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Predicting the emergence and spread of infectious diseases is critical for the
effective conservation of biodiversity. White-nose syndrome (WNS), an
emerging infectious disease of bats, has resulted in high mortality in eastern
North America. Because the fungal causative agent Pseudogymnoascus
destructans is constrained by temperature and humidity, spread dynamics
may vary by geography. Environmental conditions in the southern part of
the continent are different than the northeast, where disease dynamics are
typically studied, making it difficult to predict how the disease will manifest.
Herein, we modelled WNS pathogen spread in Texas based on cave densities
and average dispersal distances of hosts, projecting these results out to 10
years. We parameterized a predictive model of WNS epidemiology and its
effects on bat populations with observed cave environmental data. Our
model suggests that bat populations in northern Texas will be more affected
by WNS mortality than southern Texas. As such, we recommend prioritizing
the preservation of large overwintering colonies of bats in north Texas
through management actions. Our model illustrates that infectious disease
spread and infectious disease severity can become uncoupled over a
gradient of environmental variation and highlight the importance of under-
standing host, pathogen and environmental conditions across a breadth of
environments.
1. Introduction
Emerging infectious diseases of wildlife are increasing in number and threaten-
ing several species with extinction [1–3]. Emerging infectious diseases are those
newly appearing or rapidly increasing in a population [4], occurring when
pathogenic or putatively pathogenic organisms in the environment have the
opportunity to infect new hosts species or populations. Changing environ-
mental conditions can accelerate this process of host-switching by driving
changes in host-species’ distributions and by creating new habitat for patho-
gens found in environmental reservoirs [5,6]. The spread of these diseases is
mediated by differences in host ecology and physiology, resulting in various

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.0719&domain=pdf&date_stamp=2021-06-02
mailto:thomas.lilley@helsinki.fi
https://doi.org/10.6084/m9.figshare.c.5426602
https://doi.org/10.6084/m9.figshare.c.5426602
http://orcid.org/
http://orcid.org/0000-0003-2384-1999
http://orcid.org/0000-0001-5864-4958
http://orcid.org/0000-0003-0951-9100
http://orcid.org/0000-0003-2555-8142
http://orcid.org/0000-0002-5801-876X
http://orcid.org/0000-0002-2102-1930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210719

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

un
e 

20
21

 

patterns of spatial spread [7–9]. Therefore, predicting the
spatial structure of future emerging infectious disease epi-
demics requires integration of both environmental factors
and species-specific ecology and behaviour that can underpin
pathogen contact networks [10].

An emerging infectious disease of bats known as white-
nose syndrome (WNS) threatens the survival of populations
of several cave-hibernating species in North America [11].
Since it was first documented, the fungal causative agent
Pseudogymnoascus destructans has spread across North Amer-
ica at a rate of 200 to 900 km per year and is associated with
host mortality in excess of 90% [11,12]. Although, bat-to-bat
transmission is the primary mode of disease dispersal [13],
P. destructans can persist in an environment devoid of bats
[14]. The disease disrupts hibernation behaviour through
multiple pathways [15–17] leading to an increased arousal
frequency and ultimately, the depletion of fat reserves [18].
This has generated predictions of local extirpations and
extinctions of once common bat species [19–21]. There is
therefore a need to understand future spread so that conser-
vation efforts can be prioritized. Moving towards this
understanding will require understanding how factors
associated with WNS transmission work together to
influence spread.

The vegetative growth of P. destructans is constrained by
temperature and humidity inside hibernacula [22,23] while
the spread of the fungus is influenced by internal and exter-
nal factors. Factors known to be associated with fungal
transmission include bat species composition and abundance,
population demographics [24], geography (e.g. distribution,
frequency and connectivity of hibernacula) and climate
[25–27]. Thus, the fungal spread may vary by geography
and demography. Predictive modelling of WNS has focused
on data collected from the northeastern United States (e.g.
[26,28]). Consequently, findings from these studies may not
reflect regional differences among bat hibernacula [28–30].
It is therefore important to understand the incidence—and
prevalence of—WNS over different spatial and temporal
scales to determine the potential impacts of disease [31].

Texas provides a unique situation for studying disease
spread as it has the greatest number of bat species of any
state in the United States [32]. Pseudogymnoascus destructans
was first detected in north Texas in 2017 [33], with WNS
first identified on cave myotis (Myotis velifer) in central
Texas in 2020 [34]. However, it is unclear if environmental
conditions in Texas caves [35], or their spatial distribution
and frequency [27], are favourable for the persistence of
P. destructans in Texas. Unlike in northeastern North America,
there has not yet been substantial mortality documented or
reported resulting from WNS in Texas. Owing to declines
documented in other regions of North America, researchers
are currently deploying treatments in Texas hibernacula to
prevent pathogen exposure and reduce disease severity.
Thus, understanding whether WNS can develop in the cave
network in Texas and how the disease may move throughout
the southern region is integral in implementing proper man-
agement strategies for caves.

Here, we used averaged bat demographics of hibernating
species (Eptesicus fuscus, M. velifer and Perimyotis subflavus)
and cave environmental data collected at the leading edge
of WNS pathogen spread in Texas to develop a general
model that captures a wider geographical range and con-
ditions. For values pertaining to infection and recovery rate
from WNS, we integrated bat demographics of the little
brown bat (Myotis lucifugus), a hibernating bat species not
known in Texas, as minimal data existed for other species
known in Texas. We model the probability of P. destructans
being able to infect hosts, leading to symptoms of WNS,
and furthermore, the death of the host. Herein, we hypoth-
esized that: (i) spread is accelerated by high concentrations
of caves and bat abundance across the landscape; and (ii) dis-
ease development is hindered by internal and external
environmental conditions affecting both bat physiology and
fungal growth. We predicted that: (i) spread will accelerate
in central Texas; and (ii) north Texas will support disease
development with only some sites with environmental
characteristics conducive to WNS development in central
Texas. We projected our results 10 years ahead to provide sta-
keholders information on how the disease will most likely
behave to better implement conservation measures.
2. Material and methods
(a) Model development
Our model is a modification of the patch model published by
Lilley et al. [27] (full model description in the electronic sup-
plementary material). In comparison with the previously
published model, we have simplified the hibernation and trans-
mission dynamics to achieve easier parameterization, and do not
consider environmental stochasticity. Although many factors can
affect temperatures of caves [36], and thereby affect bat abun-
dance, these data were not readily available and their inclusion
would have further complicated the interpretation of the model
results. Our model consists of differential equations, with a per-
iodic temperature forcing, describing the dynamics of the bat
hosts and the free pathogenic fungus. We divided the hosts
into susceptible, exposed and infectious, all of which can be
either active or hibernating, leading to seven compartments in
total. The dynamic state is tracked in a network of patches repre-
senting caves within the counties of Texas. We implemented in
C++ and full program codes are available at https://github.
com/janivaltteri/wnstexas.

We used a simple linear force of infection in response to
environmental fungal density instead of the sigmoidal response
used in the model of Lilley et al. [27]. Additionally, we used
simple threshold functions for bat population growth rate and
the transfer rates between active and hibernation states. While
the original formulation in Lilley et al. [27] is theoretically
sound and results in smooth dynamics, our current formation
is analytically more tractable/computationally better suited to
integrating real-world variation in parameters. The sigmoidal
infectivity response has, however, notable effects on disease
dynamics. Therefore, we replicated all simulation experiments
using different sigmoidal parameterizations and show the result-
ing effects in the electronic supplementary material.

Hibernation strongly affects disease dynamics because
P. destructans has different effects on active and hibernating
bats [37]. Thus, we determined the duration of hibernation in a
patch by ambient and hibernaculum temperatures, Tamb and
Thib, together with three threshold values α. A patch is in hiber-
nation when either Tamb(t) < αamb,0 or Tamb(t) < αamb,1; Thib(t) <
αhib. Our parameter set used threshold values αamb,0,
αhib = 11.5°C and αamb,1 = 12.5°C [35,36].

(b) Spatial setting
In Texas where greater than 95% of the land is privately owned,
caves, as opposed to other hibernacula (e.g. culverts), are challen-
ging to monitor and manage for WNS because of access
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Figure 1. A conceptual drawing of the model spatial setting. The top part
shows binning of hibernacula by the within cave mean temperatures accord-
ing to a Gaussian distribution obtained from a linear model for each county j.
Each bin becomes a patch i with a given mean within cave temperature Tci,j
and capacity Ki,j. In the bottom part, dispersal distances between counties j
are the distances between the county midpoints (grey and coloured circles).
(Online version in colour.)
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restrictions. Despite access difficulties, we focused on caves for
model development to assist with identifying regions to focus
access efforts for future monitoring and management. Addition-
ally, we chose caves because of the lack of available data on
environmental characteristics of alternative hibernacula, and to
retain the simplicity of the model.

We obtained information on the number of caves per county
within Texas from the Texas Speleological Survey (https://www.
texasspeleologicalsurvey.org/). The Texas Speleological Survey,
Texas Cave Management Association, local Grottos, biologists
and private landowners provided access to cave sites for data
collection.

We gathered daily mean ambient temperature data (4 km
grid cell resolution) for each Texas county from 1 January 2017
to 31 December 2017 obtained from the PRISM Climate Group
[38]. We used EL-USB-2 Data loggers (Lascar Electronics Inc.)
placed within the first third of each cave near roosting bats,
when present, to record internal ambient temperature and rela-
tive humidity (RH) every hour for 1 year. Unfortunately, RH
data were not reliable (% surpassed the maximum value of
100) and thus were not used. We deployed loggers at each of
27 caves (13 caves occupied by hibernating bats, 14 unoccupied)
distributed in 19 counties across north and central Texas where
permission was obtained. We placed loggers near bats or cen-
trally in caves where bats were not present. We obtained
information on the presence of P. destructans within a county
from Texas Parks and Wildlife Department [39].

To use the model on Texas topography, we initially assumed
all documented caves could be hibernation sites and assigned the
estimated 4251 caves obtained from the Texas Speleological
Survey database to 94 counties. Inside each county (a geographi-
cal region used for administrative purposes), we grouped
hibernation sites according to cave mean temperatures into
bins of 2°C, following a Gaussian distribution with county-
specific mean and variance of 3.75°C. Each bin was considered
as a patch i in county j in the model. The binning was done to
reduce the number of patches for simulation performance
reasons, and no information was lost because the locations of
hibernation sites within the counties were not available to us.
We estimated the mean cave temperature based on a linear
model of mean ambient temperature and cave coordinates (elec-
tronic supplementary material) using the approach used in
McClure et al. 2018 [40]. We then used this model to predict
mean cave temperatures for the geographical centres of each
county. We used the variance of the model residuals to estimate
the 3.75°C variance.

The carrying capacity Ki,j for patch i in county j was given by
the number of hibernation sites aggregated in that bin (figure 1).
We did not assume that all caves were occupied by bats, but
rather approximated that 30% of caves (applied evenly across
patches) were occupied based on 2015–2019 survey data (M.B.
Meierhofer, S.J. Leivers, L.K. Wolf, K.D. Demere, J.W. Evans,
J.M. Szewczak, B.L. Pierce, M.L. Morrison 2019, unpublished
data). Hibernaculum temperature inside each patch varied sinu-
soidally with an amplitude estimated for each county (electronic
supplementary material), affecting fungal growth rates inside the
hibernaculum. In addition, we assigned each county a mean
ambient temperature and annual sinusoidal variation, according
to a linear fit (of Fourier coefficients) on the temperature data.

We implemented patch-to-patch migration (dispersal) as fol-
lows: each patch had a fixed proportion of susceptible and
exposed bats emigrating per day. Given we are modelling all
cave-hibernating bats as one population, we do not directly
account for individual species structure variation nor movement
among sites during winter. We divided the emigrating bats into
recipient patches depending on the distance. We assigned a
weight wi!k,j!l ¼ Kk,le�gdi!k,j!l , where di→k,j→l is the distance
from patch i in county j to patch k in county l for each connection
under a cutoff distance of 100 km, and we calculated the pro-
portion going to a target patch as pi!k,j!l ¼ wi!k,j!l=

(Ki,j � 1)e�gd j!j þP
n,m wi!n,j!m

� �
. We calculated patch to patch

distances dj→j within a county as the expected distances of two
randomly placed points inside the county. Distances between
patches in different counties were simply the distances between
the two county midpoints. The parameter γ scales the recipient
patch distribution with respect to distance from the focal patch.

(c) Model parameters and parametrization
We determined bat and fungal parameter values using refer-
enced parameter values (averaged estimates of data sourced
from literature) and approximated parameter values (averaged
values of our expert opinions informed by previous survey
efforts of both bats and P. destructans swab surveys conducted
in Texas) (table 1). For infection and recovery from WNS par-
ameters in our model, we sourced information from literature
which included data from M. lucifugus, a species with a distri-
bution range outside Texas. When possible, we focused on
using information available on bat species known to hibernate
in Texas (hibernatory bat populations) as only hibernating
species are affected by WNS. The average number of non-Mexi-
can free-tailed bats (Tadarida brasiliensis) was calculated to be
344 based on data collected on bat counts during our previous
2015–2019 winter survey efforts of caves in Texas (M.B. Meierho-
fer, S.J. Leivers, L.K. Wolf, K.D. Demere, J.W. Evans, J.M.
Szewczak, B.L. Pierce, M.L. Morrison 2019, unpublished data).
We disregarded T. brasiliensis colonies as this species does not
tend to hibernate. With our previous survey counts, and docu-
mentation of large bat colonies by other researchers (e.g.
[41,47,48]), we approximated that the average number of bats
per cave to be 900 for the purpose of our model.

Direct assignment of parameter values to our model for the
actual biological setting would have been challenging because
many of the values are not known or directly measurable.
Instead, we used literature-based values and approximated
values of the authors in combination with a parameter estimation
step based on the known initial state of the disease in 2018 and
survey data from 2020. With the estimation step, we ensured

https://www.texasspeleologicalsurvey.org/
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Table 1. The model parameters and our value estimates after the validation step based on 2020 WNS survey data. (Referenced parameter values are the
averaged estimates based on data sourced from referenced publications. Approximated parameter values are the averaged values of our expert opinions informed
by previous survey efforts of bats (2015–2019; M.B. Meierhofer, S.J. Leivers, L.K. Wolf, K.D. Demere, J.W. Evans, J.M. Szewczak, B.L. Pierce, M.L. Morrison 2019,
unpublished data) and P. destructans swab surveys (2017–2019) conducted in Texas. We then scaled the aforementioned values by the carrying capacity and
thus they do not directly match values provided within references.)

symbol parameter name unit value(s) reference

r̂h bat population growth rate d−1 0.00333 [41,42]

rf fungal growth rate d−1 0.00152 approximated

βe environmental transmission rate (unit fungi)−1 d−1 0.043 [42]

βd direct transmission rate (unit bats)−1 d−1 0.195 [19,25]

μh hibernation mortality d−1 0.0012 [35,43]

μf disease mortality d−1 0.039 approximated

λ fungal shedding (unit bats)−1 d−1 0.017 approximated

δe recovery (exposed to susceptible) d−1 0.0488 [44]a, [45]

δn recovery (infectious to exposed) d−1 0.0225 [44]a [45,46]

w infection rate d−1 0.0755 [44]a, [45]

ρ migration proportion — 0.042 approximated

γ migration distribution parameter — 0.00868 approximated

init s prop. susceptible bats in initially affected

counties

— 0.7 approximated based on swab survey

results

init e prop. exposed bats in initially affected counties — 0.28 approximated based on swab survey

results

init n prop. infectious bats in initially infected

counties

— 0.02 approximated based on swab survey

results

init f free-living fungus in initially affected counties — 0.1 approximated

ho
h a,1 ambient temp. threshold 1 oC 11.5 [35,36]

ho
h a,2 ambient temp. threshold 2 oC 12.5 [35,36]

hc
h a hibernaculum temp. threshold oC 11.5 [35,36]

v̂a h activation rate d−1 0.1 approximated

v̂h a hibernation rate d−1 0.1 approximated
aParameter initially estimated from the well-studied M. lucifugus (hibernating bat species not documented in Texas) when data for hibernating bats found in
Texas were limited.
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that our parameter set would predict the 2020 observed state
from the initial conditions, and thus be in line with the actual
known WNS disease dynamics in Texas.

To parameterize the model, we started by constructing a par-
ameter set, which represented our best knowledge of the model
parameter values obtained by averaging approximated values of
the co-authors (table 1). We then refined our estimates with an
approximate Bayesian computation procedure [49]. First, we con-
structed a prior distribution by assigning to each of the
parameter values a log-Gaussian distribution with our estimate
as the median value and a log-unitary standard deviation,
following the reasoning that the true parameter values fall
within one order of magnitude from our initial estimate. We
then ran 500 simulations with parameters randomly drawn
from our prior distributions (electronic supplementary material)
and performed rejection sampling to select appropriate posterior
combinations based on WNS 2020 survey data (figure 2). With
no easy way of assigning likelihood values to our simulations,
we used simple rejection thresholds. We used θd < 0.1% disease
prevalence in counties where WNS in bats was detected as the
rejection criteria, following the reasoning that a small prevalence
in bats could already be detected through surveys. We further
used θf < 20% free-living fungus prevalence in counties where
P. destructans was detected as the rejection criteria, because
finding fungal growth outside of the bat hosts requires an
active search of hibernation sites after 2 years of simulation
time. Our threshold values were admittedly arbitrary because
we had no information on the actual detection effort or efficiency,
but these values can easily be improved in future work.
Additionally, there were two counties surveyed with neither
WNS or P. destructans detected, and we rejected greater than
0.1% disease prevalence and greater than 20% free-living
fungus prevalence in these. We then used parameter median
values from the accepted combinations (with 5% acceptance
rate) as our validated parameter set. We fixed hibernation rate
and threshold parameters to our literature-based estimates. We
studied the robustness of our results separately in a sensitivity
analysis (electronic supplementary material), where we investi-
gated how varying each parameter by a small increment or
decrement changes the simulation outcome in terms of the
number of affected patches and reduction in bat numbers.

(d) Analysis of model outcomes
We visualized model predictions in R with interpolated heat
maps generated by the linear bivariate method in the package
‘akima::interp()’ on an 80 × 80 grid under default settings. Interp-
olation predicts values within a convex hull bounding the data



surveys for WNS and Pd in Texas in 2020

counties surveyed
Pd previously detected
Pd detected
WNS detected

Figure 2. Texas counties where WNS was detected in 2020 (dark red), where
only P. destructans was detected in 2020 (medium red), where P. destructans
was detected in previous years (light red), and counties surveyed in Texas
where neither WNS nor P. destructans was detected (grey). (Online version
in colour.)
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points. Therefore, we did not predict beyond the spatial extremes
of the data produced by the predictive model described above.
We plotted infection as the carrying-capacity-scaled predictions
from the infection model at 5 and 10 years of simulation and cal-
culated the loss of bat abundance as the proportional reduction
in bats predicted by the infection model relative to a no-infection
scenario, obtained by running the model without the fungus and
initial infections. We used functions in the ‘Raster’ and ‘ggplot2’
packages to create the figures.
3. Results
In total, there were 4251 hibernation sites of 14 132 potential
sites occupied by bats aggregated into 293 patches within our
model. Under our parameter set validated against 2020 WNS
survey data, the bat population declined 35.6% across 84
counties in 10 years (figure 3). After 5 years, we found the
bat population will be reduced by 19.3% in 70 counties.
The simulations did not show local extinctions in any
county, but the bat population reduced by 86% (85% after
5 years) in the most affected site. The most affected counties
were in north Texas, with P. destructans present at the start of
the simulation. The bat population rich mid-Texas counties
are projected to lose between one quarter to half of the bat
population (figures 3c,d and 4a). The density of the fungus
and its spores reached high levels in these counties (figure 4b).

Pseudogymnoascus destructans caused low mortality in the
southernmost counties under our parameter set because high
ambient temperatures did not support long enough hiber-
nation periods for significant disease progression to the
infectious state (figure 4a). The warm temperatures and
resulting short hibernation period also reduced the impact
in central Texas. While cold patches may have periods of
hibernation even in warm counties, the cave temperature
was then below optimal (13.0°C, [22]) for fungal growth.
Exposed bats carrying the fungus will be present, however,
because of dispersal from affected sites.

While both transmission modes—environmental and
direct—are significant components of epidemic spread, under
our parameterization, transmission via the environment had a
larger impact, causing approximately 90% of the force of infec-
tion along the simulation time (electronic supplementary
material). However, sensitivity analysis on the infectivity par-
ameters shows that similar results can be obtained by
decreasing one parameter and increasing the other parameter
(i.e. adjusting rate parameters associated with the two trans-
mission modes; electronic supplementary material). Removing
environmental transmission from the model resulted in 99%
less bat population reduction after 10 years. This occurs because
most of the exposedand infectedbats shed the fungus and revert
back to the susceptible state during the summer, and trans-
missions from the environment is required to re-infect the bat
population at the start of the hibernation period.

The sensitivity analysis shows that the spread of WNS
changes under variation of the parameters. Specifically, our
results are most susceptible to changes in direct transmission
rate, infection rate, hibernation temperature thresholds and
bat growth rate. The increase in the direct transmission rate,
infection rate and hibernation temperature thresholds
increase the disease mortality and fungal spread. An increase
in bat population growth rate decreases mortality and spread.
Increasing the mean dispersal distance (decreasing γ) signifi-
cantly increases the number of affected patches, but does not
significantly affect mortality.

Under sigmoidal infectivity response, the range of poten-
tial outcomes is wider (electronic supplementary material).
Depending on the parameterization of the sigmoid curve,
we could expect the number of affected patches in 10 years
to range from 30 to 70, with population reductions ranging
from 8 to 40%. Unfortunately, to our knowledge, there are
no experimental data available that would allow inferring
the true shape of the infectivity response.
4. Discussion
We found that WNS mortality will vary across Texas cave
hibernacula, with northern sites more affected than southern
sites. Results from our model suggest a projected decline
(greater than 75% reduction) in the number and size of bat
populations in the northern sites over 5–10 years. Central
sites will be affected to a lesser degree, with a projected
30–50% reduction in population densities, whereas southern
sites will be mostly unaffected. Interestingly, P. destructans
reaches very high densities in central Texas where hiber-
nation sites are most numerous, but owing to warm
temperatures, the bat populations in these sites are less
severely affected probably owing to shorter periods of time
spent in torpor. The high fungal densities are in part
explained by the reduced mortality, resulting in a long dur-
ation during which bats shed fungal spores.

The first documentation of WNS was anticipated to be in
north Texas based on environmental characteristics [35] and
proximity to nearest WNS-infected sites. However, WNS was
first documented on cave myotis (M. velifer) in 18 counties in
central Texas in spring 2020 ([34]; figure 2). This is the first
documentation of WNS in central and southern regions, result-
ing after 4 years of P. destructans being present in Texas. Our
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model shows that both the fungus and WNS are prevalent in
central Texas, but that the proportional disease mortality is
smaller in central Texas than in northern Texas. Because few
exposed bats die in central Texas, P. destructans can reach
high densities, increasing the continued spread of the
fungus. Central Texas has the greatest abundance of known
hibernacula in Texas, as well as the greatest diversity of bats
in the state [47], increasing the potential for infection suscepti-
bility. Unfortunately, bats found with WNS in central Texas
during early spring were found by the general public outside
of their hibernacula, and it is unknown where bats are becom-
ing infected with P. destructans in the region.

Based on our model, the environmental transmission may
play an important part in the spread of the epidemic. Indeed,
contact between bats and the contaminated environment [50]
in autumn has been shown to initiate infection [51]. This also
complements the recent finding that high levels P. destructans
in the environment result in widespread infections [52].
Although the primary method of spread of P. destructans is
bat-to-bat [13], under our parameter set only 1 in 10 is
owing to direct contact with an infectious individual during
hibernation. The overall pattern is not very sensitive to the
relative strengths of these two components (modes of patho-
gen spread: environmental, direct) and temporally detailed
data would be required to estimate these parameters inde-
pendently. This is important to note, however, as indirect
and infrequent transmission plays a key role in the trans-
mission and community-wide spread of P. destructans [53].
Indeed, direct transmission still impacted the bat population;
removing direct transmission resulted in 90% less bat popu-
lation reduction. Direct transmission is the most probable
cause of pathogen spread into new counties. When exposed
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bats disperse into new sites, they shed fungus into the
environment, but also transmit directly to susceptible hosts
when entering hibernation. Because fungal densities remain
low in the environment at new sites initially, the direct trans-
mission route may be more prevalent.

Our results suggest that reducing fungal spore loads in
hibernation sites may work as an effective way to slow
down the epidemic spread. Susceptibility to the disease
requires bats to stay in torpor for prolonged periods,
suggesting that pathological infection occurs in regions
with long periods of low ambient temperature [54]. Indeed,
knowledge of hibernation temperatures of several species in
Texas [35] supports the notion of longer periods of the
torpor of bats in north Texas than in central and southern
regions of Texas. Further, the known largest bat colonies in
the world exist in Texas [47], with some colonies of hibernat-
ing bat species occurring statewide in the thousands (e.g.
P. subflavus, [55]) to tens of thousands (e.g. M. velifer, [48]).
These large colonies can provide environments conducive
to the persistence of organic detritus, supporting vegetative
growth of P. destructans and creating sources of increased
potential environmental transmission [42]. RH is also
known to constrain propagation of P. destructans [23]. Unfor-
tunately, we did not include RH in the model because
sufficient data were not available. However, we know that
bats also tend to hibernate at sites with high RH, to reduce
evaporative water loss [37]. Conidial fungi, such as P. destruc-
tans, also need high RH to propagate [56] and grow [23].
Essentially, RH affects the hibernation success of bats inde-
pendently of the presence of P. destructans [57,58].

The projections are dependent on our parameterization of
the dynamical model. Finding the relevant parameter set for
a particular case is admittedly difficult, despite that for some
parameters the values were available from previous work
[27]. Further, some parameters such as transmission rate are
dynamical and therefore can only be estimated. We per-
formed an additional validation step to refine our estimates
based on observations of disease spread two years since
introduction to Texas. Our initial best-estimate parameter
values undershot the observed pattern of disease prevalence
in 2020; refined estimates after validation led to the faster
spread and less lethal disease (electronic supplementary
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material). The values we chose for rejection thresholds (rejec-
tion criteria) also reflect our subjective views of at which level
of prevalence the WNS disease and P. destructans would be
detected in surveys. Similar analysis and model projections
could be performed with our model framework in the follow-
ing years when new data become available, thereby
improving estimates and predictions.

We anticipate that the spread of P. destructanswill be slow
and display source-sink dynamics in Texas. We further antici-
pate that the spread of P. destructans in central Texas, where
caves are more clustered, will be similar to the eastern
United States, where the rate of spread increased with proxi-
mity to the nearest infected site [20]. Indeed, results from our
model suggest that conservation actions should consider
preservation of sites in north Texas that have temperatures
conducive to hibernation and suitable for fungal growth,
with large colonies of bats, as these sites may be more suscep-
tible to local extinctions [25]. Further efforts should be
focused on gathering species-specific parameters and
within-season movements at southern latitudes for furthered
targeting efforts for future research.
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