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Abstract 

Lactase is a digestive enzyme, and its principal function is to break down lactose, a disaccharide 

found in milk. The main site for lactase expression is the intestines, however, it is also expressed in 

other tissues, including the brain. Because the primary substrate, lactose, is not present in the central 

nervous system, it can be assumed that lactase serves another function besides lactose breakdown 

outside the digestive system. In C57BL/6NCrl mice, lactase expression is higher in the ventral 

hippocampus after chronic social defeat stress in comparison to controls. This suggests that lactase 

expression is to some extent affected by stress. Although lactose metabolism is only necessary for 

mammals, some other animals – including the zebrafish (Danio rerio) – possess a gene that codes 

for lactase. Research on the zebrafish lactase gene is scarce, and the expression pattern of its two 

transcripts, the primary lct-201 and the secondary lct-202, is not known.  

This study focused on measuring lactase expression in adult wild type zebrafish – both on the gene 

and on the protein level as enzymatic activity. The effect of stress on lactase expression was also 

examined by applying two different stress models: netting handling stress as a form of 

physiological stress, and chronic social defeat as a model for psychosocial stress.  

Real-time polymerase chain reaction (q-RT-PCR) showed lct-201 expression in all five tissues 

investigated in this study – the forebrain, the mid-hindbrain, higher intestines, lower intestines, and 

skeletal muscle, whereas lct-202 was only expressed in the higher and lower intestines. The 

expression level of lct-201 in the muscle was only fifth of that in the lower intestines. Lactase 

activity assay on the whole brain and whole intestines displayed enzymatic activity in both tissues, 

with the activity in the intestines being more than seven-fold compared to the brain. q-RT-PCR on 

both stressed and control fish whole brain and intestines revealed higher lactase expression in the 

stressed fish intestines, however, the effect was only seen with a primer pair targeting both 

transcripts simultaneously, and not for either of them separately. Lactase expression was on average 

approximately 40 % higher in physiologically and 55 % higher in psychosocially stressed fish in 

comparison to their respective controls. Neither physiological nor psychosocial stress affected 

lactase expression in the brain.  

These findings suggest that the two zebrafish lactase transcripts have distinct expression patterns, 

which might imply different functional roles for lct-201 and lct-202. Furthermore, these results 

indicate that lactase is expressed in the zebrafish brain, suggesting that it has a specific function in 



 

 

the central nervous system. Based on the findings in this study, lactase gene expression might be 

connected to experienced stress – both physiological and psychosocial.  
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1   INTRODUCTION 

 

Lactase gene is well known for its role in the development of lactose intolerance, a condition 

affecting approximately two thirds of the world’s population (Storhaug et al. 2017). Commonly, the 

expression of this gene is high in infants, but declines in the course of development. This leads to 

inadequate digestion of milk sugar, lactose, during adulthood – which in turn is a causative to a 

variety of gastrointestinal symptoms (Forsgård 2019).  

The main location of lactase expression is the small intestine, which is rather intuitive. In fact, the 

localization of lactase enzyme has been acknowledged for well over a hundred years, as was 

demonstrated by Plimmer in 1906. Through modern technologies, lactase expression has been 

observed, however, also outside the digestive system. Proteomic and transcriptomic studies detect 

expression in the brain of some mammals – including human (Wang et al. 2019). A previous 

finding in our group showed that chronic social defeat, a model for chronic psychosocial stress, 

induced lactase expression in the ventral hippocampus of an inbred mouse strain (Laine et al. 2018). 

This provokes the question of other, yet to be discovered, functionalities of the protein. 

Despite having unique properties in digestion of milk, the lactase gene is also present in many non-

mammals. According to Ensembl database, the human gene has over 400 orthologues (Yates et al. 

2020). The high level of conservation seconds that lactase is not only a digestive enzyme, but rather 

a more complex molecule. Interestingly, the lactase gene also exists in zebrafish – and as proved by 

RNA sequencing, is also expressed (White et al. 2017, Bastian et al. 2021). Unpublished in situ 

hybridization studies by Rouhiainen and Chen show lactase expression in the zebrafish brain, which 

makes the species a compelling subject for studying the function of this gene in the central nervous 

system.  

To this day, very little is known of the function of lactase outside the digestive system. Due to the 

lack of lactose in the brain, it can be presumed that the lactase gene serves another purpose besides 

lactose breakdown. Findings from the study by Laine et al. (2018) suggest that lactase expression 

might be connected to stress, but the pathway for this remains unknown.  

In this study, I aim to shed light on the functionality of the lactase gene in the brain by measuring its 

expression levels in zebrafish before and after both psychosocial and physiological stress. I also 
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intend to identify the possible expression pattern differences between two splice variants of the 

zebrafish gene.  
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 2   REVIEW OF THE LITERATURE 

 

2.1   Lactase 

 

2.1.1 Function 

The lactase gene codes for lactase, which is best known for its role in digestion of lactose, a sugar 

molecule found in mammalian milk. Lactose is a disaccharide that is formed by two simpler sugars, 

glucose and galactose, attached via a glycosidic bond (Forsgård 2019) (Fig. 1). In order for lactose 

to be used as an energy source in the body, the glycosidic bond needs to be broken down. Resulting 

monosaccharides can then be taken up by enterocytes in the intestine. Lactase has enzymatic 

activity, through which it catalyzes the hydrolysis of the glycosidic bond (Swallow 2003). Lactase 

belongs to Glycoside Hydrolase Family 1 (Lombard et al. 2014).  

                   

                   Lactose                                                     Glucose                                    Galactose  

 

Fig. 1. The breakdown of lactose into glucose and galactose.  
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Lactase can be referred to as lactase-phlorizin hydrolase, because it also has an enzymatic site for 

phlorizin (Kraml 1972). Phlorizin is a flavonoid molecule found in fruit trees, especially apple 

(Ehrenkranz et al. 2005). It inhibits glucose transport through the renal tubule and therefore lowers 

blood glucose levels (Rossetti et al. 1987). Due to these properties, phlorizin has been studied as a 

treatment for type II diabetes. Enzymatically active sites for both lactose and phlorizin are located 

in the same protein subunit (Mantei et al. 1988).  

In human, the lactase enzyme is synthesized as a large precursor molecule, which is then 

proteolytically cleaved and glycosylated in a complex manner (Naim et al. 1987). The initial 

translation product, which is synthesized in the endoplasmic reticulum, is pre-pro-lactase 

(Montgomery et al. 2007) (Fig. 2). It contains a short signal peptide sequence that guides the pre-

pro-enzyme to the correct cellular compartment and is then cleaved by a peptidase (Mantei et al. 

1988). Resulting pro-lactase is then cleaved and undergoes complex glycosylation in the Golgi 

apparatus (Naim et al. 1987). This processing results in the formation of a mature lactase molecule, 

which will locate in the intestinal lumen.  

Fig. 2. The structure of human pre-pro-lactase.  

 

The pre-pro-lactase consists of 1927 amino acids (aa), of which 19 form the signal peptide sequence 

in the N-terminus (Mantei et al. 1988). The pro-region cleaved in the maturation step makes up the 

second part of the translation product and is 849 aa. The third part of the product is the 1061 aa 

mature lactase (Naim et al. 1994). The C-terminus of lactase contains a short, 19 aa, hydrophobic 

anchor sequence that binds it to the cell membrane (Mantei et al. 1988). This is followed by a 26 aa 

tail, that remains in the cytosol (Naim et al. 1994).      

In human, the lactase gene is located in the reverse strand of chromosome 2 (Yates et al. 2020). 

There are two isoforms, LCT-201 and LCT-202, of which the latter is discarded through nonsense 
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mediated decay. The primary isoform, LCT-201, gene product is 6273 base pairs (bp), contains 17 

exons and it is protein coding. The cytogenic location of the gene is 2q21.3 (OMIM).        

 

2.1.2 Gene expression 

Lactase gene expression is developmentally regulated (Montgomery et al. 1999) (Fig. 3). The 

expression begins prior to birth and continues throughout the nursing period (Auricchio 1994). In 

humans, lactase expression begins at around 24 weeks of gestation and increases considerably 

during the third trimester – reaching its peak at full-term birth (Montgomery et al. 2007). In most 

mammals, the expression is decreased around the time of weaning. This then leads to low levels of 

lactase activity through adult phase. The temporal decline in expression is caused by a cis-acting 

regulatory element (Wang et al. 1995). Low lactase expression – or complete lack thereof – is the 

cause of lactose intolerance in humans.  

 

Fig. 3. The developmental pattern of lactase expression in human and non-human mammal 

intestine. Adapted from reference (Montgomery et al. 2007).  

 

The main site of lactase expression is the small intestine, more specifically the jejunum. The 

amount of lactase decreases gradually when moving towards the ileum (Ugidos-Rodríguez et al. 

2018). Before weaning, however, lactase is present in all parts of the small intestine (Auricchio 
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1994). In humans, lactase messenger RNA (mRNA) is localized on the apical side of enterocytes in 

the microvillus membrane (Montgomery et al. 2007).  

Several transcription factors are known to affect the promoter activity of the lactase gene. A GATA 

family transcription factor, GATA-6, has been shown to stimulate the lactase gene promoter in vitro 

(Fitzgerald et al. 1998). In another study by Krasinski et al. (2001), they found that GATA-5 

together with another transcription factor, HNF-1α, coactivates the promoter and increases lactase 

gene expression. OCT-1, which is closely linked to the lactase persistence phenotype, also enhances 

lactase promoter activity (Lewinsky et al. 2005).  

RNA sequencing studies have shown that despite having a specific function in the intestine, lactase 

is also expressed in other tissues. Interestingly, lactase expression has been detected in the brain of 

both mice (Soumillon et al. 2013) and humans (Wang et al. 2019). Yu-Chia Chen and Ari 

Rouhiainen from our group have shown that lactase is also expressed in the zebrafish brain in two 

separate in situ hybridization experiments (unpublished data). A proteomic and transcriptomic study 

by Wang et al. (2019) detected lactase expression in 30 different tissues, both within and outside the 

digestive system in humans. According to mouse transcriptomic studies, lactase is expressed in the 

following brain regions: dorsal raphe nucleus (Bonthuis et al. 2015), hippocampal formation (Keane 

et al. 2011) – including dentate gyrus (Ramos et al. 2013),  and medial prefrontal cortex (Gregg et 

al. 2010). 

The amount of lactase gene expression or the degree of lactase enzymatic activity are not induced 

by increasing the amount of dietary lactose in humans (Gilat et al. 1972). The regulation of lactase 

expression is therefore not dependent on diet, but rather on more complicated factors. In 

C57BL/6NCrl mice, lactase was found to be differentially expressed in the ventral hippocampus 

after chronic social defeat stress (Laine et al. 2018). This finding points that stress might be one of 

the components affecting lactase gene expression. In fact, an early in vitro study on rat intestine 

found an increase in lactase activity after administrating dexamethasone, a glucocorticoid (Simon-

Assman et al. 1982). A more recent study by Nanthakumar et al. (2003) demonstrated that 

administration of cortisone acetate increased lactase activity in jejunal xenografts. The results for 

the effect of glucocorticoids on lactase expression have not, however, been conclusive. The lactase 

gene in humans does not contain a binding site for a glucocorticoid receptor (Boll et al. 1991), 

which suggests that the expression is not directly affected by glucocorticoids, but rather by 

secondary activators.  
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2.1.3 Lactase in zebrafish 

Lct in zebrafish is located in the reverse strand of chromosome 9. The full size of the gene area is 

29679 bp. There are two known transcripts: lct-201 and lct-202 (Fig. 4), of which both code for 

protein (Yates et al. 2020). Lct-201 is considered the principal isoform, whereas lct-202 is a splice 

variant (Rodriguez et al. 2018). In terms of size, lct-201 is a bit smaller, 5703 base pairs, compared 

to 6496 base pairs of lct-202. Both consist of 17 exons, of which 14 are shared between these 

transcripts. Exons 1 to 3 are different for lct-201 and lct-202 (Yates et al. 2020). 

 

Fig. 4. The zebrafish lactase gene. Image from Ensembl release 103 (Yates et al. 2020). 

 

Based on transcriptomics data, lct is expressed at low to medium levels at the larval stage (White et 

al. 2017). At fully formed stage, lct is expressed in at least intestine, liver, head, tail and head 

kidney tissues (Bastian et al. 2021). These locations of expression have been detected by RNA 

sequencing. In situ hybridization showed that lct is also expressed in the brain of zebrafish 

(Rouhiainen, unpublished; Chen, unpublished), as it is in mice and humans. 

46.375Mb 46.400Mb
CR394556.10 >Contigs

< lct-202 protein coding < cx43.4-201 protein coding

< LCT-202 protein coding< lct-201 protein coding

< LCT-201 protein coding

Genes (Merged 
Ensembl/Havana)

46.375Mb 46.400Mb

Protein Coding

 Ensembl protein coding
 merged Ensembl/Havana

Gene Legend

49.68 kb Forward strand

Reverse strand 49.68 kb
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Based on gene ontology, the subcellular location of the lactase primary product in zebrafish is the 

endoplasmic reticulum (Gaudet et al. 2011). This is not entirely in agreement with the fact, that the 

zebrafish lactase also contains a transmembrane helical structure, just like its human counterpart 

(UniProt Consortium 2021). Automatic computational assertion also places lactase in the integral 

component of the membrane.  

Both lct-201 and lct-202 protein products contain a 23 aa signal peptide. The former consists of 

1900 aa in total, whereas the latter has 1898 aa (UniProt Consortium 2021). The two contain a 25 aa 

transmembrane sequence in the C-terminal end. The only amino acid differences between the 

translation products are within the first 250 aa (Fig. 5), and the rest of them is identical. The shared 

active sites are both nucleophilic. The molecular function for both translation products is the same: 

glycosidase and hydrolase activity.   
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Fig. 5. Alignment of lct-201 and lct-202 translation products. Top row is the protein product of 

lct-202 and bottom row that of lct-201. Highlighted sequences represent following annotations: 

magenta= signal peptide, green= coiled coil, red= active site, yellow= transmembrane. Produced 

with Clustal Omega (1.2.4) multiple sequence alignment tool.  
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2.1.4 Phenotypes associated with lactase 

Lactose intolerance is a very common condition, affecting around two thirds of the world’s 

population. It can be divided into three subtypes: congenital lactase deficiency, secondary lactase 

deficiency and adult-type lactase deficiency (Berni Canani et al. 2016) (Table 1).  

 

Table 1. The three subtypes of lactose intolerance. 

 

Congenital lactase deficiency manifests almost immediately after birth as lack of lactose absorption, 

resulting in chronic diarrhea and slowed development due to malnutrition (Lifshitz 1966). The 

symptoms can be reversed by switching to a lactose-free diet (Di Constanzo & Berni Canani 2018). 

Congenital lactase deficiency is inherited in an autosomal recessive manner and it is one of the 

Finnish heritage diseases (Savilahti et al. 1983). Several mutations in the lactase gene coding region 

have been identified as the cause, including a nonsense mutation, Finmajor – the most common 

mutation in the Finnish population (Kuokkanen et al. 2006). Other mutation types causing truncated 

protein structures have also been found.  

Congenital lactase deficiency Secondary lactase defieciency Primary lactase defienciency

Cause Lack of lactase enzymatic function
Primary condition causing damage 

to intestinal cells
Normal age-dependent decline of 

lactase expression

Pattern of 
inheritance Autosomal recessive Not heritable Autosomal recessive

Affected gene LCT None MCM6

Mutation type
Several known mutations in the 
coding region, resulting in non-

functional enzyme
None

Several known SNPs, C/T-13910 
key mutation in Europe

Prevalence Rare Not known
Very common, in over two thirds 

of adults

Symptoms Diarrhea, malnutrition,  slowed 
development

Diarrhea, discomfort, flatulence Diarrhea, discomfort, flatulence

Age of onset Newborn Any age Childhood or adolescense

Management Completely lactose free diet
Treatment of the primary condition, 

in which case lactase deficiency 
can be reversed; low-lactose diet

Low-lactose diet

Mutated gene 
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Secondary lactase deficiency is caused by intestinal damage generated as a result of a primary 

condition (Di Constanzo & Berni Canani 2018). Such damage can be caused by an intestinal 

disorder – such as Crohn’s disease or celiac disease, infections, food allergies, bacterial imbalance 

or cancer treatments. Secondary lactase deficiency can be reversed as the intestinal damage is 

cleared. The symptoms are similar to those of primary lactose intolerance.   

Adult-type lactase deficiency, or primary lactose intolerance, affects most of the world’s 

population. There is a vast difference in the frequency of the condition between populations, with 

the Middle East having the highest prevalence (Storhaug et al. 2017). On the contrary, Northern and 

Western Europe are among the regions with the lowest prevalence. The ability to digest lactose is 

considered to be the result of a selective pressure, and historic dairying practices are associated with 

a lower prevalence of lactose intolerance among certain populations (McCracken 1971). 

Primary lactose intolerance is caused by the decline of lactase gene expression after weaning 

(Forsgård 2019). This leads to a decreased amount of lactase enzymatic activity in the intestines, 

causing lactose to pass on in the digestive system without being degraded. Symptoms, such as 

bloating, diarrhea and discomfort, occur when the undigested lactose reaches the colon (Ingram et 

al. 2009). The symptoms are alleviated on a low-lactose diet (Di Constanzo & Berni Canani 2018).  

Whether the decline of lactase expression occurs after infancy, is determined by genetic factors (Di 

Constanzo & Berni Canani 2018). Several variants are known to affect the ability to digest lactose 

in adulthood, and a single nucleotide polymorphism (SNP) C/T-13910, located upstream from the 

lactase gene is the most prevalent, primarily in the European population. The homozygous C/C-13910 

genotype is associated with lactase intolerance, whereas heterozygous or homozygous T/T-13910 

genotypes are linked to lactase persistence (Enattah et al. 2002).  

The C/T-13910 SNP is located in intron 13 of the MCM6 (minichromosome maintenance complex 

component 6) gene (Enattah et al. 2002) (Fig. 6). This gene area functions as an enhancer to the 

lactase gene, and binding of transcription factors to the enhancer provokes transcription of the gene 

it targets. OCT-1, a transcription factor, has been found to bind strongly to the T-13910 variant and 

consequently increase lactase promoter activity (Lewinsky et al. 2005). Additionally, the SNP 

variant affects the DNA methylation patterns in both lactase gene enhancer and promoter areas: 

C/C-13910 genotype is linked to a higher and T/T-13910 genotype to a lower level of methylation 

(Leseva et al. 2018).  
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Fig. 6. The locus for C/T-13910 SNP underlying primary lactose deficiency. Adapted from 

reference (Enattah et al. 2002).  

 

In the human lactase gene, a SNP rs2164210 is associated with neuroblastoma (Maris et al. 2008). 

Neuroblastoma is a malignancy affecting adrenal medulla and paravertebral sympathetic ganglia in 

early developmental stages (Tsubota & Kadomatsu 2018). 
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2.2   Zebrafish as a model organism 

 

2.2.1 Zebrafish in stress research 

The zebrafish is widely used in medical research and it is considered as one of the classical model 

organisms for vertebrates. Besides their original application in developmental biology, zebrafish are 

now used to study pathological mechanisms in several fields of science. There are many advantages 

to using a zebrafish model – for example, they are cost-efficient, they develop quickly, and the 

zebrafish genome is fully sequenced and easily accessible (Kari et al. 2007).   

Studies on pharmacological agents affecting the nervous system show similar effects in zebrafish 

and humans, which points that these species might share analogous neural networks (Lieschke & 

Currie 2007). The adult zebrafish brain contains all the major subdivisions found in human brain: 

the forebrain, the midbrain and the hindbrain (Vaz et al. 2019) (Fig. 7). There are also many 

homologous smaller structures, for example the hippocampus, the cerebellum, and the 

diencephalon, which compose of the same cell types and are formed through similar differentiation 

pathways as in humans. Familiar neurotransmitters, such as serotonin, histamine, and dopamine, are 

found in both mammal and zebrafish brain (Panula et al. 2006). These similarities support the use of 

zebrafish as a model organism in neuroscientific research.  

 

 

Fig. 7. The organization of the adult zebrafish brain. Yellow= forebrain, blue= midbrain, 

orange= hindbrain. HA= habenula, Hyp= hypothalamus, OB= olfactory bulb, ON= optic nerve, 

PB= pineal body, Teg= tegmentum. Adapted from reference (Vaz et al. 2019).   
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Stress response, the physiological response of the body to a threat, is similar in fish and other 

vertebrates (Schreck et al. 2016). It is mediated by hormonal systems, which produce 

corticosteroids and catecholamines that regulate the secondary stress response. The hormonal 

system in zebrafish responsible for catecholamine secretion is the hypothalamic-sympathetic-

chromaffin cell axis (Wendelaar Bonga 1997). The chromaffin cells are located in the head kidney 

and are homologous to mammalian adrenal medulla. Corticosteroids – or cortisol in fish, on the 

other hand, are produced by the hypothalamus-pituitary-interrenal (HPI) axis, which is similar to 

mammalian hypothalamus-pituitary-adrenal (HPA) axis (Fig. 8). The interrenal cortisol-producing 

cells do not form a gland but are rather spread within the head kidney.  

 

   

Fig. 8. The similar organization of the mammal HPA and fish HPI axis. Adapted from 

reference (Steenbergen et al. 2011).  

 

Laura Sokka
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2.2.2 Assessing stress in zebrafish  

Besides sharing neuroanatomical structures and physiological stress mechanisms with mammals, 

zebrafish also display anxiety-like or depressive-like behaviors. These behaviors can be interpreted 

as stress-related.  

A widely used behavioral paradigm, the novel tank diving test, is applied to assess how the fish 

responds to an unfamiliar environment (Buccafusco 2009) (Fig. 9). Typically, at first the fish dives 

to the bottom of the tank and remains there for a while, until gradually moving towards the upper 

part. The tendency to dwell on the bottom of the tank is considered anxiety-like behavior, which is 

induced by the stress generated by the novel environment (Levin et al. 2007). Different factors can 

be measured: the latency to enter the top part of the tank, the amount of these entries, the time spent 

in the top part as well as the number of erratic movements, which is considered an anxiety-like trait 

(Egan et al. 2009). 

 

 

Fig. 9. The novel tank diving test. Adapted from reference (Egan et al. 2009).  

 

Another behavioral effect found in zebrafish after stress is related to their interactions with their 

shoal mates. In a 2008 study by Speedie and Gerlai, they found a significant decrease in the 
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distance between any two fish in a shoal when exposed to a zebrafish-derived alarm substance. In 

the same study, the alarm substance exposure also caused freezing, which is a fear response. 

The stress experience in zebrafish can also be assessed through cortisol level measurements. Being 

exposed to a stressor increases the levels of whole-body cortisol (Ramsay et al. 2009). Combining 

behavioral testing with cortisol level measurements can provide a more accurate assessment of the 

stress response in zebrafish.  
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3   AIMS 

 

In this study, my aim was to investigate the expression levels of lactase in selected zebrafish tissues. 

The more specific aims were the following: 

1. To show that both lactase mRNA and protein are expressed in zebrafish tissues. 

2. To determine whether the two zebrafish lactase transcripts, lct-201 and lct-202, have different 

expression patterns. 

3. To investigate the effect of both physiological and psychosocial stress on lactase expression in 

zebrafish. 
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4   MATERIALS AND METHODS 

 

4.1   Animal experiments 

 

4.1.1 Animals 

Adult male zebrafish from two different lines maintained by Pertti Panula’s group were used in 

these experiments. The wild type (WT) line (Turku) was used in real-time polymerase chain 

reaction (q-RT-PCR) experiments to determine baseline and post-stress lactase expression levels, 

and in the lactase activity assay to measure lactase enzymatic activity. Samples obtained from 

homozygous lactase-knockout (lct-KO) zebrafish were used in q-RT-PCR primer validation and in 

a substrate-specificity test for the lactase activity assay. The lct-KO line – with an 11 bp frameshift 

mutation causing a premature stop codon in exon 8 – was generated with CRISPR-Cas9 technology, 

and fish from F3 generation were used in experiments.  

 

4.1.2 Stress models 

Netting handling was chosen as a model for physiological stress. The fish were kept in a net in 

shallow water for three minutes, followed by a three minute rest; this was then repeated three times, 

after which the fish were dissected for brain and whole intestines.  

For psychosocial stress, a chronic social defeat model was adopted (Fig. 10). In this protocol, the 

experimental fish is repeatedly placed in the same tank with an unfamiliar larger-sized aggressor 

fish – this repeated social subordination is a psychosocial stressor. An experimental fish was placed 

in a tank inhabited by an aggressor fish, and physical interaction was allowed for 15 min. The 

conflicting fish were then separated by a transparent partition, providing visual but no physical 

contact for 24 h. On the next day, the experimental fish was placed in a tank with a new aggressor, 

and the subordination and co-habitation were repeated. This procedure was carried on for ten 

consecutive days, after which the fish were dissected for brain and intestines.  
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Fig. 10. The zebrafish chronic social defeat stress protocol. Adapted from source (Chen, 

unpublished). 

 

All the fish that underwent either of the stress procedures were 5-month-old Turku WTs. Each 

experimental fish was paired with a sibling, that did not undergo a stress procedure and were 

therefore used as controls. The aggressor fish in the chronic social defeat were 15-month-old Turku 

WTs.  

All of the animal experiments and dissections were performed by members of the Panula group. I 

received zebrafish tissue samples for the lactase activity assay and complementary DNA (cDNA) 

samples for the q-RT-PCR experiments.  
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4.2    Quantification of lactase expression  

 

4.2.1 Primer design 

q-RT-PCR was carried out to measure lactase expression levels in five different zebrafish tissues. I 

designed three primer pairs for this purpose using NCBI primer design tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Two of the pairs were designed to amplify one 

of the isoforms exclusively (lct-201 and lct-202), and the third to amplify both of them 

simultaneously (lct-20X) (Table 2). Rpl13a was selected as a housekeeper gene to be used for the 

normalization of the expression levels in the first experiment, where lactase expression levels in 

different tissues were measured. For this, I used previously published primers (Xu et al. 2016). 

Additional housekeeper gene, b-actin1 (F: CGAGCAGGAGATGGGAACC, R: 

CAACGGAAACGCTCATTG), was used for the quantification of lactase expression after stress. 

 

Table 2. The zebrafish lactase -targeting q-RT-PCR primer sequences.  

 

4.2.2 cDNA samples 

I received cDNA samples from the Panula group from the Zebrafish Unit in the University of 

Helsinki. Approximately 1 µg of RNA was used for the synthesis of each cDNA reaction. 

 

4.2.3 q-RT-PCR 

cDNA samples were amplified with 2.5 µM primers in CFX384 Real-Time PCR cycler (Bio-Rad 

Laboratories, Hercules, CA, USA) using iQ SYBR Green Supermix (Bio-Rad Laboratories, 

Transcript Forward sequence (5’→3’) Reverse sequence (5’→3’) 
lct-201 ACTGTAGAGGTCCACTGCCA TGGGACTGGAGAGCATTTTGAA
lct-202 AAAAATGCTCTCCAGTCCCA GAGGGACTTTTGACCGCTGA
lct-20X TGACACTCTGCGTGTTGACT AAGGCACTTGAGATGGAGGC
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Hercules, CA, USA). Each reaction was 10 µl in total, with 2 µl of cDNA template diluted in Milli-

Q® water (Table 3). Each sample was run in triplicate and with a standard curve (Table 4) present 

on each assay plate. The q-RT-PCR program had 40 amplification cycles, and a melt phase to 

determine the melting temperature of each amplification product (Table 5).   

 

Table 3. The cDNA dilutions used for q-RT-PCR.   

 

Table 4. The cDNA concentration for each standard dilution in ng/µl.  

 

lct-201 lct-202 lct-20X rpl13a b-actin1
Forebrain 1:40 1:10 1:40 1:100
Mid-hindbrain 1:40 1:10 1:40 1:100
Whole brain 1:125 1:125 1:250 1:250
Lower intestine 1:200 1:100 1:100 1:200
Upper intestine 1:100 1:100 1:100 1:300
Whole intestine 1:100 1:100 1:100 1:150 1:150
Muscle 1:20 1:10 1:20 1:200

lct-201 lct-202 lct-20X rpl13a

Standard 1 0.625 0.625 0.625 0.625

Standard 2 0.342 0.342 0.342 0.342

Standard 3 0.187 0.187 0.187 0.187

Standard 4 0.102 0.102 0.102 0.102

Standard 5 0.056 0.056 0.056 0.056

Standard 6  0.030  0.030  0.030  0.030

Standard 7 0.017 0.017 0.017 0.017

Standard 8 0.009

Standard 9 0.005

Standard 10 0.003 



 

22 

 

Table 5. The q-RT-PCR program. Steps 2–4 were repeated 40 times. Steps 6 and 7 represent the 

melt curve, where the temperature was increased 0.5 °C every five seconds. 

 

4.2.4 Statistical analysis 

Starting quantity (SQ) values for each sample were obtained from CFX Maestro v3.1.1517.0823 

software (Bio-Rad Laboratories, Hercules, CA, USA) and normalized to corresponding 

housekeeper SQ values. For the quantification of lactase expression after stress, mean of the SQ 

values of both housekeepers were calculated and used for normalization of the lactase SQ values. 

All the values were also corrected for dilution factors. Statistical analysis was conducted with 

GraphPad Prism v8.0.0 for Windows (GraphPad Software, San Diego, CA, USA). Kruskal-Wallis 

test and Dunn’s post hoc test were performed to detect expression level differences in different 

tissues. For comparing lactase expression levels in stressed (str) and control (ctrl) fish tissues, 

Mann-Whitney U test was conducted. Results were plotted with GraphPad Prism v8.0.0 for 

Windows as bar graphs of SQ mean ± standard error of mean (SEM) with individual values as dots. 

The difference between group means was considered significant when p value was less than 0.05 (* 

< 0.05, ** < 0.01, *** < 0.001). 

 

 

 

 

Step Temperature (℃) Duration (s)
1 95 180
2 95 10
3 55 30
4 72 30
5 95 10
6 65 5
7 95 5
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4.3   Lactase activity assessment  

 

4.3.1 Tissue samples 

Frozen brain and intestines from sixteen 5-month-old Turku WT fish were used for lactase activity 

assessment. Four whole brains and two whole intestines were pooled together to maximize the 

protein concentration of the homogenates, totaling four replicates per tissue type.   

 

4.3.2 Sample preparation 

The samples were transferred from dry ice to Precellys® tubes containing cold 0.03 % Triton™ X-

100 (Sigma Aldrich, Saint Louis, MO, USA) in phosphate-buffered saline (PBS) (Biotop Oy, 

Turku, Finland) with a cOmplete™ Protease Inhibitor Cocktail tablet (Hoffmann-La Roche, Basel, 

Switzerland). The amount of 0.03 % Triton™ X-100 in PBS was adjusted according to the amount 

of tissue per sample, with 400 µl used for brain and 600 µl for intestine samples. The samples were 

then homogenized in Precellys® 24 Tissue Homogenizer (Bertin Instruments, Montigny-le-

Bretonneux, France) at 2000 rpm for 2x30 s with a 10 s break in between. The tubes were then 

centrifuged at 10000 rpm for 10 min at +4 °C to reduce the amount of foam formed in the 

homogenization process. Homogenates were then transferred to microcentrifuge tubes and placed 

on ice.  

 

4.3.3 Measuring protein concentration 

Bradford assay was performed to measure the amount of protein present in each homogenate. Two 

hundred and fifty microliters of Bradford Reagent (Sigma Aldrich, Saint Louis, MO, USA) brought 

to room temperature was pipetted to each well of a transparent 96-well plate. Five microliters of 

each standard dilution made from bovine serum albumin (BSA) (Sigma Aldrich, Saint Louis, MO, 

USA) in PBS (Table 6), along with 5 µl of the protein homogenate samples diluted 1:10 in PBS 

were pipetted in triplicate to the plate. The plate was then incubated at room temperature on a 
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shaker at 300 rpm for 5 min, followed by absorbance measurement with Hidex Sense microplate 

reader (Hidex, Turku, Finland) at 595 nm.    

 

Table 6. The standard dilutions in Bradford assay as µg/µl.  

 

 

The standard curve for the absorbance measurements was formed using Microsoft Excel® from 

Microsoft Office Professional Plus 2016 for Windows (Microsoft, Albuquerque, New Mexico, 

USA). Mean absorbance value for each triplicate was calculated and normalized by reducing the 

value of Standard 1 (blank). Standard curve was plotted, and the protein concentration of each 

homogenate was calculated using the standard curve equation.  

 

4.3.4 Lactase activity assay 

For the lactase activity assay, 1 µg/µl dilutions of each protein homogenate in PBS were prepared 

according to the protein concentration calculations. Total reaction volume of protein dilutions and 

substrate per well was 150 µl, with substrate concentration of 10 µM. The diluted homogenate was 

pipetted in triplicate on a black-wall 96-well plate with a transparent bottom. Triplicates of each 

standard dilution (Table 7) and a negative control (only PBS) were also pipetted to the plate. The 

standard dilutions were prepared using Pirkka lactase enzyme tablets (Vitabalans Oy, Hämeenlinna, 

Finland) produced in Aspergillus oryzae – with one tablet containing 4500 Food chemical codex 

(FCC) units. The substrate, fluorescein di(β-D-galactopyranoside) (Santa Cruz Biotechnology, 

Dallas, TX, USA) dissolved in dimethyl sulfoxide (DMSO) (Sigma Aldrich, Saint Louis, MO, 

USA), was added to each well to induce a fluorescent reaction, which was then measured with 

Protein concentration
Standard 1 0
Standard 2 0.25
Standard 3 0.5
Standard 4 1
Standard 5 1.4
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Hidex Sense microplate reader at 485 nm excitation and 520 nm emission as a continuous 

measurement every 5 min for 30 min in total.   

 

Table 7. Standard dilutions for the lactase activity assay as FCC unit/µl. 

  

 

4.3.5 Statistical analysis 

The standard curve for the fluorescence measurements was formed using Microsoft Excel® for 

Windows. Mean relative fluorescence unit (RFU) value for each triplicate was calculated and 

normalized by reducing the value of Standard 0 (blank). Standard curve was plotted, and lactase 

activity value for each sample was calculated using the standard curve equation.  

Graphic demonstration of the standard curve containing samples as dots was created using 

GraphPad Prism v8.0.0 for Windows.  

Statistical analysis was performed with GraphPad Prism v8.0.0 for Windows. Mann-Whitney U test 

was applied to compare the means of lactase activity per mg of protein in the brain and intestines. 

Results were plotted as bar graphs of lactase activity (LA) as FCC units/mg of protein ± SEM with 

individual values as dots. The difference between group means was considered significant when p 

value was less than 0.05 (* < 0.05, ** < 0.01, *** < 0.001). 

  

 

FCC unit concentration
Standard 0 0
Standard 1 7.81x10-6

Standard 2 1.56x10-5

Standard 3 3.13x10-5

Standard 4 6.25x10-5

Standard 5 1.25x10-4

Standard 6 2.50x10-4
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5   RESULTS 

 

5.1   Quantification of lactase expression in different tissues  

 

5.1.1 Expression levels in adult zebrafish tissues 

The expression levels of the two lactase transcripts were studied in five different zebrafish tissues: 

the forebrain, the mid-hindbrain, the upper and lower intestines and the muscle.   

The primary transcript, lct-201, was expressed in all of the aforementioned tissues (Fig. 11a). The 

expression level was highest in both of the intestine fractions, and lowest in muscle. The level of 

expression of lct-201 in the muscle was only 21 % of that in the lower intestine (p= 0.002).  

The secondary transcript, lct-202, was only expressed in the intestine (Fig. 11b). No expression in 

either of the brain areas or muscle was detected, hence all comparisons between either of the 

intestine fractions and other tissues reached statistical significance. No significant difference 

between the expression levels in the lower and higher intestines was observed. 

The expression pattern for the lct-20X primer pair resembled that of lct-201, however, the relative 

expression in both intestine fractions was higher compared to other tissues (Fig. 11c). The lct-20X 

expression level in the muscle was 11 % of that in the lower intestine (p= 0.004) and 12 % of that in 

the upper intestine (p= 0.003).  
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Fig. 11. Lct transcript expression levels in adult zebrafish tissues. Bar graphs showing 

normalized expression levels of the lct transcripts in five tissues. Kruskal-Wallis test (a) 14.85, p= 

0.005; b) 26.7, p< 0.0001; c) 17.49, p= 0.0015) and Dunn’s post hoc were calculated for each 

transcript (n=6). p values: * < 0.05, ** < 0.01. SQ mean ± SEM is shown.    

c) 
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5.2   Assessment of lactase activity in the brain 

 

To confirm the presence of lactase in the zebrafish whole brain and intestines at a protein level, 

lactase activity assay was performed.  

The amount of protein present in each sample was measured using the Bradford assay. Protein 

concentration in each homogenate sample was calculated using the standard curve equation. 

Intestine protein concentrations were on average 47 % of those in the brain. 1 µg/µl protein 

dilutions were used in the lactase activity assay, to ensure even amounts of protein in each reaction. 

Fluorescence signal was detected in all tissue samples. The lactase activity values for each sample 

were calculated using the standard curve equation. Lactase activity was low in the brain, but higher 

in the intestine – with the average lactase activity in the brain being 14 % of that in the intestines 

(Fig. 12).  

 

Fig. 12. Lactase activity in the zebrafish brain and intestines. Lactase activity calculated as FCC 

units per mg of protein. Difference in mean activity between the brain and intestines was compared 

using Mann-Whitney U test (p= 0.029). Lactase activity (LA) mean ± SEM is shown. 
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5.3   Quantification of lactase expression in the brain after stress 

 

5.3.1 Lct expression after physiological stress 

To study whether stress has an effect on lactase expression in the zebrafish, the expression levels in 

the brain and whole intestines of both stressed and control fish were measured. In this first round of 

experiments, the focus was on physiological stress – in this case, netting handling. 

In lct-201, the primary gene product, there were no significant differences in expression between 

the stressed and control groups in either the brain (Fig. 13a) or the intestines (Fig. 13b).  

For lct-202, the secondary transcript, the mean lactase expression was not significantly different 

between the stressed and control individuals in the intestines (Fig. 13c).   

In the case of lct-20X, there was no stress effect on the lactase expression in the brain (Fig. 13d), 

whereas in the intestines, the expression level was higher in the stressed fish (Fig. 13e). Lct-20X 

was expressed at approximately 39 % higher level in the stressed group in comparison to the 

controls in the intestines (p= 0.018).  
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Fig. 13. Lct transcript expression levels in adult zebrafish brain and intestines after netting 

handling stress. Bar graphs showing normalized expression levels of the lct transcripts in the brain 

and intestines of stressed and control fish. Stress effect was evaluated using Mann-Whitney U test 

(a) p= 0.26, b) p= 0.26, c) p= 0.10, d) p= 0.073, e) p= 0.018) (n=7). p values: * < 0.05. SQ mean ± 

SEM is shown.     

 

 

a) b) c) 

e) d) 
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5.3.2 Lct expression after psychosocial stress   

To further investigate the effect of stress on lactase expression in adult zebrafish, another stress 

model was applied. The expression levels of lactase in the brain and intestines of fish that 

underwent a chronic social defeat stress -treatment and untreated control fish were measured and 

compared. 

In the brain, lct-201 was evenly expressed between the stressed and control fish (Fig. 14a). In the 

intestines, no difference in expression was detected either (Fig. 14b).  

Lct-202, the intestine-specific transcript, showed no stress effect in its expression levels (Fig. 14c).  

Lct-20X displayed no effect of psychosocial stress in its expression in the brain (Fig. 14d). On the 

other hand, in the intestine fraction, lct-20X was expressed at a higher level in the stressed group in 

comparison to the controls (Fig. 14e). The expression level was approximately 55 % higher in the 

stressed fish compared to the controls in this tissue (p= 0.050).   
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Fig. 14. Lct transcript expression levels in adult zebrafish brain and intestines after chronic 

social defeat stress. Bar graphs showing normalized expression levels of the lct transcripts in the 

brain and intestines of stressed and control fish. Stress effect was evaluated using Mann-Whitney U 

test (a) p= 0.96, b) p= 0.33, c) p= 0.65, d) p= 0.38, e) p= 0.050) (n=8). p values: * < 0.05. SQ mean 

± SEM is shown.     

 

 

a) b) c) 

d) e) 
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6   DISCUSSION 

 

This study was able to prove, that the two lactase transcripts, lct-201 and lct-202, are both in fact 

expressed in WT zebrafish tissues. They show a distinctive expression profile, with lct-201 being 

the only transcript expressed in the brain, whereas lct-202 expression was limited to intestines in the 

tissues examined in this study. Lct-202 did show some amplification in other tissues, however, 

based on the melt peak (Fig. S1), this product was unspecific. Therefore, the conclusion was made 

that this transcript is not expressed in the brain or in the muscle. The different patterns of expression 

suggest a separate biological function for the transcripts. Interestingly, the human lactase gene also 

has two transcripts, however, one of them is discarded through nonsense-mediated decay and only 

the other is coding for protein (Yates et al. 2020). The protein product of the primary human 

transcript contains four enzymatically active sites, of which three are coded by exons that are shared 

between the two transcripts (UniProt Consortium 2021). Whether the functions performed by the 

two different transcripts in zebrafish are executed by the one protein-coding human homologue 

remains unclear. 

Of the five zebrafish tissues examined in this study – the forebrain, the mid-hindbrain, the upper 

and lower intestines and the muscle – the highest level of lactase expression was found in both of 

the intestine fractions. A similar pattern of intestine-focused expression is present in humans, since 

lactase is an important digestive enzyme needed for the proper digestion of milk and dairy products. 

Zebrafish diet, however, does not contain the milk sugar lactose, which is the primary substrate for 

lactase. In fact, the suggested diet for adult zebrafish is mostly protein – not carbohydrate-based 

(Westerfield 2007). Therefore, the substrate for zebrafish lactase is not necessarily a sugar 

compound that would be structurally similar to lactose. This raises the question of other – yet to be 

discovered – targets of enzymatic activity for lactase in zebrafish. In the zebrafish brain, there was 

no difference in lactase expression between the forebrain and the mid-hindbrain. One explanation 

for this could be the rather rough sectioning of the brain due to its small size. According to in situ 

hybridization studies, lactase expression in the mouse brain is concentrated in the hippocampal 

formation (Lein et al. 2007). More specifically, lactase seems to be expressed only by the neuronal 

cells of the dentate gyrus, a brain structure associated with adult-type neurogenesis (Purves et al. 

2012), Whether the function, or the substrate, of lactase is the same in the brain and intestines calls 

for further investigation.  
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In addition to the findings regarding gene expression, I was able to show that lactase is also 

translated to protein in the zebrafish tissues. The higher lactase activity levels detected in the 

intestines compared to the brain are in line with the gene expression level difference discovered in 

these tissues. To ensure that the breakdown of the substrate was indeed specific to lactase, I 

performed a test with samples from lct-KO fish line. In this experiment, I detected substrate 

breakdown in the KO brain and intestines as well. This enzymatic activity, however, was only about 

third in the KO intestines compared to WT (t-test, p< 0.002). The likely explanation for this is, that 

there are other hydrolases present in the tissue capable of breaking down the substrate. The 

statistically significant difference in enzymatic activity between KO and WT tissue does 

nonetheless suggest, that this method is proficient in detecting functional lactase protein. For future 

experiments, a competitive inhibitor – namely lactose – could be applied to the lactase activity 

assay reactions to determine the level of unspecific enzymatic activity: the fluorescence signal 

produced by the reaction between lactase and the substrate should diminish when lactose is 

introduced – the remaining signal would represent the amount of unspecific activity.     

The effect of stress on lactase expression remains inconclusive in this study. Lactase expression was 

indeed increased as a result of both physiological and psychosocial stress in the zebrafish intestine 

with the lct-20X primer pair targeting both of the transcripts. However, no stress effect was detected 

in the brain with lct-20X. Lct-201 and lct-202 when examined separately, did not display lactase 

expression differences between stressed and control animals in either the brain or the intestines, 

regardless of the stress model. These findings are inadequate to prove that lactase is upregulated in 

stressed zebrafish in comparison to controls. However, the results gained from these experiments do 

not oppose the possible connection between stress and lactase expression either.  

One of the challenging aspects of this study is the genetic heterogeneity in zebrafish. Unlike with 

mice, for which it is relatively easy to obtain inbred individuals, zebrafish bred for experimental 

purposes are not genetically homogenous. Indeed, it has been shown that inbreeding in zebrafish 

leads to a general decline in fitness (Monson & Sadler 2010), and therefore should be avoided. The 

large variation observed in lactase expression levels in the control fish from the stress experiments 

might be due to this heterogeneity. The small sample size in this study is sensitive to the effect of 

individual outliers on the group mean. Increasing the number of samples per group could reduce the 

variance in expression levels.  

Another obstacle I encountered during the experimental part of this thesis was the uneven 

expression of housekeeper genes in the q-RT-PCRs concerning the effect of stress on lactase levels. 
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Rpl13a, which was chosen as a housekeeper due to its relatively stable expression between different 

tissues in the first round of experiments, was not evenly expressed within the brain and intestines in 

the experiments on stressed and control fish (SQ mean= 1.15, stdev= 0.75). Because this problem 

was present in both stressed and control group, stress is not the explanatory factor. To overcome 

this issue, I also carried out the q-RT-PCRs with another housekeeper gene, b-actin1. 

Unfortunately, this did not yield better results: b-actin1 was also uneven in its expression (SQ 

mean= 1.31, stdev= 1.19). I compared the expression levels of both housekeeper genes for each 

sample and there was a statistically significant positive correlation (Pearson’s r= 0.70, p=     

2.87x10-8). In order to determine whether the expression level variance was caused by differences 

in cDNA synthesis efficacy, I measured the cDNA concentrations and compared those to the mean 

SQ values of both housekeepers. I found no correlation between the cDNA concentration and the 

expression level of either rpl13a (Pearson’s r= -0.19, p= 0.35) or b-actin1 (Pearson’s r= 0.26, p= 

0.19). From these analyses, I could deduce that differences in cDNA concentration between 

samples were not the cause of unstable housekeeper expression levels. To minimize the risk of 

having distorted lactase expression values due to a non-optimal housekeeper gene, the mean 

expression value of rpl13a and b-actin1 was used for normalization. This approach is in fact 

supported as it reduces the normalization error caused by using only one housekeeper gene 

(Vandesompele et al. 2002).   

One of the strenghts of this study is its novelty. To this day, there are no publications regarding the 

functionality of the zebrafish lactase gene – let alone its connection to stress. The pathway through 

which stress could affect lactase expression remains a question, although some suggestive 

connections have been found. Several studies have linked cortisol to increased lactase expression in 

intestinal cells both in vivo (Sangild et al. 1995, Chaudhry et al. 2008) and in vitro (Hauri et al. 

1994), however, this effect is not consistent throughout the field (Andrés et al. 1984, Elnif et al. 

2006). Lactose breakdown product, galactose, is a component of galactocerebrosides, which are 

glycosphingolipids enriched in myelin (Coelho et al. 2015). Considering that stress affects myelin 

thickness – as demonstrated by Laine et al. from our group in 2018 – altered lactase expression as a 

result of stress might be linked to myelin synthesis through galactose metabolism. Glucose, on the 

other hand, is associated to stress in a very straightforward manner: blood glucose levels are 

increased as a part of the fight-or-flight response. Thus, changes in lactase expression might be due 

to the increased need for lactose breakdown products. Unfortunately, this does not explain the 

phenomenon in fish.     
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The methods applied in this study are well established and generally reliable, which makes it a good 

reference for future studies. One approach to further investigate the relationship between lactase 

and stress is to compare the lactase activity levels in stressed and control fish. Another interesting 

future prospect is conducting behavioral experiments on lct-KO fish. This would demonstrate 

whether lactase has a complex behavioral function in zebrafish. Especially experiments measuring 

anxiety-like behavior, such as novel tank diving test, would hopefully shed light on the role of 

lactase in the brain.  

All in all, this study suggests that lactase is expressed in the zebrafish brain, where it might have a 

functionality that is unique to the central nervous system. A clear connection between stress and 

lactase expression was not established, although the results offer a glimpse of hope for future 

studies regarding this topic. A great deal is yet to be discovered on the lactase gene and its function 

in zebrafish. The most important aspect, however, is how these results will be translated to humans. 

Whether research on lactase experiences a renaissance as the next hot topic in neuroscience after 

decades of only being associated with unpleasant intestinal problems, remains to be seen.          
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9   APPENDIX 

 

9.1 Supplemental figures 

 

Fig. S1. The melt peak of lct-202. The actual melt peak formed by standard (light green) and 

intestine samples (dark green), with the incoherent curve consisting of the brain and muscle samples 

next to it (also dark green). Blue and red indicate no reverse transcriptase and no template control, 

respectively. 

 


