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Géza Meszéna
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I want to particularly thank Éva Kisdi for teaching me theories in mathe-
matical biology, whose vast knowledge and rigorous attitude always inspire me.
Her encouragement and support in academic communication and organizing
seminars have enabled me to grow up fast in the past year.

I am sincerely grateful to Tuomas Hytönen for being my coordinating pro-
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Abstract

This article-based dissertation aims to understand by means of mathematical
models how organisms evolutionarily respond to fluctuations in the environment.
It uses the approach of adaptive dynamics to study the long-term evolution of
phenotypic strategies in an environment that fluctuates in time because of biotic
interactions and/or external factors. The dissertation demonstrates how this
approach can reveal clear-cut explanations for complex environment-phenotype
relationships by one general method-oriented article and two case studies in two
additional articles.

In the first article, I show that under the standard assumptions of adaptive
dynamics, in particular mutation-limited evolution and small mutation steps,
the generic dynamics of the resident-invader population in fluctuating environ-
ments can be fully characterized in terms of the behaviour near the boundaries
of population state space, which in turn can be determined by the invasion crite-
ria. This generalizes previous results for unstructured populations in a constant
environment, which is important because it justifies the use and interpretation
of various methods in the theory of adaptive dynamics for a significantly larger
class of ecological situations that include fluctuating environments and struc-
tured populations.

The two case studies are applications of the classification of invasion out-
comes to explore the long-term evolutionary consequences of many successive
invasion events. In the first case study, I investigate the evolution of the irre-
versible transition from a free-swimming state to an immobile sessile state as
seen in many aquatic invertebrates. To this end, I study the adaptive dynamics
of the settling rate of a hypothetical microorganism onto the wall of a chemostat
with a fluctuating nutrient availability. The results show that different dilution
rates and spatial competition mechanisms, as well as different frequencies of
the nutrient fluctuations, have qualitatively different effects on the evolution of
the settling rate as well as on species diversity. The model generates several
hypotheses for further empirical studies.

In the second case study, I investigate the evolution of the colonization rate in
an extended competition-colonization model with ownership effects and stochas-
tically varying mortality rate. I find that the strength of the trade-off, owner-
ship effect and fluctuation intensity all have a non-monotonic effect on the emer-
gence of species diversity via evolutionary branching. In particular, intermediate
disturbance—as measured by the fluctuation intensity of the mortality rate—
promotes evolutionary branching and hence the emergence of polymorphisms.
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This provides new evidence for the intermediate disturbance hypothesis. I also
find that there can be multiple evolutionary attractors for polymorphic popu-
lations, each with its own basin of attraction. Consequently, random mutation-
induced transition of coevolutionary trajectories between neighbouring basins
of attraction makes the long-term evolutionary outcome uncertain.

By means of these examples, the dissertation demonstrates that the approach
of adaptive dynamics is a powerful tool for untangling the connection between
environmental changes and adaptive strategies.
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Chapter 1

Introduction

Organisms exhibit diverse phenotypic strategies for adapting to fluctuating en-
vironments (Kussell and Leibler 2005). Individual strategies can be (i) morpho-
logical (outward appearance such as shape, structure or size as well as internal
form such as bones and organs), (ii) physiological (body chemistry such as diges-
tion and hormonal regulation) or (iii) behavioural (specified by individual states
and state transitions). The environment of an individual is everything that af-
fects its behaviour. This usually includes abiotic factors such as the weather
but also all individuals with which it interacts. The origin of environmental
fluctuations thus may be purely demographic (i.e., stochastic fluctuations due
to small population size, or cycles or chaos due to population interactions), or
they may be the result of stochastically varying factors of the physical envi-
ronment (e.g., temperature, humidity or pollution) (Lande et al. 2003). The
dissertation considers fluctuations due to population interactions and fluctua-
tions in the physical environment, but it does not consider fluctuations due to
small population size.

In a stochastically and hence unpredictably varying environment, individu-
als can reduce the impact of unfavourable conditions for instance by spreading
germination in time using a soil seed bank (Cohen 1966; Venable 2007), spread-
ing reproduction in time as opposed to a single reproductive burst (Cunnington
and Brooks 1996; Janzen et al. 2000), or spreading out breeding efforts in space
and time by long-distance migrations (Holland et al. 2006; Dingle 2014). This
way of coping is called the bet hedging principle (see, e.g., Seger and Brockmann
1987; Philippi and Seger 1989; Olofsson et al. 2009; Simons 2011; Mayer et al.
2017; Xue et al. 2019).
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In periodic and hence predictable environments, different principles may
apply such as conditional differentiation (also called temporal niche separation)
where a strategy specializes on a particular phase of the environmental cycle.
For instance, some desert plants are more successful during wet years while
others are more successful during dry years (Angert et al. 2009), or being active
during the good times while being inactive during the bad times such as day-
night cycle in the desert and summer-winter cycle in the (sub-)arctic (Holzapfel
2008; Hairston and Fox 2013). Conditional differentiation promotes coexistence
of different strategies specializing on different parts of the environmental cycle.

The general aim of the dissertation is to understand how organisms evolu-
tionarily respond to fluctuating environments (stochastic or otherwise) in terms
of general principles and using mathematical models.

Evolution is the ongoing change in heritable strategies of the individuals of
a biological population over successive generations due to natural selection and
random mutation. Natural selection is just population dynamics, namely, the
elimination of individuals whose strategies that make them less competitive or
more vulnerable to predation or disease than others. Random mutation is the
process of the generation of new heritable strategies through alterations in the
genome. Natural selection and random mutation are antagonistic processes in
the sense that one reduces variation while the other increases variation. The
main questions of evolutionary studies are how these two processes shape the
long-term strategy dynamics and how it connects to genetic and ecological prin-
ciples.

There are various modelling approaches to study evolutionary processes,
each with its own focus, merits and limitations. For instance, (i) Population
Genetics studies the dynamics of allele frequencies and genotypes using models
with explicit genetics (Crow and Kimura 1970). In this way, we gain evolution-
ary insight in terms of fundamental genetic principles. However, the genetic
complexity of the models practically excludes the implementation of compli-
cated ecological interactions. (ii) Evolutionary Game Theory uses the theory
of games to study the evolutionary consequences of the costs and benefits of
different strategies (Maynard Smith 1982). In particular, it has much improved
our insight into the evolution of animal behaviour in situations of conflict of
interest. A notable limitation is its focus on evolutionary equilibria (i.e., evolu-
tionary stable strategies) and hence a disregard of evolutionary dynamics. (iii)
Adaptive Dynamics studies the gradual evolution of phenotypic strategies in
potentially complicated ecological systems, and explicitly links long-term evolu-
tion to population dynamics (Metz et al. 1992; Dieckmann and Law 1996; Metz
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et al. 1996; Geritz et al. 1997, 1998, 1999). Adaptive dynamics has given us an
understanding of various kinds of dynamical evolutionary phenomena such as
evolutionary branching, evolutionary cycles and extinction.

The dissertation focuses on adaptive dynamics. While the above is not an
exhaustive list of approaches, it puts adaptive dynamics in a wider context. I
mention evolutionary game theory, because adaptive dynamics can be seen as
its extension by including evolutionary dynamics. I mention also population
genetics, because it is almost the complement of adaptive dynamics: it con-
siders full genetic detail but almost completely ignores ecology, while adaptive
dynamics has ecology at its core but typically uses only the most basic genetic
mechanism, namely, clonal inheritance.

The dissertation contributes with new general results and gives compre-
hensive applications to two specific ecological-evolutionary problems. Adaptive
dynamics is a relatively new approach and is being used in a rapidly increasing
number of studies of ecological-evolutionary problems. However, there does not
yet exist a well-developed theory of adaptive dynamics for stochastically varying
populations and stochastic environments. Stochastic fluctuations are common
in nature and can have a significant effect on the ecological and evolutionary
dynamics of populations. For instance, fluctuation can promote coexistence
but also can cause extinction (Chesson and Warner 1981; Chesson 1986; Tul-
japurkar 1990; Holt et al. 1994; Benäım and Lobry 2016; Hening and Nguyen
2020), fluctuation crucially influences evolutionary fitness functions (Melbinger
and Vergassola 2015), and fluctuation often increases the dimension of the eco-
logical feedback environment (see Fig. 1) so that more species can coexist (Kisdi
and Geritz 2016). Consequently, it is important and necessary to extend the
approach of adaptive dynamics to take these fluctuations explicitly into account.

The dissertation consists of an introductory part and three scientific articles.
The first part provides a clear overview of the research content with minimal
emphasis on technicalities. The rest of this part is organized as follows. Chapter
2 presents the research questions, methods and results. Chapter 3 describes how
to make a stochastic population model. Chapter 4 briefly presents the approach
of adaptive dynamics used in the scientific articles. The second part, composed
of the scientific articles, serves as the main body of the dissertation.
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Chapter 2

Questions, methods and
summary

This chapter focusses on the research questions, the methods that have used to
address them, the main results obtained, and the new questions raised by the
research.

2.1 Research questions

Three of the central problems are addressed in the dissertation:

Q1: how do the strategies of the individuals that make up a population affect
the long-term population dynamics in a fluctuating environment?

Q2: what kind of mutants can invade (i.e., increase in population density) and
what will be the population dynamical consequences of such an invasion
event in terms of which strategies will survive and which will go extinct?

Q3: what will be the long-term evolutionary consequences of many successive
invasion events in terms of changes in the strategy composition and the
dynamical behaviour of the population?

These questions are closely related, and the answer to each provides support for
solving the next question.
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2.2 Models

Throughout the dissertation, I consider ecological systems that can be described
by the following system of equations.

dni(t)

dt
= F (xi, e(t), θ(t))ni(t), i = 1, · · · , k,

de1(t)

dt
= G1(e(t), θ(t)) +

∑

j

H1(xj , e(t), θ(t))nj(t),

e2(t) = G2(e(t), θ(t)) +
∑

j

H2(xj , e(t), θ(t))nj(t),

dθ(t)

dt
= A(θ(t)) +B(θ(t))

dW (t)

dt
.

(2.1a)

In (2.1a), population densities n1(t), · · · , nk(t) are elements of R`+ for all t ≥
0, where for ` ≥ 2 we have structured population. Strategies x1, · · · , xk are
elements of Rd with d ≥ 1. The environment (e(t), θ(t)) splits into two parts:
the part that both affects and is affected by the population densities is called
the ecological feedback environment and is denoted by e(t) ∈ E , the part that is
not affected by anything but that may affect the population densities as well as
the feedback environment is called the driver of the system and is denoted by
θ(t) ∈ Θ, where E and Θ are assumed to be subsets of normed vector spaces. The
feedback environment e(t) can include the population itself, other interacting
populations, and certain physical factors that both affect and are affected by
the population such as soil humidity. e1(t) and e2(t) describe different kinds of
feedback variables that some are given implicitly (by differential equations) and
others may give explicitly, which make up e(t) and have been demonstrated in
many specific models (e.g., Examples 1 and 2 shown in Article I).

Functions F , H1 and H2 describe the feedback between the environment and
the population living in (Fig. 1), where the impact of the environment (e(t), θ(t))
in the growth of the population of strategy xi is characterized by F (xi, e(t), θ(t)),
and where the impact of an individual with strategy xj in the environment
(e(t), θ(t)) is characterized by H1(xj , e(t), θ(t)) and H2(xj , e(t), θ(t)). The dy-
namics of virgin environment (i.e., the environment unaffected by the population
of x1, · · · , xk) are characterized by functions G1(e(t), θ(t)) and G2(e(t), θ(t)). To
describe the dynamics of θ(t), the stochastic differential equation used here is
not unique, other possible types can be found in Section 3.2.

Once researchers have a specific stochastic population model, they can im-
mediately rewrite it into the generic form (2.1a), which also is demonstrated in
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Fig. 1 Interaction between the resident and the feedback environment and the one-directional
impact on the invader, as illustrated by the author and used in Article I.

Article I. How does one make a stochastic population model? Chapter 3 will
illustrate the modelling approach for a population consisting of individuals with
given strategies and behaviours in a fluctuating environment.

(2.1a) defines a resident system that is assumed to be reached its dynamical
attractor (e.g., equilibrium state, periodic orbit or invariant probability mea-
sure) so that the population is non-growing and stochastically persistent. The
non-growing means the long-term zero growth. Stochastic persistence is de-
fined in the sense that the probability of a population being near extinction
is arbitrarily small (Schreiber et al. 2011; Benäım 2018, see also the detailed
explanation in Article I).

When an initially rare mutant m(t) with strategy y arrives, the population
dynamics of the mutant are given by

dm(t)

dt
= F (y, e(t), θ(t))m(t). (2.1b)

Fig. 1 illustrates the relationship of the resident system and the invader, where
the resident system determines the ecological environment of the invader and
hence affects the dynamics of invader, but the initial size of invader is too rare
to have negligible impact on the resident.

(2.1) is a generic form of models describing the dynamics of resident-invader
population in fluctuating environments, which is intuitive and interpretable in
biology and covers a large class of ecological communities in reality.
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2.3 Methods and main results

Article I solves questions Q1 and Q2 for the general system (2.1). Articles
II and III apply the results of Article I to answer question Q3 for two more
specific examples. Next, I will elaborate on how they contribute to addressing
these research questions.

Article I considers the resident-invader dynamics in fluctuating environments
when the invader and the resident have close but distinct strategies. The article
provides a complete classification of generic population dynamical outcomes of
an invasion event when the resident population in a given environment is non-
growing on the long-run and stochastically persistent. Central to the approach
is the series expansion of the model (2.1) with respect to the small strategy
difference and the analysis of a stochastic fast-slow system induced by time-
scale separation. The article shows that the resident-invader dynamics develops
inside a “tube” where the total size of the resident and invader population
varies fastly and is arbitrarily close to the former resident attractor (see also
Geritz et al. (2002) for the Tube theorem of adaptive dynamics), while the
relative size of the invader population as a fraction of the total population size
changes slowly (for the case of structured population, a proxy of the relative size
are needed in order to construct a purely stochastic fast-slow system, refer to
the supplementary material for details). Therefore, the classification of generic
population dynamical outcomes of an invasion event is based on the asymptotic
behaviour of the relative population size.

If the difference between the strategies of the resident and the mutant goes
to zero, then the slow dynamics of the relative population sizes becomes deter-
ministic and one dimensional in spite of population structure and environmental
fluctuations.

If the difference between the strategies of the resident and the mutant is
positive but sufficiently small and is denoted by ε, then there are only four
different generic possibilities for the slow dynamics of their relative population
sizes.

(i) If the mutant can invade a population of the resident, while under rever-
sion of roles the resident cannot invade a population of the mutant (e.g.,
strategy pairs in the light grey area of the i-block in Fig. 2a), then there is
no interior attractor, and the mutant will expel the resident and become
the new resident itself (Fig. 3i).

(ii) In the opposite situation, i.e., if the mutant cannot invade the resident,
while the resident can invade a population of the mutant (e.g., strategy

8
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Fig. 2 Examples of Pairwise Invasibility Plot (PIP) and Mutual Invasibility Plot (MIP) for
illustrating the generic invasion outcomes (i), (ii), (iii) and (iv), where “+” and “−” are signs
of the invasion fitness for given strategy pairs and “•” marks the singularity.

pairs in the empty area of the ii-block in Fig. 2a), then again there is
no interior attractor, but since the mutant cannot invade, the resident
population stays the same (Fig. 3ii).

(iii) If the mutant and the resident can each invade a population of the other
(e.g., strategy pairs in the dark grey area of the iii-block in Fig. 2b), then
they will coexist at a unique and interior attractor, and the population
thus changes from being monomorphic to dimorphic as the former resident
and mutant both become the new residents (Fig. 3iii).

(iv) If neither the mutant nor the resident can invade a population of the other
(e.g., strategy pairs in the empty area of the iv-block in Fig. 2b), then there
exists a separatrix in the interior separating the basins of attraction of the
two boundary attractors, but as the mutant cannot invade, the resident
population stays the same (Fig. 3iv).

These are the only four generic outcomes of the resident invader dynamics
for small strategy differences. Multiple attractors can occur, but only under
special additional conditions. Moreover, cases (iii) and (iv) generically∗ only
happen in a small neighbourhood of a singular strategy (i.e., where the selection
gradient vanishes). Geritz (2005) and Dercole and Geritz (2016) found the

∗For one-dimensional strategies, (iii) and (iv) can only happen near an evolutionary sin-
gularity. For multi-dimensional strategies, they can also happen if both strategies are suffi-
ciently close to the same manifold orthogonal to the selection gradient vector field, but it is
non-generic in the sense that with random mutations the probability goes to zero in the limit
of small strategy differences.
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Fig. 3 Graphical illustration of resident-invader dynamics when the invader and the resident
have similar but distinct strategies, generalized and adapted from Dercole and Geritz (2016,
Fig.1). (i) Invasion without back-invasion implies substitution. (ii) The mutant cannot
invade, but the resident can invade a population of the mutant, so that the resident stays the
same. (iii) Mutual invasion leads to coexistence. (iv) Mutual exclusion because neither the
mutant nor the resident can invade a population of the other.
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same results for unstructured populations in a constant environment. Article I
thus generalizes these results to a significantly larger class of models including
structured populations and fluctuating environments.

One of the main uses of the classification of the resident-invader dynamics
is that it enables us to answer the research questions Q1, Q2 and Q3 for small
strategies difference and therefore, in particular, helps to interpret Pairwise In-
vasibility Plots (PIPs) in terms of possible evolutionary scenarios. Although
for polymorphic resident populations and multi-dimensional strategies the con-
struction of a PIP is impractical or even impossible, the classification can still
be used for the same purpose. Previously, for structured populations and fluctu-
ating environments such interpretation of PIPs was only conjectural, but now,
in Article I, it has been given a rigorous foundation.

Article II investigates the evolution of the irreversible transition from a free-
swimming state to an immobile sessile state as seen in many aquatic inverte-
brates. First, the population is modelled as a hypothetical microorganism onto
the wall of a chemostat by using of the mechanistic modelling approach (refer
to Section 3.1). The microorganism is assumed to have three different settling
mechanisms involving competition for space on the wall: (i) purely exploitative
competition where free-swimming individuals settle in vacant space only, (ii)
mixed exploitative and interference competition where individuals attempt to
settle in any place but fail and die if the space is already occupied, and (iii)
mixed exploitative and interference competition, but now settling in occupied
space is successful and the former occupant dies. Meanwhile, in the simpli-
fied environment of the chemostat, the input concentration of nutrients and the
dilution rate of the tank are considered as the main environmental control vari-
ables. Second, the article studies the adaptive dynamics of the settling rate.
The results reveal the impacts that certain environmental factors and ecological
processes have on the evolutionary dynamics. More precisely, the environmen-
tal control variables and settling mechanisms have qualitatively different effects
on the direction of evolution. Moreover, different fluctuation frequencies in
the nutrient input have different effects on the long-term coexistence (in an
evolutionary sense) of species with different settling rates. Finally, the article
proposes some model-generated hypotheses concerning the evolution of aquatic
invertebrates in different systematic groups, which may guide further empirical
studies.

Article III investigates the evolution of the colonization rate of species in a
patchy habitat when there is a trade-off with the competitive strength for indi-
vidual patches. The model is formulated in the spirit of the existing competition-
colonization models (Levins and Culver 1971; Calcagno et al. 2006), but in ad-
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dition ours also includes ownership effects and random disturbance affecting the
mortality rate. The results show that the strength of the trade-off, ownership
effect and disturbance intensity all have a non-monotonic effect on the emer-
gence of species diversity via evolutionary branching. In particular, intermediate
disturbance promotes evolutionary branching and hence the emergence of poly-
morphisms on an evolutionary timescale. This result provides new evidence for
the intermediate disturbance hypothesis (Connell 1978), namely, high richness
in communities subject to an intermediate degree of disturbance. Another im-
portant result is that, in the strategy dynamics, random mutation steps may
cause the transition of coevolutionary trajectories between neighbouring basins
of attraction, which leads to various kinds of long-term evolutionary dynamics,
including evolutionary branching-extinction cycles. This result suggests that we
should pay attention to the role of random mutation steps (even they often have
small phenotypic effects) when there are multiple evolutionary singularities in
the strategy space.

2.4 New questions raised by the research

Article I extends the applicability of adaptive dynamics to fluctuating environ-
ments as well as structured populations by means of theoretical models. In
specific models, Articles II and III reveal the effects of different environmen-
tal factors and ecological processes on the long-term evolution of phenotypic
strategies. In light of these results, the dissertation demonstrates that adaptive
dynamics is a powerful tool for untangling the environment-strategy relation-
ships. The research presented in the dissertation raises various new research
questions, both specific and more general. For the specific questions, I refer to
the discussion sections of the respective articles. Here, I mention three new and
general research questions:

N1: what is the resident-invader dynamics of similar strategies that takes the
demographic stochasticity (due to the initially small population size of the
invader) explicitly into account?

N2: what is the resident-invader dynamics of similar strategies when the pop-
ulation has a more general structure such as a continuous size or age dis-
tribution or a continuous distribution in space?

N3: what is the threshold behaviour of the random mutation-induced transition
of coevolutionary trajectories between neighbouring basins of attraction
when there are multiple evolutionary singularities in the strategy space?

12



Chapter 3

Stochastic population
models

This chapter describes how to incorporate environmental stochasticity into a
population model.

A population is made up of individuals, and hence population dynamics is
a consequence of the behaviour of the individuals. Environmental stochasticity,
as a direct effect, affects individual behaviour such as birth, maturation, pre-
dation, competition, death, and so on. Fluctuations in individuals ultimately
lead to the population change in size and structure in time and space, which is
an indirect effect of environmental stochasticity (Fig. 4). From the perspective
of modelling, a population model is deduced from the individual model that
formulates individual events with associated event rates. For incorporating en-
vironmental stochasticity into a population model, researchers must identify
how population parameters originate from various event rates and how environ-
mental stochasticity affects the event rates. Only then it becomes possible to
extract a specific relationship of different population parameters for explaining
whether they vary independently or are related to one another in a specific way.
Consequently, this way ensures that the introduction of environmental stochas-
ticity is biologically interpretable, rather than casually adding noise terms to
population parameters.

Next, I introduce the notion of the mechanistic modelling approach to derive
the population model. Then I list some commonly used models that incorporate
environmental stochasticity. Although environmental stochasticity is the focus
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Fig. 4 Diagram of modelling population in stochastic environments. Illustration by the
author, inspired by the course “Stochastic Population Models” from Stefan A. H. Geritz.

of this dissertation, the modelling idea and approach are applicable to models
with demographic stochasticity (see also Jagers 2010).

3.1 Mechanistic modelling

The basic principle of mechanistic modelling is to derive a population model
from the individual level so that every model parameter is interpretable in terms
of individuals’ behaviour (Geritz and Kisdi 2012). Before describing the be-
haviour of individuals, we must know which individual states are included. An
individual may pass through various states during its lifespan (e.g., juvenile or
reproductive states) or when interacting with another individual (e.g., prey or
predatory states). A state transition is an event. Each event is characterised by
an event rate, which is the occurrence probability of the event per unit of time.
Next, these events can be formulated as a family of elementary reactions that
describes the behaviour of individuals, which is so-called the individual model.
Assuming a large number of individuals, we can apply the law of mass action to
individual events to derive an equation that describes the change in population
density. Collecting these equations forms a population model (Fig. 4). Now
various event rates combine and end up as population parameters.

As an example, consider individuals have two states, living (denoted by N )
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and dead (denoted by † ). A living individual reproduces a new individual
asexually at a rate β, and an individual dies naturally at a rate δ or dies from
competition at a rate γ. These individual events can be schematically repre-
sented as the following way.

N
β−−→ N + N (birth)

N
δ−−→ † (natural death)

N + N
γ−−→ N (compete-caused death)

Let n(t) denote the population density at time t. Applying the law of mass
action to the events depicted above, the change in population density is given
by

dn(t)

dt
= (β − δ)n(t)− γn(t)2. (3.1)

The equation can be written as the well-known logistic equation

dn(t)

dt
= rn(t)

(
1− n(t)

K

)
(3.2)

with parameters
r = β − δ,

K =
β − δ
γ

.
(3.3)

Now I have derived the model of logistic growth for the population density
by an underlying mechanism (i.e., interference competition), where every model
parameter can be interpreted by the behaviour of individuals. Especially, the
intrinsic growth rate r and the carrying capacity K are specific functions of
the event rates β, δ and γ. When it comes to incorporating environmental
stochasticity into the population model, we see that fluctuations in β and/or δ
cause the co-variation of r and K, but fluctuations in γ only affect K. Thus,
the mechanistic modelling approach shows how to “add noise” to parameters in
a meaningful way.

3.2 Types of noise

Environmental stochasticity essentially affects the event rates of individual be-
haviours and makes them fluctuate in time. Following this line, there are several
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commonly used models in the literature for considering the impact of environ-
mental stochasticity in population dynamics. For simplicity, the following in-
troduction focuses on stochastic single-species, unstructured population models.
Generalization to multi-species and structured population models is straightfor-
ward.

Stochastic differential equations

Consider a stochastic population model of the following form

dn(t)

dt
= n(t)f(n(t), θ(t)), (3.4a)

dθ(t)

dt
= A(θ(t)) +B(θ(t))

dW (t)

dt
, (3.4b)

where W (t) is a standard Brownian motion and hence dW (t)/dt is the Gaussian
white noise. In this form, {θ(t)}t≥0 is a Markov process modelling environmental
stochasticity where given the present environmental condition, the future is
independent of the past. The Markov property is a natural consideration for
many ecologically interpretable factors (see, e.g., Maruyama 1977; Ricciardi
1977; Arnold and Kliemann 1983). According to the knowledge of considered
environmental factors, the θ can be modelled as bounded noise and/or colored
noise with finite correlation time (Kliemann 1983; d’Onofrio 2013; Caraballo
and Han 2016; Spanio et al. 2017, see also Examples 4.1-4.3 shown in Article I).
Notice that, process {n(t)}t≥0 is not Markovian, but joint process {n(t), θ(t)}t≥0

is Markovian under weak assumptions (Arnold and Kliemann 1983).
In order to model phenomena that environmental fluctuations have memory

and even are cyclic, namely, future environmental conditions depend on earlier
ones (e.g., seasonal or tidal factors), the following second-order linear stochastic
differential equation will be a good choice:

d2θ(t)

dt2
+ a1

dθ(t)

dt
+ a0θ(t) = σ

dW (t)

dt
, (3.4c)

where a1 ≥ 0 is the damping coefficient, a0 ≥ 0 is the restoring coefficient and
σ ≥ 0 is the forcing intensity of the Gaussian white noise (Pandit and Wu 1983).
By different parameter combinations, θ can be modelled as different kinds of
environmental noise in terms of the properties of phase-memory and cyclicity
(Nisbet and Gurney 1982, Cai in prep.). Specifically, (i) when a1 = 0, a0 6= 0
and σ = 0, the θ is perfect-cyclic and phase-remembering (Fig. 5a, see also the
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(c) Quasi-cycle, phase-forgetting
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Fig. 5 Plots of sample trajectory, auto-correlation function and spectral density of pro-
cess {θ(t)}t≥0 generated by (3.4c) with parameter combinations (a1, a0, σ)=(a) (0,2,0), (b)

(0,3,4), (c) (1,3,4), (d) (4,2,5). In (a)-(c), ωs =

√
a0 − a2

1
2

is the resonant frequency.

periodic fluctuations used in Article II); (ii) when a1 = 0, a0 6= 0 and σ 6= 0,
the θ is quasi-cyclic and phase-remembering (Fig. 5b); (iii) when a2

1 − 2a0 < 0,
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a1 6= 0 and σ 6= 0, the θ is quasi-cyclic and phase-forgetting (Fig. 5c); (iv) when
a2

1 − 2a0 ≥ 0 and σ 6= 0, the θ is no-cyclic and phase-forgetting (Fig. 5d).
When θ is Gaussian white noise, (3.4) transforms into the form

dn(t)

dt
= n(t)f1(n(t)) + n(t)f2(n(t))

dW (t)

dt
, (3.5)

which is a special case of (3.4). Adding a white noise term to the system
and then deriving out the form (3.5) is widely used in the literature (see, e.g.,
Beddington and May 1977; Turelli 1977; Braumann 2002; Imhof and Walcher
2005; Mao 2011; Schreiber et al. 2011; Evans et al. 2015; Hening and Nguyen
2018). As we see, in this form the infinity variance of Gaussian white noise
might give rise to an unrealistic consideration. Instead, following the work by
Turelli (1977), (3.5) is best viewed as analytically tractable approximations of
stochastic difference equations, which are more realistic. The model used in
Article III belongs to this category. Unlike the process {n(t)}t≥0 in the form of
(3.4a), the {n(t)}t≥0 in (3.5) is Markovian.

Piecewise deterministic Markov processes

Environmental conditions may switch between some distinct states and random
jump at points in time (hence have stochastic durations). Once the environment
is determined, the population dynamics are governed by ordinary differential
equations. The piecewise deterministic Markov processes provide an approach
to modelling this kind of phenomena.

Consider a stochastic population model of the following form

dn(t)

dt
= n(t)f(n(t), θ(t)) (3.6a)

P
{
θ(t+ ∆) = j|θ(t) = i, n(s), θ(s), s ≤ t

}

=

{
qij∆ +O(∆) if i 6= j

1 + qii∆ +O(∆) if i = j
(3.6b)

where {θ(t)}t≥0 is a continuous-time Markov process taking values in discrete
state space E = {1, · · · , k} that keeps track of the environment. In (3.6b), qij
is the transition rate in unit time from environments i to j ∈ E and qii =
−∑j 6=i qij . The matrix Q = (qij)i,j∈E is assumed to be irreducible. Many liter-
ature use this form to study the population dynamics in variable environments
with a specific switching-mechanism (Litchman and Klausmeier 2001; Kussell
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and Leibler 2005; Tyson and Lutscher 2016; Benäım and Lobry 2016; Hening
and Nguyen 2020).

Alternatively, the population dynamics may in turn affect the environment
by influencing the transition rates between different environmental states, namely,
qij becomes a function of n(t) for each i, j ∈ E . Such a feedback loop well cap-
tures the interaction of the population and the variable environments (see, e.g.,
Cuddington et al. 2009; Staver and Levin 2012). Regardless of whether the
transition rates are density-dependent or density-independent, the joint process
{n(t), θ(t)}t≥0 is Markovian (Davis 1984).

Other possible types

In addition to these general models, there are other possible types to model
complex phenomena. For instance, a combination of the above two models
transforms into the so-called stochastic differential equations with Markovian
switching. This kind of models is similar to piecewise deterministic Markov
processes, but now the population dynamics are given by stochastic differen-
tial equations (Mao and Yuan 2006). This form captures the environmental
stochasticity that involves the fluctuation between different environments (sea-
sonal climate) and the fluctuation within each environment (daily weather) (see,
e.g., Zhu and Yin 2009; Greenhalgh et al. 2016; Hening and Li 2020). Another
scenario might be that environmental fluctuations happen in a timescale much
different from that of the population dynamics. Thus, stochastic fast-slow mod-
els can be used to describe these phenomena (see, e.g., Freidlin and Wentzell
2012; O’Regan 2018; Hastings et al. 2018). This list is not exhaustive, and new
types may emerge in specific ecological-evolutionary studies.

The conclusions of Article I apply to all the above-mentioned types of noise.
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Chapter 4

Adaptive dynamics

This chapter gives an introduction to the approach of adaptive dynamics, which
is a central approach of the dissertation in investigating the long-term evolution
of phenotypic strategies.

4.1 Background

Adaptive dynamics is a mathematical and conceptual framework developed dur-
ing the 1990s for understanding the long-term evolutionary consequences of
small mutations in phenotypic strategies. Individual strategies affect the pop-
ulation dynamics, and the population dynamics selects which strategies prevail
and which do not. Selection emerges from the population dynamics rather than
being the result of applying a predetermined notion of fitness. Thus, adaptive
dynamics explicitly links long-term evolutionary phenomena to population dy-
namics. This is possibly the most important difference with other approaches
such as population genetics and most applications of evolutionary game theory,
which lack a strong population dynamical basis.

The approach of adaptive dynamics uses the following four basic assumptions
(Geritz et al. 1998; Geritz and Gyllenberg 2005). First, individuals reproduce
asexually. This means that the offspring inherit the parental phenotypic strat-
egy. Second, mutations are rare so that the resident population has reached
its attractor before the next mutant appears. Thereby, there is a separation
of the slower mutational time scale from the faster population dynamical time
scale. Third, mutations are of small phenotypic effect. Fourth, the mutation
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population is initially rare and hence the ecological environment generated by
the resident population affects the mutant but not the other way around. Un-
der these assumptions, the analysis starts from the invasion fitness of mutants
measured by the initial growth rate of the mutant or from a proxy for the in-
vasion fitness (e.g., the basic reproduction number measured by the expected
total number of offspring that a mutant individual produces in its lifetime). De-
termining the invasion fitness or its proxy may sometimes be difficult, but once
it can be determined, the approach of adaptive dynamics is readily applied and
is independent of the model structure.

The approach of adaptive dynamics provides a handy toolkit for evolutionary
studies, with special emphases on the properties of evolutionary singularities,
the origin and divergence of new lineages, and the evolutionary outcomes.

For illustrating the approach of adaptive dynamics, the following brief in-
troduction focuses on scalar-valued strategies in unstructured populations with
dynamics described by the model (2.1). More comprehensive introductions can
be found in Diekmann (2004), Brännström et al. (2013) and Kisdi (2020), which
also include an overview of literature that extends the approach to more complex
ecological settings (e.g., sexual reproduction, spatial structures, function-valued
strategies). For understanding the probabilistic foundation of adaptive dynam-
ics, I recommend the work by Champagnat et al. (2006). To track the theoretical
advancements and the applications in specific ecological-evolutionary problems,
I recommend the continually updating web page (https://www.mv.helsinki.fi/
home/kisdi/addyn.htm) maintained by Éva Kisdi.

4.2 General framework

Resident population dynamics

Consider a resident system with dynamics given by (2.1), where the resident
densities (n1(t), · · · , nk(t)) together with the respective strategies (x1, · · · , xk)
is called the resident population, and where e(t) describes the feedback en-
vironment interacting with the resident population, and where θ(t) captures
the external factors influencing the resident population as well as the feedback
environment. Since mutation happens on a slower time scale, the system has
sufficient time to reach a dynamical attractor. Such an attractor can be an equi-
librium, a cycle, or an invariant distribution—on an appropriate state space but
excluding the extinction set of the population (refer to Schreiber et al. 2011 and
see also Article I).
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Invasion fitness

From now on, let x denote the collection of strategies x1, · · · , xk and let n(t)
denote the collection of corresponding population densities n1(t), · · · , nk(t) at
time t. The invasion fitness of an initially rare mutant with strategy y in the
environment generated by the resident system at its dynamical attractor is

Sx(y) = lim
t→+∞

1

t

∫ t

0

f(y, e(s), θ(s))ds, (4.1)

where the function f is the per capita growth rate of individuals with strategy
y in the environment (e(s), θ(s)) (Metz et al. 1992; Ferriere and Gatto 1995).

When the dynamical attractor of the resident system is an equilibrium state
(n̂, ê, θ̂), then the invasion fitness is explicitly given by

Sx(y) = f(y, ê, θ̂). (4.2)

If the dynamical attractor corresponds to a periodic orbit (ñ(s), ẽ(s), θ̃(s)) with
period T , then the invasion fitness reduces to

Sx(y) =
1

T

∫ T

0

f(y, ẽ(s), θ̃(s))ds. (4.3)

The periodic environments treated in Article II belong to this category. If the
dynamical attractor corresponds to an invariant probability measure µ on a
state space Z̄, then invasion fitness

Sx(y) =

∫

Z̄
f(y, e, θ)µ(de, dθ) µ-almost surely. (4.4)

The ergodic environments treated in Articles I and III belong to this category.
Once the invasion fitness is determined, the mutant dies out if it has a

negative invasion fitness. Conversely, if the mutant has a positive invasion
fitness, then it may spread in the resident environment (but extinction is still
possible due to the demographic stochasticity in small population sizes). Since
all resident subpopulations have zero long-term growth,

Sx(xi) = 0 (4.5)

for all i = 1, · · · , k, where the equal-sign holds in a stochastic sense if the
scenario in (4.4) happens.
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For a large class of deterministic, unstructured population models, the pop-
ulation dynamical outcomes of an invasion event are determined by the invasion
criteria alone (Geritz 2005; Dercole and Geritz 2016). Article I and the supple-
mentary material extend and generalize this result to non-equilibrium resident
population dynamics, resident dynamics with environmental stochasticity, and
class-structured population models. Typically, if a mutant can invade the resi-
dent but not the other way around, the mutant will oust the resident and take
over the population, i.e., the “invasion implies substitution”-principle. However,
if the resident can invade back so that it is protected against extinction, then
the resident and the mutant eventually live together, i.e., the “mutual invasion
implies coexistence”-principle. Therefore, invasion outcomes can be predicted
directly from the signs of invasion fitnesses. For scalar-valued strategies, the
sign plot is visible, i.e., the PIP and MIP (refer to Figs. 6a and 6c).

Selection gradient

The direction of evolution is determined by the selection gradient:

G(x) =
(
Gi(x)

)>
i=1,··· ,k

=

(
∂Sx(y)

∂y

∣∣∣∣
y=x1

, · · · , ∂Sx(y)

∂y

∣∣∣∣
y=xk

)> (4.6)

where the i-th component Gi is the partial derivative ∂Sx(y)/∂y of the invasion
fitness evaluated at resident xi. A point in the strategy space for which all
components of the selection gradient become zero simultaneously (and hence
not directional change) is called an evolutionarily singular coalition. For one-
dimensional strategy dynamics, such a point is called an evolutionarily singular
strategy.

Monomorphic evolution

For the evolution in a monomorphic population, a singularity x∗ is said to be
an Evolutionarily Stable Strategy (ESS) if the invasion fitness at this point is
local maximum, i.e., the second-order derivative of the invasion fitness

∂2Sx(y)

∂y2

∣∣∣∣
y=x=x∗

< 0. (4.7)
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The definition of an ESS has its root in the evolutionary game theory (May-
nard Smith 1982) and is a global concept, i.e., the ESS is immune to invasion
by any other strategy. However, in the context of adaptive dynamics, an ESS
is a local concept, i.e., such a strategy can not be invaded by any nearby mu-
tant strategies but is possible for sufficiently different mutant strategies if large
mutation steps are accessible.

A singularity x∗ is called convergence stable if

∂2Sx(y)

∂y2

∣∣∣∣
y=x=x∗

− ∂2Sx(y)

∂x2

∣∣∣∣
y=x=x∗

< 0, (4.8)

which is an evolutionary attractor in the strategy space. Conversely, the x∗

becomes an evolutionary repeller if it is not convergence stable.
When a singularity is both convergence and evolutionarily stable, it is a Con-

tinuously Stable Strategy (CSS, Eshel and Motro 1981; Eshel 1983) and hence
an endpoint of the evolutionary process. However, if a singularity is convergence
stable but not evolutionarily stable, it is a Branching Point (BP, Geritz et al.
1998) in the strategy space. When the evolution gradually approaches a BP, the
initially monomorphic population inevitably sooner or later becomes dimorphic.

Central to the adaptive dynamics of evolving strategies is finding evolu-
tionary singularities. This has to check many different combinations of model
parameters and may be time-consuming and goalless. Critical Function Analy-
sis (de Mazancourt and Dieckmann 2004; Bowers et al. 2005; Geritz et al. 2007)
is a powerful method for finding singularities and determining the conditions
for desired evolutionary outcome. The method is to construct a family of crit-
ical functions based on the biological assumption that the evolving strategy is
traded off with one other model parameter (see also Kisdi (2006) for the case
of coevolving species and Kisdi (2015) for the case of multiple trade-offs). The
conditions for the desired outcome can be determined directly. Once a specific
trade-off function is given, the plot of the critical functions provides a visual way
to identify singularities and their convergence stability. Article III also applies
this method to find BPs.

Polymorphic evolution

For the evolution in a polymorphic population, an evolutionarily singular coali-
tion x∗ = (x∗1, · · · , x∗k) is said to be evolutionarily stable if and only if all its
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constituent strategies are ESS, i.e., satisfying

∂2Sx(y)

∂y2

∣∣∣∣
y=x∗

i , x=x∗
< 0 (4.9)

for all i. Unlike the convergence stability in monomorphic evolution that de-
pends solely on the selection gradient, the convergence of a singular coalition is
complicated because it in addition also depends on mutation rates and step sizes
in the various resident strategies. There are several concepts of convergence sta-
bility but depending on the underlying assumptions concerning mutation rates
and step sizes (Leimar 2001, 2009). In fact, the local convergence stability of
a singular coalition is determined by the canonical equation shown below and
normally has to resort to numerical analysis in case studies.

A singular coalition is an endpoint of the evolution process if it is attain-
able through gradual evolution and is evolutionarily stable, whereas further
evolutionary branching occurs if it lacks evolutionary stability in at least one
direction.

Evolutionary path

In the constant environment (i.e., the dynamical attractor of the resident system
corresponds to equilibrium state), the evolutionary path of multispecific strate-
gies in the strategy space can be described by the following ordinary differential
equations

dxi
dt

=
1

2
µi(xi)σ

2
i (xi)n̂i(x)Gi(x), i = 1, · · · , k, (4.10)

where µi(xi) is the mutation probability per birth event in the strategy value
xi, σ

2
i (xi) is the variance of the mutation step-size distribution in the strategy

value xi, n̂i(x) is the equilibrium population density of the resident population
of strategy xi in the community characterized by x, Gi(x) is the selection gradi-
ent in xi-direction, and the factor 1/2 comes from the assumption of symmetric
mutation distribution and the linear approximation applying in the half strat-
egy space. This is so-called the canonical equation of adaptive dynamics, which
is the deterministic approximation of the stochastic mutation process under the
assumption of sufficiently small mutations (Dieckmann and Law 1996; Cham-
pagnat et al. 2001). The first four terms in the right hand side of (4.10) are
all non-negative and jointly describe the rate of evolutionary change in the i-th
strategy. Durinx et al. (2008) extend the applicability of this canonical equa-
tion to general physiologically structured population models with multiple birth
states.
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In the case of arbitrary ergodic environments, both the number of births
and the invasion probability have to be averaged over all possible environmental
conditions. A general form of the canonical equation for this case is derived in
Ripa and Dieckmann (2013):

dxi
dt

=
1

2
µi(xi)σ

2
i (xi)

E
[
bi(x)

]

E
[
n−1
i (x)bi(x)

]Gi(x), i = 1, · · · , k, (4.11)

where bi(x) is the per capita birth rate of the resident population with strategy
xi in the community characterized by x, ni(x) is the corresponding population
density, and E[·] indicates the expectation over all possible environmental con-
ditions. There are several equivalent forms of (4.11) following from the fact that
for resident populations, ln(ni(t)) and n−1

i (t) have a long-term growth rate of
zero.

In addition to these general forms, Metz et al. (2016) provides the form of
the canonical equation of adaptive dynamics for life history models, where the
strategy is a function of the state of the individual. In particular, they treat the
canonical equation in periodic environments.

An important phenomena is that of multiple evolutionary attractors in the
polymorphic evolution. If there exists several singularities and each has own
basin of attraction, random mutations with small but non-zero steps may cause
the transition of evolutionary paths between neighbouring basins. This transi-
tion behaviour can be analyzed through a diffusion approximation of the stochas-
tic mutation process developed by Champagnat et al. (2001). Article III pro-
vides an example for which an evolutionary path starting from the vicinity of
BP will visit different attraction basins with positive probabilities as was sug-
gested by the results of Champagnat’s (2003) works, which can lead to various
kinds of long-term evolutionary dynamics.

Key graphics in adaptive dynamics

Fig. 6a is the Pairwise Invasibility Plot (PIP, Matsuda 1985; van Tienderen and
de Jong 1986). In the light grey areas, the mutant can invade the resident;
in the empty areas, invasion is impossible. The arrows indicate gradual evolu-
tion proceeding by invasion and substitution of mutants. The red point marks
the singularity. In this example, the singularity is convergence stable but not
evolutionarily stable and hence a branching point.

Fig. 6c is the Mutual Invasibility Plot (MIP) as the combination of the
PIP and the diagonal-reversed PIP. In the dark grey areas, any combination
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Fig. 6 Key graphics in adaptive dynamics.

of two strategies are mutually invasible and hence protected dimorphism. The
arrows obtained from the canonical equation indicate the direction of small
evolutionary steps. The lines, inside the coexistence area, are the adaptive
isoclines that indicate selection gradient vanishes in one of the two components,
where the solid lines correspond to local fitness maxima of the mutant and the
dashed lines correspond to local fitness minima of the mutant. The black points,
intersections of isoclines, mark the evolutionarily singular coalitions and always
occur in reciprocal pairs as the diagonal symmetry. In this example, the singular
coalition is both convergence and evolutionarily stable.

Together with the PIP and MIP, Fig. 6b is a simulated evolutionary tree
that indicates the adaptive movement of evolving strategies. The green part
corresponds to the path of monomorphic evolution. After reaching the branching
point, the blue part shows the coevolutionary path of the two directions in the
strategy space.
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