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ABSTRACT
In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar 
imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired 
by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. 
Backscatter intensity, interferometric coherence magnitude, and interferometric phase have 
been used as informative features in several classification experiments. Various combinations 
of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) 
and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination 
between open water and several sea ice types (undeformed ice, ridged ice, moderately 
deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and 
coherence-magnitude to backscatter-intensity resulted in improved overall classification per-
formance compared to using only backscatter-intensity. The RF algorithm appeared to be 
slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of 
somewhat longer processing time. The best overall accuracy (OA) for three methodologies 
were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, 
RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only 
backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating 
different types of sea ice. In contrast to several earlier studies, we were particularly able to 
successfully discriminate open water and new ice classes.
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1. Introduction

Synthetic Aperture Radar (SAR) data have been used 
to monitor ice-covered maritime regions for 
approximately three decades (Ressel, Frost, and 
Lehner 2015). Satellite SAR imaging capability is 
independent of cloud coverage and light conditions 
and allows to cover the entire Earth within short 
periods of time in contrast to airborne and shipborne 
data (Ressel, Frost, and Lehner 2015; Ressel and 
Singha 2016; Sandven and Johannessen 1989; Ressel 
et al. 2016; Park et al. 2016; Liu, Guo, and Zhang 
2018; Liu, Li, and Guo 2017). SAR missions operating 
at various wavelengths have been used for sea ice 
research in Arctic and Antarctic regions for several 
decades. Studied sea ice properties included ice drift 
(Leppäranta, Sun, and Haapala 1998; Hamidi et al. 
2011; Karvonen 2012; Kwok, Spreen, and Pang 
2013), sea state and wave propagation into sea ice 
(Liu, Holt, and Vachon 1991; Vachon et al. 2004), ice 
concentration, iceberg detection (Dierking and 
Wesche 2014), and ice-type classification (Dierking 
and Wesche 2014; Soh and Tsatsoulis 1999; Soh et al. 
2004; Bogdanov et al. 2005; Breivik, Eastwood, and 

Lavergne 2012; Zakhvatkina et al. 2013; Clausi and 
Zhao 2002, 2003; Clausi and Yue 2004; Ochilov and 
Clausi 2012; Dierking and Pedersen 2012; Scheuchl, 
Caves, Cumming, and Staples 2001; Scheuchl, 
Hajnsek, and Cumming 2003; Karvonen 2004; 
Similä et al. 2001). Respective missions include 
Radar Satellite-1 (RADARSAT-1), RADARSAT-2, 
European Remote Sensing satellites (ERS-1 and 
ERS-2), and Environmental Satellite (EnviSat) 
acquiring images at C-band. Constellation of Small 
Satellites for Mediterranean basin Observation 
(Cosmo-SkyMed) and TerraSAR-X/TanDEM-X 
have acquired X-band imagery, and Advanced Land 
Observation Satellite (ALOS) Phased Array type 
L-band Synthetic Aperture Radar (PALSAR) has 
provided L-band radar imagery for sea ice research 
(Rigor and Wallace 2004; Maslanik et al. 2007; 
Stroeve et al. 2007; Scheuchl et al. 2004; Askne, 
Leppäranta, and Thompson 1992).

In the Baltic Sea, winter navigation is the main 
motivation for the ice classification research. This 
study concentrates on the Baltic Sea where ice condi-
tions during winter hinder marine navigation. Baltic 
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Sea is a brackish water basin and its ice is structurally 
similar to polar first-year sea ice but has much lower 
salinity. For safe navigation, icebreakers and commer-
cial vessels require accurate ice condition information 
to select optimal routes and assess the need for ice-
breaker assistance. To aid navigation and safe ship-
ping, the Finnish Meteorological Institute (FMI) 
provides daily ice charts. For this service, FMI uses 
mainly C-band SAR satellite images, particularly from 
RADARSAT-2 and Sentinel-1 missions (Gegiuc et al. 
2017). These sensors have sufficient resolution 
(100 m) for general navigation needs. However, in 
order to distinguish ice ridges, heavily deformed ice 
and new ice formation in more details and get better 
understanding about mechanisms of sea ice forma-
tion, sensors with higher spatial resolution should be 
used, e.g. operating at X-band. Another advantage of 
X-band SAR over C-band is its higher sensitivity in 
assessment of sea ice surface properties, small-scale 
surface roughness and sea ice inclusions due to 
shorter wavelength (Ressel, Frost, and Lehner 2015; 
Dierking 2013; Fors 2016). Currently, the FMI service 
uses trained experts for sea ice classification and ice 
chart production. This is time consuming and expen-
sive. Furthermore, the same SAR data interpreted by 
different experts can, and often does, lead to some-
what different results. In view of increased data 
volumes from operational and planned X-band sen-
sors (e.g., ICEYE constellation), a need for automated 
classification procedure is getting stronger. This 
would if not replace manual expert interpretation, 
but at least provide valuable pre-classification to the 
analysis. To date, the potential of automated sea ice 
classification was demonstrated in several studies 
using backscatter intensity data (Clausi and Zhao 
2003; Gegiuc et al. 2017; Sandven et al. 2012; Barber 
and LeDrew 1991; Clausi 2001; Shokr 2009). 
However, no feasible operational algorithm exists. 
Since different ice types can have similar backscatter- 
intensity, a single image feature can be inadequate for 
sea ice classification (Ressel, Frost, and Lehner 2015; 
Karvonen 2004). Several earlier studies (Mäkynen and 
Hallikainen 2004; Dierking 2010) concluded that 
using only backscatter-intensity data is not sufficient 
to delineate different ice types reliably. There is an 
evidence (Dierking 2010) that additional image layers 
including higher order textural features are necessary 
and a large feature space has to be generated in order 
to train a classifier successfully. Among suitable tech-
niques for describing the image texture, Gray-Level 
Co-occurance Matrix (GLCM) features have been 
tested in sea ice classification recently (Ressel, Frost, 
and Lehner 2015).

Several studies focusing on InSAR signatures of 
sea ice (Dammert, Leppäranta, and Askne 1998; 
Berg, Dammert, and Eriksson 2015; Marbouti 
et al. 2017; Dierking, Lang, and Busche 2017; 

Laanemäe, Uiboupin, and Rikka 2016) have 
demonstrated that coherence-magnitude and 
InSAR-phase provide valuable information about 
the sea-ice dynamics. Dammert, Leppäranta, and 
Askne (1998) found several relationships between 
backscatter-intensity and coherence-magnitude fea-
tures over low-salinity ice, further expanded by 
Berg, Dammert, and Eriksson (2015). Marbouti 
et al. (2017) used backscatter-intensity and InSAR- 
phase features for finding sea ice displacement over 
fast ice. Dierking, Lang, and Busche (2017) used 
InSAR-phase feature for retrieving the ice surface 
topography. Laanemäe, Uiboupin, and Rikka (2016) 
used backscatter-intensity and coherence- 
magnitude features for sea ice classification. This 
motivates to study connections between backscat-
ter-intensity, InSAR coherence-magnitude, and 
InSAR-phase, as well as the benefit of interferome-
try compared to backscatter, also in the sea-ice 
classification context.

In this study, we aim to extend the classification 
parameter space by introducing SAR interferometry 
and investigate the applicability of coherence- 
magnitude and InSAR-phase to improve automated 
sea ice classification at X-band. Specific goal is to estab-
lish a workflow for automated classification, using 
X-band interferometric SAR data acquired by the 
TanDEM-X mission, with preliminary results shortly 
communicated in Marbouti et al. (2018).

To date, there was only one study based on 
TanDEM-X imagery using both backscatter-intensity 
and coherence-magnitude features for automated sea 
ice classification (Laanemäe, Uiboupin, and Rikka 
2016). Their method was applied over few types of ice: 
landfast ice, thin smooth ice, pancake ice and open 
water. Our aim is to increase the number of classified 
sea ice types, by using more features. Moreover, differ-
ent sea ice classification algorithms are evaluated and 
compared here to select the best performing algorithm 
along with best combination of used image features.

The study concentrates on evaluating the added 
value of SAR interferometry versus the use of back-
scatter intensity on sea-ice classification, and com-
pares three popular classification approaches (RF, 
ML, and SVM classifiers) for differentiating between 
open water and various sea ice types (undeformed ice, 
ridged ice, moderately deformed ice, brash ice, thick 
level ice, new ice).

The particular objectives of this study are:
(i) to assess the potential of various SAR features, 

such as backscatter-intensity, interferometric coher-
ence-magnitude and interferometric phase, as well as 
their combinations, for characterizing sea ice using 
X-band SAR data and,

(ii) to determine which classification method (RF, 
ML, SVM) is more suitable for inferring sea ice types 
using studied InSAR features.
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The article is organized as follows. We describe our 
study site, SAR data, relevant theoretical information 
and processing methodologies in Section 2. 
Classification results are provided in Section 3. 
Relative performance of different SAR features, com-
parison between RF, ML, and SVM algorithms, classi-
fication performance for different features, effects of 
image acquisition geometry on ice type classification, 
as well as comparison with prior works are given in 
Section 4. Finally, Section 5 summarizes the paper 
with conclusions, potential for future research and 
application of the demonstrated classification 
approaches.

2. Materials and methods

2.1. Study area

Our study area (Marbouti et al. 2018) is located in the 
vicinity of Hailuoto Island in the north of the Baltic 
Sea (Figure 1a). The Baltic Sea is a semi-enclosed 
brackish sea in northern Europe. Sea ice starts to 
form in November and its maximum extent is reached 
between January and March (Seinä and Peltola 1991). 
Sea ice breakup starts in April and typically completes 
by the beginning of June. The maximum annual ice 
coverage over the Baltic Sea is from 12% to 100% and 
its average is about 40% (Seinä and Palosuo 1996).

The sea ice cover in the Baltic Sea can be divided 
into landfast ice and drift ice. Landfast ice is fastened 
to the coastline and islands, while further offshore drift 
ice is moving along by winds and sea currents. The 
mean thickness of thermodynamically grown ice is 
70 cm with inter annual range of 50–120 cm 
(Palosuo, Leppäranta, and Seinä 1982). Thermally 
grown sea ice consists mainly of congelation ice and 
snow-ice, and its salinity is less than two per mill 

(Leppäranta and Myrberg 2009). The thickness of ice 
ridges is typically 5 to 15 m (Leppäranta and Hakala 
1992).

For this study, we have acquired TanDEM-X 
image over the Baltic Sea on March 30, 2012 (Figure 
1a). This was a mild winter but the northern and 
eastern basins of the Baltic Sea froze over. At the 
end of March, the ice in the Bay of Bothnia was 
tightly packed into the northeast part (Figure 1b), 
the InSAR data covered very close drift ice and land-
fast ice. In the area of the frame, the thickness of 
landfast ice was mostly 35–60 cm, and the drift ice 
largely contained deformed ice. This chart is not 
detailed enough for our study, and therefore an inde-
pendent high-resolution reference ice chart was pre-
pared in FMI Ice Service based on operational 
satellite data and ground truth from icebreakers and 
fixed observation sites.

The ice types chosen for the study contain six ice 
categories with different degrees of thickness and sur-
face roughness, and open water (Table 1). These ice 
types can be identified by the FMI Ice Service in the 
operational ice charting that is based on the World 
Meteorological Organization (WMO) sea ice nomen-
clature. The categories or their symbology are 
included in the operational ice charting and are essen-
tial to icebreaking and navigation operations.

Landfast ice is a particular ice type that covers 
a large portion of the analyzed image but was left 
outside the classification. Landfast ice is a kinematic 
concept, defined on the basis of immobility. The 
boundary of landfast ice and drift ice is dynamic, 
where fractures form depending on the thickness of 
ice and consolidation between ice floes (Goldstein, 
Osipenko, and Leppäranta 2009). Thus, landfast ice 
cannot in general be distinguished from one image. As 
a matter of fact, our results show clearly how 

Figure 1. (a) an overview of the Bay of Bothnia, the Baltic Sea with TanDEM-X image footprint shown with red rectangle. The 
image was acquired on 30 March 2012. (b) Ice chart over the Bay of Bothnia on 30 March 2012. The yellow rectangle shows the 
TanDEM-X footprint.
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fracturing processes have caused mixing between 
landfast ice and drift ice with time, and therefore 
landfast needs to be studied from sequential image 
data (Marbouti et al. 2017).

2.2. SAR data description

2.2.1. InSAR theory in the context of the study
The interferometric coherence between two complex 
SAR images S1 and S2 represents the complex cross- 
correlation between them: 

γ ¼
s1 s�2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 s�1h i: s2 s�2h i

p ; 0 � γj j � 1 (1) 

where asterisk denotes complex conjugation. The 
coherence is used as an indicator of the quality of the 
interferogram (Hurtado 2012). Interferometric phase 
φ ¼ arg γð Þ gives information about the path differ-
ence between the different antenna positions and the 
target and can be used for topographic measurement 
provided SAR images were acquired at slightly differ-
ent incidence angles (Plank 2014). The SAR system 
measures the interferometric phase difference φ 
related to the path length difference as: 

φ ¼
2πa

λ
dR ¼ �

2πa
λ

sin θ � αð Þ (2) 

where λ is the SAR wavelength, R is satellite to target 
distance, dR is the path length difference between the 
two antennas, B is the perpendicular baseline, θ is the 
incidence angle, and α is the baseline tilt angle with 
respect to the horizontal, and the parameter a takes 
value of 1 or 2 for single-pass or multi-pass case, 
respectively. In this study, aa value is equal to one 
(Plank 2014).

2.2.2. TanDEM-X image selection and 
preprocessing
TanDEM-X Coregistered Single Look Slant Range 
Complex (CoSSC) products were used in the study. 
The image was acquired on March 30, 2012 in the 
stripmap mode in bistatic InSAR configuration, at 
HH polarization.

Bistatic formation allows to avoid temporal decorr-
elation, with TanDEM-X being presently the only 
available bistatic spaceborne SAR mission. Its rela-
tively short along track baseline and big perpendicular 
baseline is useful for ice mapping (Dierking, Lang, and 
Busche 2017). Also, X-band SAR compared to C-band 
has higher sensitivity toward surface structures 
(Ressel, Frost, and Lehner 2015; Dierking 2013). On 
the other hand, keeping in mind limited availability of 
such data to operational end-users, little research on 
sea ice classification using X-band InSAR data has 
been performed so far (Laanemäe, Uiboupin, and 
Rikka 2016).

In this study, we screened imaging data between 
2010 and 2019 acquired using standard bistatic 
imaging mode. The project concentrated on Baltic 
Sea, thus we tried to choose images where sea ice is 
nearly stable and no melting is happening, limiting 
available scenes to those acquired in March. On the 
other hand, the most suitable TanDEM-X data for 
inferring sea ice topography is TanDEM-X Science 
Phase, which started in September 2014 and lasted 
for 17 months (Maurer et al. 2016). The Science 
Phase was initiated to demonstrate new products 
and applications such as digital elevation models 
with higher accuracies than in standard mode or 
measurements of ocean currents. The compara-
tively large baselines in this phase translated to 
a very high sensitivity for object elevations on the 
order of decimeters. However, unfortunately, we 
did not find any option of science phase over 
Baltic Sea during September 2014 to 
February 2016 (science phase period); that’s why 
the choice was made to rely on standard operation 
mode that leads to somewhat lower topographic 
mapping accuracy compared to science phase. 
Image parameters of studied CoSSC scene are col-
lected in Table 2.

Figure 2 shows features of The TanDEM-X 
image: backscatter-intensity (Figure 2a), InSAR 
coherence-magnitude (Figure 2b) and InSAR- 

Table 1. Description of sea ice classes.
Ice type Definition

Open water A sea surface which is free of ice but may contain 
some ice fragments, by definition covering less 
than 1/10 of the surface.

New ice New ice represents all forms of thin newly formed ice 
from frazil ice with almost liquid-like attributes to 
a uniform crust of up to 5 cm in thickness.

Undeformed Ice Ice thicker than 10 cm, not significantly deformed but 
including rough surface properties.

Thick Level Ice Ice thicker than 10 cm with a smooth surface and 
without any deformation. The ice surface might 
have been refrozen from flooded water or melted 
snow.

Ridged ice Ice thicker than 10 cm with frequent occurrences of 
deformed ice, both rafted and ridged. Most of this 
ice type has been broken and piled to pressure 
ridges by compressive forcing. In this ice type, 
there is typically a network of ridge lines 
crisscrossing in a sheet of otherwise level first-year 
ice but also heavily deformed ice with virtually no 
level ice present.

Moderately 
deformed ice

Drift ice thicker than 10 cm, including a mixture of 
different ice types. The field consists of originally 
broken drift ice of different stages of development, 
including both rafted and ridged ice but also 
patches of level ice.

Brash ice Ice broken into a fairly homogenous surface of very 
small ice blocks and typically identified by a high 
backscatter coefficient. In the scenes studied in this 
paper, brash ice can mainly be identified along 
known, fixed shipping lanes. It was chosen into the 
categorization because of its distinct features and 
evident detectability. Brash ice also forms at ice 
edges, broken and compacted by wind and waves 
into wide and thick zones and causing considerable 
harm to navigation.
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phase (Figure 2c). TanDEM-X data were orthorec-
tified using ESA SNAP software. TanDEM-X 
InSAR-phase ramp was compensated to remove 
its effect on the classification performance 
(Sadeghi et al. 2014; Solberg et al. 2013; Solberg, 
Weydahl, and Astrup 2015; Marbouti et al. 2020). 
All features were additionally filtered using (7 × 7) 
boxcar filter. Land area was removed by applying 
land masking. Finally, linear stretching to dynamic 
range [0;255] was applied over each feature before 
running classification experiments.

2.3. Reference classification map

Sea ice charts for the Bay of Bothnia are routinely 
produced by the FMI experts. The ice charts provide 
a daily source of information on the ice conditions. 
Experts delineate ice chart polygons assigning to the 
specific ice types. The charts are based on visual inter-
pretation of SAR imagery as the principal source of 
information. Currently, mainly RADARSAT-2 and 
Sentinel-1 SAR imagery with wide swaths are used 
(Gegiuc et al. 2017); however, X-band SAR sensors 
such as Cosmo-SkyMed and TerraSAR-X with nar-
rower swaths are also deemed useful. The experts also 
use visible and thermal infrared imagery from 
Moderate Resolution Imaging Spectroradiometer 
(MODIS), in-situ observations, sea ice reports from 
icebreakers, and sea ice models in the production of 
the ice charts.

In this study, a sea ice expert produced a reference 
map by manually classifying sea ice based on the 
TanDEM-X features. The reference map in this study 
(ice chart shown in Figure 3) is in fact considerably 

Table 2. TanDEM-X image parameters.
Acquisition date 30 March 2012
Acquisition start time 15:55:37
Mode Stripmap
Polarization HH
Orbit cycle 167
Relative orbit 24
Effective baseline (m) 240.38
Resolution (m) 2.51
Height of ambiguity (m) −30.84
Average coherence 0.81
Incidence angle 43.41 deg

Figure 2. TanDEM-X image features: (a) backscatter intensity; (b) coherence-magnitude; (c) InSAR-phase. The image was acquired 
30 March 2012. Land mask was applied. The features were linearly stretched to [0;255] dynamic range.
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more detailed than routine daily ice charts to respond 
to the high resolution of the source data.

2.4. Proposed classification approach

To improve classification performance, careful selec-
tion of representative training data is critical 
(Antropov et al. 2014). Image area was almost 
3558 km2. A total of 14,000 pixels (2000 pixels per 
each class) were randomly selected based on feature 
properties by the sea ice expert.

RF and ML classification has been done using ESA 
Sentinel Application Platform (SNAP) software. SVM 

classifier was implemented using MATLAB software. 
In order to evaluate the added value of InSAR features 
compared to backscatter intensity, several classifica-
tion experiments were performed: separately for each 
TanDEM-X feature, for their various combinations, as 
well as all features combined together.

After classification processes (Sections 2.5 and 2.6 
and 2.7), each pixel was assigned to a sea ice type and 
open water. Majority voting (5 * 5 neighborhood) was 
applied over classification maps to achieve more 
homogeneous areas. Figure 4 shows the workflow of 
our proposed algorithm for open water and sea ice- 
type classification.

Figure 3. Reference classification map for 30 March 2012. New ice class with training plots are shown in the upper left corner of 
the image.

Figure 4. Flowchart of the proposed approach for open water and sea ice-type classification.
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2.5. RF classification

RF is a classification and regression tree technique 
invented by Breiman (2001). Breiman (2001) defined 
an RF as a classifier consisting of a collection of tree- 
structured classifiers tðx;ΘKÞ; k ¼ 1; . . . :f gwhere the 

Θkf gare independent identically distributed random 
vectors and each tree casts a unit vote for the most 
popular class at input x(Breiman 2001).

RF lets each tree vote for the class membership, and 
assigning the respective class according to the majority 
of the votes that result in taking advantage of the high 
variance among individual trees (Stumpf and Kerle 
2011). RF has proven its power in handling classifica-
tion with a big data of high dimensional feature spaces. 
These RF properties prove robust and accurate per-
formance on complex datasets (Du et al. 2015).

SNAP software includes an application to perform 
RF pixel-based image classification. The SNAP allows 
us to train a classifier using various features and train-
ing vector data, with the resulting classifier model 
saved as a model file. The training vector data must 
contain polygons with a positive integer field repre-
senting the class label. In the next step, the image 
classification by using the provided model file is per-
formed on corresponding features, with each pixel 
assigned a class label. In this study, number of training 
samples and trees in the forest were 14,000 and 100, 
respectively. Based on Oshiro’s study (Oshiro, Perez, 
and Baranauskas 2012), the best optimal number for 
trees are between 64 and 128 trees because increasing 
the number of trees would bring no significant perfor-
mance gain, and would only increase the computa-
tional cost. Although we tried to use of 10, 50, 100, and 
150 trees in this study but the best result were achieved 
when we used 100 trees and increasing number of tree 
did not make sufficient change in our result.

2.6. ML classification

ML is a supervised classification approach. That is the 
procedure of finding the value of one or more para-
meters for a given statistic which makes the known 
likelihood distribution a maximum. It is derived from 
the Bayes theorem, which states that the posteriori 
distribution P wjkð Þ, i.e., the probability that a pixel 
with feature vector 0w0belongs to class 0k0: 

P kjwð Þ ¼
P kð ÞP wjkð Þ

P wð Þ
(3) 

where P wjkð Þ is the likelihood function, P kð Þis a priori 
information, and P wð Þ is the probability that 0w0 is 
observed, it is given by: 

P wð Þ ¼
XN

k¼1
P wjkð ÞP kð Þ (4) 

where N is the number of classes. P wð Þis often 
behaved as a normalization constant to certify 
PN

k¼1
P kjwð Þ sums to 1. Pixel 0x0 is assigned to class 

0k0 by: 

X 2 k if P kjwð Þ>P jjwð Þ for all j�k (5) 

ML often assumes that the distribution of the data 
within a given class 0k0 obeys a multivariate Gaussian 
distribution. It is then convenient to define the log 
likelihood: 

gk wð Þ ¼ ln P wjkð Þ

¼
1
2

w � μk
� �t C� 1

K w � μk
� �

�
N
2

ln 2πð Þ

�
1
2

ln Ckj jð Þ (6) 

Since log is a monotonic function, Equation (5) is 
equivalent to: 

X 2 k if gk wð Þ> gj wð Þ for all j�k (7) 

Each pixel is assigned to the class with the highest 
likelihood (Ahmad and Quegan 2012). The SNAP 
was used to perform supervised ML pixel-based 
image classification. Within ML classifier, we do not 
have any parameter to change except the number of 
training samples; it has been set to 14,000 similar to 
RF classifier to enable fair comparison of their 
performance.

2.7. SVM classification

SVMs have their roots in Statistical Learning Theory 
(Vapnik 1995). They have been vastly applied to 
machine vision fields including character, text recog-
nition, and handwriting digit (Vapnik 1995; Joachims 
1998). In nowadays, SVMs also are applied to satellite 
image classification (Huang, Davis, and Townshed 
2002; Anthony, Greg, and Tshilidzi 2007). The objec-
tive of the support vector machine algorithm is to find 
a hyperplane in a high-dimensional space that sepa-
rately classifies the data points. This translates to find-
ing a hyperplane that gives the largest minimum 
distance to the training examples. The trade-off 
between minimizing the training error and the com-
plexity of the decision function is controlled by 
a kernel and kernel parameters (Friedrichs and Igel 
2005; Laanemäe 2017). The basic SVM is directly 
applicable for solving two-class (binary) classification. 
For multiclass problems such as sea ice classification in 
this study, the implementation of SVM is approached 
by multiclass strategy. Two of the common methods to 
enable this adaptation include the One-Versus -One 
(OVO) and One-Versus-All (OVA) techniques 
(Anthony, Greg, and Tshilidzi 2007; Han et al. 2015). 
The OVA approach represents the earliest and the 
most common SVM multiclass approach (Melgani 
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and Bruzzone 2004) and involves the division of a K 
class dataset into K two-class cases. The OVO 
approach on the other hand; involves constructing 
a machine for each pair of classes resulting in K 
(K-1)/2 machines. Further, majority voting is used to 
assign a label to current pixel. It is further modified to 
introduce weighting to the voting process (Anthony, 
Greg, and Tshilidzi 2007).

In this paper, an error-correcting output codes 
(ECOC) multiclass model based on SVM binary lear-
ners is trained using Matlab environment. 
Particularly, the OVO approach with K binary lear-
ners is used. Number of binary learners is depended 
on number of classes which exist in data. In this work, 
there are seven classes, thus the OVO model has 21 
binary learners. For training the model, we used 2000 
pixels for each classes and total pixels are 14,000, 
similarly to other experiments.

2.8. Accuracy assessment

Classification performance was evaluated using strati-
fied random sampling approach, in order to have the 
same number of pixels for each class in the accuracy 
assessment. Confusion matrix (CM) was calculated for 
all ice classes, and following accuracy measures were 
used: Overall Accuracy (OA), User Accuracy (UA), 
Producer Accuracy (PA), and Kappa coefficient of 
determination. 

OA ¼
Number of correct pixels
Total number of pixels

(8) 

Kappa ¼
Observed accuracy - chance agreement

1 - chance agreement
(11) 

3. Results

3.1. Classifications accuracy assessment

Altogether, 14 CMs were calculated for seven types of 
single and combinations of features in several classifica-
tion experiments. All experiments are listed in Table 3. 
Values of OA, UA and PA assessments for all experi-
ments are shown alongside CMs. The best results from 
14 experiments (RF, ML and SVM) are presented in 
Figure 5(a, b). The highest OA in RF, ML, and SVM 
experiments were 72.93, 71.56, and 72.91% (all three 
features combined). This suggests that features combi-
nation are better than single features for sea ice classi-
fication. Table 3 shows the OA with Kappa coefficients 
statistics gathered for all 14 classification experiments.

3.2. Classification output maps

As it was shown in the previous section, the highest OAs 
were obtained using combination of all features (back-
scatter-intensity, coherence-magnitude, and InSAR- 
phase) with three classifiers. They were 72.93, 71.56, and 
72.91% for RF, ML, and SVM, respectively. Figure 6(a, b, 
c) shows the final classification maps, produced at 10-m 
spatial resolution, and give a representative overview of 
the spatial distribution of sea ice classes in the study area.

4. Discussion

4.1. Relative performance of different SAR features

In order to investigate the suitability of different input 
features and their combinations for the classification           

of open water and sea ice types, the accuracy assess-
ment of classification maps produced using various 
combinations of features was performed.

Table 3. RF, ML, and SVM overall accuracies (OAs) and Kappa coefficients.

Classification features
OA (RF) 

(%)
Kappa (RF) 

(%)
OA (ML) 

(%)
Kappa (ML) 

(%)
OA(SVM) 

(%)
Kappa (SVM) 

(%)

Backscatter-intensity 66.51 60.93 62.28 55.99 63.05 56.90
Coherence-magnitude 61.63 55.23 59.67 52.94 61.88 55.53
InSAR-phase 42.95 35.03 50.91 42.72 52.62 46.16
Backscatter-intensity & coherence-magnitude 72.43 68.65 69.97 64.97 72.15 68.38
Backscatter-intensity & InSAR-phase 71.84 67.14 70.27 65.32 72.78 68.24
Coherence-magnitude & InSAR-phase 64.12 58.14 61.98 55.64 61.89 55.54
Backscatter-intensity & Coherence-magnitude & InSAR-phase 72.93 68.42 71.56 66.82 72.91 68.39

PA ¼
Number of correctly identified pixels in reference plots of a given map class

Number of pixels claimed to be in that map class
(10) 

UA ¼
Number of correctly identified pixels in a given map class

Number of pixels claimed to be in that map class
(9) 
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CMs for produced maps in RF-experiments indi-
cated that:

1) Combinations of all three features had the best 
OA of 72.93% and Kappa coefficient of 0.68.

2) Backscatter-intensity & coherence-magnitude 
and backscatter-intensity & InSAR-phase combina-
tions were following closely with OAs of 72.43% and 
71.84% (Kappa of 0.68 and 0.67), respectively 

Figure 6. Final classification map using combined backscatter-intensity & coherence-magnitude & InSAR-phase with (a) RF; (b) ML; 
(c) SVM classifications.

Figure 5. (a) User accuracy and (b) producer accuracy of RF, ML and SVM classified map based on backscatter-intensity & 
coherence-magnitude & InSAR-phase for water and sea ice classes (U = Undeformed ice, R = Ridged ice, M = Moderately deformed 
ice, B = Brash ice, T = Thick level ice, N = New ice, O = Open water).
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(Table 3). Figure 7(a, b) and Table 4 summarize 
performance of RF in all experiments for different 
ice-cover classes. Figure 7(a, b) showed UAs and PAs 
of single and combination features in RF classifier, 
respectively, and Table 4 lists the classes which 
achieved the highest and lowest UAs and PAs for 
each single feature and their different combinations, 
respectively. The computation time for RF classifica-
tion step was almost 5 min per any image feature and 
it slightly increased when using combinations of two 
or three features.

CMs in ML-experiments indicated that combina-
tions of all three features had the best OA of 71.56% 
and Kappa accuracy of 66.82, although backscatter- 
intensity & InSAR-phase and also backscatter- 
intensity & coherence-magnitude combinations were 
following closely with OAs of 70.27% and 69.97% 
(Kappa accuracies of 65.32 and 64.97), respectively 
(Table 3). Similar performance was observed in RF 
classification experiments, though the accuracies 
were somewhat higher with RF compared to ML.

Figure 8(a, b) and Table 5 summarize performance 
of ML in all experiments for different ice-cover classes. 
Figure 8(a, b) shows UAs and PAs of single and 
combination features in ML classifier, respectively, 
and Table 5 lists the classes which achieved the highest 

and lowest UAs and PAs for each single and combina-
tion of input data. The computation time for ML 
classification was 12 to 15 seconds per any image 
feature and it slightly increased when using combina-
tion of two or three features.

CMs in SVM-experiments also indicated that com-
binations of all three features had the best OA of 
72.91% and Kappa accuracy of 0.68, although back-
scatter-intensity & InSAR-phase and also backscatter- 
intensity & coherence-magnitude combinations were 
following closely with OAs of 72.78% and 72.15% 
(Kappa accuracies of 0.68 and 0.68), respectively 
(Table 3). Results was similar with RF and ML classi-
fication experiments. The accuracies were somewhat 
higher with RF classification and a bit lower with ML 
classification.

Figure 9(a, b) and Table 6 summarize performance 
of SVM in all experiments for different ice-cover 
classes. Figure 9(a, b) show UAs and PAs of single 
and combination features in SVM classifier, respec-
tively, and Table 6 lists the classes which achieved the 
highest and lowest UAs and PAs for each single and 
combination of input data. The computation time for 
SVM classification was about 30 s per any image 
feature, and it increased when using combination of 
two or three features.

Figure 7. (a) UA and (b) PA in RF classifier for water and sea ice classes (U = Undeformed ice, R = Ridged ice, M = Moderately 
deformed ice, B = Brash ice, T = Thick level ice, N = New ice, O = Open water), classification features (B = Backscatter-intensity, 
C = Coherence-magnitude, I = InSAR-phase).

Table 4. The highest and lowest UAs and PAs for input data in RF classifier (B = Backscatter-intensity, C = Coherence-magnitude, 
I = InSAR-phase).

Classification features Class or classes with highest/lowest UA in RF (%) Class or classes with highest/lowest PA in RF(%)

B Open water (95.49)/Moderately deformed ice (35.09) New ice (96.08)/Undeformed ice (37.40)
C Open water (95.55)/Undeformed ice (29.89) New ice (92.31)/Undeformed ice (37.32)
I Open water (84.16)/Undeformed ice (2.91) Open water (82.49)/Undeformed ice (10.40)
B – C Open water (96.43)/Undeformed ice (51.31) New ice (94.66)/Moderately deformed ice (50.94)
B – I Open water (94.11)/Undeformed ice (50.93) New ice (95.42)/Moderately deformed ice (48.61)
C – I Open water (94.72)/Undeformed ice (42.91) New ice (92.32)/Moderately deformed ice (40.53)
B – C – I Open water (93.87)/Undeformed ice (51.17) New ice (92.76)/Moderately deformed ice (50.77)
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4.2. Comparison of classification approaches

Table 3 shows that RF had higher OAs than ML in all 
single and combination features except in InSAR-phase 
feature. RF acted better than ML in all cases including 
backscatter-intensity (4.23%), coherence-magnitude 

(1.96%), backscatter-intensity & coherence-magnitude 
(2.46%), backscatter-intensity & InSAR-phase (1.57%), 
coherence-magnitude & InSAR-phase (2.14%), and 
backscatter-intensity & coherence-magnitude & InSAR- 
phase (1.37%) combinations. RF and SVM classifiers 

Figure 8. (a) UA and (b) PA in ML classifier for water and sea ice classes (U = Undeformed ice, R = Ridged ice, M = Moderately 
deformed ice, B = Brash ice, T = Thick level ice, N = New ice, O = Open water), classification features (B = Backscatter-intensity, 
C = Coherence-magnitude, I = InSAR-phase).

Table 5. The highest and lowest UAs and PAs for input data in ML classifier (B = Backscatter-intensity, C = Coherence-magnitude, 
I = InSAR-phase).

Classification features Class or classes with highest/lowest UA in ML (%) Class or classes with highest/lowest PA in ML (%)

B Open water (94.61)/Moderately deformed ice (11.46) Open water (93.09)/Moderately deformed ice (20.37)
C New ice (93.86)/Undeformed ice (2.61) Open water (96.02)/Ridged ice (36.90)
I Open water (88.66)/Brash ice (0) New ice (83.09)/Brash ice (0)
B – C Open water (94.64)/Moderately deformed ice (48.81) Open water (97.07)/Undeformed ice (48.57)
B – I Open water (92.61)/Brash ice (49.52) New ice (94.94)/Undeformed ice (49.35)
C – I New ice (93.95)/Brash ice (15.78) Open water (95.78)/Ridged ice (38.41)
B – C – I Open water (94.55)/Brash ice (51.03) Open water (96.69)/Ridged ice (49.86)

Figure 9. (a) UA and (b) PA in SVM classifier for water and sea ice classes (U = Undeformed ice, R = Ridged ice, M = Moderately 
deformed ice, B = Brash ice, T = Thick level ice, N = New ice, O = Open water), classification features (B = Backscatter-intensity, 
C = Coherence-magnitude, I = InSAR-phase).
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acted almost in same manner and differences in coher-
ence-magnitude, backscatter-intensity & coherence- 
magnitude, backscatter-intensity & InSAR-phase and 
backscatter-intensity & coherence-magnitude & InSAR- 
phase were near to zero. RF acted better than SVM in 
cases including backscatter-intensity (3.46%) and coher-
ence-magnitude & InSAR-phase (2.23%) combinations 
except in InSAR-phase feature that it was 9.67% less than 
SVM classification.

UA calculations in Figure 7(a), Figure 8(a) and 
Figure 9(a) show that difference between all classi-
fiers (RF, ML, SVM) for sea ice classes including 
undeformed ice, ridged ice, moderately deformed 
ice and brash ice for classification features (single 
and combination features) was strong. RF had lower 
UAs for undeformed ice and ridged ice in order of 
7–20% and 6–67% compared to ML and 0.7–29% and 
2–56% compared to SVM. In comparison to RF and 
ML, the undeformed ice difference was strongest 
when backscatter-intensity & InSAR-phase combina-
tion was used (19.93%). In addition, ridged ice dif-
ference was strongest in InSAR-phase feature 
(66.62%). RF was more powerful than ML for mod-
erately deformed ice and brash ice in order of 
15–33% and 7–30%, respectively. The strongest dif-
ference for moderately deformed ice belonged to 
InSAR-phase feature (32.14%). The brash ice differ-
ence was strongest when coherence-magnitude & 
InSAR-phase combination (29.94%) was used. 
Although there were one or two exception classes, 
that ML or RF acted better. For example, coherence- 
magnitude was the only case that RF acted better than 
ML in undeformed ice (27.29%) and ML was power-
ful than RF in moderately deformed ice (9.88%). In 
comparison, RF and SVM, the undeformed ice 
(28.46%) and ridged ice (55.18%) had strongest dif-
ference when InSAR-phase was used. RF was more 
powerful than SVM for moderately deformed ice and 
brash ice in order of 0.02–18% and 2–24%, respec-
tively. The strongest difference for moderately 
deformed ice belonged to InSAR-phase feature 
(17.06%). The brash ice difference was strongest 
when coherence-magnitude & InSAR-phase combi-
nation (23.31%) was used. In here also, there were 
one or two exception classes that SVM or RF acted 
better. For example, coherence-magnitude was the 

only case that RF acted better than SVM in ridged 
ice (7.53%) and SVM was powerful than RF in brash 
ice (3.78%).

Difference between RF and ML classifiers for sea ice 
classes including new ice, thick level ice, and open 
water was not significant. These differences also were 
not significant between RF and SVM. In comparison 
RF and ML, in all single and combination features for 
new ice; ML had higher UAs than RF with improve-
ments 0.1–9%. The strongest difference was for back-
scatter-intensity & coherence-magnitude combination 
(8.70%). InSAR-phase was the only case that had 
decreasing value from ML to RF with 8.09%. For 
open water and thick level ice, differences between RF 
and ML classifiers were in order of 2–14% and 0.6–3%.

In comparison RF and SVM, in all single and com-
bination features for new ice; RF had higher UAs than 
SVM with improvements 1–7%. The strongest differ-
ence was for InSAR-phase (6.82%).

Backscatter-intensity and backscatter-intensity & 
InSAR-phase were cases that SVM acted better than 
RF in order of 1.13% and 2.28% for new ice. For open 
water and thick level ice, differences between RF and 
SVM classifiers were in order of 0.3–4 and 2–5%.

Figure 7(b), Figure 8(b) and Figure 9(b) show PAs 
calculations. Here, significant differences between RF 
with ML and SVM classifiers were found for unde-
formed ice (1–33%,0.4–30%), ridged ice (4–12%,1–-
8%), moderately deformed ice (0.02–20%,2–18%) and 
brash ice (1–35%,0.09%-35%). Like UAs, difference 
between RF with ML and SVM classifiers for sea ice 
classes including new ice (0.1–4%; 0.1–3%), thick level 
ice (0.4–3%; 0.2–3%) and open water (2–9%; 0.3–5%) 
was not significant, respectively.

Thus, we can conclude that differences between RF 
with ML and SVM classifiers were remarkable for 
undeformed ice, ridged ice, moderately deformed ice 
and brash ice but were not considerable for new ice, 
thick level ice and open water classes.

Based on UA calculations for RF (Table 4), the best 
detected class was open water with UAs in order of 
84.16% to 95.55% (in all classification features) 
whereas undeformed ice was hardest to discriminate 
in order of 2.29% to 51.17% (in all classification fea-
tures except in backscatter-intensity feature). Same 
calculations were done for PAs (Table 4), the best 

Table 6. The highest and lowest UAs and PAs for input data in SVM classifier (B = Backscatter-intensity, C = Coherence-magnitude, 
I = InSAR-phase).

Classification features Class or classes with highest/lowest UA in SVM (%) Class or classes with highest/lowest PA in SVM (%)

B Open water (94.90)/Moderately deformed ice (19.77) New ice (95.96)/Moderately deformed ice (27.59)
C Open water (95.88)/Ridged ice (37.39) New ice (92.82)/Undeformed ice (39.18)
I Open water (87.84)/Brash ice (0) New ice (82.68)/Brash ice (0)
B – C Open water (97.72)/Ridged ice (55.61) New ice (96.23)/Ridged ice (52.68)
B – I Open water (92.89)/Ridged ice (56.92) New ice (95.16)/Ridged ice (52.34)
C – I Open water (94.45)/Brash ice (22.41) New ice (91.77)/Ridged ice (42.87)
B – C – I Open water (96.94)/Ridged ice (55.62) New ice (95.43)/Ridged ice (52.76)
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detected class was new ice with PAs in order of 92.31% 
to 96.08% (in all classification features except InSAR- 
phase feature) whereas undeformed ice was hardest 
classes to discriminate with PAs in order of 10.40% to 
37.40% (in single features) and moderately deformed 
ice was also hard to discriminate with PAs in order of 
40.53% to 50.94% (in combination features).

Based on UA calculations for ML (Table 5), the best 
detected classes were open water with UAs of 88.66% 
to 94.64% and new ice with UAs in range of 93.86 to 
93.95% whereas brash ice was hardest class to discri-
minate in four classification features with UAs in 
order of 15.78 to 51.03%. Brash ice in InSAR-phase 
feature was not discriminated as all. Moderately 
deformed ice with UAs in order of 11.46 to 48.81% 
and Undeformed ice with 2.61% were also difficult to 
discriminate. Same calculations were done for PAs 
(Table 5), open water with PAs in order of 93.09 to 
97.07% (in most classification features) and new ice 
with PAs in order of 83.09 to 94.94% were the best 
detected classes. Brash ice was not discriminated at all 
with one classification feature. Other classes particu-
larly hard to discriminate were ridged ice with PAs in 
order of 36.90 to 49.86%, undeformed ice with PAs in 
order of 48.57% to 49.35 and moderately deformed ice 
with PA of 20.37%.

Based on UA calculations for SVM (Table 6), the 
best detected class was open water with UAs of 87.84% 
to 97.72% whereas ridged ice was hardest class to 
discriminate in four classification features with UAs 
in order of 37.39 to 56.92%. Brash ice in InSAR-phase 
feature was not discriminated at all and it was low also 
in coherence-magnitude & InSAR phase combination 
(22.41%). Moderately deformed ice with UAs in order 
of 19.77% was also difficult to discriminate in back-
scatter-intensity feature. Same calculations were done 
for PAs (Table 6), new ice with PAs in order of 82.68% 
to 96.23% was the best detected class. Brash ice was 
not discriminated at all with one classification feature. 
Other classes particularly hard to discriminate were 
ridged ice with PAs in order of 42.87 to 52.76%, 
undeformed ice with PAs in order of 39.18% and 
moderately deformed ice with PA of 27.59%.

Considered approaches were partly successful in 
detecting the brash ice, but the properties of the type 
of brash ice can be found also in naturally formed ice 
regimes clearly representing something else than brash 
ices. Therefore, we suggest other methods for discrimi-
nating brash ice from the rest of the ice, e.g., by segmen-
tation and shape feature detection (Berthod et al. 1996).

4.3. Classification improvement by adding InSAR 
features

Backscatter-intensity feature is regularly used for sea 
ice classification in most ice services around the world. 

In this study, OAs of RF, ML and SVM based on 
backscatter-intensity feature were in order of 66.51, 
62.28, and 63.05%, respectively (Table 3).

Coherence-magnitude feature also had high OAs 
in three classifiers in order of 61.63, 59.67, and 
61.88%. This result proves being valuable previous 
studies regarding connection between backscatter- 
intensity and coherence-magnitude features 
(Dammert, Leppäranta, and Askne 1998; Berg, 
Dammert, and Eriksson 2015; Laanemäe, Uiboupin, 
and Rikka 2016).

InSAR-phase feature had OAs in order of 42.95% 
(RF), 50.91% (ML) and 52.62% (SVM). In our opinion, 
InSAR-phase feature could not fully reveal its value in 
contrast to backscatter-intensity and coherence- 
magnitude features. The reason is using an image with 
relatively large Height Of Ambiguity (HOA) of 30.84 m 
in this study. Too large HOAs decrease sensitivity of 
interferometry to detect sea ice roughness and ridges 
while in our case, this could aid better discrimination 
between ice types. The best option to examine in future 
would be images with smaller HOAs similar to 
“TanDEM-X Science Phase” mode (Dierking, Lang, 
and Busche 2017). Detailed discussion about 
“TanDEM-X Science Phase” mode in this context can 
be found in Section 4.4.

In this study, adding coherence-magnitude to back-
scatter-intensity feature improved classification results in 
5.92, 7.69, and 9.1% in RF, ML, and SVM classifiers, 
respectively. This improvement was obvious in backscat-
ter-intensity & InSAR-phase combination representing 
5.33%, 7.99% and 9.73% in all experiments (RF, ML, 
SVM). The strongest improvements were achieved 
when three features were combined with each other, 
and represented 6.42% in RF, 9.28% in ML and 9.86% 
in SVM.

Using InSAR features with backscatter intensity 
increased classification accuracy for moderately 
deformed ice (UA: 43.15%, PA: 13.25%) in RF, 
(UA: 51.27%, PA:32.67%) in ML and (UA: 58.45%, 
PA: 27.00%) in SVM classifiers. Increased PA 
accuracies are visible in undeformed ice (PARF 

= 26.9%, PAML = 19.56%, PASVM = 32.38%), ridged 
ice (PARF = 6.58%, PAML = 5.2%, PASVM = 7.14%) 
and thick level ice (PARF = 3.76%, PAML = 3.55%, 
PASVM = 3.66%). As it was expected, adding InSAR 
features did not add any value to open water and 
new ice classification results in comparison with 
only using backscatter intensity. Using three fea-
tures did not help to better classification of brash 
ice and as we mentioned in Section 4.1, thus, using 
other methods for discriminating brash ice from the 
rest of the ice is strongly suggested. These results 
emphasize the role of InSAR features (InSAR-phase 
and coherence magnitude features) in supporting 
sea ice operational mapping service.
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4.4. Effects of image acquisition geometry on ice 
type classification

Knowledge of the angular dependence of different ice 
types is necessary to account for automatic sea ice 
classification of SAR imagery because it is impeded 
by the incidence angle dependence of backscatter 
intensities. Several studies at C-band were considering 
the incidence angle dependence of the sea ice back-
scattering coefficient (σ°) for different ice types in 
different polarizations and sea ice conditions (Liu, 
Guo, and Zhang 2018; Zakhvatkina et al. 2013; 
Aldenhoff et al. 2020; Mäkynen et al. 2002; Brath, 
Kern, and Stammer 2013; Gill et al. 2015; Onstott 
1992; Mäkynen et al. 2014).

When the swath covers big range of incidence 
angles like Sentinel-1, the large range of incidence 
angles cause the backscatter signatures of the same 
sea ice type to vary across the swath. In this case, two 
different approaches have been used to determine the 
incidence angle dependence. One of them is direct 
slope estimation from backscatter intensity versus 
incidence angle plots. Another one is, the determina-
tion of the σ° versus θ0 dependence are based on SAR 
image pairs acquired on ascending and descending 
orbits over the same sea ice area with a short time 
difference (Aldenhoff et al. 2020) and then incidence 
angle normalization is regularly applied for various 
image classification tasks, e.g., (Lang et al. 2016; 
Zakhvatkina et al. 2017; Murashkin et al. 2018). In 
the context of this study, the influence of various 
incidence angles on backscatter intensity in 
TanDEM-X mission is not possible to assess, as our 
analysis is based on one image with relatively narrow 
swath (42.33–44.46). Acquiring multi-incidence angle 
dataset is also problematic, as sea ice situation changes 
rapidly and a dedicated campaign would be needed. 
Leppäranta, Kuittinen, and Askne (1992) mentioned 
that backscatter level as well as the ability to distin-
guish ice types is sensitive to the incidence angle, and 
thus our results are valid for the incidence angle 
around the used value. Despite this narrow swath, 
incidence angle normalization has been done as part 
of image orthorectification. In future work, effects of 
varying incidence angle on InSAR based ice classifica-
tion can be studied using either airborne SAR data, or 
potentially imagery of small-sat constellations like 
ICEYE.

Variation of incidence angle is also important in the 
coherence estimation. Laanemäe, Uiboupin, and 
Rikka (2016) shows that the best result for ice type 
discrimination over coherence feature was achieved 
when SAR images with a high incidence angles were 
chosen. Laanemäe compared two images with one day 
apart with similar meteorological conditions in inci-
dence angles 23.4º and 44.9º and showed that the 
separation of ice and different ice types from low 

incidence angle imagery was better in high incidence 
angle compare with low incidence angle. Based on 
this, we tried to choose an image with high incidence 
angle to get the best result for sea ice classification over 
coherence. Further experiments with larger dataset are 
needed to assess effects of incidence angle variation 
over coherence feature for sea ice application.

Regarding the effect of different perpendicular 
baselines, Dierking, Lang, and Busche (2017) sug-
gested having high sensitivity for object elevation 
detection. This requires image pair with a large cross- 
track baseline. In this study, we used a scene with high 
perpendicular baseline around 240.38 m with short 
along track baseline. Further studies are possible 
when collecting several InSAR pairs over the same 
area within short time interval, and again can be 
possible with airborne or small-sat SAR campaign 
only, e.g. with ICEYE satellites (Antropov et al. 2018).

4.5. Comparison with previous studies

To the best of our knowledge, a sea ice classification 
algorithm based on coherence-magnitude and back-
scatter-intensity features was used at least once before 
in the Baltic Sea, over coastal sea ice in the Gulf of Riga 
(Laanemäe, Uiboupin, and Rikka 2016). Laanemäe, 
Uiboupin, and Rikka (2016) classified open water 
and sea ice types based on the threshold values of the 
backscatter-intensity and coherence-magnitude for 
fast ice, thin smooth ice, pancake ice and open water. 
To relate the backscatter-intensity and coherence- 
magnitude values with the ice types, Regions of 
Interest (ROIs), based on field observations and opti-
cal satellite imagery, were selected to represent the 
observed different ice types and open water. Their 
case did not contain any rough ice in contrast to 
ours. The twin satellites (TanDEM-X and TerraSAR) 
were operated in the so-called pursuit monostatic 
mode with an along-track baseline of 20 km, corre-
sponding to 2.6 s time interval (Scheiber et al. 2011). 
Coherence-magnitude feature was calculated by using 
two VV and HH pursuit monostatic data and HH- 
Monostatic data were used for backscattering 
calculations.

Before proceeding with the discussion, it is good to 
mention that thin smooth ice term in previous studies 
(Laanemäe, Uiboupin, and Rikka 2016; Geldsetzer and 
Yackel 2009) and new ice in our paper essentially 
mean the same, and they are comparable even if the 
names differ. Open water and new ice (thin smooth ice 
in (Laanemäe, Uiboupin, and Rikka 2016) and thin sea 
ice in (Geldsetzer and Yackel 2009) are common sur-
face types between previous studies (Laanemäe, 
Uiboupin, and Rikka 2016; Geldsetzer and Yackel 
2009) and ours. Geldsetzer and Yackel (2009) indi-
cated that discrimination between open water and new 
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ice was very difficult due to similarity in backscatter- 
intensity values. Laanemäe, Uiboupin, and Rikka 
(2016) tried to solve this difficulty by adding coher-
ence feature to backscatter feature values, but Figure 1 
in (Laanemäe, Uiboupin, and Rikka 2016) showed that 
the same problem remained for the coherence- 
magnitude values as well. In our study, we examined 
backscatter-intensity and coherence-magnitude fea-
tures and indicated that water and new ice are well 
discriminated by backscatter-intensity and coherence- 
magnitude features. This success can be explained by 
the type of TanDEM-X data that were used in this 
study. Bistatic imaging mode would be better option 
compared to monostatic imaging mode (Laanemäe, 
Uiboupin, and Rikka 2016) in open water and new 
ice discrimination. In bistatic acquisition, wind speed 
would not cause temporal decorrelation of interfero-
metric coherence.

Open water/ice separation is one of the key ques-
tion in sea ice remote sensing. In our study, this good 
separation is not only between open water and new 
ice. It was also apparent between open water and other 
types of ice in Figure 10 by using backscatter-intensity 
and coherence-magnitude features. Although we need 
to do same work over more cases of study to evaluate 
the consistency of the classification.

InSAR-phase feature was used recently in a paper 
by Dierking, Lang, and Busche (2017) for retrieving 
the ice surface topography. Dierking used InSAR- 
phase data acquired during “TanDEM-X Science 
Phase”. Both “Standard operation” and “TanDEM-X 
Science Phase” modes were used to map topography 
and build digital elevation models. “TanDEM-X 
Science Phase” was more accurate than “Standard 
operation” due to bigger cross track baseline and 
smaller HOAs. So, it would be concluded that using 
“TanDEM-X Science Phase” mode is better and more 

accurate option to detect sea ice topography than 
“Standard operation” mode.

In this study, analysis was done using scene 
acquired in “Standard operation” mode. Standard 
operation mode has been designed for topographic 
mapping of the Earth’s land masses. Its achievable 
relative accuracies are 2–4 m vertically and 3 m hor-
izontally at a horizontal sampling of 12 m. However, 
using InSAR features even in this setup was useful for 
discriminating sea ice classes, though not to its full 
possible potential.

5. Conclusions and future research

In this study, different features of TanDEM-X imagery 
were used for assessment of sea ice classes (unde-
formed ice, ridged ice, moderately deformed ice, 
brash ice, thick level ice, new ice) and open water 
over the Baltic Sea. Three types of supervised classi-
fiers, RF, ML, and SVM algorithms were applied over 
single features and their different combinations. The 
best results were provided by combined backscatter- 
intensity & coherence-magnitude & InSAR-phase 
with OAs 72.93%, 71.56% and 72.91% in RF, ML, 
and SVM classifiers. Combined features outperformed 
single features in all sea ice classification scenarios. 
The RF algorithm seems to be more suitable approach 
than SVM and ML due to higher OAs, however, at the 
expense of somewhat longer processing time (5 min 
for RF versus 15 seconds for ML and 30 s SVM at Intel 
i5-7200 U machine).

This study also proved advantage of interferometric 
features (coherence-magnitude & InSAR-phase) in 
combination with backscatter-intensity feature over 
single backscatter-intensity feature by showing 
improvements OAs in order of 6.42% in RF, 9.28% 
in ML and 9.86% in SVM classifiers. For most of 

Figure 10. Coherence-magnitude and backscatter-intensity values of water and sea ice types for plots using pair HH-bistatic data 
for coherence-magnitude calculation and HH-bistatic data for backscatter-intensity calculations.
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separated classes, the improvement was even stronger; 
and the strongest one was moderately deformed ice 
with improvements in order of (UA: 43.15%, PA: 
13.25%) in RF, (UA: 51.27%, PA: 32.67%) in ML and 
(UA: 58.45%, PA: 27.00%) in SVM classifiers. Brash 
ice was not well discriminated by our method, so using 
other methods for discriminating brash ice from the 
rest of the ice is suggested. Also differences between 
RF with ML and SVM classifiers were remarkable for 
undeformed ice, ridged ice, moderately deformed ice 
and brash ice but were not considerable for new ice, 
thick level ice and open water classes.

This study is the first approach to thoroughly eval-
uate backscatter-intensity, coherence-magnitude and 
InSAR-phase features at X-band and their different 
combinations in sea ice classification. Previously, 
water and new ice were particularly hard to discrimi-
nate due to their similar backscattering values 
(Laanemäe, Uiboupin, and Rikka 2016; Geldsetzer 
and Yackel 2009). Even adding coherence-magnitude 
(Laanemäe, Uiboupin, and Rikka 2016) did not 
improve the discrimination between these classes, 
but this issue was successfully solved in our study. As 
our image was acquired in bistatic InSAR imaging 
mode, no temporal decorrelation affected InSAR 
coherence. Bistatic TanDEM-X data were particularly 
useful for discriminating open water and new ice. Our 
future efforts might focus on using various advanced 
texture feature extraction techniques from intensity, 
coherence and phase features to be tested with suitable 
classifiers.
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