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 49 

ABSTRACT 50 

Background. Genetic heterogeneity in type I interferon related gene IFI44L may account for 51 

variable susceptibility to respiratory tract infections (RTIs) in children. 52 

Methods. In two prospective, population-based birth cohorts, the STEPS Study and the FinnBrain 53 

Birth Cohort Study, IFI44L genotypes for rs273259 and rs1333969 were determined in relation to 54 

the development of RTIs until one and two years of age, respectively. At age 3 months, whole 55 

blood transcriptional profiles were analyzed and nasal samples were tested for respiratory viruses in 56 

a subset of children.  57 

Results. In the STEPS Study (n=1135), IFI44L minor/minor gene variants were associated with 58 

lower rates of acute otitis media episodes (adjusted incidence rate ratio [aIRR], 0.77 [95% CI, 0.61-59 

0.96] for rs273259 and 0.74 [0.55-0.99] for rs1333969) and courses of antibiotics for RTIs (aIRR, 60 

0.76 [0.62-0.95] and 0.73 [0.56-0.97], respectively. In the FinnBrain cohort (n=971), IFI44L 61 

variants were associated with lower rates of RTIs and courses of antibiotics for RTIs. In respiratory 62 

virus-positive 3-month-old children, IFI44L gene variants were associated with decreased 63 

expression levels of IFI44L and several other interferon related genes. 64 

Conclusions. Variant forms of IFI44L gene were protective against early-childhood RTIs or acute 65 

otitis media, and they attenuated interferon pathway activation by respiratory viruses.  66 

 67 

Words 199 68 

 69 

Key words. acute otitis media; interferon pathway; polymorphisms; respiratory tract infections; 70 

transcriptome 71 
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Capsule Summary:  Common IFI44L gene variants were protective against early-childhood 74 

respiratory tract infections or acute otitis media in two independent birth cohorts. These 75 

polymorphisms attenuated interferon pathway activation by respiratory viruses. 76 

 77 

Key words: acute otitis media; interferon pathway; polymorphisms; respiratory tract infections; 78 

transcriptome 79 

 80 
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 82 

ABBREVIATIONS  83 

DEG: Differentially expressed gene  84 

GO: Gene Ontology   85 

IFI44L: Interferon-induced protein 44-like 86 

IFN: Type I interferon  87 

ISG: Interferon-stimulated gene  88 

MBL: Mannose-binding lectin  89 

mRNA: Messenger RNA  90 

RTI: Respiratory tract infection    91 

SNP: Single nucleotide polymorphism 92 

STEPS: Steps to the Healthy Development and Well-being of Children 93 

TLR: Toll-like receptor94 



J.Lempainen&L.S.Korhonen 

 

 

 

6 

INTRODUCTION 95 

Children younger than 2 years of age have the highest frequency of respiratory tract infections 96 

(RTIs) with an average of 6 episodes per year.1,2, 3 RTIs are mostly caused by viruses and are 97 

frequently complicated by acute otitis media, where both viruses and bacteria play a role. Some 98 

children suffer from higher numbers of RTIs and acute otitis media episodes than others,4 but 99 

reasons for these individual differences are not fully understood.   100 

Risk factors for RTIs include the presence of older siblings, day care attendance, male 101 

sex, passive smoke-exposure, and lack of breastfeeding.2,4,5,6 Recently, genetic susceptibility to 102 

RTIs or acute otitis media has been recognized. Single nucleotide polymorphisms (SNPs) and other 103 

genetic variants affecting the functions of essential proteins of innate immunity such as toll-like 104 

receptors (TLR), mannose-binding lectin (MBL), tumor necrosis factor (TNF) alpha, interleukin 105 

(IL)-6, and IL-10 have been associated with increased susceptibility to RTIs. 7,8,9,10,11,12,13 Effects of 106 

these common polymorphisms are especially important during early childhood.14 107 

Interferon (IFN) pathways are of key importance in innate immune responses. Type I 108 

IFNs (including IFN- and IFN-) are secreted by infected cells after recognition of microbial 109 

(particularly viral) products by cell surface and intracellular pattern recognition receptors.15 IFNs 110 

induce cell-intrinsic antiviral states leading to transcription of IFN-stimulated genes (ISGs) in 111 

infected and neighboring cells. Type I IFNs promote antigen presentation and development of 112 

antigen-specific T- and B-cell responses but simultaneously restrain pro-inflammatory pathways.15 113 

The function of several IFN-induced proteins with potential antiviral action and the effects of 114 

polymorphisms in ISGs are still poorly characterized. Interferon-induced protein 44-like (IFI44L) 115 

protein belongs to the group of proteins encoded by ISGs. IFI44L is transcriptionally induced by 116 

type I IFN signaling and is up-regulated in the antiviral response.16 IFI44L has been reported to 117 

have antiviral activity16,17 but the exact functions of this protein in the innate immune response are 118 

not known. Previously reported SNPs rs273259 and rs1333969 in the IFI44L gene have been 119 
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suggested to have a functional effect on IFI44L protein.18,19 However, there is no data on the 120 

association of these common gene variants with the susceptibility to RTIs in children. 121 

 We aimed to determine the association of variant forms of IFI44L gene 122 

polymorphisms rs273259 and rs1333969 with rates of RTIs, acute otitis media episodes, and 123 

antibiotic treatment courses during first two years of age. Our study populations were derived from 124 

two prospectively followed, independent population-based birth cohorts from Finland, Steps to the 125 

Healthy Development and Well-being of Children (STEPS) and the FinnBrain Birth Cohort 126 

Study.20,21 The effect of IFI44L gene polymorphisms on blood messenger RNA (mRNA) 127 

transcriptional profiles were analyzed in a subset of children in the FinnBrain Birth Cohort Study.  128 

  129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

METHODS 139 

Study populations 140 

This study was conducted within two prospective, population-based birth cohort studies: the STEPS 141 

Study and the FinnBrain Birth Cohort Study.20,21 Children born to their Finnish- or Swedish-142 

speaking mothers were eligible, and no other selection criteria were applied in either study. The 143 

STEPS Study and the FinnBrain Birth Cohort Study protocols were approved by the Ethics 144 
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Committee of the Hospital District of Southwest Finland. The parents of the participating children 145 

gave written informed consent on their child’s behalf. 146 

 147 

STEPS Study. A cohort of 1827 children born in 2008-2010 in the Hospital District of Southwest 148 

Finland were followed for RTIs from birth to two years of age.3,4 During follow-up, parents 149 

documented in a daily diary the presence of respiratory symptoms, physician visits with diagnoses 150 

of RTIs, and antibiotic treatments for RTIs. In a subset of children (n = 923; 51%), at the onset of 151 

respiratory symptoms, nasal swabs were obtained using flocked nylon swabs (Copan, Brescia, Italy) 152 

either at the study clinic or by the parents at home and sent to the laboratory.3 Children were 153 

examined by a study physician during an acute RTI if the parents felt that an evaluation was 154 

needed.  Blood samples for genetic analyses were obtained at two months of age. Data on 155 

emergency department visits and hospitalizations was collected from the Hospital District of 156 

Southwest Finland electronic healthcare records. 157 

 158 

FinnBrain Birth Cohort Study. A total of 1443 children born between 2011 and 2015 in the 159 

Hospital District of Southwest Finland were followed for RTIs from birth to one year of age. Cord 160 

blood was collected at birth and used for genetic studies. Data on physician visits for RTIs, 161 

physician-diagnosed respiratory infections (RTI, rhinitis, cough, acute otitis media, bronchiolitis, or 162 

pneumonia), and antibiotic treatments for RTIs were collected using monthly questionnaires. The 163 

final analysis included children with successful genotyping and information on respiratory 164 

infections (n = 971 for rs273259 and n = 972 for rs133969). At 3 months of age children were 165 

examined by a study physician, and from a subset of 71 children, nasal swabs were collected using 166 

flocked nylon swabs (Copan) and blood samples were collected in Tempus tubes (Applied 167 

Biosystems, Foster City, CA) for mRNA analysis.  At the time of collection of nasal and blood 168 

samples infants were afebrile and without signs or symptoms of an RTI.  169 
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 170 

Respiratory virus detection 171 

Nasal swabs were stored at -80°C until analyses. Swabs were suspended in phosphate buffered 172 

saline, and nucleic acids were extracted by NucliSense easyMag (BioMerieux, Boxtel, the 173 

Netherlands) or MagnaPure 96 (Roche, Penzberg, Germany) automated extractor. Extracted RNA 174 

was reverse transcribed and the cDNA of the STEPS Study samples were amplified using real-time, 175 

quantitative reverse- transcription polymerase chain reaction (RT-PCR) for rhinovirus, 176 

enteroviruses, and respiratory syncytial virus (RSV).22, 23 In the FinnBrain Birth Cohort Study, the 177 

Anyplex RV16 (Seegene, Seoul, Korea) multiplex PCR assay was performed according to the 178 

manufacturer’s instructions. This multiplex assay included the detection of adenovirus, bocavirus, 179 

coronaviruses, enteroviruses, influenza A and B viruses, metapneumovirus, parainfluenza virus 180 

types 1-4, rhinovirus, and RSV A and B. 181 

 182 

Definitions of respiratory infection outcomes 183 

In the STEPS Study, an episode of RTI was defined as the presence of rhinitis or cough, with or 184 

without fever or wheezing, documented in the diary by the parents, or as a physician-diagnosed RTI 185 

as previously described.3 The number of days with RTI symptoms was analyzed using data filled 186 

into daily diaries by the parents. Acute otitis media was diagnosed by a study physician or recorded 187 

into the diary or medical records by a physician at an outpatient office or hospital. If there were 188 

repeated diagnoses of acute otitis media during continuous respiratory symptoms, parallel diagnoses 189 

within 14 days were calculated as one diagnosis. As rhinovirus was the most frequent virus 190 

identified in the STEPS Study3, we report separately the rates of rhinovirus-positive RTIs. 191 

In the FinnBrain Birth Cohort study, the definition of an RTI was based on the 192 

monthly parental report of physician-diagnosed acute RTIs. Each separate episode in one-month 193 
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period, and any episode that continued during the turn of the month, was defined as a separate 194 

event.  195 

 196 

Genetic analysis  197 

In the STEPS Study, DNA was extracted from whole blood according to standard procedures and 198 

IFI44L SNPs rs273259 and rs1333969 were analyzed using the Sequenom platform (San Diego, 199 

CA) at Genome Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. In 200 

quality control analysis both SNPs had genotype missingness per marker below the threshold of 5% 201 

(2.7% and 1.1%, respectively) and both had non-significant Hardy-Weinberg P values (P = .61 and 202 

P = .30, respectively). SNPs rs273259 and rs1333969 show mild linkage disequilibrium (r2=0.58) 203 

among the Finnish population.24 204 

In the FinnBrain Birth Cohort Study, DNA was extracted from whole blood according 205 

to standard procedures and genotyped with Illumina Infinium PsychArray BeadChip comprising 206 

603132 SNPs at Estonian Genome Centre, Tartu, Estonia. Quality control was performed with 207 

PLINK 1.9 (http://www.cog-genomics.org/plink/1.9/).25 Markers were removed for missingness 208 

(>5%) and Hardy-Weinberg equilibrium (P value < 1 x 10-6). Individuals were checked for missing 209 

genotypes (>5%), relatedness (identical by descent calculation, PI_HAT>0.2) and population 210 

stratification (multidimensional scaling).  211 

 212 

Transcriptome analysis 213 

Details of the transcriptome analysis are presented in this article’s Online Repository. Briefly, 214 

whole blood mRNA transcriptional profiles were analyzed in 71 infants from the FinnBrain Birth 215 

Cohort Study at 3 months of age (Table E1). RNA was extracted and hybridized to Illumina HT-12 216 

V4 beadchips (Illumina, San Diego, CA). Data was pre-processed and filtered as previously 217 

described.26 As there was low number of infants with minor/minor genotypes (Table E1), mRNA 218 
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expression and transcriptional profiles were compared between 1) major/major genotypes, and 2) 219 

other genotypes (including major/minor and minor/minor genotypes). First, we analyzed if the 220 

presence of IFI44L polymorphisms influenced IFI44L mRNA expression. To further explore if 221 

IFI44L polymorphisms were associated with altered expression of other genes, we performed 222 

differential gene expression analysis between the genotypes. Limma27 package in R with false 223 

discovery rate (FDR) adjusted P value of 0.05 and 1.25 fold change were used to detect 224 

differentially expressed genes (DEGs). To assess function of the DEGs and affected pathways, we 225 

used Gene Ontology (GO)28, 29 biological processes terms and Ingenuity Pathway Analysis (IPA) 226 

software (QIAGEN, Redwood City, CA, USA). The data is deposited in the NCBI Gene Expression 227 

Omnibus (GEO accession number: XXX). 228 

 229 

Statistical analysis 230 

In the STEPS Study, the association between the IFI44L genotypes and respiratory infection 231 

outcomes in children 0-2 years of age were analyzed using negative binomial regression analysis 232 

with natural logarithm of the follow-up time as an offset. Unadjusted and adjusted incidence rate 233 

ratios (aIRR, adjusted for sex and the presence of sibling(s) at birth) were reported. In the FinnBrain 234 

Birth Cohort Study, the association between the IFI44L genotypes and RTIs and antibiotic 235 

treatments for RTIs from birth to 1 year of age were first tested with linear regression analysis 236 

implemented with PLINK (Purcell). The number of RTIs was then categorized in four groups: 0, 1-237 

4, 5-10, and >10, and the number of antibiotic courses in three groups: 0, 1-4, and 5 or more. Final 238 

analysis with adjustment for sex and the presence of sibling(s) at birth was done using ordinal 239 

logistic regression to explore whether the odds of being in a higher category was associated with the 240 

heterozygous or homozygous polymorphisms of IFI44L. The selection of sex and presence of 241 

sibling(s) as covariates in the final models was based on a priori knowledge. We have previously 242 

published that, in the STEPS Study, male sex and the presence of older siblings were risk factors for 243 
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respiratory infection outcomes, while breastfeeding, parental smoking or daycare attendance were 244 

not associated with an increased risk of respiratory infections13. Regression analyses were 245 

performed using R 3.5.3. Two-tailed P values of less than .05 were considered significant. 246 

 247 

RESULTS 248 

In the STEPS Study, the final analysis included 1135 children that had genotypes and RTI data, 249 

including 738 with data on rhinovirus etiology of RTIs. In the FinnBrain cohort, the final analysis 250 

included children with successful genotyping and data on RTIs (n = 970 for rs273259 and n = 971 251 

for rs133969). Background characteristics and allelic distribution of IFI44L polymorphisms in both 252 

cohorts are presented in Table 1 and RTI-related outcomes in Table 2.  253 

 254 

IFI44L genotypes and respiratory infections in the STEPS Study cohort 255 

Rates of all RTIs and rhinovirus-positive RTIs were similar in the first 2 years of life in children 256 

with different IFI44L genotypes (Table 3). Slightly decreased rates of days with RTI symptoms 257 

were observed among children with genetic variants. This difference was significant only for 258 

children with the CT (major/minor) genotype of rs1333969 compared to those with the CC 259 

(major/major) genotype (aIRR, 0.89 [95% CI, 0.81-0.98]).  260 

The minor G allele of the rs273259 polymorphism was associated with decreased 261 

rates of acute otitis media both in unadjusted and adjusted analysis (Table 3 and Table E2). 262 

Children with a homozygous GG (minor/minor) genotype had lower rates of acute otitis media 263 

compared to children with the AA (major/major) genotype (aIRR, 0.77 [95% CI, 0.61-0.96]). 264 

Similarly, the minor T allele of the rs1333969 polymorphism was associated with decreased rates of 265 

acute otitis media. GG (minor/minor) genotype of the rs273259 and TT (minor/minor) genotype of 266 

the rs1333969 were associated with lower rates of antibiotic courses for RTIs compared with 267 

children with the respective major/major genotypes (aIRR [95% CI] for rs273259, 0.76 [0.62-0.95], 268 
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and for rs1333969, 0.73 [0.56-0.97]).  269 

 270 

IFI44L genotypes and respiratory infections in the FinnBrain Study cohort 271 

In ordinal logistic regression analyses adjusted for sex and presence of sibling(s), the G allele of the 272 

rs273259 polymorphism in the IFI44L gene was associated with lower number of RTIs during the 273 

first year of life. Children with the minor/minor genotype GG had an odds ratio (OR) of 0.64 [95% 274 

CI, 0.42-0.97], P = .04, and children with the major/minor AG genotype an OR of 0.65 [95% CI, 275 

0.48-0.86], P = .003, for RTI frequency compared to the major/major genotype (Table 4). The 276 

rs1333969 minor allele T was similarly associated with a decreased frequency of RTIs.  277 

The heterozygous genotypes rs273259 AG and rs1333969 CT were significantly 278 

associated with decreased rates of antibiotic courses for RTIs from birth to 1 year of age compared 279 

to the major/major genotypes (P = .02 and P = .04, respectively). Rates of antibiotic courses were 280 

also lower in children with minor/minor compared with major/major genotypes of these 281 

polymorphisms but differences were not statistically significant.  282 

 283 

Effects of IFI44L gene variants on peripheral blood transcription patterns 284 

Blood mRNA transcriptional profiles were analyzed in 71 asymptomatic infants 3 months of age 285 

from the FinnBrain Birth Cohort Study. The demographic characteristics, distribution of IFI44L 286 

polymorphisms, and virus detections in these children are presented in Table E1. At least one 287 

respiratory virus was detected in 25 (35%) of these children, rhinovirus being the most frequently 288 

detected.  289 

First, we compared IFI44L expression in all 71 children according to the rs273259 290 

and rs1333969 genotypes and found no differences between the groups (Figure 1, panels A and B). 291 

Next, we compared IFI44L expression in a subset of children (n = 25; Table E2) who were positive 292 

at least for one respiratory virus. In these virus-positive children, rs1333969 genotype CC 293 
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(major/major) was associated with higher IFI44L expression (P = .0036). Similar findings were 294 

observed with the rs273259 genotype (P = .048) (Figure 1, panels C and D. 295 

To explore if different IFI44L genotypes were associated with differences in the 296 

expression of other genes we performed differential gene expression analysis among all children. 297 

No DEGs were detected when comparing rs273259 and rs1333969 (major/major vs. other 298 

genotypes). However, when we included only children with virus detections (n = 25) and compared 299 

the rs1333969 CC (major/major) genotype to other genotypes, we identified 116 DEGs. (Table E3, 300 

Figure E2). Of these 116 DEGs, 105 (91%) were overexpressed and 11 (9%) were underexpressed 301 

in the CC (major/major) genotype. These DEGs were strongly associated with activation of the 302 

interferon pathway and immune responses against viruses. Gene set analysis showed that the most 303 

significant GO biological process was “type I interferon signaling pathway” with 17/66 overlapping 304 

transcripts (P = 3.3 x 10-21; Table E4). Interferon signaling was also the most significant pathway 305 

using IPA (12/36 genes; P = 1.4 x 10-18; Figure 2). 306 

In similar analysis comparing the rs273259 genotypes among infants with virus 307 

detection, we identified 23 DEGs (Table E5, Figure E3). Of these 23 DEGs, 19 (82%) were 308 

overexpressed and 4 (18%) were underexpressed in the AA (major/major) genotype. These DEGs 309 

included immune response related genes such as interferon gamma (IFNG), granulysin (GNLY), 310 

and granzyme A (GZMA). However, no statistically significant GO biological processes or IPA 311 

pathways were identified (data not shown). When comparing the DEGs associated with rs1333969 312 

(n = 116) and rs273259 (n = 23) genotypes, we found that 16 DEGs were identified in both 313 

comparisons (Figure 3). 314 

Comparing virus-positive and virus-negative asymptomatic children irrespective of 315 

gene polymorphisms, we found no differences in IFI44L expression or in differential gene 316 

expression analysis (data not shown). 317 

 318 
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DISCUSSION 319 

In two independent, population-based, prospective birth cohort studies, we analyzed the influence 320 

of two common SNPs in IFI44L, a type I interferon gene, on children’s susceptibility to RTIs. The 321 

variant forms of IFI44L were protective against early-childhood RTIs or acute otitis media in both 322 

cohorts. Further, we demonstrated that these gene polymorphisms were associated with altered 323 

expression of IFI44L and other transcripts belonging to type I interferon signaling pathways in 324 

children with an asymptomatic respiratory virus detection.  325 

In the STEPS Study cohort, we found that the IFI44L gene variants had no effect on 326 

the rates of all RTIs or RTIs associated with rhinovirus. However, minor G allele of rs273259 and 327 

minor T allele of rs1333969 were associated with a small decrease in the number of days with RTI 328 

symptoms per year and with a substantial decrease in the rate of acute otitis media from birth to 2 329 

years of age. In the FinnBrain Birth Cohort Study, we found that the minor alleles of rs273259 and 330 

rs1333969 were associated with a decreased RTI frequency during the first year of life. The 331 

inconsistencies in the results may be explained by differences in the follow-up period and outcomes 332 

between the two birth cohorts. In the STEPS Study, RTI data was largely based on a daily symptom 333 

diary kept by parents, documenting also very mild infections. Only 41% of RTIs required a 334 

physician visit.3 The FinnBrain Cohort was followed less intensively, and only RTIs for which a 335 

physician visit was needed were recorded. The effect of IFI44L polymorphisms in the STEPS Study 336 

on the rate of acute otitis media––which is the most common complication of a viral RTI in 337 

children––is in line with an effect on RTIs in the FinnBrain Cohort where acute otitis media was not 338 

separately recorded. Associations of minor alleles of IFI44L with a lower rate of antibiotic use for 339 

RTIs in both cohorts suggests that these gene variants protect against more severe RTI, which can 340 

possibly be complicated with a bacterial infection.      341 

 The role of ISGs in the immune defense is poorly described. IFI44L expression 342 

increases after infection of dendritic cells with measles virus30 or airway epithelial cells with RSV 343 
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or influenza virus.31 Upregulation of ISGs including IFI44L has been associated with the 344 

persistence of hepatitis E virus.17 IFI44L is shown to negatively modulate innate immune responses 345 

in the context of a viral infection, and decreasing IFI44L expression impairs viral replication.32 346 

Moreover, IFI44L had direct antiviral effects towards hepatitis C virus in a large-scale ISG screen.16 347 

H28, a mouse homolog for human IFI44L gene, affects the susceptibility to viral myocarditis in a 348 

mouse model.33 Determination of the transcription activation of IFI44L has been recently suggested 349 

as a diagnostic tool to discriminate between viral and bacterial infections.34,35 These findings 350 

illustrate the importance of a balanced regulation of IFI44L in the immune response against viral 351 

infections. With this background it is rather surprising that IFI44L polymorphisms were associated 352 

with acute otitis media and physician-diagnosed RTIs, but not with the rates of documented 353 

rhinovirus infections. Acute otitis media in children can be caused by viruses, bacteria, or both, and 354 

it almost always develops during or after a viral infection.36 Our results suggest that an appropriate 355 

level of IFI44L activation is important for young children in order to contain viral RTIs and prevent 356 

development of acute otitis media. 357 

Previous data on functional effects of polymorphisms in the IFI44L gene is limited. 358 

An association between major alleles in IFI44L rs273259 and intronic rs1333973 and elevated 359 

levels of measles-specific neutralizing antibodies in children has been reported.18 The IFI44L 360 

rs273259 and rs1333973 polymorphisms are in complete linkage disequilibrium (r2 1.0) and thus 361 

most likely represent the effect of the same gene loci.24 A tendency for febrile seizures following 362 

measles, mumps, and rubella vaccination has been associated with the major A allele of rs273259.18 363 

These reports suggest that the major allele of rs273259 associates with strong immune or 364 

inflammatory responses after a stimulus such as a live vaccine. 365 

 We used transcriptional profiling at the age of 3 months to better understand whether 366 

these polymorphisms influenced gene expression. Differences were seen only in children positive 367 

for a respiratory virus, although they had no apparent symptoms of an infection at the time of 368 
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sample collection. Compared to children with major/major genotypes under this natural 369 

immunologic stimulus, children with major/minor or minor/minor genotypes had weaker 370 

transcription activity of IFI44L and, also, of expression of other type I interferon signaling pathway 371 

genes. Although the numbers of subjects were limited, these results suggest that a relatively weak 372 

interferon response could be beneficial in terms of development of symptomatic RTIs or acute otitis 373 

media. Symptoms of respiratory virus infections are largely mediated by the host response, which 374 

may explain these findings.  375 

Strengths of this study include large study populations from two independent birth 376 

cohorts, detailed follow-up of RTIs particularly in the STEPS Study, and search for functional 377 

effects of IFI44L polymorphisms by global transcriptome analysis in children with or without a 378 

virus infection. Our study also has limitations. Clinical outcomes were partly different between the 379 

two cohorts, and in the Finnbrain Cohort study follow-up was not as detailed as in the STEPS 380 

Study. However, data such as antibiotic use for RTIs was similar in both cohorts and the findings 381 

support each other. Both cohorts were from Finland and corresponding data from other populations 382 

would be informative. Transcriptome data was available from a subset of children and larger studies 383 

are needed to validate the findings. 384 

 In conclusion, we report an effect of IFI44L rs273259 and 1333969 polymorphisms 385 

on susceptibility to RTIs in early childhood. Minor alleles associated with lower rates of RTIs or 386 

acute otitis media and with weaker interferon response. The exact mechanisms how the 387 

polymorphisms affect the immune functions need further investigation. 388 

 389 
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Figure legends 491 

Figure 1. Expression values of IFI44L according to IFI44L polymorphisms and virus 492 

detection. In 71 children with transcriptome data available there were no differences in IFI44L 493 

expression according to rs1333969 (panel A) or rs273259 (panel B) genotype. However, in a 494 

subgroup of children with respiratory virus detection at the time of mRNA sampling (n = 25), 495 

IFI44L expression differed according to the genotype (panels C and D). In virus-positive children 496 

rs1333969 major/major genotype was associated with higher IFI44L overexpression compared to 497 

other genotypes (major/minor and minor/minor genotypes combined) (panel C; Mann-Whitney P = 498 

.0036). Similar finding was observed with rs273259 (panel D; P = .048). 499 

 500 

Figure 2. rs1333969 genotype of ILI44L affects expression of other transcripts in the 501 

interferon signaling pathway. We performed global transcriptome analysis in respiratory virus-502 

positive (n = 25) children and detected 116 genes that were differentially expressed between the 503 

rs1333969 major/major and other (major/minor and minor/minor) genotypes. Using gene set 504 

analysis approach and Ingenuity Pathway Analysis (IPA) software, we detected that interferon 505 

signaling pathway was the most affected pathway with 12/36 overlapping genes (P = 1.4 x 10-18). 506 

Differentially expressed transcripts in the interferon type II and type I signaling pathways are 507 

highlighted with purple. 508 

 509 

Figure 3. Venn diagram presenting the number of differentially expressed and overlapping 510 

genes in children with different genotypes of rs1333969 and rs273259 polymorphisms. 511 

Differential expression analysis was performed comparing major/major genotype to other 512 

genotypes (major/minor and minor/minor). False discovery rate adjusted P value .05 and 1.25 fold 513 

change were used as cut-offs for differentially expressed genes. 514 

 515 
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Figure 1 517 
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Figure 2.  519 
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Figure 3.  521 

 522 
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Table I. Background characteristics and allelic distribution of IFI44L polymorphisms in children in 

the STEPS Study and in the FinnBrain Birth Cohort Study 

 STEPS Study, No. (%) 

(n = 1135) 

FinnBrain Cohort, No. (%) 

(n = 971) Female 612 (53.9) 464 (47.8) 

Older siblings 612 (53.9) 463 (49.3)a 

IFI44L rs273259   

    GG 147 (13.0) 133 (14.0)b 

    AG 497 (43.8) 441 (45.0) 

    AA 491 (43.3) 396 (41.0) 

IFI44L rs1333969   

    TT 80 (7.0) 79 (8.0) 

    CT 414 (36.5) 357 (37.0) 

    CC 641 (56.6) 535 (55.0) 
a Data is missing for 31 children 

b N=970 
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Table II. Clinical outcomes in the STEPS Study and in the FinnBrain Birth Cohort Study 

Clinical outcomes  

STEPS Study, n = 1135  

    Length of follow-up, years, median (IQR) 2.0 (1.5-2.0) 

    RTIs during age 0-2 years, incidence rate per child-year (95% CI)a  

        RTI episodes 5.9 (5.7-6.0) 

        Days with RTI symptoms 50.4 (48.2-52.7) 

        Rhinovirus-positive RTIs 2.0 (1.9-2.1) 

        Acute otitis media episodes 1.0 (0.9-1.0) 

        Antibiotic courses for RTIs 1.3 (1.2-1.4) 

FinnBrain cohort, n = 972  

    Number of RTIs during age 0-1 year, No. (%)b  

        0 627 (64.5) 

        1–4 281 (29.0) 

        5–10 61 (6.2) 

        >10 3 (0.3) 

    Number of antibiotic treatments for RTIs during age 0-1 year, No. 

(%) 

 

        0 710 (73.0) 

        1–4 235 (24.0) 

        >4 27 (3.0) 

CI, confidence interval; IQR, interquartile range; RTI, respiratory tract infection. 

a Includes all RTIs with or without a physician visit. Incidence rates were calculated using negative 

binomial distribution and log-link with natural logarithm of the follow-up time as an offset. 

b Includes only RTIs that necessitated a physician visit.
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Table III. Association between IFI44L polymorphisms and rates of respiratory tract infections 

(RTIs) and related outcomes during age 0-2 years in the STEPS Study children (n = 1135)a 

 IFI44L gene 

polymorphism 

Genotype 

(No.) 

Incidence rate 

per child-year 

(95% CI)a 

Incidence rate 

ratio (95% CI)a 

P 

RTIs rs273259 AA (491) 6.0 (5.7-6.3) reference  

  AG (497) 5.8 (5.6-6.1) 0.98 (0.92-1.04) .46 

  GG (147) 5.7 (5.3-6.2) 0.97 (0.89-1.06) .56 

 rs1333969 CC (641) 6.0 (5.7-6.2) reference  

  CT (414) 5.7 (5.4-6.0) 0.96 (0.90-1.01) .14 

  TT (80) 6.0 (5.4-6.7) 1.04 (0.93-1.16) .46 

Rhinovirus-positive RTIs rs273259 AA (319) 2.1 (1.9-2.2) reference  

  AG (321) 1.9 (1.7-2.0) 0.92 (0.83-1.03) .16 

  GG (96) 2.1 (1.8-2.5) 1.05 (0.89-1.24) .54 

 rs1333969 CC (409) 2.0 (1.9-2.2) reference  

  CT (269) 1.9 (1.8-2.1) 0.95 (0.85-1.06) .35 

  TT (58) 2.2 (1.8-2.6) 1.12 (0.93-1.36) .24 

Days with RTI symptoms rs273259 AA (445) 52.2 (48.7-55.9) reference  

  AG (457) 50.0 (46.8-53.6) 0.96 (0.87-1.06) .41 

  GG (134) 45.6 (40.3-51.8) 0.90 (0.78-1.04) .13 

 rs1333969 CC (579) 52.7 (49.6-56.0) reference  

  CT (384) 47.2 (43.9-50.9) 0.89 (0.81-0.98) .02 

  TT (73) 48.8 (41.3-58.1) 0.96 (0.81-1.15) .67 

Acute otitis media episodes rs273259 AA (491) 1.1 (1.0-1.2) reference  

  AG (497) 0.9 (0.8-1.0) 0.87 (0.75-1.01) .07 

  GG (147) 0.8 (0.6-1.0) 0.77 (0.61-0.96) .02 

 rs1333969 CC (641) 1.0 (1.0-1.2) reference  

  CT (414) 0.9 (0.8-1.0) 0.87 (0.75-1.01) .06 

  TT (80) 0.7 (0.6-1.0) 0.74 (0.55-0.99) .04 

Antibiotic courses for RTIs rs273259 AA (491) 1.4 (1.3-1.6) reference  

  AG (497) 1.3 (1.1-1.4) 0.89 (0.78-1.03) .13 

  GG (147) 1.0 (0.9-1.3) 0.76 (0.62-0.95) .02 

 rs1333969 CC (641) 1.4 (1.3-1.5) reference  

  CT (414) 1.3 (1.1-1.4) 0.91 (0.79-1.05) .18 

  TT (80) 1.0 (0.7-1.3) 0.73 (0.56-0.97) .03 

CI, confidence interval; RTI, respiratory tract infection.  

a Incidence rates were analysed using negative binomial regression analysis with natural logarithm 

of the follow-up time as an offset, adjusting for sex and the presence of sibling(s) at birth. 
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Table IV. Associations between IFI44L polymorphisms and the frequency of respiratory tract 

infections (RTIs) and antibiotic treatments for respiratory infections in the FinnBrain cohort (n = 

971 for rs133969 and n = 970 for rs273259) 

 

 IFI44L gene 

polymorphism 

Genotype (No.) OR (95% CI)a P 

RTIsb rs273259 AA (396) reference  

  AG (441) 0.65 (0.48-0.86) .003 

  GG (133) 0.64 (0.42-0.97) .04 
 rs1333969 CC (535) reference  

  CT (357) 0.70 (0.53-0.94) .02 

  TT (79) 0.67 (0.40-1.09) .11 

Antibiotic courses 

for RTIsc 

rs273259 AA (396) reference  

  AG (441) 0.68 (0.50-0.93) .02 

  GG (133) 0.76 (0.48-1.18) .23 
 rs1333969 CC (535) reference  

  CT (357) 0.72 (0.52-0.98) .04 

  TT (79) 0.92 (0.53-1.53) .75 

CI, confidence interval; OR, odds ratio; RTI, respiratory tract infection. 

a Ordinal logistic regression adjusted for sex and presence of sibling(s) at birth. 

b The frequency of acute respiratory infections from birth to 1 year of age was categorized in four 

groups: 0, 1-4, 5-10, and >10 respiratory tract infections. 

c The number of antibiotic courses from birth to 1 year of age was categorized in three groups: 0, 1-

4, and 5 or more antibiotic treatments. 
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Statistical analysis 

In the STEPS Study, the association between IFI44L polymorphisms rs273259 and rs1333969 and 

the incidence rate of respiratory tract infections (RTIs), rhinovirus-positive RTIs, days with RTI 

symptoms, acute otitis media episodes, and antibiotic treatments for RTIs during age 0-2 years were 

analyzed using negative binomial regression analysis with natural logarithm of the follow-up time 

as an offset, adjusting for sex and the presence of sibling(s) at birth (using R version 3.5.3). In the 

FinnBrain Birth Cohort Study, the associations between single nucleotide polymorphisms (SNPs) 

rs273259 and rs1333969 and RTIs as well as antibiotic courses for RTIs were tested with linear 

regression analysis implemented with PLINK.1 Final analysis with adjustment for sex and the 

presence of sibling(s) at birth was done using ordinal logistic regression. The ordinal logistic 

regression analyses were performed in R 3.5.32 using the polr function in the MASS package.3 

Two-tailed P values were reported, with P <0.05 considered statistically significant. 

 

Transcriptome analysis 

mRNA samples 
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Data on mRNA transcriptional profiles was available from a subset of 81 children in the FinnBrain 

study cohort. Four samples were excluded due to low sample quality and 6 samples were excluded 

due to missing data on IFI44L polymorphisms. Subsequently, samples from 71 children were 

included in the downstream analyses. (Table S2). 

  

mRNA sample collection and data pre-processing 

Blood samples were collected during a pre-scheduled study visit at 3 months of age.  1 ml of blood 

was drawn in Tempus tubes (Applied Biosystems, Foster City, CA) and stored in -20 °C. RNA was 

extracted and hybridized to Illumina HT-12 V4 beadchips (Illumina, San Diego, CA). After 

hybridization beadchips were scanned on Illumina Beadstation 500 and Illumina GenomeStudio 

software (Illumina, San Diego, CA) was used to subtract background and for average signal 

intensity scaling (average normalization). All raw expression values <10 were set to 10 and the data 

was log2-transformed.   

 

Data analysis 

As the number of children with minor/minor genotypes was low (Table S2), minor/minor 

homozygotes (rs1333969 TT and rs273259 GG) and major/minor heterozygotes (rs1333969 CT and 

rs273259 AG) were combined in a single class (“other genotype”) for each of the studied 

polymorphism and gene expression analyses were performed by comparing major/major genotypes 

to “other genotypes” (including major/minor and minor/minor). 

 

IFI44L expression 

HT-12 V4 beadchips contain two probes targeting IFI44L (ILMN_1723912 and ILMN_1835092). 

The expression values of these two probes were highly correlated (Spearman r 0.906, P <0.0001, 

Figure S1) and the mean of the two probes was used as expression value for IFI44L. Expression 
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values were analyzed according to genotype and virus detection and compared by the Mann-

Whitney test. Analysis was performed using GraphPad Prism software version 8.0.0 (Graphpad, 

San Diego, CA). 

 

Differential gene expression analysis 

Data was first filtered by including only transcripts that were ‘present’ (signal precision <0.01) in 

≥10% of the samples (PAL10%, 18,636 transcripts) in the downstream analyses. limma4 package 

and R2 version 3.5.1 were used to detect differentially expressed genes (DEGs) between the groups. 

False discovery rate (FDR) corrected P value 0.05 and 1.25 fold change were used as cut-offs for 

DEGs. Gene set analysis was performed for functional characterization of DEGs by analyzing Gene 

Ontology (GO)5,6 biological processes terms associated with DEG lists. For this we used 

PANTHER overreprentation test (available at http://geneontology.org/) with Homo sapiens 

reference gene list and Fisher’s exact test with Benjamini-Hochberg multiple test correction. 

Ingenuity Pathway Analysis software (QIAGEN, Redwood City, CA, USA) was used to further 

explore affected pathways. 
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Figure E1.   Correlation of the expression values of two probes targeting IFI44L in the Illumina 

HT-12 V4 beadchips (ILMN_1723912 and ILMN_1835092) in 71 children with transcriptome data 

available. As the two expression values had a strong correlation (Spearman r 0.906, P <0.0001), a 

mean value of the two probes was used in downstream analyses. All values are log2 transformed. 
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Figure E2. Heatmap visualising the expression levels of 134 probes targeting 116 differentially 

expressed genes (DEGs) between rs1333969 CC (major/major) and other genotypes in children 

with viral detections (n=25). False discovery rate corrected P value 0.05 and 1.25 fold change were 

used as cut-offs to detect DEGs. DEGs are listed in Supplementary Table 3. Expression values are 

log2 transformed and normalized to median of the class “other genotype” (including CT 

[major/minor] and TT [minor/minor] genotypes). Samples are clustered using hierarchical 

clustering and Euclidean distance and colored according to rs1333969 genotype: CC 

(major/major)=green; CT (major/minor)=grey; TT (minor/minor)=magenta. 

DEG, differentially expressed gene 
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Figure E3. Heatmap visualising the expression levels of 24 probes targeting 23 differentially 

expressed genes (DEGs) between rs273259 AA (major/major) and other genotypes in children with 

viral detections (n=25). False discovery rate corrected P value 0.05 and 1.25 fold change were used 

as cut-offs to detect DEGs. DEGs are listed in Supplementary Table 5. Expression values are log2 

transformed and normalized to median of the class “other genotype” (including AG [major/minor] 

and GG [minor/minor] genotypes). Samples are clustered using hierarchical clustering and 

Euclidean distance and colored according to rs273259 genotype: AA (major/major)=green; AG 

(major/minor)= grey; GG (minor/minor) magenta. 

DEG, differentially expressed gene 
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Figure E1.  
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Figure E2.  



J.Lempainen&L.S.Korhonen 

 

 

 

44 

 



J.Lempainen&L.S.Korhonen 

 

 

 

45 

Figure E3.  
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Table E1. Background characteristics, allelic distribution of IFI44L polymorphisms, and 

respiratory viruses detected at 3 months of age in children included in transcriptome analysis in the 

FinnBrain Birth Cohort Study. 

 FinnBrain Cohort, No. (%) 

(n = 71) 
Female 36 (51) 
Older siblings 31 (44) 

IFI44L rs273259  

    GG 11 (15) 

    AG 33 (47) 

    AA 27 (38) 

IFI44L rs1333969  

    TT 6 (8) 

    CT 30 (42) 

    CC 35 (50) 

Detection of ≥1 respiratory virus* 25 (36) 

   Rhinovirus 16 (23) 

   Adenovirus 3 (4) 

   Coronavirus 3 (4) 

   Respiratory syncytial virus 2 (3) 

   Bocavirus 1 (1) 

   Influenza A virus 1 (1) 

 

* Data on respiratory viruses was available from 70/71 children. 1 child had two viruses (rhinovirus 

and adenovirus) detected concomitantly. 
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Table E2. Unadjusted analysis of association between IFI44L polymorphisms with rates of 

respiratory tract infections (RTIs) and related outcomes during age 0-2 years in the STEPS Study 

children (n=1135)a 

 

 IFI44L 

polymorphism 

Genotype 

(No.) 

Incidence rate 

per child-year 

(95% CI)a 

Unadjusted 

incidence rate 

ratio (95% CI)a 

P 

RTIs rs273259 GG (147) 5.7 (5.3-6.2) 0.95 (0.87-1.04) .28 

  AG (497) 5.8 (5.6-6.1) 0.97 (0.91-1.03) .35 

  AA (491) 6.0 (5.7-6.3) reference  

 rs1333969 TT (80) 6.0 (5.4-6.7) 1.01 (0.90-1.13) .91 

  CT (414) 5.7 (5.4-6.0) 0.95 (0.90-1.01) .12 

  CC (641) 6.0 (5.7-6.2) reference  

Rhinovirus-positive rs273259 GG (96) 2.1 (1.8-2.5) 1.04 (0.88-1.23) .62 

RTIs  AG (321) 1.9 (1.7-2.0) 0.92 (0.83-1.03) .17 

  AA (319) 2.1 (1.9-2.2) reference  

 rs1333969 TT (58) 2.2 (1.8-2.6) 1.10 (0.90-1.33) .36 

  CT (269) 1.9 (1.8-2.1) 0.96 (0.86-1.07) .46 

  CC (409) 2.0 (1.9-2.2) reference  

Days with RTI  rs273259 GG (134) 45.6 (40.3-51.8) 0.87 (0.76-1.01) .06 

symptoms  AG (457) 50.0 (46.8-53.6) 0.96 (0.87-1.06) .40 

  AA (445) 52.2 (48.7-55.9) reference  

 rs1333969 TT (73) 48.8 (41.3-58.1) 0.93 (0.78-1.11) .41 

  CT (384) 47.2 (43.9-50.9) 0.90 (0.81-0.99) .03 

  CC (579) 52.7 (49.6-56.0) reference  

Acute otitis media  rs273259 GG (147) 0.8 (0.6-1.0) 0.74 (0.59-0.93) .01 

episodes  AG (497) 0.9 (0.8-1.0) 0.86 (0.74-1.00) .05 

  AA (491) 1.1 (1.0-1.2) reference  

 rs1333969 TT (80) 0.7 (0.6-1.0) 0.70 (0.52-0.94) .02 

  CT (414) 0.9 (0.8-1.0) 0.87 (0.75-1.01) .07 

  CC (641) 1.0 (1.0-1.2) reference  

Antibiotic courses for rs273259 GG (147) 1.0 (0.9-1.3) 0.73 (0.59-0.91) .01 

RTIs  AG (497) 1.3 (1.1-1.4) 0.88 (0.77-1.02) .10 

  AA (491) 1.4 (1.3-1.6) reference  

 rs1333969 TT (80) 1.0 (0.7-1.3) 0.70 (0.53-0.92) .01 

  CT (414) 1.3 (1.1-1.4) 0.90 (0.78-1.05) .18 

  CC (641) 1.4 (1.3-1.5) reference  

CI, confidence interval; RTI, respiratory tract infection.  
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a Incidence rates were analysed using negative binomial regression analysis with natural logarithm 

of the follow-up time as an offset. 
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Table E3. List of 116 differentially expressed genes (DEGs) between rs1333969 CC (major/major) 

and other genotypes in children with viral detections (n=25). False discovery rate corrected P value 

0.05 and 1.25 fold change were used as cut-offs to detect DEGs. Along with the Gene symbol, also 

the Illumina probe identifier and expression level in rs1333969 CC (major/major) is presented. “+” 

denotes higher expression level and “-“ lower expression level compared to other genotypes. 

Gene Symbol Illumina probe identifier Expression level in 

rs1333969 CC (major/major) genotype 

AIM2 ILMN_1681301 + 

ANKRD22 ILMN_2132599 + 

APOBEC3G ILMN_1802106 + 

APOL3 ILMN_1756862 + 

ASCL2 ILMN_1723412 + 

ATF3 ILMN_2374865 + 

AURKA ILMN_1680955 + 

BATF ILMN_1668822 + 

BATF2 ILMN_1690241 + 

BIRC5 ILMN_2349459 + 

BLVRA ILMN_1691436 + 

BST2 ILMN_3259146 + 

C3orf14 ILMN_2224486 + 

CCNA2 ILMN_1786125 + 

CCNB2 ILMN_1801939 + 

CD48 ILMN_2061043 + 

CDC20 ILMN_1663390 + 

CDC45 ILMN_1670238 + 

CENPE ILMN_1716279 + 

CEP55 ILMN_1747016 + 

CKS2 ILMN_1756326 + 

CST7 ILMN_1679826 + 

CXCL10 ILMN_1791759 + 

DHX58 ILMN_1678422 + 

DLGAP5 ILMN_3239771 + 

DTX3L ILMN_1784380 + 

EPSTI1 ILMN_2388547 + 

FABP5 ILMN_3266606 + 

FASLG ILMN_1781824 + 

FBXO6 ILMN_1701455 + 

FGFBP2 ILMN_1761945 + 

GBP1 ILMN_2148785 + 

GBP2 ILMN_1774077 + 

GBP4 ILMN_1771385 + 

GBP5 ILMN_2114568 + 

GCH1 ILMN_1812759 + 

GINS2 ILMN_1809590 + 

GNLY ILMN_1790692 + 

GZMA ILMN_1779324 + 

GZMB ILMN_2109489 + 

GZMH ILMN_1731233 + 

HCST ILMN_2396991 + 

HERC5 ILMN_1729749 + 

HMMR ILMN_2409220 + 

HSPB11 ILMN_1681340 + 
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IDH2 ILMN_1751753 + 

IFI35 ILMN_1745374 + 

IFI44 ILMN_1760062 + 

IFI44L ILMN_1723912 + 

IFI6 ILMN_2347798 + 

IFIT1 ILMN_1707695 + 

IFIT2 ILMN_1739428 + 

IFIT3 ILMN_1701789 + 

IFITM3 ILMN_1805750 + 

IFNG ILMN_2207291 + 

IRF1 ILMN_1708375 + 

IRF7 ILMN_2349061 + 

ISG15 ILMN_2054019 + 

KDELC2 ILMN_1651557 + 

KIAA0101 ILMN_2285996 + 

KIF2C ILMN_1685916 + 

LAG3 ILMN_1813338 + 

LAP3 ILMN_3295494 + 

LY6E ILMN_1695404 + 

MT1A ILMN_1691156 + 

MT1E ILMN_2173611 + 

MT1F ILMN_1718766 + 

MT1IP ILMN_2136089 + 

MT2A ILMN_1686664 + 

NCAPG ILMN_1751444 + 

NKG7 ILMN_1682993 + 

OAS1 ILMN_2410826 + 

OAS3 ILMN_1745397 + 

OASL ILMN_1674811 + 

PARP12 ILMN_1718558 + 

PARP9 ILMN_1731224 + 

PARPBP ILMN_1727055 + 

PI4K2B ILMN_1815134 + 

POLE2 ILMN_1774336 + 

PRC1 ILMN_1728934 + 

PSMA3 ILMN_2387553 + 

PSMB8 ILMN_2390299 + 

PSMB9 ILMN_2376108 + 

PSME2 ILMN_1786612 + 

PTTG1 ILMN_2042771 + 

PTTG3P ILMN_2049021 + 

RARRES3 ILMN_1701613 + 

RSAD2 ILMN_1657871 + 

RTP4 ILMN_2173975 + 

SCO2 ILMN_1701621 + 

SERPING1 ILMN_1670305 + 

SGOL1 ILMN_1730825 + 

SP140 ILMN_2246882 + 

SPATS2L ILMN_1683678 + 

STAT1 ILMN_1777325 + 

TAP1 ILMN_1751079 + 

TIMM23 ILMN_1664231 + 

TK1 ILMN_1806037 + 

TRIM22 ILMN_1779252 + 

TYMP ILMN_3223126 + 

TYMS ILMN_1806040 + 

UBE2C ILMN_2301083 + 

UBE2L6 ILMN_1769520 + 
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USP18 ILMN_3240420 + 

VAMP5 ILMN_1809467 + 

ADAM19 ILMN_1713751 - 

ALOX15 ILMN_1783443 - 

CAMK2G ILMN_2359601 - 

DPEP2 ILMN_1689160 - 

EMR4P ILMN_3243190 - 

LZTR1 ILMN_1805161 - 

MEGF6 ILMN_3241441 - 

OVGP1 ILMN_1734542 - 

PRSS33 ILMN_1736831 - 

PVALB ILMN_2069224 - 

RELL1 ILMN_3233388 - 
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Table E4. Gene Ontology (GO) biological process terms associated with the 116 differentially 

expressed genes (DEG) between IFI44L rs1333969 genotypes. Association between the GO 

biological process terms and the DEG lists is presented as an overlap between the GO terms and the 

DEG list and with a P value determining the probability that the overlap would be explained by 

chance alone. P values are calculated using Fisher’s exact test with Benjamini-Hochberg multiple 

test correction. 

GO Biological Process Term Overlap Adjusted P value 

Type I interferon signaling pathway (GO:0060337) 17/66 3.3E-21 

Cellular response to type I interferon (GO:0071357) 17/66 3.3E-21 

Cytokine-mediated signaling pathway (GO:0019221) 31/634 9.9E-18 

Cellular response to interferon-gamma (GO:0071346) 12/117 8.0E-10 

Positive regulation of defense response to virus by host 

(GO:0002230) 

6/22 2.2E-07 

Interferon-gamma-mediated signaling pathway 

(GO:0060333) 

12/71 2.1E-12 

Regulation of defense response to virus by host 

(GO:0050691) 

7/31 4.7E-08 

Negative regulation of viral genome replication 

(GO:0045071) 

9/51 2.3E-09 

Regulation of nuclease activity (GO:0032069) 3/7 2.6E-04 

Negative regulation of viral life cycle (GO:1903901) 9/62 1.2E-08 

Regulation of mitotic sister chromatid separation 

(GO:0010965) 

4/16 1.2E-04 

Regulation of viral genome replication (GO:0045069) 9/64 1.5E-08 

Response to interferon-beta (GO:0035456) 4/20 2.4E-04 
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Anaphase-promoting complex-dependent catabolic 

process (GO:0031145) 

8/80 1.9E-06 

Regulation of mitotic cell cycle phase transition 

(GO:1901990) 

9/185 1.0E-04 

Granzyme-mediated apoptotic signaling pathway 

(GO:0008626) 

2/7 9.6E-03 

Cellular response to zinc ion (GO:0071294) 4/20 2.4E-04 

Positive regulation of ubiquitin protein ligase activity 

(GO:1904668) 

6/83 3.4E-04 

Response to copper ion (GO:0046688) 4/26 5.1E-04 
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Table E5. List of 24 differentially expressed genes (DEGs) between rs273259 AA (major/major) 

and other genotypes in children with viral detections (n=25). False discovery rate corrected P value 

0.05 and 1.25 fold change were used as cut-offs to detect DEGs. Along with the Gene symbol, also 

the Illumina probe identifier and expression level in rs273259 AA (major/major) is presented. “+” 

denotes higher expression level and “-“ lower expression level compared to other genotypes. 

Gene Symbol Illumina probe identifier Expression level in 

rs273259 AA (major/major) genotype 

APOBEC3G ILMN_1802106 + 

CST7 ILMN_1679826 + 

DLGAP5 ILMN_1749829 + 

EOMES ILMN_1760509 + 

FCRL6 ILMN_2074762 + 

GINS2 ILMN_1809590 + 

GNLY ILMN_1708779 + 

GZMA ILMN_1779324 + 

GZMH ILMN_1731233 + 

IFNG ILMN_2207291 + 

KIAA0101 ILMN_2285996 + 

LAG3 ILMN_1813338 + 

MT1E ILMN_2173611 + 

NKG7 ILMN_1682993 + 

PLEKHF1 ILMN_1708041 + 

PRC1 ILMN_1728934 + 

PTTG1 ILMN_2042771 + 

PTTG3P ILMN_2049021 + 

TYMS ILMN_1806040 + 

BASP1 ILMN_1651826 - 

CRISPLD2 ILMN_1790689 - 

PYGL ILMN_1696187 - 

ZNF446 ILMN_1743767 - 
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