1	Evaluating a novel formula for noninvasive estimation of arterial
2	carbon dioxide during postresuscitation care
3	Short title: Formula for estimating arterial CO ₂
4	
5	Rentola R ¹ , Skrifvars MB ² ,Heinonen E ² , Häggblom T ³ , Hästbacka J ¹ ,
6	
7 8 9 10	¹ Division of Intensive Care, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, and Helsinki University Hospital, Stenbäckinkatu 9 PO BOX 100, FI-00029 HUS, Helsinki, Finland
11 12 13	² Department of Emergency Care and Services, University of Helsinki, and Helsinki University Hospital, Stenbäckinkatu 9 PO BOX 100, FI-00029 HUS, Helsinki, Finland
14 15 16	³ GE Clinical Care Solutions, Anesthesia and Respiratory Care, Kuortaneenkatu 2 00510, Helsinki, Finland
17 18	Word count: 2988
19 20 21 22 23 24 25 26 27	Corresponding author: Johanna Hästbacka, MD, PhD, University of Helsinki and Helsinki University Hospital Department of Anaesthesiology, Intensive Care and Pain Medicine Haartmaninkatu 4, PB-340, FI-00029 HUS, Helsinki, Finland Phone: +358504286701 Fax: +358947172368 johanna.hastbacka@hus.fi
28 29 30 31 32	Conflicts of interest Dr. Markus Skrifvars has received research funding from GE Healthcare and lecture fees from Covidien and BARD Medical (Ireland). Authors Erkki Heinonen and Tom Häggblom are employees of GE Healthcare.
33	
34	
35	

36 Abstract

37 Background

38 Controlling arterial carbon dioxide is paramount in mechanically ventilated patients, and an

39 accurate and continuous noninvasive monitoring method would optimize management in

40 dynamic situations. In this study, we validated and further refined formulas for estimating

41 partial pressure of carbon dioxide with respiratory gas and pulse oximetry data in

42 mechanically ventilated cardiac arrest patients.

43 Methods

- 44 A total of 4,741 data sets were collected retrospectively from 233 resuscitated patients
- 45 undergoing therapeutic hypothermia. The original formula used to analyze the data is
- 46 $PaCO_2-est1=PETCO_2+k[(PIO_2-PETCO_2) PaO_2]$. To achieve better accuracy, we further
- 47 modified the formula to $PaCO_2$ -est2= $k_1*PETCO_2 + k_2*(PIO_2-PETCO_2)+k_3*(100-SpO_2)$. The
- 48 coefficients were determined by identifying the minimal difference between the measured
- 49 and calculated arterial carbon dioxide values in a development set. The accuracy of these
- 50 two methods was compared with the estimation of the partial pressure of carbon dioxide
- 51 using end-tidal carbon dioxide.
- 52 Results
- 53 With PaCO₂-est1, the mean difference between the partial pressure of carbon dioxide, and
- 54 the estimated carbon dioxide was 0.08 kPa (SE \pm 0.003); with PaCO₂-est2 the difference was
- 55 0.036 kPa (SE ± 0.009). The mean difference between the partial pressure of carbon dioxide
- 56 and end-tidal carbon dioxide was 0.72 kPa (SE ± 0.01). In a mixed linear model, there was a
- 57 significant difference between the estimation using end-tidal carbon dioxide and PaCO₂-est1
- 58 (p<0.001) and PaCO₂-est2 (p<0.001), respectively.

59 Conclusions

- This novel formula appears to provide an accurate, continuous, and noninvasive estimationof arterial carbon dioxide.
- 62
- 63
- 64

65 Introduction

66

Monitoring carbon dioxide is paramount in mechanically ventilated patients and commonly
performed by measuring the partial pressure of carbon dioxide (PaCO₂) with arterial blood
gas (ABG) analysis. Although an ABG analysis intermittently provides exact PaCO₂ values,
PaCO₂ may change despite constant ventilation.

71 End-tidal carbon dioxide generally underestimates arterial PaCO₂.¹ End-tidal carbon 72 dioxide is affected by the ventilation/perfusion ratio (V/Q ratio), possible cardiac disease 73 such as right-to-left shunt, and increased dead space .² Maintaining normoventilation may 74 be difficult under circumstances where ABG measurements is not available, including 75 prehospital care and patient transport. ³ The measurement of PETCO₂ with continuous 76 capnography is used as a surrogate but may be a poor indicator of PaCO₂ because of V/Q 77 mismatch. Dyscarbia and unintentional deviation from normoventilation have been 78 associated with poor outcome. ⁴⁻⁵ Therefore, seeking new dynamic methods to 79 noninvasively estimate PaCO₂ is highly important.⁶

80 We present a method for estimating the PaCO₂ level in a continuous and noninvasive 81 way. Previously, we tested a formula for estimating arterial carbon dioxide partial pressures 82 in an experimental model and found good agreement between this formula with measured 83 PaCO₂ values in various physiological and pathophysiological conditions. ⁷ The formula was 84 developed based on the assumption that the degree of V/Q mismatch behind the alveolar-85 arterial oxygen tension difference (PA- aO_2) is similar for both O_2 and CO_2 . In our previous 86 study, the estimation of PaO₂ was evaluated purely under experimental conditions. The 87 primary aim of the present study was to test the agreement of measured PaCO₂ and 88 estimated PaCO₂ by the original formula in mechanically ventilated cardiac arrest (CA)

89	patients. The secondary aim was to validate and refine this formula to achieve a better
90	agreement. In addition, we studied whether the accuracy of the current formulas was
91	affected by patient temperatures and the mean arterial blood pressure levels.
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	

110 Methods

111

112 Study subjects and settings

We conducted a retrospective study in mechanically ventilated adult (≥18 years of age)
patients who were treated after CA in a tertiary academic hospital between October 2012
and September 2016. Research approval was obtained from the Hospital District of Helsinki
and Uusimaa (HUS/420/2018 25.04.2018).

117

118 Collected data

From the hospital laboratory records, we collected the data of temperature-corrected 119 120 PaCO₂ samples taken within the first 48 hours of ICU admission. Physiological data, including 121 respiratory gas values, peripheral oxygen saturation (SpO₂), and body temperature at the 122 time points corresponding to each ABG sampling, were collected from the ICU electronic 123 patient data management system (Picis, Wakefield, MA, USA). Patient characteristics, such 124 as age, height, weight, and gender, were collected from the ICU electronic patient data 125 management system. Comorbidities and resuscitation factors were collected from 126 electronic patient medical records (Uranus, CGI, Canada). Organ dysfunction and severity of 127 illness scores (Sequential Organ Failure Assessment [SOFA]; the Simplified Acute Physiology 128 Score II [SAPS II]); and the Acute Physiology and Chronic Health Evaluation II [APACHE II]) 129 scores were retrieved from the Finnish Intensive Care Quality Consortium Database (Tieto Healthcare & Welfare Oy, Espoo, Finland). 8-10 130

131

Estimation of arterial CO₂ partial pressure 133

134 The original formula used for estimating PaCO₂ has been published previously and is defined 135 as follows: 7

136

PaCO₂-est1= PETCO₂+k[(PIO₂-PETCO₂)-PaO₂]

137 where PETCO₂ is the measured end-tidal CO₂ pressure and PIO₂ is the measured inspired O₂ 138 pressure with the equation of FIO₂ x (barometric pressure–saturated vapor pressure of 139 H₂O). PaO₂ is estimated from the oxygen dissociation curve. ¹¹ This formula was developed 140 further in an attempt to improve accuracy. The patient population was divided randomly 141 into derivation and validation groups. Using linear regression, we used derivation data to 142 compose the new, calibrated formula and to determine the calibration factors that would 143 minimize the difference between estimated and measured PaCO₂ values.

144

145 Creation of the calibrated, new formula (PaCO₂-est2)

146 The relationship factors were defined by fitting the data points for the minimal difference 147 between the blood gas measured PaCO₂ and the novel formula estimated value. For this 148 purpose, 6,580 data points measured from the 233 patients were divided into two groups 149 according to PETCO₂ values. Data points having PETCO₂ < 3 kPa were excluded as potentially 150 artifactual, for example, a leak caused by side-steam gas sampling. The remaining data were 151 randomly allocated to a derivation group of 50 patients. The remaining 183 patients 152 composed the validation group. The 1008 data sets of the derivation group were divided according to a PETCO₂ value of 4 kPa. The 4 kPa division value was randomly selected to 153 154 reflect potentially major (< 4 kPa) and normal or minor (\geq 4 kPa) V/Q mismatches that could result in different relationship factors. We defined different validation coefficients, called k-155 156 factors, for data sets depending on the measured carbon dioxide level, keeping the 4 kPa

threshold. The potentially major V/Q mismatch group included 255 data sets, and the
potentially normal or minor mismatch group included 753 data sets. The remaining data
sets—3,504 in total—composed the validation group. The study flowchart is presented in
Supplementary Figure 1.

161

162 Using the least square fitting to minimize the difference between the estimated PaCO₂ and

163 ABG PaCO₂ values, the equation coefficients were determined for both the major and the

164 normal or minor V/Q mismatch groups separately. These coefficients were then used to

165 calculate the estimated PaCO₂ for the validation group data points comprising the presented

validation result statistics. The values for the coefficients are presented in Table 1.

167 After adjustments, the formula (PaCO₂-est2) is defined as follows:

168 PaCO₂-est2=k₁*PETCO₂+k₂*(PIO₂-PETCO₂)+k₃*(100-SpO₂)

169 PaCO₂ is the arterial CO₂ partial pressure, and PETCO₂ and PIO₂ are the end-tidal CO₂ and

170 inspired O₂ pressures, respectively, recorded with a side-stream gas analyzer (GE

171 Healthcare, Milwaukee, Wisconsin, USA). SpO₂ is the peripheral hemoglobin oxygen

saturation measured with a pulse oximeter.

173 The O₂ difference in this hypothesis is based on the estimation of PETO₂-PaO₂ with the aid

174 of standard bedside monitored parameters. It is well-known that the O₂ difference (PIO₂-

175 PETO₂) is approximately PETCO₂, providing an estimate for PETO₂ (PIO₂-PETCO₂). ¹²

176 Conceptually, this equation is based on the hypothesis that the physiological factors causing

the alveolar–arterial tension difference are similar for both O₂ and CO₂:

178 ventilation/perfusion mismatch in the form of left-to-right shunt perfusion and alveolar

dead-space ventilation. The equation aims to detect the magnitude of these gas exchange

180 disorders.

181 In shunt perfusion part of the pulmonary artery blood flow is passing the lungs without 182 communicating with the alveoli. In pulmonary vein this shunted blood of venous O₂ content 183 mix with the blood flow representing alveolar gas composition. Affinity of low oxygen 184 saturation of the shunted perfusion reduces the mixture oxygen partial pressure from the 185 alveolar equilibrium. Depending on the shunt, the magnitude of dissolved O₂ may be 186 insufficient to fully saturate the Hb, which is measured as SpO₂ below 100%. The difference (100-SpO₂) measures the magnitude of this insufficiency. Clinician may respond to reduced 187 188 SpO₂ by increasing the PIO₂. This compensatory action increases the second term of the 189 equation.

In alveolar dead space no gas exchange occurs with the alveolar blood flow, which 190 191 reduces SpO₂. Thus, increase on the term (100-SpO₂) of the equation indicates the increase 192 in alveolar dead space. Again, clinician may respond to reduced SpO_2 by increasing the PIO_2 193 increasing respectively the second term of the equation. The gas in alveolar dead space 194 remains in inspired concentrations and dilutes at upper respiratory tract reducing PETCO₂. 195 This increases the second term as indication of the alveolar dead space. In addition to a V/Q196 mismatch, possible differences in CO₂ and O₂ alveolar exchange may cause additional 197 differences between PETCO₂ and PaCO₂ not reflected in the O₂ difference; for example 198 diffusion disturbance. Each factor was assigned a relationship coefficient, the values of 199 which were determined by the calibration data points.

200

201 Measuring the change in the accuracy of estimation of PaCO₂ over time

We divided the 48-hour study period into three-hour intervals; in cases with more than one sample per three-hour period, we calculated the mean of the differences between the measured and estimated PaCO₂ values.

206

207 Statistical analyses

To validate PaCO₂-est1 and the comparisons used between PaCO₂-est2 and PETCO₂, we calculated the mean difference with the standard deviation (SD) between the measured and estimated PaCO₂ values. We assessed the agreement between the measured and estimated PaCO₂ values using the Bland-Altman analysis. We used the software created by Olofsen et al. for the Bland-Altman analysis, including the bias with +/-SE and the limits of agreement with 95% confidence intervals. ¹³ Percentage error was calculated from the SD of agreement

214 and mean CO_2 : 100* (1,96*SD/mean CO_2).

215 Other analyses were performed using Statistical Package for Social Sciences (SPSS), 216 version 25 (IBM SPSS Statistics for Macintosh, Version 24.0. Armonk, NY, IBM Corp.). Within-217 subject (WSV) and between-subject variances (BSV), intraclass correlations (τ), and 218 repeatability coefficients were estimated for the differences between estimated PaCO₂ and 219 ETCO₂. The Bland-Altman method used controls for the effect of repeated measures by 220 calculating the within-subject and between-subject variations. The normality of the 221 distribution of the differences between the measured and estimated values was tested 222 using the Kolmogorov–Smirnov test.

A comparison of the differences between estimations provided by PaCO2-est2 and PETCO₂ was performed using a mixed linear model in which time and measured values were treated as fixed effects, whereas subjects and formulas were treated as random effects.

226	Also, using a mixed linear model, we tested the accuracy of the formulas over time and
227	whether there was any interaction between the performance of the formulas and the mean
228	arterial blood pressure or patient temperature. We also examined the accuracy of the
229	methods in different PaCO $_2$ and O $_2$ levels by dividing the data in deciles, according to the
230	measured $PaCO_2$ and FIO_2 level.
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	

243 **Results**

244 In total, we included 233 patients and collected 4,741 datasets. The basic patient

characteristics are shown in Table 2. We excluded two patients because of missing data for

the inspired gas O₂ concentrations. The mean number of ABG samples per patient was 15

(SD 10). One of the CAs was in the hospital and the other 232 were out of the hospital. All

248 patients were treated with therapeutic hypothermia. Table 3 shows the baseline

249 information about the ventilator parameters and hemodynamics during the 48-hour study

250 period.

251

252 Difference between the estimated and measured PaCO₂ values (PaCO₂-est1)

253 The mean difference between the measured and estimated PaCO₂ values (PaCO₂= PETCO₂+k

254 [PIO₂-PETCO₂]-PaO₂) was 0.08kPa (SE ± 0.003). The SD of the differences was 0.62 (SE ±

255 0.015), percentage error was 24%. The Bland-Altman plot demonstrating the agreement

between the PaCO₂-est1 and measured PaCO₂ values with limits of agreement and their 95%

257 confidence intervals is presented in Figure 1.

258

259 Intraclass correlation (PaCO₂-est1)

260 The within-subject variance for the estimated PaCO₂ (PaCO₂-est1) and measured PaCO₂

values was 0.20 (SE ± 0.004). The between-subjects variance was 0.19 (SE ± 0.018). The

262 intraclass correlations (τ = ratio of BSV and total variance) for the estimated PaCO₂ and

263 measured PaCO₂ values were τ 0.48 (SE ± 0.025, Spearman's ρ -0.105, SE ± 0.029).

264

265 Difference between the estimated and measured PaCO₂ values (PaCO₂-est2)

267	The data for the PaCO ₂ values were not normally distributed (Kolmogorov–Smirnov test, p
268	value < 0.001). The mean difference between the measured and PaCO2-est2 values was
269	0.036 kPa (SE \pm 0.009). The SD of the differences was 0.59 (SE \pm 0.06), percentage error was
270	23%. The mean difference between the measured $PaCO_2$ and $ETCO_2$ values was 0.71 kPa (SE
271	\pm 0.010), percentage error was 24%. The SD of the differences was 0.62 (SE \pm 0.07). There
272	was a statistically significant difference between $PaCO_2$ -est2 and end-tidal CO_2 in estimating
273	$PaCO_2$ (p < 0.001). Also, there was a statistically significant difference (p < 0.001) when
274	comparing the true and estimated values with the original, unmodified formula (PaCO $_2$ -
275	est1) and modified formula (PaCO ₂ -est2).
276	The Bland-Altman plots demonstrating the agreement between the $PaCO_2$ -est2 and
277	measured $PaCO_2$ values, as well as the $PaCO_2$ (PETCO ₂) and measured $PaCO_2$ values with
278	limits of agreement and their 95% confidence intervals, are presented in Figure 2a and 2b,
279	respectively. The accuracy of the PaCO ₂ -est2 was not affected by the patients' temperature
280	(Supplementary Figure 1). There was no statistically significant difference between the
281	methods at different mean arterial pressure levels (Supplementary Figure 2). PaCO ₂ -est2
282	was superior to $PaCO_2$ -est1a nd end-tidal CO_2 at different temperature and blood pressure
283	levels.
284	
285	The effect of time
286	
287	The mean difference between the measured $PaCO_2$ values and estimated $PaCO_2$ values in

the first three hours was 0.12kPa (SE +/- 0.041) when using PaCO₂-est2. The SD of the

289 differences was 0.73. The mean difference between the measured and estimated PCO₂

290	values changed over time according to the linear mixed model analysis. These changes,
291	however, were not significant (p=0.06). The mean differences between the measured and
292	estimated $PaCO_2$ levels by both methods—PETCO ₂ and $PaCO_2$ -est2—on three-hour intervals
293	starting from the first ABG sample are presented in Figure 3.
294	
295	The effect of different carbon dioxide and inspired oxygen levels on the accuracy of
296	PaCO ₂ -est2
297	Estimations carried out with PaCO2-est2 were the most accurate in normoventilation. The
298	differences between the measured and estimated $PaCO_2$ in $PaCO_2$ deciles are shown in
299	Figure 4a. The difference between the measured and estimated $PaCO_2$ values was not
300	affected by FIO_2 values at the same degree as $PaCO_2$ levels. The differences between the
301	measured and estimated PaCO ₂ values in FIO ₂ deciles are shown in Figure 4b.
302	
303	The intraclass correlation
304	The WSV for the estimated PaCO ₂ and ETCO ₂ values were 0.16 (SE \pm 0.004) and 0.18 SE +/-
305	0.004), respectively. The intraclass correlations (τ = ratio of BSV and total variance) for the
306	estimated PaCO ₂ and PETCO ₂ values were τ 0.48 (SE \pm 0.028, Spearman's ρ 0.16, SE \pm 0.033)
307	and ETCO ₂ 0.61 (SE +/- 0.027, Spearman's ρ -0.05 SE ± 0.034).
308	
309	
310	
244	
311	
312	

313

314

- 315 **Discussion**
- 316

317 We developed and validated a novel formula that utilizes respiratory gas measurements and 318 SpO₂ for estimating PaCO₂ noninvasively in mechanically ventilated patients. We found a 319 good agreement between measured and estimated PaCO₂ values for the novel formula and 320 found no evidence of impaired accuracy depending on patient temperature and mean 321 arterial pressure levels. This formula might enable reliable, noninvasive methods for 322 monitoring mechanical ventilation. The difference between the measured and estimated 323 PaCO₂ values in our study is below the limit of agreement of a clinically acceptable 1 kPa 324 error.14

325 In healthy subjects, there is a reasonable agreement between PETCO₂ and arterial 326 PaCO₂, especially with temperature corrected PaCO₂. ¹⁵⁻¹⁶ By contrast, with respiratory or 327 cardiac failure, the gap between $PaCO_2$ and $ETCO_2$ widens because of V/Q mismatch, which 328 results in lower alveolar and expired breathing gas CO₂ levels. In some studies, there has 329 been a strong agreement between PETCO₂ and PaCO₂. ¹⁷⁻¹⁹ Other studies have reported that 330 the gradient between PETCO₂ and PaCO₂ has clinically significant importance considering for example the reliability of monitoring and the adequacy of ventilation. ²⁰⁻²¹ In patients with 331 332 hypotension and metabolic acidosis, the gap between PETCO₂ and PaCO₂ is higher than in normotensive and stable patients. ²² 333

The accuracy of the novel formula is the highest in the normoventilation range.
 Previous studies of end-tidal CO₂ and PtcCO₂ and show similar results with high PaCO₂ levels,

which can be the result of increased dead space and shunting. ²²⁻²³. The method 336 337 underestimated the highest PaCO₂ values, which may occur with large alveolar dead space. 338 The PACO₂ of perfused alveoli equilibrates with blood concentration to maximum venous CO₂ concentration independently of the alveolar dead space whereas in the alveolar dead 339 340 space the concentration remains zero of the inspired gas. At expiration the zero concentration dead space gas dilutes the blood concentration stream from perfused alveoli 341 causing the PETCO₂ reduction corresponding to the amount of dead space ventilation. The 342 343 alveolar dead space effect on oxygen is minor: the PAO₂ of the perfused alveoli will 344 decrease more in supplying the whole perfusion with smaller gas volume. During expiration, 345 when mixing in the upper airways, the inspired oxygen concentration from the dead space 346 compensates the reduced PAO_2 from the perfused lung regions. As a result of this 347 compensation in oxygenation, the equation is unable to fully compensate the alveolar dead 348 space effect on the PaCO₂. 349 Patient temperatures did not affect the formula's accuracy. This is important because 350 patients in prehospital care are more likely to suffer from hypothermia²⁴ and targeted 351 temperature management is standard practice during the intensive care of patients after 352 CA. 353 The mean difference between the measured and estimated values was slightly 354 higher in the first three hours compared with the remaining 45 hours but this difference was 355 not statistically significant. In previous studies, the difference between PETCO₂ and PaCO₂

356 has been reported to increase over time. ²⁵

There was a statistically significant difference between the PaCO₂ estimates obtained using the two formulas (PaCO₂-est1 and PaCO₂-est2). An improvement regarding PaCO₂-est2 compared with PaCO₂-est1 is that PaCO₂-est2 utilizes data directly from the

pulse oximeter instead of PaO₂ estimated by SpO₂ obtained from the oxygen dissociation
curve.

362	In emergency care despite its unreliability for determining the adequacy of
363	ventilation ²⁶ , PETCO ₂ is a useful tool in verifying the correct positioning of an endotracheal
364	tube. 27 Transcutaneous CO ₂ is routinely used in neonatal ICUs. 28 In adults, PtcCO ₂ has
365	shown conflicting results ²⁹⁻³⁰ and may be affected by hypotension, peripheral perfusion
366	disturbances and the use of vasoconstrictors. $^{\rm 31-32}$ Transcutaneous PCO_2 appears to be a
367	more accurate method compared with PETCO ₂ , but its accuracy might deteriorate with
368	extreme PaCO ₂ values and is also affected by V/Q mismatch. $^{33-34, 23}$.
369	There are some limitations to this study. One patient was hemodynamically unstable
370	and potentially had a very low cardiac output (CO). In conditions associated with low CO,
371	PETCO ₂ does not correlate with $PaCO_2$ values, but unfortunately, the CO value was not
372	available for assessment in this case. ³⁵ Our next aim is to identify the limitations of the
373	algorithm and validate the formula in different critically ill mechanically ventilated patient
374	groups.
375	
376	In conclusion the present study shows that a novel formula developed for estimating $PaCO_2$
377	values has good agreement with measured ABG values and outperforms $PETCO_2$ in
378	accuracy. Within certain limits, it offers a noninvasive and continuous method for assessing

380

379

PaCO₂.

381 Acknowledgments

383	The study was funde	d with unconditional	funding by Helsinki	University (three-year
-----	---------------------	----------------------	---------------------	------------------------

- 384 research grant 2016–2018, H3702-11-103568, wbs 73702705) and Helsinki University
- Hospital (State funding, VTR-Y102011094) and research grants from Finska Läkaresällskapet.
- 386 We want to thank Marcus Norrgård (RN) for their assistance in retrieving the data. The
- 387 authors also thank Professor Michael Bailey for his contribution to the statistical analyses,
- 388 and emeritus professor Per Rosenberg for his valuable comments.

403 **References**

404

- 405 1. Hemmati N, Zokaei AH, Karbasforooshan A. Correlation between end-tidal and arterial
- 406 carbon dioxide partial pressure in patients undergoing craniotomy. *J Inj Violence Res* 2012;

407 4.

- 408 2. Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead
 409 space/tidal volume ratio in respiratory failure. *Chest* 1987;92:832-5.
- 410 3. Davis DP, Idris AH, Sise MJ, Kennedy F, Eastman AB, Velky T, et al. Early ventilation and
- 411 outcome in patients with moderate to severe traumatic brain injury*. *Crit Care Med*

412 2006;34:1202-8.

- 413 4. Helmerhorst HJF, Roos-Blom M-J, van Westerloo DJ, Abu-Hanna A, de Keizer NF, de Jonge
- 414 E. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital

415 mortality after resuscitation from CA. *Crit Care* 2015;19:348.

- 416 5. Hope Kilgannon J, Hunter BR, Puskarich MA, Shea L, Fuller BM, Jones C, et al. Partial
- 417 pressure of arterial carbon dioxide after resuscitation from CA and neurological outcome: a
- 418 prospective multi-center protocol-directed cohort study. *Resuscitation* 2019;135:212-20.
- 419 6. Nassar B, Schmidt G. Estimating arterial partial pressure of carbon dioxide in ventilated
- 420 patients: How valid are surrogate measures? Ann Am Thorac Soc 2017;14:1005-14
- 421 7. Rentola R, Hästbacka J, Heinonen E, Rosenberg P, Häggblom T, Skrifvars M. Estimation of
- 422 arterial carbon dioxide based on end-tidal gas pressure and oxygen saturation. *J Clin Med*

423 2018;7:290.

- 424 8. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA
- 425 (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On

426 behalf of the Working Group 1. *Intens Care Med* 1996;22:707-10.

427 9. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II)

428 based on a European/North American multicenter study. *JAMA* 1993;270:2957-63.

429 10. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease

430 classification system. *Crit Care Med* 1985;13:818-29.

431 11. Aaron S. Nunn's applied respiratory physiology, 5th ed. ; Butterworth-Heinemann,

432 Oxford, 2003.

433 12. Subramani S, Kanthakumar P, Maneksh D, Sidharthan A, Rao SV, Parasuraman V, et al.

434 O₂-CO₂ diagram as a tool for comprehension of blood gas abnormalities. *Adv Physiol Educ*435 2011;35:314-20.

436 13. Olofsen E, Dahan A, Borsboom G, Drummond G. Improvements in the application and
437 reporting of advanced Bland-Altman methods of comparison. *J Clin Monit Comput* 2015;
438 29:127-39.

439 14. Bendjelid K, Schütz N, Stotz M, Gerard I, Suter PM, Romand J-A. Transcutaneous PCO2
440 monitoring in critically ill adults: clinical evaluation of a new sensor. *Crit Care Med* 2005;
441 33:2203-6.

442 15. Schmitz BD, Shapiro BA. Capnography. *Respir Care Clin of N A*, 1995; 1:107-17.

443 16. Losa-Reyna J, Torres-Peralta R, Henriquez JJ, Calbet JA. Arterial to end-tidal Pco2

444 difference during exercise in normoxia and severe acute hypoxia: importance of blood

temperature correction. Physiol Rep. 2015;3(10):e12512. doi:10.14814/phy2.12512

446 17. Wu C-H, Chou H-C, Hsieh W-S, Chen W-K, Huang P-Y, Tsao P-N. Good estimation of

447 arterial carbon dioxide by end-tidal carbon dioxide monitoring in the neonatal intensive care

448 unit. *Pediatr Pulm* 2003;35:292-5.

18. McSwain SD, Hamel DS, Smith PB, Gentile MA, Srinivasan S, Meliones JN, et al. End-tidal

450 and arterial carbon dioxide measurements correlate across all levels of physiologic dead

451 space. *Respir Care* 2010;55:288-93.

452 19. Takano Y, Sakamoto O, Kiyofuji C, Ito K. A comparison of the end-tidal CO₂ measured by

453 portable capnometer and the arterial PCO2 in spontaneously breathing patients. *Resp Med*

454 2003;97:476-81.

- 455 20. Husaini J, Choy YC. End-tidal to arterial carbon dioxide partial pressure difference during
 456 craniotomy in anaesthetised patients. *Med J Malaysia* 2008;63:384-7.
- 457 21. Belpomme V, Ricard-Hibon A, Devoir C, Dileseigres S, Devaud ML, Chollet C, et al.
- 458 Correlation of arterial Pco2 and Petco2 in prehospital controlled ventilation. Am Journal
- 459 *Emerg Med* 2005;23:852-9.
- 460 22. Lee S-W, Hong Y-S, Han C, Kim SJ, Moon SW, Shin JH, et al. Concordance of end-tidal
- 461 carbon dioxide and arterial carbon dioxide in severe traumatic brain injury. *J Traum*

462 2009;67:526-30.

463 23. Ruiz Y, Farrero E, Córdoba A, González N, Dorca J, Prats E. Transcutaneous carbon

464 dioxide monitoring in subjects with acute respiratory failure and severe hypercapnia. *Respir*465 *Care* 2016;61:428-33.

- 466 24. Haverkamp FJC, Giesbrecht GG, Tan ECTH. The prehospital management of hypothermia
- 467 an up-to-date overview. *Injury* 2018;49:149-64.
- 468 25. Seguin P, Bleichner JP, Branger B, Guillou YM, Feuillu A, Mallédant Y. The measurement
- 469 of end-tidal carbon dioxide (PETCO2) is not a significant parameter to monitor in patients
- 470 with severe traumatic brain injury. *Can J Anaesth* 2001;48:396-400.
- 471 26. Prause G, Hetz H, Lauda P, Pojer H, Smolle-Juettner F, Smolle J. A comparison of the end-
- tidal-CO₂ documented by capnometry and the arterial pCO₂ in emergency patients.
- 473 *Resuscitation* 1997;35:145-8.

474 27. Varon AJ, Morrina J, Civetta JM. Clinical utility of a colorimetric end-tidal CO₂ detector in
475 cardiopulmonary resuscitation and emergency intubation. *Journal of Clinical Monitoring*476 4001 7 200 02

476 1991;7:289-93.

- 477 28. Tobias JD, Wilson WR Jr, Meyer DJ. Transcutaneous monitoring of carbon dioxide
- tension after cardiothoracic surgery in infants and children. *Anesth Analg* 1999;88:531-4.
- 479 29. Gancel P-E, Roupie E, Guittet L, Laplume S, Terzi N. Accuracy of a transcutaneous carbon
- 480 dioxide pressure monitoring device in emergency room patients with acute respiratory
- 481 failure. Intensive Care Med 2011;37:348-51.
- 482 30. Sanders MH, Kern NB, Costantino JP, Stiller RA, Studnicki K, Coates J, et al. Accuracy of
- 483 end-tidal and transcutaneous PCO2 monitoring during sleep. *Chest* 1994;106:472-83.
- 484 31. Clark JS, Votteri B, Ariagno RL, Cheung P, Eichhorn JH, Fallat RJ, et al. Noninvasive

485 assessment of blood gases. *Am Rev Respir Dis* 1992;145:220-32.

- 486 32. Santos LJ, Varon J, Pic-Aluas L, Combs AH. Practical uses of end-tidal carbon dioxide
- 487 monitoring in the emergency department. *J Emerg Med* 12:633-44.
- 488 33. Hirabayashi M, Fujiwara C, Ohtani N, Kagawa S, Kamide M. Transcutaneous P_{CO2}
- 489 monitors are more accurate than end-tidal monitors. *J Anesth* 2009;23:198-202.
- 490 34. Liu S, Sun J, Chen X, Yu Y, Liu X, Liu C. The application of transcutaneous CO₂ pressure
- 491 monitoring in the anesthesia of obese patients undergoing laparoscopic bariatric surgery.
- 492 *PLoS ONE* 2014;9.
- 493 35. Trillò G, von Planta M, Kette F. ETCO2 monitoring during low flow states: clinical aims
 494 and limits. *Resuscitation* 1994;27:1-8.
- 495
- 496
- 497

Table 1. Coefficients k1, k2, and k3 for Formula 2 as determined by using 500 randomly selected data points. The coefficients were created separately for the low and high PETCO₂ groups.

	k1	k ₂	k ₃
PETCO ₂ -low (<4 kPa)	1.178	0.0132	0.0185
$PETCO_2$ -high ($\geq 4 \text{ kPa}$)	1.049	0.0162	0.0139

 Table 2. Characterization of patients and various subgroups of interest

Patient characteristics	(2) (52) (7)
Age, years	62 (52-67)
Male sex, n (%)	181 (81)
Height, cm	179 (172-183)
Weight, kg	85 (75-90)
Initial rhythm, n (%)	
VF	228 (97.9)
VT	2 (0.85)
PEA	2 (0.85)
Asystole	1 (0.4)
ROSC, min	20 (15-25)
Scoring model, n (IQR)	
ΑΡΑϹΗΕ ΙΙ	25 (18-31)
SAPS	47 (35-64)
SOFA	8 (7-10)
Prevalence of lung disease, no (%)	
Asthma	18 (7.7)
COPD	11 (4.7)
Interstitial lung disease	2 (0.85)

Table 3. Characteristics of ventilation and hemodynamic variables during first and second

	Day 1	Day 2
FIO2, %	35 (30-49)	35 (30-45)
SpO ₂ ,%	99 (98-100)	99 (97-99)
PEEP, cmH ₂ O	7 (6-8)	7 (6-8)
HR	55 (45-68)	66 (55-79)
MAP, mmHg	78 (73-86)	77 (72-84)
PETCO ₂ , kPa	4.2 (3.8-4.7)	4.6 (4.1-5.1)
PaCO ₂ , kPa	5.0 (4.5-5.4)	5.2 (4.9-5.6)
PaO ₂ /FIO ₂ -ratio	210 (36-303)	198 (36-310)

524 intensive care unit (ICU) treatment days. Data are shown as median (interquartile range).

Figure 1. The Bland-Altman plot assessing agreement between PaCO₂ (PaCO₂-est1) and

528 measured PaCO₂

Difference PaCO₂-PaCO₂ (PaCO₂-est2), kPa 8 n=4512 data points Mean $CO_2 = 5,1$ kPa 7 Percentage error 22,7% 6 5 4 3. upper LoA (1.2) with 95% Cl 2 -----1 mean= 0.07kPa 0--1 lower LoA (-0.74) with 95% Cl -2--3--4 **1**0 2 3 7 8 4 5 6 9 Avarage of PaCO₂ and CO₂ (PaCO₂-est2]/2, kPa 536

535 measured PaCO₂

Figure 2b. The Bland-Altman plot assessing agreement between ETCO₂ and measured PaCO₂

Figure 3. The mean differences between measured PaCO₂ and estimated PaCO₂, and mean

542 differences between measured PaCO₂ (Formula 2) and end-tidal CO₂ at different time

543 periods

- 546 Figure 4a. The mean differences between measured PaCO₂ and estimated PaCO₂ (Formula
- 547 2) , and mean differences between measured PaCO₂ and end-tidal CO₂ at CO₂ deciles

550 Figure 4b. The mean differences between measured PaCO₂ and estimated PaCO₂ (Formula

- 553 1. **Supplementary Figure 1.** Flowchart of the study population

Supplementary Figure 2. The difference between measured and estimated PaCO₂ at different body temperatures.

2. Supplementary Figure 3. The mean differences between measured and estimated PaCO₂ (Formula 1, Formula 2, and end-tidal CO₂) at different mean arterial pressure levels.

570	Table 2 .Patients' characteristics and pre-hospital variables. All continuous values are given
571	as medians (interquartile range), and categorical values as percentages. Cm=centimeters,
572	kg=kilograms, VF=ventricular fibrillation, VT=ventricular tachycardia, PEA=pulseless
573	electrical activity, ROSC=Return of spontaneous circulation, COPD= chronic obstructive
574	pulmonary disease
575	Table 3. Hemodynamic variables and variables of ventilator settings and derived data. All
576	continuous values are given as medians (interquartile range). FIO ₂ =fraction of inspired
577	oxygen, SpO ₂ =partial oxygen saturation of the arterial blood, PEEP=positive end-expiratory
578	pressure, HR=heart rate, MAP=mean arterial pressure; etCO2=end-tidal carbon dioxide;
579	$PaCO_2$ =arterial partial pressure of carbon dioxide; PaO_2/FIO_2 = arterial oxygen partial
580	pressure/fractional inspired oxygen ratio
581	
582	
583	Figure 1. Bland-Altman plots with 95% limits of agreement with 95% confidence intervals
584	demonstrating agreement between partial pressure of carbon dioxide, PaCO ₂ (Formula 1),
585	and measured PaCO ₂ during the first 48 hours after admission to the ICU.
586	
587	Figures 2a and 2b. Bland-Altman plots with 95% limits of agreement with 95% confidence
588	intervals demonstrating agreement between the $PaCO_2$ (Formula 2) and measured $PaCO_2$
589	values (a) and the ETCO $_2$ and measured PaCO $_2$ values (b) during the first 48 hours after
590	admission to the ICU.

592 **Figure 3**. Mean differences between the measured and estimated PaCO₂ values and

593 between measured PaCO₂ and end-tidal CO₂ at different time points: First time period: 0–3

594 hours; 2nd: 3–6 hrs; 3rd 6–9 hrs; 4th 9–12 hrs; 5th 12–15 hrs, 6th 15–18 hrs; 7th 18–21 hrs;

- 595 8th: 21–24 hrs; 9th: 24–27 hrs; 10th 27–30 hrs; 11th 30–33 hrs; 12th: 33–36 hrs; 13th: 36–
- 596 39 hrs; 14th: 39–42 hrs; 15th: 42–45 hrs; and 16th: 45–48 hrs.
- 597
- 598 **Figures 4a and 4 b**. The mean differences between measured PaCO₂, estimated PaCO₂
- 599 (Formula 2) and end-tidal CO₂ values at different levels of PaCO₂. 1: PaCO₂ < 4.3 kPa; 2:
- 600 PaCO₂ 4.3-4.5 kPa; 3: PaCO₂ 4.6-4.7 kPa; 4: PaCO₂ 4.8-4.9 kPa; 5: PaCO₂ 5.0-5.1 kPa; 6: PaCO₂
- 601 5.2 kPa; 7: PaCO₂ 5.3-5.4 kPa; 8: PaCO₂ 5.5-5.6 kPa; 9: PaCO₂ 5.7-5.9 kPa; and 10: PaCO₂ >
- 5.9 kPa. The mean differences between the measured PaCO₂, estimated PaCO₂ (Formula 2),
- and end-tidal CO₂ values at different levels of FIO_2 (%). 1: $FIO_2 < 26$; 2: $FIO_2 26-30$; 3: FIO_2
- 604 30–30.3; 4: FIO₂ 30.3–34.6; 5: FIO₂ 34.6–35.2; 6: FIO₂ 35.2–40.0; 7: FIO₂ 40.0–45.0; 8: FIO₂
- 605 45.0–50.33; 9: FIO₂ 50.33–60.55; and 10 FIO₂ > 60.55.
- 606
- 607
- 608 Supplementary Figure 1. Flowchart of the study population. V/Q
- 609 mismatch=ventilation/perfusion mismatch; ETCO₂=end-tidal carbon dioxide; kPa=kilopascal
 610
- 611 **Supplementary Figure 2.** The difference between the measured and estimated PaCO₂ values
- at different body temperatures. PaCO₂=Partial pressure of arterial carbon dioxide;
- 613 ETCO₂=end-tidal carbon dioxide.
- 614

615	Supplementary Figure 3. The mean differences between the measured and estimated
616	PaCO ₂ values (Formula 1, Formula 2, and end-tidal CO ₂) at different mean arterial pressure
617	levels. PaCO ₂ =Partial pressure of arterial carbon dioxide; ETCO ₂ =end-tidal carbon dioxide.
618	
619	
620	