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A B S T R A C T 

Objective: The body mass index (BMI) measured as weight in relation to height is an important monitor 

for obesity and diabetes, with individual variation under control by genetic and environmental factors. In 

transcriptome-wide association studies on BMI, the genetic contribution calls for controlling of genetic 

confounding that affects both BMI and gene expression. We performed a global gene expression profiling 

of BMI on peripheral blood cells using monozygotic twins for efficient handling of genetic make-ups.  

Methods: We applied a generalized association method to genome-wide gene expression data on 229 pairs 

of monozygotic twins (age 56-80 years) for detecting diverse patterns of correlation between BMI and gene 

expression. 

Results: We detected seven probes associated with BMI with p<1e-04, among them two probes with p<1e-

05 (p=2.83e-06 AAK1; p=7.83e-06 LILRA3). In total, the analysis found 1579 probes with nominal p<0.05. 

Biological pathway analysis of enriched pathways found 50 KEGG and 45 Reactome pathways 

(FDR<0.05). The identified top functional pathways included immune function, JAK-STAT signalling, 

insulin signalling and regulation of energy metabolism.  

Conclusion: This transcriptome-wide association study using monozygotic twins and generalized 

correlation identified differentially expressed genes and a broad spectrum of enriched biological pathways 

that may implicate metabolic health. 

 

                                                         © 2020 Qihua Tan. Hosting by Science Repository. All rights reserved  

Introduction 

 

The body mass index (BMI) quantifies the amount of tissue mass 

including muscle, fat and bone in an individual. It is highly associated 

with cardiovascular disease and diabetes and has profound influences on 

life quality and mortality [1-3]. In clinical application, BMI is a simple 

and widely used metric for defining overweight (25≤BMI<30, kg/m²) 

and obesity (BMI≥30 kg/m²), which are conditions tightly linked to the 

metabolic syndrome (MetS). Many epidemiological and molecular 

studies have been conducted to find the genetic and non-genetic 

(environmental) mechanisms underlying individual BMI variation in 

order to identify potential causes of MetS and eventually to find 

strategies for mitigating its burden to public health. Multiple genetic 

variants have been reported to affect BMI in genome-wide association 

studies, albeit with the proportion of BMI variation accounted for 

remaining far from the overall genetic contribution estimated in twin 
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studies, although recent effort based on whole genome sequencing has 

largely increased the contribution by genomic sequence variations [4, 5]. 

Instead of focusing on the genetic polymorphisms which are static across 

life span, analysis of gene expression profiles can directly depict the 

dynamic activity of functional genes in regulating the variation of BMI, 

especially when controlling for genetics.  

 

In transcriptome-wide association studies (TWAS), genetic variations 

can confound the relation between MetS related health conditions and 

gene expression (through functioning as cis- or trans-eQTLs). This is 

particularly crucial for BMI giving the high genetic contribution [4]. 

Compared to the ordinary case-control design using unrelated 

individuals, the use of twins has been proven a valuable approach in 

controlling genetic background, due to the shared genetic makeups in 

twins leveraging enriched statistical power [6, 7]. Moreover, current 

TWAS assumes linear relationship between gene expression and traits 

of interest, thus ignoring the diverse patterns of association in biology. 

By focusing on twins, we have investigated gene expression profiles in 

peripheral blood cells in association with BMI by introducing a 

generalized correlation method to capture different patterns (both linear 

and nonlinear) of association between gene expression and BMI while 

controlling for genetic confounding.  

 

Methods 

 

I Samples 

 

This study is based on a twin cohort, the Middle Aged Danish Twins 

(MADT), from the Danish Twin Register [8]. There are in total 229 

complete monozygotic twin pairs included in the analysis, 254 male and 

204 female twins, with age at sampling ranging from 56 to 80 and BMI 

from 15.77 to 38.15. Anthropometric measures and whole blood samples 

were taken over the period from 2008 to 2011. Blood cell counts of 449 

individuals were available and the blood cell counts of the other 9 

individuals were imputed by the estimate CellCounts function in the R 

package minfi using DNA methylation data collected on the same blood 

samples [9, 10]. 

 

II Global Gene Expression Analysis 

 

Whole blood samples were collected in PAXgene Blood RNA Tubes 

(PreAnalytiX GmbH, Hombrechtikon, Switzerland) and total RNA 

extracted using the PAXgene Blood miRNA kit (QIAGEN) according to 

the manufacturer’s protocol. Concentration of the extracted RNA was 

determined using a NanoDrop spectrophotometer ND-8000 (NanoDrop 

Technologies), and the quality was assessed by the Agilent 2100 

Bioanalyzer (Agilent Technologies). 

 

Gene-expression analysis was performed using the Agilent SurePrint G3 

Human GE 8×60K Microarray (Agilent Technologies), a dual-colour 

high-definition array containing 60K high quality probes of 60-mer. 

Sample labeling and array hybridization were carried out according to 

the ‘Two-Colour Microarray-Based Gene Expression Analysis – Low 

Input Quick Amp Labeling’-protocol (Agilent Technologies). Samples 

were labeled with Cy5 and the reference consisting of a pool of 16 

samples was labeled with Cy3. Hybridization, washing, scanning, and 

quantification were performed according to the array manufacturer's 

recommendations. 

 

III Data Pre-Processing 

 

The raw intensity data was background-corrected using the NormExp 

method and was then within-array normalized by Loess normalization 

method and between-array normalized by quantile normalization [11]. 

The normalized values were used to calculate log2-transformed 

Cy5/Cy3 ratios. Missing expression values were imputed by k-nearest 

neighbors averaging, and replicate probes were collapsed calculating the 

median. Data pre-processing was performed using the R packages limma 

[12]. All the probes on the Agilent SurePrint G3 array were re-annotated 

using GENCODE v.25 gene annotation database (Link). 

 

IV Statistical Analysis 

 

After normalization, we adjusted for covariates including age, sex, cell 

composition and first two PCs from the PCA (principal component 

analysis) on the gene expression data. We then applied a generalized 

measure of association, the generalized correlation coefficient (GCC), to 

investigate the association between intra-pair difference of BMI and 

intra-pair difference of expression to control the genetic and shared 

environmental effects, as proposed by Tan et al. [13]. GCC was 

computed using a ratio of maximum likelihoods for the marginal 

distribution and maximum weighted likelihoods for the joint distribution 

using the R package matie [14]. The mRNA probes with p<0.05 were 

used for gene set enrichment analysis (GSEA) to detect biological 

pathways over-represented by the listed probes for functional 

interpretation [15]. 

 

Results 

 

A total of 50599 probes were available on the microarray. We first 

removed house-keeping probes by calculating the coefficient of 

variation (CV) as standard deviation divided by mean of expression 

measurement for each probe. Probes with CV<0.1 were filtered out 

leaving 37716 probes for subsequent analysis. We identified 2 probes 

with p<1e-05 (A_33_P3289204 of AAK1 gene, p=2.83e-06;  

A_23_P79094 of LILRA3 gene, p=7.83e-06), 5 probes with p<1e-04 

(A_33_P3234809 of PAX8 gene, p=4.37e-05; A_32_P133767 of 

C12orf42 gene, p=5.52e-05; A_33_P3364060 of HR gene, p=6.11e-05; 

A_33_P3213179 of PPP1R3A gene, p=8e-05; A_23_P108280 of 

CYP4F12 gene, p=9.87e-05) and 1579 probes with p<0.05 

(Supplementary Table 1).  Table 1 shows the top 20 probes ranked by p 

values (p<6.24e-04). The Q-Q plot for probes with p<0.05 is shown in 

(Figure 1). The figure does not display inflated statistical significance 

although the sample contains highly correlated monozygotic twin pairs. 

The Manhattan plot for probes with p<0.05 are shown in (Figure 2). 
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Table 1: Top 20 probes from mRNA analysis. A is the association score or GCC from matie package. 

Probe ID Gene Symbol p-value A 

A_33_P3289204 AAK1 2.83E-06 0.216 

A_23_P79094 LILRA3 7.83E-06 0.207 

A_33_P3234809 PAX8 4.37E-05 0.190 

A_32_P133767 C12orf42 5.52E-05 0.187 

A_33_P3364060 HR 6.11E-05 0.186 

A_33_P3213179 PPP1R3A 8E-05 0.183 

A_23_P108280 CYP4F12 9.87E-05 0.181 

A_33_P3659808 PELP1 0.00014 0.177 

A_23_P67702 ZNF85 0.00023 0.171 

A_32_P9575 MRPL45 0.000236 0.171 

A_23_P45851 HIAT1 0.000256 0.170 

A_19_P00318014 SNHG11 0.000285 0.169 

A_24_P395621 RUNDC1 0.000363 0.166 

A_33_P3392250 FAM178A 0.000373 0.166 

A_33_P3295328 CLEC6A 0.000381 0.165 

A_23_P127948 ADM 0.00039 0.165 

A_23_P131899 SDCBP2 0.000417456 0.164 

A_23_P329924 HCAR2 0.000474119 0.163 

A_33_P3351189 LOC100129603 0.000492092 0.162 

A_23_P105973 SERPINA11 0.000623576 0.159 

 

Table 2: KEGG pathways identified by GSEA over-representation analysis. 

Gene Set Name # Genes in Gene 

Set (K) 

# Genes in 

Overlap (k) 

k/K p-value FDR q-value 

KEGG_PATHWAYS_IN_CANCER 328 33 0.101 8.64E-09 1.61E-06 

KEGG_JAK_STAT_SIGNALING_PATHWAY 155 17 0.110 1.08E-05 1.00E-03 

KEGG_INSULIN_SIGNALING_PATHWAY 137 15 0.110 3.56E-05 1.76E-03 

KEGG_DILATED_CARDIOMYOPATHY 92 12 0.130 3.78E-05 1.76E-03 

KEGG_MAPK_SIGNALING_PATHWAY 267 22 0.082 5.72E-05 2.13E-03 

KEGG_AXON_GUIDANCE 129 14 0.109 7.06E-05 2.19E-03 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 85 11 0.129 8.49E-05 2.25E-03 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 118 13 0.110 1.09E-04 2.53E-03 

KEGG_OLFACTORY_TRANSDUCTION 389 27 0.069 1.66E-04 3.44E-03 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 272 21 0.077 2.06E-04 3.84E-03 

KEGG_CARDIAC_MUSCLE_CONTRACTION 80 10 0.125 2.36E-04 3.99E-03 

KEGG_WNT_SIGNALING_PATHWAY 151 14 0.093 3.74E-04 5.14E-03 

KEGG_TIGHT_JUNCTION 134 13 0.097 3.86E-04 5.14E-03 

KEGG_PANCREATIC_CANCER 70 9 0.129 3.87E-04 5.14E-03 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 7 0.159 4.61E-04 5.56E-03 

KEGG_LEISHMANIA_INFECTION 72 9 0.125 4.78E-04 5.56E-03 

KEGG_VIRAL_MYOCARDITIS 73 9 0.123 5.30E-04 5.80E-03 

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 108 11 0.102 7.05E-04 6.84E-03 

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPAT

HY_ARVC 

76 9 0.118 7.15E-04 6.84E-03 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 8 0.129 7.88E-04 6.84E-03 

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 48 7 0.146 7.93E-04 6.84E-03 

KEGG_FOCAL_ADHESION 201 16 0.080 8.09E-04 6.84E-03 

KEGG_CELL_ADHESION_MOLECULES_CAMS 134 12 0.090 1.29E-03 1.04E-02 

KEGG_P53_SIGNALING_PATHWAY 69 8 0.116 1.60E-03 1.11E-02 

KEGG_PYRUVATE_METABOLISM 40 6 0.150 1.61E-03 1.11E-02 

KEGG_MELANOGENESIS 102 10 0.098 1.62E-03 1.11E-02 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 138 12 0.087 1.66E-03 1.11E-02 

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 216 16 0.074 1.72E-03 1.11E-02 

KEGG_TGF_BETA_SIGNALING_PATHWAY 86 9 0.105 1.74E-03 1.11E-02 
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KEGG_BASAL_CELL_CARCINOMA 55 7 0.127 1.80E-03 1.12E-02 

KEGG_ASTHMA 30 5 0.167 2.44E-03 1.45E-02 

KEGG_LYSINE_DEGRADATION 44 6 0.136 2.65E-03 1.45E-02 

KEGG_HUNTINGTONS_DISEASE 185 14 0.076 2.67E-03 1.45E-02 

KEGG_ADHERENS_JUNCTION 75 8 0.107 2.73E-03 1.45E-02 

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 75 8 0.107 2.73E-03 1.45E-02 

KEGG_ACUTE_MYELOID_LEUKEMIA 60 7 0.117 2.99E-03 1.54E-02 

KEGG_CITRATE_CYCLE_TCA_CYCLE 32 5 0.1562 3.27E-03 1.65E-02 

KEGG_COLORECTAL_CANCER 62 7 0.1129 3.60E-03 1.76E-02 

KEGG_BASE_EXCISION_REPAIR 35 5 0.1429 4.87E-03 2.32E-02 

KEGG_PURINE_METABOLISM 159 12 0.0755 5.30E-03 2.47E-02 

KEGG_SMALL_CELL_LUNG_CANCER 84 8 0.0952 5.50E-03 2.49E-02 

KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 23 4 0.1739 5.69E-03 2.52E-02 

KEGG_ENDOMETRIAL_CANCER 52 6 0.1154 6.17E-03 2.67E-02 

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 70 7 0.1 7.04E-03 2.98E-02 

KEGG_NON_SMALL_CELL_LUNG_CANCER 54 6 0.1111 7.42E-03 3.07E-02 

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 72 7 0.0972 8.20E-03 3.27E-02 

KEGG_CELL_CYCLE 128 10 0.0781 8.26E-03 3.27E-02 

KEGG_GALACTOSE_METABOLISM 26 4 0.1538 8.91E-03 3.38E-02 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE 26 4 0.1538 8.91E-03 3.38E-02 

KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 76 7 0.0921 1.09E-02 4.06E-02 

 

Table 3: Reactome pathways identified by GSEA over-representation analysis. 

Gene Set Name # Genes in 

Gene Set (K) 

# Genes in 

Overlap (k) 

k/K p-value FDR q-value 

REACTOME_IMMUNE_SYSTEM 933 72 0.077 9.41E-12 6.34E-09 

REACTOME_SIGNALING_BY_GPCR 920 65 0.071 3.38E-09 1.14E-06 

REACTOME_GPCR_DOWNSTREAM_SIGNALING 805 58 0.072 1.18E-08 2.66E-06 

REACTOME_ADAPTIVE_IMMUNE_SYSTEM 539 43 0.080 5.58E-08 9.40E-06 

REACTOME_HEMOSTASIS 466 37 0.079 5.16E-07 6.96E-05 

REACTOME_DEVELOPMENTAL_BIOLOGY 396 32 0.081 2.04E-06 2.29E-04 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 478 35 0.073 6.30E-06 5.73E-04 

REACTOME_CELL_CYCLE 421 32 0.076 7.28E-06 5.73E-04 

REACTOME_SIGNALLING_BY_NGF 217 21 0.097 7.65E-06 5.73E-04 

REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION 91 12 0.132 3.39E-05 2.28E-03 

REACTOME_CELL_CYCLE_MITOTIC 325 25 0.077 5.74E-05 3.52E-03 

REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 24 6 0.250 8.73E-05 4.90E-03 

REACTOME_TRANSCRIPTIONAL_REGULATION_OF_WHITE_ADIPOCYTE_

DIFFERENTIATION 

72 10 0.139 9.67E-05 5.01E-03 

REACTOME_G_ALPHA1213_SIGNALLING_EVENTS 74 10 0.135 1.22E-04 5.89E-03 

REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_D

EGRADATION 

212 18 0.085 1.80E-04 7.56E-03 

REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES 413 28 0.068 1.88E-04 7.56E-03 

REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESEN

TATION 

251 20 0.080 1.91E-04 7.56E-03 

REACTOME_P75_NTR_RECEPTOR_MEDIATED_SIGNALLING 81 10 0.124 2.61E-04 9.79E-03 

REACTOME_GPCR_LIGAND_BINDING 408 27 0.066 3.54E-04 1.26E-02 

REACTOME_PHASE1_FUNCTIONALIZATION_OF_COMPOUNDS 70 9 0.129 3.87E-04 1.30E-02 

REACTOME_OLFACTORY_SIGNALING_PATHWAY 328 23 0.070 4.23E-04 1.30E-02 

REACTOME_METABOLISM_OF_CARBOHYDRATES 247 19 0.077 4.23E-04 1.30E-02 

REACTOME_SIGNALING_BY_NOTCH 103 11 0.107 4.71E-04 1.38E-02 

REACTOME_AXON_GUIDANCE 251 19 0.076 5.16E-04 1.45E-02 

REACTOME_SIGNALING_BY_ILS 107 11 0.103 6.51E-04 1.76E-02 

REACTOME_INNATE_IMMUNE_SYSTEM 279 20 0.072 7.41E-04 1.85E-02 

REACTOME_NEURONAL_SYSTEM 279 20 0.072 7.41E-04 1.85E-02 

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 200 16 0.080 7.67E-04 1.85E-02 

REACTOME_PLATELET_HOMEOSTASIS 78 9 0.115 8.64E-04 1.97E-02 
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REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY 63 8 0.127 8.78E-04 1.97E-02 

REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE 51 7 0.137 1.15E-03 2.49E-02 

REACTOME_MEIOSIS 116 11 0.095 1.27E-03 2.69E-02 

REACTOME_PLATELET_SENSITIZATION_BY_LDL 16 4 0.250 1.40E-03 2.77E-02 

REACTOME_XENOBIOTICS 16 4 0.250 1.40E-03 2.77E-02 

REACTOME_STRIATED_MUSCLE_CONTRACTION 27 5 0.185 1.50E-03 2.88E-02 

REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMB

RANE 

137 12 0.088 1.56E-03 2.92E-02 

REACTOME_GLUCOSE_METABOLISM 69 8 0.116 1.60E-03 2.92E-02 

REACTOME_LIPOPROTEIN_METABOLISM 28 5 0.179 1.77E-03 3.15E-02 

REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCHONDRIAL_TRANSC

RIPTION 

122 11 0.090 1.91E-03 3.31E-02 

REACTOME_NRAGE_SIGNALS_DEATH_THROUGH_JNK 43 6 0.140 2.36E-03 3.97E-02 

REACTOME_GENERIC_TRANSCRIPTION_PATHWAY 352 22 0.063 2.42E-03 3.99E-02 

REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING 44 6 0.136 2.65E-03 4.26E-02 

REACTOME_CELL_DEATH_SIGNALLING_VIA_NRAGE_NRIF_AND_NADE 60 7 0.117 2.99E-03 4.68E-02 

REACTOME_DNA_REPAIR 112 10 0.089 3.24E-03 4.97E-02 

REACTOME_ACTIVATION_OF_THE_AP1_FAMILY_OF_TRANSCRIPTION_F

ACTORS 

10 3 0.300 3.32E-03 4.97E-02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Q-Q plots for single probe analysis (p<0.05 only). The top 

probes (red) deviate upward from the p values of null hypothesis. 

 

By submitting the genes in Supplementary (Table 1) to GSEA, we 

identified 50 KEGG (The Kyoto Encyclopedia of Genes and Genomes) 

pathways with FDR<0.05 (Table 2). Among the top significant pathways 

are JAK/STAT signaling pathway (FDR=1e-03), insulin signaling 

pathway (FDR=1.76e-03), MAPK signaling pathway (FDR=2.13e-03), 

axon guidance (FDR=2.19e-03), etc. Considering the fact that KEGG 

focuses on intermediary metabolism, we further performed pathway 

analysis using the Reactome database containing higher-level pathways 

compiled based on a broad range of species [16].  Table 3 shows the 45 

Reactome pathways identified with FDR<0.05. Among them, nine are 

highly significant with FDR<1e-03 (p<1e-05) such as immune system 

(FDR=1.34e-09), G protein-coupled receptor (GPCR) signaling pathway 

(FDR=1.14e-06), hemostasis (FDR=6.96e-05), developmental biology 

(FDR=2.29e-04), signaling by nerve growth factor (NGF) (FDR=5.73e-

04), olfactory signaling (FDR=1.3e-02) etc. Table 3 also contains 

multiple pathways directly implicated in metabolism including 

metabolism of lipids and lipoproteins (FDR=5.73e-04), metabolism of 

carbohydrates (FDR=1.30e-02), glucose metabolism (FDR=2.93e-02) 

and lipoprotein metabolism (FDR=3.15e-02). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Manhattan plot showing probe significance (p<0.05 only) along each chromosome. 
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Discussion 

 

The high genetic contribution to BMI variation as estimated in twins, 

and in family studies, suggests the need to study the relation between 

transcriptional activity and BMI while controlling for genetics, given the 

fact that genetic variations could affect both BMI and gene expression 

[4, 17-19]. Instead of using unrelated samples, focusing on genetically 

identical individuals (e.g. MZ twins) can control for genetic variations 

in the study samples. However, traditional statistical testing on 

dependent samples requires modeling the relatedness in sample clusters 

using, for example, the mixed effects modeling assigning sample 

correlation as random effect variables with increased model complexity 

and reduced power in statistical testing. The application of GCC on twin 

data provides a simple but efficient way for handling related samples in 

TWAS. Most importantly, generalized correlation is a non-parametric 

method by nature meaning that its assessment of correlation between 

gene expression and BMI was done without imposing any assumption 

such as the linear relationship in regression modeling. The latter is 

sensitive to outlier observations in model fitting. As a result, our reported 

gene expression markers detected by the model-free approach are 

biologically meaningful and significantly enriched in functional 

pathways closely implicated in metabolism, although, many other 

pathways e.g. related to blood cell functioning (immune biology and 

hemostasis) and neuro function were also enriched. 

 

In (Figure 1), the top probes (red coloured) show upward deviation from 

p values under the null hypothesis suggesting their non-random 

association with BMI. In accordance, functional annotation and 

published literature confirm their biological relevance. In (Table 1), the 

most significant probe (A_33_P3289204, p=2.83e-06) is from AAK1 

gene. The gene has been shown as a positive regulator of the Notch 

pathway which is a novel regulator of metabolism [20, 21]. Both AAK1 

and Notch signaling are implicated in neurological impairments, which 

have been shown to relate to metabolic disorders [22-24]. The number 2 

probe (A_23_P79094, p=7.83e-06) belongs to LILRA3 for which a SNP 

(rs367070) has been reported to associate with HDL-C [25]. The human 

LILRA gene family has diverse functions characterized by regulation of 

inflammation and immune tolerance [26]. The LILRA3 regulated 

immunity alteration could be involved in obesity, a condition 

characterized by chronic low-grade inflammation [27].  For the third 

gene in (Table 1), PAX8, differential DNA methylation was identified to 

associate with gestational famine exposure and metabolic traits [28]. 

Other interesting genes linked to top probes of (Table 1) include 

PPP1R3A whose SNP variation has been associated with risk of type 2 

diabetes and CYP4F12 which belongs to the cytochrome P450 4 (CYP4) 

family implicated in various biological functions including 

inflammation, cardiovascular health, and cancer [29, 30]. 

 

Biological pathway analysis was performed using KEGG and Reactome 

databases with both revealing significantly enriched functional pathways 

implicated in metabolic health together with other biological functions. 

For example, the top pathways in (Table 2) include pathways in cancer 

and insulin signaling. In the literature, development of insulin resistance 

and hyperinsulinemia has been shown as a clear link between adipose 

tissue expansion and etiology of diseases like obesity, type-2 diabetes 

and cancer [31]. Likewise, the implication of MAPK signaling in 

obesity-related immune paralysis and cancer has been reviewed very 

recently [32]. Another top significant pathway, JAK/STAT signaling 

pathway in (Table 2) is a highly conserved functional pathway required 

for normal homeostasis which, when dysregulated, contributes to the 

development of obesity and diabetes [33]. 

 

Like the KEGG pathways (Table 2), the importance of immunity is also 

reflected in the top significant Reactome pathways shown in (Table 3) 

(immune system with FDR 6.34e-09 and adaptive immune system with 

FDR 9.40e-06). The phenomenon can be explained by the target tissue 

used in this study, i.e. whole blood, which comprises of immune cells. 

Moreover, results in (Table 3) emphasize high implication of GPCR 

signaling in BMI variation. This is highly interesting as the 

melanocortin-4 receptor (MC4R), a GPCR embedded in the membranes 

of nerve cells in the brain's appetite control center, has been shown to 

provide clues to obesity treatment [34]. Another study has found that 

pathway of GPCR was overrepresented and it is associated with pediatric 

obesity [35]. As a potential therapeutic target for intervention in 

cognitive deficits, the association of GPCR signaling pathway with BMI 

could reflect the intrinsic connection between cognition and obesity [36, 

37]. Table 3 also contains significant pathways directly related to 

metabolism of lipids, lipoproteins and carbohydrates, etc. which are 

closely related to obesity development as well as pathways overlapping 

with (Table 2) including axon guidance reportedly to implicate in early-

onset obesity [38], and olfactory signaling/transduction shown to 

regulate lipid metabolism through neuroendocrine signaling in 

Caenorhabditis elegans [38, 39]. Methylation of olfactory pathway 

genes has been associated with dietary intake and obesity features [40].  

 

In summary, by introducing generalized correlation coefficient for 

assumption-free association analysis and using monozygotic twins to 

control genetic confounding, this transcriptome-wide association study 

on BMI using peripheral blood identified differentially expressed genes 

and their enriched biological pathways implicated in multiple biological 

functions including immune biology, hemostasis, neural function, 

cancer, and metabolism. Findings from this study merit replications 

using independent samples to verify expression markers and functional 

pathways for characterizing and determining non-genetic etiology of 

obesity and health conditions. 

 

Statement of Ethics 

 

The survey was approved by The Regional Scientific Ethical 

Committees for Southern Denmark (S-VF-19980072) and conducted in 

accordance with the Helsinki II declaration, with informed consent to 

participate in the survey obtained from all participants.  

 

Funding 

 

This study was jointly supported by the Lundbeck Foundation (grant 

number R170-2014-1353), the DFF research project 1 from the Danish 

Council for Independent Research, Medical Sciences (DFF-FSS) (grant 

number DFF – 6110-00114); the Novo Nordisk Foundation Medical and 

Natural Sciences Research Grant (grant number NNF13OC0007493). JB 

is grateful for funding from VILLUM Young Investigator grant nr. 

13154 and funding from the BMBF center CLINSPECT-M. 

 

 



TWAS on BMI in twins                7 

 

Genetics and Genomics doi:10.31487/j.GG.2020.01.04       Volume 1(1): 7-8 

Conflicts of Interest 

 

None. 

REFERENCES 

 

1. De Gonzalez AB, Hartge P, Cerhan JR, Flint AJ, Hannan L et al. (2010) 

Body-mass index and mortality among 1.46 million white adults. N 

Engl J Med 363: 2211-2219. [Crossref] 

2. NCD Risk Factor Collaboration (2016) Trends in adult body-mass 

index in 200 countries from 1975 to 2014: A pooled analysis of 1698 

population-based measurement studies with 19.2 million participants. 

Lancet 387: 1377-1396. [Crossref] 

3. Gaziano TA, Opie LH (2009) Body-mass index and mortality. Lancet 

374: 113-114. [Crossref] 

4. Hjelmborg JVB, Fagnani C, Silventoinen K, McGue M, Korkeila M et 

al. (2008) Genetic influences on growth traits of BMI: A longitudinal 

study of adult twins. Obesity 16: 847-852. [Crossref] 

5. Wainschtein P, Jain DP, Yengo L, Zheng Z, Shadyab AH et al. (2019) 

Recovery of trait heritability from whole genome sequence data. 

BioRxiv. 

6. Li W, Christiansen L, Hjelmborg J, Baumbach J, Tan Q (2018) On the 

power of epigenome-wide association studies using a disease-

discordant twin design. Bioinformatics 34: 4073-4078. [Crossref] 

7. Tan Q (2013) Epigenetic epidemiology of complex diseases using 

twins. Med Epigenet 1: 46-51. 

8. Gaist D, Bathum L, Skythhe A, Jensen TK, McGue M et al. (2000) 

Strength and anthropometric measures in identical and fraternal twins: 

No evidence of masculinization of females with male co-twins. 

Epidemiology 11: 340-343. [Crossref] 

9. Aryee MJ, Jaffe AE, Corrada Bravo H, Ladd Acosta C, Feinberg AP et 

al. (2014) Minfi: A flexible and comprehensive Bioconductor package 

for the analysis of Infinium DNA methylation microarrays. 

Bioinformatics 30: 1363-1369. [Crossref] 

10. Soerensen M, Li W, Debrabant B, Nygaard M, Mengel From J et al. 

(2019) Epigenome-wide exploratory study of monozygotic twins 

suggests differentially methylated regions to associate with hand grip 

strength. Biogerontology 20: 627-647. [Crossref] 

11. Yang YH, Dudoit S, Luu P, Lin DM, Peng V et al. (2002) 

Normalization for cDNA microarray data: A robust composite method 

addressing single and multiple slide systematic variation. Nucleic Acids 

Res 30: e15. [Crossref] 

12. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D et al. (2007) 

A comparison of background correction methods for two-colour 

microarrays. Bioinformatics 23: 2700-2707. [Crossref] 

13. Tan Q, Christiansen L, Hjelmborg JVB, Christensen K (2015) Twin 

methodology in epigenetic studies. J Exp Biol 218: 134-139. [Crossref] 

14. Murrell B, Murrell D, Murrell H (2016) Discovering general 

multidimensional associations. PLoS One 11: e0151551. [Crossref] 

15. Subramanian A, Tomayo P, Mootha VK, Mukherjee S, Ebert BL et al. 

(2005) Gene set enrichment analysis: A knowledge-based approach for 

interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 

102: 15545-15550. [Crossref] 

16. Haw R, Hermjakob H, D’Eustachio P, Stein L (2011) Reactome 

pathway analysis to enrich biological discovery in proteomics data sets. 

Proteomics 11: 3598-3613. [Crossref] 

17. Li S, Duan H, Pang Z, Zhang D, Duan H et al. (2013) Heritability of 

eleven metabolic phenotypes in Danish and Chinese twins: A cross-

population comparison. Obesity 21: 1908-1914. [Crossref] 

18. Skarić Jurić T, Ginsburg E, Kobyliansky E, Malkin I, Narancić NS et 

al. (2003) Complex segregation analysis of body height, weight and 

BMI in pedigree data from Middle Dalmatia, Croatia. Coll Antropol 27: 

135-149. [Crossref] 

19. Lee KE, Klein BEK, Klein R (2003) Familial aggregation of 

components of the multiple metabolic syndrome in the Framingham 

Heart and Offspring Cohorts: Genetic Analysis Workshop Problem 1. 

BMC Genet 4: S94. [Crossref] 

20. Gupta Rossi N, Ortica S, Meas Yedid V, Heuss S, Moretti J et al. (2011) 

The adaptor-associated kinase 1, AAK1, is a positive regulator of the 

notch pathway. J Biol Chem 286: 18720-18730. [Crossref] 

21. Bi P, Kuang S (2015) Notch signaling as a novel regulator of 

metabolism. Trends Endocrinol Metab 26: 248-255. [Crossref] 

22. Schubert KO, Föcking M, Prehn JHM, Cotter DR (2012) Hypothesis 

review: Are clathrin-mediated endocytosis and clathrin-dependent 

membrane and protein trafficking core pathophysiological processes in 

schizophrenia and bipolar disorder. Mol Psychiatry 17: 669-681. 

[Crossref] 

23. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just 

development: Notch signalling in the adult brain. Nat Rev Neurosci 12: 

269-283. [Crossref] 

24. O’Brien PD, Hinder LM, Callaghan BC, Feldman EL (2017) 

Neurological consequences of obesity. Lancet Neurol 16: 465-477. 

[Crossref] 

25. Stanley A, Ponde CK, Rajani RM, Ashavaid TF (2017) Association 

between genetic loci linked to HDL-C levels and Indian patients with 

CAD: a pilot study. Heart Asia 9: 9-13. [Crossref] 

26. Hirayasu K, Arase H (2015) Functional and genetic diversity of 

leukocyte immunoglobulin-like receptor and implication for disease 

associations. J Hum Genet 60: 703-708. [Crossref] 

27. Lee H, Lee IS, Choue R (2013) Obesity, Inflammation and Diet. 

Pediatr Gastroenterol Hepatol Nutr 16: 143-152. [Crossref] 

28. Finer S, Iqbal MS, Lowe R, Ogunkolade BW, Pervin S et al. (2016) Is 

famine exposure during developmental life in rural Bangladesh 

associated with a metabolic and epigenetic signature in young 

adulthood? A historical cohort study. BMJ Open 6: e011768. [Crossref] 

29. Sánchez Pozos K, Ortíz López MG, Peña Espinoza BI, Granados 

Silvestre MLA, Jiménez Jacinto V et al. (2018) Whole-exome 

sequencing in maya indigenous families: variant in PPP1R3A is 

associated with type 2 diabetes. Mol Genet Genomics 293: 1205-1216. 

[Crossref] 

30. Jarrar YB, Lee SJ (2019) Molecular functionality of cytochrome P450 

4 (CYP4) genetic polymorphisms and their clinical implications. Int J 

Mol Sci 20: 4274. [Crossref] 

31. Poloz Y, Stambolic V (2015) Obesity and cancer, a case for insulin 

signaling. Cell Death Dis 6: e2037. [Crossref] 

32. Donohoe F, Wilkinson M, Baxter M, Brennan DJ (2020) Mitogen-

Activated Protein Kinase (MAPK) and Obesity-Related Cancer. Int J 

Mol Sci 21: 1241. [Crossref] 

33. Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ (2016) 

The JAK/STAT pathway in obesity and diabetes. FEBS J 283: 3002-

3015. [Crossref] 

https://pubmed.ncbi.nlm.nih.gov/21121834/
https://pubmed.ncbi.nlm.nih.gov/27115820/
https://pubmed.ncbi.nlm.nih.gov/19595336/
https://pubmed.ncbi.nlm.nih.gov/18239571/
https://pubmed.ncbi.nlm.nih.gov/29982314/
https://pubmed.ncbi.nlm.nih.gov/10784255/
https://pubmed.ncbi.nlm.nih.gov/24478339/
https://pubmed.ncbi.nlm.nih.gov/31254144/
https://pubmed.ncbi.nlm.nih.gov/11842121/
https://pubmed.ncbi.nlm.nih.gov/17720982/
https://pubmed.ncbi.nlm.nih.gov/25568460/
https://pubmed.ncbi.nlm.nih.gov/26991498/
https://pubmed.ncbi.nlm.nih.gov/16199517/
https://pubmed.ncbi.nlm.nih.gov/21751369/
https://pubmed.ncbi.nlm.nih.gov/23686756/
https://pubmed.ncbi.nlm.nih.gov/12974141/
https://pubmed.ncbi.nlm.nih.gov/14975162/
https://pubmed.ncbi.nlm.nih.gov/21464124/
https://pubmed.ncbi.nlm.nih.gov/25805408/
https://pubmed.ncbi.nlm.nih.gov/21986877/
https://pubmed.ncbi.nlm.nih.gov/21505516/
https://pubmed.ncbi.nlm.nih.gov/28504110/
https://pubmed.ncbi.nlm.nih.gov/28123455/
https://pubmed.ncbi.nlm.nih.gov/26040207/
https://pubmed.ncbi.nlm.nih.gov/24224147/
https://pubmed.ncbi.nlm.nih.gov/27881521/
https://pubmed.ncbi.nlm.nih.gov/29948331/
https://pubmed.ncbi.nlm.nih.gov/31480463/
https://pubmed.ncbi.nlm.nih.gov/26720346/
https://pubmed.ncbi.nlm.nih.gov/32069845/
https://pubmed.ncbi.nlm.nih.gov/26972840/


TWAS on BMI in twins                8 

 

Genetics and Genomics doi:10.31487/j.GG.2020.01.04       Volume 1(1): 8-8 

34. Ghamari Langroudi M, Digby GJ, Sebag JA, Millhauser GL, Palomino 

R et al. (2015) G-protein-independent coupling of MC4R to Kir7.1 in 

hypothalamic neurons. Nature 520: 94-98. [Crossref] 

35. Dorajoo R, Ong RTH, Sim X, Wang L, Liu W et al. (2017) The 

contribution of recently identified adult BMI risk loci to paediatric 

obesity in a Singaporean Chinese childhood dataset. Pediatr Obes 12: 

e46-e50. [Crossref] 

36. Azam S, Haque ME, Jakaria M, Jo SH, Kim IS et al. (2020) G-Protein-

Coupled Receptors in CNS: A Potential Therapeutic Target for 

Intervention in Neurodegenerative Disorders and Associated Cognitive 

Deficits. Cells 9: 506. [Crossref] 

37. Smith E, Hay P, Campbell L, Trollor JN (2011) A review of the 

association between obesity and cognitive function across the lifespan: 

Implications for novel approaches to prevention and treatment. Obes 

Rev 12: 740-55. [Crossref] 

38. Zeltser LM (2019) Axon Guidance Molecules Implicated in Early-

Onset Obesity. Trends Neurosci 42: 439-440. [Crossref] 

39. Mutlu AS, Gao SM, Zhang H, Wang MC (2020) Olfactory specificity 

regulates lipid metabolism through neuroendocrine signaling in 

Caenorhabditis elegans. Nat Commun 11: 1450. [Crossref] 

40. Ramos Lopez O, Riezu Boj JI, Milagro FI, Zulet MA, Santos JL et al. 

(2019) Associations between olfactory pathway gene methylation 

marks, obesity features and dietary intakes. Genes Nutr 14: 11. 

[Crossref] 

 

https://pubmed.ncbi.nlm.nih.gov/25600267/
https://pubmed.ncbi.nlm.nih.gov/27780307/
https://pubmed.ncbi.nlm.nih.gov/32102186/
https://pubmed.ncbi.nlm.nih.gov/21991597/
https://pubmed.ncbi.nlm.nih.gov/30981443/
https://pubmed.ncbi.nlm.nih.gov/32193370/
https://pubmed.ncbi.nlm.nih.gov/31057674/

