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Abstract: Therapeutic options for coronaviruses remain limited. To address this unmet medical
need, we screened 5406 compounds, including United States Food and Drug Administration (FDA)-
approved drugs and bioactives, for activity against a South Korean Middle East respiratory syndrome
coronavirus (MERS-CoV) clinical isolate. Among 221 identified hits, 54 had therapeutic indexes
(TI) greater than 6, representing effective drugs. The time-of-addition studies with selected drugs
demonstrated eight and four FDA-approved drugs which acted on the early and late stages of the viral
life cycle, respectively. Confirmed hits included several cardiotonic agents (TI > 100), atovaquone, an
anti-malarial (TI > 34), and ciclesonide, an inhalable corticosteroid (TI > 6). Furthermore, utilizing the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we tested combinations of remdesivir
with selected drugs in Vero-E6 and Calu-3 cells, in lung organoids, and identified ciclesonide,
nelfinavir, and camostat to be at least additive in vitro. Our results identify potential therapeutic
options for MERS-CoV infections, and provide a basis to treat coronavirus disease 2019 (COVID-19)
and other coronavirus-related illnesses.

Keywords: Middle East respiratory syndrome coronavirus; severe acute respiratory syndrome
coronavirus disease; clinical isolate; high-content screening; FDA-approved drugs; drug repurposing;
drug combinations; lung organoids; COVID-19; pandemic

1. Introduction

Coronaviruses (CoVs) are enveloped, positive-sense, single-stranded RNA viruses
in the Coronaviridae family of the Nidovirales order. CoVs usually cause mild to severe
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respiratory tract infections [1]. The two types of human coronaviruses that had been
described prior to 2003, coronavirus 229E and OC43, caused mild, cold-like symptoms [2,3].
However, an outbreak of severe acute respiratory syndrome (SARS) in 2003, which occurred
mainly in Southeast Asia, was attributed to a coronavirus. The outbreak resulted in 8096
confirmed cases and 774 deaths (fatality rate of 9.6%) [4].

In 2012, the novel coronavirus Human Coronavirus—Erasmus Medical Center (HCoV-
EMC) was isolated from a patient in Saudi Arabia who developed pneumonia and renal
failure [5]. From the first outbreak in 2012 until January 2019, the HCoV-EMC epidemic
resulted in 2449 laboratory-confirmed cases and at least 845 deaths (fatality rate 34%),
mainly in the Arabian Peninsula. Thus, HCoV-EMC was renamed Middle East respiratory
syndrome coronavirus (MERS-CoV) [6]. Another major outbreak of MERS-CoV infection,
the largest outside the Arabian Peninsula, occurred in South Korea in 2015 [7,8]. Notably,
aside from the index case of MERS-CoV, the majority of viral transmissions in South Korea
were nosocomial, with 186 confirmed cases across 16 clinics [7,9]. Furthermore, the World
Health Organization (WHO) has reported continual waves of MERS outbreaks in the
Middle East, although they have been smaller than the major 2014 outbreak [6].

Due to the severity of MERS infection and the urgent need for effective treatment,
several approaches for therapeutic development have been attempted [10]. In clinical
studies, a combination of ribavirin and interferon-alpha (IFN-α) therapy improved patient
survival rates when administered early after the onset of infection, but had no significant
effect in the late stage of infection [11–13]. These results suggest that broad-spectrum
antivirals can be effective in MERS patients at some stages of infection, but for complete
antiviral activity, a treatment specific for MERS-CoV may be required.

Since the first identified case of the severe acute respiratory syndrome CoV-2 in Wuhan,
China, in late 2019, the coronavirus disease 2019 (COVID-19) rapidly spread worldwide.
The ongoing COVID-19 pandemic has already caused countless human casualties and
significant socio-economic losses globally. With more than 95 million COVID-19 cases
confirmed and over 2.8 million related fatalities reported (6 April 2021), there is a worldwide
effort to control the spread of this devastating virus. Unfortunately, there are no CoV-
specific drugs approved by the United States Food and Drug Administration (FDA) for
clinical use, and the number of repurposed drugs to efficiently treat COVID-19 patients are
limited. Together, we screened FDA-approved drugs using patient-derived MERS-CoV,
triaged hits to discriminate between early and late viral life cycle inhibitors, confirmed
selected drugs using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and
demonstrated the added value of selected medications in combination with remdesivir.

2. Materials and Methods
2.1. Viruses, Cell Lines, and Lung Organoids

The Korean strain of MERS-CoV (MERS-CoV/KOR/KNIH/002_05_2015; MERS/KOR/
2015, Genbank accession no. KT029139.1) [14] was kindly provided by Sung Soon Kim,
from the Division of Respiratory Viruses, Center for Infectious Diseases, Korea National
Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), and
propagated in Vero cells, as previously described [15]. The isolation of SARS-CoV-2 (hCoV-
19/Norway/Trondheim-S15/2020), and engineering of recombinant mCherry-expressing
SARS-CoV-2 strains (SARS-CoV-2-mCherry) have been described previously [16]. Vi-
ral titers were determined by plaque assays in Vero and Vero-E6 cells as described [17].
All experiments using MERS-CoV were performed at Institut Pasteur Korea in compli-
ance with the guidelines of the KNIH using enhanced Biosafety Level 3 (BSL-3) con-
tainment procedures in laboratories approved for use by the KCDC. The SARS-CoV-2
hCoV-19/Norway/Trondheim-S15/2020 strain has been described in a previous study. All
experiments using SARS-CoV-2 and SARS-CoV-2 mCherry were performed in the BSL-3
laboratory at the Norwegian University of Science and Technology (NTNU).

Vero and Vero-E6 cells (ATCC CCL-81 and ATCC CRL-1586; Manassas, VA, USA)
were maintained at 37 ◦C with 5% CO2 in Dulbecco’s modified Eagle’s medium (Welgene,
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Gyeongsan, Korea) supplemented with 10% heat-inactivated fetal bovine serum and 1×
antibiotic–antimycotic solution (Gibco/Thermo Fisher Scientific, Waltham, MA, USA).
Calu-3 cells (ATCC HTB-55; Manassas, VA, USA) were maintained at 37 ◦C with 5% CO2 in
Eagle’s minimum essential medium (ATCC, Manassas, VA, USA) with 10% heat-inactivated
fetal bovine serum and 1× antibiotic–antimycotic solution (Gibco/Thermo Fisher Scientific,
Waltham, MA, USA).

The lung organoids (LOs) were generated as described previously [18]. Briefly, in-
duced pluripotent stem cells (IPSCs) were subjected to embryoid body induction using
embryoid bodies (EB)/primitive streak media (10 µM Y-27632 and 3 ng/mL BMP4 in
serum-free differentiation (SFD) media consisting of 375 mL Iscove’s Modified Dulbecco’s
Medium (IMDM), 100 mL Ham’s F-12, 2.5 mL N2, 5 mL B27, 3.75 mL 7.5% BSA, 5 mL 1%
penicillin–streptomycin, 5 mL GlutaMax, 50 µg/mL ascorbic acid, and 0.4 µM monothio-
glycerol) in ultra-low attachment plates, with the media being replaced with endoderm
induction media (10 µM Y-27632, 0.5 ng/mL BMP4, 2.5 ng/mL FGF2, and 100 ng/mL
Activin A in SFD media) the morning after. Extra media was added every day for 3 days.
The embryoid bodies were collected and dissociated using 0.05% Trypsin/EDTA and
plated on fibronectin-coated plates with a cell density of 85,000 cells/cm2. Cells were then
incubated in anteriorization media-1 (100 ng/mL Noggin, and 10 µM SB431542 in SFD
media), followed by an incubation with anteriorization media-2 (10 µM SB431542, and
1 µM IWP2 in SFD media). The anteriorization media-2 was replaced with ventralization
media (3 µM CHIR99021, 10 ng/mL FGF10, 10 ng/mL FGF7, 10 ng/mL BMP4, and 50 nM
all-trans Retinoic acid in SFD media) and incubated for two days. The cell monolayer was
then lifted by gentle pipetting, and the suspended cells were transferred to an ultra-low
attachment plate where they would form the lung organoids.

2.2. Compound Libraries

A compound library of 5406 compounds composed of FDA-approved drugs, which
covers approximately 60% of all FDA-approved compounds, bioactives, kinase inhibitors,
and natural products, was compiled (LOPAC, Prestwick, Microsource, Selleck, Tocris) and
used for this screen. Compounds were dissolved in DMSO at 10 mM and stored at −80 ◦C
until use.

2.3. Image-Based Screening and Assay Validation

Vero cells were seeded at 1.2 × 104 cells per well in Opti-PRO™ serum-free medium
(SFM) supplemented with 4 mM L-glutamine and 1× antibiotic–antimycotic solution (Gibco/
Thermo Fisher Scientific) in black, 384-well, µClear plates (Greiner Bio-One, Kremsmünster,
Austria) at 24 h prior to the experiment. Subsequently, compounds were added to each well
using an automated liquid handling system (Apricot Designs, Covina, CA, USA) before
virus infection. The final concentrations of each compound were 10 µM, and the DMSO
concentration was kept at 0.5% or lower. For viral infection, the plates were transferred
into the BL-3 containment facility to add MERS-CoV at a multiplicity of infection (MOI)
of 0.0625, and cells were fixed at 24 h post-infection (hpi) with 4% paraformaldehyd
(PFA) followed by immunofluorescence analyses. MERS-CoV infection was detected using
rabbit anti-MERS-CoV S antibodies, and cell viability was evaluated by Hoechst 33342
staining. Images were acquired by a Perkin Elmer Operetta (20×; Waltham, MA, USA) and
analyzed by in-house developed Image Mining 3.0 (IM 3.0) plug-in software. To validate
the assay, dose–response curves (DRCs) with compounds with known antiviral activities
against MERS-CoV were assessed: chloroquine (CQ), and cyclosporine A (CsA) [19,20].
Compounds with >70% MERS-CoV inhibition and >70% viability were subjected to DRC
analyses, as described below.

2.4. Dose–Response Curve Drug Analysis

The primary hits (256 hits) were used to generate 10-point DRCs, with compound
concentrations from 0.05 to 25 µM. The acquired images were analyzed using in-house
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software to quantify cell numbers and infection ratios. The antiviral activity was normalized
to positive (mock) and negative (0.5% DMSO) controls in each assay plate. DRCs were
fitted by sigmoidal dose–response models, and the equation was described as Y = Bottom
+ (Top–Bottom)/(1 + (IC50/X)Hillslope) using XLfit 4 Software or Prism7. The IC50 was
calculated from the normalized activity data set fitted curve. All IC50 and CC50 values
were measured in duplicate, and the quality of each assay was controlled by Z′-factor and
the coefficient of variation in percent (%CV).

2.5. Pharmacological Action Clustering

The information regarding the pharmacological actions of each compound was com-
piled by using ChemIDPlus and MeSH databases [21,22] and information provided by the
vendors. Once relevant information was collected, pharmacological actions were man-
ually reassessed to finally categorize all compounds into 43 different pharmacological
actions. The information on the approval status for drugs was retrieved from DrugBank,
version 5.0.7 [23].

2.6. Drug Combination Studies

Vero-E6 or Calu-3 cells were treated with different concentrations of two drugs and
infected with SARS-CoV-2 (MOI 0.1), SARS-CoV-2-mCherry (MOI 0.1) or mock. No com-
pounds were added to the control wells. At 72 hpi, cell viability and mCherry fluorescence
was measured using CellTiter-Glo assay (Promega, Madison, WI, USA) and a PerkinElmer
Victor X3 Reader. A SynergyFinder v2 web application was utilized for drug combina-
tion analysis [24]. Briefly, to quantify the degree of synergy/antagonism, the observed
responses were compared to the expected combination responses, calculated based on the
zero interaction potency (ZIP) reference model that assumed no interaction between drugs.
Synergy scores, which represent an averaged percentage excess effect due to interactions
between drugs, were quantified, with positive and negative values denoting synergy and
antagonism, respectively. Furthermore, the cytotoxicity of each drug combination was
subtracted. Combinations with scores >10 are considered synergistic, scores between −10
and 10 additive, and below −10 are antagonistic. LOs were treated with 0.5 µM camostat,
0.5 µM nelfinavir, 0.5 µM cepharanthine, 0.5 µM ciclesonide alone or in combinations with
0.5 µM remdesivir and infected with SARS-CoV-2-mCherry (MOI 0.1). No compounds
were added to the control wells. At 72 hpi, the dead cells were stained using Cell Toxicity
Green Assay (CTxG, Promega), and nuclei were stained with DAPI. Cells were fixed with
PFA and imaged using microscopy. Representative images (n = 3) were selected.

3. Results

To address the urgent unmet need to develop effective treatments for CoV patients,
we implemented a high-content screening (HCS) strategy with the goal of repurposing
newly identified MERS-CoV inhibitors for a wider range of CoVs, including COVID-19.
Utilizing a Korean MERS-CoV patient isolate, we screened 5406 compounds, including
FDA-approved drugs, bioactive agents, kinase inhibitors, and natural products. Our library
included 60% of all FDA-approved drugs (1247 out of 2069 total) (Figure 1A). Compounds
were tested for activity against MERS-CoV by analyzing the levels of expression of vi-
ral spike (S) protein in infected Vero cells using immunofluorescence analysis (IFA). The
screens included the reference inhibitor chloroquine (IC90 = 93 µM) at 100 µM to define
maximum inhibition (De Wilde et al., 2014). The calculated Z’-factor above 0.78 indicated
good discrimination between the control dimethyl sulfoxide (DMSO) and chloroquine treat-
ment of infected cells (Figure 1B). Two independent HCS analyses (screen 1 and screen 2)
were conducted, demonstrating a high degree of correlation (R2 = 0.91) between the two
replicates (Figure 1C). These screens identified 256 compounds that demonstrated >70%
MERS-CoV inhibition at non-cytotoxic concentrations (>70% cell viability) (Figure 1D).
These primary hits were then confirmed using a 10-point dose–response curve (DRC) anal-
ysis to determine the IC50 and 50% cytotoxicity concentrations (CC50) for each compound
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(Figure 1D). A representative DRC analysis is shown in Supplementary Figure S1. The
therapeutic indexes (TIs) were calculated as the ratio of CC50/IC50. Among the 256 initial
hits, 35 compounds were denoted as inactive (TI values < 1), and were eliminated from the
list of confirmed hits. Of the resulting 221 confirmed hits, 54 compounds with an in vitro
TIs > 6 were selected for further testing (Figure 1D).
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Figure 1. Overview of the library composition and triage of hits. (A) Our small-molecule compound library primarily
comprised bioactives and FDA-approved drugs, with a small proportion of natural products and kinase inhibitors. (B) High-
content screening (HCS) of 5406 compounds (cpds) in two batches in duplicate, and calculation of Z’-factors between
high (MERS-CoV infection, black) and low (mock, green) values. Chloroquine (CQ). (C) Correlation between duplicate
screens. The scatter plot shows Middle East respiratory syndrome coronavirus (MERS-CoV) inhibition ratios overlaid with
cell viability ratios. Compounds with MERS-CoV inhibition >70% and cell viability >70% were regarded as primary hits.
(D) Flowchart of HCS hit selection and confirmation of final hit selection.

To investigate whether the FDA-approved drugs act on the early or late stages of the
viral life cycle (pre- or post-entry), we conducted time-of-addition studies. Vero cells were
treated with each drug at a concentration above its IC90 and analyzed as described in the
Supplementary Information. Chloroquine served as an early-stage inhibitor control, and
inhibited MERS-CoV infection by up to 30% until 3 hpi. However, chloroquine had no
significant effect when administered at 4 hpi (Figure 2). A similar outcome was observed for
treatment with ouabain, digitoxin, digoxin, niclosamide, regorafenib, nelfinavir mesylate,
ciclesonide, and benidipine hydrochloride, all of which inhibited MERS-CoV infection only
when administered earlier than 4 hpi (Figure 2, Supplementary Figure S2). In contrast,
atovaquone, lercanidipine hydrochloride, permethrin, and octocrylene had only minor
inhibitory effects throughout the time-course experiments (Supplementary Figure S2).

Remdesivir, a broad-spectrum antiviral drug interfering with the RNA-dependent
RNA polymerase (RdRp) activity of various RNA viruses, was approved for the treat-
ment of SARS-CoV-2 infection. However, remdesivir alone does not prevent the infection
but shortens hospitalization if administered early after infection [25,26]. Therefore, we
tested remdesivir in combination with nelfinavir, ciclesonide, camostat, and cepharan-
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thine in SARS-CoV-2- and mock-infected Vero-E6 cells, and evaluated the virus-mediated
cytotoxicity by determining the ATP level.
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at a multiplicity of infection of 5, and FDA-approved drugs were administered at six time points pre- or post-infection as
indicated. Drugs were used at concentrations above their 90% inhibitory concentration (IC90) values. Chloroquine served as
a known early stage inhibitor.

Each drug combination was tested in a 6 × 6 dose–response matrix, where five doses
of single drugs were combined in a pairwise manner. We subtracted the drug combination
responses measured on virus-infected cells from those measured on mock-infected cells.
As a result, we obtained dose–response matrices demonstrating the selective virus inhibi-
tion achieved by each combination. We calculated the ZIP synergy scores for the whole
6 × 6 dose–response matrices and the most synergistic 3 × 3 dose regions for each drug
combination. The scores show the combined virus inhibition effect beyond the effect ex-
pected from single drugs. Thereby, we observed synergistic effects for remdesivir–camostat,
remdesivir–nelfinavir, and remdesivir–cepharanthine combinations (most synergistic area
scores >10), and additive effects for remdesivir–ciclesonide in Vero-E6 cells (most synergis-
tic area score between 0 and 10, Figure 3; Table 1).

Table 1. ZIP synergy scores of drug combinations in SARS-CoV-2 infected Vero-E6 cells.

Drug Combination Synergy Score Most Synergistic Area Score

Remdesivir–camostat 21.3 25.7
Remdesivir–nelfinavir 13.9 19.5

Remdesivir–cepharathine 4.2 12.7
Remdesivir–ciclesonide −0.6 6.8
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camostat; (B) remdesivir–nelfinavir; (C) remdesivir–cepharanthine; and (D) remdesivir–ciclesonide interactions were
monitored. Dose–response matrices and synergy distribution maps are shown on the right and left panels with correspond-
ing cell viability and zero interaction potency (ZIP) synergy, respectively. X and Y axes indicate drug concentrations (µM).
ZIP synergy scores were calculated as described in the Material and Methods section.

Then, we tested the antiviral efficacy of four combinations in Calu-3 cells using the
SARS-CoV-2-mCherry virus (Figure 4) [16]. We monitored the virus-mediated expression of
reporter protein and viability of virus- and mock-infected cells. Each drug combination was
tested in a 6 × 6 dose–response matrix, where five doses of single drugs were combined in
a pairwise manner. As a result, we obtained dose–response matrices demonstrating virus
inhibition and cell viability achieved by each combination (Figure 5). We plotted synergy
distribution maps, showing synergy at each pairwise dose. For each drug combination,
we calculated ZIP synergy scores for the whole 6×6 dose–response matrices and for most
synergistic 3× 3 dose regions (Table 2). We observed that all combinations were synergistic
based on fluorescent intensity and cell viability analyses (most synergistic area scores
>10). This high synergy allowed us to substantially decrease the concentration of both
components to achieve antiviral efficacy that was comparable to those of individual drugs
at high concentrations.

Table 2. ZIP synergy scores of drug combinations in SARS-CoV-2-mCherry-infected Calu-3 cells.

Drug Combination mCherry Fluorescence CTG Assay

Synergy Score Most Synergistic
Area Score Synergy Score Most Synergistic

Area Score

Remdesivir–camostat 8.3 17.3 22.4 27.7
Remdesivir–nelfinavir 7.2 11.1 42.6 51.8

Remdesivir–cepharathine 9.4 16.1 16.6 24.5
Remdesivir–ciclesonide 6.3 11.6 19.7 25.8
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Figure 4. Evaluation of drug combinations in SARS-CoV-2-mCherry-infected Calu-3 cells. (A) The 6 × 6 dose–response ma-
trices and interaction landscapes of remdesivir–camostat; remdesivir–nelfinavir; remdesivir–cepharanthine; and remdesivir–
ciclesonide obtained using fluorescence analysis of SARS-CoV-2-mCherry-infected Calu-3 cells. ZIP synergy scores were
calculated for indicated drug combinations. (B) The 6 × 6 dose–response matrices and interaction landscapes of remdesivir–
camostat; remdesivir–nelfinavir; remdesivir–cepharanthine; and remdesivir–ciclesonide obtained using a cell viability assay
(CTG) on mock-, and SARS-CoV-2-mCherry-infected Calu-3 cells. The selectivity for the indicated drug concentrations was
calculated (selectivity = efficacy-(100-Toxicity)). ZIP synergy scores were calculated for indicated drug combinations.
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infection, cell nuclei, and cytotoxicity are shown in red, blue, and green, respectively. Scale bars, 200 µm.

To further evaluate the effects of drug combinations, we used IPSC-derived LOs. Fifty
day-old LOs were treated with 0.5 µM camostat; 0.5 µM nelfinavir; 0.5 µM ciclesonide;
0.5 µM cepharanthine, or their combinations with 0.5 µM remdesivir, followed by infection
with SARS-CoV-2-mCherry. At 72 hpi, the organoids were analyzed for viral reporter
protein expression (mCherry) and cell death (CellToxGreen). Remdesivir–camostat and
remdesivir–nelfinavir combinations substantially attenuated virus-mediated mCherry
expression. Thus, these drug combinations should be further investigated in vitro and
in vivo.

4. Discussion

Our approach aimed to identify FDA-approved drugs and bioactives that could be
promptly repurposed or developed, respectively, to treat MERS- and potentially COVID-
19-infected patients. In previously reported studies, small molecule libraries that were
screened against MERS-CoV included approximately 300 drugs with FDA approval or that
were in clinical development [20,27]. Our screen included 1247 FDA-approved drugs, and
as a result, we identified the drugs not found in previous studies, indicating that further
opportunities exist for identifying novel anti-CoV drugs by screening larger libraries of
FDA-approved drugs and bioactives. Moreover, despite having used a different viral isolate
than in earlier reports, we corroborated four previously identified hits, including emetine
dihydrochloride, ouabain, cycloheximide, and nelfinavir mesylate. This strongly suggests
that the drugs reproducibly identified in our HCS assays and in the previously published
screens could be repurposed as potential therapeutic options for patients suffering from
CoV infections [27].

Figure 6 shows the classification of library compounds into 43 categories of pharmaco-
logical action, according to publicly available drug databases. Notably, the cardiovascular
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agents’ category contained 14 of the 54 final hit compounds (26%). These belong to a
class of cardiac glycosides, naturally derived agents that are used for treating cardiac
abnormalities and modulating sodium–potassium pump action [28]. Glycosides have also
been reported to exhibit antiviral activity against the herpes simplex virus and human
cytomegalovirus [29,30]. Consistent with these previous studies, our data indicate that
the cardiac glycosides ouabain, digitoxin, and digoxin also efficiently inhibit MERS-CoV
infection. Ouabain has been found to block cellular entry by CoV, such as MERS-CoV,
through Src kinase signaling [31]. Based on these data, we speculate that cardiac glycosides
may exert anti-MERS-CoV activity through the blockade of viral entry. However, more
experimental work will be required to elucidate the exact mechanism by which this occurs.
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Drug development may be hastened by repurposing FDA-approved drugs and in-
hibitors with known biological functions, pharmacological activities, and safety profiles.
Therefore, we prioritized 12 FDA-approved drugs and six bioactives not yet reported to
have anti-CoV activities; their information is summarized in Tables 3 and 4, respectively.
Important to note, a follow-up study confirmed seven of the 12 FDA-approved drugs listed
in Table 1 as active against SARS-CoV-2 [32]. An additional 26 inhibitors that our HCS
identified include bioactives and drugs that have been studied in clinical trials. A ranking
of these inhibitors according to selectivity index (SI) values, ranging from >6 to >156, is
shown in Supplementary Table S1.
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Table 3. Hit profiling and anti-MERS-CoV efficacies of FDA-approved drugs in Vero cells 1.

Drug Name Trade Name Putative Drug
Target

Pharmaceutical
Action

IC50
2

(µM)
SD 3

(±)
CC50

4

(µM) TI 5

Ouabain #,† Strodival Na, K-exchanging
ATPase pump

Cardiotonic
agent 0.08 0.0066 >25 § >312.5

Digitoxin #,† Digitaline Ca, Na-exchanging
ATPase pump

Cardiotonic
agent 0.16 0.0003 >25 § >156.3

Digoxin #,† Lanoxin Ca, Na-exchanging
ATPase pump

Cardiotonic
agent 0.17 0.0084 >25 § >147.1

Niclosamide #,† Niclocide,
others ATP synthase Agrochemical 0.55 0.363 >25 § >45.5

Atovaquone * Mepron Unknown
(lipophilic)

Anti-infective
agent 0.72 0.0585 >25 >34.7

Regorafenib #,†

(Bay 73–4506)
Stivarga Multiple kinases Anti-neoplastic

agent 2.31 0.0834 >25 >10.8

Lercanidipine
hydrochloride * Zanidip Calcium channel

blocker
Cardiovascular

agent 2.36 0.1654 >25 >10.6

Permethrin * Elimite,
others Na channel Agrochemical 3.60 0.7573 >25 >6.9

Octocrylene * None Estrogen receptor
alpha

Additive in
sunscreen 3.62 0.6435 >25 >6.9

Nelfinavir
mesylate #,† Viracept HIV-1 protease Antiviral agent 3.62 0.0177 >25 >6.9

Ciclesonide #,† Alvesco,
others

Glucocorticoid
ligand

Anti-inflammatory
agent 4.07 0.4907 >25 § >6.1

Benidipine
hydrochloride # Coniel Calcium channel

blocker
Cardiovascular

agent 4.07 0.7234 >25 >6.1

1 DrugBank database (version 5.0) was used for characterizing FDA-approved drugs; 2 50% inhibitory concentration (IC50); 3 standard
deviation (SD) of replicated IC50 values; 4 50% cytotoxicity concentration (CC50); 5 therapeutic index (TI): ratio of CC50/IC50; # drug acting
on the early stage of the viral life cycle, according to time-of-addition study; * drug acting on the late stage of the viral life cycle, according
to time-of-addition study; † activity in SARS-CoV-2 system [32]; § CC50 > 50 µM in Vero cells [32].

Table 4. Hit profiling and anti-MERS-CoV efficacies of selected bioactives in Vero cells 1.

Inhibitor Name Pharmaceutical Action IC50
2

(µM)
SD 3

(±)
CC50

4

(µM) TI 5

Emetine dihydrochloride Anti-neoplastic agent 0.08 0.0054 >25 >312.5
Oxyclozanide Anti-parasitic agent 0.07 0.0060 20.92 298.9

Cycloheximide Protein synthesis inhibitor 0.16 0.0140 >25 >156.3
Lanatoside C Cardiotonic agent 0.19 0.0103 >25 >131.6
Calcimycin Antibacterial agent 0.20 0.0165 18.10 90.5

Digitoxigenin Cardiotonic agent 0.29 0.0220 >25 >86.2
1 DrugBank database (version 5.0) was used for characterizing bioactives; 2 50% inhibitory concentration (IC50); 3 standard deviation (SD)
of replicated IC50 values; 4 50% cytotoxicity concentration (CC50); 5 therapeutic index (TI): ratio of CC50/IC50.

Our time-of-addition studies demonstrated chloroquine to be effective against MERS-
CoV only if administered no later than 3 hpi (Figure 2), and this was also the case for
ouabain, digitoxin, digoxin, niclosamide, regorafenib, nelfinavir mesylate, ciclesonide,
and benidipine hydrochloride (Figure 2, Supplementary Figure S2). Important to note,
ciclesonide, an immune system suppressor used to treat asthma and allergic rhinitis, was
recently shown to inhibit SARS-CoV-2 [33], the cause of COVID-19, and was reported by
Japanese medical doctors to have improved pneumonia symptoms in multiple COVID-19
patients [34]. Our data are consistent with previous reports, which indicated that ouabain
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and other cardiotonic steroids effectively block clathrin-mediated CoV endocytosis [10,31].
In contrast, the minor inhibitory effects we observed for atovaquone, lercanidipine hy-
drochloride, permethrin, and octocrylene throughout the time-course indicated that these
drugs likely act at later stages of the viral life cycle (Supplementary Figure S2). Notably, our
results indicate that lercanidipine hydrochloride and benidipine hydrochloride, both dihy-
dropyridine calcium channel blockers, display different patterns of viral inhibition [35,36].
This observation could be explained by the different channel selectivity of the two drugs:
benidipine hydrochloride blocks triple voltage-gated calcium channels, whereas lercanidip-
ine hydrochloride blocks single voltage-gated channels [37–39]. A dendrogram showing
the structural relationship of 36 selected inhibitors with anti-MERS-CoV activity is shown
in Supplementary Figure S3.

Combination therapies have become a standard for the treatment of human immun-
odeficiency virus (HIV) and hepatitis C virus (HCV) infections. They are advantageous
over monotherapies due to better antiviral efficacy, reduced toxicity, as well as the ability to
prevent the development of viral drug resistance, etc. In this manuscript, we demonstrated
that combinations of remdesivir with nelfinavir or camostat have synergistic anti-SARS-
CoV-2 effects in Vero-E6 and Calu-3 cells and lung organoids. Of note, camostat inhibits
serine proteases such as the transmembrane protease serine 2 (TMPRSS2), which is not
present in Vero-E6 cells. However, according to https://go.drugbank.com/drugs/DB13729
(5 April 2021), camostat targets Trypsin-1, Suppressor of tumorigenicity 14 protein, and
cholecystokinin, suggesting that one of these targets might be essential for replicating
coronaviruses in Vero cells. Furthermore, a phase III clinical trial has been initiated recently
with remdesivir–camostat combination in Korea (5 April 2021; http://www.koreaherald.
com/view.php?ud=20210104000816). Therefore, our identified drugs, in combination with
remdesivir, could potentially reduce the viral load and consequently lower the probability
of virus spread.

In summary, we identified 12 FDA-approved drugs that could be repurposed for
MERS-CoV or potentially COVID-19 therapy in alone or in combination with other drugs.
However, further in vitro studies are needed to investigate their exact antiviral mechanisms
and determine their potential synergistic effects to prioritize and select drugs for potential
use in randomized, double-blind clinical trials mandatory to assess their safe use in humans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13040651/s1. Figure S1: Example images of MERS-CoV inhibition in Vero cells, Figure S2:
Time-of-addition study with additional FDA-approved drugs, Figure S3: Structural relationship
between inhibitors, Table S1: Inhibitors identified by HCS with SI > 6.
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