while urinary ADP predicted 
only CVD.

6.2.1. Study I – Urinary L-FABP prediction of DN progression
This study showed that, at any AER-based baseline stage of DN, urinary L-FABP was 
an independent predictor of progression of DN. This prediction of DN progression 
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was, however, no better than that of AER at any stage. Moreover, the prediction did 
not improve when urinary L-FABP was used together with AER.

In previous studies in individuals with T1DM, when analyzed as quartiles, urinary 
L-FABP was suggested to be a predictor of progression to microalbuminuria (408). 
Thus, our data confirm that L-FABP predicts the progression of DN at this early stage 
and may be important for the individuals with normal AER, which is the stage where 
there is no biomarker or algorithm to estimate the risk of onset of microalbuminuria.

In addition to the prediction of AER-based progression (progression of glomerular 
damage), urinary L-FABP has previously been shown to be closely associated with 
structural and functional tubular kidney damage (405, 483). Such a link between 
tubular injury and the early AER-based progression of DN could be a reason to use a 
biomarker panel reflecting both structural and functional changes due to DN in the 
clinic at this early stage.

Interestingly, in the microalbuminuria group, a high urinary L-FABP 
independently predicted a higher risk of progression to macroalbuminuria [HR = 1.40; 
95%CI (1.10 – 1.79)], before the adjustment with AER. After adjustment with AER, 
however, a high urinary L-FABP predicted a surprisingly lower risk of progression 
[HR = 0.67; 95% CI 0.47 – 0.95)]. This difference in the risk of progression may have 
a few potential explanations. One could be the lower statistical power in this group 
(46 progressors). In the individuals with microalbuminuria compared with the other 
groups, a stronger correlation between AER and L-FABP (r = 0.49) was seen, which 
could be another potential explanation. These two alternatives may not, however, 
explain why urinary L-FABP was as an independent predictor in the first place. Since 
urinary L-FABP lost its predictive ability after the adjustment for ACE inhibitors or 
for any antihypertensive medication, a third explanation may be that the effect, seen 
only in the microalbuminuria group, is an effect of medication. Such an effect is no 
surprise, as treatment with ACE inhibitors reduces the AER and/or urinary L-FABP 
levels and thereby influences the progression of DN (405). Last but probably the 
most attractive explanation may be that L-FABP plays a protective role against the 
tubular stress induced by FFA overload triggered by elevated AER, as others have 
suggested (484).

Finally, it is very important to highlight that, in study I, urinary L-FABP predicted 
progression at all stages of DN. This prediction, in parallel with the worsening of the 
AER-based stage of DN, was due to the continuous increase in the urinary L-FABP 
concentrations, an observation also confirmed in individuals with type 2 diabetes 
(485). 

The predictive accuracy in the ROC curve analysis, at all stages and timepoints, 
was similar to that for AER. An explanation for the similar accuracy could be the AER-
based definition of DN progression. Using an AER-based definition of DN makes it 
very difficult for any other variable to outperform the gold standard (in this case the 
AER change), when adjusted for that gold standard variable. Despite the adjustment 
for the outcome, it is important to underline that urinary L-FABP predicted the 
progression at all stages independently of AER and with similar accuracy.

Another important aspect is that even if the accuracy was similar in the 
reclassification analysis, urinary L-FABP, on top of the basic models and AER, added 
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significant reclassification benefit, but only in the individuals with normal AER. 
This reclassification benefit, seen only in those with normal AER, may have clinical 
implications, since these individuals have no other signs of kidney damage, while 
some of them may have the rather rare condition, non-albuminuric DN, observed 
in only 2% of individuals with T1DM (94). Thus, a future perspective for the use of 
L-FABP in clinical practice may be real, if replication appears in other populations. 
Meanwhile, it is noteworthy that L-FABP has already been promulgated by the 
Ministry of Health, Labour and Welfare in Japan as a new tubular biomarker for use 
in clinical practice (486).

6.2.2. Study II – Urinary ADP and DN progression
Study II showed that urinary ADP was not a predictor of disease progression 
independent of AER at the early stages of DN. In contrast, at the late stages such 
as macroalbuminuria, urinary ADP was a strong and independent predictor of 
progression to ESRD. In addition, the prediction of progression to ESRD improved 
in the individuals with macroalbuminuria at baseline, when urinary ADP was used 
together with AER or eGFR.

Urinary ADP predicted the progression from normal AER to microalbuminuria 
and from microalbuminuria to macroalbuminuria independently of the basic 
models of progression, but not independent of AER. An explanation for this could 
be the interaction between urinary ADP and AER, which might reflect that these two 
molecules share common pathophysiological mechanisms or common soil triggering 
their increased concentrations. These pathophysiological similarities are discussed 
in a later section of the discussion – pathophysiological implications of the results. 
Another explanation for the lack of independent prediction may be that albuminuria 
is also an important predictor of progression as well as an outcome at these early 
DN stages (487). Thus, adjusting for the outcome and the strongest predictor may 
naturally lead to the lack of independent prediction of AER-based progression of 
DN.

However, the main observation was that urinary ADP was an independent 
predictor of progression to ESRD. This finding was due to an increase in urinary 
ADP in parallel with AER, which was also observed in a small previous study that 
unfortunately did not explore the association further (427). The present study 
II went further and showed that urinary ADP predicted the progression to ESRD 
independently of the basic progression model, AER, eGFR, urinary L-FABP, urinary 
KIM-1 and serum ADP. This independent prediction is even more interesting, since 
all variables were also associated with the urinary ADP concentrations, suggesting 
that urinary ADP captures also other mechanisms of DN progression.

Thus, urinary ADP predicted progression to ESRD, was a better predictor than 
AER, and added significant clinical benefit to the prediction of progression to ESRD 
when used together with eGFR or AER. From the clinical point of view, assessment 
of urinary ADP, on top of AER or eGFR, may help assessment of DN progression at 
this stage, given the well-known limitations of AER or eGFR (77, 78, 451).

Biomarker comparison regarding IDI and NRI with other studies may be difficult 
because of the lack of comparable data. Despite these inconveniences, urinary ADP 
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had IDI and NRI data comparable to another promising biomarker, namely the 
soluble tumor necrosis factor alpha receptor 1 (sTNFαR1) (311). The added clinical 
benefit of urinary ADP regarding the progression to ESRD may also be related to the 
fact that in this group urinary ADP probably captures more mechanisms than any 
other biomarker.

The fact that urinary ADP is a strong predictor of progression to ESRD is well 
correlated with the loss of eGFR over time. Given that eGFR loss at the earlier stages 
of DN represents a new paradigm of disease progression, urinary ADP may also be 
a promising biomarker for the prediction of eGFR-based progression at the earlier 
stages of DN, but further studies are needed to confirm this hypothesis (93, 488). 

6.2.3. Study III – Urinary KIM-1, DN progression and loss of eGFR
Study III showed that urinary KIM-1 was not an independent predictor of AER-based 
progression of DN at the early stages in individuals with T1DM and with normal 
AER or microalbuminuria at baseline. Urinary KIM-1 was also not an independent 
predictor of DN progression to ESRD, after adjustment for AER. Furthermore, 
KIM-1 showed no prognostic benefit beyond AER or eGFR. However, study III did 
demonstrate a strong genetic impact on the urinary KIM-1 concentrations and an 
independent causal relationship between urinary KIM-1 and lower eGFR at study 
enrolment.

Study III is one of the largest studies in individuals with T1DM, which assesses 
the predictive value and the clinical benefit of urinary KIM-1 for the prediction 
of AER-based progression of DN. In individuals with T1DM, two previous small 
studies on urinary and plasma KIM-1 showed contradictory results regarding its 
predictive capability for DN progression (419, 489). In individuals with T2DM, 
KIM-1 predicted the decline of eGFR in unadjusted analysis, but not the progression 
to macroalbuminuria, whereas the progression to ESRD was not evaluated (418). 
Given these previous discordant data, the observation that urinary KIM-1 did not 
predict either early AER-based progression of DN or late progression to ESRD 
independently of AER is an important finding. This is surprising, since urinary 
KIM-1 has been considered to be a sensitive and specific marker of proximal tubular 
damage, and tubulo-interstitial damage has been proposed to be one of the final 
pathways leading to ESRD (490). 

In study III, the association between urinary KIM-1 and lower eGFR seen in 
the linear regression analysis was also not independent of AER. The explanation 
for this could be a strong interaction between urinary KIM-1 and AER. Such a 
strong correlation was seen in our study and also confirmed by others (490). An 
alternative explanation may be the strong genetic determination of the urinary KIM-
1 concentrations. This was demonstrated in study III, which showed a strong and 
independent genetic impact on the urinary KIM-1 concentrations. 

Based on the genetic determination, the subsequent MR analysis showed a causal 
relationship between the increased urinary KIM-1 concentrations and low eGFR, with 
one-unit change of ln(KIM-1) being associated with a -5.0 to -6.8 ml/min/1.73m2 
decrease in eGFR. Importantly, the causality was independent of diabetes duration, 
glycemic control or AER. Such an independent causal effect of urinary KIM-1 on 
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the loss of renal function is an interesting finding, since the observational study 
showed no independent predictive ability of urinary KIM-1 as to DN progression. 
Given this independent causal relationship, the genetic impact on the urinary KIM-1 
concentrations may be the explanation for the inability to predict DN progression in 
the observational studies, which do not take into consideration the effect of the genes 
on the urinary KIM-1 concentrations. 

The effect of AER, the importance of the genetic background as well as the 
influence of other confounding factors on the relationship between urinary KIM-1 
and eGFR are confirmed by the differences between the observational estimators 
from the linear regression analysis and the IV estimates. The effect size in the simple 
linear regression was similar to the IV estimator, but was no longer significant 
after adjustment for AER, whereas the IV estimator remained robust even after 
adjustment for AER. Furthermore, in the MR analysis the AER adjusted estimators 
were different, with constantly smaller observational estimators and increasing 
endogeneity. There are three possible explanations for the differences between these 
estimates. The first one could be that a lifetime effect of urinary KIM-1 on eGFR is 
more evident in the IV analysis, and may be attenuated in a standard regression 
using a single measurement of urinary KIM-1, AER or eGFR. It is possible that a 
single measurement of the biomarker and the outcome may not capture the total 
effect of urinary KIM-1 on the eGFR. The second explanation could be negative 
confounding, since further adjustments for RAAS-inhibitor treatment or any other 
antihypertensive medications decreased the endogeneity (data not shown) between 
the estimators. The third likely explanation may be based on the tubulo-glomerular 
feedback theory, which may suggest a more complex relationship between eGFR and 
urinary KIM-1 that is mediated through AER with potential reverse causality (490). 

Finally, one important fact should be emphasized – prediction is not the same 
as causality. While for a biomarker the predictive value can be inferred using a 
prospective study and Cox regressions or Fine-Gray competing risk analysis, the 
causality can be confirmed either using a randomized controlled trial or by a MR 
approach (if all assumptions for this type of study are fulfilled). In study III, Cox 
regression was used to assess the predictive value of urinary KIM-1, and it was shown 
that urinary KIM-1 was not independent of AER when the progression of DN was 
based on AER. On the contrary, the causality for the loss of kidney function (eGFR) 
was claimed based on the MR study with a 2SLS analysis, where the urinary KIM-
1 effect was independent of diabetes duration, HbA1C or AER, all being important 
confounders in the observational analysis. Unlike the observational studies, the MR 
analysis is a robust, “free of bias” or “free of confounders” analysis similar to the 
“gold standard” for drug evaluation in clinical practice – the randomized controlled 
trials. In an MR analysis the subjects are randomly allocated to their genotype 
groups. This allocation (randomization) takes place before birth, much earlier than 
the potential actions of any confounders (e.g., AER, HbA1C, etc.). Then if urinary 
KIM-1 is causal for the loss of eGFR, years later a difference in the outcome (eGFR) 
will be observed between the subjects with high, intermediate and low urinary KIM-
1 concentrations. Given these characteristics, the MR analysis effect size is a very 
robust one that should provide a true estimate of the causal effect of urinary KIM-1 
on eGFR, even in the presence of confounders. 



100

From the clinical point of view these results are important since they show 
that, despite the complex relationship between urinary KIM-1, AER and eGFR, the 
association of urinary KIM-1 with lower eGFR represents a causal relationship. In 
addition, this study is an excellent example why a causal biomarker may not be 
useful in clinical practice for the prediction of AER-based DN progression. One 
solution to this could be to also consider the effect of the genotype to predict the 
progression. A second option could be to consider another phenotypic characteristic 
of the progression that is less confounded by AER, such as the eGFR loss over 
time (93). Studies performed after the publication of our study III confirmed the 
independent predictive abilities of the urinary or the serum KIM-1 on the loss of 
eGFR (491-493). Nevertheless, the complex relationship between urinary KIM-1, 
AER and eGFR reflecting tubular injury, glomerular damage and kidney dysfunction 
is another strong argument that DN is a multifactorial disease and is more than just 
glomerular damage.

6.2.4. Study IV – Urinary L-FABP, macrovascular complications 
and mortality
In study IV, of the five outcomes tested, urinary L-FABP was an independent 
predictor of incident stroke and mortality. For these two outcomes, urinary L-FABP 
was a better predictor than well-known cardiovascular risk factors (such as LDL 
cholesterol, HDL cholesterol, HbA1C or SBP) and was as good a predictor as eGFR 
or AER. However, urinary L-FABP did not predict the other tested cardiovascular 
endpoints (CAD, PVD and overall CVD events), when adjusted for AER, while for 
all outcomes except stroke the AER was a strong predictor independent of L-FABP.

Since only a marginal association between a SNP in the FABP1 gene and stroke 
has been reported previously, the urinary L-FABP’s independent prediction of stroke 
is a novel finding (494). In study IV, urinary L-FABP not only predicted stroke 
independently of known risk factors such as age, sex, BMI, diabetes duration, SBP, 
triglycerides, HDL-C, glycemic control and proliferative diabetic retinopathy, but 
the prediction was also independent of eGFR and AER. 

Another important finding in study IV was that urinary L-FABP was an 
independent predictor of all-cause mortality. Its predictive ability was suggested 
in a previous study by unadjusted analysis, but that study did not explore this 
relationship further (408). Compared with the earlier study, in study IV, urinary 
L-FABP predicted mortality independently after multiple adjustments with well-
known cardiovascular risk factors as well as after additional adjustments for eGFR 
and AER.

Since urinary L-FABP predicted only two of the five outcomes, one can argue that 
these findings are just a statistical artefact. However, this is not the case, considering 
that we applied the most rigorous statistical analysis. First, adjustments were taken 
into account in the most extended statistical model, including all well-known risk 
factors for cardiovascular outcomes. Second, before claiming the results, we applied 
Bonferroni correction to all tested outcomes, which is the most stringent correction 
for multiple testing. Given this stringent statistical analysis, and until other studies 
are performed with a power above 0.80, we have reason to believe that urinary 
L-FABP predicts at least stroke and mortality if not all cardiovascular outcomes.
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One probable reason for the different predictive ability of urinary L-FABP 
in the case of CAD and PVD compared to stroke may be related to the way these 
outcomes are defined, as well as their slightly different pathophysiology. However, 
the definitions of outcomes have been used before and demonstrated to be reliable, 
and they are based on data from high quality national registries as well as scrutiny of 
the medical files. These are good reasons to claim that urinary L-FABP is indeed an 
independent predictor of stroke and all-cause mortality in Finnish individuals with 
T1DM.

Urinary L-FABP did not add any benefit on top of the full models, but it is important 
to note that study IV was not able to differentiate between ischemic and hemorrhagic 
stroke. Still, the clinical value of this finding is emphasized by the fact that urinary 
L-FABP was a better predictor of stroke than the traditional risk factors and was 
as good as eGFR or AER in the ROC curve analysis. In addition, recently published 
data have confirmed that other FABPs are also strong independent predictors of 
stroke and able to improve the currently used risk stratification protocols for the 
identification of ischemic stroke (495, 496). Thus, urinary L-FABP may also be a 
useful tool for etiological risk stratification of stroke, though unfortunately this study 
was not able to explore this hypothesis. 

When NRI was calculated, adding urinary L-FABP to the model of traditional risk 
factors enabled correct reclassification of 17.9% of the individuals, compared with 
only 10% and 6% provided by eGFR and AER, respectively. However, when NRI and 
IDI were evaluated, adding urinary L-FABP on top of AER or eGFR did not improve 
the long-term prediction of stroke. As in the case of stroke, urinary L-FABP was 
as good a predictor of all-cause mortality as eGFR or AER. Again, added on top of 
traditional cardiovascular risk factors, urinary L-FABP correctly reclassified 7.5% of 
subjects, compared with 8.6% and 1.4% for eGFR and AER, respectively.

6.3. Pathophysiological perspective of the results

6.3.1. Urinary L-FABP

6.3.1.1. Perspective on DN progression
When baseline staging of DN and progression were based on AER, urinary L-FABP 
predicted the progression at all stages. Urinary L-FABP’s predictive ability is a 
consequence of the continuous increase in the urinary L-FABP concentrations 
alongside the worsening of kidney disease. This increase has not been completely 
explained, but may reflect different mechanisms involved at each stage of the DN 
development. 

In individuals with normal AER, hyperglycemia triggers oxidative stress and 
activation of the intrarenal RAAS (497, 498). Increased oxidative stress and RAAS 
activation lead to further vasoconstriction and hypoxia (165, 499). Hypoxia, in 
turn, triggers L-FABP gene expression in the tubular cells and potentially in other 
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renal tissues as well, thereby increasing the urinary L-FABP concentrations (397). 
Another source of urinary L-FABP may be its expression in other tissues (e.g., liver) 
(500). Such extrarenal expression could be followed by increased L-FABP serum 
concentrations and subsequent urinary elimination. Passage through the glomerular 
barrier is possible due to L-FABP’s low molecular weight (14.2 kD), which is much 
smaller than that of albumin (66 kD) (500). The L-FABP prediction of the onset of 
microalbuminuria is independent of AER. This means that the L-FABP increase at 
this stage is related more to tubular dysfunction (probably due to hypoxia) than to 
glycemic control or glomerular damage, since urinary L-FABP was poorly correlated 
with both the HbA1C (r = 0.06 in non-diabetic subjects; r = 0.11 in individuals with 
T1DM and normal AER) and the AER (r = 0.15). 

Albumin is bound to fatty acids when it passes the glomerular barrier. Thus, 
microalbuminuria may trigger fatty acid overload in the proximal tubules. The 
L-FABP expression in the tubular cells may therefore be further elevated, with 
simultaneous increase of free fatty acid transport into the mitochondria, when 
microalbuminuria appears (501, 502). On the other hand, at the microalbuminuric 
stage the L-FABP passage through the glomerular barrier becomes more probable. 
Thus, its expression in other tissues that elevate serum L-FABP concentrations 
could become more important for its urinary concentrations. Urinary L-FABP 
could accordingly be influenced by a high fat diet, non-alcoholic fatty liver disease, 
insulin resistance or gut permeability, all factors associated with the serum L-FABP 
concentrations (503-506).

Interestingly, the most important determinants of urinary L-FABP in individuals 
with microalbuminuria were urinary ADP, AER and history of smoking. Furthermore, 
urinary ADP alone explained 23% of the urinary L-FABP variability at this stage. 
Thus, factors such as BMI, HbA1C or gender (most important determinants of urinary 
ADP at this stage in study II) could play a role for the urinary L-FABP elevation. 

At the late stages, oxidative stress and hypoxia (accentuated by anemia) probably 
co-operate with the severe glomerular damage to cause a further increase in urinary 
L-FABP (165). 

Urinary L-FABP was previously shown to be closely associated with structural 
and functional tubular kidney damage, which makes it mainly a tubular marker 
(405, 483). However, even if there are no studies regarding the glomerular passage of 
L-FABP, since L-FABP was initially discovered in the liver and its molecular weight 
is less than that of human albumin, a glomerular passage cannot be ruled out (507). 
Moreover, in study I AER was a strong determinant of urinary L-FABP at all stages, 
together with urinary ADP. Furthermore, urinary L-FABP was a strong independent 
predictor of AER-based progression of DN. Given these results, the link between 
tubular injury reflected by urinary L-FABP and early AER-based progression of DN 
may either reflect a tubular component of AER or a triggering role of the glomerular 
damage on tubular dysfunction.

Finally, both AER and L-FABP were strong independent predictors of progression 
to ESRD. Despite reflecting other factors also, progression to ESRD is correlated 
with the loss of eGFR (please see discussion on outcomes). These results collectively 
suggest that the rapid decline in kidney function at late stage DN is a complex process 
involving vascular, glomerular and tubular damage.
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6.3.1.2. Perspective on stroke
Beyond the potential issue of study power, the independent prediction of stroke, 
but not of the other cardiovascular endpoints, could be interesting from the 
pathophysiological point of view. A few interpretations need to be discussed to 
understand the likely implications of these results. 

Since the L-FABP gene is expressed in the proximal tubular cells, but not in the 
brain, urinary L-FABP may represent tubular injury. L-FABP production in the 
proximal tubular cells may be triggered by NEFAs overload secondary to injury in the 
glomerular barrier, oxidative stress or toxic insults (501). Thus, the NEFAs overload 
in the proximal tubules could mimic the effect of polyunsaturated fatty acids (PUFAs) 
on the astrocytes and endothelial cells, the two major components of the blood brain 
barrier (508). Another mechanism potentially linking brain atherosclerosis with 
L-FABP could be the ox-LDL or other modified lipoproteins. This is supported by 
the role of these lipoproteins in stroke development as well as tubular dysfunction 
(509). In addition, tubular and endothelial cells share a similar response to ox-LDL 
exposure, while statin therapy also has a positive effect on tubular dysfunction and 
urinary L-FABP concentrations (510). Furthermore, local expression of L-FABP in 
the kidney can be triggered by hypoxia due to a decrease in the peritubular capillary 
blood flow, which could mimic the effect of hypoxia on the astrocytes or endothelial 
cells (397). 

Fatty acids are metabolized by FABP proteins in all organs, and new data have 
linked NEFAs with the blood pressure regulation. One relationship of urinary 
L-FABP with stroke could therefore come via regulation of the blood pressure (511). 
However, this is unlikely, as urinary L-FABP still predicted stroke after adjustments 
for AER and blood pressure. 

Another link between urinary L-FABP and stroke may be heart failure. On one 
hand, urinary L-FABP was a strong independent predictor of worsening of kidney 
function in individuals with heart failure (512-514). On the other hand, heart failure 
was associated with increased risk of stroke (515). Thus, heart failure could increase 
the risk of both stroke and DN progression, or DN progression could lead to heart 
failure and secondarily to stroke, but this hypothesis could not be investigated in the 
present research.

Other mechanisms may also be implicated, but it is beyond the scope of this 
study to further explore the underlying mechanisms. The single, evidence-based 
conclusion of this study is that tubular injury predicted stroke, and this observation 
may lead to speculations about a kidney–brain axis. However, future studies should 
clarify if there is a specific kidney–brain relationship linking the FABPs with the 
kidneys and the brain.

It is significant that urinary L-FABP predicted the other three outcomes (CAD, PVD 
and CVD) independently of the cardiovascular risk factors and eGFR, but not when 
adjusted for AER. These results suggest that neither the well-known cardiovascular 
risk factors nor kidney dysfunction mediate urinary L-FABP’s predictive ability 
regarding these cardiovascular endpoints. Urinary L-FABP’s effect on these 
outcomes may, however, be dependent on endothelial dysfunction represented by 
the increased AER (516). Another explanation could be that the most important 
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triggers of L-FABP gene expression—hypoxia and NEFAs—play a smaller role in the 
processes leading to CAD or PVD compared to the acute coronary syndromes, while 
AER and endothelial dysfunction are more important for the chronic states (397). 
This theory could explain previous reports that have suggested that urinary L-FABP 
is a good identifier of individuals with acute coronary syndrome as well as a good 
predictor of future coronary restenosis after a first acute coronary event (517, 518).

6.3.2. Urinary ADP 
Urinary ADP predicted the onset of microalbuminuria and the progression from 
microalbuminuria to macroalbuminuria independently of the basic models, but not 
independently of AER. One statistical explanation may be the lack of power despite 
the large number of subjects studied. While albuminuria is an important predictor 
of DN progression, another explanation may be an interaction between urinary ADP 
and AER (487). This interaction has a strong statistical argument, as AER was a 
constant determinant of urinary ADP at all stages. The AER association with the 
urinary ADP concentrations may reflect that these two molecules share common 
pathophysiological mechanisms. These similarities may explain urinary ADP’s lack 
of independent predictive ability, with regard to the AER-based progression of DN.

Indeed, AER and urinary ADP share “common soil”. Urinary ADP is a circulating 
plasma protein filtered at the glomerular level and suggested to represent vascular 
damage (420, 519). Urinary ADP has furthermore been related to glomerular barrier 
integrity (425). Thus, urinary ADP may capture the glomerular and vascular damage 
similar to albumin. In addition, since HbA1C, L-FABP and KIM-1 are also constantly 
associated with urinary ADP, this could reflect tubular damage due to poor glycemic 
control, on top of glomerular damage. Thus, urinary ADP may reflect vascular, 
glomerular and tubular dysfunction, since others have shown that ADP is present in 
the normal kidney and then is gradually lost alongside the progression of DKD, first 
at the glomerular level and later from the intra-renal arterioles (424). Furthermore, 
urinary ADP may also reflect other intrarenal mechanisms, given that urinary ADP 
has been suggested to play a protective role in renal fibrosis (426).

In study II, low BMI was another significant determinant of the urinary ADP 
concentrations, but only in those with macroalbuminuria. This result suggests that 
the urinary ADP measurement could capture renal cachexia. In animal studies, 
high serum ADP was associated with increased energy expenditure and weight 
loss (520). In human studies, well-nourished individuals undergoing hemodialysis 
had significantly lower serum ADP compared with malnourished individuals (521). 
Furthermore, in T1DM the urinary ADP is mainly of low molecular weight, showing 
high homology with TNF (tumor necrosis factor or cachectin), while the serum ADP 
is mainly of high molecular weight ADP having a protective role (522, 523). Thus, one 
hypothesis behind the high serum ADP observed in those with macroalbuminuria 
could be its potential protective role against cachexia (424).

Another important determinant of urinary ADP, in the individuals with normal 
AER or macroalbuminuria enrolled in study II, was serum ADP. It is well accepted that 
serum ADP is associated with glycemic control and insulin resistance. In addition, 
factors such as physical exercise, hypoglycemia, caloric restriction, gut permeability 
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and hypoxia have been shown to influence the serum ADP concentrations and may 
be relevant also for the increased urinary ADP concentrations (524-526). However, 
neither were the ADP isoforms determined nor any data on exercise, hypoglycemia, 
caloric intake or hypoxia collected at baseline in study II.

6.3.3. Urinary KIM-1
Study III demonstrated that AER is a powerful confounder of the relationship 
between KIM-1 and eGFR. In addition, this study found a complex interaction 
between KIM-1, AER and eGFR, which is also supported by other studies (369, 527, 
528). 

This complex association unveiled one of its probable causes in study III, the first 
study to show the strong genetic determination of the urinary KIM-1 concentrations. 
Thus, in study III the increase in the urinary KIM-1 concentrations was driven by two 
factors: the genetic determination as well as acquired factors such as diabetes and 
glomerular damage (through HbA1C, diabetes duration and AER). Consequently, the 
effect of these acquired factors needed to be extremely strong to overtake the effect of 
the genes in order to predict the AER-based progression of DN. Therefore, prediction 
of progression to ESRD independently of the other risk factors was seen only in those 
with macroalbuminuria in whom the urinary KIM-1 increase was strong enough due 
to acquired factors. However, even in those with macroalbuminuria, urinary KIM-1 
was not independent of AER, due to their strong interaction.

One explanation for this complex interaction could be that AER is triggering 
the eGFR decrease and the KIM-1 increase or that KIM-1 expression is triggered 
by different factors affecting both the AER and eGFR (529). Indeed, urinary KIM-1 
concentrations are increased by albuminuria, being associated with podocytopenia 
and proteinuria and attenuated by anti-proteinuric treatment (414, 530). In 
addition, the KIM-1 concentrations mirrored the AER variation in individuals with 
non-diabetic proteinuric CKD (531). Furthermore, AER was demonstrated to alter 
the eGFR (532). Finally, elevated HbA1C and blood pressure affect both the AER and 
the eGFR in individuals with T1DM (533).

A second explanation could be the heterogenous outcome in individuals with 
baseline macroalbuminuria, as progression to ESRD is also related to other factors 
than the eGFR decline (please see the discussion on outcomes).

A third explanation may reside in the complex roles of KIM-1 in the kidneys, which 
influence glomerular, tubular and interstitial processes (529). KIM-1 is expressed 
both in the glomeruli and the proximal tubular cells in response to hypoxia, and 
plays an important role in cell-cell and cell-matrix interactions such as preservation 
of podocyte integrity, development of interstitial fibrosis and regulation of 
inflammation, clearance of apoptotic and necrotic tubular cells, etc. (414, 534-536). 
Furthermore, KIM-1 is not only implicated in multiple processes but plays a dual 
role both in interstitial fibrosis and inflammation as well as in renal regeneration 
and tubular cell repairing (529, 536-538). Its soluble form neutralizes KIM-1 ligands 
such as ox-LDL or other yet undiscovered ligands, while statin therapy lowers AER 
and KIM-1, preserving the eGFR (536, 539, 540). 
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Finally, KIM-1 is also called TIM-1, having been initially discovered in the liver, 
where it functions as a receptor facilitating the cellular entry of hepatitis A virus 
(541). KIM-1 is activated by multiple factors such as toxic substances, hyperglycemia, 
viruses, etc. (538, 541). In addition, TIM-1 is involved in many immunological 
processes leading to T cell proliferation, activation and cytokine production (542). 
While cytokine production and infections have been linked to insulin resistance, 
urinary KIM-1 also has been linked to insulin resistance (543). Furthermore, serum 
KIM-1 was shown to predict the progression to ESRD in individuals with T1DM. Thus, 
the presence of KIM-1 in urine by filtration of serum KIM-1 – since intact KIM-1 has a 
molecular weight of 104 kDa and soluble KIM-1 of 90 kDa – could reflect its systemic 
triggers (viral infection, hypoxia, toxic substances) in the liver or different organs 
where it is abundantly expressed (colon, lymph nodes, gall bladder, appendix, bone 
marrow, testes, etc.) as well as insulin resistance. Finally, urinary KIM-1 could reflect 
the same trigger of its expression in the tubular cells as in the case of serum KIM-1.

All these complex mechanisms do confirm the complex interaction between 
urinary KIM-1, AER and eGFR and the complex systemic-glomerular-tubular 
interplay reflected by KIM-1’s causal role in the loss of kidney function.

6.3.4. Common pathophysiological perspective

6.3.4.1. Tubular injury predicts glomerular damage progression 
and loss of renal function in DN
In studies I and II urinary L-FABP and urinary ADP predicted AER-based progression 
of DN after or before adjustment for AER, while in study III urinary KIM-1 was not a 
predictor in the observational study. Thus, by predicting the AER-based progression 
of DN, these biomarkers in fact predicted the progression of glomerular damage. 

In studies I, II and III all three tubular biomarkers predicted the progression to 
ESRD. L-FABP predicted the progression independently of all common risk factors 
and AER, while urinary ADP predicted this independently of the common risk 
factors, AER and eGFR. Urinary KIM-1 in turn predicted the progression to ESRD 
independently of the common risk factors, but not independently of AER. Despite 
its heterogenous reflection of eGFR decline, the progression to ESRD mainly reflects 
the loss of eGFR at the late stages of DN.  Accordingly, considering the fact that 
all three tubular biomarkers predicted the eGFR decline, it can be concluded that 
tubular dysfunction precedes and predicts the loss of kidney function.

6.3.4.2. Tubular injury plays a causal role in the loss of renal 
function in DN
Causality with respect to the loss of kidney function could not be tested using a MR 
approach for urinary L-FABP and ADP. However, when causality was tested for 
urinary KIM-1, this biomarker was indeed found to be associated with the loss of 
kidney function and the relationship was very likely to represent a causal link based 
on the MR analysis. Thus, tubular dysfunction as represented by urinary KIM-1 is 
causally linked to the loss of kidney function in individuals with T1DM.
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6.3.4.3. The three biomarkers reflect both glomerular and tubular 
injury 
The presence of the three discussed biomarkers in urine may be from several likely 
sources. One is the expression of the molecules in the proximal tubular cells and their 
shedding into the urine as a consequence of tubular injury. Second, considering their 
molecular weight a passage through the glomerular barrier cannot be excluded. In 
general, glomerular passage and reflection of systemic factors by urinary biomarkers 
is based on the main determinants of their urinary levels at each stage of DN (Table 
5, Table 12, Table 19). An important argument for this route is that AER was a 
common determinant at almost all stages and of all biomarkers. Thus, since AER is a 
common determinant of the levels of the urinary biomarkers, one explanation could 
be that AER itself triggers tubular dysfunction. Another explanation could be that 
common systemic factors trigger both glomerular and tubular injury. Thus, there are 
valid reasons to argue that the presence of these biomarkers in urine may reflect not 
only injury to the tubular cells but also to the integrity of the glomerular barrier. In 
addition, these biomarkers may also mirror systemic processes or processes in the 
organs from where they originate (Figure 19).

Systemic factors reflected by these three tubular biomarkers may be represented 
by hepatic, muscle or adipocyte dysfunction or resistance to insulin in the target 
tissues, gut injury triggered by hyperglycemia (or hypoglycemia), hypoxia, immune 
factors, etc. Such a hypothesis is supported by the common determinants at each 
stage of DN as well as previous studies (see discussion above). The final argument for 
a glomerular component and reflection of systemic processes by these biomarkers is 
the prediction of stroke and other cardiovascular disease components as well as the 
prediction of mortality, in study IV.

Figure 19. The probable common routes of urinary albumin and of the 3 urinary tubular biomarkers
studied, for appearing in urine. L-FABP, KIM-1 and ADP gene expression according to

www.proteinatlas.org and www.ncbi.nlm.nih.gov/gene.
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Complicating the discussions even more, one important finding worth mentioning 
is that moderate to high albumin expression has been demonstrated in the tubular 
cells of the kidney (https://www.proteinatlas.org/ENSG00000163631-ALB/tissue), 
but not in glomeruli. Consequently, due to its proven expression in the tubules, even 
albumin may have a tubular secretion component, apart from its well-known tubular 
reabsorption, in case of tubular injury.

6.4. Therapeutic perspective of the results

All three studied biomarkers represent interesting therapeutic targets, beyond their 
clinical predictive abilities. Urinary L-FABP can be modulated by moderate-intensity 
physical exercise and dietary n3-PUFAs (544-547). However, the most interesting 
aspect may be the selective modulation of different FABPs [Adipocyte fatty-acid 
binding protein (A-FABP), L-FABP, intestinal fatty-acid binding protein (I-FABP)], 
which could have protective effects on the kidney beyond their direct effect. This 
indirect effect may originate from modulation of the total body fat or the visceral 
fat, serum triglycerides and cholesterol concentrations as well as of the general beta-
oxidation/elimination of fatty acids (393, 548). In addition, L-FABP modulation and 
especially L-FABP silencing protected against obesity by diminishing the impact of 
a high-fat diet (549, 550).

KIM-1 plays an important role in the clearance of debris from damaged renal 
tubules. Thus, the potential therapeutic effect of KIM-1 modulation may be antifibrotic 
(551). In addition, it is worth mentioning that KIM-1 was first discovered in the liver 
as a hepatitis-A cellular receptor (HAVCR) and then as a T-cell immunoglobulin 
and mucin-containing molecule or Tim-1 with different expression between Th1 and 
Th2 lymphocytes (552, 553). Given these results, therapeutic modulation of KIM-
1 through immunological mechanisms may have renoprotective effects, besides 
providing means of antiviral therapies.

Last but not least, ADP was a constant determinant of all biomarkers at almost 
all stages, and it is therefore possible that ADP per se could influence several 
mechanisms involved in the loss of kidney function. Such a view is supported by 
the fact that urinary ADP predicted the progression to ESRD independently of all 
the other biomarkers. Indeed, ADP modulation through lifestyle measures proved 
efficient in preventing DN progression (112, 554, 555). In addition, positive effects 
on DN progression were demonstrated by ADP modulation, at transcriptional or 
posttranslational levels, using thiazolidinediones, statins or ARBs (556-559). Other 
compounds may, in the future selectively modulate the ADP receptor with a much 
narrower action and more specific effects beyond insulin sensitivity or obesity.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1. Conclusions

In study I, urinary L-FABP was an independent predictor of AER-based progression 
of DN. Progression to ESRD was also independently predicted by this biomarker. 
Urinary L-FABP used alone or together with AER did not improve the risk prediction 
of AER-based progression of DN or progression to ESRD in individuals with type 
1 diabetes. Further studies are needed, however, to test its predictive ability as to 
eGFR decline.

In study II, before adjustment with AER, urinary ADP predicted AER-based 
progression of DN. In addition, urinary ADP was a strong independent predictor of 
progression to ESRD and added significant predictive benefit when used together 
with either AER or eGFR. Further studies are warranted to explore its ability to 
predict other DN outcomes in individuals with type 1 diabetes.

In study III, urinary KIM-1 did not predict progression to ESRD independently of 
AER. However, the MR analysis showed an independent causal association between 
increased urinary KIM-1 concentrations and a lower eGFR. Future studies are 
mandatory to explore its predictive potential with regard to loss of eGFR over time 
in individuals with type 1 diabetes as well as to replicate this causal association.

In study IV, urinary L-FABP was an independent predictor of stroke and 
mortality, but did not add predictive benefit on top of AER and eGFR. However, 
L-FABP was not a predictor of any other cardiovascular endpoints (coronary artery 
disease, peripheral vascular disease and overall CVD events) when adjusted for AER, 
whereas urinary ADP and KIM-1 also predicted different cardiovascular outcomes. 

Urinary ADP and AER were common determinants of all the tested biomarkers 
at all stages, proving a complex interaction between different tubular, glomerular 
and systemic mechanisms. In addition, judging by the baseline determinants of their 
levels, the studied tubular biomarkers represent much more than tubular injury, 
capturing also glomerular damage and systemic factors.

7.2. Future directions

It is still unknown whether the discussed urinary biomarkers would predict other 
phenotypes of DN progression, such as the slopes of renal function decline.

Moreover, no data are available on the causal relationship between these 
biomarkers and other phenotypes of DN progression such as the slopes of renal 
function decline.

Furthermore, testing the potential causal relationship between urinary KIM-1 
and the AER increase using a MR approach could clarify the complex relationship 
between urinary KIM-1 and AER.
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Another way to test the causality of these urinary biomarkers on the loss of renal 
function and increase in AER would be using an econometric analysis with only the 
clinical data, without genetic data or a randomized controlled trial.

Further testing of the causality between these biomarkers and dichotomic 
cardiovascular outcomes is now possible using a MR approach or generalized 
econometric analysis.

One other important research aspect in regard to these urinary biomarkers is 
to clarify the potential for their use in clinical practice, but for this objective the 
important clinical cut-offs need to be determined.

Another research possibility related to these biomarkers would be to test if a new 
eGFR formula incorporating or based on at least one of these biomarkers may be 
suitable.

In the light of their pathophysiological roles, it may be attractive to study their 
utility, if any, together with other biomarkers, in establishing a liquid kidney biopsy.

Finally, investigation of the therapeutic potential of the three mentioned urinary 
biomarkers deserves greater attention.
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