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We generalize well-known results on structural identifiability of vector autoregressive (VAR) models to the case where the
innovation covariance matrix has reduced rank. Singular structural VAR models appear, for example, as solutions of rational
expectation models where the number of shocks is usually smaller than the number of endogenous variables, and as an essential
building block in dynamic factor models. We show that order conditions for identifiability are misleading in the singular case
and we provide a rank condition for identifiability of the noise parameters. Since the Yule–Walker equations may have multiple
solutions, we analyse the effect of restricting system parameters on over- and underidentification in detail and provide easily
verifiable conditions.
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1. INTRODUCTION

Singular structural vector autoregressive (SVAR) models play an important role in macroeconomic modelling. To
introduce the subject, we succinctly discuss generalized dynamic factor models (GDFM) and dynamic stochastic
general equilibrium (DSGE) models, and their relation to singular SVAR models.

In the literature on GDFMs (Forni et al., 2000, 2005; Bai and Ng, 2007; Deistler et al., 2010), singular VAR
models are the essential building block connecting static factors (a static transformation of the denoised observ-
ables) to the uncorrelated lower-dimensional shocks. Chen et al. (2011) and Deistler et al. (2011) treat canonical
forms of singular VAR models, that is, they focus on the reduced form. In Forni et al. (2009), it is demonstrated
that dynamic factor models (and consequently singular VAR models) are useful for structural modelling. In this
article, we provide results regarding identifiability of singular SVAR models and thus analyse Step C in Forni
et al. (2009, p. 1332) in more detail.

A key issue in the econometric treatment of DSGE models is caused by the fact that the number of exoge-
nous shocks driving the system is often strictly smaller than the number of endogenous variables. This is
known as the stochastic singularity problem (DeJong and Dave, 2011, p. 184f.) and investigated in, for example,
Ruge-Murcia (2007). The relationship between DSGE and SVAR models is analysed in DeJong and Dave (2011),
Giacomini (2013), Kilian and Lütkepohl (2017, Chapter 6.2), and most recently by Lippi (2019). It has been
acknowledged (Kilian and Lütkepohl, 2017, p. 177) that the usual strategies1 for solving this rank deficiency
problem are not satisfactory. Thus, one way forward would be the estimation of singular SVAR models.

∗ Correspondence to: Bernd Funovits, Faculty of Social Sciences, Discipline of Economics, University of Helsinki, P. O. Box 17
(Arkadiankatu 7), Helsinki FIN-00014, Finland. Email: bernd.funovits@helsinki.fi

1 Kilian and Lütkepohl (2017) (i) adding measurement noise as, for example, in Sargent (1989) or Ireland (2004), and discussed in Lippi (2019),
(ii) reducing the number of observables (Bouakez et al., 2005) and (iii) augmenting the number of economically interpretable shocks (Ingram
et al., 1994; Leeper and Sims, 1994).

© 2020 The Authors. Journal of Time Series Analysis published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-8247-6840
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjtsa.12576&domain=pdf&date_stamp=2021-01-06


432 B. FUNOVITS, AND A. BRAUMANN

The singularity of the innovation covariance matrix has two possible consequences for the restrictions imposed
by the modeller.2 On the one hand, the restrictions imposed by the modeller might contradict the restrictions that
are implicit due to the singularity structure of the innovation covariance matrix. On the other hand, the restrictions
imposed by the modeller might already be contained in the restrictions that are implicit due to the singularity struc-
ture of the innovation covariance matrix and are therefore redundant. These cases must be taken into account when
analysing identifiability properties of singular SVAR models. Moreover, restrictions on the system parameters are
not necessarily over-identifying when the innovation covariance matrix is singular because the Yule–Walker (YW)
equations might have multiple solutions.

The rest of this article is structured as follows. In Section 2, we specify the model, we introduce restrictions on
model parameters in a general fashion, and we define notions which will be necessary later. As preparation for
the main results, we collect well-known facts on singular VAR models in reduced form (in particular regarding
the possible non-singularity of the Toeplitz matrix appearing in the YW equations) in Section 3. In Section 4,
we analyse restrictions on the noise and system parameters and provide results as to how a singular innovation
covariance matrix needs to be taken into account for identifiability analysis. We illustrate that the usual order
condition may be misleading in the singular case with a (stochastically singular) DSGE model and provide easily
verifiable conditions for under- and over-identification when the YW equations have multiple solutions. All proofs
are deferred to the Appendix.

The following notation is used in the article. We use z as a complex variable as well as the backward shift operator
on a stochastic process, that is, z(yt)t∈Z = (yt−1)t∈Z. For a (matrix) polynomial p(z), we denote by deg(p(z)) the high-
est degree of p(z). The transpose of an (m × n) dimensional matrix A is represented by A′. We use vec(A) ∈ Rnm×1

to stack the columns of A into a column vector and vech(A) ∈ R
n(n+1)

2
×1 to stack the lower-triangular elements of

an n-dimensional square matrix A analogously. The n-dimensional identity matrix is denoted by In. The inequality
“> 0” refers to positive definiteness in the context of matrices. For the span of the row space and the column space
of A, we write spanR(A) and spanC(A) respectively, and the projection of A on spanR(B), B ∈ Rr×n, is ProjR(A|B)
and the projection of A on spanC(D), D ∈ Rm×s, is ProjC(A|D). We use E(⋅) for the expectation of a random
variable with respect to a given probability space.

2. MODEL

Here, we start by defining the model, that is, the system and noise parameters as well as the stability, singularity, and
researcher imposed restrictions. Next, we describe the observed quantities that are available to the econometrician;
in our case the second moments. Lastly, we discuss the notion of identifiability, that is, the connection between
the internal and external characteristics.

We consider a SVAR3 system

A0yt = A1yt−1 + · · · + Apyt−p + B𝜀t, (1)

= (A1, … ,Ap)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=A+

xt−1 + B𝜀t

where xt−1 = (y′t−1, … , y′t−p)
′ and where the dimension q of the white noise process (𝜀t) of (economically) fun-

damental shocks with covariance matrix Iq is strictly smaller than n, the number of observed variables of yt. The
matrix B ∈ Rn×q has full column rank. This implies that the covariance matrix Σu of the innovations ut =B𝜀t is of
rank q< n.

2 A similar problem appears in Kilian and Lütkepohl (2017, Chapter 10.2) where it is emphasized that the reduced rank of a certain matrix
appearing in cointegration analysis must be ‘taken into account when determining the number of restrictions that have to be imposed for full
identification of the structural shocks’.
3 Most work on SVAR models is performed in the parametrization where A0 = In (Kilian and Lütkepohl, 2017, Chapter 8) and investigates how
to estimate B. Since we also treat structural restrictions on A+, rather than on the reduced form parameters A−1

0 A+, we allow here for additional
generality and treat the so-called AB-model (in the nomenclature of Lütkepohl (2005)). Except for Section 4.2, it is sufficient to set A0 = In.
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Furthermore, we assume that the matrices Ai ∈ Rn×n are such that the stability condition

det(a(z)) ≠ 0, |z| ≤ 1, (2)

holds, where a(z)=A0 −A1z− · · · −Apzp, and that det(A0) ≠ 0. Lastly, we assume that the system and noise
parameters satisfy the restrictions

CSvec(A′
+) = cS and CNvec

((
A0 B

))
= cN (3)

where CS and CN are of dimensions (rS × n2p) and (rN × (n2 + nq)) respectively, describing the (apriori known)
restrictions imposed by the modeller. To summarize, we define the internal characteristics that we would like to
identify as the parameters (A+, (A0,B)) in system (1) which satisfy the restrictions imposed by (2) and (3).

Next, we discuss the external characteristics which are observed by the econometrician. The stationary solution
of the system (1) (together with the restrictions imposed on the parameters) is called a singular VAR process.
Having available all finite joint distributions of the singular VAR process corresponds to the maximal information
we could possibly obtain regarding external characteristics. Another commonly used set of external characteristics
is the second moment information contained in the singular VAR process, that is, the autocovariance function
𝛾(s) = E(yty

′
t−s) or equivalently the spectral density f (e−i𝜆) = 1

2𝜋

∑∞
s=−∞ 𝛾(s)e−is𝜆.

We follow Rothenberg (1971) to define identifiability of parametric models. Two internal characteristics
(A(1)

+ , (A(1)
0 ,B(1))) and (A(2)

+ , (A(2)
0 ,B(2))) are called observationally equivalent if they imply the same external char-

acteristics. An internal characteristic is globally identifiable if there is no other observationally equivalent internal
characteristic. Likewise, an internal characteristic (A+, (A0,B)) is locally identifiable if there exists a neighbour-
hood around the parameter (A+, (A0,B)) corresponding to the internal characteristic such that there is no other
observationally equivalent internal characteristic in this neighbourhood. In this article, we focus on identifiabil-
ity from second moment information, that is, the external characteristics correspond to the spectral density of the
observed process (yt).

3. IDENTIFIABILITY ISSUES IN REDUCED FORM SINGULAR VAR MODELS

To prepare for the structural case where we will connect to external characteristics uniquely to the deep parameters,
we review identifiability of the reduced form of singular VAR models, see also Anderson et al. (2012). In particular,
we discuss the rank of finite sections of the covariance of the observed process and its relation to the rank of the
innovation covariance matrix Σu. Moreover, we show how p, q and the left-kernel L ∈ R(n−q)×n of Σu, which are
assumed to be known in the identifiability analysis in Section 4, can be obtained from the external characteristics.

One way to connect the observable characteristics to the internal characteristics is by using the YW equations4 ,
that is,

Ā+Γp = 𝛾p and Σu = 𝛾(0) − Ā+𝛾
′
p,

where Ā+ = (Ā1, … , Āp) = A−1
0 A+ are the reduced form system parameters, Γp =

⎛⎜⎜⎝
𝛾(0) 𝛾(1) … 𝛾(p − 1)
𝛾(−1) 𝛾(0)
⋮ ⋱

𝛾(−p + 1) 𝛾(0)

⎞⎟⎟⎠
and 𝛾p = (𝛾(1), … , 𝛾(p)). If Γp is invertible, there is a unique internal characteristic (Ā+,Σu) for a given external
characteristic (𝛾(0), … , 𝛾(p)). While for VAR models with non-singular innovation covariance matrix it can be
shown (Hannan and Deistler, 2012, p. 112) that Γr is non-singular for all r ∈ N, this is not the case for VAR models
that have a singular innovation covariance matrix. Indeed, it is easy to see (Anderson and Deistler, 2009, Theorem
7) that, for s> 0, rk(Γp+s) = rk(Γp)+s⋅q holds. Even Γp might be rank deficient: Consider a solution (Ā(1)

+ ,Σu) of the

4 They are obtained by right-multiplying (y′t , … , y′t−p) on (1) and taking expectations.

J. Time Ser. Anal. 42: 431–441 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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434 B. FUNOVITS, AND A. BRAUMANN

YW equations and the polynomial matrix U(z)= In + cc′z where c′ ∈ R1×n is non-trivial and in the left-kernel of
both Ā(1)

p and B = A−1
0 B. One can verify that U(z)ā(1)(z), where ā(1)(z) is the polynomial corresponding to Ā(1)

+ , is also
a polynomial matrix of degree p and solves the YW equations which implies that Γp has a non-trivial left-kernel.
Note that the perpendicular of the projection is unique irrespective of how the projection itself is parametrized.
More formally, Σ(1)

u = 𝛾(0) − Ā(1)
+ 𝛾 ′p = 𝛾(0) − Ā(2)

+ 𝛾 ′p = Σ(2)
u holds even if Ā(1)

+ ≠ Ā(2)
+ for two solutions (Ā(1)

+ ,Σ(1)
u ) and

(Ā(2)
+ ,Σ(2)

u ) of the YW equations.
Examining the ranks of Γr for some consecutive values of r, the integer-valued parameters q and p can be

obtained. Having the rank q of the innovation covariance Σu available, it is straightforward to obtain (a basis of)
the left-kernel L ∈ R(n−q)×n of Σu (Al-Sadoon, 2017).

For the remainder of this article, we will assume that p, q, and L are known by the practitioner (in addition to
the other external characteristics).

4. IMPOSING STRUCTURAL RESTRICTIONS

We discuss identifiability of noise and system parameters in the case of singular SVAR models. First, we derive
a condition which ensures that the modeller imposed restrictions on the noise parameters do not contradict the
singularity of the innovation covariance matrix. Subsequently, we derive a rank condition similar to the previ-
ous literature and illustrate with a new-Keynesian DSGE model that the order condition does not provide useful
information in the stochastically singular case. Second, we discuss whether researcher imposed restrictions on
system parameters are under-, just- or over-identifying. In particular, we show that it is uncommon that researcher
imposed restrictions do not solve the underidentification problem (if the number of restrictions is at least as large
as the rank deficiency of (In ⊗ Γp)).

We start with affine restrictions on the noise parameters (A0,B) which appear in short-run restrictions, see Kilian
and Lütkepohl (2017, Chapter 8) for the non-singular case. The conditions that we derive are local in nature. Next,
we deal with the case where Γp may be singular and where affine restrictions on the elements in A+ are imposed.
These results concern global identifiability.

4.1. Affine Restrictions on the Noise Parameters

In the light of the discussion in Section 3, we start with a singular Σu and with researcher imposed restrictions
given by

CNvec((A0,B)) = cN . (4)

Here, CN =
(

CA0
0rA0

×nq

0rB×n2 CB

)
is block-diagonal and has full row rank, and c′N = (c′A0

, c′B). To show the existence

of a unique pair (A0, B) for parametrizing Σu = A−1
0 BB′(A′

0)
−1, one usually calls on the implicit functions theorem.

While in the non-singular SVAR case the system of equations to be analysed always has at least one solution, it
might happen in the singular SVAR case that the set of solutions of (4) (for which the restrictions imposed by the
researcher are satisfied) is the empty set. Since the premises of the implicit function theorem are such that there
must be at least one solution, one needs to make sure that the affine restrictions (4) imposed by the researcher
do not contradict the singularity structure of the model. In the following, we will provide an analytical condition
which implies and is implied by a non-empty solution set.

The linear dependence structure induced by the singularity of Σu implies L(A−1
0 B) = 0, where the rows of

L ∈ R(n−q)×n span the left-kernel of Σu, which is equivalent to

(Iq ⊗ L)vec(A−1
0 B) = 0. (5)

The condition for when the solution set of the joint system of restrictions given in (4) and (5) is non-empty is given
in the following

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 431–441 (2021)
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Lemma 1. Let L ∈ R(n−q)×n be a basis of the left-kernel of Σu, define  ∶= {[(A−1
0 B)′, Iq] ⊗ LA−1

0 }, and let
M ∶= CN − ProjR(CN| ) be the perpendicular of the projection of CN on the row-span of  . The restrictions
CNvec(A0,B) = cN are consistent with the singularity of Σu if and only if rk(M) = rk

(
M cN

)
, that is, if and only

if cN is in the image of M.

Remark 1. When we consider the SVAR setting in which A0 = In, we only need to check whether cB is contained
in the column space of CB − Proj(CB|(Iq ⊗ L)).

The singularity of Σu restricts the set of admissible restrictions on the parameter space. If CN does not ‘inter-
fere’ with the singularity restrictions, that is, if CN lies in the orthogonal complement of spanR( ) or expressed
differently if ProjR(CB| ) = 0, then M =CN and condition rk(M) = rk

(
M cN

)
is satisfied.

Proposition 1. Let A0 and B be (n × n) and (n × q)-dimensional matrices of full column rank, let n> q, and let
CNvec(A0,B) = cN hold. For given Σu, the matrix (A0,B) is the unique solution of Σu = A−1

0 B(A−1
0 B)′ if and only

if cN is in the image of M = CN −ProjR(CN| ) and the matrix

(−2D+
n (Σu ⊗ A−1

0 ) 2D+
n (A

−1
0 B ⊗ A−1

0 )
CA0

0
0 CB

)
is of (full

column) rank n2 + nq.

Remark 2. Considering for simplicity the case where A0 = In and following Rothenberg (1971), the restrictions
imposed on the structural parameter B are CBvec(B)= cB as well as (Iq ⊗ L)vec(B) = 0 which suggests that the

matrix 𝜕

𝜕(vec(B))′

(
vech(BB′) − vech(Σu)

CBvec(B) − cB
(Iq ⊗ L)vec(B)

)
needs to be of rank nq. However, it is not necessary to include (Iq ⊗ L)

in Proposition 1 because (Iq ⊗ L)vec(B) = 0 is already implied by the fact that BB′ = Σu. Put differently, the

inequality rk

(
2D+

n (B ⊗ In)
CB

(Iq ⊗ L)

)
≤ rk

(2D+
n (B ⊗ In)

CB

)
holds.

Remark 3. If q< n, the usual order condition requiring that the number of rows in
(2D+

n (B ⊗ In)
CB

)
be larger

than or equal to the number of columns is not useful. Consider the case where there are no researcher imposed

restrictions. While the order condition is satisfied for q ≤
n+1

2
, the matrix D+

n (B ⊗ In) of dimension
(

n(n+1)
2

× nq
)

is of course rank deficient with co-rank q(q−1)
2

.

Remark 4. The rank of the matrix
(2D+

n (B ⊗ In)
CB

)
drops if some restrictions in CB are already implied by the

singularity structure of Σu, that is, if for the r-th row [CB][r,•] ⊆ spanR(Iq ⊗ L) holds. Thus, the q(q−1)
2

additional

restrictions which are necessary to obtain a matrix
(2D+

n (B ⊗ In)
CB

)
of full column rank must not be contained in

the row space of D+
n (B ⊗ In).

4.1.1. Illustration
To illustrate Proposition 1, we discuss a version of the new-Keynesian monetary business cycle model (Lubik and
Schorfheide, 2003; Castelnuovo, 2013) featuring a ‘supply-shifting’ shock in the new-Keynesian Phillips curve
(NKPC). We thus consider the model

𝜋t = 𝛽Et(𝜋t+1) + 𝜅xt + 𝜀𝜋t
xt = Et(xt+1) − 𝜏(Rt − Et(𝜋t+1))
Rt = 𝜙Et(𝜋t+1) + 𝜀R

t .

J. Time Ser. Anal. 42: 431–441 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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436 B. FUNOVITS, AND A. BRAUMANN

where (𝜋t, xt,Rt) denote inflation, output gap, and nominal interest rate in log-deviation from a unique steady state.
The conditional expectations are to be understood as linear projections on the space spanned by present and past
components of the uncorrelated shocks 𝜀𝜋t and 𝜀R

t which are white noise processes (whose variance is normalized
to one for the sake of simplicity). The parameters of the model are the subjective time preference factor 𝛽 ∈ (0, 1),
𝜙 ≥ 0 the elasticity of the interest response of the central bank, and the slope parameters 𝜅 and 𝜏.

For specific parameter values (𝛽, 𝜙, 𝜏, 𝜅) =
(

4

5
, 39

38
, 3

4
, 1

2

)
, we solve this system of equations involving con-

ditional expectations of future endogenous variables (Sims, 2001; Funovits, 2017) and obtain the unique causal

stationary solution

(
Rt
𝜋t
xt

)
= B

(
𝜀R

t
𝜀𝜋t

)
, where B =

(
1 0

−𝜅𝜏 1
−𝜏 0

)
, of the DSGE model described above. The inno-

vation covariance matrix is obviously singular. The restrictions on B are described by CBvec(B)= cB, with

CB =
⎛⎜⎜⎝
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠ and cB =
⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠. To apply Proposition 1, we need to check the condition rk(M) = rk
(
M cB

)
of

Lemma 1. The perpendicular of the projection of CB on the row-span of (I2 ⊗ L) for L =
(
𝜏 0 1

)
, is given by

M =

⎛⎜⎜⎜⎜⎝
1

1+𝜏2
0 − 𝜏

1+𝜏2
0 0 0

0 0 0 1

1+𝜏2
0 − 𝜏

1+𝜏2

0 0 0 0 1 0
0 0 0 − 𝜏

1+𝜏2
0 𝜏2

1+𝜏2

⎞⎟⎟⎟⎟⎠
. For any value 𝜏 ∈ R ⧵ {0} the relation rk(M) = rk

(
M cB

)
is satisfied. We

can now apply Proposition 1 and check the rank of

(
2D+

3 (B ⊗ I3)
CB

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
−𝜅𝜏 1 0 1 0 0
−𝜏 0 1 0 0 0
0 −2𝜅𝜏 0 0 2 0
0 −𝜏 −𝜅𝜏 0 0 1
0 0 −2𝜏 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is equal to 6 for

any values 𝜅 and 𝜏.

4.2. Affine Restrictions on the System Parameters

We now focus on imposing linear restrictions on the structural parameters A+ in the case where Γp is singular.
Thus, without restrictions on A+, there are multiple observationally equivalent solutions of the YW equations (one
particular solution plus the left kernel of Γp). We will start by considering the case where A0 = In (such that the
reduced form parameters Ā+ coincide with A+). This simplifies the discussion and allows us to illustrate why the
identifiability problem (for A0 not necessarily equal to the identity matrix) can ‘generically’ be solved by (the right
number of) arbitrary restrictions on A+.5

Two aspects deserve special attention. First, the particular solutions (canonical representatives of the equivalence
class of observational equivalence) introduced in Deistler et al. (2011) and Chen et al. (2011) can be obtained by
choosing a particular set of restrictions on vec(A′

+). Second, singular SVAR models are special in the sense that
some researcher imposed restrictions are not over-identifying in the sense that imposing them does not restrict the
feasible covariance structures. In Lemma 2 we provide a condition for checking whether the researcher imposed
restrictions on A+ are over-identifying.

To simplify discussion, we note that vectorizing the (transposed) YW equations leads to (In ⊗ Γp)vec(A′
+) =

vec(𝛾 ′p). In Deistler et al. (2011), the authors choose the first linearly independent rows of Γp as a basis of the

5 To be more precise, it can be considered uncommon that s ⋅ n, where s is the dimension of the kernel of Γp, ‘random’ restrictions on vec(A′
+)

do not solve the identifiability problem.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 431–441 (2021)
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row space (or equivalently column space) of Γp to define a particular solution of the YW equations. To fix ideas,
consider a Γp whose first (np− s) linearly independent rows are selected by premultiplying S′

1 of dimension ((np−
s) × np), containing only zeros and ones, and denote by S′

2 the (s × np)-dimensional matrix containing zeros and
ones such that S′

1S2 = 0. A basis of the column space thus consists of the columns of ΓpS1, that is, the elements
S′

2A′
+ are restricted to zero. Restricting each column of A′

+ to be orthogonal to the columns of S2 therefore results

in a unique solution of the YW equations, that is, the matrix in brackets in

[
(In ⊗ Γp)
(In ⊗ S′

2)

]
vec(A′

+) =
(

vec(𝛾 ′p)
0n×1

)
is of

full rank. We denote the unique solution of the equation above by v̂ec(A′
+).

In Chen et al. (2011), the authors choose the minimum norm solution of the YW equations as the particular

solution. Let In⊗

[(
V1 V2

)( D11 0(n2p−s)×s
0s×(n2p−s) 0s×s

)(
V ′

1
V ′

2

)]
be the singular value decomposition (SVD)6 of (In⊗Γp)

of rank n2p − ns = n ⋅ rk(Γp). The particular solution is such that coordinates corresponding to the basis vectors
V2 are set equal to zero. Put differently, vec(A′

+) is required to be orthogonal to the columns of (In ⊗ V2), that is,[
(In ⊗ Γp)
(In ⊗ V ′

2)

]
vec(A′

+) =
(

vec(𝛾 ′p)
0s×1

)
. We denote the unique solution of the equation above by ṽec(A′

+).

While the coordinate representations v̂ec(A′
+) and ṽec(A′

+) usually differ, (In⊗x′t−1)v̂ec(A′
+) and (In⊗x′t−1)ṽec(A′

+)
represent the same projection (component wise on the space spanned by the columns of Γp or equivalently on the
space spanned by the components of xt− 1). By construction, we have that spanC(Γp) = spanC(V1) = spanC(ΓpS1)
and, in particular, that the rank of the projection of ΓpS1 on spanC(Γp) is equal to the rank of Γp. This projection idea
can be used to investigate whether researcher imposed restrictions on the system parameters are ‘true’ restrictions
(in the sense that they restrict the possible covariance structures of the model) and whether the restrictions are
sufficient to guarantee a unique solution. Let CSvec(A′

+) = 0, where CS ∈ RrS×n2p is of full row rank, be the

researcher imposed restrictions and denote the (right-) kernel of CS by SA ∈ Rn2p×(n2p−rS). If spanC((In ⊗ Γp)SA) ⊇
spanC(In ⊗ V1), then the researcher imposed restrictions are not over-identifying in the sense that without them
the same set of covariance structures are feasible. To investigate the validity of this inclusion of spaces, we define
the SVD of

(In ⊗ Γp)SA
⏟⏞⏞⏞⏟⏞⏞⏞⏟
=n2p×(n2p−r)

=
(

Ũ1 Ũ2

)(
D̃11 0

0 0s̃×s̃

)(
Ṽ

′
1

Ṽ
′
2

)
. (6)

If spanC((In ⊗ Γp)SA) ⊇ spanC(In ⊗ V1) holds, then we can express the column space of (In ⊗ V1) in terms of the
columns of ((In ⊗Γp)SA) and, in other words, the projection of (In ⊗V1) on the column space of ((In ⊗Γp)SA) must
coincide with (In ⊗ V1). Expressed in terms of SVDs, this leads to

Lemma 2. In the case A0 = In, the restrictions described by the matrix CS are not over-identifying if and only if

[In2p − Ũ1Ũ′
1](In ⊗ V1) = 0, (7)

where Ũ1 is obtained from (6). There is a unique solution of the YW equations if and only if the right-kernel of
(In ⊗ Γp)SA is trivial.

Returning to the general case where A0 is not necessarily equal to the identity matrix, we will now show that it
is in general enough to impose as many restrictions as there are basis vectors in the kernel of (In ⊗Γp). Notice that
CSvec(A′

+) = [CS(A0 ⊗ Inp)]vec(Ā′
+) such that for given A0, the restrictions on the parameters Ā+ can be obtained

straight-forwardly from the ones on A+.

6 (V1,V2) are an orthonormal eigenbasis describing the image and the kernel of Γp respectively, and D11 is a diagonal matrix with positive
diagonal elements.
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To provide some intuition for the following result, we consider a quite special example where counting the num-

ber of restrictions for deducing identifiability of the system parameters does not suffice. Consider Γp =

(
1 0 0
0 1 0
0 0 0

)
and CS = I3 ⊗ (0, 1, 0), such that SA =

(
I3 ⊗

(
1 0
0 0
0 1

))
and (In ⊗ Γp)SA =

(
I3 ⊗

(
1 0
0 0
0 0

))
. Even though

the order condition (that the rank deficiency of (In ⊗ Γp) is equal to the number of restrictions) is satisfied,
they are not sufficient for obtaining a unique solution of the YW equations. Indeed, [In2p − Ũ1Ũ′

1](In ⊗ V1) =(
I3 ⊗

(
0 0 0
0 1 0
0 0 0

))(
I3 ⊗

(
1 0
0 1
0 0

))
≠ 0 and the right-kernel of (In ⊗Γp)SA =

(
I3 ⊗

(
1 0
0 0
0 0

))
is non-empty. The

non-generic nature of this example is summarized in

Proposition 2. Let CS ∈ Rns×n2p be of full row rank and let Γp be singular with rank deficiency equal to s. The set

of restrictions {CS ∈ Rns×n2p | (7) does not hold} is of Lebesgue measure zero in Rns×n2p. A generic, randomly

chosen restriction CS can thus be used to obtain a unique solution of the system of equations

[
(In ⊗ Γp)

CS

]
vec(A′

+) =(
vec(𝛾 ′p)

0s×1

)
and the system parameters are globally identified.

Notice, however, that solving the identifiability problem for A+ by restricting the transfer function a(z)−1b (e.g.
by restricting the long-run coefficients in k(1)= a(1)−1b) is not possible. Since two observationally equivalent
pairs (a(1)(z), b(1)) and (a(2)(z), b(2)) have the same transfer function by definition, restricting a(z)−1b directly has the
effect of either excluding the whole equivalence class or not providing additional information for distinguishing
different pairs (a(z), b) with the same transfer function.

5. CONCLUSION

In this article, we generalize the well-known identifiability results for SVAR models to the case of a singular
innovation covariance matrix. The first main difference to the regular case is that the restrictions on the noise
parameters (A0, B) might contradict the singularity of the innovation covariance matrix. Moreover, the researcher
imposed restrictions might already be contained in the restrictions implied by the singularity of the innovation
covariance matrix and therefore do not have any further ‘identifying effect’. The second main difference pertains
mainly to restrictions on the structural system parameters A+. We provide conditions under which the researcher
imposed restrictions on these parameters are over-identifying and show that underidentification can be considered
an unusual case when the rank deficiency coincides with the number of restrictions.
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APPENDIX A: PROOF OF LEMMA 1

We write CN =
(

CA0
0rA0

×nq

0rB×n2 CB

)
as orthogonal sum, that is,

CN = ProjR(CN| ) + (CN − ProjR(CN| ))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=M

,
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and substitute it into equation (4) such that ProjR(CN| )vec(A0,B) + Mvec(A0,B) = cN . To fulfil the singularity
restrictions of Σu, equation (5) needs to hold. Elementary calculations show that  vec(A0,B) = 0 under (5) which
implies ProjR(CN| )vec(A0,B) = 0 because ProjR(CN| ) projects CN onto spanR( ). The system of equations
Mvec(A0, B)= cN has a solution if and only if rk(M) = rk

(
M cN

)
.

APPENDIX B: PROOF OF PROPOSITION 1

Consider the following system of equations:

𝜑1(vec(A0,B)) ∶= vech(A−1
0 BB′A′−1

0 ) − vech(Σu) = 0,

𝜑2(vec(A0,B)) ∶= CNvec(A0,B) − cN =

(
CA0

0rA0
×nq

0rB×n2 CB

)
vec(A0,B) − cN = 0.

Following Rothenberg (1971, Theorem 6), the equations 𝜑(vec(A0,B)) =
(
𝜑1(vec(A0,B))
𝜑2(vec(A0,B))

)
= 0 ∈ R

(
n(n+1)

2
+rN

)
×1

have a unique solution in an open set around vec(A0,B) ∈ R(n2+nq)×1 if the
(

n(n+1)
2

+ rN

)
× (n2 + nq) dimensional

matrix 𝜕𝜑

𝜕vec(A0 ,B)′
has full column rank n2 + nq. Note that 𝜑(vec(A0, B))= 0 holds if and only if cN is in the image of

M = CN − ProjR(CN| ) according to Lemma 1. The matrix 𝜕𝜑

𝜕vec(A0,B)′
can be calculated using standard rules for

matrix differentiation (Lütkepohl, 1996) as

𝜕φ1

𝜕vec(A0)′
(vec(A0,B)) = D+

n

𝜕vec(A−1
0 BB′A′−1

0 )
𝜕vec(A−1

0 B)′
𝜕vec(A−1

0 B)
𝜕vec(A0)′

= D+
n

(
(I ⊗ A−1

0 B)Knq

𝜕vec(A−1
0 B)

𝜕vec(A−1
0 B)′

+ (A−1
0 B ⊗ I)

𝜕vec(A−1
0 B)

𝜕vec(A−1
0 B)′

)
𝜕vec(A−1

0 B)
𝜕vec(A0)′

= −2D+
n (Σu ⊗ A−1

0 ),

𝜕φ1

𝜕vec(B)′
(vec(A0,B)) =

𝜕vech(A−1
0 BB′A′−1

0 )
𝜕vec(B)′

= D+
n

𝜕vec(A−1
0 BB′A′−1

0 )
𝜕vec(A−1

0 B)′
𝜕vec(A−1

0 B)
𝜕vec(B)′

= D+
n

(
(I ⊗ A−1

0 B)Knq

𝜕vec(A−1
0 B)

𝜕vec(A−1
0 B)′

+ (A−1
0 B ⊗ I)

𝜕vec(A−1
0 B)

𝜕vec(A−1
0 B)′

)
A−1

0

= 2D+
n (A

−1
0 B ⊗ A−1

0 ),

and 𝜕𝜑2

𝜕vec(A0,B)′
(vec(A0,B)) = CN . Here, D+

n is the pseudo-inverse of the duplication matrix Dn which ful-

fils Dnvech(A)= vec(A) for a matrix A ∈ Rn×n, and Knm ∈ Rnm×nm is a commutation matrix such that
vec(B′)=Knmvec(B) for B ∈ Rn×m, see for example, Lütkepohl (2005, pp. 662 and 663).

APPENDIX C: PROOF OF PROPOSITION 2

Let SA of dimension (n2p × n(np − s)) denote the matrix obtained as the orthogonal complement of CA. Since

(In ⊗ Γp) =
(

In ⊗
(
V1 V2

)( D11 0(n2p−s)×s
0s×(n2p−s) 0s×s

)(
V ′

1
V ′

2

))
, it is obvious that (In ⊗ Γp)SA does not have full rank
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if and only if (In ⊗ V ′
1)SA is of reduced rank (smaller than n2p− ns). For given Γp, the elements in the matrix of

restrictions CA (and therefore also the ones in SA) are free (up to the requirement that the rows of CA be linearly
independent). The determinant det((In ⊗ V ′

1)SA) is thus a multivariate polynomial in the elements of SA. This
determinant is either identically zero or zero only on a set of Lebesgue measure zero. Since for SA = (In ⊗V1) the
determinant is equal to one, the determinant is not identically zero.
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