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ABSTRACT: The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles
in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein
coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal
mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm)
neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of
cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in
the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies
determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins,
whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that
protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In
summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the
development of nanoparticle-based treatments for eye diseases.
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1. INTRODUCTION

Eye disorders affecting the retina are major causes of visual
impairment and blindness, and their prevalence is increasing as
a result of population aging. The pharmacological treatment of
posterior segment disorders, such as age-related macular
degeneration and diabetic retinopathy, is challenging because
tight blood−ocular barriers effectively prevent the delivery of
therapeutic agents to the target tissues.1 For this reason, drugs
must be injected directly into the eye (intravitreal injections)
to achieve therapeutic concentrations in the retina. Other
administration routes such as subconjunctival or supra-
choroidal injections and systemic administration are being
studied, but are not yet viable clinical options.1 Intravitreal
injections offer several advantages, including the achievement

of therapeutic intraocular drug concentrations immediately
after injection, bypass of blood−ocular barriers, and avoidance
of systemic toxicity. Nevertheless, a small number of patients
experience severe, vision-threatening complications after intra-
vitreal injection. In addition, repeated injections needed in the
treatment of chronic ocular diseases pose a considerable
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burden to patients, increase the strain on medical personnel,
and raise the costs of public healthcare.
Nanoparticles may increase ocular drug bioavailability,

retention time in ocular tissues, efficacy, patient comfort, and
compliance and minimize adverse drug reactions. Nano-
particles are especially important for the delivery of small

regulatory RNAs, proteins, and peptides that require intra-
cellular delivery into retinal cells. If nanoparticles are to be
injected into the vitreous, then it is of paramount importance
to study their diffusion properties as well as their binding
interactions within the vitreous gel. The vitreous is a highly
hydrated gel-like matrix (more than 98% water) composed

Table 1. Lipid Composition and Physicochemical Characteristics of Lipid-Based Nanoparticlesa

formulation lipid composition molar ratio [mol%] size [nm] PdI ζ potential [mV]

<50 nm, Light-Activated Liposome and Control Liposomes
anionic AL1-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 51.0 0.144 −28.1

AL2 DPPC:DSPG:Lyso-PC:DSPC:DSPE:ICG 75:10:10:5:4:2 46.7 0.219 −38.0
AL3-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 39.2 0.145 −20.9
AL4 DPPC:DSPG:Lyso-PC:DSPC:DSPE 75:10:10:5:4 48.7 0.145 −40.8

neutral NL1-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG:ICG 75:15:10:4:2 48.9 0.216 −1.7
NL2 DPPC:DSPC:Lyso-PC:DSPE:ICG 75:15:10:4:2 46.3 0.195 −6.7
NL3-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG 75:15:10:4 46.9 0.224 −1.4
NL4 DPPC:DSPC:Lyso-PC:DSPE 75:15:10:4 35.7 0.314 −1.5

cationic CL1-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 43.0 0.072 17.7
CL2 DPPC:DOTAP:DSPC:Lyso-PC:DSPE:ICG 75:10:10:5:4:2 46.5 0.216 29.4
CL3-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 42.6 0.312 15.7
CL4 DPPC:DOTAP:DSPC:Lyso-PC:DSPE 75:10:10:5:4 49.9 0.294 32.5

100−200 nm, Light-Activated Liposome and Control Liposomes
anionic AL5-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 104.3 0.075 −18.5

AL6 DPPC:DSPG:Lyso-PC:DSPC:DSPE:ICG 75:10:10:5:4:2 105.2 0.053 −56.3
AL7-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 107.1 0.066 −22.8
AL8 DPPC:DSPG:Lyso-PC:DSPC:DSPE 75:10:10:5:4 119.8 0.023 −50.6

neutral NL5-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG:ICG 75:15:10:4:2 107.6 0.086 −3.6
NL6 DPPC:DSPC:Lyso-PC:DSPE:ICG 75:15:10:4:2 125.8 0.035 −7.2
NL7-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG 75:15:10:4 110.8 0.092 −1.2
NL8 DPPC:DSPC:Lyso-PC:DSPE 75:15:10:4 110.6 0.097 −7.1

cationic CL5-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 110.8 0.092 18.2
CL6 DPPC:DOTAP:DSPC:Lyso-PC:DSPE:ICG 75:10:10:5:4:2 112.6 0.056 33.1
CL7-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 111.6 0.082 14.0
CL8 DPPC:DOTAP:DSPC:Lyso-PC:DSPE 75:10:10:5:4 100.3 0.056 31.7

>200 nm, Light-Activated Liposome and Control Liposomes
anionic AL9-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 208.8 0.122 −38.8

AL10 DPPC:DSPG:Lyso-PC:DSPC:DSPE:ICG 75:10:10:5:4:2 212.1 0.052 −57.1
AL11-PEG DPPC:DSPG: Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 291.8 0.131 −30.8
AL12 DPPC:DSPG:Lyso-PC:DSPC:DSPE 75:10:10:5:4 291.8 0.084 −55.4

neutral NL9-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG:ICG 75:15:10:4:2 224.4 0.121 −1.4
NL10 DPPC:DSPC:Lyso-PC:DSPE:ICG 75:15:10:4:2 254.4 0.86 −6.8
NL11-PEG DPPC:DSPC:Lyso-PC:DSPE-PEG 75:15:10:4 270.6 0.071 −1.2
NL12 DPPC:DSPC:Lyso-PC:DSPE 75:15:10:4 227.3 0.34 −9.6

cationic CL9-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG:ICG 75:10:10:5:4:2 251.2 0.115 18.3
CL10 DPPC:DOTAP:DSPC:Lyso-PC:DSPE:ICG 75:10:10:5:4:2 236.1 0.102 41.0
CL11-PEG DPPC:DOTAP:Lyso-PC:DSPC:DSPE-PEG 75:10:10:5:4 267.9 0.125 14.4
CL12 DPPC:DOTAP:DSPC:Lyso-PC:DSPE 75:10:10:5:4 202.9 0.315 33.9

Rigid-Membrane Liposomes
anionic AR1 DSPC:DSPG:CHOL 50:10:40 142.0 0.072 −53.0

AR2 DSPC:DSPG:CHOL 57.5:2.5:40 139.0 0.074 −43.0
neutral NR1 DSPC:CHOL 60:40 180.0 0.097 −10.0
cationic CR1 DSPC:DOTAP:CHOL 50: 10: 40 139.0 0.065 43.0

CR2-PEG DSPC:DOTAP:CHOL:DSPE-PEG 55:10:32.5:2.5 134.0 0.050 30.0
Hexosome

neutral NH DOPC:VE 70:30 300.0 0.15
Nanostructured Lipid Carriers (NLCs)

neutral NN Compritol 888 ATO:Miglyol 812 51.5:48.5 152.0 0.10 −11.8
NN-PEG Compritol 888 ATO:Miglyol 812:DSPE-PEG 51.4:48.3:0.3 150.0 0.14 −10.1

aAbbreviations: (L) light-activated liposomes, (R) rigid-membrane liposomes, (H) hexosomes, and (N) NLCs. The formulations are divided based
on charge ((A) anionic, (N) neutral, (C) cationic) and on size. Based on this nomenclature, for example, AL indicates an anionic light-activated
liposome formulation.
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mainly of collagen fibers and glycosaminoglycans (mostly
hyaluronan, some heparan sulfate, and chondroitin sulfate)
that confer its characteristic polyanionic nature.2,3 Pitkan̈en
and colleagues first recognized that the vitreous poses a
substantial barrier to nonviral gene delivery systems.4 Soon
after, Peeters et al. found that the vitreous permits free mobility
to PEGylated particles smaller than 500 nm.5 Later, single-
particle tracking technology allowed the measurement of the
diffusion coefficients of nanoparticles in intact vitreous.6,7

According to Xu’s estimates, the average mesh size of fresh
bovine vitreous is about 550 nm. Moreover, they found that
cationic particles of any size are immobilized in the vitreous
humor by electrostatic interactions with negatively charged
hyaluronic acid molecules.6

Aside from diffusion, intravitreal protein binding may be
another important factor that significantly alters the vitreal
pharmacokinetics of nanoparticles. Recently, coadministration
of a 40 kDa nanobody with albumin led to a 3-fold increased
vitreous half-life in rabbits,8 whereas protein binding only had
a modest influence on the vitreal half-life of 35 small molecule
drugs.9 The extent of intravitreal protein binding on nano-
particles has not been studied, even though the “protein
corona” influences the biodistribution of systemic nano-
particles,10 and the vitreous proteome is more diverse and
biologically active than previously known.11 No studies have
been published on the vitreal corona of liposomal systems,
which are still the most common types of nanomaterial
containing drug products evaluated by the Food and Drug
Administration.12

In this study, we employed single-particle tracking
technology to evaluate the intravitreal diffusion of a variety
of lipid-based formulations, including near-infrared light-
activated liposomes, which we previously showed to enable
temporal and spatial control of drug release that is based on
incorporation of FDA-approved dye, indocyanine green
(ICG), in the liposomes.13,14 Other formulations included
rigid-membrane liposomes, hexosomes, and nanostructured
lipid carriers. Moreover, we studied the effect of PEGylation on
vitreal protein binding in anionic light-activated liposome
formulations and its influence on the composition of the hard
and soft coronae in the liquefied porcine vitreous with surface
plasmon resonance and high-resolution proteomics using a
method that we published recently.15 We analyzed the
biological functions of the most enriched proteins in both
corona subsections to explore the possible biological
interactions.

2. EXPERIMENTAL SECTION
2.1. Materials. 1,2-Distearoyl-sn-glycero-3-phosphoglycer-

ol (DSPG), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC),
1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso PC),
1,2-distearoyl-sn-glycero-3 phosphoethanolamine (DSPE), 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-
(polyethylene glycol)-2000] (DSPE-PEG), 1,2-dioleoyl-3-
trimethylammonium-propane (DOTAP), 1,2-dipalmitoyl-sn-
glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl) (Liss Rhod-PE), nonlabeled cholesterol, and labeled
cholesterol (23-(dipyrrometheneboron difluoride)-24-norcho-
lesterol) were purchased from Avanti Polar Lipids, Inc.
(Alabaster, AL, USA). 1,2-Dioleoyl-sn-glycero-3-phosphocho-
line (DOPC) was purchased from NOF Corporation (Tokyo,
Japan). All lipids were used without further purification. The

extruder was from Avanti Polar Lipids (Alabaster, AL, USA)
and the 30, 50, 100, 200, 400, and 800 nm Nuclepore
polycarbonate membranes (diameter 19 mm) were from
Whatman Int. Ltd. (Maidstone, England). Dimethyl acetamide
(DMA), vitamin E (α-tocopherol), and glycerol were from
Fluka (Buchs, Switzerland). Compritol 888 ATO and Miglyol
812 were gifts from Gattefosse (Saint-Priest, France) and
Cremer Oleo GmbH (Hamburg, Germany), respectively.
Chloroform and methanol used in the lipid stock solutions,
HEPES (4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid),
Kolliphor EL (CO35), Nile Red (NR), stearylamine (SA),
benzalkonium chloride (BAK), benzyldimethylhexadecyl-am-
monium chloride (CKC), N,N-dimethyl sulfoxide (DMSO),
and PBS tablets were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All reagents were analytical grade.

2.2. Preparation of Light-Activated Liposomes. Lip-
osomes were formed by a thin film hydration method, as
described previously.13 Briefly, lipids (10 μmol) were dissolved
in chloroform at various molar ratios (Table 1); then, the
chloroform was evaporated at 65 °C under a nitrogen flow by
gradually reducing the pressure to 70 mbar over 40 min. The
thin lipid layer was hydrated with HEPES buffer saline (500
μL, 20 mM HEPES and 140 mM NaCl, pH 7.4) in a 65 °C
water bath. The formed liposomes were extruded 11 times at
the same temperature through a polycarbonate membrane with
pores of 30, 50, 100, 200, and 400 nm with a syringe-type mini-
extruder. Thereafter, the formulation was quickly cooled and
stored at 4 °C. Anionic and cationic formulations were made
using DSPG and DOTAP, respectively, at the final molar ratio
of 10%, which was replaced partially with DSPC. PEGylated
liposomes were prepared with PEG-2000 (4 mol %), which is
at the intersection of the mushroom and brush configurations
but retains good bilayer stability.16−18 These liposome
formulations have also demonstrated good stability in serum
and vitreous.18 Liss Rhod-PE (0.3 mol%) was applied to label
the liposomes. To integrate the Indocyanine Green (ICG, 0.2
μmol) into the lipid bilayers, ICG was dissolved in methanol
and added to the lipid mixture in chloroform prior to
evaporation of the organic solvent.

2.3. Preparation of Rigid-Membrane Liposomes.
Liposomes were prepared as in section 2.2. The formed
liposomes were sonicated for 4 min and then extruded 15
times through a 200 nm pore size stacked polycarbonate
membrane. Liposomes were kept at 4 °C until analysis.
PEGylated liposomes were prepared to mask the charged
lipids, by replacing a part of the cholesterol (8 mol%) with
DSPE-PEG at different molar ratios. To label the liposomes,
labeled cholesterol (BDP-chol, 1 mol%) was added.

2.4. Preparation of Hexosomes. The lipid components,
DOPC and vitamin E (α-tocopherol, VE), were weighed into a
glass vial at a ratio of 70:30 w/w % (Table 1). The lipophilic
dye Nile Red was dissolved in DMA and added to the lipid mix
(final concentration 0.01−0.02%). A homogeneous solution
was obtained by stirring the mixture for 1 h at 70 °C on a hot
plate magnet stirrer. The stabilizers Pluronic F127 (0.5%) and
Tween 80 (0.5%) were dissolved in either PBS or glycerol
(2.5%)-containing deionized water solution. The Nile Red-
containing lipid mixture was then transferred to another glass
vial and heated to 90 °C. One-third of the preheated (90 °C)
stabilizer-containing aqueous solution was added to the
mixture, stirred for 30 min, and sonicated for 15 min using a
tip sonicator without a pulse at an amplitude of 40%. Next, the
other two-thirds of the preheated aqueous phase were added
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and tip sonicated for 45 min under the same conditions,
resulting in a homogeneous hexosome solution (100 mg mL−1

lipid). Hexosomes were stored for up to 2 weeks at room
temperature.
2.5. Preparation of Nanostructured Lipid Carriers

(NLC). Appropriate amounts of lipid solutions in chloroform
were pipetted into a glass vial (Table 1). The chloroform was
evaporated with a stream of nitrogen gas. Compritol 888 ATO,
Nile Red, and CKC were weighed and added to the mixture.
Miglyol 812 was weighed and added. The lipids were melted
on a hot plate (150 °C), while stirring with a magnet bar (1000
rpm) for 3 min. Appropriate volumes of prewarmed (∼80−90
°C) PBS or glycerol (2−2.6%) aqueous solution with
Kolliphore EL (3%, PEG-35 castor oil) were added to the
lipid mixture while stirring. Then, the mixture was stirred for
further 3 min, sonicated for 10−30 min at 80−85 °C, and
swirled occasionally to obtain a homogeneous emulsion (10%
w/v). The mixture was stirred on ice for 30 min and then at
room temperature for 60−90 min. NLCs were stored at 4 °C.
2.6. Particle Size and ζ Potential. The particle size was

determined by dynamic light scattering (DLS) using a Malvern
Zetasizer APS (Malvern Instruments Ltd., Malvern, United
Kingdom) system. Malvern DTS v7.01 software was used for
data acquisition, and results were reported as size distributions
by particle numbers with a polydispersity index (PdI). Each
sample was diluted at a 1:10 v/v ratio and measured three
times with 13 subruns. Samples were measured at room
temperature. The ζ potential was measured with the same
dilution ratio at room temperature using a Zetasizer ZS v7.1.1
(Malvern Instruments Ltd.).
2.7. Preparation of Intact Porcine Vitreous Samples.

Fresh porcine eyes were provided by a local slaughterhouse
(HKScan Finland Oyj, Forssa, Finland). Enucleation was done
by a transconjunctival incision 15 min after sacrificing the
animal, and the eyes were kept on ice during transport.
Extraocular tissues were removed, followed by their short
immersion into 70% ethanol. The eyes were then kept in PBS
at 4 °C overnight before dissection. To study the intact porcine
vitreous, we followed a modified procedure from Xu and
colleagues.6 Briefly, the anterior part of the eye, including the
lens, was removed, leaving the intact vitreous exposed.
Fluorescently labeled particles (50 μL) were injected into
the vitreous using a 30 G BD Micro-Fine+ insulin syringe (BD,
Franklin Lakes, NJ, USA). The particle concentrations were
0.25 mg mL−1 (0.025%) for light-activated liposomes, 0.16−
0.34 mg mL−1 for rigid-membrane liposomes, 100 mg mL−1 for
hexosomes, and 10 mg mL−1 for NLCs. The injection was
done in the center of the eye cup perpendicularly to the cut
surface and at a depth of 0.5 cm. Then a 35 mm microwell dish
having a 14 mm diameter glass window at the bottom
(MatTek Corporation, Ashland, MA, USA) was placed on top
of the cut eyeball, and the dish was inverted. The edges of the
eye were fixed with Loctite Precision super glue (Henkel
Corp., NJ, USA).
2.8. Nanoparticle Visualization and Tracking Analysis

with Imaris Software. The movement of the labeled particles
was recorded with an Andor Neo sCMOS camera mounted on
a spinning disk confocal microscope (3i Marianas, Intelligent
Imaging Innovations, Denver, CO, USA) equipped with a
temperature control system. The particles were observed using
either a 20×/0.4 LD Plan-Neofluar Ph2 Corr WD = 7.9 M27
long distance objective, a 20×/0.8 Plan-Apochromat Ph2 WD
= 0.55 M27 objective, or a 63×/1.2 W C-Apochromat Corr

WD = 0.28 M27 objective. A blue (488 nm, 50 mW) solid-
state laser was used for liposomes, whereas a lime (561 nm, 50
mW) solid-state laser was used for light-activated liposomes,
NLCs, and hexosomes. Movies were recorded at a 50 ms
temporal resolution using SlideBook 6 software (Intelligent
Imaging Innovations). Imaging was performed at 37 °C. The
samples were kept at 37 °C for 20 min prior to visualization.
Movements were tracked using Imaris 9.2 software (Bitplane
AG, Zurich, Switzerland) and analyzed by @msdanalyzer
(MATLAB plugin)19 to extract the time-dependent mobility
values derived from a large ensemble of particles (number of
trajectories, N ≥ 50). At least 3 independent experiments were
performed for each particle type.

2.9. Calculation of the Diffusion Coefficient in
Vitreous (Dv) and Theoretical Diffusivity in Water (Dw).
The mean-squared displacement (MSD) of particle trajectories
was computed with the mobility track analyzer (@
msdanalyzer)19 over the entire ensemble of particles. The
diffusion coefficient in vitreous Dv was calculated from the
slope of the linear part of the MSD vs time plot (eq 1):

τ
= τD

d

MSD

2v
( )

(1)

where d is the dimensionality of the track (d = 2 for a two-
dimensional track), and τ is the time delay for the calculated
displacement. The theoretical diffusivity in water Dw was
calculated with the Stokes−Einstein equation (eq 2):

πη
=D

RT
rN6w

A (2)

where R is the gas constant (8.314 J K−1 mol−1), T is the
temperature (310.15 K), η is the viscosity of water at 37 °C
(6.90 × 10−4 kg m−1 s−1), r is the radius of the particle, and NA
is the Avogadro constant (6.022 × 1023 mol−1). The particle
radii were obtained from DLS measurements.

2.10. Porcine Vitreous Preparation for Proteomics.
Pig eyes were obtained from a local slaughterhouse (HKScan
Finland Oyj) and processed within 24 h of slaughter. The
vitreous was excised and pooled during homogenization on an
ice bath with 25 strokes using a glass tissue homogenizer. This
was followed by centrifugation at 3200g for 1 h at 4 °C and
filtration through Minisart hydrophilic regenerated cellulose
syringe filters (0.45 and 0.22 μm, Sartorius, Göttingen,
Germany) to remove cells and other debris. The pooled
vitreous was stored at −80 °C until use, thawed in a 37 °C
water bath, and vortexed before injection into the surface
plasmon resonance instrument’s flow cell.

2.11. Determination of Protein Corona Thickness and
Protein Amount with Surface Plasmon Resonance. The
measurements were conducted as described earlier with an
MP-SPR Navi 220A (BioNavis Ltd., Ylöjar̈vi, Finland) using
670 and 785 nm incident lasers.15 Anionic liposomes AL1-PEG
and AL2 (50 nm, 500 μL, 16 × 1012 particles) were injected for
5 min until saturation of the custom sensor that can
immobilize a maximum of 13.2 × 109 particles with 55 mm2

active surface area.20 Unbound liposomes were flushed off with
buffer (HEPES 10 mM, NaCl 150 mM, pH 7.4), and the
undiluted porcine vitreous was injected for ca. 5 min at a flow
rate of 50 μL min−1 (association phase). The protein
concentration by the BCA assay was 1.5 mg mL−1, and the
exposure was 0.25 mL with 375 μg of protein per replicate or
1.4 pg nm−2 min−1. The soft corona protein fraction was
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flushed off with buffer, revealing the hard corona (HC;
dissociation phase). After a buffer wash-out period, the hard
corona protein fraction was eluted off the sensor together with
the liposomes using Rapigest SF (0.1% w/v in mqH2O, Waters
Inc., Milford, MA, USA; Merck KGaA). These samples of the
hard and soft corona were collected for proteomics studies into
Protein LoBind tubes (Eppendorf AG) and stored at −20 °C.
Flow-through vitreous on a saturated sensor was used as the
source control. A dedicated sensor was used for each of the
formulations, and the measurement was repeated 3−4 times on
the same sensor, which was rejuvenated with CHAPS (20 mM,
Sigma-Aldrich), ethanol (70%, Altia Oyj, Helsinki, Finland),
mqH2O (Merck KGaA), and stored at 4 °C immersed in
CHAPS.
The SPR response based on the equation by Jung,21

following the formalism of Rupert,22 can be simplified to yield
the thickness (eq 3):

π= * * − δ−R S n C c c d l e(d /d ) ( )(1 )d
n n n ,n n n

/n (3)

where n = nanoparticle. If p = protein and l = liposome, equal
surface density of nanoparticles and approximation dl = dp
means that
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For the upper limit in eq 4, c*,p = 0.547 × 1.35 g/cm3 = 0.738
g/cm3 (surface coverage according to random sequential
adsorption), and for the lower limit, n = 1.40 → c*,p = 0.373 g/
cm3.23 The protein amount (ng cm−2) on the liposome that
corresponds to the high and low estimates for HC and SC
thickness was approximated using Γ = dp × c*,p × 100.
The SPR responses at the highest points of the association

and the lowest of the dissociation phases were used for the soft
and hard corona thickness calculations, respectively.
2.12. Proteomics Sample Preparation and Nanoliquid

Chromatography−Tandem Mass Spectrometry. Sample
preparation was conducted as previously, following the timed
elution of the protein corona fractions using microfluidics.15

The SPR-eluted samples were dried at 30 °C overnight using a
Concentrator Plus (Eppendorf AG) in aqueous solution mode
and stored until digestion as pellets at −20 °C. The pellets for
the three to four independent biological replicates from AL1-
PEG and AL2 were resuspended in ammonium bicarbonate
buffer (AMBIC, 50 mM, pH 7.8). Prior to resuspension, the
source vitreous was solubilized in RapiGest SF (0.2%, Waters
Inc.). The protein concentration of each sample and the
porcine vitreous source was determined with the BCA protein
assay (Thermo Fisher Scientific, Waltham, MA, USA). Samples
were either diluted further or pipetted directly to a final
volume of 50 μL in AMBIC at a final protein amount of 7 μg.

Tryptic peptides were prepared using the in-solution tryptic
digestion and guanidination kit (Thermo Fisher Scientific)
according to manufacturer’s instructions but without guanidi-
nation. After digesting the samples overnight, formic acid was
added to a concentration of 0.1%, followed by a 45 min
incubation at 37 °C and 15 min centrifugation at 13 000 rpm
to remove particulate debris and Rapigest SF. One sample of
AL1-PEG HC was lost during sample preparation. Samples
were loaded into an Easy-nLC 1200 (Thermo Fisher
Scientific) in 250 μL autosampler microvials (Thermo Fisher
Scientific). Chromatographic separation of peptides (100 ng)
was carried out in commercially packed Acclaim PepMap C18
columns (2 mm, 100 Å, 75 mm, 15 cm, Thermo Fisher
Scientific). Peptides were loaded in buffer A (5% acetonitrile
and 0.1% formic acid) and eluted with a 3 h linear gradient
from 5% to 30% buffer B (80% acetonitrile and 0.1% formic
acid). Three biological replicates were sequentially injected
with two 15 min wash runs and a 1 h blank run. Mass spectra
were acquired using a Top N data-dependent method with an
automatic switch between full MS and MS/MS (MS2) scans
with an Orbitrap Fusion instrument (Thermo Fisher
Scientific) using a 120 000 resolution, 350−1800 m/z mass
range, and a 4e5 ion AGC target for the full MS scan, followed
by a 30 000 resolution and 5e4 ion AGC target, with a 2 m/z
isolation window and a 30 s dynamic exclusion for MS2
spectra acquisition. Column performance was monitored with
intermittent injections of a BSA peptide mix (50 fmol, Bruker
Corp., MA, USA) and tracking for carry-over peptides in the
double-wash runs.

2.13. Proteomics Data Processing and Analysis.
Protein groups identification and quantification were carried
out with the MaxQuant v. 1.6.1.0,24 with the UniProtKB
FASTA file for Sus scrofa containing 40 701 protein and 23 223
gene entries, to which 245 commonly observed contaminants
and all reverse sequences were added. Differential abundance
analysis and hierarchical clustering were carried out with the
Perseus data analysis software version 1.6.5.0.25 Protein
identifications with nonzero intensity values in at least three
samples were retained for comparisons, and corresponding pI
and gene name annotations were added. Abundance values
were log2 transformed, protein identifications classified as only
identified by site, and reverse sequences along with potential
contaminants were filtered out from the main data frame. One
AL1-PEG HC sample was deleted as an outlier before
assigning groups for multiple sample testing. ANOVA multiple
sample testing with a Benjamini-Hochberg FDR of 0.05 was
performed on the assigned groups (source, hard corona, and
soft corona), followed by specific two-sample Student’s t tests
with Benjamini-Hochberg FDR correction. The ExPASy
ProtParam tool (https://web.expasy.org/protparam/) was
used to compute the grand average of hydropathicity
(GRAVY), as well as the theoretical pI and molecular weight
for annotations not found in the database. To assess coverage
versus reference proteomes, supplementary files with intensity
data were obtained from vitreous proteome studies that have
mapped the composition in healthy humans,26−29 and other
species,30−32 converted to gene names using UniProtKB, the
unmapped identifications were excluded, and the proteomes
were compared against our protein identifications using a Venn
diagram software (http://bioinformatics.psb.ugent.be/
webtools/Venn/). Functional analysis was conducted on
gene sets using GeneMANIA (http://genemania.org). Addi-
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tional data analysis and statistics were conducted with Prism
8.2.1 (GraphPad Software Inc., La Jolla, CA, USA).

3. RESULTS

3.1. Particle Size and ζ Potential. The lipid composition,
the hydrodynamic diameter (size), the polydispersity index
(PdI), and the ζ potential of all formulations are presented in
Table 1. The PdI for most formulations was less than 0.4.
Particle size and ζ potential measurements show that labeling
did not affect the physicochemical properties of the
formulations.
3.2. Vitreal Mobility of Light-Activated Liposomes.

We prepared 36 different formulations of light-activated
liposomes with negative, neutral, and positive charges. Each
category was further divided depending on the liposome size
(<50 nm, 100−200 nm, and >200 nm), PEGylation, and the
presence of indocyanine green (ICG). Representative vitreal
mobility tracks for positively charged non-PEGylated (Dv =
0.007 μm2 s−1) and PEGylated (Dv = 0.11 μm2 s−1) liposomes
and for negatively charged non-PEGylated (Dv = 0.7 μm2 s−1)
liposomes are presented in Figure 1. Within the same
experiment, cationic liposomes display a bimodal behavior
implying that a major fraction of the particles are immobile,
while some trajectories span longer distances within the time
scale of the measurement (Figure 1A,B). The heterogeneity in
the diffusion of cationic liposomes was also reflected in the
distribution of track length and speed of particles (e.g., CL1-
PEG compared to CL2, Figure S1).

Anionic light-activated liposomes up to 300 nm in size had
diffusion coefficients in vitreous that were 9−14 times slower
than the calculated diffusion coefficients in water (Figure 2 and
Table S1) indicating that the vitreous poses a minor barrier for
these types of nanoparticles. Moreover, neither PEGylation nor
the presence of ICG affected liposomal mobility. The diffusion
of neutral light-activated liposomes decreased moderately with
increasing liposome size. The mobility of small (<50 nm) and
medium-sized (100−200 nm) PEGylated neutral light-
activated liposomes is comparable to anionic liposomes (Dw/
Dv = 11−13), whereas larger and non-PEGylated light-
activated liposomes encounter a higher resistance from the
vitreous barrier (Dw/Dv = 16−29) (Figure 2). PEG improves
the diffusion of liposomes, even though the effect is still
moderate. Apparently, ICG does not affect neutral liposome
mobility. Based on the results of cationic light-activated
liposomes, PEGylation dramatically increases their mobility,
despite the fact that the liposomes still had a positive charge.
The Dw/Dv ratios of PEGylated cationic light-activated
liposomes are 1 order of magnitude smaller compared to
their non-PEGylated counterparts: Dw/Dv (PEG) = 126−170,
Dw/Dv (without PEG) = 1770−3486 (Figure 2). In addition,
size increase has an insignificant effect on their mobility: for
small PEGylated liposomes (<50 nm) Dw/Dv = 126, whereas
for large PEGylated liposomes (>200 nm) Dw/Dv = 170
(Figure 2). Again, ICG does not affect the mobility of cationic
liposomes (Supporting Information).

3.3. Vitreal Mobility of Rigid-Membrane Liposomes.
Rigid-membrane liposomes followed a similar pattern as the

Figure 1. Trajectories of liposomal formulations in the intact porcine vitreous. Cationic PEGylated liposomes CL3-PEG (1A) are more mobile (Dv
= 0.11 μm2 s−1) compared to the non-PEGylated formulation CL4 (1B) (Dv = 0.007 μm2 s−1). Anionic non-PEGylated light-activated liposomes
AL6 (1C) have clearly more expanded trajectories (Dv = 0.7 μm2 s−1). The inserts show a magnified view of selected tracks.
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light-activated liposomes (Figure 2). The anionic formulations
AR1 and AR2 and the similarly sized neutral formulation NR1
diffuse rapidly in the vitreous (Dw/Dv = 8−14), whereas the
cationic liposome CR1 was practically immobile (Dw/Dv =
2370). As with light-activated liposomes, PEGylation of the
cationic rigid-membrane liposomes (CR3-PEG) increased
liposomal diffusion by 1 order of magnitude (Dw/Dv = 351).
3.4. Vitreal Mobility of Hexosomes and Nanostruc-

tured Lipid Carriers (NLC). In addition to the liposomal
formulations, other lipid-based formulations were tested to
evaluate the robustness of the results. Although hexosomes
were larger than liposomes at 300 nm, their Dw/Dv = 9 fell
within the same range measured for the liposomal formulations
with a neutral charge (Figure 2). NLCs with and without
PEGylation followed the same trend, with Dw/Dv = 15 and 10,
respectively (Figure 2).
3.5. Vitreal Corona Thickness of Anionic Light-

Activated Liposomes. The anionic light-activated liposomes

AL1-PEG and AL2 were chosen for analysis of their soft (SC)
and hard (HC) protein coronae, since they showed high
mobility in the vitreous regardless of the lack or presence of
PEGylation (4 mol%). The SC was 3.1 ± 1.1 nm for AL1-PEG
and 2.5 ± 0.9 nm for AL2, whereas the HC was approximately
2.2 ± 0.9 nm for both formulations (Figure 3). There were no
significant differences in protein corona thickness between
AL1-PEG and AL2. The SC and HC protein amounts were
145 ± 28 ng cm−2 and 120 ± 29 ng cm−2 and 110 ± 23 ng
cm−2 and 111 ± 21 ng cm−2 for AL1-PEG and AL2,
respectively (Figure 3).

3.6. Vitreal Corona Protein Composition of Anionic
Light-Activated Liposomes. In total, 535 nonredundant
proteins were identified in the source porcine vitreous and at
least one sample of the corona subsections by nLC-ESI-MS/
MS (Supporting Information File 1). These included 101
proteins that have not been previously reported in proteomic
studies of the human vitreous26−29 and 88 previously unknown

Figure 2. Effect of surface charge, particle size, and surface modification (PEG and ICG) on the mobility of lipid-based formulations in the vitreous
based on the corresponding Dw/Dv ratios. Formulations are categorized in three graphs based on their size range: <50nm (top), 100−200 nm
(middle), and >200 nm (bottom). PEGylated formulations are displayed in filled symbols, and the empty symbols represent the non-PEGylated
formulations. (A) anionic, (N) neutral, (C) cationic formulation; (L) light-activated liposomes and controls; (R) rigid-membrane liposomes; (N)
nanostructured lipid carriers (NLCs). See Table 1 for the detailed lipid compositions. Dv was derived from the ensemble-averaged MSD at a time
scale of 1 s from at least 50 trajectories in 3 different experiments. Values for Dv (including the standard deviation), Dw, and Dw/Dv ratios are
provided as Supporting Information. The Dw/Dv ratio for hexosomes is 8.7; the data is not presented in this figure due to the missing ζ potential
value.
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proteins when dog, rabbit, and mouse vitreal proteomes were
also included (Figures S2 and S4).30−32 504 proteins found in
at least three samples were retained for analysis (Supporting
Information File 2 and 3), which resulted in 76 differentially
abundant proteins (Figure 4). While there is a clear difference
between the groups for HC, SC, and vitreous, the
compositions within the HC and SC subsections are similar.
None of the SC enriched proteins were detected in any of the

HC replicates. Functional analysis revealed that three HC and
two SC proteins are GAPDH physical interaction partners
(Figure S5). The significantly enriched proteins are listed in
Table 2, and the details are provided in the Supporting
Information. There were no statistically significant differences
in preferential enrichment between two anionic liposome
formulations for HC, and only vesicle-fusing ATPase (NSF)
enrichment was significantly less depleted in the SC of AL2 (p
< 0.05). The liposome corona enriched proteins included 45
proteins reported in silica and gold nanoparticle coronae
(Table S5).30 Venn diagrams that show all of the overlapping
and distinctive proteins, as well those with ANOVA-significant
differences between the hard and soft coronas per formulation,
along with lists of all and significantly different protein-
encoding genes per sample, are provided as Supporting
Information (Figures S6 and S7, Tables S6 and S7, Tables
S8 and S9).

4. DISCUSSION

The vitreous humor is the first physiological environment
encountered by intravitreally injected nanoparticles. Upon
intravitreal injection, the synthetic identity of nanoparticles
evolves into a biological identity34 that shapes the
pharmacokinetic behavior and pharmacodynamic response,

Figure 3. Surface plasmon resonance analysis of soft (SC) and hard
(HC) corona formation on sensor-immobilized anionic liposomes
with (AL1-PEG, 50 nm) and without (AL2, 50 nm) polyethylene
glycol from replicate measurements with (A) thickness and (B)
corresponding protein amount. Individual data points are displayed
with mean and standard deviation.

Figure 4. Heatmap of Z-score normalized hierarchical cluster analysis with 76 differentially abundant proteins that distinguish between the hard
(HC) and soft corona (SC) subsections and the porcine vitreous (source). The range is two standard deviations from the mean in both directions
for relative enrichment (red) and depletion (blue) on a log2 scale. The gray color indicates that the protein was not identified in the sample
replicate.
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Table 2. Relative Protein Enrichment in the Hard Corona (HC) and Soft Corona (SC) of Anionic Light-Activated Liposomes
(AL1-PEG and AL2, 50 nm) and Porcine Vitreous Sources Based on the ANOVA Hierarchical Clustering Analysisa

protein gene name
MW
[kDa] pIb GRAVYc preferenced

Hard Corona (HC)
F1RX31 SFRP2 secreted frizzled-related protein 2• 33.3 7.19

(−)
−0.277 AL2 (1.02:0.90)

A5GFY8 PHGDH D-3-phosphoglycerate dehydrogenase 56.8 6.54
(−)

0.102 AL1-PEG
(1.54:0.75)

Q767L7 TUBB tubulin β chain 49.7 4.65
(−)

−0,348 AL2 (1.35:0.96)

Q52NJ1 RAB11A Ras-related protein Rab-11A 24.4 6.26
(−)

−0.421 AL2 (1.04:0.90)

CON__P13645 KRT10 keratin, type I cytoskeletal 10f,g 58.8 5.13
(−)

−0.624 AL1-PEG
(1.43:1.02)

CON__P04264 KRT1 keratin, type II cytoskeletal 1f,g 66.0 8.15
(+)

−0.626 AL1-PEG
(1.45:0.97)

CON__P35908 KRT2 keratin, type II cytoskeletal 2 epidermalf,g 65.4 8.07
(+)

−0.471 AL1-PEG
(1.42:1.01)

F1SQL2 EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1• 54.9 4.77
(−)

−0.313 AL2 (1.10:0.98)

P00355 GAPDH glyceraldehyde-3-phosphate dehydrogenase 35.8 8.30
(+)

−0.069 AL1-PEG
(1.32:1.16)

A8QW48 SNCB β-synuclein 14.1 4.32
(−)

−0.491 AL2 (1.24:1.05)

A7YX24 SNCG γ-synuclein•• 13.0 4.78
(−)

−0.368 AL2 (1.37:0.85)

A0A287AGU2 ATP5F1A ATP synthase subunit αg,•• 59.4 8.95
(+)

−0.073 AL2 (1.39:0.73)I

I3LTE8 NSF vesicle-fusing ATPase 84.3 7.23
(−)

−0.280 AL2 (1.49:0.78)
**I

Q2XVP4 TUBA1B tubulin α-1B chain• 50.2 4.82
(−)

−0.230 AL2 (1.64:0.53)

I3LRF8 PCBP3 poly(rC)-binding protein 3 28.2 8.34
(+)

−0.046 AL2 (1.26:0.45)

averagese 42.0 6.34 −0.235 protein d: 4.6 nm
Soft Corona (SC)

A0A287AXR5 YWHAZ 14−3−3 protein ζ/δg 26.7 4.93
(−)

−0.494 AL2 (0.77:0.74)

A0A287ATY3 ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase family
member 2g,•

105.1 8.46
(+)

−0.582 AL2 (0.51:0.46)

A0A287ARU7 YWHAE 14−3−3 protein εg 27.4 4.77
(−)

−0.440 AL2 (0.51:0.49)

I3LRS5 ALDH1A1 retinal dehydrogenase 1• 22.9 6.44
(−)

−0.085 AL1-PEG
(0.65:0.23)

A0A287BCX5 ATP6V1A V-type proton ATPase catalytic subunit Ag 64.2 5.38
(−)

−0.165 AL1-PEG
(0.51:0.41)

A0A287AYJ0 DPYSL3 dihydropyrimidinase-related protein 3g 57.8 5.85
(−)

−0.244 AL1-PEG
(0.73:0.11)

A0A286ZIL9 COL18A1 collagen α-1(XVIII) chaing 129.9 5.65
(−)

−0.618 AL1-PEG
(0.63:0.19)

F1RJM2 ERP29 endoplasmic reticulum resident protein 29 29.3 7.14
(−)

−0.295 AL2 (1.05:−0.20)
**I

A0A286ZI58 PCP4 calmodulin regulator protein PCP4 6.8 6.21
(−)

−1.332 AL2 (1.04:−0.11)

averagese 52.2 6.09 −0.473 protein d: 5.0 nm
Vitreous Source

A0A286ZT13 ALB serum albuming,• 68.2 5.99
(−)

−0.425 AL2: HC, AL1-
PEG: SC

A0A287ACN2 ADIRF adipogenesis regulatory factorg,•• 7.8 5.21
(−)

−0.491 AL2: HC, SC

I3LN42 GC vitamin D-binding protein• 53.5 5.41
(−)

−0.433 AL1-PEG: SC

F1RII7 HBB hemoglobin subunit β• 16.2 6.93
(−)

−0.053 AL1-PEG: HC, SC

O02772 FABP3 fatty acid-binding protein, heart 14.7 6.26
(−)

−0.209 AL2: SC

A0A287BNS9 unmapped ubiquitin-like domain-containing proteing 15.2 9.96
(+)

−0.509 AL2: SC

Q29549 (Bos taurus)
(CON__P17697)

CLU clusterin• 51.8 5.61
(−)

−0.614 AL2: HC, AL1-
PEG: SC
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possibly via altered intracellular delivery properties. It is thus
meaningful to characterize nanoparticles both in their original
formulation and also in the physiologic environment of the
vitreous humor. Here, we evaluate the diffusion of lipid-based
formulations in vitreous compared to water and carry out a
comprehensive description of the vitreal protein corona of the
formulations with the most promising attributes for ocular
drug delivery. Understanding the biological identity of
intravitreally administered nanoparticles will greatly benefit
the development of novel nanoparticle-based ocular treat-
ments.
4.1. Vitreal Mobility Depends on Lipid-Based For-

mulation Charges. After intravitreal administration, nano-
particles must be able to overcome the vitreous barrier to reach
their target tissue (e.g., the retina), where they are eventually
internalized by cells. Here their cargo (such as small regulatory
RNAs, proteins, and peptides) must be released to produce a
therapeutic effect. Since the blood−ocular barriers preclude the
posterior elimination route, nanoparticles are believed to be
eliminated from the eye via the slower anterior elimination
route, which goes through the posterior chamber and anterior
chamber and via the trabecular meshwork to the canal of
Schlemm. In order to gain access to the posterior chamber,
nanoparticles must diffuse through the vitreous humor. Our
work shows that the vitreous is a weak barrier for the diffusion
of negatively charged and neutral lipid-based formulations;
however, given its anionic properties, the vitreous severely
restricts the diffusion of cationic formulations. Formulation
charge is thus the most important factor regulating the
mobility of lipid-based nanoparticles in the vitreous humor.
Our results are in line with earlier studies also performed in
intact vitreous, which, however, evaluated a much narrower
selection of particles and did not include liposomes.6,7 In
addition, our work determines that PEGylation rescues the
mobility of cationic liposomes without affecting their overall
charge, clearly indicating the steric shielding effect of PEG

coating on particle diffusion. Compared to previous work, we
found the Dw/Dv ratio of anionic lipid-based nanoparticles in
porcine vitreous (Dw/Dv = 6−14) to be slightly higher than the
ratio of anionic polystyrene nanoparticles of the same size in
bovine vitreous (Dw/Dv = 2−3)6. This may be due to
differences in composition between porcine and bovine
vitreous humor, but also to the different chemical composition
of the nanoparticles (lipid-based formulations vs polystyrene).
Kas̈dorf found the mobile fractions of anionic DOPG/DOPE
liposomes (185 nm, −50.2 mV) also to be slightly lower in
porcine compared to bovine vitreous.3 As others have already
pointed out,6,7 we have also observed mobility differences
within the same particle population (see Figure 1A,B). For
example, while the majority of cationic light-activated lip-
osomes showed restricted mobility, some particles had longer
trajectories. This phenomenon may be explained by the
heterogeneous distribution of macromolecules (collagens and
glycosaminoglycans) throughout the vitreous.2 Thus, the
microenvironment for individual liposomes may be different,
and this will affect their mobility.

4.2. Protein Corona Formation on Anionic Light-
Activated Liposomes. Protein binding may be another
important factor that significantly alters the vitreal pharmaco-
kinetics of nanoparticles. Our analysis of the overlap in protein
identifications between our study and previous reports was
81.1% with human and 83.6% with human, dog, rabbit, and
mouse. The measured protein concentration and composition
of porcine vitreous, therefore, replicate the situation in the
healthy human eye, although there is wide variation in the
literature values (0.2−4.7 mg).35−39 Its viscoelastic properties
and structure are also very similar.40 PEGylation does not
significantly influence corona thickness in porcine vitreous,
since the HC was 2.2 nm and the SC was 2.5−3.1 nm for both
formulations. Earlier, we observed that PEGylation did not
influence the HC thickness on similar light-activated liposomes
in undiluted human plasma.15 Since the calculated effective

Table 2. continued

protein gene name
MW
[kDa] pIb GRAVYc preferenced

Vitreous Source
Q710C4 AHCY adenosylhomocysteinase 47.7 5.99

(−)
−0.088 AL2: SC

A0A287A013 unmapped Ig-like domain-containing proteing 12.4 5.51
(−)

−0.875 AL1-PEG: SC

K7GRY0 UBA1 ubiquitin-like modifier-activating enzyme 1 isoform X2 107.5 5.34
(−)

−0.262 AL2: SC

F1SHN1 CNTN1 contactin-1 113.6 6.05
(−)

−0.338 AL1-PEG: SC

A0A286ZX26 CTSD cathepsin Dg 44.1 8.01
(+)

0.055 AL2: HC, AL1-
PEG: SC

averagese 46.1 6.36 −0.354 protein d: 4.8 nm
aProteins are listed in the order displayed in the heatmap with their isoelectric point (pI), molecular weight (MW), and grand average of
hydropathicity (GRAVY) along with averages. The liposome with higher relative enrichment with the corresponding log2-fold change for both
formulations and the calculated average effective protein diameter thickness in the HC, SC, or vitreous source groups are also provided. Statistically
significant differences in protein enrichment between the liposome formulations within HC and SC are indicated by **. The proteins previously
reported in gold and silica nanoparticle coronae and the proteins that have not been previously identified in the human vitreous are marked by •
and ••, respectively. bpI with a predominant charge in the vitreous at neutral pH 7.4. cGrand average of hydropathicity (GRAVY) calculated with
sequence pI using the ExPASy ProtParam tool. It is the sum of amino acid hydropathicity values divided by the length of the protein, whereby
hydrophobicity increases with increasing positive score.33 dPreference toward formulation based on relative enrichment (comparison of replicate
average log2-fold changes). Statistically significant differences between formulations within the groups HC and SC based on multiple t tests with
Benjamini-Hochberg FDR correction are indicated by ** (p < 0.005 and q < 0.05). eColumn averages and the calculated average effective protein
diameter based on the MW (tight-packed monolayer thickness). fContaminants excluded from the column averages and associated analysis.
gTheoretical pI and MW calculated with the ExPASy ProtParam tool. hReported on gold and silica nanoparticles by Jo.30 INot previously reported
in human vitreous by Semba,26 Aretz,27 Yee,28 and Skeie.29
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protein diameter is approximately 4.6 nm for the HC and 5.0
nm for the SC, assuming tight packing, we can deduce that the
vitreal protein corona is sparse and only contributes to a 10−
12% increase in diameter. Recent studies on PEGylated
liposomes in serum and plasma have also demonstrated that
the HC was sparse, and surface protein coverage is low,41−43

which is consistent with our findings.
The predominant charge of most of the adsorbed proteins is

negative, suggesting that anionic liposomes retain their
negative surface charge in the neutral ocular environment
and in ex vivo vitreous with pH 8.44,45 Most of the significantly
enriched proteins in the corona and vitreous were hydrophilic,
with the exception of D-3-phosphoglycerate dehydrogenase
(PHGDH). Functional analysis showed that a large number of
HC enriched proteins were physical protein−protein inter-
action partners of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and the keratin contaminants may have con-
tributed to the enrichment of some SC proteins (Supporting
Information). In addition to electrostatic and hydrophobic
interactions, protein−protein interactions related to the
proteins’ biological functions may, therefore, also contribute
to their enrichment in the corona.
While there are no previous reports on vitreal corona

formation on liposomes, Jo30 studied HC formation on anionic
20 and 100 nm gold and silica nanoparticles in dilute dog
vitreous. They reported an increase in hydrodynamic diameter
corresponding to 5−8 nm HC thickness, about 2-fold
compared to our measurement. They found a weak positive
correlation with pI and GRAVY values, and a significant
number of proteins had a pI > 7.4, noting that protein
adsorption is driven by electrostatic and hydrophobic proper-
ties of the proteins, irrespective of the core material. There was
no evident correlation between charge, hydropathicity, and
protein preference for the liposomes AL1-PEG or AL2, and
attractive electrostatic forces were not dominant, since anionic
liposomes were found to bind predominantly negatively
charged proteins, which might be explained by Stern layer
formation.46 Regardless of the different incubation conditions,
there was a 75% overlap overall in protein identifications on
gold, silica, and liposome coronae. Together these observations
suggest that protein-specific rather than particle-specific factors
are drivers of protein adsorption on nanoparticles in the
vitreous, as originally observed by Jo.30

Since the corona thickness and protein composition of AL1-
PEG (4 mol% PEG-2000) were not significantly different, it is
possible that the traditional stealth properties of PEG are not
directly applicable to the ocular environment. When the same
anionic liposome formulations (100 nm) were subjected to
undiluted plasma under the same experimental conditions,
PEGylation had a clear effect on both HC and SC thickness
and composition.15 Nevertheless, the protein corona might
influence biological interactions and affect the clearance and
cell uptake of the liposomes. For instance, the enriched
complement, 70 kDa and 90 kDa heat shock proteins may
enhance particle removal by hyalocytes, retinal pigment
epithelial cells, or ocular macrophages.47−50 Recent studies in
mice have shown that for intravenously injected nanoparticles,
the combination of proteins in the corona, rather than a
specific protein in the corona, influences biodistribution and
cell uptake by liver and spleen.10 This is probably the case also
in the ocular environment and, therefore, the biological
implications of corona formation should be addressed in
future studies.

Our findings on similar compositions and thicknesses for
both AL1-PEG and AL2 are consistent with their very similar
diffusion behavior in the vitreous. This is not surprising, since
the particle sizes after protein corona formation are still only
one-tenth of the vitreous mesh size, and the surface charge is
expected to remain negative. Based on our results, protein
corona formation does not influence the mobility of anionic
nanoparticles in the vitreous, and the benefit of PEG as a
stealth approach was not evident. On the other hand, the
protein corona may have an impact on the cellular removal
mechanisms or on the uptake and intracellular distribution in
the target cells.

4.3. Convection, Not Diffusion, Rules the Ocular
Pharmacokinetics of Nanoparticles. Let us assume that
diffusion is the only driving force affecting the mobility of
nanoparticles in the vitreous humor; then using eq 1, we can
calculate the time t required by a nanoparticle to move for a
certain distance x in three dimensions:

=t
x
D6

2

v

Table 3 summarizes the average time t required for an anionic
lipid-based nanoparticle (100−200 nm, Dv = 0.5 μm2 s−1) and

for the IgG antibody bevacizumab (150 kDa), commonly used
in the treatment of ocular diseases (Dv = 50 μm2 s−1),51 to
travel the distance from the center of the vitreous gel to the
retina (the vitreous radius), in human and in animal models
commonly used in ocular pharmacokinetics and pharmacody-
namics studies. In addition, the time required in liquefied
vitreous (Dv,liq = 5 μm2 s−1 for a nanoparticle of 100 nm
diameter and Dv,liq = 72 μm2 s−1 for an antibody of 4.5 nm
radius are calculated with eq 2) is also shown.
The role of diffusion in vitreal mobility is clearly different

depending on the type of therapeutic (nanoparticle vs
antibody) and on the size of the eyes. For a macromolecule,
such as bevacizumab, vitreal diffusion plays an important role
in both the ocular distribution and elimination. Indeed, the
elimination half-life of bevacizumab was reported to be 7−10
days in humans,54,55 4−6 days in rabbits,56,57 and 8 h in rats.52

In the case of a nanoparticle, however, the results indicate that,
especially in larger eyes (rabbits, humans), the vitreal diffusion
is much too slow to have any effect on its pharmacokinetics.
Barza,58 for example, determined that the vitreal half-life of 60
nm and 400−600 nm liposomes in normal rabbit eyes ranged
from 9 to 20 days, respectively. In other words, were the
distribution and elimination of nanoparticles based solely on
diffusion, then they would be retained in the vitreous of larger
eyes for a much longer time. In addition, the time a

Table 3. Average Travel Time (t) Needed to Reach the
Retina for a Nanoparticle (Abbreviated as nano) and an
Antibody (Abbreviated as ab) in Normal and Liquefied (liq)
Vitreous, Assuming Exclusively Diffusion-Driven
Distribution

x [cm] tnano tab tnano,liq tab,liq

human 1a 1.1 years 3.9 days 39 days 2.7 days
rabbit 0.7a 0.5 years 1.9 days
rat 0.2a 15.4 days 3.7 h
mouse 0.04b 14.8 h 8.9 min

aVitreous radii from Hutton-Smith.52 bVitreous radius from Zhou.53
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nanoparticle requires to diffuse from the central vitreous to the
retina is remarkably different in rodents (mice, rats) and in
larger animals (rabbits, humans).
We can provide a simple estimate of the magnitude of the

effect of diffusion and convection by means of a dimensionless
number called the Pećlet number (Pe) (eq 5), which is the
ratio of the contributions to mass transport by convection to
those by diffusion:

= = VL
D

Pe
convection

diffusion v (5)

where V is the velocity of the convective fluid flow in the
vitreous (2 × 10−5 cm min−1 in rabbit, as estimated by Araie
and Maurice59), L is a characteristic length scale (in this case
the vitreous radius), and Dv is the diffusion coefficient in
vitreous. When Pe < 1 diffusion dominates, when Pe > 1
convection dominates, and when Pe ∼ 1, their influence is
similar. The calculated Pećlet numbers for a nanoparticle and
for an antibody are shown in Table 4. Note that we had to use
the velocity of the convective fluid flow in rabbits, since the
values for other species, including humans, are not known. In
larger eyes, the transport of nanoparticles takes place
exclusively by convection; the mobility of antibodies, instead,
is mostly governed by diffusion. For antibodies, the role of
diffusion is more significant in smaller eyes.
Another important factor that may affect the ocular

pharmacokinetics of intravitreally injected nanoparticles is
the state of the vitreous humor, including changes in vitreous
viscosity and composition. Ocular disorders that will benefit
from the development of a nanoparticle-based drug delivery
overwhelmingly affect elderly people. With aging, the vitreous
humor undergoes progressive liquefaction (synchysis) and
aggregation of collagen fibrils (syneresis), so that by the age of
80−90 years, more than half of the gel phase has turned into a
liquid phase.60 In this case, we can assume that the diffusion of
intravitreally injected nanoparticles will be closer to the
calculated diffusion coefficient in water. Coming back to the
hypothetical exercise presented in Table 3, we can, therefore,
assume Dv,liq = 5 μm2 s−1. Even such a minor increase in the
mobility of a nanoparticle will significantly decrease the time
required to reach the retina from 1.1 years to 39 days (Table
3). For an antibody, instead, liquefied vitreous only moderately
affects its mobility, which decreases from 3.9 days to 2.7 days.
The Pećlet number for the nanoparticle in liquefied vitreous is
1 order of magnitude smaller compared to young vitreous
(Table 4), assuming that the velocity of the convective fluid
flow in liquefied vitreous remains the same. In the case of the
antibody, on the contrary, the Pećlet number is hardly affected
by vitreous liquefaction, and diffusion remains the driving
force. Thus, compared to young eyes, in aging eyes that have
undergone liquefaction, diffusion may play a more important
role in determining the ocular pharmacokinetics of nano-

particles, whereas the mobility of antibodies remains
unaffected.
Regarding the composition of the vitreous humor, we must

take into consideration patients who have undergone
vitrectomy. Vitrectomy is a common surgical procedure that
removes the vitreous humor and replaces it with an expansile
gas or a liquid (perfluorocarbon liquids, semifluorinated
alkanes, silicone oils, polymeric hydrogels).37 The effect of
these vitreous substitutes on the ocular pharmacokinetics of
intravitreally injected nanoparticles is not known. In the case of
macromolecules, however, published reports indicate no effect
or slightly shorter half-lives for bevacizumab, ranibizumab, and
aflibercept in vitrectomized eyes of rabbits and monkeys.61−63

It is difficult to predict the behavior of nanoparticles in vitreous
substitutes; nevertheless, if the velocity of the convective fluid
flow remains constant, then it is likely that convection will still
play an important role. If, however, the velocity decreases, then
diffusion may gain influence. In addition, the pharmacokinetics
of nanoparticles in vitrectomized eyes may also be influenced
by other factors such as their stability and possible aggregation
in vitreous substitutes.

5. CONCLUSION
Favorable vitreal pharmacokinetic properties are essential for
the success of an intravitreal therapy based on nanoparticles.
Our mobility study broadens prior work5−7 by evaluating the
vitreal diffusion of a wide selection of lipid-based formulations.
Interestingly, our findings are pointing toward a convection-
driven, rather than a diffusion-driven, distribution of nano-
particles in the vitreous humor. In addition, given the dramatic
differences observed between rodent and rabbit/human eyes,
we urge to carefully consider how the size of the eye affects
nanoparticle distribution and likely complicates interspecies
translation. Our study also provides insight into the previously
unexplored formation of the protein corona on intravitreally
injected liposomes. Further work is needed to elucidate the
influence of the protein corona on the ocular biodistribution of
liposomes, including their uptake by retinal cells.
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Block, S.; Las̈ser, C.; Dahlin, A.; Lötvall, J. O.; Bally, M.; Zhdanov, V.
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