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1 |  INTRODUCTION

The human brain contains 23% of the body's total cholesterol. 
Most of this cholesterol is found in the myelin sheath of oli-
godendrocytes (Dietschy & Turley, 2004; Martin et al., 2014). 
As the blood- brain barrier prevents lipoprotein or cholesterol 
transport to the brain, local de novo synthesis takes place. 
In the mouse brain, cholesterol synthesis peaks during the 

second postnatal week and then decreases significantly inde-
pendent of sex or blood cholesterol concentration (Pfrieger 
& Ungerer,  2011; Quan et  al.,  2003). During early develop-
ment, neurons produce cholesterol autonomously (de Chaves 
et al., 1997; Nieweg et al., 2009; Pfrieger & Ungerer, 2011). In 
later stages, cholesterol is synthesized by glial cells. However, 
it is unknown if this synthesis is constant or under regulated 
production (Pfrieger & Ungerer, 2011; Saito et al., 2009).
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Abstract
Cholesterol is an essential constituent of cell membranes. The discovery of 
cholesterol- recognition amino acid consensus (CRAC) motif in proteins indicated 
a putative direct, non- covalent interaction between cholesterol and proteins. In the 
present study, we evaluated the presence of a CRAC motif and its inverted version 
(CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family 
(RTK) in several species using in silico methods. CRAC motifs were found across 
all species analyzed, while CARC was found only in vertebrates. The tropomyosin- 
related kinase B (TRKB), a member of the RTK family, through interaction with its 
endogenous ligand brain- derived neurotrophic factor (BDNF) is a core participant in 
the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identi-
fying the conserved CARC motif in the TRKB, we performed molecular dynamics 
simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol 
interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. 
Our binding assay suggested a bell- shaped effect of cholesterol on BDNF interaction 
with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a 
role in the function of the RTK family TMR.
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Cholesterol can be localized on both leaflets of the plasma 
membrane (Fantini et al., 2016) and induces changes in phys-
ical properties of the membrane, such as fluidity (Maguire 
& Druse, 1989) and curvature (Lee, 2004). Cholesterol can 
also interact with transmembrane domains to regulate pro-
tein function (Elkins et al., 2018; Fantini & Barrantes, 2013). 
Cholesterol is a core constituent of microdomains known 
as lipid rafts, which serve as signaling platforms for several 
pathways (Lang et al., 2001; Pereira & Chao, 2007; Zonta & 
Minichiello, 2013). In the nervous system, cholesterol interac-
tion with membrane proteins influences several crucial events, 
such as exocytosis of synaptic vesicles (Linetti et al., 2010), 
synaptic activity, connectivity, plasticity, signal transduc-
tion, transmission, and cell survival (Goritz et al., 2005; Liu 
et al., 2010; Michikawa & Yanagisawa, 1999).

The tropomyosin- related kinase receptor (TRK) subfamily 
is one of the most prominent subfamilies of tyrosine kinase 
receptors (RTK) and plays a crucial role in neuronal plasticity 
(Dekkers et  al.,  2013). The TRK receptors consist of three 
members (TRKA, TRKB, and TRKC, or NTRK1, NTRK2 
and NTRK3, respectively), which are phosphorylated on 
several tyrosine residues on the intracellular portion upon 
activation by their high- affinity ligands (NGF, BDNF, and 
NT- 3, respectively) (Huang & Reichardt, 2001). TRKA and 
TRKC are located in lipid rafts, while the transit of TRKB 
to rafts occurs transiently upon BDNF stimulation (Suzuki 
et  al.,  2004, 2007). Functionally, in the absence of ligand, 
TRKA and TRKC, but not TRKB, induce cell death medi-
ated by interaction with p75NTR, the low- affinity receptor of 
several neurotrophins (Dekkers et al., 2013; Nikoletopoulou 
et al., 2010).

In silico models suggest that two cholesterol molecules 
can interact in a tail- to- tail fashion as a transbilayer dimer 
(Harris et  al.,  1995; Rukmini et  al.,  2001) or back- to- back 
through their flat alpha faces, leaving the beta sides acces-
sible for interactions with proteins (Hanson et al., 2008). On 
these target proteins, the following two consensus motifs with 
predictive value have been defined (Di Scala et al., 2017): the 
Cholesterol- Recognition Amino acid Consensus sequence 
(CRAC) and its “inverted” version (CARC) (Baier et al., 2011; 
Li & Papadopoulos, 1998). The CRAC sequence, from N-  to 
C- terminus, consists of an apolar residue (leucine [L] or va-
line [V]), one to five amino acids of any kind, an aromatic 
amino acid (tyrosine [Y] or phenylalanine [F]), one to five 
amino acids of any kind, and a basic residue (arginine [R] or 
lysine [K]) (Fantini & Barrantes, 2013). CARC consists of the 
same pattern in the opposite direction, with tryptophan (W) 
as an alternative aromatic residue. CARC has a higher affin-
ity for cholesterol than CRAC (Di Scala et al., 2017; Fantini 
& Barrantes, 2013). Several proteins have been identified to 
contain CRAC/CARC motifs, such as nicotinic acetylcho-
line, type- 3 somatostatin, and γ- amino- butyric acid receptors 
(Epand, 2006; Fantini & Barrantes, 2013; Jamin et al., 2005).

We recently identified a CARC domain in TRKB and 
showed that its mutation interferes with plasticity- related 
BDNF signaling (Casarotto et al., 2021). The aim of the pres-
ent study is to evaluate the incidence of cholesterol- interacting 
motifs (CRAC and CARC) in the RTK family. Given the 
promiscuous nature of CRAC motifs, we focused on the 
RTK transmembrane region (TMR; transmembrane domain 
plus the 5- amino acid flanking residues on both N-  and C- 
terminal sides), where direct interaction with cholesterol is 
more likely. Transmembrane domains are crucial for proper 
positioning of proteins in biological membranes (Fantini & 
Barrantes,  2013). Interaction of the bilayer lipids with the 
transmembrane domains of embedded integral protein pro-
vides a diffusion barrier and seals any gaps in the membrane 
to maintain electrochemical properties (Hunte, 2005). Upon 
identification of CRAC/CARC motifs in the TMR of many 
members of the RTK family, we focused on TRKB and as-
sessed its sequence identity across species. We then inves-
tigated the interaction of this motif with cholesterol using 
molecular dynamic simulations. Then, we expanded our 
previous findings about the mechanisms behind the cho-
lesterol effect on BDNF- induced TRKB activity (Casarotto 
et al., 2021) by assaying the binding of biotinylated BDNF to 
immobilized TRKB.

2 |  METHODS

2.1 | Data mining

For data mining, we used 144 manually curated inputs of the 
RTK family (code 2.7.10.1) from the UniProt database (The 
UniProt Consortium, 2017). The canonical primary structure 
of TMR (transmembrane domain and the flanking 5 amino 
acid residues, from N-  and C- terminal) of RTK from each 
target of human (52 proteins), mouse (51 proteins), zebrafish 
(14 proteins), fruit fly (12 proteins), and the nematode C. 
elegans (15 proteins) databases were extracted. The TMR 
FASTA sequences, consisting of the transmembrane domain 
(TMD) with five flanking amino acid sequences in each side, 
for each protein were manually screened for the presence 
of cholesterol- recognition alignment consensus, CRAC and 
CARC (Fantini & Barrantes, 2013; Fantini et al., 2016). We 
then searched for putative pathogenic mutations in human 
proteins using SwissVar, ClinVar, and COSMIC databases 
(Landrum et al., 2018; Mottaz et al., 2010; Tate et al., 2019).

2.2 | Percentage of identity (PI) of full 
length TRKB, and TRKB.TMR across species

The Percentage Identity (PI) of TRKB.TMR among several 
species, including D. rerio (zebrafish), G. gallus (chicken), 
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C. familiaris (dog), R. norvegicus (rat), M. musculus (mouse), 
P. troglodytes (chimpanzee), and H. sapiens (human), was 
determined using the align tool in UniProt database (The 
UniProt Consortium, 2017). The same comparison was per-
formed independently for full length TRKB from the listed 
species.

2.3 | Molecular dynamics simulations

The structure of the TMR of TRKB (residues 423– 460) was 
generated using the FMAP (Folding of Membrane- Associated 
Peptides) server (Lomize et al., 2018). The server predicted 
that the residues V432- A456 form an α- helical transmem-
brane segment with the remaining sequence being unstruc-
tured. This structure was used as an atomistic model for the 
TRKB. Coarse- grained protein model of the wild- type TRKB 
was based on this structure. The TMR of TRKB was embed-
ded in a bilayer (512 lipids) composed of 60  mol% (mole 
percentage) palmitoyl- oleoyl- phosphatidylcholine (POPC) 
and 40  mol% cholesterol (60:40 POPC:CHOL) using the 
CHARMM- GUI Martini Maker (Hsu et al., 2017). The system 
was solvated with 6,038 water beads (approximately 50 water 
molecules per lipid). Sodium and chloride ions were added to 
reach 0.15 M salt concentration and to neutralize the system. 
The system was first equilibrated with the protein backbone 
atoms restrained. In the production stage, it was simulated 
for 5 μs through nine independent repeats. The simulations 
were performed using Gromacs 5.1.4 (Abraham et al., 2015) 
employing the non- polarizable Martini 2.2 force field for the 
protein (de Jong et al., 2013) and lipids (Arnarez et al., 2015). 
The simulations were performed using the “New- RF” param-
eters (de Jong et  al.,  2016). For electrostatics, the reaction 
field method was used with a cutoff of 1.1  nm. Lennard- 
Jones interactions were cut off at 1.1 nm. The potential shift 
modifier was applied to non- bonded interactions together 
with buffered Verlet lists (Páll & Hess, 2013). The equations 
of motion were integrated using the leap- frog algorithm with 
a 25- fs time step. The simulations were performed at 310 K 
in the NpT ensemble at a pressure of 1 bar. The protein, the 
membrane, and the solvent (water and 0.15 M NaCl) were 
coupled to separate heat baths with a time constant of 1.0 ps 
using the V- rescale thermostat (Bussi et al., 2007). Pressure 
was controlled semi- isotropically using the Parrinello- 
Rahman barostat (Parrinello & Rahman, 1981) with a time 
constant of 12 ps and a compressibility of 3 × 10−4 bar−1 in 
the xy- plane (membrane plane). All analyses were performed 
using the Gromacs software package and in- house scripts, 
using only the last 4 μs of the simulations. The data presented 
(Figure 3) is the average occupancy of cholesterol that rep-
resents the average number of cholesterol molecules within 
0.6 nm of the alpha carbon (MARTINI backbone bead) of 
residues R427 and Y433, the key residues of CARC motif 

(Fantini et  al.,  2016). The occupancy values are produced 
by dividing the total number of contacts by the number of 
frames in each trajectory.

2.4 | Cell cultures and BDNF- binding assay

HEK293T cells were transfected to overexpress full- length 
TRKB (Casarotto et al., 2021). The cells were maintained 
at 5% CO2, 37°C in Dulbecco's Modified Eagle's Medium 
(DMEM, containing 10% fetal calf serum, 1% penicillin/
streptomycin, 1% L- glutamine). The cells were lysed, and the 
lysate was submitted to the BDNF- binding assay.

The BDNF binding to TRKB was performed in white 96- 
well plates (Baeza- Raja et al., 2016; Casarotto et al., 2021; 
Das et al., 2015). Briefly, the plates were precoated with anti- 
TRKB antibody (1:1,000, R&D Systems, #AF1494) in car-
bonate buffer (pH 9.8) overnight at 4°C, followed by blocking 
with 3% BSA in PBS buffer (2 hr at RT). The samples (120 μg 
of total protein) were added and incubated overnight at 4°C 
under agitation. The plates were washed 3× with PBS buf-
fer, and a mixture of biotinylated BDNF (bBDNF: 0, 0.05, 
0.1, 0.5, 1, 5, or 10 ng/ml, Alomone Labs, #B- 250- B) and 
cholesterol (0, 20, 50 or 100 μM) was added for 1h at room 
temperature, followed by washing with PBS. A competitive 
assay was performed with a mixture of bBDNF (1 ng/ml) and 
non- biotinylated BDNF (0, 0.05, 0.1, 0.5, 1, 5, 10, or 20 ng/
ml, Peprotech, #450- 02). The luminescence was determined 
via HRP- conjugated streptavidin (1:10,000, 1h, RT, Thermo- 
Fisher, #21126) activity reaction with ECL by a plate reader. 
The luminescence signal from blank wells (containing all the 
reagents but the sample lystates, substituted by the blocking 
buffer) was used as background. The specific signal was then 
calculated by subtracting the values of blank wells from the 
values of the samples with matched concentration of the bi-
otinylated ligand. The signal was normalized by the bBDNF 
at 10 ng/ml under no added cholesterol (0 μM).

2.5 | Statistical analysis

The correlation between PI in full- length TRKB and 
TRKB.TMR among the different species was determined 
by Spearman's test. The PI trees for full TRKB and TMR.
TRKB were obtained using the tree tool (Neighbour Joining, 
BLOSUM62) in Jalview v.2.0 software (Waterhouse 
et al., 2009). The data from MD simulations were analyzed 
by Student t test, and the results from bBDNF- binding assay 
were analyzed by two- way ANOVA. Non- linear regression 
curve fitting (One- site specific binding for bBDNF alone, and 
One- site -  fit Ki for competition assay) was used to derive dis-
sociation constant (Kd) and maximum binding (Bmax) using 
GraphPad Prism v.6.07. p < .05 were considered significant.
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3 |  RESULTS

3.1 | Data mining

The presence of CRAC motifs within the TMDs of RTK family 
members was found throughout all the species analyzed (human, 
11 of 52 proteins; mouse, 10 of 51 proteins; zebrafish, 2 of 14 
proteins; fruit fly, 2 of 12 proteins; and C. elegans, 2 of 15 pro-
teins, Figure 1). However, the presence of CARC motifs in the 
RTK family was observed only in vertebrates, with 3 in human, 3 
in mouse, and 2 in zebrafish RTK. None of the proteins analyzed 
was found to carry CRAC and CARC motifs simultaneously. 
The ClinVar and COSMIC databases indicated eight mutations 
in the CRAC/CARC motifs of five proteins (Table 1) associated 
with central nervous system or endocrine disorders, or cancer.

The full list of proteins positive to CRAC/CARC is found 
in Table 1 and the full list of proteins examined from each 
species can be found in the deposited data.

3.2 | Percentage of identity (PI) of full 
length TRKB, and TRKB.TMR across species

We previously found that TRKB is the only member of the 
TRK- subfamily of RTKs that possesses a CARC domain 
(Casarotto et al., 2021). The CARC motif in TRKB was con-
served across species: human and mouse, REHLSVYAVVV; 

zebrafish, RVAVYIVV. It has been previously pointed out that 
the TMR of TRKB is functionally distinct from that of other 
TRK family members (Dekkers et al., 2013; Nikoletopoulou 
et  al.,  2010). We therefore examined the identity between 
TRKB.TMR sequences of several species (human, chimpan-
zee, mouse, rat, dog, chicken, and zebrafish; Table 2) using 
UniProt (The UniProt Consortium, 2017). Over 90% PI was 
found in TRKB.TMR, as well as in full- length TRKB of 
human, chimpanzee, mouse, rat, and dog. The PI results of 
paired comparisons of TRKB.TMR sequences between the 
species analyzed are organized in Figure 2. For comparison, 
we also determined the PI of full- length TRKB among these 
species. The PI results of paired comparisons are also organ-
ized in Figure 2, and Spearman's test indicated a significant 
correlation between the PI in full- length TRKB and TRKB.
TMR [R2 = 0.8530, 99% confidence interval, CI = 0.8135– 
0.9698; p < .0001].

3.3 | Molecular dynamics simulations

To study the interaction between cholesterol and TRKB.
TMR, we performed coarse- grained molecular dynamics 
simulations with a single TMR embedded in a 60:40 (mol%) 
POPC:CHOL bilayer. Representative interaction modes be-
tween TRKB.TMR and cholesterol are shown in Figure 3a,b 
and in the supplemental movie. Analysis of the trajectories 

F I G U R E  1  (a) Workflow of data mining. The TMR (transmembrane sequence +5 amino acid residues from each N-  and C- terminal sides) 
of curated entries found in UniProt using the code for tyrosine- kinase receptor family (2.7.10.1) were screened for the presence of cholesterol 
recognition and alignment consensus (CRAC and CARC). The incidence of CRAC and CARC motifs in (b) human, (c) mouse, (d) zebrafish,  
(e) fruit fly, and (f) C. elegans TMR of RTK family members. (g) Library of CRAC and CARC sequences (all combinations used can be  
found in the stored data). Residue sequence predicted to be embedded into the cell membrane shown in yellow 

(a)

(b)

(g)

(c) (d) (e) (f)
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in terms of average cholesterol occupancy (see Methods) re-
vealed that cholesterol has higher occupancy close to Y433 
compared to R427, showing a preference for the aromatic 
residue of TRKB CARC domain [t(16) = 62.46, p < .0001], 
as shown in Figure 3c.

3.4 | BDNF- binding assay

As shown in Figure 3d, the binding of bBDNF to immobi-
lized TRKB is altered by the concentration of cholesterol 
added to the samples. We found that moderate concentrations 
of added cholesterol (20  μM) facilitate bBDNF binding to 
TRKB, while higher amounts of cholesterol (50 or 100 μM) 
compromise bBDNF interaction with immobilized TRKB 
(Figure 3d). The two- way ANOVA indicated an interaction 
between cholesterol and BDNF binding [F(18,140) = 4.155, 
p <  .0001]. Scatchard analysis (Figure 3d, insert) indicates 
that the effects of cholesterol are mostly produced by differ-
ences in available bBDNF- binding sites (for Bmax and Kd 
values for each condition, please see the legend for Figure 3). 
A bell- shaped effect of cholesterol on BDNF binding to 
TRKB is further evidenced by the curve for bBDNF at 1 ng/
ml under different concentrations of cholesterol (Figure 3e, 
[interaction: F(3,40)  =  11.50, p  <  .0001]). We and others 

T A B L E  1  CRAC and CARC(underlined)- positive proteins in the 
transmembrane region

Unipro ID Protein name
Mutation in 
CRAC/CARC

H. sapiens

Q9UM73 ALK tyrosine kinase 
receptor

Q16620 BDNF/NT−3 growth factors 
receptor

Y434C

P29320 Ephrin type- A receptor 3 I564V

P11362 Fibroblast growth factor 
receptor 1

P22455 Fibroblast growth factor 
receptor 4

P08069 Insulin- like growth factor 1 
receptor

P06213 Insulin receptor F978Y

P07333 Macrophage colony- 
stimulating factor 1 receptor

L536V, Y540S, 
K541T, 
K543 M

P10721 Mast/stem cell growth factor 
receptor Kit

O15146 Muscle, skeletal receptor 
tyrosine- protein kinase

Q15303 Receptor tyrosine- protein 
kinase erbB−4

Q12866 Tyrosine- protein kinase Mer I518V

Q01974 Tyrosine- protein kinase 
receptor ROR2

P34925 Tyrosine- protein kinase 
RYK

M. musculus

P97793 ALK tyrosine kinase 
receptor

P15209 BDNF/NT−3 growth factors 
receptor

Q60750 Ephrin type- A receptor 1

P29319 Ephrin type- A receptor 3

P16092 Fibroblast growth factor 
receptor 1

Q03142 Fibroblast growth factor 
receptor 4

P15208 Insulin receptor

Q60751 Insulin- like growth factor 1 
receptor

P09581 Macrophage colony- 
stimulating factor 1 receptor

P05532 Mast/stem cell growth factor 
receptor Kit

Q61006 Muscle, skeletal receptor 
tyrosine- protein kinase

(Continues)

Unipro ID Protein name
Mutation in 
CRAC/CARC

Q9Z138 Tyrosine- protein kinase 
transmembrane receptor 
ROR2

Q01887 Tyrosine- protein kinase 
RYK

D. rerio

Q9I8N6 Macrophage colony- 
stimulating factor 1 receptor

Q8JFR5 Mast/stem cell growth factor 
receptor kita

B8JLJ1 Tyrosine- protein kinase 
receptor (Ntrk2a)

A0A0R4ILA2 Tyrosine- protein kinase 
receptor (Ntrk2b)

D. melanogaster

P09208 Insulin- like receptor

P83097 Putative tyrosine- protein 
kinase Wsck

C. elegans

P34891 Receptor- like tyrosine- 
protein kinase kin−15

G5EGK5 Tyrosine- protein kinase 
receptor cam−1

T A B L E  1  (Continued)
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have previously shown that reduction of cholesterol levels 
under those normally present in cultured cells (by cholesterol 
synthesis inhibitor pravastatin, for example) compromises the 
effects of BDNF (Casarotto et al., 2021; Suzuki et al., 2004), 

further emphasizing the bell- shaped response. As control, the 
binding of bBDNF (1 ng/ml) to immobilized TRKB was dis-
placed by increasing concentrations of unlabeled BDNF (0, 
0.05, 0.1, 0.5, 1, 5, 10, or 20 ng/ml) as seen in Figure 3f.

UniProt Species TMR sequence

Q16620 H. sapiens TG[REHLSVYAVVV]IASVVGFCLLVM
LFLLKLARH

A0A2J8MRP9 P. troglodites TG[REHLSVYAVVV]IASVVGFCLLVM
LFLLKLARH

P15209 M. musculus SN[REHLSVYAVVV]IASVVGFCLLVM
LLLLKLARH

Q63604 R. norvegicus TN[REHLSVYAVVV]IASVVGFCLLVM
LLLLKLARH

E2RKA1 C. familiaris SG[REHLSVYAVVV]IASVVGFCLLVM
LFLLKLARH

Q91987 G. gallus EN[EDSITVYVVV]GIAALVCTGLVIML
IILKFGRH

A0A0R4ILA2 D. rerio PLE[DRVAVYIVV]GIAGVALTGCILML
VFLKYGRS

T A B L E  2  CARC- containing sequences 
([red,brackets]) in the TRKB. TMR among 
vertebrate species

F I G U R E  2  (a) Percent identity (PI) for TRKB. TMR (left; sequences for TRKB.TMR found in Table 2) and for TRKB full length (right). 
The amino acid sequence of TRKB.TMR, and TRKB full length (NTRK2) from different species were verified for PI in the UniProt database. (b) 
Correlation between the PI of full length TRKB and TMR of TRKB [Spearman's test. R2 = 0.8530; 99%CI = 0.7564 to 0.9775; p < .0001]; dashed 
line = 99% confidence band. PI tree of (c) full length, and (d) TMR of TRKB

(a)

(b) (c) (d)
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4 |  DISCUSSION

In the present study, we evaluated the incidence of 
cholesterol- recognition motifs in the TMR of the RTK fam-
ily from mouse, human, zebrafish, fruit fly, and the nema-
tode C. elegans. We found that while the bona fide CRAC 
motif, located in the C- terminal portion of the transmem-
brane domain (Fantini & Barrantes,  2013), is found in all 

species analyzed, its inverted version (CARC) was observed 
only in vertebrates. Furthermore, we found that TRKB, a 
tyrosine- kinase receptor crucial for neuronal plasticity, con-
tains in the TMR, a CARC sequence (Casarotto et al., 2021) 
that is conserved across different species. However, CRAC/
CARC motifs were absent in the TMR of other members of 
the TRK subfamily, such as TRKA and TRKC (Casarotto 
et al., 2021).

F I G U R E  3  TRKB interaction with cholesterol. (a,b) Snapshots of the interaction between TRKB and cholesterol at the TMR (see supplement 
video) indicating that cholesterol (orange) interacts with the OH-  group (red) in Y433 (cyan) of the TRKB.TMR (green). The TRKB.TMR helix 
is shown in the cartoon, the lipids and Y433 sidechain in van der Waals representations. (c) Molecular dynamics simulations show that cholesterol 
predominantly resides close to the C- alpha atom of Y433 but not C- alpha atom of R427, highlighting the significance of the aromatic Y in the 
TRKB CARC domain. (d) The binding of biotinylated BDNF (bBDNF) to TRKB is modulated by added cholesterol in a bell- shaped fashion [from 
Scatchard analysis Kd for bBDNF ctrl: 2.77 pM; chol 20 μM: 2.27pM; chol 50 μM: 2.61 pM; chol 100 μM: 1.93 pM; Bmax for bBDNF ctrl: 96.18; 
chol 20 μM: 108.9; chol 50 μM: 80.81; chol 100 μM: 65.35]. Curves from the Scatchard transformation of the TRKB:BDNF binding are depicted 
in the insert. Data expressed as mean/SEM of binding normalized by bBDNF10 ng/ml ctrl (no added cholesterol). (e) Expansion of the binding 
of bBDNF 1 ng/ml (black circles) and bBDNF 0 (ctrl, open circles), depicting the bell- shaped effect of different concentrations of cholesterol 
on bBDNF:TRKB interaction. Data expressed as mean/SEM of binding normalized by bBDNF 1 ng/ml ctrl. (f) Unlabeled BDNF (0- 20 ng/
ml) dislocates bBDNF (1 ng/ml) binding to immobilized TRKB assayed at no supplemented cholesterol (0 μM). Data expressed as mean/SEM 
normalized by bBDNF 1 ng/ml at BDNF 0 ng/ml. *p < .05 from control (BDNF 1 ng/ml– cholesterol ctrl, R427)  
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Cholesterol can interact with membrane proteins in several 
ways. One of its most prominent effects involves a direct post- 
translational modification on members of the Hedgehog path-
way described in Drosophila sp. (Jeong & McMahon, 2002; 
Wendler et al., 2006). In this model organism, cholesterol also 
regulates membrane depolarization through transient receptor 
potential (TRP) channels (Peters et al., 2017) and serves as a 
precursor for ecdysteroids, which in turn control several steps 
of the fly development (Niwa & Niwa, 2014). In nematodes 
such as C. elegans, cholesterol is only obtained from diet, al-
though these worms can modify the basic steroid structure into 
derivatives (Kurzchalia & Ward,  2003). In both organisms, 
cholesterol appears to play a major role as a signaling molecule 
with post- translational modifications of proteins as the main 
mechanism (Mann & Beachy, 2000).

In vertebrates, although neurons synthesize the absolute 
minimum of required cholesterol, glial production and release 
of lipoproteins supply neuronal demand during development 
and in adulthood (Mauch et al., 2001). In particular, apolipo-
protein E (APOE) is synthesized primarily by astrocytes and 
glial cells (Boyles et  al.,  1985; Pfrieger & Ungerer,  2011). 
Glia- derived cholesterol stimulates synapse formation and 
synaptic efficacy (Pfrieger, 2003a, 2003b). In the presynaptic 
plasma membrane, cholesterol- rich lipid rafts are necessary for 
SNARE- dependent exocytosis of vesicles with high cholesterol 
content. At the postsynaptic level, such rafts organize the dis-
position of receptors, protein scaffolds, and signaling cascades 
(Pfrieger,  2003a, 2003b). Importantly, cholesterol removal 
from neuronal cultures impairs exocytosis of synaptic vesicles 
(Linetti et al., 2010), synaptic transmission (Goritz et al., 2005), 
and neuronal viability (Michikawa & Yanagisawa,  1999). In 
addition, cholesterol induces clustering of AMPA receptors 
and hinders NMDA- induced long- term potentiation in the hip-
pocampus (Frank et al., 2008; Martín et al., 2014).

Two consensus motifs with predictive value for choles-
terol interaction with proteins have been defined through 
in silico methods (Di Scala et al., 2017), CRAC and CARC 
(Baier et  al.,  2011; Li & Papadopoulos,  1998). The non- 
covalent binding of cholesterol to such motifs has been the 
focus of several recent studies. For example, cholesterol mod-
ulates docking of NMDA receptors into lipid rafts (Korinek 
et al., 2015) and regulates the function of vanilloid receptors 
TRPV1, a member of the TRP family (Jansson et al., 2013), 
thus interfering in synaptic plasticity. Increased cholesterol 
concentration enhances the plasticity and flexibility of 5HT1a 
dimers and adrenergic receptors (Prasanna et  al.,  2014, 
2016). Given the opposed dispositions of CARC and CRAC 
motifs, it is possible to assume the co- existence of both in the 
same transmembrane domain and their potential interaction 
with two cholesterol molecules in a tail- to- tail configuration 
(Di Scala et al., 2017). However, none of the analyzed TMR 
of RTK family members in the present study displayed co- 
existing CARC and CRAC motifs.

Interestingly, we observed the occurrence of CARC motifs 
only in the zebrafish, mouse, and human RTK family. Moreover, 
only three vertebrate RTKs: NTRK2 (TRKB), ROR2 and RYK, 
were found to possess a CARC domain within the TMR. ROR2 
is a member of the ROR family, closely related to the TRK fam-
ily, and plays a distinct role in bone morphogenesis, through a 
signaling cascade not yet fully described but engaging 14– 3- 
3β scaffolding proteins (Liu et al., 2007). RYK receptor is an 
atypical member of the RTK family, as it lacks tyrosine kinase 
activity while containing the related kinase characteristic of the 
family (Hovens et al., 1992). In mammalian cells, RYK serves 
as a co- receptor with Frizzled for Wnt ligands mediating neur-
ite outgrowth (Lu et al., 2004).

The insights from the present study can serve as a primary 
step to experimentally test the impact of mutations in CRAC/
CARC motifs in the TMR of the RTK family. However, we are 
limited by only considering the role of CRAC/CARC motifs 
in the TMR of RTKs. Given the promiscuous properties of 
these motifs, it is plausible to assume multiple false- positive 
CRAC/CARCs in proteins, making data mining and putative 
in silico or in vitro analysis difficult to perform. Therefore, 
more studies focused on refining the algorithms for detecting 
cholesterol- binding motifs are necessary.

TRKB plays a crucial role in several aspects of neuronal 
plasticity (Park & Poo, 2013). The activation of this receptor 
is associated with the reopening of the visual critical period 
(Maya Vetencourt et al., 2008) and the formation, retention, 
and recall of memory (Bekinschtein et  al.,  2014; Karpova 
et  al.,  2011). TRKB.TMR is highly conserved among ver-
tebrates, similar to full- length TRKB. Although correlated, 
the identity of full- length TRKB and TRKB.TMR are not 
comparable. Given the large difference in the number of res-
idues between these two sequences, each residue change in 
the TMR exerts a higher impact than on full- length TRKB in 
the overall identity between the species analyzed. However, 
the TRKB.TMR CARC sequence from chicken differs in the 
juxtamembrane residues from the other species compared 
here (Table  2). The following two scenarios are plausible. 
The role of R/K (charged, basic residues) is fulfilled by glu-
tamate (E), which is also charged at pH 7, although nega-
tively; or by asparagine (N), which is not charged but carries 
a basic amino group. Additionally, for the second possibility, 
it is also necessary to relax the proposed “5- residue rule” 
between the Y and the juxtamembrane residue (Fantini 
et  al.,  2019) since N is located 6 residues apart from the 
central Y. Nonetheless, our MD simulations indicate that 
cholesterol interacts with TRKB mainly through the CARC 
central Y residue in this receptor, as the interaction values 
between the C- alpha atom in Y433 residue are 10- fold higher 
than those between cholesterol and the R427, suggesting 
that chicken TRKB might still be able to interact with cho-
lesterol. Moreover, the cholesterol interaction with TRKB, 
measured by microscale thermophoresis, is completely lost 
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in the single mutant Y433F, reinforcing the central role for Y 
in this interaction (Casarotto et al., 2021).

TRKB is found in lipid rafts only upon activation by BDNF 
(Suzuki et  al.,  2004). Interestingly, when cholesterol is se-
questered, TRKB translocation to lipid rafts is impaired, and 
BDNF- dependent activation of TRKB is prevented (Suzuki 
et al., 2004). However, reduction in cholesterol in hippocampal 
cultures is associated with increased baseline activity of TRKB 
(Martin et al., 2008). These opposite outcomes might be due to 
a differential modulation exerted by cholesterol, depending on 
the activity of TRKB receptor (basal vs. BDNF- stimulated), 
cell type or origin, and stage of differentiation. Another expla-
nation is that cholesterol affects TRKB activity in a bell- shaped 
manner, where higher and lower cholesterol concentrations 
impede instead of promoting TRKB phosphorylation, as ob-
served here. In fact, the decrease of cholesterol levels by 
beta- cyclodextrin was found to differentially modulate neur-
ite growth of hippocampal and cortical cultured neurons (Ko 
et al., 2005). In hippocampal cells, the decrease of cholesterol 
levels induced an increase in neurite length and number, while 
no effect was observed in cortical cells. Interestingly, cultures 
of hippocampal cells revealed higher levels of cholesterol than 
the cortical counterparts (Ko et al., 2005).

We propose that TRKB has evolved to become a “sensor” 
of cholesterol levels in the cell membrane via CARC. Thus, 
TRKB would trigger synaptic maturation or neurite growth, 
only if the cholesterol levels are optimal for such changes, that 
is cholesterol concentrations must be within a ‘Goldilocks’ 
zone. In fact, our previous data indicate that cholesterol modu-
lates BDNF- induced TRKB activation in a bell- shaped fashion 
(Casarotto et al., 2021). Under low amounts of supplemented 
cholesterol, the activation of TRKB by BDNF is facilitated, 
while at higher concentrations (around 50  μM), this incre-
ment is lost, and even compromised under higher amounts of 
cholesterol (around 100 μM). Inhibiting cholesterol synthesis 
also compromised BDNF- induced TRKB activation (Suzuki 
et al., 2004). In line with this evidence, we observed here the 
same pattern over BDNF binding to TRKB. TRKB dimeriza-
tion is heavily influenced by cholesterol, mainly through 
changes in the membrane thickness, which changes the orien-
tation of TRKB dimers between competent and incompetent 
conformations for signaling (Casarotto et al., 2021), and the 
present data provide additional evidence that such changes may 
also influence BDNF interaction with TRKB. Taken together, 
our data suggest that cholesterol, by modulating the TRKB 
dimer orientation, changes the exposure of binding sites for 
BDNF in TRKB, which in turn reflects changes in signaling.
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