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General introduction and aims of the thesis

Healthy early-life development and growth is of lifelong importance. The Developmental Origins 
of Health and Disease (DOHaD) hypothesis states that adverse exposures during critical periods 
of growth and development in early life lead to developmental adaption mechanisms. These 
adverse exposures may have short and long term consequences for growth, body composition 
and cardio-metabolic health in later life.1 Maternal gestational diabetes, among other early-life 
adverse exposures, has been identified as a possible risk factor that might lead to impaired 
offspring cardio-metabolic health.2 3 The studies in this thesis are specifically focused on the 
potential associations of maternal early-pregnancy glucose concentrations on maternal, fetal and 
childhood outcomes. Previous studies have mainly focused on gestational diabetes or maternal 
glucose concentrations in mid- and late-pregnancy.4-9 However, early pregnancy is a critical period 
for embryonic and placental development.10 11 Also, I was specifically interested in childhood liver 
fat development as outcome. The prevalence of childhood non-alcoholic fatty liver disease varies 
from 3% to 11% in the general population, and is increasing, in line with the global pandemic of 
childhood obesity.12-15 An accumulating body of evidence suggests that adverse early-life factors, 
including disturbed glucose concentrations, contribute to adiposity. However, prospective data 
on factors in early life in relation with liver fat accumulation are currently lacking.16-18

Maternal early-pregnancy glucose concentrations

Gestational diabetes complicates up to 25% of pregnancies, depending on the used diagnostic 
criteria and the examined population, and this prevalence continues to rise worldwide.5 19 This 
rise is partly due to the increasing prevalence of obesity among women of reproductive age and 
depends on screening tools and diagnostic criteria.5 20 21 Gestational diabetes is a major risk factor 
for maternal and fetal perinatal complications, such as miscarriage, fetal structural anomalies, 
gestational hypertensive disorders, preterm birth, caesarean delivery, large-for-gestational-age 
infants, as well as for diabetes and obesity in the offspring.4-7 9 Recent studies suggest that these 
associations are also present for higher maternal glucose concentrations below the threshold of 
gestational diabetes.22 23 A meta-analysis of 25 prospective studies showed that higher maternal 
glucose concentrations in mid- and late-pregnancy are related to increased risks of perinatal 
complications.8 Additionally, the associations are stronger among women who are overweight or 
obese at the start of pregnancy.5 20 Current clinical guidelines advise screening for pre-gestational 
diabetes among women with overweight who also have additional risk-factors.9 24 In clinical prac-
tice, the diagnosis of gestational diabetes is usually made in second half of pregnancy.

High glucose concentrations may already contribute to the risk of adverse effects on maternal, 
fetal and later offspring health before gestational diabetes and its associated complications, such 
as fetal macrosomia and polyhydramnios, become apparent.6 It is likely that women who develop 
gestational diabetes or hyperglycemia later in pregnancy already have a suboptimal glucose 
metabolism preconceptionally or in early pregnancy, a critical period for embryonic and placental 



12 Chapter 1

development.10 11 As such, an impaired glucose metabolism may already exert negative effects 
in that early stage. Fetuses of women with pre-gestational type 1 and type 2 diabetes are at 
increased risk of macrosomia at birth, but also for delayed growth during early pregnancy. This 
latter association may be due to poor glucose control already preconceptionally or very early in 
pregnancy.25-28 The role of maternal glucose metabolism in early pregnancy in relation to fetal 
development, pregnancy outcomes and birth outcomes in women without overt diabetes is not 
clear. Early pregnancy may be an important time window for the effects of suboptimal maternal 
glucose metabolism on maternal and fetal complications.6 29 Insight into the influence of ma-
ternal blood glucose concentrations from early pregnancy onwards on pregnancy outcomes is 
important, as maternal blood glucose concentrations might be a major target for potential future 
intervention strategies.

Epigenetics, more specifically DNA methylation has been suggested as a potential mechanism 
linking adverse exposures during pregnancy and impaired offspring health.30 31 Epigenetics refers 
to changes in DNA structure, without changes in the underlying DNA-sequence, that may affect 
gene expression. Known forms of epigenetics are the silencing of genes by non-coding ribonucleic 
acids (RNAs), histone modifications around which the DNA is packed, and DNA methylation.32 
DNA-methylation is the most extensively studied epigenetic process in population studies and 
it refers to the attachment of a methyl group to the DNA, mainly in places where a cytosine is 
located next to a guanine nucleotide (Cytosine phosphate Guanine (CpG) sites). This process can 
change over time through methylation and demethylation, and may be influenced by genetic, 
stochastic and environmental factors, such as smoking, maternal BMI or air pollution.33-35 The 
in utero period is a particularly sensitive period for DNA methylation changes. Previous studies 
using candidate-gene approaches, in which DNA methylation is studied on the promoter of single 
genes, suggested that maternal gestational diabetes is associated with epigenetic modifications 
in placenta and cord blood at loci relevant to growth, energy homeostasis, and diabetes mel-
litus.30 36-38 Epigenome-wide association studies (EWAS), in which DNA methylation is measured 
at hundreds of thousands of CpG sites widespread over the genome, looking into gestational 
diabetes or maternal glucose concentrations showed varying results, with no clear pattern of 
associations.19 31 39-45

Non-alcoholic fatty liver disease in children

Non-alcoholic fatty liver disease is the most common chronic liver disease in children and 
adolescents worldwide.15 46 47 Non-alcoholic fatty liver disease in children was first described 
in 1983 by Moran et al.48 In the decades since this first report, the prevalence of non-alcoholic 
fatty liver disease increased in concert with the global pandemic of obesity.13 47 49 The estimated 
prevalence in children varies from 3% to 11% in the general population and from 34% to 38% in 
obese populations, depending on population characteristics and applied diagnostic methods.12-15 
It is difficult to diagnose non-alcoholic fatty liver disease in children, due to the fact that it is a 
relatively clinically silent disease and because of the difficulty in measuring liver fat.46 The defini-
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tive diagnosis of non-alcoholic fatty liver disease relies on histologic features, with liver biopsy 
being the gold standard.13 16 50 In both children and adults non-alcoholic fatty liver disease is 
histologically defined as macrovesicular steatosis in ≥5.0% of hepatocytes in the absence of other 
known causes of fatty liver disease.50 51 Magnetic resonance imaging (MRI) enables noninvasive 
measurement of liver fat.52 53 Increased liver fat accumulation and non-alcoholic fatty liver disease 
reflect a spectrum of severity, ranging from simple liver steatosis to steatohepatitis and fibrosis, 
which can progress to cirrhosis or hepatocellular carcinoma, and eventually end-stage liver dis-
ease.15 16 Non-alcoholic fatty liver disease is a major risk factor for cardio-metabolic disease.13 47 54 55 
In adults, non-alcoholic fatty liver disease is associated with cardiovascular disease, dyslipidemia, 
type 2 diabetes, and metabolic syndrome.16 47 54 As in adults, it is suggested that children with 
non-alcoholic fatty liver disease have an increased risk for hypertension, dyslipidemia and insulin 
resistance.49 56-59 When non-alcoholic fatty liver disease presents earlier in life, affected children 
may exhibit advanced liver disease earlier in adulthood and have increased comorbidities, such 
as cardiovascular disease and metabolic syndrome.29

Early-life exposures may contribute to the development of non-alcoholic fatty liver dis-
ease.16-18 29 Infancy seems to be a critical period for the development of an altered body com-
position.60 In particular dietary patterns in infancy have been shown to track into adulthood.61 
It has been suggested that intake of glucose, fructose and fructose-containing sugars, which are 
primarily metabolized in the liver, contribute to the development not only of obesity, but also of 
liver fat accumulation and non-alcoholic fatty liver disease.61-63 The mechanisms underlying the 
observed associations of early-life factors with liver fat in children may include changes in DNA 
methylation.16 17 The growing global epidemic of obesity suggests that the prevalence of pediatric 
non-alcoholic fatty liver disease will increase further. Assessing early-life exposures like maternal 
early-pregnancy glucose concentrations and sugar-containing beverage intake in infancy and 
their relation with liver fat accumulation broadens the understanding of early-life determinants 
of non-alcoholic fatty liver disease. Furthermore, identifying and developing a set of basic clinical 
and biomarker characteristics to establish an accurate prediction tool for children at risk for non-
alcoholic fatty liver disease already in early childhood is needed. This may help to develop future 
preventive strategies aimed at improving body composition and liver health throughout the life 
course. Therefore, studies included in this thesis were designed to identify early-life exposures, 
underlying DNA methylation differences and cardio-metabolic consequences of childhood liver 
fat accumulation.

General aims

In this thesis, I first focused on the associations of maternal early–pregnancy glucose concentra-
tions with pregnancy and offspring outcomes. Second, I studied potential determinants, including 
maternal early-pregnancy glucose concentrations, and cardio-metabolic consequences of child-
hood liver fat. I specifically focused on DNA methylation as potential underlying mechanisms for 
the associations of interest.
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General design

The study population in the current thesis are the mothers and children included in the Genera-
tion R Study. This is an ongoing prospective population-based cohort study from early pregnancy 
onwards in Rotterdam, the Netherlands.64 The Generation R Study is designed to identify early 
environmental and genetic determinants of growth, development and health in fetal life and 
childhood. Pregnant women residing in Rotterdam, with an expected delivery date between April 
2002 and January 2006 were invited to enrol. In total, 9,778 women were included, of whom 
8,880 (91%) were included during pregnancy. Detailed measurements were planned in early preg-
nancy (<18 weeks of gestation), mid-pregnancy (18 – 25 weeks of gestation) and late pregnancy 
(>25 weeks of gestation) and included fetal ultrasound measurements, physical examinations, 
collection of biological samples and self-administered questionnaires. Information on perinatal 
and maternal pregnancy outcomes, including fetal growth, birth weight, gestational age at birth 
and complications of pregnancy were available.64

DNA methylation was measured in a subsample of children of European ancestry. DNA meth-
ylation was measured in these children at birth, 6 and 10 years. In the period from birth to 4 years 
of age, data collection was performed in all children by questionnaires and visits to the routine 
child health care centres. At the age of 6, 10 and 13 years, all children were invited to participate 
in detailed follow-up measurements, including body composition and cardiovascular measure-
ments. The follow-up at 17 years of age is currently ongoing.

The studies presented in this thesis used data from pregnancy, birth, infancy and the follow-up 
visits at 6 and 10 years of age. Maternal early-pregnancy glucose and insulin concentrations were 
measured in venous non-fasting blood samples once in early pregnancy. Glucose concentration 
(mmol/l) is an enzymatic quantity and was measured with c702 module on the Cobas 8000 
analyzer (Roche, Almere, the Netherlands). Insulin concentration (pmol/l) was measured with 
electrochemiluminescence immunoassay on the Cobas e411 analyzer (Roche). Childhood liver 
fat was assessed using a 3.0 Tesla MRI scanner (Discovery MR750w, GE Healthcare, Milwaukee, 
Wisconsin, United States).50 52 53 64. A liver fat scan was performed using a single-breath-hold, 3D 
volume and a special 3-point proton density weighted Dixon technique (IDEAL IQ).65 The obtained 
fat fraction maps were analyzed by the Precision Image Analysis (PIA) (Kirkland, Washington, 
United States) using the sliceOmatic (TomoVision, Magog, Canada) software package. Liver fat 
fraction was determined by taking four samples of at least 4cm2 from the central portion of the 
hepatic volume. Subsequently, the mean signal intensities were averaged to generate an overall 
mean liver fat estimation. Liver fat measured with IDEAL IQ using MRI is reproducible, highly 
precise and validated in adults.66 67

Outline of the thesis

Studies in the first part of this thesis focus on maternal early-pregnancy glucose concentrations. 
In Chapter 2.1, I studied the associations of maternal early-pregnancy glucose concentrations 
with placental hemodynamics, blood pressure and risks of gestational hypertensive disorders. In 
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Chapter 2.2, I assessed whether maternal early-pregnancy glucose concentrations are associated 
with fetal growth and birth outcomes using a longitudinal design. Subsequently, I performed an 
epigenome-wide association study on maternal early-pregnancy glucose and insulin concentra-
tions with DNA methylation in cord blood, followed by exploratory analyses with previously found 
maternal early-pregnancy glucose associated outcomes (Chapter 2.3). In Chapter 2.4, I presented 
the associations of maternal early-pregnancy glucose concentrations with childhood liver fat ac-
cumulation.

In the second part of this thesis I focus on childhood liver fat accumulation. I assessed the 
associations of environmental exposures in early life with childhood liver fat accumulation. In 
Chapter 3.1, I focused on the associations of infant sugar-containing beverage intake with child-
hood liver fat accumulation. In Chapter 3.2, I extended my approach to assess the association 
of DNA methylation with childhood liver fat accumulation. Subsequently, I evaluated the conse-
quences of childhood liver fat accumulation by studying the associations of childhood liver fat 
with cardio-metabolic risk factors at the same age in Chapter 3.3. In Chapter 3.4, I developed a 
prediction model with early-life determinants of childhood liver fat accumulation to be able to 
predict whether children are at risk for developing non-alcoholic fatty liver disease.
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Abstract

Background: Gestational diabetes is associated with increased risks of gestational hypertension 
and pre-eclampsia. We hypothesized that high maternal glucose concentrations in early preg-
nancy are associated with adverse placental adaptations and subsequently altered uteroplacental 
hemodynamics during pregnancy, predisposing to an increased risk of gestational hypertensive 
disorders.
Methods: In a population-based prospective cohort study from early pregnancy onwards, among 
6,078 pregnant women, maternal early-pregnancy non-fasting glucose concentrations were 
measured. Mid- and late pregnancy uterine and umbilical artery resistance indices were assessed 
by Doppler ultrasound. Maternal blood pressure was measured in early, mid-, and late pregnancy 
and the occurrence of gestational hypertensive disorders was assessed using hospital registries.
Results: Maternal early-pregnancy glucose concentrations were not associated with mid- or late 
pregnancy placental hemodynamic markers. A 1 mmol/l increase in maternal early-pregnancy 
glucose concentrations was associated with 0.71 mmHg (95% confidence interval 0.22–1.22) 
and 0.48 mmHg (95% confidence interval 0.10–0.86) higher systolic and diastolic blood pressure 
in early pregnancy, respectively, but not with blood pressure in later pregnancy. Also, maternal 
glucose concentrations were not associated with the risks of gestational hypertension or pre-
eclampsia.
Conclusions: Maternal early-pregnancy non-fasting glucose concentrations within the normal 
range are associated with blood pressure in early pregnancy, but do not seem to affect placental 
hemodynamics and the risks of gestational hypertensive disorders.
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Introduction

Gestational diabetes complicates up to 17% of all pregnancies and is a strong risk factor for 
gestational hypertensive disorders.1 2 In pregnant women with pre-gestational diabetes, hyper-
glycemia causes a pro-inflammatory environment and cytokine derangements, which act on 
the endothelium, and lead to placental vascular changes, whereas insulin may have a direct 
toxic effect on the placenta.3 4 Also, pregnancies complicated by obesity or gestational diabetes 
show dysregulation of metabolic, vascular, and inflammatory pathways.5,6 This dysregulation is 
characterized by increased circulating concentrations of inflammatory molecules and placental 
overexpression of genes encoding for inflammatory mediators.5 6 Studies have shown that hyper-
glycemia during pregnancy is associated with reduced invasiveness of the trophoblast, increased 
oxidative stress in the maternal and fetal milieu, disrupted vasculogenesis, and macroscopically 
and histologically altered placentae.4 7-11 Treatment of gestational diabetes has been shown to 
reduce the prevalence of pre-eclampsia.12 It is not known yet to what extent early-pregnancy 
non-fasting glucose concentrations may influence early placental adaptations, blood pressure, 
and predispose women to gestational hypertensive disorders.

We hypothesized that high maternal glucose concentrations in early pregnancy are associated 
with adverse placental adaptations and subsequently altered uteroplacental hemodynamics 
during pregnancy, predisposing to an increased risk of gestational hypertensive disorders. We 
examined in a low-risk, multi-ethnic, population-based prospective cohort study among 6,078 
pregnant women, the associations of maternal early-pregnancy non-fasting glucose concentra-
tions with placental flow measures, blood pressure throughout pregnancy, and gestational 
hypertensive disorders.

Methods

Study design

This study was embedded in the Generation R Study, a population-based prospective cohort 
study from early pregnancy onwards in Rotterdam, The Netherlands. All pregnant woman and 
their children who were living within the city of Rotterdam at the time of birth were eligible 
to participate.13 The study has been approved by the local Medical Ethical Committee (MEC 
198.782/2001/31). Written consent was obtained from all participating women. All pregnant 
women were enrolled between 2001 and 2005. Response rate at birth was 61%.14 In total, 8,879 
women were enrolled during pregnancy. For the current study, 6,869 women were eligible as they 
enrolled before 18 weeks of gestational age and had singleton live births. Women with no data 
on maternal early-pregnancy glucose metabolism or with all outcome measures missing were 
excluded (n = 763). Women with pre-gestational diabetes (n = 21) and women with unreliable 
glucose concentrations (<1 mmol/l) were excluded (n = 7). The population for analysis comprised 
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6,078 pregnant women (Figure 1). All measurements in pregnancy were performed by trained 
research assistants who were part of the study team.

Maternal glucose concentrations

Blood samples were collected once in early pregnancy at 13.2 median weeks’ gestation (95% 
range 9.6; 17.6), as described previously.15 After 30 minutes of fasting, venous blood samples 
were collected from pregnant women, by specifically trained research nurses who were part of 
the research team, and temporally stored at room temperature for a maximum of 3 hours. We 
considered the 30 minutes fasting samples non-fasting samples. This time interval was chosen 
because of the design of our study, in which it was not possible to obtain fasting samples from all 
pregnant women. At least every 3 hours, blood samples were transported to a dedicated labora-
tory facility (Star-MDC, Rotterdam, The Netherlands), for further processing and storage.16 Glu-
cose (mmol/l) is an enzymatic quantity and was measured with the c702 module on a Cobas 8000 
analyzer (Roche, Almere, The Netherlands). Insulin (pmol/l) was measured with electrochemilu-
minescence immunoassay on a Cobas e411 analyzer (Roche, Almere, The Netherlands). Quality 
control samples demonstrated intra- and interassay coefficients of variation of 1.30% and 2.50%, 
respectively. Information on pre-gestational diabetes was obtained from self-reported question-

Figure 1. Study participants flowchart

Excluded due to no data on maternal early-
pregnancy glucose metabolism available  
n = 763 
 
Excluded due to pre-gestational diabetes 
n = 21 
 
Excluded due to glucose concentrations < 1 mmol/l 
n = 7 

Total population for analysis   n = 6,078 
 
Serum measurements 
Early-pregnancy glucose measurement n = 6,078 
Early-pregnancy insulin measurement n = 6,063 
 
Uterine artery resistance index 
Mid-pregnancy    n = 2,882 
Late pregnancy    n = 2,878 
 
Blood pressure measurements 
Early pregnancy    n = 4,289 
Mid-pregnancy    n = 5,242 
Late pregnancy    n = 5,265 
 
Gestational hypertensive disorders 
Information available   n = 5,460 
 

Mothers enrolled before 18 weeks of gestational age, with 
singleton live births, eligible for the current study 

n = 6,869 
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naires and on gestational diabetes from medical records after delivery. Gestational diabetes was 
diagnosed by a community midwife or an obstetrician according to Dutch midwifery and obstetric 
guidelines using the following criteria: either a random glucose concentrations >11.0 mmol/l, a 
fasting glucose ≥7.0 mmol/l, or a fasting glucose between 6.1 and 6.9 mmol/l with a subsequent 
abnormal glucose tolerance test.17

Placenta hemodynamic characteristics

Ultrasound examinations were carried out in 2 dedicated research centers in the city of Rotterdam 
in early (median 13.2 weeks gestational age, interquartile range (IQR) 12.2; 14.9), mid- (median 
20.4 weeks gestational age, IQR 19.9; 21.1), and late pregnancy (median 30.2 weeks gestational 
age, IQR 29.9; 30.6). We established gestational age by using data from the first ultrasound ex-
amination.18 Uterine artery resistance index and umbilical artery pulsatility index were derived 
from flow velocity waveforms in mid- and late pregnancy. Standard deviation scores for uterine 
artery resistance index and umbilical artery pulsatility index were based on values from the whole 
study population and represent the equivalent of z-scores. Late pregnancy uterine artery notch-
ing was diagnosed if a notch was present uni- or bilaterally, as a result from increased blood flow 
resistance, which is a sign of placental insufficiency.19

Blood pressure and gestational hypertensive disorders

Blood pressure was measured at each pregnancy visit (median gestational age 13.2 weeks (IQR 
12.2; 14.9); 20.4 weeks (IQR 19.9; 21.1); and 30.2 weeks (IQR 29.9; 30.6)) using an Omron 907 
automated digital oscillometer sphygmomanometer (OMRON Healthcare Europe, Hoofddorp, 
The Netherlands).20 The mean value of 2 blood pressure readings over a 60-second interval was 
documented for each participant.21 Information about hypertensive disorders in pregnancy was 
obtained from medical records.16 The occurrence of hypertension and related complications were 
cross-validated using hospital registries, and defined using criteria of the International Society 
for the Study of Hypertension in Pregnancy.22 23 Gestational hypertension was defined as de novo 
hypertension alone (an absolute blood pressure 140/90 mmHg or greater), appearing after 20 
weeks gestational age. Pre-eclampsia was defined as de novo hypertension (blood pressure 
≥140/90 mmHg) after the 20th gestational week with concurrent proteinuria (0.3 g or greater in a 
24-hour urine specimen or 2+ or greater (1 g/l) on a voided specimen or 1+ or greater (0.3 g/l) on 
a catheterized specimen). Any gestational hypertensive disorder was defined as either gestational 
hypertension or pre-eclampsia.

Covariates

Maternal height (cm) and weight (kg) were measured without shoes and heavy clothing at enroll-
ment and body mass index (BMI, kg/m2) was calculated. Information about pre-pregnancy weight, 
ethnicity (European/non-European), and education (higher education yes/no) was obtained by 
questionnaire.14 Folic acid supplementation, categorized as use vs. no use, and parity, categorized 
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as nulliparous or multiparous, were obtained at enrollment by questionnaire.24 Information about 
smoking was available from questionnaires, and was classified as “yes” if the woman smoked until 
pregnancy was known and if she continued to smoke throughout pregnancy.13

Statistical analyses

First, we conducted a nonresponse analysis to compare characteristics of women with and 
without glucose measurements available. Second, we assessed the associations of maternal 
early-pregnancy non-fasting glucose concentrations continuously with mid- and late preg-
nancy uterine artery and umbilical artery resistance indices and late pregnancy uterine artery 
notching, and with blood pressure in early, mid-, and late pregnancy, using linear and logistic 
regression models. We also analyzed the longitudinal systolic and diastolic blood pressure pat-
terns in women using unbalanced repeated measurement regression models.25 These models 
take the correlation between repeated measurements of the same subject into account, and 
allow for incomplete outcome data. Using fractional polynomials of gestational age, the best-
fitting models were constructed. For presentation purposes, we constructed tertiles of maternal 
glucose concentrations for these analyses. Third, we assessed the associations of maternal 
early-pregnancy non-fasting glucose concentrations continuously with gestational hypertensive 
disorders (gestational hypertension and pre-eclampsia), using logistic regression models. For all 
analyses, we constructed different models to explore whether any association was explained by 
maternal sociodemographic and lifestyle factors. The basic model was adjusted for gestational 
age at glucose measurement; the main model was additionally adjusted for gestational age at 
assessment, maternal ethnicity, age, educational level, smoking, and folic acid supplement use; 
and the maternal BMI model was additionally adjusted for maternal pre-pregnancy BMI. Included 
covariates were based on previous studies, strong correlations with exposure and outcomes, and 
changes in effect estimates of >10%. We further tested but did not observe statistical interac-
tions between maternal pre-pregnancy BMI and maternal early-pregnancy non-fasting glucose 
concentrations for the associations with uterine and umbilical artery resistance indices and blood 
pressure. Statistical interaction terms were tested by including the term maternal pre-pregnancy 
BMI × maternal early-pregnancy non-fasting glucose concentrations in the regression model. We 
performed 3 sensitivity analyses. First, analyses were repeated using maternal early-pregnancy 
non-fasting insulin concentrations. Second, to test whether the associations of maternal early-
pregnancy non-fasting glucose concentrations with high blood pressure we excluded women with 
gestational diabetes (n = 66). Third, to test whether a cutoff effect was present, we tested for 
differences in associations with blood pressure between women in quintiles of glucose concentra-
tions, with the lowest quintile used as the reference group. We used multiple imputation for 
missing values of covariates according to Markov Chain Monte Carlo method.26 The percentage 
of missing data was <10%, except for smoking (15%) and folic acid supplement use (31.2%). Five 
imputed datasets were created and pooled for analyses. No significant differences in descriptive 
statistics were found between the original and imputed datasets. The repeated measurement 
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analysis was performed using the Statistical Analysis System version 9.4 (SAS Institute, Cary, NC), 
including the Proc Mixed module for unbalanced repeated measurements. All other analyses 
were performed using the Statistical Package of Social Sciences version 24.0 for Windows (IBM, 
Armonk, NY).

Results

Population characteristics

Population characteristics are shown in Table 1. Mean maternal early-pregnancy glucose concen-
trations were 4.4 mmol/l. In total, 64 (1.1%) women were diagnosed with gestational diabetes. 
Late pregnancy uterine artery notching occurred in 312 (10.2%) participants. Gestational hyper-
tension developed in 203 (3.8%) women and pre-eclampsia developed in 131 (2.4%) women. 
Nonresponse analyses showed that women without glucose measurements were more often 
parous, had a lower level of educational attainment, used folic acid supplementation more often, 
were more often of non-European descent, and had a higher mid-pregnancy and a lower late 
pregnancy uterine artery resistance index (Table S1). Histogram for maternal glucose concentra-
tions given in Figure S1.

Early-pregnancy glucose concentrations and placental hemodynamics

Maternal early-pregnancy glucose concentrations were not associated with mid- and late 
pregnancy uterine artery resistance indices, umbilical artery pulsatility indices, and risk of late 
pregnancy uterine artery notching (Table 2).

Early-pregnancy glucose concentrations, blood pressure, and gestational 
hypertensive disorders

Associations of maternal early-pregnancy glucose concentrations with blood pressure in early, 
mid-, and late pregnancy are shown in Table 3. A 1 mmol/l increase in maternal early-pregnancy 
glucose concentrations was associated with 0.71 mmHg (95% confidence interval 0.22; 1.22) and 
0.48 mmHg (95% confidence interval 0.10; 0.86) higher systolic and diastolic blood pressure in 
early pregnancy, respectively, but not with blood pressure in later pregnancy. Using repeated 
measurements analysis (Figure 2), we observed that tertiles of maternal early-pregnancy glucose 
concentrations were not associated with blood pressure over time (P value for interaction of 
early-pregnancy glucose concentrations with gestational age >0.05, Supplementary Table S5 
online). Also, maternal early-pregnancy glucose concentrations were not associated with the risks 
of gestational hypertensive disorders (Table 4).
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Table 1. Subject characteristics

Characteristics n = 6,078

Maternal characteristics

Age, mean (SD), years 29.8 (5.1)

Height, mean (SD), cm 167.5 (7.4)

Weight before pregnancy, mean (SD), kg 66.4 (12.7)

Body Mass Index, median (IQR), kg/m2 22.6 (20.7 to 25.4)

Parity, No. nulliparous (%) 3,458 (57.4)

Education, No. higher education (%) 2,538 (44.9)

Ethnicity

Dutch or European, No. (%) 3,558 (61.0)

Surinamese, No. (%) 503 (8.6)

Turkish, No. (%) 472 (8.1)

Moroccan, No. (%) 352 (6.0)

Cape Verdian or Dutch Antilles, No. (%) 410 (7.1)

Smoking

None, No. (%) 3,712 (72.2)

Early-pregnancy only, No. (%) 452 (8.8)

Continued, No. (%) 974 (19.0)

Folic acid use No. used (%) 2,943 (47.4)

Pre-gestational diabetes mellitus, No. (%) 0 (0)

Blood pressure, mean (SD), mmHg

Early pregnancy 115 (12.3) /68 (9.6)

Mid-pregnancy 116 (12.0) /67 (9.4)

Late pregnancy 118 (12.0) / 69 (9.4)

Mid-pregnancy uterine artery resistance index, mean (SD) 0.54 (0.09)

Late pregnancy uterine artery resistance index, mean (SD) 0.49 (0.08)

Late pregnancy uterine artery notching, No. (%) 312 (10.2)

Glucose, mean (SD), mmol/l 4.4 (0.84)

Insulin, median (IQR), pmol/l 115.1 (55.4 to 233.4)

Gestational diabetes mellitus, No. (%) 64 (1.1)

Gestational hypertension, No. (%) 203 (3.8)

Pre-eclampsia, No. (%) 131 (2.4)

Birth characteristics

Males, No.(%) 3,076 (50.6)

Gestational age at delivery, median (IQR), weeks 40.1 (39.1 to 41.0)

Preterm birth, No (%) 310 (5.1)

Birth weight, mean (SD), grams 3,417 (564)

Placenta weight, median (IQR), grams 610 (530 to 720)

Values are observed data and represent means (SD), medians (IQR) or number of subjects (valid %). Abbreviation: IQR: inter quartile 
range.
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Table 2. Associations of maternal early-pregnancy glucose concentrations with mid- and late pregnancy pla-
cental flow measures

Maternal early-pregnancy 
glucose concentrations 
(mmol/l)

Uterine artery Umbilical artery

Resistance index
(95% Confidence Interval)

Notching
(95% Confidence Interval)

Pulsatility index
(95% Confidence Interval)

Mid-pregnancy

Basic model -0.00 (-0.02 to 0.02) Not available 0.03 (-0.01 to 0.07)

Main model -0.00 (-0.05 to 0.04) Not available 0.03 (-0.01 to 0.07)

BMI model -0.02 (-0.07 to 0.03) Not available 0.02 (-0.02 to 0.06)

Late pregnancy

Basic Model -0.00 (-0.03 to 0.02) 0.96 (0.84 to 1.09) -0.02 (-0.06 to 0.01)

Main model -0.00 (-0.05 to 0.04) 0.95 (0.82 to 1.09) -0.02 (-0.06 to 0.02)

BMI model -0.03 (-0.08 to 0.02) 0.92 (0.79 to 1.08) -0.02 (-0.07 to 0.02)

Values are SDSs (95% CI) from linear regression models, reflecting differences in measures of uterine and umbilical artery flow mea-
sures, and OR (95% CI) reflecting difference in risk of late pregnancy uterine artery notching, per 1 mmol/l increase in maternal early-
pregnancy glucose concentrations (n = 4,236). Estimates are from multiple imputed data. Basic model: Adjusted for gestational age 
at glucose measurement. Main model: Gestational age at glucose measurement, gestational age at ultrasound, maternal ethnicity, 
age, parity, educational level, smoking, and folic acid supplement use. BMI model: Main model additionally adjusted for maternal 
pre-pregnancy BMI.

Table 3. Associations of maternal early-pregnancy glucose concentrations with early, mid- and late pregnancy 
blood pressure

Maternal early-pregnancy glucose 
concentrations (mmol/l)

Systolic blood pressure, 
mmHg

(95% Confidence Interval)

Diastolic blood pressure, 
mmHg

(95% Confidence Interval)

Early pregnancy

Basic model 0.37 (-0.08 to 0.81) 0.40 (0.06 to 0.75)*

Main model 0.47 (0.03 to 0.92)* 0.40 (0.06 to 0.75)*

BMI model 0.71 (0.22 to 1.22)* 0.48 (0.10 to 0.86)*

Mid-pregnancy

Basic model 0.13 (-0.30 to 0.48) -0.13 (-0.44 to 0.18)

Main model 0.19 (-0.21 to 0.59) -0.12 (-0.43 to 0.20)

BMI model 0.36 (-0.09 to 0.80) -0.02 (-0.37 to 0.33)

Late pregnancy

Basic model 0.21 (-0.18 to 0.61) 0.19 (-0.12 to 0.50)

Main model 0.25 (-0.15 to 0.65) 0.18 (-0.13 to 0.49)

BMI model 0.36 (-0.08 to 0.80) 0.24 (-0.10 to 0.59)

Values are mmHg (95% CI) from linear regression models, reflecting differences in systolic and diastolic blood pressure, per 1 mmol/l 
increase in maternal early-pregnancy glucose concentrations (n = 5,265). Estimates are from multiple imputed data. Basic model: 
Adjusted for gestational age at glucose measurement. Main model: Gestational age at glucose measurement, gestational age at blood 
pressure measurement, maternal ethnicity, age, parity, educational concentrations, smoking, and folic acid supplement use. BMI mod-
el: Main model additionally adjusted for maternal pre-pregnancy BMI. *p value < 0.05
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Figure 2. Longitudinal associations between tertiles of maternal early-pregnancy glucose concentrations and 
blood pressure
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Blood pressure patterns in different maternal early-pregnancy glucose tertiles. (a) Systolic and (b) diastolic blood pressure in different 
maternal early-pregnancy glucose tertiles (n = 6,078). Results reflect the change in mmHg in mothers with early-pregnancy glucose 
concentrations in the second (4.0-4.6 mmol/l) and third (4.6-10.3 mmol/l) tertile, compared to those with glucose levels in the first 
tertile (1.0-4.0 mmol/l). (a) Systolic blood pressure = β0 + β1 × glucose tertile + β2 × gestational age + β3 × gestational age−2 + β4 × glucose 
tertile × gestational age. (b) Diastolic blood pressure = β0 + β1 × glucose tertile + β2 × gestational age + β3 × gestational age0.5 + β4 × glu-
cose tertile × gestational age. The models were adjusted for gestational age at intake. The interaction term of maternal early-pregnancy 
glucose tertile with gestational age in weeks was not significant. Similarly, when glucose was used continuously in the models, no 
significant interaction of maternal early-pregnancy glucose concentration with gestational age in weeks was observed. Estimates are 
given in Table S5.
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Sensitivity analyses

In mid-pregnancy, higher insulin concentrations were associated with a higher umbilical artery 
pulsatility index in the basic and main model, but the association attenuated in the BMI model 
(Table S2). In the BMI model, higher early-pregnancy insulin concentrations were associated with 
a higher early-pregnancy systolic blood pressure (Table S3). We found similar results to the main 
findings when we excluded women with gestational diabetes (data not shown). Finally, no differ-
ences in associations with blood pressure between women with non-fasting glucose concentra-
tions in quintiles were observed (data not shown).

Discussion

Our findings suggest that higher maternal early-pregnancy non-fasting glucose concentrations 
are associated with higher blood pressure in early pregnancy, but no associations were present 
with blood pressure in mid- or late pregnancy. Also, maternal early-pregnancy non-fasting glucose 
concentrations were not associated with placental hemodynamics or gestational hypertensive 
disorders.

Meaning of the current study and findings

Hyperglycemia during pregnancy is associated with miscarriage, fetal structural anomalies, fetal 
macrosomia, fetal demise, preterm birth, and gestational hypertensive disorders.27 Limited evi-
dence for early-pregnancy screening for diabetes in the general population exist, although testing 
can be performed as early as the first prenatal visit if a high degree of suspicion of undiagnosed 
type 2 diabetes exists.27 Current clinical guidelines advise screening for pre-gestational diabetes 
among women with overweight and additional risk factors.27 28 In clinical practice, the diagno-
sis of gestational diabetes is usually made in second half of pregnancy. However, high glucose 
concentrations may already have contributed to risk of gestational hypertensive disorders and 

Table 4. Associations of maternal early-pregnancy glucose concentrations with the risks of gestational hyper-
tensive disorders

Maternal early-pregnancy 
glucose concentrations 
(mmol/l)

Gestational hypertension

(95% Confidence Interval)
n = 203

Pre-eclampsia

(95% Confidence Interval)
n = 131

Any gestational 
hypertensive disorder

(95% Confidence Interval)
n = 334

Basic model 1.01 (0.86 to 1.20) 0.98 (0.81 to 1.17) 0.95 (0.83 to 1.09)

Main model 1.02 (0.86 to 1.20) 0.87 (0.70 to 1.09) 0.96 (0.84 to 1.10)

BMI model 0.98 (0.82 to 1.18) 0.88 (0.69 to 1.11) 0.94 (0.81 to 1.09)

Values are ORs (95% CI) from logistic regression models, reflecting differences in risk of gestational hypertensive disorders, per 1 
mmol/l increase in maternal early-pregnancy glucose concentrations (n = 5,459). Estimates are from multiple imputed data. Basic 
model: Adjusted for gestational age at glucose measurement. Main model: Gestational age at glucose measurement, maternal ethnic-
ity, age, parity, educational level, smoking, and folic acid supplement use. BMI model: Main model additionally adjusted for maternal 
pre-pregnancy BMI.
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other adverse effects on maternal and fetal health before gestational diabetes and associated 
complications such as fetal macrosomia and polyhydramnios become apparent.28 Optimization 
of glucose regulation in the case of gestational diabetes and pre-gestational diabetes leads to a 
strong reduction of risk of gestational hypertensive disorders.29 Therefore, early pregnancy may 
be a critical period for adverse effects of increased glucose concentrations on fetal and maternal 
pregnancy outcomes. Previously we reported associations of higher maternal early-pregnancy 
non-fasting glucose concentrations with decreased fetal growth rates in mid-pregnancy and 
increased fetal growth rates from late pregnancy onwards, and an increased risk of delivering a 
large-for-gestational-age infant.15 Early placenta development may play an important role in these 
associations. Next to its adverse effects on fetal growth, inadequate placental development may 
play an important role in the development of gestational hypertensive disorders.

Early pregnancy is a critical period for optimal placenta development. In this period, trophoblast 
invasion and spiral artery remodeling takes place to ensure adequate blood flow to the placenta, 
leading to larger vessels with lower resistance and increased end-diastolic flow.30 Normally, in 
early pregnancy, cardiac output increases, peripheral vascular resistance is reduced, and blood 
pressure decreases until mid-pregnancy, returning to baseline at term.30 If these processes are 
inadequate, increased blood pressure, abnormal uterine artery Doppler’s with higher resistance 
indices and notching may be observed, and gestational hypertension or pre-eclampsia may 
develop.

Previous studies have shown that women with prediabetes defined as HbA1c of 5.7–6.4% 
in early pregnancy represent a high-risk group for development of gestational hypertensive 
disorders.31 32 It is unclear how early-pregnancy glucose concentrations across the full range 
influence placental flow measures, blood pressure, and gestational hypertensive disorders. We 
hypothesized that higher early-pregnancy non-fasting glucose concentrations negatively influ-
ence placental flow measures, blood pressure, and risk of gestational hypertensive disorders. 
Previous studies report associations of glucose concentrations with placental flow measures.33 34 
In a study among 231 pregnant women with polycystic ovarian syndrome, early-pregnancy and, 
more strongly, mid-pregnancy fasting glucose concentrations, were positively associated with an 
increased mid-pregnancy uterine artery pulsatility index.33 A retrospective study among 155 pre-
gestational diabetic women suggested a positive correlation between concentrations of HbA1c 
and increased vascular resistance in the uterine and umbilical arteries, suggesting that hypergly-
cemia may influence uterine and placental vessel endothelial function.34 In the current study in a 
low-risk healthy population, we did not observe associations of maternal early-pregnancy glucose 
concentrations with placental flow measures. The difference in results may be explained by our 
low-risk, non-diabetic population. Also, maternal glucose concentrations in early pregnancy may 
not influence placental flow measures measured later in pregnancy.

Diabetes and hypertension often occur simultaneously and show a substantial overlap in dis-
ease etiology and risk factors, such as genetics, obesity, insulin resistance, and inflammation.35-37 
Due to prolonged exposure to effects of hyperglycemia, we expected to find stronger associations 
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of maternal early-pregnancy glucose concentrations with blood pressure throughout pregnancy. 
In the current study, we observed associations of maternal early-pregnancy non-fasting glucose 
concentrations with early-pregnancy blood pressure, but not later in pregnancy. Possibly, this may 
be due to the fact that the time between the exposure and the outcome is large, and as the effect 
estimates are already small and within the normal range in early pregnancy, the effect of maternal 
early-pregnancy glucose concentrations on blood pressure in mid- or late pregnancy may not be 
detectable, or no association may present at all. Possibly, a more pronounced effect on cardiovas-
cular outcomes may be observed in the presence of sustained elevated glucose concentrations. 
It has been shown that gestational diabetes leads to a strongly increased risk of gestational hy-
pertensive disorders.1 2 Simultaneously, associations with gestational hypertensive disorders have 
not been found in women diagnosed with prediabetes in early pregnancy although these women 
are at increased risk of development of gestational diabetes.32 38 A previous prospective study 
among 4,589 healthy nulliparous women showed that even within the normal range, the plasma 
glucose concentration 1 hour after 50-g oral glucose challenge was positively correlated with 
the likelihood of pre-eclampsia.39 As parity is a strong risk factor for pre-eclampsia, the baseline 
risk of gestational hypertensive disorders among this nulliparous population may be higher. In 
the current study, we did not find associations of maternal early-pregnancy non-fasting glucose 
concentrations with risk of pre-eclampsia. This difference might be explained by differences in 
baseline risk and in glucose measurements. Future studies, using early-pregnancy fasting glucose 
concentrations or glucose concentrations obtained after a standardized oral glucose challenge, 
are needed to confirm if maternal early-pregnancy glucose concentrations are indeed associated 
with pre-eclampsia in a low-risk population. We did not observe associations of maternal early-
pregnancy glucose concentrations across the full range, with gestational hypertensive disorders. 
Findings from our study do not support strong effects of non-fasting glucose concentrations 
in early pregnancy within the normal range on the risks of gestational hypertensive disorders. 
In clinical practice, testing for pre-gestational diabetes is only recommended among high-risk 
populations.27 28 40 As pregnancy physiologically influences the glucose metabolism, future studies 
focused on pre-pregnancy glucose concentrations may shed an important light on the effects 
of glucose concentrations on blood pressure, placental flow measures, and risk of gestational 
hypertensive disorders.

Strengths and limitations

We had a prospective data collection from early pregnancy onwards and a large low-risk sample 
of 6,078 women with detailed glucose measurements, blood pressure, placental flow measures, 
and information on gestational hypertensive disorders available. The response rate at baseline 
was 61%. The nonresponse at baseline might have led to selection of a healthier population. We 
had a population with a relatively low BMI, a low mean non-fasting glucose concentration, and 
the sample contained a small number of cases of gestational diabetes, indicating selection toward 
a nondiabetic population and might affect the generalizability of our findings to higher-risk popu-
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lations in which stronger associations are expected. Blood sample collection was performed in a 
non-fasting state at different time points in the day. The minimum fasting time until blood sample 
collection was 30 minutes, due to the design of the study. The samples were therefore considered 
as non-fasting blood samples. Since glucose and insulin concentrations are sensitive toward car-
bohydrate intake and vary during the day, this may have led to non-differential misclassification 
and an underestimation of the observed effect estimates. We had no information available on 
oral glucose tolerance testing in pregnancy. although we included many covariates, there still 
might be some residual confounding, as in any observational study. Further studies are needed to 
replicate our findings using more detailed maternal glucose metabolism measurements, including 
fasting glucose concentrations and detailed postprandial glucose measurements among higher-
risk populations.

Conclusions

Maternal early-pregnancy non-fasting glucose concentrations across the full range are associated 
with blood pressure in early pregnancy, but not later in pregnancy. Also, maternal early-pregnancy 
non-fasting glucose concentrations within the normal range are not associated with placental 
flow measures and gestational hypertensive disorders.
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Supplementary Material
Table S1. Characteristics of mothers without glucose measurement available

Characteristics
Non-participants
n = 763

Participants
n = 6,078 p value*

Maternal characteristics

Age, mean (SD), years 29.5 (5.6) 29.8 (5.1) <0.01

Height, mean (SD), cm 166.7 (7.3) 167.5 (7.4) 0.63

Weight before pregnancy, mean (SD), kg 65.8 (13.6) 66.4 (12.7) 0.48

Body Mass Index, median (IQR), kg/m2 22.5 (207 to 25.2) 22.6 (20.7 to 25.4) 0.31

Parity, No. nulliparous (%) 414 (55.2) 3,458 (57.4) 0.48

Education, No. higher education (%) 269 (39.4) 2,538 (44.9) 0.02

Ethnicity <0.01

Dutch or European, No. (%) 373 (52.4) 3,558 (61.0)

Surinamese, No. (%) 71 (1.0) 503 (8.6)

Turkish, No. (%) 84 (11.8) 472 (8.1)

Moroccan, No. (%) 49 (6.9) 352 (6.0)

Cape Verdian or Dutch Antilles, No. (%) 53 (7.4) 410 (7.1)

Smoking 0.92

None, No. (%) 471 (72.9) 3,712 (72.2)

Early-pregnancy only, No. (%) 57 (8.8) 452 (8.8)

Continued, No. (%) 118 (18.3) 974 (19.0)

Folic acid use No. used (%) 380 (49.8) 2,943 (47.4) 0.03

Blood pressure, mean (SD) (mmHg)

Early pregnancy 116 (12.4) / 68 (9.8) 115 (12.3)/68 (9.6) 0.68/0.69

Mid-pregnancy 117 (12.1) / 67 (9.3) 116 (12.0)/67 (9.4) 0.35/0.82

Late pregnancy 118 (12.5) / 69 (9.0) 118 (12.0) / 69 (9.4) 0.30/0.35

Mid-pregnancy uterine artery resistance index, mean (SD) 0.55 (0.08) 0.54 (0.09) 0.04

Late pregnancy uterine artery resistance index, mean (SD) 0.48 (0.07) 0.49 (0.08) 0.04

Third trimester uterine artery notching, No. (%) 40 (10.5) 312 (10.2) 0.81

Glucose, mean (SD), mmol/l Not available 4.4 (0.84)

Insulin, median (IQR), pmol/l Not available 115.1 (55.4 to 233.4)

Gestational diabetes mellitus, No. (%) 8 (1.1) 64 (1.1) 0.99

Gestational hypertension, No. (%) 28 (4.1) 203 (3.8) 0.63

Pre-eclampsia, No. (%) 15 (2.2) 131 (2.4) 0.92

Birth characteristics

Males, No. (%) 384 (50.5) 3,076 (50.6) 0.96

Gestational age at delivery, median (IQR), weeks 40.1 (39.0 to 40.9) 40.1 (39.1 to 41.0) 0.44

Preterm birth, No. (%) 36 (4.7) 310 (5.1) 0.68

Birth weight, mean (SD), grams 3,381 (570) 3,417 (564) 0.15

Placenta weight, median (IQR), grams 630 (540 to 710) 610 (530 to 720) 0.71

Values are observed data and represent means (SD), medians (IQR) or number of subjects (valid %). *Differences in subject characteris-
tics between participants with and without glucose measurements available were evaluated using one-way ANOVA tests for continuous 
variables and chi-square tests for categorical variables. Abbreviations: IQR: inter quartile range; SD: Standard deviation.
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Table S2. Associations of maternal early-pregnancy insulin concentrations with mid- and late pregnancy pla-
cental flow measures

Uterine artery Umbilical artery

Maternal early-pregnancy 
insulin concentrations 
(SDS)

Pulsatility index
(95% Confidence 
Interval)

Resistance index
(95% Confidence 
Interval)

3rd Trimester 
notching
(95% Confidence 
Interval)

Pulsatility index
(95% Confidence 
Interval)

Mid-pregnancy

Basic model 0.00 (-0.02 to 0.02) 0.00 (-0.02 to 0.02) Not available 0.04 (0.01 to 0.07)*

Main model 0.01 (-0.03 to 0.05) 0.01 (-0.03 to 0.05) Not available 0.03 (0.00 to 0.06)*

BMI model 0.00 (-0.05 to 0.05) 0.01 (-0.04 to 0.05) Not available 0.02 (-0.02 to 0.06)

Late pregnancy

Basic model 0.02 (0.00 to 0.04) 0.01 (0.01 to 0.01) 0.97 (0.91 to 1.03) 0.02 (-0.01 to 0.05)

Main model 0.02 (-0.02 to 0.06) 0.00 (-0.03 to 0.04) 0.96 (0.85 to 1.08) 0.01 (-0.02 to 0.04)

BMI model 0.00 (-0.04 to 0.05) -0.01 (-0.06 to 0.03) 0.94 (0.82 to 1.09) -0.00 (-0.04 to 0.04)

Values are SDSs (95% CI) from linear regression models, reflecting differences in measures of uterine and umbilical artery flow mea-
sures, and OR (95% CI) reflecting difference in risk of 3rd trimester uterine artery notching, per 1 standard deviation increase in maternal 
early-pregnancy insulin concentrations (n = 4,236). Estimates are from multiple imputed data. SDS: Standard deviation score. Basic 
model: Adjusted for gestational age at insulin measurement. Main model: Gestational age at insulin measurement, gestational age 
at ultrasound, maternal ethnicity, age, parity, educational level, smoking, and folic acid supplement use. BMI model: Main model ad-
ditionally adjusted for maternal pre-pregnancy BMI. *p value <0.05.

Table S3. Associations of maternal early-pregnancy insulin concentrations with early, mid- and late pregnancy 
blood pressure

Maternal early-pregnancy insulin 
concentrations (SDS)

Systolic blood pressure, mmHg
(95% Confidence Interval)

Diastolic blood pressure, mmHg
(95% Confidence Interval)

Early pregnancy

Basic model 0.18 (-0.20 to 0.55) 0.11 (-0.18 to 0.40)

Main model 0.28 (-0.10 to 0.66) 0.16 (-0.14 to 0.45)

BMI model 0.49 (0.06 to 0.93)* 0.30 (-0.04 to 0.64)

Mid-pregnancy

Basic model 0.10 (-0.24 to 0.44) -0.11 (-0.38 to 0.16)

Main model 0.16 (-0.19 to 0.51) -0.08 (-0.36 to 0.19)

BMI model 0.24 (-0.15 to 0.64) -0.04 (-0.34 to 0.27)

Late pregnancy

Basic model 0.06 (-0.29 to 0.40) -0.06 (-0.33 to 0.21)

Main model 0.15 (-0.21 to 0.50) -0.03 (-0.31 to 0.24)

BMI model 0.16 (-0.24 to 0.56) -0.05 (-0.36 to 0.27)

Values are mmHg (95% CI) from linear regression models, reflecting differences in systolic and diastolic blood pressure, per 1 standard 
deviation increase in maternal early-pregnancy insulin concentrations (n = 5,265). Estimates are from multiple imputed data. SDS: 
Standard deviation score. Basic model: Adjusted for gestational age at insulin measurement. Main model: Gestational age at insulin 
measurement, gestational age at ultrasound, maternal ethnicity, age, parity, educational level, smoking, and folic acid supplement use. 
BMI model: Main model additionally adjusted for maternal pre-pregnancy BMI. *p value <0.05.
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Table S5. Associations of tertiles of early pregnancy glucose concentrations with longitudinally measured 
systolic and diastolic blood pressure

Difference in systolic blood pressure

Intercept
(mmHg) p value*

Slope
(mmHg) p value*

Intercept 111.55 <0.01

Glucose lowest tertile Reference

Glucose middle tertile 0.50 0.44

Glucose highest tertile -0.14 0.82

Gestational age in weeks 0.20 <0.01

Glucose lowest tertile * gestational age (weeks) Reference

Glucose middle tertile * gestational age (weeks) -0.01 0.84

Glucose highest tertile * gestational age (weeks) 0.03 0.31

Ga_2 138.19 0.05

Difference in diastolic blood pressure

Intercept
(mmHg) p value*

Slope
(mmHg) p value*

Intercept 93.74 <0.01

Glucose lowest tertile Reference

Glucose middle tertile 0.22 0.67

Glucose highest tertile 0.14 0.78

Gestational age in weeks 1.39 <0.01

Glucose lowest tertile * gestational age (weeks) Reference

Glucose middle tertile * gestational age (weeks) -0.01 0.67

Glucose highest tertile * gestational age (weeks) 0.001 0.93

GA05 -12.19 <0.01

Values are based on repeated non-linear regression models and reflect the change in blood pressure per tertile increase in early-
pregnancy glucose concentration (n = 5,265). *p value reflects the significance level of the estimate.

Table S4. Associations of maternal early-pregnancy insulin concentrations with the risks of gestational hyper-
tensive disorders

Maternal early-pregnancy 
insulin concentrations 
(SDS)

Gestational hypertension
(95% Confidence Interval)
n = 104

Pre-eclampsia
(95% Confidence Interval)
n = 133

Any gestational 
hypertensive disorder
(95% Confidence Interval)
n = 334

Basic model 0.87 (0.73 to 1.02) 0.94 (0.77 to 1.13) 0.89 (0.78 to 1.01)

Main model 0.89 (0.75 to 1.06) 0.93 (0.77 to 1.14) 0.91 (0.79 to 1.03)

BMI model 0.86 (0.71 to 1.04) 0.94 (0.75 to 1.18) 0.89 (0.77 to 1.03)

Values are ORs (95% CI) from logistic regression models, reflecting differences in risk of gestational hypertensive disorders, per 1 stan-
dard deviation increase in maternal early-pregnancy insulin concentrations (n = 5,427). Estimates are from multiple imputed data. SDS: 
Standard deviation score. Basic model: Adjusted for gestational age at glucose measurement. Main model: Gestational age at glucose 
measurement, maternal ethnicity, age, parity, educational level, smoking, and folic acid supplement use. BMI model: Main model ad-
ditionally adjusted for maternal pre-pregnancy BMI.
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Figure S1. Maternal early-pregnancy glucose concentrations
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Abstract

Background: The study aimed to assess the associations of maternal early-pregnancy blood 
glucose concentrations with fetal growth throughout pregnancy and the risks of adverse birth 
outcomes.
Methods: In a population-based prospective cohort study among 6,116 pregnant women, mater-
nal non-fasting glucose concentrations were measured in blood plasma at a median 13.2 weeks 
of gestation (95% range 9.6–17.6). We measured fetal growth by ultrasound in each pregnancy 
period. We obtained information about birth outcomes from medical records and maternal so-
ciodemographic and lifestyle factors from questionnaires.
Results: Higher maternal early-pregnancy non-fasting glucose concentrations were associated 
with altered fetal growth patterns, characterised by decreased fetal growth rates in mid-preg-
nancy and increased fetal growth rates from late pregnancy onwards, resulting in an increased 
length and weight at birth (p values ≤0.05). A weaker association of maternal early-pregnancy 
non-fasting glucose concentrations with fetal head circumference growth rates was present. 
Higher maternal early-pregnancy non-fasting glucose concentrations were also associated with 
an increased risk of delivering a large-for-gestational-age infant, but decreased risk of delivering 
a small-for-gestational-age infant (OR 1.28 [95% CI 1.16, 1.41], OR 0.88 [95% CI 0.79, 0.98] per 
mmol/l increase in maternal early-pregnancy non-fasting glucose concentrations, respectively). 
These associations were not explained by maternal sociodemographic factors, lifestyle factors or 
body mass index. Maternal early-pregnancy non-fasting glucose concentrations were not associ-
ated with preterm birth or delivery complications.
Conclusions: Higher maternal early-pregnancy non-fasting glucose concentrations are associated 
with decreased fetal growth rates in mid-pregnancy and increased fetal growth rates from late 
pregnancy onwards, and an increased risk of delivering a large-for-gestational-age infant. Future 
preventive strategies need to focus on screening for an impaired maternal glucose metabolism 
from preconception and early pregnancy onwards to improve birth outcomes.
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Introduction

Gestational diabetes complicates up to 17% of pregnancies and is a major risk factor for maternal 
and fetal perinatal complications.1-3 Recent studies suggest that these associations are also pres-
ent for higher maternal glucose concentrations below the threshold of gestational diabetes.4-6 
A meta-analysis of 25 prospective studies showed that higher maternal glucose concentrations 
in mid-pregnancy and late pregnancy are related to increased risks of perinatal complications.7

Accumulating evidence suggests that early pregnancy is a critical period for the effects of 
adverse exposures on embryonic and placental development.8 9 Little is known, however, about 
the direct effects of an impaired maternal glucose metabolism from early pregnancy onwards 
on fetal growth and the risks of adverse birth outcomes in both diabetic and non-diabetic preg-
nant women.3 Among women with gestational diabetes, fetal growth may already be abnormal 
preceding this diagnosis. However, results are inconsistent and difficult to interpret as maternal 
glucose concentrations before the diagnosis of gestational diabetes are unknown.10 11 We hypoth-
esised that a maternal glucose metabolism already impaired in early pregnancy affects embryonic 
and placental development, subsequently leading to altered fetal growth and increased risks of 
adverse birth outcomes.2 3 12 13 Insight into the influence of maternal blood glucose concentrations 
from early pregnancy onwards on fetal development is important, as maternal blood glucose 
concentrations offer a major target for potential future interventions.

Therefore, in a population-based prospective cohort study among 6,116 pregnant women, 
we examined whether maternal early-pregnancy non-fasting glucose concentrations across the 
full range, and not limited to diagnostic thresholds, are associated with fetal growth in each 
pregnancy period and with the risks of adverse birth outcomes. To obtain further insight into 
the causality of these associations, we additionally explored whether these associations are 
explained by maternal sociodemographic factors or lifestyle factors.

Methods

Study design

This study was embedded in the Generation R Study, a population-based prospective cohort study 
from early pregnancy onwards in Rotterdam, the Netherlands.14 The study has been approved by 
the local Medical Ethical Committee (MEC 198.782/2001/31). Written informed consent was ob-
tained from all participating women. All pregnant women, who were resident in the study area at 
their delivery date, were enrolled between 2001 and 2005. Translated information packages and 
questionnaires were available for recruitment of different ethnicities. The enrolment procedure 
has been described in detail previously.15 Response rate at birth was 61%.16 In total, 8,879 women 
were enrolled during pregnancy, of whom 6,186 had measurements of glucose concentrations 
available. We excluded pregnancies not leading to singleton live births (n = 70). The population for 
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analyses comprised 6,116 women (Figure 1). Information on pre-gestational diabetes was avail-
able, and to the low number (n = 24) women with pre-gestational diabetes were included in the 
analyses. A sensitivity analysis excluding women with pre-gestational diabetes was performed.

Figure 1. Study participants flowchart
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mothers prenatally enrolled in study 
n = 8,879 

Excluded due to no data on singleton live birth 
pregnancy outcome 
n = 70 
 

 

Excluded due to no data on maternal early-
pregnancy maternal glucose metabolism 
n = 2,693  

Mothers with information on early-pregnancy 
maternal glucose metabolism available  
n = 6,186 

Total population for analysis n = 6,116 

    

Second trimester fetal growth  

Head circumference  n = 5,873 

Abdominal circumference  n = 5,886 

Femur length    n = 5,886 

Estimated fetal weight   n = 5862 

 

Third trimester fetal growth  

Head circumference  n = 5,848 

Abdominal circumference  n = 5,878 

Femur length    n = 5,890  

Estimated fetal weight   n = 5869 

 

Birth outcomes 

Head circumference at birth n = 3,350 

Length at birth    n = 3,927 

Weight at birth    n = 6,078 
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Maternal glucose metabolism

Blood samples were collected once in early pregnancy at 13.2 median weeks’ gestation (95% 
range 9.6–17.6). After 30 minutes of fasting, venous blood samples were collected from preg-
nant women by research nurses and temporally stored at room temperature. We consider the 
30 minutes fasting samples non-fasting samples. This time-interval was chosen because of the 
design of our study, in which it was not possible to obtain fasting samples from all pregnant 
women. At least every 3 hours, blood samples were transported to a dedicated laboratory facility 
of the regional laboratory in Rotterdam, the Netherlands (Star-MDC), for further processing and 
storage.17 Glucose (mmol/l) is an enzymatic quantity and was measured with the c702 module on 
a Cobas 8000 analyser. Insulin (pmol/l) was measured with electrochemiluminescence immuno-
assay on a Cobas e411 analyser. Quality control samples demonstrated intra- and inter-assay CVs 
of 1.30% and 2.50%, respectively. We constructed maternal early-pregnancy non-fasting glucose 
and insulin SD scores (SDSs).

Information on pre-gestational diabetes was obtained from self-reported questionnaires and 
on gestational diabetes from medical records after delivery. Gestational diabetes was diagnosed 
by a community midwife or an obstetrician according to Dutch midwifery and obstetric guidelines 
using the following criteria: either a random glucose concentration >11.0 mmol/l, a fasting glu-
cose ≥7.0 mmol/l or a fasting glucose between 6.1 and 6.9 mmol/l with a subsequent abnormal 
glucose tolerance test.18 In clinical practice and for this study sample, an abnormal glucose toler-
ance test was defined as a glucose concentration greater than 7.8 mmol/l after glucose intake.

Fetal growth patterns and adverse birth outcomes

Fetal ultrasound examinations were carried out in two dedicated research centres in early 
pregnancy (13.2 median weeks’ gestation [95% range 9.6–17.6]), mid-pregnancy (20.5 median 
weeks’ gestation [95% range 18.7–23.1]) and late pregnancy (30.3 median weeks’ gestation [95% 
range 28.5–32.8]). In early pregnancy we used crown–rump length to assess fetal growth only 
in mothers with a known and reliable first day of the last menstrual period, a regular menstrual 
cycle of 28 days (range 24–32 days) and who had fetal crown–rump length measured between 
a gestational age of 10 weeks 0 days and 13 weeks 6 days (n = 1470), as described previously.19 
The first day of the last menstrual period was obtained from the referring letter from the com-
munity midwife or hospital. This date was confirmed with the participants at the ultrasound visit 
and additional information on the regularity and duration of the menstrual cycle was obtained.19 
For mothers without this information, gestational age was established by early-pregnancy fetal 
ultrasound examination. This strategy was performed because of the large number of mothers 
who did not know the exact date of their last menstrual period or who had irregular menstrual 
cycles.20 Subsequently, in mid-pregnancy and late pregnancy, we measured fetal head circumfer-
ence, abdominal circumference and femur length to the nearest millimetre using standardised 
ultrasound procedures. Estimated fetal weight was subsequently calculated using the formula of 
Hadlock et al.21 Longitudinal growth curves and gestational-age-adjusted SDSs were constructed 
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for all fetal biometry measurements.20 These gestational-age-adjusted SDSs were based on refer-
ence growth curves from the whole study population and represent the equivalent of z scores.20

Information about offspring sex, gestational age, weight, length and head circumference at 
birth was obtained from medical records.14 Since head circumference and length were not rou-
tinely measured at birth, fewer measurements were available (n = 3350 for head circumference 
and n = 3927 for length at birth). Gestational-age-adjusted SDSs for head circumference, length 
and weight at birth were constructed using North European growth standards as the reference 
growth curve and represent the equivalent of z scores.22 Small-for-gestational-age and large-
for-gestational-age at birth were defined as the lowest and highest 10 percentiles of gestational 
age- and sex-adjusted birthweight using North European growth standards.22 Preterm birth was 
defined as a gestational age at birth <37 weeks. Information on delivery complications, Caesarean 
delivery and vacuum extraction, was collected from medical records.

Covariates

Information on maternal age, pre-pregnancy weight, educational level, ethnicity, parity and folic 
acid supplements use was obtained at enrolment by questionnaires.14 Height and weight, both 
without shoes and heavy clothing, were measured at enrolment. Pre-pregnancy body mass index 
was calculated (self-reported pre-pregnancy weight in kilograms divided by height measured at 
first study visit in metres squared). Information about smoking and alcohol consumption was as-
sessed by questionnaires. We dichotomised both variables; women were classified as ‘yes’ when 
having consumed until pregnancy was known and when they continued to consume throughout 
pregnancy. Information on total daily energy intake was obtained by a food frequency question-
naire in early pregnancy.14

Statistical analysis

First, we conducted a non-response analysis to compare characteristics of women with and 
without glucose measurements available. Normal distributed data were presented in mean with 
standard deviation, non-normal distributed data were presented in median with 95% range (i.e. 
the 2.5th to 97.5th percentile).

Second, we assessed the associations of maternal early-pregnancy non-fasting glucose concen-
trations with repeatedly measured fetal biometry measurements to assess fetal growth patterns 
using unbalanced repeated measurement regression models. These models take the correlation 
between repeated measurements of the same individual into account and allow for incomplete 
outcome data.23 We included maternal early-pregnancy non-fasting glucose concentrations in 
these models as intercept and as interaction term with gestational age to estimate fetal growth 
rates over time.23 These analyses were conducted without adjustment for covariates, which most 
clearly reflects clinical practice.7

Third, we examined the associations of maternal early-pregnancy non-fasting glucose con-
centrations with detailed fetal biometry measurements in gestational-age-adjusted SDS in each 
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pregnancy period using linear regression models. Analyses were repeated using fetal biometry 
measurements in absolute values. For these analyses, we constructed different models to explore 
whether these observed associations were explained by maternal sociodemographic and lifestyle 
factors: a basic model (adjusted for gestational age at assessment), a maternal ethnicity model 
(basic model additionally adjusted for ethnicity), a maternal pregnancy-related factors model 
(maternal ethnicity model additionally adjusted for maternal age, parity, educational level, daily 
total energy intake, smoking, alcohol consumption and folic acid supplement use) and a maternal 
BMI model (maternal pregnancy-related factors model additionally adjusted for maternal pre-
pregnancy BMI). Included covariates were based on previous studies, strong correlations with 
maternal glucose concentrations, risk of gestational diabetes and fetal biometry measurements, 
and changes in effect estimates of >10%.2 3

Fourth, we assessed the associations of maternal early-pregnancy non-fasting glucose concen-
trations with the risks of adverse birth outcomes using multiple logistic regression models using 
the same adjustment models. We explored whether associations were non-linear by performing 
quintiles analyses and adding a quadratic term to the original model. However, for all analyses, a 
linear model had the best fit. Since only seven women had glucose concentrations of >7.8 mmol/l 
and only 62 women developed gestational diabetes, we were unable to explore the effects of 
these clinical categories on fetal growth and adverse birth outcomes. We tested but did not 
observe statistical interactions between maternal ethnicity or pre-pregnancy BMI and maternal 
early-pregnancy non-fasting glucose concentrations for the associations with fetal biometry 
measurements and with adverse birth outcomes.2 3 10 11

As a sensitivity analysis, analyses were repeated using maternal early-pregnancy non-fasting 
insulin concentrations. To enable comparison of effect sizes for the associations of different mea-
sures of maternal early-pregnancy glucose metabolism with fetal growth and birth outcomes, 
these sensitivity analyses were performed using maternal early-pregnancy non-fasting glucose 
and insulin concentrations in SDSs. In addition, we explored whether our observed associations 
were affected by specific subgroups. We performed five additional sensitivity analyses for the 
associations of maternal early-pregnancy non-fasting glucose concentrations with fetal biometry 
measurements in each pregnancy period: (1) excluding women with pre-gestational diabetes (n = 
24); (2) excluding women with gestational diabetes (n = 62); (3) among women of Dutch ethnicity 
only; (4) among women included in early pregnancy only (before 14 weeks’ gestation); and (5) 
among term births only.

Missing data of covariates were imputed using multiple imputation. Five imputed datasets 
were created and analysed together. Repeated measurement analyses were performed using 
the Statistical Analysis System version 9.4 (SAS Institute, Cary, NC, USA; Proc Mixed module). All 
other analyses were performed using the Statistical Package of Social Sciences version 24.0 for 
Windows (SPSS, Chicago, IL, USA).
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Table 1. Subject characteristics

Characteristics Total group
n = 6,116

Maternal characteristics

Age, years 29.8 ± 5.1

Height, cm 167.5 ± 7.4

Pre-pregnancy weight, kg 64.0 (48.0–99.7)

Pre-pregnancy BMI, kg/m2 22.6 (18.0–34.7)

Gestational age at intake, weeks 13.2 (9.6–17.6)

Parity (nulliparous) 3474 (57.3)

Ethnicity

Dutch 3083 (52.2)

European 496 (8.4)

Cape Verdean 245 (4.2)

Moroccan 353 (6.0)

Dutch Antillean 171 (2.9)

Surinamese 506 (8.6)

Turkish 474 (8.1)

Other 545 (9.3)

Education, higher 2550 (44.9)

Total energy intake, kJ 486 (134)

Folic acid use

No 1183 (25.3)

Start first 10 weeks 1491 (31.9)

Start periconceptional 1997 (42.8)

Smoking during pregnancy, continued 1012 (18.6)

Alcohol use during pregnancy, continued 2095 (39.0)

Gestational hypertensive disorders

Pre-eclampsia 127 (2.2)

Gestational hypertension 234 (4.1)

Glucose, mmol/l 4.4 ± 0.8

Insulin, pmol/l 114.6 (17.6–716.1)

Impaired glucose tolerance at intakea 17 (0.3)

Pre-gestational diabetes 24 (0.5)

Gestational diabetes 62 (1.1)

Birth characteristics

Male 3100 (50.7)

Gestational age, weeks 40.1 (35.6–42.3)

Preterm birthb 310 (5.1)

Small for gestational agec 606 (10.0)

Large for gestational aged 606 (10.0)

Caesarean delivery 692 (14.5)

Vacuum extraction 774 (15.9)

Values are numbers (%), means ± SD or medians (95% range). aImpaired glucose tolerance at intake is defined as >7.8 mmol/l in non-
fasting state. bPreterm birth is defined as <37 weeks’ gestation. cSmall for gestational age is defined as <10th percentile of age- and 
sex-adjusted birthweight. dLarge for gestational age is defined as >90th percentile of age- and sex-adjusted birthweight.
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Results

Population characteristics are shown in Table 1. Fetal growth characteristics of the study popula-
tion are shown in Table 2. Non-response analyses showed that women without glucose measure-
ments had a higher BMI, had a lower level of educational attainment, were of non-European 
descent and used folic acid supplements less often (Table S1).

Maternal blood glucose concentrations and fetal growth

Figure 2 shows that higher maternal early-pregnancy non-fasting glucose concentrations were 
associated with increased rates of fetal length and weight growth from late pregnancy onwards, 
resulting in increased length and weight at birth (p value for interaction with gestational age 
<0.05). Weaker effect estimates were observed for the associations of maternal early-pregnancy 
non-fasting glucose concentrations with rate of fetal head circumference growth, but a significant 
interaction with gestational age was also present (p value for interaction with gestational age 
<0.05).

Figure 3 shows that maternal early-pregnancy non-fasting glucose concentrations were not 
significantly associated with early-pregnancy fetal crown–rump length. Higher maternal early-
pregnancy non-fasting glucose concentrations were associated with decreased mid-pregnancy 

Table 2. Fetal growth characteristics of the study population

Fetal growth characteristics Total group
n = 6,116

Mid-pregnancy

Gestational age, weeks 20.5 (18.7–23.1)

Head circumference, mm 179 ± 13.3

Abdominal circumference, mm 156 ± 13.7

Femur length, mm 33 ± 3.3

Estimated fetal weight, g 377 ± 83.9

Late pregnancy

Gestational age, weeks 30.3 (28.5–32.8)

Head circumference, mm 285 ± 12.2

Abdominal circumference, mm 264 ± 16.3

Femur length, mm 57 ± 8.7

Estimated fetal weight, g 1611 ± 251.0

Birth

Gestational age, weeks 40.1 (35.6–42.3)

Birth head circumference, cm 33.8 ± 1.7

Birth length, cm 50.2 ± 2.4

Birthweight, g 3418 ± 563

Values are means ± SD or medians (95% range).



54 Chapter 2.2

fetal head circumference SDS and abdominal circumference SDS (p values ≤0.05). The asso-
ciati on of higher maternal early-pregnancy non-fasti ng glucose concentrati ons with decreased 
mid-pregnancy esti mated fetal weight SDS did not reach stati sti cal signifi cance (p value 0.10). 
No associati on with mid-pregnancy femur length was present. However, higher maternal 
early-pregnancy non-fasti ng glucose concentrati ons were associated with increased fetal head 
circumference SDS, abdominal circumference SDS, femur length SDS and esti mated fetal weight 
SDS in late pregnancy, and head circumference SDS, length SDS and weight SDS at birth (p values 
≤0.05). These associati ons were not explained by adjustment for maternal ethnicity, or other 
maternal pregnancy-related factors, but were partly att enuated aft er adjustment for maternal 
pre-pregnancy BMI (maternal ethnicity-adjusted model is given in table s2). The strongest eff ect 
esti mate was present for birthweight (diff erence in birthweight in the maternal pregnancy-related 
model: 0.07 SDS [95% CI 0.04, 0.10] per mmol/l increase in maternal early-pregnancy non-fasti ng 
glucose concentrati ons; p value ≤0.05). The associati ons of maternal early-pregnancy non-fasti ng 
glucose concentrati ons with absolute values of fetal biometry measurements are given in table 
s3 and showed similar fi ndings to the main fi ndings. Per 1 mmol/l increase in maternal early-
pregnancy non-fasti ng glucose concentrati ons, birthweight increased by 25.4 g (95% CI 9.0, 41.8) 
in the maternal pregnancy-related model (p value ≤0.05).

Figure 2. Diff erences in fetal growth rates per change in maternal early-pregnancy glucose concentrati ons

Data are SDS values (95% CI) from repeated measurement regression models that refl ect the diff erences in gestati onal age-adjusted 
growth rates in SDS of head circumference (circles), length (triangles) and weight (squares) at mid-pregnancy, late pregnancy and at 
birth per 1 mmol/l change in maternal early-pregnancy glucose concentrati ons. As a measure of skeletal length growth from mid-
pregnancy onwards, we used fetal femur length SDS in mid-pregnancy and late pregnancy and total body length SDS at birth within the 
repeated measurements model. All fetal biometry measurements for each pregnancy period were taken at the same ti me point. The 
models were adjusted for gestati onal age at intake. p value <0.05 for interacti on with gestati onal age for all models.
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Impact of maternal early-pregnancy blood glucose concentrations on adverse birth 
outcomes

Independent of maternal sociodemographic or lifestyle factors, higher maternal early-pregnancy 
non-fasting glucose concentrations were associated with an increased risk of delivering a large-
for-gestational-age infant, but with a decreased risk of delivering a small-for-gestational-age 
infant (ORs 1.28 [95% CI 1.16, 1.41] and 0.88 [95% CI 0.79, 0.98] per mmol/l increase in maternal 
early-pregnancy non-fasting glucose concentrations in the maternal pregnancy-related model 
(p value ≤0.05), respectively) (Table 3, and maternal ethnicity-adjusted model is given in Table 
S4). No significant associations were present for maternal early-pregnancy non-fasting glucose 
concentrations with preterm birth, Caesarean delivery or vacuum extraction.

Figure 3. Associations of maternal early-pregnancy glucose concentrations in mmol/l with fetal biometry 
measurements

 
Data are SDS values (95% CI) from linear regression models that reflect the differences in growth characteristics in SDSs in (a) early 
pregnancy, (b) mid-pregnancy, (c) late pregnancy and (d) at birth, per 1 mmol/l change in maternal early-pregnancy glucose concentra-
tions (n = 6,116). Analyses with crown–rump length were based on subgroup analyses (n = 1,470). Estimates are from multiple imputed 
data. Squares show basic model: adjusted for gestational age at assessment. Circles show maternal pregnancy-related factors model: 
basic model additionally adjusted for maternal ethnicity, age, parity, educational level, daily total energy intake, smoking, alcohol con-
sumption and folic acid supplement use. Triangles show BMI model: maternal pregnancy-related factors model additionally adjusted 
for maternal pre-pregnancy BMI.



56 Chapter 2.2

Sensitivity analyses

The sensitivity analyses using maternal early-pregnancy non-fasting insulin concentrations, 
instead of maternal early-pregnancy non-fasting glucose concentrations, showed that maternal 
early-pregnancy non-fasting insulin concentrations were largely similarly associated with fetal 
growth rates and fetal biometry measurements in each pregnancy period (Table S5, Figure S1 and 
S2). Based on comparison of the effect estimates per SDS increase in maternal early-pregnancy 
non-fasting glucose and insulin concentrations, the strength of the associations with fetal biom-
etry measurements was also largely the same. Similar results to the main findings were found 
when we excluded women with pre-gestational diabetes or gestational diabetes and when we 
restricted our analyses to women of Dutch ethnicity only, women included in early pregnancy 
only and among term births only (Table S6).

Discussion

We observed that maternal early-pregnancy blood glucose concentrations across the full spec-
trum are associated with altered fetal growth patterns, characterised by decreased fetal growth 
rates in mid-pregnancy and increased fetal growth rates from late pregnancy onwards, and an 
increased risk of delivering a large-for-gestational-age infant. These associations were only partly 
explained by maternal pre-pregnancy BMI, and not by other maternal pregnancy-related factors.

Interpretation of main findings

Maternal gestational diabetes and hyperglycemia diagnosed in the second half of pregnancy are 
common and major risk factors for adverse birth outcomes. It is likely that women who develop 
gestational diabetes or hyperglycemia later in pregnancy already have a suboptimal glucose 
metabolism preconceptionally or in early pregnancy, a critical period for embryonic and placental 

Table 3. Associations of maternal early-pregnancy glucose concentrations with the risks of adverse birth out-
comes

Maternal early-
pregnancy glucose 
concentrations 
(mmol/l)

Small-for-
gestational-age 
at birth

Large-for-
gestational-age 
at birth

Preterm birth Caesarean 
delivery

Vacuum 
extraction

Basic model 0.89 (0.80, 0.98)* 1.27 (1.16, 1.40)* 1.08 (0.95, 1.24) 1.12 (0.98, 1.27) 0.99 (0.90, 1.09)

Maternal pregnancy-
related factors model

0.88 (0.79, 0.98)* 1.28 (1.16, 1.41)* 1.08 (0.94, 1.23) 1.11 (1.00, 1.23) 1.01 (0.91, 1.12)

BMI model 0.91 (0.82, 1.02) 1.21 (1.10, 1.34)* 1.06 (0.92, 1.21) 1.09 (0.99, 1.20) 1.01 (0.90, 1.12)

Values are ORs (95% CI) from logistic regression models that reflect the differences in risks of adverse birth outcomes per 1 mmol/l 
increase in maternal early-pregnancy glucose concentrations. Estimates are from multiple imputed data. Basic model adjusted for ges-
tational age at assessment. Maternal pregnancy-related factors model: basic model additionally adjusted for maternal ethnicity, age, 
parity, educational level, daily total energy intake, smoking, alcohol consumption and folic acid supplement use. BMI model: maternal 
pregnancy-related factors model, additionally adjusted for maternal pre-pregnancy BMI. *p value <0.05.
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development.10 11 Despite well-known associations of maternal gestational diabetes with adverse 
birth outcomes, direct effects of a disturbed maternal glucose metabolism from early pregnancy 
onwards on fetal growth remain unclear. Fetuses of women with pre-gestational type 1 and type 
2 diabetes are at increased risk for macrosomia at birth, but also for delayed growth during early 
pregnancy. This latter association may be due to poor glucose control already preconceptionally 
or very early in pregnancy.24-27 The role of maternal glucose metabolism in early pregnancy in 
relation to fetal development and birth outcomes is not clear in women without overt diabetes.

Among women with gestational diabetes, it has been suggested that fetal growth is already 
abnormal preceding the diagnosis of gestational diabetes. Results from a cohort study among 533 
women showed that, compared with those without gestational diabetes, those with gestational 
diabetes had smaller fetuses until 24 weeks of gestation, followed by accelerated fetal growth 
in late pregnancy.11 A study among 4,069 pregnant women showed that fetuses of women with 
gestational diabetes had increased abdominal circumference growth rates between 20 and 28 
weeks of gestation, with the strongest effects among women with obesity.10 Similarly, a prospec-
tive study among 741 black African women showed increased fetal abdominal circumference 
growth rates from mid-pregnancy onwards in women with gestational diabetes compared with 
those without gestational diabetes.28 As maternal glucose concentrations before the diagnosis of 
gestational diabetes were not known in these studies, these findings are difficult to interpret in 
the context of the present study results. We observed that among non-diabetic women, higher 
maternal early-pregnancy non-fasting glucose concentrations across the full range were associ-
ated with decreased fetal growth rates in mid-pregnancy and increased fetal growth rates from 
late pregnancy onwards resulting in larger size at birth. These associations were independent of 
maternal ethnicity, a well-known risk factor for gestational diabetes and an important determi-
nant for fetal growth. Also, other maternal pregnancy-related factors, including pre-pregnancy 
BMI, did not explain the observed associations. When we assessed each pregnancy period 
separately, we also observed that higher maternal early-pregnancy non-fasting glucose concen-
trations tended to be associated with smaller fetal biometry measurements in early pregnancy 
and mid-pregnancy, although for some measurements there was no significant association. Thus, 
our results suggest that already among non-diabetic women, higher maternal early-pregnancy 
non-fasting glucose concentrations within the normal range are related to altered fetal growth 
patterns, characterised by decreased fetal growth rates in mid-pregnancy and increased fetal 
growth rates from late pregnancy onwards. The presence of associations for all fetal biometry 
measurements suggests that maternal early-pregnancy non-fasting glucose concentrations affect 
both fetal fat development and skeletal growth.

Impaired maternal gestational glucose metabolism is a major risk factor for delivering a large-
for-gestational-age infant, preterm birth and Caesarean delivery, with even stronger effects 
among women with overweight and obesity.2 7 29-32 A retrospective study among more than 6,000 
women showed that higher maternal glucose concentrations at 9.5 weeks’ gestation were associ-
ated with an increased risk of delivering a large-for-gestational-age infant.3 A case–control study 
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among 2,050 women with term deliveries observed an association of maternal early-pregnancy 
glucose concentrations with delivering large-for-gestational-age infants, independent of maternal 
BMI.31 A large cohort among 46,000 women showed that higher maternal glucose concentrations 
between 10 and 24 weeks of gestation were associated with an increased risk of spontaneous pre-
term birth.33 We observed that already a small increase in maternal early- pregnancy non-fasting 
glucose concentrations within the normal range was related to an increased risk of delivering 
a large-for-gestational-age infant, but a decreased risk of delivering a small-for-gestational-age 
infant. These associations were independent of maternal pre-pregnancy BMI. BMI is a measure of 
general adiposity, but does not provide any information on more specific fat compartments, such 
as visceral fat mass. Alterations in maternal visceral fat mass, which is more metabolically active, 
might explain part of the observed associations. In addition, our study population is a relatively 
lean population. The effect of maternal pre-pregnancy BMI on the observed associations might 
be stronger among more obese populations. We did not observe associations for preterm birth, 
Caesarean delivery or vacuum extraction. It seems likely that associations of maternal early-
pregnancy non-fasting glucose concentrations with delivery complications are partly driven by 
size at birth as well as other maternal characteristics, such as maternal obesity. Even though we 
did observe that higher maternal early-pregnancy non-fasting glucose concentrations were asso-
ciated with an increased risk of a large-for-gestational-age infant, the overall effect on birthweight 
in the full cohort was relatively small. This may partly explain the lack of associations with the 
delivery complications. These associations may be more apparent among higher-risk populations. 
Thus, our findings suggest that in a non-diabetic population, non-fasting glucose concentrations in 
early pregnancy already partly determine the risk of delivering a large-for-gestational-age infant.

The mechanisms underlying associations of maternal glucose metabolism with reduced fetal 
growth in the first half of pregnancy and increased fetal growth thereafter are not known. It has 
been suggested that impaired glucose control during early pregnancy negatively affects placental 
development, starting with impaired early placentation, which induces placental insufficiency 
and thereby early fetal growth restriction.11 In response to the placental insufficiency, it has been 
suggested that the fetus may induce maternal hyperglycemia to improve nutrient supply and 
growth during the second half of pregnancy via placental signalling.11 It has also been hypoth-
esised that hyperglycemia in early pregnancy injures the development of the yolk sac, which 
is of great importance during the embryonic period, especially in nutrient transport towards 
the embryo. This may lead to impaired embryonic growth and development. When the yolk sac 
function is replaced by the placenta at the end of early pregnancy, hyperglycemia together with 
increased transfer of other nutrients could induce an intrauterine environment that stimulates 
increased fetal adiposity and growth.2 34

Even though the observed effects for the associations of maternal blood glucose concentra-
tions with altered fetal growth patterns and the risk of delivering a large-for-gestational-age 
infant are relatively small, they are important from an aetiological and preventive perspective. 
Importantly, we observed the adverse effects of maternal blood glucose concentrations across 
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the full range of maternal early-pregnancy non-fasting glucose concentrations and not only at 
the diagnostic thresholds of impaired glucose metabolism. In addition, the observed associations 
were not explained by maternal sociodemographic factors or lifestyle factors, which suggests that 
potential intrauterine mechanisms may be involved. Current clinical practice is mainly focused 
on screening for gestational diabetes based on diagnostic thresholds of maternal glucose con-
centrations from mid-pregnancy onwards in higher-risk women. However, based on our findings, 
altered fetal development can already occur among non-diabetic women before mid-pregnancy, 
which is when screening for gestational diabetes and necessary interventions are currently imple-
mented. Recent RCTs, which are considered the gold standard for studying causality, indicate that 
treatment of gestational diabetes and maternal hyperglycemia with lifestyle adaptations from 
mid-pregnancy onwards leads to a decreased risk of adverse birth outcomes compared with no 
treatment.35-37 Based on our findings, future RCTs should focus on glucose screening and treat-
ment from preconception and early pregnancy onwards to further improve pregnancy outcomes, 
among higher-risk populations such as women with overweight and obesity and possibly also 
among lower-risk populations. These studies should assess the effects of lifestyle interventions 
that keep an adequate balance between reducing maternal blood glucose concentrations with-
out inducing hypoglycaemia and preventing hyperglycemia. These interventional studies from 
preconception and early pregnancy onwards will not only provide important novel insights into 
the effectiveness of these interventions, but also into the causality of the observed associations 
of maternal early-pregnancy non-fasting glucose concentrations with altered fetal growth and 
adverse birth outcomes.

Methodological considerations

Major strengths of this study are the population-based prospective design with a large sample 
size with information on maternal blood glucose concentrations and fetal growth throughout 
pregnancy. The response rate at baseline was 61%. The non-response at baseline would lead to 
biased effect estimates if associations were different between those included and not included 
in the analyses, but this seems unlikely. We had a relatively small number of cases of gestational 
diabetes, which indicates a selection towards a non-diabetic population and might affect the gen-
eralisability of our findings. The observed associations might be stronger among higher-risk popu-
lations. Information on gestational diabetes was obtained from medical records after delivery. 
Accurate diagnosis of gestational diabetes is difficult. A fasting glucose greater than 7.0 mmol/l 
might also represent pre-existing diabetes and a fasting glucose between 6.1 and 6.9 mmol/l 
might also represent impaired glucose tolerance, instead of gestational diabetes. Unfortunately, 
in our study, glucose testing for diagnosis of gestational diabetes was not done for all women 
for study purposes and no data were available on glucose tolerance before pregnancy. Further 
studies are needed to replicate our findings among more high-risk populations, including women 
with impaired glucose tolerance from preconception and early pregnancy onwards and women 
at risk to develop gestational diabetes. We only measured maternal glucose concentrations 
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once in early pregnancy. However, it has been suggested that impaired glucose control in early 
pregnancy persists throughout pregnancy.38 The fasting time before venous puncture was limited 
to 30 minutes, due to which we consider our samples non-fasting samples. We were not able 
to collect blood samples after a longer fasting period due to the design of the study. The blood 
samples were collected in a non-fasting state at different time-points during the day, depending 
on time of the study visit. Since glucose concentrations shift very easily during the day and are 
sensitive towards carbohydrate intake, this may have led to non-differential misclassification of 
what would be classified as high- or low-glucose concentrations and an underestimation of the 
observed effect estimates. We also did not have information on 1 hour and 2 hours postprandial 
glucose concentrations available. However, it has been suggested that maternal fasting glucose 
concentrations, postprandial glucose concentrations and non-fasting random samples are ap-
propriate measures of maternal glucose metabolism and are related to adverse birth outcomes.2 7 
Non-fasting blood values may better reflect the normal physiological state in pregnant women.4 31 
Further studies are needed to replicate our findings using more detailed maternal glucose mea-
surements, including fasting glucose concentrations and detailed postprandial glucose measure-
ments. Although we included many covariates, there still might be some residual confounding, as 
in any observational study.

Conclusions

Maternal early-pregnancy non-fasting blood glucose concentrations are associated with altered 
fetal growth patterns, characterised by decreased fetal growth rates in mid-pregnancy and 
increased fetal growth rates from late pregnancy onwards, and an increased risk of delivering 
a large-for-gestational-age infant. These associations are only partly explained by maternal 
pre-pregnancy BMI. Instead of targeting maternal glucose metabolism in the second half of 
pregnancy as in current clinical practice, future preventive strategies need to focus on screening 
for an impaired maternal glucose metabolism from preconception and early pregnancy onwards 
to improve fetal growth and birth outcomes.
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Supplementary Material
Table S1. Non-response analyses

Participants
n = 6,116

Non-participants
n = 2,763 p value*

Maternal characteristics

Age, years 29.8 ± 5.1 29.4 ± 5.8 0.04

Height, cm 167.5 ± 7.4 166.2 ± 7.4 <0.01

Pre-pregnancy weight, kg 64.0 (48.0–99.7) 63.0 (48.0–100.0) 0.39

Pre-pregnancy BMI, kg/m2 22.6 (18.0–34.7) 22.8 (17.8–36.0) 0.02

Gestational age at intake, weeks 13.2 (9.6–17.6) 19.6 (10.8–31.4) <0.01

Parity (nulliparous) 3474 (57.3) 1387 (51.6) <0.01

Ethnicity

	 Dutch 3,083 (52.2) 1,013 (40.4) <0.01

	 European 496 (8.4) 175 (7.0)

	 Cape Verdean 245 (4.2) 110 (4.4)

	 Moroccan 353 (6.0) 227 (9.1)

	 Dutch Antillean 171 (2.9) 124 (5.0)

	 Surinamese 506 (8.6) 258 (10.3)

	 Turkish 474 (8.1) 298 (11.9)

	 Other 545 (9.3) 300 (12.0)

Education, higher	 2,550 (44.9) 828 (34.8) <0.01

Total calorie intake, kJ 486 ± 134 489 (141) 0.49

Folic acid use

	 No 1,183 (25.3) 745 (39.4) <0.01

	 Start first 10 weeks 1,491 (31.9) 549 (29.1)

	 Start periconceptional 1,997 (42.8) 595 (31.5)

Smoking during pregnancy, continued 1,012 (18.6) 428 (18.6) 0.96

Alcohol use during pregnancy, continued 2,095 (39.0) 691 (30.5) <0.01

Gestational hypertensive disorders

	 Pre-eclampsia 127 (2.2) 60 (2.4) 0.68

	 Gestational hypertension 234 (4.1) 84 (3.3) 0.11

Pre-gestational diabetes 24 (0.5) 9 (0.4) 0.75

Gestational diabetes 62 (1.1) 29 (1.1) 0.75

Birth Characteristics

Males 3,100 (50.7) 1,301(49.9) 0.48

Gestational age, weeks 40.1 (35.6–42.3) 40.0 (34.7–42.4) <0.01

Preterm birtha 310 ± 5.1 199 ± 7.6 <0.01

Small-for-gestational-ageb 606 (10.0) 254 (9.9) 0.89

Large-for-gestational-agec 606 (10.0) 234 (8.5) 0.21

Caesarean delivery 692 (14.5) 277 (13.8) 0.45

Vacuum extraction 774 (15.9) 277 (13.8) 0.03

Values are numbers (%), means ± SD or medians (95% range). *Differences in subject characteristics between participants and non-
participants were evaluated using one-way ANOVA test for continuous variables and chi-square tests for categorical variables. a Preterm 
birth is defined as <37 weeks’ gestation. b Small for gestational age is defined as <10th percentile of age-and sex-adjusted birth weight. 
c Large for gestational age is defined as >90th percentile of age-and sex-adjusted birth weight.



64 Chapter 2.2

Table S2. Associations of maternal early-pregnancy glucose concentrations in mmol/l with fetal biometry 
measurements

Maternal early-pregnancy glucose concentrations (mmol/l)

Early pregnancy Crown-rump Length

Basic model -0.02 (-0.08, 0.03)

Ethnicity model -0.02 (-0.08, 0.03)

Maternal pregnancy-
related factors model

-0.04 (-0.09, 0.02)

BMI model -0.04 (-0.09, 0.02)

Mid-pregnancy Head circumference Abdominal 
circumference

Femur length Estimated fetal 
weight

Basic model -0.03 (-0.06, 0.00)* -0.05 (-0.08, -0.02)* 0.01 (-0.02, 0.04) -0.02 (-0.05, 0.01)

Ethnicity model -0.03 (-0.06, 0.00) -0.04 (-0.07, -0.01)* 0.01 (-0.02, 0.04) -0.02 (-0.05, 0.01)

Maternal pregnancy-
related factors model

-0.03 (-0.06, 0.00) -0.05 (-0.08, -0.02)* 0.01 (-0.02, 0.04) -0.02 (-0.05, 0.01)

BMI model -0.04 (-0.07, -0.01)* -0.06 (-0.09, -0.02)* -0.01 (-0.04, 0.02) -0.04 (-0.07, -0.01)*

Late pregnancy Head circumference Abdominal 
circumference

Femur length Estimated fetal 
weight

Basic model 0.03 (-0.01, 0.06) 0.05 (0.02, 0.08)* 0.04 (0.01, 0.07)* 0.05 (0.02, 0.08)*

Ethnicity model 0.03 (0.00, 0.06)* 0.05 (0.02, 0.08)* 0.04 (0.01, 0.07)* 0.05 (0.02, 0.08)*

Maternal pregnancy-
related factors model

0.03 (0.00, 0.06) 0.04 (0.01, 0.07)* 0.03 (0.00, 0.06)* 0.04 (0.01, 0.07)*

BMI model 0.02 (-0.02, 0.05) 0.02 (-0.01, 0.05) 0.01 (-0.02, 0.04) 0.02 (-0.01, 0.05)

Birth Head circumference Abdominal 
circumference

Length Weight

Basic model 0.04 (0.00, 0,09) NA 0.04 (-0.01, 0.08) 0.07 (0.04, 0.11)*

Ethnicity model 0.05 (0.01, 0,10)* NA 0.04 (0.00, 0.09)* 0.08 (0.05, 0.11)*

Maternal pregnancy-
related factors model

0.04 (0.00, 0,09) NA 0.04 (-0.01, 0.08) 0.07 (0.04, 0.10)*

BMI model 0.04 (-0.01, 0.08) NA 0.02 (-0.02, 0.07) 0.05 (0.02, 0.08)*

Data are SDS values (95% CI) from linear regression models that reflect the differences in growth characteristics per 1 mmol/l in mater-
nal early-pregnancy glucose concentrations. Analyses with crown-rump length were based on subgroup analyses (n = 1,470). Estimates 
are from multiple imputed data. Basic model adjusted for gestational age at assessment. Ethnicity model: basic model additionally ad-
justed for maternal ethnicity. Maternal pregnancy-related factors model: ethnicity model additionally adjusted for maternal age, parity, 
educational level, daily total calorie intake, smoking, alcohol consumption and folic acid supplement use. BMI model: maternal preg-
nancy-related factors model additionally adjusted for maternal prepregnancy BMI. *p value <0.05. Abbreviations: NA, not available.



2.2

Pregnancy glucose metabolism and fetal growth 65

Table S3. Associations of maternal early-pregnancy glucose concentrations in mmol/l with absolute fetal bi-
ometry measurements

Maternal early-
pregnancy glucose 
concentrations 
(mmol/l)

Head circumference 
(mm/ at birth cm)

Abdominal 
circumference (mm/ 
at birth NA)

Femur length (mm/ 
length at birth cm)

Estimated fetal 
weight (gram/ 
weight at birth gram)

Mid-pregnancy -0.32 (-0.72, 0.08) -0.51 (-0.92, -0.10)* -0.02 (-0.11, 0.08) -1.95 (-4.48, 0.57)

Late pregnancy 0.26 (-0.12, 0.63) 0.55 (0.06, 1.05)* 0.08 (-0.01, 0.17) 8.46 (0.86, 16.06)*

Birth 0.04 (-0.03, 0.11) NA 0.07 (-0.02, 0.15) 25.38 (8.98, 41.79)*

Data are exact values (95% CI) from linear regression models that reflect the differences in growth characteristics per 1 mmol/l in 
maternal early-pregnancy glucose concentrations. Estimates are from multiple imputed data. Models are adjusted according maternal 
pregnancy-related factors model adjusted for gestational age at assessment, maternal ethnicity, age, parity, educatoinal level, daily 
total calorie intake, smoking, alcohol consumption and folic acid supplement use. *p value <0.05. Abbreviations: NA, not available.

Table S4. Associations of maternal early-pregnancy glucose concentrations in mmol/l with the risks of adverse 
birth outcomes

Maternal early-
pregnancy glucose 
concentrations 
(mmol/l)

Small size for 
gestational age 
at birth

Large size for 
gestational age 
at birth

Preterm birth Caesarean 
delivery

Vacuum 
extraction

Basic model 0.89 (0.80, 0.98)* 1.27 (1.16, 1.40)* 1.08 (0.95, 1.24) 1.12 (0.98, 1.27) 0.99 (0.90, 1.09)

Ethnicity model 0.87 (0.79, 0.97)* 1.29 (1.18, 1.42)* 1.08 (0.94, 1.23) 1.12 (0.99, 1.27) 1.00 (0.91, 1.11)

Maternal pregnancy-
related factors model

0.88 (0.79, 0.98)* 1.28 (1.16, 1.41)* 1.08 (0.94, 1.23) 1.11 (1.00, 1.23) 1.01 (0.91, 1.12)

BMI model 0.91 (0.82, 1.02) 1.21 (1.10, 1.34)* 1.06 (0.92, 1.21) 1.09 (0.99, 1.20) 1.01 (0.90, 1.12)

Values are ORs (95% CI) from logistic regression models that reflect the differences in risks of adverse birth outcomes per 1 mmol/l in 
maternal early-pregnancy glucose concentrations. Estimates are from multiple imputed data. Basic model adjusted for gestational age 
at assesment. Ethnicity model: basic model additionally adjusted for maternal ethnicity. Maternal pregnancy-related factors model: 
ethnicity model additionally adjusted for maternal age, parity, educational level, daily total calorie intake, smoking, alcohol consump-
tion and folic acid supplement use. BMI model: maternal pregnancy-related factors model additionally adjusted for maternal prepreg-
nancy BMI. *p value <0.05.
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Table S5. Associations of maternal early-pregnancy glucose and insulin concentrations in standard deviation 
scores with fetal biometry measurements

Early pregnancy Crown-rump Length

Glucose (SD) -0.02 (-0.07, 0.03)

Insulin (SD) -0.02 (-0.07, 0.04)

Mid-pregnancy Head circumference Abdominal circumference Femur length Estimated fetal weight

Glucose (SD) -0.02 (-0.05, 0.00) -0.04 (-0.07, -0.02)* 0.01 (-0.02, 0.03) -0.02 (-0.05, 0.00)

Insulin (SD) -0.01 (-0.04, 0.02) -0.02 (-0.04, 0.01) 0.04 (0.01, 0.06)* 0.01 (-0.02, 0.03)

Late pregnancy Head circumference Abdominal circumference Femur length Estimated fetal weight

Glucose (SD) 0.02 (0.00, 0.05) 0.03 (0.01, 0.06)* 0.03 (0.00, 0.05)* 0.04 (0.01, 0.06)*

Insulin (SD) 0.00 (-0.03, 0.03) 0.04 (0.01, 0.06)* 0.06 (0.04, 0.09)* 0.05 (0.03, 0.08)*

Birth Head circumference Abdominal circumference Length Weight

Glucose (SD) 0.04 (0.00, 0.08) NA 0.03 (0.00, 0.07) 0.06 (0.04, 0.09)*

Insulin (SD) 0.06 (0.01, 0.09)* NA 0.08 (0.04, 0.12)* 0.06 (0.03, 0.08)*

Data are SDS values (95% CI) from linear regression models that reflect the differences in growth characteristics per 1 SD change 
in maternal early-pregnancy glucose and insulin concentrations. Insulin was log-transformed before the construction of SD score. 
Analyses with crown-rump length were based on subgroup analyses (n = 1,470). Estimates are from multiple imputed data. Models 
are adjusted according maternal pregnancy-related factors model adjusted for gestational age at assessment, maternal ethnicity, age, 
parity, educational level, daily total calorie intake, smoking, alcohol consumption and folic acid supplement use. *p value <0.05. Ab-
breviations: NA, not available.
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Table S6. Sensitivity analyses of fetal biometry measurements

Early pregnancy Crown-rump
Length

Main model -0.04 (-0.09, 0.02)

No pre-gestational diabetes mellitus -0.05 (-0.10, 0.01)

No gestational diabetes mellitus -0.05 (-0.11, 0.01)

Dutch ethnicity -0.04 (-0.11, 0.03)

Included <14 weeks gestation -0.04 (-0.10, 0.02)

No preterm -0.05 (-0.11, 0.01)

Mid-pregnancy Head
circumference

Abdominal
circumference

Femur length Estimated
fetal weight

Main model -0.03 (-0.06, 0.00) -0.05 (-0.08, -0.02)* 0.01 (-0.02, 0.04) -0.02 (-0.05, 0.01)

No pre-gestational diabetes mellitus -0.02 (-0.06, 0.01) -0.05 (-0.08, -0.02)* 0.01 (-0.03, 0.04) -0.03 (-0.06, 0.00)

No gestational diabetes mellitus -0.03 (-0.06, 0.00) -0.05 (-0.08, -0.02)* 0.01 (-0.02, 0.04) -0.03 (-0.06, 0.00)

Dutch ethnicity -0.04 (-0.09, 0.00) -0.07 (-0.12, -0.03)* 0.01 (-0.03, 0.05) -0.04 (-0.08, 0.00)

Included <14 weeks gestation 0.00 (-0.02, 0.02) -0.04 (-0.07, -0.01)* 0.03 (-0.01, 0.06) -0.01 (-0.04, 0.03)

No preterm -0.03 (-0.06, 0.01) -0.05 (-0.08, -0.02)* 0.00 (-0.03, 0.03) -0.03 (-0.06, 0.00)

Late pregnancy Head
circumference

Abdominal
circumference

Femur length Estimated
fetal weight

Main model 0.03 (0.00, 0.06) 0.04 (0.01, 0.07)* 0.03 (0.00, 0.06)* 0.04 (0.01, 0.07)*

No pre-gestational diabetes mellitus 0.03 (0.00, 0.06) 0.03 (0.00, 0.06) 0.02 (-0.01, 0.06) 0.03 (0.00, 0.07)*

No gestational diabetes mellitus 0.02 (-0.01, 0.05) 0.03 (0.00, 0.06)* 0.03 (0.00, 0.06)* 0.04 (0.01, 0.07)*

Dutch ethnicity 0.00 (-0.05, 0.04) 0.02 (-0.02, 0.07) 0.03 (-0.01, 0.07) 0.03 (-0.01, 0.07)

Included <14 weeks gestation 0.04 (0.00, 0.08)* 0.04 (0.00, 0.08)* 0.06 (0.02, 0.10)* 0.06 (0.02, 0.09)*

No preterm 0.03 (-0.01, 0.06) 0.03 (0.00, 0.07)* 0.03 (0.00, 0.06)* 0.04 (0.01, 0.07)*

Birth Head
circumference

Abdominal
circumference

Length Weight

Main model 0.04 (0.00, 0,09) NA 0.04 (-0.01, 0.08) 0.07 (0.04, 0.10)*

No pre-gestational diabetes mellitus 0.03 (-0.02, 0,08) NA 0.04 (0.00, 0.09) 0.07 (0.04, 0.10)*

No gestational diabetes mellitus 0.04 (-0.01, 0.09) NA 0.04 (-0.01, 0.08) 0.06 (0.04, 0.10)*

Dutch ethnicity 0.02 (-0.04, 0.08) NA 0.02 (-0.03, 0.08) 0.06 (0.01, 0.10)*

Included <14 weeks gestation 0.02 (-0.04, 0.08) NA 0.03 (-0.02, 0.08) 0.09 (0.05, 0.12)*

No preterm 0.05 (0.00, 0,10)* NA 0.04 (-0.01, 0.08) 0.07 (0.04, 0.10)*

Data are SDS values (95% CI) from linear regression models that reflect the differences in growth characteristics per 1 mmol/l in mater-
nal early-pregnancy glucose concentrations. Analyses with crown-rump length were based on subgroup analyses (n = 1,470). Estimates 
are from multiple imputed data. Models are adjusted according maternal pregnancy-related factors model adjusted for gestational age 
at assessment, maternal ethnicity, age, parity, educational level, daily total calorie intake, smoking, alcohol consumption and folic acid 
supplement use. *p value <0.05. Abbreviations: NA, not available.
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Figure s1. Maternal early-pregnancy glucose concentrati ons in standard deviati on scores and longitudinal 
fetal growth rates

 
Data are SDS values (95% CI) from repeated measurement regression models that refl ect the diff erences in gestati onal age-adjusted 
growth rates in SDS of head circumference (circles), length (triangles), and weight (squares) at mid-pregnancy, late pregnancy and at 
birth per 1 SD change in maternal early-pregnancy glucose concentrati ons. As a measure of skeletal length growth from mid-pregnancy 
onwards, we used fetal femur length SDS in mid-pregnancy and late pregnancy and total body length SDS at birth within the repeated 
measurements model. All fetal biometry measurements for each pregnancy period were taken at the same ti me point. The models 
were adjusted for gestati onal age at intake. p value for interacti on with gestati onal age for all models <0.05.
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Figure s2. Maternal early-pregnancy insulin concentrati ons in standard deviati on scores and longitudinal fetal 
growth rates

 
Data are SDS values (95% CI) from repeated measurement regression models that refl ect the diff erences in gestati onal age-adjusted 
growth rates in SDS of head circumference (circles), length (triangles), and weight (squares) at mid-pregnancy, late pregnancy and at 
birth per 1 SD change in maternal early-pregnancy insulin concentrati ons. As a measure of skeletal length growth from mid-pregnancy 
onwards, we used fetal femur length SDS in mid-pregnancy and late pregnancy and total body length SDS at birth within the repeated 
measurements model. All fetal biometry measurements for each pregnancy period were taken at the same ti me point. The models 
were adjusted for gestati onal age at intake. p value for interacti on with gestati onal age for all models <0.05.





2.3 Associations of maternal early-
pregnancy blood glucose and 
insulin concentrations with 
DNA methylation in newborns

Adapted from Clinical Epigenetics. 2020 Sep 7;12(1):134.

Madelon L. Geurtsen
Vincent W.V. Jaddoe
Romy Gaillard
Janine F. Felix



72 Chapter 2.3

Abstract

Background: Intrauterine exposure to a disturbed maternal glucose metabolism is associated 
with adverse offspring outcomes. DNA methylation is a potential mechanism underlying these 
associations. We examined whether maternal early pregnancy glucose and insulin concentrations 
are associated with newborn DNA methylation.
Methods: In a population-based prospective cohort study among 935 pregnant women, maternal 
plasma concentrations of non-fasting glucose and insulin were measured at a median of 13.1 
weeks of gestation (95% range 9.4 – 17.4). DNA methylation was measured using the Infinium Hu-
manMethylation450 BeadChip (Ilumina). We analyzed associations of maternal early-pregnancy 
glucose and insulin concentrations with single-CpG DNA methylation using robust linear regres-
sion models. Differentially methylated regions were analyzed using the dmrff package in R. We 
stratified the analyses on women with normal weight versus women with overweight or obesity. 
We also performed a look-up of CpGs and differently methylated regions from previous studies 
to be associated with maternal gestational diabetes, hyperglycemia or hyperinsulinemia, or with 
type 2 diabetes in adults.
Results: Maternal early-pregnancy glucose and insulin concentrations were not associated with 
DNA methylation at single CpGs nor with differentially methylated regions in the total group. 
In analyses stratified on maternal BMI, maternal early-pregnancy glucose concentrations were 
associated with DNA methylation at one CpG (cg03617420, XKR6) among women with normal 
weight and at another (cg12081946, IL17D) among women with overweight or obesity. No 
stratum-specific associations were found for maternal early-pregnancy insulin concentrations. 
The two CpGs were not associated with birth weight or childhood glycemic measures (p values 
> 0.1). Maternal early-pregnancy insulin concentrations were associated with one CpG known 
to be related to adult type 2 diabetes. Enrichment among nominally significant findings in our 
maternal early-pregnancy glucose concentrations was found for CpGs identified in a previous 
study on adult type 2 diabetes.
Conclusions: Maternal early-pregnancy glucose concentrations, but not insulin concentrations, 
were associated with DNA methylation at one CpG each in the subgroups of women with normal 
weight, and of women with overweight or obesity. No associations were present in the full group. 
The role of these CpGs in mechanisms underlying offspring health outcomes needs further study. 
Future studies should replicate our results in larger samples with early-pregnancy information on 
maternal fasting glucose metabolism.
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Introduction

The prevalence of gestational diabetes is rising worldwide and has been reported to complicate 
up to 25% of all pregnancies.1 2 This rise is partly due to the increasing prevalence of obesity 
among women of reproductive age and depends on screening tools and diagnostic criteria.2-4 In-
trauterine exposure to maternal gestational diabetes or impaired glucose tolerance measured in 
mid-pregnancy and late pregnancy is associated with increased risks of adverse maternal and fetal 
perinatal outcomes, and of diabetes and obesity in the offspring.5-8 These associations of increased 
risks on perinatal outcomes are already present for higher maternal glucose concentrations below 
the threshold of gestational diabetes.9 10 Additionally, the associations are stronger among women 
who are overweight or obese at the start of their pregnancy.2 3 Women who develop hypergly-
cemia and gestational diabetes may already have suboptimal glucose metabolism earlier in 
pregnancy. The first trimester of pregnancy is a critical period for embryonic and placental growth 
and development.11 As such, impaired maternal glucose metabolism may already exert negative 
effects in that early stage. Early-pregnancy glucose metabolism has been shown to be associated 
with altered fetal growth, adverse birth outcomes and childhood glucose metabolism, but not 
with other childhood cardio-metabolic outcomes after adjusting for maternal pre-pregnancy 
BMI.9 12 13 Thus, early pregnancy may be an important time window for the effects of suboptimal 
maternal glycemic measures and as such an influential period for future interventions.

The mechanisms underlying these associations are unknown. DNA methylation has been sug-
gested as a potential mechanism linking adverse exposures during pregnancy and impaired offspring 
health.14 15 Previous studies using candidate-gene approaches suggested that maternal gestational 
diabetes is associated with epigenetic modifications in placenta and cord blood at loci relevant 
to growth, energy homeostasis, and diabetes.14 16-18 Epigenome-wide association studies (EWAS) 
of gestational diabetes or maternal glucose concentrations showed varying results, with no clear 
pattern of associations.1 15 19-25 The inconsistent results of candidate-gene studies and EWAS may 
be due to differences in study design. The studies varied in their exposure definition: gestational 
diabetes as binary exposure or glucose concentrations after an oral challenge test, in the tissues in 
which DNA methylation was measured: placenta or blood, and in the extent of adjustment for co-
variates, with most not adjusting for cell type heterogeneity. Also, the majority had limited sample 
sizes.15 19 21-25 It is not known whether maternal glucose and insulin concentrations across the full 
range in early pregnancy are associated with cord blood DNA methylation and whether these as-
sociations differ between women with normal weight versus women with overweight or obesity. 
Insight into these associations and their underlying mechanisms is important, as maternal blood 
glucose metabolism can be a target for preventive interventions to improve child health outcomes.

We hypothesized that maternal early-pregnancy glucose and insulin concentrations are as-
sociated with offspring DNA methylation at birth. Therefore, we conducted an epigenome-wide 
association analysis in a population-based prospective cohort study, with maternal glucose and 
insulin concentrations measured at a median of 13.1 weeks of gestation (95% range 9.4 – 17.4). 
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As a secondary analysis, we stratified on maternal body mass index (BMI) categories to observe 
if maternal BMI modifies the studied associations. We also examined whether differential DNA 
methylation at any CpGs found to be associated with maternal glucose or insulin concentrations 
in cord blood persisted in peripheral blood of 10-year-old children. To obtain further insight 
into the potential significance of the observed DNA methylation changes, we conducted explor-
atory analyses on the associations of identified CpGs with offspring health outcomes. We also 
performed a look-up in our results of CpGs identified to be associated with maternal glucose 
metabolism during pregnancy or with type 2 diabetes in adults in previous literature.

Results

Subject characteristics

The population characteristics for the total group and stratified on maternal BMI in women 
with normal weight versus women with overweight or obesity are shown in Table 1. The mean 
maternal early-pregnancy glucose concentration was 4.4 mmol/l (standard deviation 0.8) and 
the median maternal early-pregnancy insulin concentration was 126.3 pmol/l (95% range 19.9 
– 774.6). Gestational diabetes was diagnosed in 12 (1.3%) women and 59 (6.3%) women were 
obese. Non-response analyses showed that mothers without data on early-pregnancy glucose 
and insulin measurements delivered more often female children (Table S1).

Associations of maternal early-pregnancy glucose and insulin concentrations with 
DNA methylation at birth

After Bonferroni (p value cutoff < 1.0 x 10-7) or false-discovery rate (FDR) correction, we did not 
observe associations of maternal early-pregnancy glucose or insulin concentrations with offspring 
DNA methylation in cord blood. These models were adjusted for gestational age at glucose/insulin 
measurement, maternal age, educational level, parity, smoking, pre-pregnancy BMI, child sex, cell 
type proportions and batch. The results of both analyses are presented in Figure S1a and Figure 
S1b. The CpGs with p values < 1.0 x 10-4 for both analyses are shown in Table S2 and Table S3. A 
model without adjustment for maternal pre-pregnancy BMI showed largely similar results Table 
S4 and Table S5.

The analyses stratified on maternal BMI showed that among women with normal weight 
maternal early-pregnancy glucose concentrations were associated with DNA methylation at one 
CpG (cg03617420 in XKR6; effect estimate = 7.3 x 10-3 (standard error (SE) 1.3 x 10-3), p value = 
7.4 x 10-9) (Figure 1a). DNA methylation at this CpG was not significantly associated with glucose 
concentrations in women with overweight or obesity (effect estimate = -2.4 x 10-3 (SE 3.2 x 10-3), 
p value = 0.46). Among women with overweight or obesity maternal early-pregnancy glucose 
concentrations were associated with DNA methylation at one CpG (cg12081946 in IL17D; effect 
estimate = -3.4 x 10-2 (SE 5.6 x 10-3), p value = 8.9 x 10-10) (Figure 1b). DNA methylation at this CpG 



2.3

Pregnancy glucose metabolism and cord blood DNA methylation 75

was not significantly associated with glucose concentrations in women with normal weight (effect 
estimate = 3.1 x 10-3 (SE 4.1 x 10-3), p value = 0.45). Maternal early-pregnancy insulin concentra-
tions were not associated with DNA methylation in cord blood in women with normal weight and 
in women with overweight or obesity (Figure S2a and Figure S2b).

Neither maternal early-pregnancy glucose nor insulin concentrations were associated with 
differentially methylated regions in cord blood, analysed using the dmrff package in R.26 The dif-
ferentially methylated regions with p values < 1.0 x 10-4 are shown in Table S6 and Table S7.

Maternal glucose concentrations were not associated with DNA methylation levels at the 
two identified CpGs in peripheral blood of 10-year-old children (p values > 0.1) (Table S8). In 
exploratory analyses, the two identified CpGs were not associated with birth weight or childhood 
glucose concentrations, which both were previously found to be associated with maternal early-
pregnancy glucose concentrations in our data (p values > 0.1).9 13

Table 1. Maternal and birth characteristics of the study population

Characteristics Total group
n = 935

Maternal
normal weight
n = 667

Maternal
overweight/obesity
n = 234

p value

Maternal characteristics

Age, years 31.7 ± 4.2 31.8 ± 4.2 31.7 ± 4.1 0.69

Height, cm 170.8 ± 6.2 171.1 ± 6.3 170.4 ± 5.8 0.25

Pre-pregnancy body mass index, kg/m2 23.3 ± 3.8 21.8 ± 1.6 28.5 ± 3.4 <0.01

Women with

Underweight 34 (3.6) - -

Normal weight 667 (71.3) 667 -

Overweight 175 (18.7) - 175

Obesity 59 (6.3) - 59

Gestational age at glucose/
insulin measurement, weeks

13.1 (9.4 – 17.4) 13.4 (8.3 – 17.4) 12.9 (9.5 – 17.5) 0.19

Parity, nulliparous 563 (60.3) 409 (61.3) 130 (55.6) 0.23

Education, higher education 596 (64.9) 405 (71.6) 97 (50.0) <0.01

Smoking during pregnancy, continued 173 (20.8) 101 (19.6) 40 (22.6) 0.40

Glucose, mmol/l 4.4 ± 0.8 4.4 ± 0.8 4.5 ± 0.8 0.08

Insulin, pmol/l 126.3 (19.9 – 774.6) 119.6 (19.6 – 764.5) 153.6 (19.0 – 847.4) 0.09

Gestational diabetes 10 (1.3) 8 (1.7) 1 (0.5) 0.31

Child characteristics

Male 491 (52.5) 311 (54.4) 96 (49.0) 0.19

Gestational age at birth, weeks 40.3 (36.4 – 42.3) 40.4 (36.5 – 42.3) 40.4 (36.3 – 42.3) 0.60

Birth weight, grams 3552 ± 514 3552 ± 493 3599 ± 571 0.31

Values are means ± SD, medians (95% range) or numbers of subjects (valid %) shown for the total group and stratified for maternal 
pre-pregnancy body mass index. The stratified groups are women with normal weight versus women with overweight or obesity (data 
for women with underweight are not separately shown n = 34). Differences were tested using Student’s t-tests and Mann-Whitney tests 
for normally and non-normally distributed variables, respectively, and χ2-test were used for dichotomous variables.
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Figure 1a. Epigenome-wide association study results of maternal early-pregnancy glucose concentrations and 
DNA methylation in cord blood in women with normal weight

Figure 1b. Epigenome-wide association study results of maternal early-pregnancy glucose concentrations and 
DNA methylation in cord blood in women with overweight or obesity

In 1a. the Manhattan plot shows the results of the epigenome-wide association study of maternal early-pregnancy glucose concentra-
tions and DNA methylation in cord blood in women with normal weight. In 1b Manhattan plot of the results of the epigenome-wide 
association study of maternal early-pregnancy glucose concentrations and DNA methylation in cord blood in women with overweight 
or obesity. In both figures the x-axis represents the autosomal (1 – 22) chromosomes and the y-axis shows the –log10 (p value). The 
models were adjusted for gestational age at assessment, maternal age at intake, educational level, parity, smoking, child sex, cell type 
proportions and batch.
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Look-up of maternal glucose metabolism and adult type 2 diabetes-associated CpGs

In a look-up in our results of CpGs and DMRs identified in previous studies to be associated with 
maternal glucose metabolism or with adult type 2 diabetes, we found that one CpG, cg1680945 
at MDN1, known to be related to adult type 2 diabetes was also significantly associated with 
maternal early-pregnancy insulin concentrations (effect estimate = -3.3 x 10-3 (SE 1.1 x 10-3), p 
value = 2.2 x 10-3).27 The look-up of other previously described CpGs and DMRs in the maternal 
early-pregnancy glucose and insulin EWAS results showed no associations (Table S9; Table S10; 
Table S11; Table S12).1 14 17 18 22 23 25 27-42 We found enrichment for findings from one previous study 
on adult type 2 diabetes among the 24,935 nominally significant CpGs from the maternal early-
pregnancy glucose EWAS results (Fisher combined probability p value = 0.04).40 No evidence for 
enrichment of the CpGs from other previous studies among the 24,935 nominally significant CpGs 
from the maternal early-pregnancy glucose cord blood analysis, nor among the 19,418 nominally 
significant CpGs from the maternal early-pregnancy insulin cord blood analysis was found (lowest 
Fisher combined probability p value = 0.15 in maternal early-pregnancy glucose EWAS results and 
p value = 0.12 in insulin EWAS results).1 14 17 18 22 23 25 27-42

Figure 2. Study participants flowchart

Excluded due to no data on maternal early-
pregnancy glucose metabolism
n = 451

Participants with information on cord blood 
DNA methylation
n = 1,396

Participants with information on cord blood 
DNA methylation and maternal early-
pregnancy glucose metabolism
n = 945

Total population for analysis
n = 935

Excluded due to siblings
n = 7

Participants with information on cord blood 
DNA methylation and maternal early-
pregnancy glucose metabolism, one child per 
mother
n = 938

Excluded due to mothers with pre-existing diabetes
n = 3
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Discussion

In this population-based EWAS we did not observe associations of maternal early-pregnancy 
glucose and insulin concentrations across the full spectrum with offspring cord blood DNA meth-
ylation in the full group. However, after stratification on maternal BMI, maternal early-pregnancy 
glucose concentrations were associated with DNA methylation at one CpG each among women 
with normal weight and among women with overweight or obesity. Associations of DNA methyla-
tion at these CpG sites did not persist in 10-year-old children. Also, we did not find associations 
with offspring health outcomes. Maternal early-pregnancy insulin was associated with one CpG 
known from a previous adult type 2 diabetes-associated study. Also, we found enrichment of 
CpGs identified in a previous EWAS on adult type 2 diabetes among our maternal early-pregnancy 
glucose EWAS results. Overall, our results constitute a first step towards a better understanding 
of a potential role of DNA methylation underlying the associations of maternal glycemic traits in 
early pregnancy with offspring health outcomes.

Interpretation of main findings

Gestational diabetes or impaired glucose tolerance diagnosed in the second half of pregnancy in-
creases the risks of adverse birth outcomes, of obesity and diabetes in the offspring.5 6 8 It has been 
suggested that women who develop gestational diabetes or hyperglycemia later in pregnancy 
already have suboptimal glucose metabolism before or in early pregnancy.43 44 Maternal glycemic 
measures in early pregnancy have been described to be associated with altered fetal growth and 
glucose metabolism in childhood, but not with child adiposity, lipid levels and blood pressure 
after adjustment for maternal pre-pregnancy BMI.9 12 13 Thus, early pregnancy may already be a 
critical period for the effects of maternal glucose concentrations on offspring birth outcomes and 
glycemic health in childhood. The associations of maternal glucose metabolism with offspring 
outcomes may be explained by differential DNA methylation. Therefore, we hypothesized that 
maternal early-pregnancy glucose and insulin concentrations are associated with offspring DNA 
methylation levels at birth, and that these associations may be different for women with normal 
weight and women with overweight or obesity.

Results from a recent meta-analysis from seven pregnancy cohorts among 3,677 mother-
newborn pairs showed that gestational diabetes was not associated with differential methylation 
at single CpG level, but it was associated with lower cord blood methylation levels within two 
specific regions.1 In the current population-based EWASs, we did not find any associations in the 
full group, but maternal early-pregnancy glucose concentrations were associated with DNA meth-
ylation at cg03617420 (XKR6) among women with normal weight, and at cg12081946 (IL17D) 
among women with overweight or obesity. The effect estimates of both CpGs were in opposite 
directions for women with normal weight and women with overweight or obesity, which could 
imply a modifying effect of maternal BMI, as we hypothesized.
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XKR6, XK related 6 gene, is located on chromosome 8 and is classified as a member of the 
Kell blood group complex subunit-related family. Genetic variants in this gene have previously 
been associated with type 2 diabetes, lipid concentrations, systolic blood pressure and kidney 
function, among others.45-48 XKR6 is expressed in many tissues, most strongly in testis and lym-
phocytes, but also in the cerebellum and pancreas, among others. IL17D, interleukin 17D, is part 
of the cytokine family and located on chromosome 13, and has been previously associated with 
autoimmune and inflammatory diseases.49 Autoimmune processes are part of the pathogenesis 
of type 1 diabetes.50 Genetic variants close to IL17D have been associated with PR segment on 
electrocardiogram.51 IL17D is most strongly expressed in brain and skeletal muscle. Based on 
Roadmap Epigenomics Data Complete Collection extracted from the UCSC Genome Browser, both 
cg03617420 and cg12081946 coincide with DNAseI hypersensitivity clusters and transcription 
factor binding regions, indicating a location in potential regulatory elements.

DNA methylation levels at these CpGs have not been previously described in relation to ma-
ternal early-pregnancy glucose concentrations and our results need replication in larger groups. 
We found that DNA methylation at one CpG, cg1680945 (MDN1), which was associated with 
adult type 2 diabetes in a previous study, was also associated with maternal early-pregnancy 
insulin concentrations.27 We also found enrichment for CpGs identified in a previous EWAS on 
adult type 2 diabetes among the nominally significant CpGs from the maternal early-pregnancy 
glucose EWAS.40 Maternal early-pregnancy glucose and insulin concentrations were not associ-
ated with any of the other previously reported maternal gestational diabetes, hyperglycemia 
or hyperinsulinemia, or adult type 2 diabetes-associated CpGs or differently methylated re-
gions.1 14 17 18 22 23 25 28-39 41 42

The lack of identified associations in our total study group may have multiple reasons. Our 
study population is relatively healthy with on average lean women, with limited variability in 
maternal early-pregnancy glucose and insulin concentrations and with a low percentage of 
women who developed gestational diabetes. Associations of maternal early-pregnancy glucose 
and insulin concentrations with DNA methylation may be more apparent when using fasting 
glucose and insulin concentrations or among high-risk populations, as observed in studies in 
women with gestational diabetes.22 31 34 Besides this, the moderate sample size of this study also 
limits the power to detect smaller differences. Another possibility is that associations of maternal 
early-pregnancy glucose and insulin concentrations with DNA methylation in offspring are more 
apparent in other tissues than cord blood, such as placental tissue, body fat, skeletal muscle, liver 
or pancreas. As shown in the analysis stratified on BMI, for some CpGs, associations may not be 
apparent in the full group as the directions of effect may be opposite between certain subgroups 
in the study population.

Maternal glucose concentrations were not associated with DNA methylation in child peripheral 
blood at age 10 years at the two CpGs identified in cord blood. This could imply a temporary effect 
of maternal glucose metabolism on offspring DNA methylation or it may be due to the relatively 
small sample size at age 10 years. Further studies should repeat these analyses among different 
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age-groups in children to replicate our findings at birth and explore persistence of differential 
DNA methylation at the two identified CpGs. Also, the two identified CpGs were not associated 
with birth weight or childhood glucose concentrations in exploratory analyses. This may be due 
to the relatively small sample size or it may indicate, that DNA methylation at these sites does not 
represent a biological pathway linking maternal glucose levels to birth weight or childhood glu-
cose concentrations. Further studies, including studies among high-risk populations are needed 
to examine the exact pathways involved in the associations of maternal glycemic measures during 
pregnancy with adverse birth outcomes and with offspring health outcomes, such as diabetes at 
later ages, in more detail.

This study suggests that maternal glycemic traits are associated with DNA methylation, and 
that these associations may differ between mothers with overweight/obesity and those without. 
The role of the identified differential DNA methylation in pathways to offspring health needs 
further study. This is a first step towards discovering the underlying biological pathways and, if 
confirmed, it emphasizes the first trimester being a potentially important window of pregnancy 
for intervention studies to improve child health outcomes. Further, larger studies, with maternal 
early-pregnancy fasting blood samples, are needed to replicate our results.

Methodological considerations

Major strengths of this study are the population-based prospective design and the fact that we 
have information on maternal plasma glucose and insulin concentrations in early pregnancy in 
combination with cord blood DNA methylation. In addition to single-CpG analyses, differential 
methylated regions were also evaluated. We were able to adjust for a large number of potential 
confounders and for estimated cell type proportions. The relatively small number of mothers 
with gestational diabetes (1.3% versus 2-5% in the general Dutch population52) may be due to the 
fact that information on gestational diabetes was taken from medical records and there was no 
structural testing of all pregnant women. However, the low number of mothers with gestational 
diabetes and obesity included in the sample may also indicate a selection towards a healthy, 
non-diabetic and lean population that might influence the generalizability of our findings and 
may have limited our statistical power to detect significant associations. Glucose and insulin con-
centrations were measured once during early pregnancy. Future studies are needed to measure 
maternal glucose and insulin concentrations at multiple time points during pregnancy to observe 
whether normal glucose and insulin concentrations in early pregnancy will worsen or maintain 
normal during pregnancy and whether patterns of glucose and insulin concentrations during 
pregnancy may be more informative than single measurements. The blood samples in the study 
are non-fasting. They were collected after a fasting time of at least 30 minutes. Since glucose and 
insulin concentrations vary during the day and are sensitive to carbohydrate intake, this may have 
led to non-differential misclassification of glucose and insulin concentrations. However, it has 
been suggested that maternal non-fasting glucose concentrations may better reflect the normal 
physiological state in pregnancy.10 53 Ideally, data on oral glucose tolerance tests would have been 



2.3

Pregnancy glucose metabolism and cord blood DNA methylation 81

included, but these are not available in the Generation R Study. Blood samples were collected and 
processed in a standardized way, but time from sampling to freezing could be up to four hours. 
This may have affected the measured glucose concentrations. DNA methylation was measured in 
blood, which may differ from methylation patterns in other tissues. The study participants are of 
European ancestry and therefore, the findings might not be generalizable to other populations.

Conclusions

Maternal early-pregnancy blood glucose and insulin concentrations were not associated with dif-
ferential DNA methylation at birth in the full group. However, maternal early-pregnancy glucose 
concentrations were associated with DNA methylation at one CpG in XKR6 among women with 
normal weight and at another CpG in IL17D among women with overweight or obesity. Their role 
in mechanisms underlying offspring health outcomes needs further study. These results await 
confirmation by future studies in larger samples with early-pregnancy information on maternal 
fasting glucose metabolism and exploring potential tissue-specific methylation effects in the 
offspring.

Methods

Study design

This study was embedded in the Generation R Study, a population-based prospective cohort from 
early fetal life onwards, based in Rotterdam, the Netherlands.54 The study has been approved by 
the Medical Ethical Committee of the Erasmus MC, University Medical Center Rotterdam (MEC 
198.782/2001/31). Written informed consent was obtained for all participants.54 In total, 8,879 
women were enrolled during pregnancy (response rate at baseline: 61%), of whom 6,186 had 
measurements of glucose and insulin concentrations available. DNA methylation was measured 
in cord blood of a randomly selected European-ancestry subset of n = 1,396 mothers. Out of 
these mothers n = 945 had measurements on early-pregnancy glucose metabolism available. We 
excluded women with pre-existing diabetes (n = 3), twin pregnancies and in case of multiple (non-
twin) children per mother, we excluded one of each sibling pair, based on data completeness or, if 
equal, randomly (n = 7). The population for analysis of this study comprised 935 mother-newborn 
pairs (Figure 2).

Maternal glucose and insulin concentrations assessment

Blood samples were collected once in early pregnancy at 13.1 median weeks’ gestation (95% 
range 9.4 – 17.4), as described previously. After at least 30  minutes of fasting, venous blood 
samples were collected from pregnant women by research nurses and temporally stored at room 
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temperature. Samples were minimally 30 minutes fasting. As we did not have information on 
the exact fasting duration, we consider all samples random. The time-interval of 30 minutes was 
chosen because of the design of the study, in which it was not possible to obtain fasting samples 
from all pregnant women. At least every 3 hours, blood samples were transported to a dedicated 
laboratory facility of the regional laboratory in Rotterdam, the Netherlands (Star-MDC), for fur-
ther processing and storage.55 Glucose (mmol/l) was measured with the c702 module on a Cobas 
8000 analyser. Insulin (pmol/l) was measured with electrochemiluminescence immunoassay on 
a Cobas e411 analyser. Quality control samples demonstrated intra- and inter-assay CVs of 0.9% 
and 1.2% for glucose concentrations and of 1.3% and 2.5% for insulin concentrations, respectively.

Information on pre-existing diabetes was obtained from self-reported questionnaires and on 
gestational diabetes from medical records after delivery. Gestational diabetes was diagnosed by 
a community midwife or an obstetrician according to Dutch midwifery and obstetric guidelines 
at the time of inclusion into the study, using the following criteria: either a random glucose con-
centration > 11.0 mmol/l, a fasting glucose ≥ 7.0 mmol/l or a fasting glucose between 6.1 and 6.9 
mmol/l with a subsequent abnormal glucose tolerance test.56

DNA methylation

DNA was extracted from cord blood using the salting-out method. Five hundred nanograms of 
DNA per sample underwent bisulfite conversion using the EZ-96 DNA Methylation kit (Shallow) 
(Zymo Research Corporation, Irvine, CA, USA). Samples were plated randomly onto 96-well 
plates. Samples were processed with the Illumina Infinium HumanMethylation450 (450k) 
BeadChip (Illumina Inc., San Diego, CA, USA). Quality control of analyzed samples was performed 
using standardized criteria. Quality control and normalization of the array data was performed 
according to the Control Probe Adjustment and reduction of global CORrelation (CPACOR) 
workflow using R.57 58 Probes that had a detection p value ≥ 1E-16 were set to missing per array. 
Next, the intensity values were quantile normalized for each of the six probe type categories 
separately: type II red/green, type I methylated red/green and type I unmethylated red/green. 
Beta values were calculated as proportion of methylated intensity value to the sum of (methyl-
ated and unmethylated intensities plus 100). Arrays with observed technical problems such as 
failed bisulfite conversion, hybridization or extension, as well as arrays with a sex mismatch were 
removed from subsequent analyses. Additionally, only arrays with a call rate > 95% per sample 
were processed further. Probes on the X and Y chromosomes were excluded from the analyses. 
Outlying methylation beta values were excluded using the following method: values < (25th 
percentile – 3*interquartile range (3IQR)) and values > (75th percentile + 3IQR) were removed.59 
For each analysis, we excluded plates with fewer than 3 samples because of convergence issues. 
This did not lead to exclusions in the analyses of the full group, but led to exclusion of 4 and 14 
participants, in the normal weight and overweight/obese stratum, respectively. For all CpGs and 
differentially methylated regions, the official gene name of the nearest gene was noted using 
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Illumina’s annotation information and we enhanced the annotation provided by Illumina with the 
UCSC Genome Browser build hg19 using the CpG location.60 61

Covariates

Information on maternal age, pre-pregnancy weight, educational level and parity was obtained 
from questionnaires at enrolment.62 Maternal smoking during pregnancy was assessed by ques-
tionnaires in pregnancy. We measured maternal height at enrolment without shoes and heavy 
clothing. Pre-pregnancy BMI was calculated (self-reported pre-pregnancy weight in kilograms 
divided by height measured at enrolment in meters, squared). Information on gestational age at 
birth, child sex and birth weight was obtained from medical records. To adjust for batch effects, 
plate number was included as a covariate in the analyses. We estimated leukocyte subtypes using 
a cord blood-specific reference.63 This method estimates the relative proportions of six white 
blood cell subtypes (CD4+ T-lymphocytes, CD8+ T-lymphocytes, natural killer cells, B-lymphocytes, 
monocytes and granulocytes) and nucleated red blood cells.

Statistical analysis

First, non-response analysis was conducted among participants with singleton children and 
information available on cord blood DNA methylation, comparing participants with to those 
without data on maternal early-pregnancy glucose metabolism available, using Student’s t-tests, 
Mann-Whitney tests and Chi-square tests. Second, we used robust linear regression models in an 
EWAS framework to assess the associations of maternal early-pregnancy glucose and insulin con-
centrations with single-CpG DNA methylation in cord blood.58 Maternal early-pregnancy insulin 
had a skewed distribution and was natural log-transformed for the analyses. The analyses were 
performed in two models: first model; adjusted for gestational age at glucose/insulin measure-
ment, maternal age at intake, educational level, parity, smoking, child sex, cell type proportions 
and batch, and a secondary (main) model additionally adjusted for pre-pregnancy BMI. Since 
maternal obesity enhances the effect of higher glucose and insulin concentrations on adverse 
offspring outcomes, the effect on DNA methylation could be modified by maternal BMI. There-
fore, as a secondary analysis we stratified women into two strata of women with normal weight, 
and women with overweight or obesity and repeated the main linear regression models in these 
strata. Included covariates were based on previous studies and factors known to be strongly as-
sociated with DNA methylation.22 64-66 Multiple testing was accounted for using Bonferroni correc-
tion, with CpGs with a p value < 1.0 x 10-7 considered significant. Additionally, we planned a priori 
to also report results using FDR correction for multiple testing, using the method by Benjamini 
and Hochberg.67 Third, we identified differentially methylated regions using the dmrff package 
(https://github.com/perishky/dmrff), which identifies differentially methylated regions by com-
bining EWAS summary statistics from nearby CpGs.26 Significant differentially methylated regions 
were defined as regions spanning a set of CpG sites with at most 500 bp between consecutive 
sites with nominal EWAS p values <0.05 and effect estimates with the same direction. Fourth, we 
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examined whether associations of any CpGs identified in cord blood persisted in peripheral blood 
of 10-year-old children, using the main model additionally adjusted for child age at measurement. 
Missing covariate data were multiple-imputed using the Markov chain Monte Carlo method. All 
analyses were performed using R version 3.4.3.58

Associations of identified CpGs with offspring health outcomes

Exploratory analyses were performed in the relevant strata of maternal BMI to examine as-
sociations of identified CpGs with offspring birth weight and childhood glucose concentrations 
measured at age 10 years. We chose these outcomes, because we have previously found them to 
be associated with maternal early-pregnancy glucose concentrations.9 13 We ran linear regression 
models using gestational age and sex adjusted birth weight standard deviation scores (SDS) and 
childhood glucose concentrations as outcomes. Birth weight SDS were calculated based on the 
Niklasson reference charts, using Growth Analyzer (version 3.5; Dutch Growth Research Founda-
tion, Rotterdam, the Netherlands).68 Models were adjusted for maternal age, educational level, 
parity and smoking, as well as for plate number and the seven cell types from the cord blood 
reference.63 Childhood glucose models were additionally adjusted for child sex and age at glucose 
measurement.

Look-up of previously identified CpGs

We performed a look-up in our maternal early-pregnancy glucose and insulin results of previously 
described maternal glucose metabolism-associated CpGs and DMRs and of previously described 
adult type 2 diabetes-associated CpGs in adults. The PubMed search terms are described in Note 
S1. We took those studies into account that: 1) included more than 50 participants in total, 2) 
measured DNA methylation in cord blood or peripheral blood, 3) were epigenome-wide studies 
or candidate-gene studies, and 4) reported p values for single CpGs or differential methylated 
regions. Significance was determined based on a Bonferroni corrected p value < 0.05/number of 
tested CpGs per reference study. We also evaluated enrichment of these CpGs among CpGs with 
a p value < 0.05 in our EWAS results using a hypergeometric test.



2.3

Pregnancy glucose metabolism and cord blood DNA methylation 85

References

	 1.	 Howe CG, Cox B, Fore R, et al. Maternal Gestational Diabetes Mellitus and Newborn DNA Methylation: 
Findings From the Pregnancy and Childhood Epigenetics Consortium. Diabetes Care 2020;43(1):98-
105.

	 2.	 Poston L, Caleyachetty R, Cnattingius S, et al. Preconceptional and maternal obesity: epidemiology 
and health consequences. Lancet Diabetes Endocrinol 2016;4(12):1025-36.

	 3.	 Catalano PM, McIntyre HD, Cruickshank JK, et al. The hyperglycemia and adverse pregnancy outcome 
study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012;35(4):780-6.

	 4.	 Fernandez-Twinn DS, Hjort L, Novakovic B, et al. Intrauterine programming of obesity and type 2 
diabetes. Diabetologia 2019;62(10):1789-801.

	 5.	 Kawasaki M, Arata N, Miyazaki C, et al. Obesity and abnormal glucose tolerance in offspring of diabetic 
mothers: A systematic review and meta-analysis. PLoS One 2018;13(1):e0190676.

	 6.	 Lowe WL, Jr., Scholtens DM, Kuang A, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-
up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. 
Diabetes Care 2019;42(3):372-80.

	 7.	 Riskin-Mashiah S, Younes G, Damti A, et al. First-trimester fasting hyperglycemia and adverse preg-
nancy outcomes. Diabetes Care 2009;32(9):1639-43.

	 8.	 Yu Y, Arah OA, Liew Z, et al. Maternal diabetes during pregnancy and early onset of cardiovascular 
disease in offspring: population based cohort study with 40 years of follow-up. Bmj 2019;367:l6398.

	 9.	 Geurtsen ML, van Soest EEL, Voerman E, et al. High maternal early-pregnancy blood glucose levels 
are associated with altered fetal growth and increased risk of adverse birth outcomes. Diabetologia 
2019;62(10):1880-90.

	 10.	 Hapo Study Cooperative Research Group, Metzger BE, Lowe LP, et al. Hyperglycemia and adverse 
pregnancy outcomes. N Engl J Med 2008;358(19):1991-2002.

	 11.	 Jaddoe VW, de Jonge LL, Hofman A, et al. First trimester fetal growth restriction and cardiovascular 
risk factors in school age children: population based cohort study. Bmj 2014;348:g14.

	 12.	 Daraki V, Georgiou V, Papavasiliou S, et al. Metabolic profile in early pregnancy is associ-
ated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One 
2015;10(5):e0126327.

	 13.	 Wahab RJ, Voerman E, Jansen PW, et al. Maternal Glucose Concentrations in Early Pregnancy and 
Cardiometabolic Risk Factors in Childhood. Obesity (Silver Spring) 2020;28(5):985-93.

	 14.	 El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intra-
uterine exposure to gestational diabetes mellitus. Diabetes 2013;62(4):1320-8.

	 15.	 Ruchat SM, Houde AA, Voisin G, et al. Gestational diabetes mellitus epigenetically affects genes 
predominantly involved in metabolic diseases. Epigenetics 2013;8(9):935-43.

	 16.	 Gagne-Ouellet V, Houde AA, Guay SP, et al. Placental lipoprotein lipase DNA methylation altera-
tions are associated with gestational diabetes and body composition at 5 years of age. Epigenetics 
2017;12(8):616-25.

	 17.	 Mansell T, Ponsonby AL, Collier F, et al. Genetic variation, intrauterine growth, and adverse pregnancy 
conditions predict leptin gene DNA methylation in blood at birth and 12 months of age. Int J Obes 
(Lond) 2019.

	 18.	 Mansell T, Ponsonby AL, Januar V, et al. Early-life determinants of hypoxia-inducible factor 3A gene 
(HIF3A) methylation: a birth cohort study. Clin Epigenetics 2019;11(1):96.

	 19.	 Cardenas A, Gagne-Ouellet V, Allard C, et al. Placental DNA Methylation Adaptation to Maternal 
Glycemic Response in Pregnancy. Diabetes 2018;67(8):1673-83.



86 Chapter 2.3

	 20.	 Elliott HR, Sharp GC, Relton CL, et al. Epigenetics and gestational diabetes: a review of epigenetic 
epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabeto-
logia 2019.

	 21.	 Finer S, Mathews C, Lowe R, et al. Maternal gestational diabetes is associated with genome-wide 
DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet 
2015;24(11):3021-9.

	 22.	 Haertle L, El Hajj N, Dittrich M, et al. Epigenetic signatures of gestational diabetes mellitus on cord 
blood methylation. Clin Epigenetics 2017;9:28.

	 23.	 Quilter CR, Cooper WN, Cliffe KM, et al. Impact on offspring methylation patterns of maternal gesta-
tional diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked 
to subsequent type 2 diabetes risk. Faseb J 2014;28(11):4868-79.

	 24.	 Reichetzeder C, Dwi Putra SE, Pfab T, et al. Increased global placental DNA methylation levels are 
associated with gestational diabetes. Clin Epigenetics 2016;8:82.

	 25.	 Yang IV, Zhang W, Davidson EJ, et al. Epigenetic marks of in utero exposure to gestational diabetes and 
childhood adiposity outcomes: the EPOCH study. Diabet Med 2018;35(5):612-20.

	 26.	 Suderman M, Staley JR, French R, et al. dmrff: identifying differentially methylated regions 
efficiently with power and control. bioRxiv 2018. https://www.biorxiv.org/content/biorxiv/
early/2018/12/31/508556.full.pdf:508556.

	 27.	 Kulkarni H, Kos MZ, Neary J, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-
American families. Human molecular genetics 2015;24(18):5330-44.

	 28.	 Al Muftah WA, Al-Shafai M, Zaghlool SB, et al. Epigenetic associations of type 2 diabetes and BMI in an 
Arab population. Clinical epigenetics 2016;8:13.

	 29.	 Arpón A, Santos JL, Milagro FI, et al. Insulin Sensitivity Is Associated with Lipoprotein Lipase (LPL) and 
Catenin Delta 2 (CTNND2) DNA Methylation in Peripheral White Blood Cells in Non-Diabetic Young 
Women. International journal of molecular sciences 2019;20(12):2928.

	 30.	 Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in 
peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-
control study. The lancet Diabetes & endocrinology 2015;3(7):526-34.

	 31.	 Chen P, Piaggi P, Traurig M, et al. Differential methylation of genes in individuals exposed to maternal 
diabetes in utero. Diabetologia 2017;60(4):645-55.

	 32.	 Florath I, Butterbach K, Heiss J, et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-
wide association study in over 1,500 older adults. Diabetologia 2016;59(1):130-38.

	 33.	 Hidalgo B, Irvin MR, Sha J, et al. Epigenome-wide association study of fasting measures of glucose, 
insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 
2014;63(2):801-07.

	 34.	 Hjort L, Novakovic B, Grunnet LG, et al. Diabetes in pregnancy and epigenetic mechanisms-how the 
first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet 
Diabetes Endocrinol 2019;7(10):796-806.

	 35.	 Kriebel J, Herder C, Rathmann W, et al. Association between DNA Methylation in Whole Blood and 
Measures of Glucose Metabolism: KORA F4 Study. PloS one 2016;11(3):e0152314-e14.

	 36.	 Lin X, Lim IY, Wu Y, et al. Developmental pathways to adiposity begin before birth and are influenced 
by genotype, prenatal environment and epigenome. BMC Med 2017;15(1):50.

	 37.	 Liu J, Carnero-Montoro E, van Dongen J, et al. An integrative cross-omics analysis of DNA methylation 
sites of glucose and insulin homeostasis. Nat Commun 2019;10(1):2581.



2.3

Pregnancy glucose metabolism and cord blood DNA methylation 87

	 38.	 Meeks KAC, Henneman P, Venema A, et al. Epigenome-wide association study in whole blood on 
type 2 diabetes among sub-Saharan African individuals: findings from the RODAM study. International 
journal of epidemiology 2019;48(1):58-70.

	 39.	 Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, et al. Epigenome-wide association study 
identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Human 
molecular genetics 2016;25(3):609-19.

	 40.	 Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related 
DNA methylation variations in human peripheral blood. Human molecular genetics 2012;21(2):371-
83.

	 41.	 Walaszczyk E, Luijten M, Spijkerman AMW, et al. DNA methylation markers associated with type 2 
diabetes, fasting glucose and HbA(1c) levels: a systematic review and replication in a case-control 
sample of the Lifelines study. Diabetologia 2018;61(2):354-68.

	 42.	 Yuan W, Xia Y, Bell CG, et al. An integrated epigenomic analysis for type 2 diabetes susceptibility loci in 
monozygotic twins. Nature communications 2014;5:5719.

	 43.	 Sletner L, Jenum AK, Yajnik CS, et al. Fetal growth trajectories in pregnancies of European and South 
Asian mothers with and without gestational diabetes, a population-based cohort study. PLoS One 
2017;12(3):e0172946.

	 44.	 Sovio U, Murphy HR, Smith GC. Accelerated Fetal Growth Prior to Diagnosis of Gestational Diabetes 
Mellitus: A Prospective Cohort Study of Nulliparous Women. Diabetes Care 2016;39(6):982-7.

	 45.	 Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipid-
emia. Nature genetics 2009;41(1):56-65.

	 46.	 Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution 
using high-density imputation and islet-specific epigenome maps. Nature genetics 2018;50(11):1505-
13.

	 47.	 Wain LV, Vaez A, Jansen R, et al. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide 
Association Study and Expression Data Sets From Blood and the Kidney. Hypertension 2017:HYPER-
TENSIONAHA.117.09438.

	 48.	 Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a 
million individuals. Nature genetics 2019;51(6):957-72.

	 49.	 Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: 
role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol 
Immunol 2018;62(1):1-13.

	 50.	 Giwa AM, Ahmed R, Omidian Z, et al. Current understandings of the pathogenesis of type 1 diabetes: 
Genetics to environment. World J Diabetes 2020;11(1):13-25.

	 51.	 Verweij N, Mateo Leach I, van den Boogaard M, et al. Genetic determinants of P wave duration and PR 
segment. Circ Cardiovasc Genet 2014;7(4):475-81.

	 52.	 van Leeuwen M, Prins SM, de Valk HW, et al. [Gestational diabetes mellitus: treatment reduces the 
risk of complications] Diabetes gravidarum. Behandeling vermindert kans op complicaties. Ned Tijd-
schr Geneeskd 2011;155:A2291.

	 53.	 Clausen T, Burski TK, Oyen N, et al. Maternal anthropometric and metabolic factors in the first half of 
pregnancy and risk of neonatal macrosomia in term pregnancies. A prospective study. Eur J Endocrinol 
2005;153(6):887-94.

	 54.	 Kooijman MN, Kruithof CJ, van Duijn CM, et al. The Generation R Study: design and cohort update 
2017. Eur J Epidemiol 2016;31(12):1243-64.

	 55.	 Kruithof CJ, Kooijman MN, van Duijn CM, et al. The Generation R Study: Biobank update 2015. Eur J 
Epidemiol 2014;29(12):911-27.



88 Chapter 2.3

	 56.	 Silva L. Fetal Origins of Socioeconomic Inequalities in Early Childhood Health: the Generation R Study 
[Ph.D. thesis]. Erasmus University Rotterdam, 2009.

	 57.	 Lehne B, Drong AW, Loh M, et al. A coherent approach for analysis of the Illumina HumanMethyl-
ation450 BeadChip improves data quality and performance in epigenome-wide association studies. 
Genome Biol 2015;16:37.

	 58.	 R Core Team. R: A language and environment for statistical computing. 2014(R Foundation for Statisti-
cal Computing, Vienna, Austria.).

	 59.	 Tukey JW. Exploratory data analysis. Reading, MA: Addison-Wesley, 1977.
	 60.	 Triche T. FDb.InfiniumMethylation.hg19: annotation package for Illumina Infinium DNA methylation 

probes. R package version 220 2014.
	 61.	 Infinium HumanMethylation450K v1.2 Product Files. 2014. http://support.illumina.com/downloads/

infinium_humanmethylation450_product_files.html.
	 62.	 Jaddoe VW, van Duijn CM, Franco OH, et al. The Generation R Study: design and cohort update 2012. 

Eur J Epidemiol 2012;27(9):739-56.
	 63.	 Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and 

library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics 
2019;11(1):125.

	 64.	 Hunt KJ, Schuller KL. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North 
Am 2007;34(2):173-99, vii.

	 65.	 Joubert BR, Felix JF, Yousefi P, et al. DNA Methylation in Newborns and Maternal Smoking in Preg-
nancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet 2016;98(4):680-96.

	 66.	 Sharp GC, Salas LA, Monnereau C, et al. Maternal BMI at the start of pregnancy and offspring 
epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) 
consortium. Hum Mol Genet 2017;26(20):4067-85.

	 67.	 Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to 
Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 1995;57(1):289-
300.

	 68.	 Niklasson A, Ericson A, Fryer JG, et al. An update of the Swedish reference standards for weight, 
length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand 
1991;80(8-9):756-62.



2.3

Pregnancy glucose metabolism and cord blood DNA methylation 89

Supplementary Material
Further detailed online resources can be found in the published article online: https://clinicalepigeneticsjournal.biomedcentral.com/
articles/10.1186/s13148-020-00924-3#Sec18





2.4 Maternal early-pregnancy 
glucose concentrations and 
liver fat among school age 
children

Accepted for publication in Hepatology, 2021.

Madelon L. Geurtsen
Rama J. Wahab
Janine F. Felix
Romy Gaillard
Vincent W.V. Jaddoe



92 Chapter 2.4

Abstract

Background: Gestational diabetes appears to be associated with offspring non-alcoholic fatty 
liver disease. We hypothesized that maternal glucose concentrations across the full range may 
have persistent effects on offspring liver fat accumulation.
Methods: In a multi-ethnic population-based prospective cohort study among 2,168 women and 
their offspring, maternal early-pregnancy glucose concentrations were measured at a median of 
13.1 weeks’ gestation (95% range 9.6-17.2 weeks). Liver fat fraction was measured at 10 years 
by magnetic resonance imaging. Non-alcoholic fatty liver disease was defined as liver fat fraction 
≥5.0%. We performed analyses among all mothers with different ethnic backgrounds and those 
of European ancestry only.
Results: The multi-ethnic group had a median maternal early-pregnancy glucose concentration of 
4.3 mmol/l (IQR 3.9-4.9) and a 2.8% (n = 60) prevalence of non-alcoholic fatty liver disease. The 
models adjusted for child age and sex only showed that in the multi-ethnic group higher maternal 
early-pregnancy glucose concentrations were associated with higher liver fat accumulation and 
higher odds of non-alcoholic fatty liver disease, but these associations attenuated into non-sig-
nificance after adjustment for potential confounders. Among mothers of European ancestry only, 
maternal early-pregnancy glucose concentrations were associated with increased odds of non-
alcoholic fatty liver disease (odds ratio 1.93 (95% CI: 1.30; 2.86 after adjustment for confounders) 
per 1 mmol/l increase in maternal early-pregnancy glucose concentration). This association was 
not explained by maternal pre-pregnancy and childhood BMI, organ fat and metabolic markers.
Conclusions: In this study, maternal early-pregnancy glucose concentrations were among mothers 
of European ancestry associated with offspring non-alcoholic fatty liver disease. The associations 
of higher maternal early-pregnancy glucose concentrations with offspring non-alcoholic fatty liver 
disease may differ between ethnic groups.
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Introduction

Pre-existing diabetes and gestational diabetes are complicating up to 25% of pregnancies.1-3 
Recent studies suggest that gestational diabetes leads to impaired offspring cardiovascular 
and metabolic health in childhood and adulthood.4-7 The observed associations seem not to be 
restricted to the clinical diagnosis of gestational diabetes but are also present across the full 
range of maternal glucose concentrations.8-10 Previous studies suggest that gestational diabetes 
is also associated with offspring markers of liver pathology.11-16 Results from animal studies 
suggest that offspring of maternal pregnancy hyperglycemia are predisposed to develop liver 
steatosis.13-16 In humans, a case-control study among 25 mothers showed that intrahepatocellular 
lipid content, as measured by magnetic resonance spectroscopy, was increased in neonates of 
mothers with both obesity and gestational diabetes compared to neonates of mothers with both 
normal weight and without gestational diabetes.12 Another study among 1,215 mother-child pairs 
reported that maternal pregnancy diabetes or glycosuria was associated with an increased risk 
for ultrasound-diagnosed non-alcoholic fatty liver disease at 17.8 years of age, independent of 
maternal pre-pregnancy BMI.11 We have previously shown that maternal early-pregnancy glucose 
metabolism is associated with childhood glucose metabolism, but not with other childhood 
cardio-metabolic outcomes after adjustment for maternal pre-pregnancy BMI.9 Also liver fat 
accumulation is related to risk factors for cardio-metabolic disease, independent of total body 
fat.17 18 We hypothesized that higher maternal glucose concentrations across the full range in early 
pregnancy are associated with liver fat accumulation in the offspring and that these associations 
may differ between ethnic groups.40 Such associations may predispose individuals to liver and 
cardio-metabolic disease in later life.

We assessed the associations of maternal early‐pregnancy glucose concentrations with off-
spring liver fat accumulation and non-alcoholic fatty liver disease with magnetic resonance imag-
ing (MRI) at 10 years of age in a multi-ethnic population‐based prospective cohort among 2,168 
mothers and their children. Because both glucose concentrations, liver fat and the associations 
between them may differ between ethnic groups,40 we performed analyses in the full multi-ethnic 
group and in the group of European ancestry only.

Methods

Study population

This study was embedded in the Generation R Study. This is a multi-ethnic population-based pro-
spective cohort from early fetal life onwards, based in Rotterdam, the Netherlands.19 The study 
has been approved by the Medical Ethical Committee of the Erasmus University Medical Center 
in Rotterdam (MEC 198.782/2001/31). Written informed consent was obtained for all partici-
pants.20 All pregnant women were enrolled between 2001 and 2005. The enrollment procedure 
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has been described in detail previously.21 In total, 8,879 women were enrolled during pregnancy, 
of whom 6,099 were enrolled in early pregnancy, had measurements of glucose concentrati ons 
available and had singleton pregnancies. MRI-based liver fat measurements at 10 years of age 
were available in a subgroup of 2,168 of their children (Figure 1). None of these children had a 
history of jaundice, medicati on use, alcohol use, smoking, or drug use, based on informati on from 
questi onnaires at 10 years of age. Missing measurements were mainly due to whether or not the 
child att ended the MRI subgroup study at 10 years of age, lost to follow-up, no data on liver fat 
or MRI arti facts.20

Figure 1. Study parti cipants fl owchart
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Maternal early-pregnancy glucose and insulin concentrations

Non-fasting blood samples were collected once in early pregnancy at 13.1 median weeks’ gestation 
(95% range, 9.6-17.2), as previously described.8 22 Briefly, venous blood samples were collected 
from pregnant women. Although samples were minimally 30 minutes fasting, we did not have 
information on the exact fasting duration and consider all samples random. Glucose concentra-
tion (mmol/l) is an enzymatic quantity and was measured with c702 module on the Cobas 8000 
analyzer (Roche, Almere, the Netherlands). Insulin concentration (pmol/l) was measured with 
electrochemiluminescence immunoassay on the Cobas e411 analyzer (Roche). Quality control 
samples demonstrated intra- and inter-assay CVs of 0.9% and 1.2% for glucose concentrations and 
of 1.3% and 2.5% for insulin concentrations, respectively. Information on pre-existing diabetes 
was obtained from self-reported questionnaires and on gestational diabetes from medical records 
after delivery.20 Gestational diabetes was diagnosed by a community midwife or an obstetrician 
according to Dutch midwifery and obstetric guidelines.20 23

Liver fat at 10 years

We measured liver fat using a 3.0 Tesla MRI scanner (Discovery MR750w, GE Healthcare, Milwau-
kee, Wisconsin, United States) as described previously.20 24-26 A liver fat scan was performed using 
a single-breath-hold, 3D volume and a special 3-point proton density weighted Dixon technique 
(IDEAL IQ) for generating a precise liver fat fraction image.27 The IDEAL IQ scan is based on a care-
fully tuned 6-echo echo planar imaging acquisition. The obtained fat fraction maps were analyzed 
by the Precision Image Analysis (PIA) (Kirkland, Washington, United States) using the sliceOmatic 
(TomoVision, Magog, Canada) software package. All extraneous structures and any image artifacts 
were removed manually.28 Liver fat fraction was determined by taking four samples of at least 
4cm2 from the central portion of the hepatic volume. Subsequently, the mean signal intensities 
were averaged to generate an overall mean liver fat estimation. Liver fat measured with IDEAL 
IQ using MRI is reproducible, highly precise and validated in adults.29 30 Non-alcoholic fatty liver 
disease was defined as liver fat ≥5.0%.24 30 31 We studied liver fat fraction across the full range 
and dichotomized in low, <5.0%, and high, ≥5.0%, based on the clinical cutoff for non-alcoholic 
fatty liver disease.32 As a sensitivity analysis, we dichotomized liver fat into low, ≤2.0%, and high, 
>2.0%, based on the median liver fat fraction in our population and on previous work from our 
group describing that liver fat accumulation above 2.0% is already associated with an increased 
cardio-metabolic risk profile in children.17

Covariates

Information was obtained by questionnaires on maternal age, parity, ethnicity, education 
level, smoking, alcohol consumption, folic acid supplement use, pre-pregnancy weight, and total 
daily energy intake during pregnancy.19 We categorized ethnicity into European (Dutch n = 1,258 
(58.8%) and other European n = 168 (7.7%)) versus Non-European (Cape Verdean n = 98 (4.6%), 
other African n = 21 (1.0%), Dutch Antillean n = 42 (2.0%), Surinamese n = 172 (8.0%), American 



96 Chapter 2.4

n = 43 (2.0%), Asian n = 48 (2.1%), Indonesian n = 75 (3.5%), Turkish n = 117 (5.5%), Moroccan n = 
95 (4.4%), Oceanian n = 4 (0.2%)). We measured maternal height without shoes at intake and cal-
culated pre-pregnancy BMI. Non-fasting venous blood samples were obtained in early pregnancy, 
total cholesterol (mmol/l), triglyceride (mmol/l) and high-density lipoprotein (HDL) cholesterol 
(mmol/l) concentrations were analyzed. Low-density lipoprotein (LDL) cholesterol (mmol/l) con-
centrations were calculated using the Friedewald equation. Maternal dyslipidemia was defined 
as having three or more out of the following four adverse factors: total cholesterol above the 
seventy-fifth percentile; triglycerides above the seventy-fifth percentile; HDL cholesterol below 
the twenty-fifth percentile, and LDL cholesterol above the seventy-fifth percentile of our study 
population.Information on child gestational age at birth, sex, and birth weight was obtained from 
medical records.20 We obtained information on breastfeeding in infancy by questionnaire.20 Non-
fasting blood samples were collected to determine concentrations of insulin, total cholesterol, 
triglycerides, HDL cholesterol and LDL cholesterol at 6 years of age. At the 10 years of age follow-
up visit, we measured childhood height and weight, both without shoes and heavy clothing, and 
calculated BMI and sex- and age-adjusted childhood BMI standard deviation score (SDS) based 
on Dutch reference growth charts (Growth Analyzer 4.0, Dutch Growth Research Foundation).33 
Visceral fat mass was obtained by MRI scans, as described previously.20 Non-fasting venous blood 
samples were obtained and we measured glucose and insulin concentrations. Physical activity 
and screen time were assessed with questionnaires at 10 years of age.34

Statistical analysis

We conducted a non-response analysis to compare characteristics of mothers and children 
with and without liver MRI scan measurements with Student’s t-tests, Mann-Whitney tests and 
Chi-square tests. Second, we used linear and logistic regression models to assess associations of 
maternal early-pregnancy glucose concentrations across the full range with liver fat accumulation 
and with the odds of non-alcoholic fatty liver disease. Potential covariates were first selected 
based on previous literature, their association with both the exposure and the outcome or a 
change in the effect estimates of >10% in the basic model as shown with the Directed Acyclic 
Graph, subsequently we performed a backward model selection analysis (Figure S1).11 35 The basic 
model was adjusted for gestational age at assessment, child sex and age at follow-up measure-
ments. The main confounder model was additionally adjusted for maternal ethnicity, education, 
smoking, alcohol consumption and folic acid supplement use during pregnancy, and child physical 
activity and screen time. We further adjusted any significant association in the main model for 
maternal pre-pregnancy BMI, dyslipidemia, and child metabolic markers at 6 years, BMI at 10 
years, visceral fat mass at 10 years, and glucose concentrations at 10 years to explore whether any 
significant association was explained by these covariates.3 9 36

Because both glucose concentrations, liver fat and the associations between them may differ 
between ethnic groups, we performed analyses in the full multi-ethnic group and in the European 
ancestry only groups (Table S1).37 Unfortunately, the other ethnic subgroups were too small to 



2.4

Pregnancy glucose metabolism and child liver fat 97

perform ethnic specific analyses. As sensitivity analysis, first, we repeated all analyses using ma-
ternal early-pregnancy insulin concentrations as exposure as another marker of maternal glucose 
metabolism in early pregnancy. Maternal early-pregnancy insulin concentrations were natural 
log-transformed before the SDS construction due to the skewed distribution. Second, to assess 
the associations of maternal early-pregnancy glucose concentrations with a potentially clinically 
relevant liver fat cutoff, we repeated the analyses using liver fat dichotomized in low, ≤2.0%, 
and high, >2.0%, liver fat. Third, we explored whether our observed associations were affected 
by specific subgroups in our study population. We first excluded women with the pre-existing 
diabetes or gestational diabetes (total n = 28) to focus specifically on a non-diabetic population. 
Second, we excluded women with glucose concentrations sampled at >14 weeks’ gestation to 
assess the associations of first trimester maternal glucose concentrations with liver fat accumula-
tion at school age (n = 702); The distribution of liver fat was skewed and natural log-transformed 
values were used in all linear regression analyses. Missing data in the covariates were multiple-
imputed using Markov chain Monte Carlo approach. Five imputed datasets were created and 
analyzed together. All statistical analyses were performed using the Statistical Product and Service 
Solutions (SPSS) Statistics version 25.0 for Windows (IBM, Chicago, Illinois, United States).

Results

Subject characteristics

The median maternal early-pregnancy glucose concentration was 4.3 mmol/l (95% range, 3.0-6.4, 
interquartile range (IQR) 3.9-4.9). The median liver fat fraction was 2.0% (95% range, 1.2-5.2%, IQR 
1.7-2.5) and the prevalence of non-alcoholic fatty liver disease was 2.8% (n = 60) in children at 10 
years of age (Table 1). Mothers of children with non-alcoholic fatty liver disease had a higher BMI, 
were less often from European ancestry, had slightly higher level of educational attainment and 
those children had higher BMI and visceral fat mass compared to children without non-alcoholic 
fatty liver disease in the full multi-ethnic group (Table 1). In the European ancestry only group, 
mothers of children with non-alcoholic fatty liver disease had higher glucose concentrations in 
early pregnancy, and those children were less active compared to children without non-alcoholic 
fatty liver disease (Table S2). Mothers of the European ancestry only group had similar glucose 
concentrations and had slightly higher level of educational attainment compared to the full multi-
ethnic group (Table S3). The correlation coefficient for the correlation between maternal early-
pregnancy glucose and maternal pre-pregnancy BMI was 0.15 (Table S4). Non-response analyses 
showed that participants without outcome measurements had mothers with a slightly lower level 
of educational attainment (Table S5).
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Table 1. Subject characteristics - full multi-ethnic group

Total group
n = 2,168

NAFLD no
n = 2,108

NAFLD yes
n = 60 p value

Maternal characteristics

Age at enrollment, years 30.8 ± 4.6 30.9  ± 4.6 30.1 ± 6.0 0.36

Gestational age at glucose/insulin 
measurement, weeks

13.1 (9.6, 17.2) 13.1 (9.6, 17.2) 13.1 (11.2, 17.9) 0.20

Pre-pregnancy body mass index, kg/m2 22.5 (18.1, 35.2) 22.4 (18.1, 34.9) 24.9 (18.3, 42.8) <0.01

Parity, nulliparous 1,317 (61.0) 1,284 (61.2) 33 (55.0) 0.33

Ethnicity, European 1,426 (66.6) 1,401 (67.3) 25 (42.4) <0.01

Education, higher 1,115 (53.6) 1,099 (54.2) 16 (29.1) <0.01

Smoking during pregnancy, continued 334 (18.7) 329 (19.0) 5 (10.4) 0.14

Alcohol consumption, during pregnancy 622 (37.2) 609 (37.5) 13 (28.3) 0.20

Folic acid supplement use, yes 1,024 (71.4) 994 (71.5) 30 (68.2) 0.64

Daily energy intake, kcal/day 2,060 ± 572 2,061  ± 571 2,053  ± 610 0.93

Dyslipidemia 233 (10.7) 226 (10.7) 7 (11.7) 0.82

Glucose, mmol/l 4.4 ± 0.8 4.4 ( ± 0.8) 4.6  ± 1.0 0.12

Insulin, pmol/l 113.1 (19.8, 669.6) 112.8 (19.7, 673.2) 171.0 (22.8, 672.6) 0.09

Pre-existing Diabetes 6 (0.3) 5 (0.3) 1 (1.9) 0.04

Gestational Diabetes 22 (1.1) 22 (1.1) 0 (0) 0.43

Child characteristics

Sex, female 1,113 (51.3) 1,082 (51.3) 31 (51.7) 0.96

Birth weight, grams 3,447 ± 548 3,475 ± 549 3,347 ± 535 0.15

Gestational age at birth, weeks 40.3 (36.0, 42.4) 40.3 (36.0, 42.4) 39.9 (34.5, 42.8) 0.08

Ever breastfed, yes 1,761 (93.0) 1,721 (93.1) 40 (87.0) 0.11

Insulin at 6 years, pmol/l 113.5 (18.1, 409.9) 113.1 (17.7, 409.8) 130.7 (34.1, 412.5) 0.42

Total cholesterol at 6 years, mmol/l 4.2 ± 0.6 4.2 ± 0.6 4.4 ± 0.7 0.09

LDL cholesterol at 6 years, mmol/l 2.4 ± 0.6 2.4 ± 0.6 2.4 ± 0.6 0.61

HDL cholesterol at 6 years, mmol/l 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 0.49

Triglycerides at 6 years, mmol/l 1.0 (0.4, 2.4) 1.0 (0.4, 2.4) 1.1 (0.4, 3.1) 0.10

Age 10 years at outcome follow-up 
measurements, years

9.8 ± 0.4 9.8 ± 0.3 9.9 ± 0.5 0.34

Playing sports at 10 years, hours/day 1.3 (0.3, 3.5) 1.3 (0.3, 3.5) 1.1 (0.1, 3.5) 0.15

Screen time at 10 years, ≥2 hours/day 852 (51.5) 824 (51.2) 28 (62.2) 0.15

Body mass index at 10 years, kg/m2 16.9 (14.0, 24.3) 16.9 (14.0, 23.9) 21.9 (15.5, 31.0) <0.01

Visceral fat mass at 10 years, grams 369.0 (164, 1,005) 364.1 (163, 948) 804.4 (242, 1,849) <0.01

Glucose at 10 years, mmol/l 5.2 ± 0.9 5.3 ± 0.9 5.1 ± 0.7 0.34

Insulin at 10 years, pmol/l 180.8 (37.1, 625.7) 180,0 (36.8, 610,5) 208.8 (41.7, 830.5) 0.09

Liver fat fraction at 10 years, % 2.0 (1.2, 5.2) 2.0 (1.2, 4.0) 6.5 (5.1, 20.4) <0.01

Liver fat dichotomized, high ≥2.0% 1,086 (50.1) 1,026 (48.7) 60 (100) <0.01

Non-alcoholic fatty liver disease 60 (2.8) - - -

Values are observed and represent numbers (valid %), means ± SD, or medians (95% range). 
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Maternal early-pregnancy glucose concentrations and childhood liver fat

In the full group, results from the basic models showed that higher maternal early-pregnancy 
glucose concentrations were associated with higher liver fat accumulation (difference 0.04 (95% 
Confidence Interval (CI): 0.02; 0.07) SDS per 1 mmol/l increase in maternal early-pregnancy 
glucose concentration) and with increased odds of non-alcoholic fatty liver disease (odds ratio 
(OR) 1.27 (95% CI: 1.10; 1.46) per 1 mmol/l increase in maternal early-pregnancy glucose con-
centration) (Table 2). These associations attenuated into non-significance in the main confounder 
model. In mother-child pairs of European ancestry only, higher maternal early-pregnancy glucose 
concentrations were associated with increased odds of non-alcoholic fatty liver disease (OR 1.93 
(95% CI: 1.30; 2.86) per 1 mmol/l increase in maternal early-pregnancy glucose concentration in 
the main confounder model). These associations were not explained by maternal pre-pregnancy 
BMI, and dyslipidemia. Also, childhood metabolic markers at 6 years, BMI and visceral fat mass 
child glucose concentrations at 10 years of age, did not explain the observed associations (Table 
3). Maternal glucose concentrations were not associated with liver fat accumulation among 
mother-child pairs of European ancestry only (Table 3).

Table 2. Associations between maternal early-pregnancy glucose concentrations with childhood liver fat frac-
tion and non-alcoholic fatty liver disease in the full multi-ethnic group

Liver Fat at School Age
n = 2,168

Maternal early-pregnancy glucose mmol/l Difference liver fat 
fraction SDS

(95% Confidence 
Interval) p value

Odds ratio
NAFLD yes/no

(95% Confidence 
Interval) p value

Basic model 0.04 (0.01; 0.07) 0.12 1.26 (1.09; 1.45) 0.11

Main confounder model 0.03 (-0.02; 0.08) 0.27 1.20 (0.90; 1.59) 0.21

Maternal body mass index model 0.01 (-0.04; 0.05) 0.84 1.18 (0.87, 1.59) 0.30

Maternal dyslipidemia model 0.03 (-0.02; 0.08) 0.29 1.25 (0.93, 1.67) 0.14

Child metabolic markers at 6 years model 0.03 (-0.02, 0.08) 0.27 1.24 (0.93, 1.66) 0.15

Child body mass index at 10 years model 0.01 (-0.04, 0.06) 0.68 1.13 (0.84, 1.53) 0.42

Child visceral fat mass at 10 years model 0.02 (-0.02, 0.06) 0.47 1.30 (0.95, 1.79) 0.11

Child glucose concentrations at 10 years model 0.03 (-0.02, 0.08) 0.30 1.26 (0.94; 1.69) 0.12

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per ma-
ternal early-pregnancy glucose concentrations in mmol/l. Values are ORs (95% CIs) that reflect the risk of NAFLD per maternal early-
pregnancy glucose concentrations in mmol/l. Basic model: adjusted for child sex and age 10 years at outcome follow-up measurements. 
Main model: basic model additionally adjusted for maternal ethnicity, education, child physical activity. Maternal BMI model: main 
model additionally adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main model additionally adjusted for 
maternal dyslipidemia in early pregnancy. Child metabolic markers at 6 years model: main model additionally adjusted for child insulin, 
total cholesterol, LDL and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child BMI model: main model additionally 
adjusted for child BMI at 10 years of age. Child visceral fat mass model: main model additionally adjusted for child MRI-measured vis-
ceral fat mass at 10 years of age. Child glucose concentrations model: main model additionally adjusted for child glucose concentrations 
at 10 years of age. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%. Abbreviations: BMI, Body Mass 
Index; NAFLD, non-alcoholic fatty liver disease; SDS, standard deviation score.
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Sensitivity analyses

When we repeated the main analyses by using insulin concentrations we observed largely the 
same patterns and tendencies as for glucose concentrations (Table S6). When we repeated the 
analyses with childhood liver fat accumulation categorized into ≤2.0% versus >2% we observed 
odds in similar direction but smaller as for maternal early-pregnancy glucose concentrations with 
non-alcoholic fatty liver disease (Table S7). No differences in findings were present when mothers 
with pre-existing diabetes or gestational diabetes or mothers with glucose measurements after 
14 weeks gestation were excluded from the analyses in both the full multi-ethnic group and the 
European ancestry only group (Table S8 and Table S9).

Discussion

In this prospective cohort study, we observed that maternal early-pregnancy glucose concentra-
tions were only among mothers of European ancestry associated with offspring non-alcoholic 
fatty liver disease. These associations were not explained by maternal pre-pregnancy BMI, and 
dyslipidemia. Also, childhood metabolic markers at 6 years, or BMI, visceral fat mass and glucose 

Table 3. Associations between maternal early-pregnancy glucose concentrations with childhood liver fat frac-
tion and non-alcoholic fatty liver disease in group of European ancestry

Liver Fat at School Age n = 1,426

Maternal early-pregnancy glucose mmol/l Difference liver fat 
fraction SDS

(95% Confidence 
Interval) p value

Odds ratio
NAFLD yes/no

(95% Confidence 
Interval) p value

Basic model 0.03 (-0.03; 0.08) 0.38 1.93 (1.31; 2.84) <0.01

Main confounder model 0.02 (-0.04; 0.08) 0.49 1.95 (1.32; 2.88) <0.01

Maternal body mass index model 0.00 (-0.06; 0.06) 0.90 1.86 (1.24; 2.78) <0.01

Maternal dyslipidemia model 0.02 (-0.04; 0.08) 0.49 1.92 (1.30; 2.86) <0.01

Child metabolic markers at 6 years model 0.02 (-0.04; 0.08) 0.50 1.96 (1.31; 2.95) <0.01

Child body mass index model 0.01 (-0.05; 0.06) 0.78 1.66 (1.04; 2.64) 0.03

Child visceral fat mass at 10 years model 0.00 (-0.05; 0.06) 0.89 1.82 (1.19; 2.79) <0.01

Child glucose concentrations model 0.02 (-0.04; 0.08) 0.50 1.95 (1.32; 2.88) <0.01

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per mater-
nal early-pregnancy glucose concentrations in mmol/l in mother-child pairs of European ancestry only. Values are ORs (95% CIs) that 
reflect the risk of NAFLD per maternal early-pregnancy glucose concentrations in mmol/l. Basic model: adjusted for child sex and age 
at outcome follow-up measurements. Main model: basic model additionally adjusted for maternal education, child physical activity. 
Maternal BMI model: main model additionally adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main model 
additionally adjusted for maternal dyslipidemia in early pregnancy. Child metabolic markers at 6 years model: main model additionally 
adjusted for child insulin, total cholesterol, LDL and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child BMI model: 
main model additionally adjusted for child BMI at 10 years of age. Child visceral fat mass model: main model additionally adjusted for 
child MRI-measured visceral fat mass at 10 years of age. Child glucose concentrations model: main model additionally adjusted for child 
glucose concentrations at 10 years of age. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%. Abbrevia-
tions: BMI, Body Mass Index; NAFLD, non-alcoholic fatty liver disease; SDS, standard deviation score.



2.4

Pregnancy glucose metabolism and child liver fat 101

concentrations at 10 years, did not explain the observed associations. No associations were 
observed in the full group.

Interpretation of main findings

Non-alcoholic fatty liver disease ranges from liver steatosis, to fibrosis, cirrhosis, and eventually 
end-stage liver disease.38 In adults, non-alcoholic fatty liver disease is associated with type 2 
diabetes, cardiovascular disease, dyslipidemia, and metabolic syndrome.17 32 38 39 We previously 
reported that elevated liver fat is associated with an adverse cardio-metabolic risk profile in chil-
dren.17 Gestational diabetes and hyperglycemia diagnosed in second half of pregnancy are associ-
ated with an altered offspring body fat composition, cardiovascular and metabolic health.4-6 36 40 
Studies in women with gestational diabetes showed an association with offspring markers of 
liver pathology.11 12 These findings, together with observations from animal studies, suggest that 
maternal gestational hyperglycemia might be related to offspring liver fat development.13-15 More 
specifically, early pregnancy might be a critical period for effects of intrauterine maternal glucose 
exposure on liver health, because the embryonic development of the metabolic systems and of 
the placenta already occurs in the first weeks after conception.41 Therefore, we hypothesized that 
higher maternal glucose concentrations across the full range in early pregnancy are associated 
with liver fat accumulation in offspring.

In this study, in children 10 years of age we did not observe that maternal early-pregnancy glu-
cose concentrations were associated with childhood liver fat accumulation and with risk of non-
alcoholic fatty liver disease. Because both glucose concentrations, liver fat and the associations 
between ethnic subgroups strongly differ, we performed analyses in the full multi-ethnic group 
and in the group of European ancestry only. In the European ancestry only group, the largest eth-
nic subgroup, we observed an almost 2-fold increase in odds of non-alcoholic fatty liver disease, 
independent of maternal pre-pregnancy BMI and dyslipidemia, childhood metabolic markers at 
6 years, or BMI, visceral fat mass and of glucose concentrations at 10 years. This may suggest 
that there is also an intrauterine effect of maternal early-pregnancy glucose concentrations on 
childhood liver fat accumulation through other pathways than through maternal pre-pregnancy 
or child BMI, or child glucose concentrations in this subgroup. Due to smaller sample sizes for the 
other individual ethnic subgroups, we could not test these associations in each ethnic subgroup 
separately. We did not observe associations of maternal early-pregnancy glucose concentrations 
with liver fat across the full range in the total study sample and in the largest ethnic subgroup. 
The lack of association in the total group might be due to a modifying effect of ethnicity with per 
ethnic subgroup opposite directions of effect estimates. The lack of association in the largest 
ethnic subgroup could be due to the moderate sample size, together with the relatively small 
variability in liver fat accumulation in this population of children. Further studies are needed to 
explore these associations among high-risk populations and evaluating liver fat accumulation in 
older offspring.
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The underlying pathogenic mechanisms behind the abnormal metabolic risk profile in offspring 
of mothers with gestational diabetes are largely unknown. Animal studies have suggested that in 
utero exposure to high glucose concentrations may induce ectopic fat storage.13-15 For instance, 
mouse models of maternal insulin resistance have shown impairment of gene expression involved 
in fatty acid oxidative capacity and lipogenesis in offspring liver.15 16 42 The accelerated hepatic 
fat storage in mouse offspring appear to persist into adulthood, suggesting a lasting impact of 
the maternal intrauterine environment on pathways of hepatic lipid metabolism.16 42 Another 
speculation is that the higher insulin resistance in the offspring of mothers with gestational dia-
betes is associated with higher liver fat accumulation, although the direction of effect is not yet 
defined.8 17 In mothers with gestational diabetes a higher risk for non-alcoholic liver fat disease 
after pregnancy is observed, supporting the hypothesis of a link between insulin resistance and 
liver fat accumulation.43

Given the high prevalence of both obesity and impaired glucose metabolism in preconcep-
tional women, these may represent pivotal targets if proven causal for public health in preventing 
offspring obesity and metabolic disease, like non-alcoholic fatty liver disease.1-3 Our findings 
emphasize the importance of developing preventive strategies before and in early pregnancy to 
improve liver and metabolic health outcomes in children. Further studies should characterize 
the maternal metabolic environment in early pregnancy to provide insights into the causality of 
early-life determinants of non-alcoholic fatty liver disease taking into account ethnic background.

Methodological considerations

The population-based prospective longitudinal design of this study together with the large sample 
size with data collection from early pregnancy onwards and the availability of MRI-measured liver 
fat fraction at 10 years of age are major strengths of this study. The children who underwent MRI 
measurements at 10 years of age constitute a subgroup of the full Generation R Study popula-
tion. This may have led to biased effect estimates if associations were different between those 
included and not included in the analyses, which seems unlikely since the non-response analysis 
showed hardly any differences. The prevalence of gestational diabetes in our sample was lower 
than expected (1.1% versus 2-5% in the general Dutch population44) likely due to the use of medi-
cal records after delivery to obtain information on the diagnosis of gestational diabetes and to 
lack of universal screening, which may have led to misclassification. The small number of children 
with non-alcoholic fatty liver disease is likely explained by the fact that we measured liver fat 
in a relatively healthy study population at a young age, which could have limited our statistical 
power to detect significant associations and may affect the generalizability of our findings. The 
main analyses focused on non-alcoholic fatty liver disease were based on only 60 in the full and 
25 children in the Europeans ancestry only group with MRI-diagnosed non-alcoholic fatty liver 
disease. Therefore, these results need to be interpreted carefully and need further replication. 
The blood samples in the study were random maternal glucose concentrations obtained once 
during pregnancy at non-fixed times throughout the day, which may have led to misclassification 
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of glucose concentrations. However, previous studies showed that random maternal glucose 
concentrations in pregnancy are related to increased risk of adverse outcomes in mothers and 
children.8 9 22 45 These associations were in similar directions as those for maternal fasting and 
postprandial glucose concentrations.35 46 Information on many covariates was available, yet some 
residual confounding may have influenced the results.

Conclusions

Maternal early-pregnancy glucose concentrations were among mothers of European ancestry 
associated with offspring non-alcoholic fatty liver disease. These associations were independent 
of maternal pre-pregnancy and childhood BMI, organ fat and metabolic markers. No associations 
were observed in the full multi-ethnic group. Further studies are needed to explore the causality 
of the observed associations. Optimizing maternal pre-pregnancy BMI and glucose concentra-
tions could be starting points for prevention strategies to improve liver health among future 
generations.
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Supplementary material
Table S1. Differences between groups of various ethnic backgrounds

Maternal ethnicity Glucose, mmol/l Liver fat fraction, % Non-alcoholic fatty liver disease

Total group (n = 2,141) 4.44 ± 0.8 2.00 (1.2, 5.2) 60 (2.8)

European

Dutch (n = 1,258) 4.42 ± 0.8 1.97 (1.2, 4.5) 23 (1.8)

Other European (n = 168) 4.29 ± 0.7 2.07 (1.2, 4.7) 2 (1.2)

Non-European

Cape Verdean (n = 98) 4.51 ± 0.9 2.22 (1.2, 8.4) 6 (6.1)

Other African (n = 21) 4.40 ± 0.7 2.11 (1.3, 4.8) 0 (0.0)

Dutch Antillean (n = 42) 4.46 ± 1.1 1.81 (1.3, 10.9) 1 (2.4)

Surinamese (n = 172) 4.48 ± 0.8 2.00 (1.2, 5.5) 6 (3.5)

American (n = 43) 4.30 ± 0.7 2.06 (1.3, 5.6) 1 (2.3)

Asian (n = 48) 4.85 ± 1.1 1.87 (1.3, 4.4) 0 (0.0)

Indonesian (n = 75) 4.44 ± 0.9 1.99 (1.2, 7.0) 4 (5.3)

Turkish (n = 117) 4.51 ± 0.8 2.45 (1.2, 13.8) 13 (11.1)

Moroccan (n = 95) 4.58 ± 0.9 2.03 (1.3, 8.9) 3 (3.2)

Oceanian (n = 4) 4.28 ± 0.8 1.78 (1.5, 3.2) 0 (0.0)

Values are observed and represent numbers (valid %), means ± SD, or medians (95% range).
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Table S2. Subject characteristics - European only group

Europeans only
n = 1,426

NAFLD no
n = 1,401

NAFLD yes
n = 25

p 
value

Maternal characteristics

Age at enrollment, years 31.7 ± 4.0 31.7 ± 4.0 31.1 ± 5.0 0.49

Gestational age at glucose/insulin 
measurement, weeks

12.8 (9.6, 17.0) 12.9 (9.6, 16.8) 12.4 (10.9, 17.0) 0.62

Prepregnancy body mass index, kg/m2 22.2 (18.1, 34.3) 22.2 (18.1, 31.3) 24.3 (18.1, 34.2) 0.05

Parity, nulliparous 901 (63.3) 513 (36.7) 10 (40.0) 0.73

Education, higher 923 (65.4) 914 (65.9) 9 (36.0) <0.01

Smoking during pregnancy, continued 217 (18.7) 215 (18.9) 2 (9.5) 0.28

Alcohol consumption, during pregnancy 414 (38.2) 407 (38.3) 7 (33.3) 0.64

Folic acid supplement use, yes 662 (70.6) 648 (70.4) 14 (77.8) 0.50

Daily energy intake, kcal/day 2,053 ± 587 2,055 ± 586 1,966 ± 651 0.51

Dyslipidemia 141 (9.9) 140 (10.0) 1 (4.0) 0.32

Glucose, mmol/l 4.4 ± 0.8 4.4 ± 0.8 5.0 ± 1.2 <0.01

Insulin, pmol/l 102.1 (19.2, 518.6) 102.1 (19.1, 440.7) 103.9 (19.8, 846.0) 0.15

Pre-existing Diabetes 2 (0.2) 2 (0.2) 0 (0) 0.85

Gestational Diabetes 15 (1.1) 15 (1.1) 0 (0) 0.61

Child characteristics

Sex, female 722 (50.6) 708 (50.5) 14 (56.0) 0.59

Birth weight, grams 3,500 ± 540 3,500 ± 540 3,447 ± 521 0.62

Gestational age at birth, weeks 40.3 (36.0, 42.4) 40.3 (36.0, 42.1) 40.0 (37.0, 42.6) 0.62

Ever breastfed, yes 1,195 (92.1) 1,177 (92.0) 18 (94.7) 0.66

Insulin at 6 years, pmol/l 115.1 (18.5, 394.3) 114.1 (18.3, 394.5) 155.4 (60.3, 398.2) 0.06

Total cholesterol at 6 years, mmol/l 4.2 ± 0.6 4.2 ± 0.6 4.4 ± 0.8 0.15

LDL cholesterol at 6 years, mmol/l 2.3 ± 0.6 2.3 ± 0.6 2.5 ± 0.7 0.45

HDL cholesterol at 6 years, mmol/l 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 0.34

Triglycerides at 6 years, mmol/l 1.0 (0.4, 2.3) 1.0 (0.4, 2.3) 0.9 (0.4, 2.4) 0.60

Age 10 years at outcome follow-up 
measurements, years

9.8 ± 0.3 9.8 ± 0.3 9.8 ± 0.3 0.82

Playing sports at 10 years, hours/day 1.4 (0.4, 3.5) 1.4 (0.4, 3.5) 1.2 (0.1, 2.5) <0.01

Screen time at 10 years, ≥2 hours/day 552 (45.9) 538 (45.6) 14 (63.6) 0.09

Body mass index at 10 years, kg/m2 16.6 (14.0, 22.6) 16.6 (14.0, 22.0) 21.3 (16.2, 28.6) <0.01

Visceral fat mass at 10 years, grams 371.7 (168, 981) 369.9 (168, 920) 782,1 (301, 1,360) <0.01

Glucose at 10 years, mmol/l 5.3 ± 1.0 5.3 ± 1.0 5.2 ± 0.8 0.76

Insulin at 10 years, pmol/l 172.1 (34.9, 577,9) 171.2 (34.8, 573.7) 212.8 (40.8, 826.0) 0.15

Liver fat fraction at 10 years, % 2.0 (1.2, 4.5) 2.0 (1.2, 4.0) 6.2 (5.1, 14.0) <0.01

Liver fat dichotomized, high ≥2.0% 687 (48.2) 662 (47.3) 25 (100.0) <0.01

Non-alcoholic fatty liver disease 25 (1.8) - - -

Values are observed and represent numbers (valid %), means ± SD, or medians (95% range).
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Table S3. Subject characteristics - full multi-ethnic group versus Europeans only group

Total group
n = 2,168

Europeans only
n = 1,426

Maternal characteristics

Age at enrollment, years 30.8 ± 4.6 31.7 ± 4.0

Gestational age at glucose/insulin measurement, weeks 13.1 (9.6, 17.2) 12.8 (9.6, 17.0)

Pre-pregnancy body mass index, kg/m2 22.5 (18.1, 35.2) 22.2 (18.1, 34.3)

Parity, nulliparous 1,317 (61.0) 901 (63.3)

Ethnicity, European 1,426 (66.6) -

Education, higher 1,115 (53.6) 923 (65.4)

Smoking during pregnancy, continued 334 (18.7) 217 (18.7)

Alcohol consumption, during pregnancy 854 (51.1) 554 (51.1)

Folic acid supplement use, yes 1,024 (71.4) 662 (70.6)

Daily energy intake, kcal/day 2,060 ± 572 2053 ± 587

Glucose, mmol/l 4.4 ± 0.8 4.4 ± 0.8

Insulin, pmol/l 113.1 (19.8, 669.6) 102.1 (19.2, 518.6)

Pre-existing Diabetes 6 (0.3) 2 (0.2)

Gestational Diabetes 22 (1.1) 15 (1.1)

Child characteristics

Sex, female 1,113 (51.3) 722 (50.6)

Birth weight, grams 3,447 ± 548 3,500 ± 540

Gestational age at birth, weeks 40.3 (36.0, 42.4) 40.3 (36.0, 42.4)

Ever breastfed, yes 1,761 (93.0) 1,195 (92.1)

Age at outcome follow-up measurements, years 9.8 ± 0.4 9.8 ± 0.3

Playing sports, hours/day 1.3 (0.3, 3.5) 1.4 (0.4, 3.5)

Screen time, ≥2 hours/day 852 (51.5) 552 (45.9)

Body mass index, kg/m2 16.9 (14.0, 24.3) 16.6 (14.0, 22.6)

Glucose, mmol/l 5.2 ± 0.9 5.3 ± 1.0

Insulin, pmol/l 180.8 (37.1, 625.7) 172.1 (34.9, 577,9)

Liver fat fraction, % 2.0 (1.2, 5.2) 2.0 (1.2, 4.5)

Liver fat dichotomized, high ≥2.0% 1,086 (50.1) 687 (48.2)

Non-alcoholic fatty liver disease 60 (2.8) 25 (1.8)

Values are observed and represent numbers (valid %), means ± SD, or medians (95% range). Number of missings per covariate: mater-
nal ethnicity, n = 27 (1.2%); maternal educational level, n = 86 (4.0%); smoking during pregnancy, n = 384 (17.7%); alcohol consump-
tion, n = 497 (22.9%); folic acid supplement use during pregnancy, n = 733 (33.8%); pre-existing diabetes n = 254 (11.7%); gestational 
diabetes, n = 133 (6.1%); ever breastfed, n = 274 (12.6%); screen time, n = 514 (23.7%). 
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Table S4. Correlation coefficients between maternal glucose and insulin concentrations, childhood liver fat 
fraction and non-alcoholic fatty liver disease, and body mass index of mother and child

Maternal
glucose

Maternal
insulin

Maternal
pre-pregnancy
BMI

Child liver
fat

Child
NAFLD

Child
BMI

Maternal glucose 1 0.53* 0.15* 0.01 0.02 0.03

Maternal insulin 0.53* 1 0.23* 0.05** 0.04 0.07*

Maternal pre-pregnancy BMI 0.15* 0.23* 1 0.18* 0.09* 0.35*

Child liver fat 0.01 0.05** 0.18* 1 0.28* 0.37*

Child NAFLD 0.02 0.04 0.09* 0.28* 1 0.19*

Child BMI 0.03 0.07* 0.35* 0.37* 0.19* 1

Values are Spearman correlation coefficients.*P value <0.01, **P value <0.05.

Table S5. Comparison of characteristics between mothers and children with and without outcome measure-
ments 

Participants Non-participants

n = 2,168 n = 613 p value

Maternal characteristics

Age at enrollment, years 30.8 ± 4.6 30.5 ± 5.0 0.15

Gestational age at glucose/insulin measurement, 
weeks

13.1 (9.6, 17.2) 13.2 (9.8, 17.6) 0.06

Pre-pregnancy body mass index, kg/m2 22.5 (18.1, 35.2) 22.6 (18.1, 33.6) 0.83

Parity, nulliparous 1,317 (61.0) 367 (60.5) 0.80

Ethnicity, European 1,426 (66.6) 379 (62.6) 0.07

Education, higher 1,115 (53.6) 266 (46.0) <0.01

Smoking during pregnancy, continued 334 (18.7) 92 (17.8) 0.63

Alcohol consumption, during pregnancy 854 (51.1) 226 (47.0) 0.11

Folic acid supplement use, yes 1,024 (71.4) 300 (70.8) 0.81

Daily energy intake, kcal/day 2,060 ± 572 2,015 ± 550 0.16

Glucose, mmol/l 4.4 ± 0.8 4.4 ± 0.8 0.74

Insulin, pmol/l 113.1 (19.8, 669.6) 116.7 (19.7, 575.6) 0.75

Pre-existing Diabetes 6 (0.3) 0 (0.0) 0.19

Gestational Diabetes 22 (1.1) 7 (1.2) 0.78

Child characteristics

Sex, female 1,113 (51.3) 294 (48.0) 0.14

Birth weight, grams 3,447 ± 548 3,421 ± 530 0.29

Gestational age at birth, weeks 40.3 (36.0, 42.4) 40.3 (36.3, 42.3) 0.90

Ever breastfed, yes 1,761 (93.0) 462 (93.0) 0.99

Values are observed and represent numbers (valid %). means ± SD, or medians (95% range). Differences were tested using Student t 
tests and Mann-Whitney tests for normally and non-normally distributed variables, respectively, and χ2 test was used for dichotomous 
variables. Number of missings per covariate in participants: maternal ethnicity, n = 27 (1.2%); maternal educational level, n = 86 (4.0%); 
smoking during pregnancy, n = 384 (17.7%); alcohol consumption, n = 497 (22.9%); folic acid supplement use during pregnancy, n = 
733 (33.8%); pre-existing diabetes n = 254 (11.7%); gestational diabetes, n = 133 (6.1%); ever breastfed, n = 274 (12.6%); screen time, 
n = 514 (23.7%). 
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Table S6. Associations between maternal early-pregnancy glucose and insulin concentrations SDS with child-
hood liver fat fraction and non-alcoholic fatty liver disease

Liver Fat at School Age n = 2,168

Maternal early-pregnancy glucose SDS Difference liver fat 
fraction SDS

(95% Confidence 
Interval) p value

Odds ratio NAFLD 
yes/no

(95% Confidence 
Interval) p value

Basic model 0.03 (0.01; 0.06) 0.12 1.22 (1.08; 1.37) 0.11

Main confounder model 0.02 (-0.02; 0.07) 0.27 1.17 (0.92; 1.48) 0.21

Maternal body mass index model 0.00 (-0.04; 0.05) 0.84 1.15 (0.89; 1.48) 0.30

Maternal dyslipidemia model 0.02 (-0.02; 0.07) 0.29 1.20 (0.94; 1.54) 0.14

Child metabolic markers at 6 years model 0.02 (-0.02; 0.07) 0.27 1.20 (0.94; 1.54) 0.15

Child body mass index at 10 years model 0.01 (-0.03; 0.05) 0.68 1.11 (0.86; 1.44) 0.42

Child visceral fat mass at 10 years model 0.01 (-0.02; 0.05) 0.47 1.25 (0.95; 1.64) 0.11

Child glucose concentrations at 10 years model 0.02 (-0.02; 0.07) 0.30 1.22 (0.95; 1.56) 0.12

Maternal early-pregnancy insulin SDS

Basic model 0.06 (0.02; 0.10) <0.01 1.23 (0.95; 1.59) 0.11

Main confounder model 0.03 (-0.01; 0.08) 0.12 1.09 (0.84; 1.41) 0.51

Maternal body mass index model 0.00 (-0.04; 0.05) 0.85 1.01 (0.78; 1.31) 0.96

Maternal dyslipidemia model 0.02 (-0.02; 0.07) 0.30 1.06 (0.81; 1.38) 0.69

Child metabolic markers at 6 years model 0.03 (-0.01; 0.08) 0.15 1.06 (0.81; 1.39) 0.65

Child body mass index at 10 years model 0.01 (-0.03; 0.05) 0.52 0.95 (0.73; 1.25) 0.73

Child visceral fat mass at 10 years model 0.02 (-0.02; 0.05) 0.45 1.07 (0.80; 1.43) 0.64

Child glucose concentrations at 10 years model 0.03 (-0.01; 0.07) 0.16 1.06 (0.81; 1.39) 0.66

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per ma-
ternal early-pregnancy glucose or insulin concentrations in SDS. Values are ORs (95% CIs) that reflect the risk of NAFLD at 10 years of 
age per maternal early-pregnancy glucose or insulin concentrations in SDS. Basic model: adjusted for child sex and age 10 years at 
outcome follow-up measurements. Main model: basic model additionally adjusted for maternal ethnicity, education, child physical 
activity. Maternal BMI model: main model additionally adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main 
model additionally adjusted for maternal dyslipidemia in early pregnancy. Child metabolic markers at 6 years model: main model ad-
ditionally adjusted for child insulin, total-cholesterol, LDL and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child 
BMI model: main model additionally adjusted for child BMI at 10 years of age. Child visceral fat mass model: main model additionally 
adjusted for child MRI-measured visceral fat mass at 10 years of age. Child glucose concentrations model: main model additionally 
adjusted for child glucose concentrations at 10 years of age. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat 
<5.0%. Abbreviations: BMI, Body Mass Index; NAFLD, non-alcoholic fatty liver disease; SDS, standard deviation score.
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Table S7. Associations between maternal early-pregnancy glucose with childhood liver fat fraction below or 
above 2% liver fat

Liver Fat at School Age
n = 2,168

Maternal early-pregnancy glucose mmol/l Odds ratio Liver fat >2% yes/no
(95% Confidence Interval) p value

Basic model 1.05 (1.00; 1.11) 0.34

Main confounder model 1.04 (0.94; 1.15) 0.49

Maternal body mass index model 1.00 (0.90; 1.11) 0.95

Maternal dyslipidemia model 1.04 (0.94; 1.14) 0.50

Child metabolic markers at 6 years model 1.04 (0.94; 1.15) 0.48

Child body mass index model 1.01 (0.91; 1.12) 0.89

Child visceral fat mass at 10 years model 1.02 (0.92; 1.14) 0.69

Child glucose concentrations model 1.03 (0.92; 1.15) 0.66

Values are ORs (95% CIs) that reflect the risk of more than 2% liver fat at 10 years of age per maternal early-pregnancy glucose con-
centrations in mmol/l. Basic model: adjusted for child sex and age 10 years at outcome follow-up measurements. Main model: basic 
model additionally adjusted for maternal ethnicity, education, child physical activity. Maternal BMI model: main model additionally 
adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main model additionally adjusted for maternal dyslipidemia 
in early pregnancy. Child metabolic markers at 6 years model: main model additionally adjusted for child insulin, total-cholesterol, LDL 
and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child BMI model: main model additionally adjusted for child 
BMI at 10 years of age. Child visceral fat mass model: main model additionally adjusted for child MRI-measured visceral fat mass at 
10 years of age. Child glucose concentrations model: main model additionally adjusted for child glucose concentrations at 10 years of 
age. Liver fat >2% was defined as “yes” when liver fat >2.0% and as “no” when liver fat ≤2.0%. Abbreviations: BMI, Body Mass Index; 
SDS, standard deviation score.
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Table S8. Sensitivity analyses on the associations between maternal early-pregnancy glucose with childhood 
liver fat fraction and non-alcoholic fatty liver disease among the full multi-ethnic group

Liver Fat at School Age

Maternal early-pregnancy glucose mmol/l Difference liver fat 
fraction SDS

(95% Confidence 
Interval) p value

Odds ratio NAFLD 
yes/no

(95% Confidence 
Interval) p value

Women without pre-existing or gestational diabetes (n = 1,771)

Basic model 0.04 (0.00; 0.08) 0.15 1.20 (1.02; 1.41) 0.27

Main confounder model 0.03 (-0.03; 0.08) 0.38 1.15 (0.83; 1.60) 0.39

Maternal body mass index model 0.00 (-0.05; 0.06) 0.91 1.09 (0.77; 1.53) 0.63

Maternal dyslipidemia model 0.02 (-0.03; 0.08) 0.40 1.15 (0.83; 1.60) 0.39

Child metabolic markers at 6 years model 0.03 (-0.03; 0.08) 0.36 1.16 (0.83; 1.62) 0.38

Child body mass index model 0.01 (-0.04; 0.06) 0.68 1.08 (0.77; 1.50) 0.66

Child visceral fat mass at 10 years model 0.02 (-0.03; 0.07) 0.37 1.21 (0.85; 1.74) 0.29

Child glucose concentrations model 0.02 (-0.03; 0.08) 0.40 1.18 (0.85; 1.64) 0.34

Women included before 14 weeks gestation (n = 1,466)

Basic model 0.03 (0.00; 0.06) 0.40 1.20 (1.00; 1.45) 0.32

Main confounder model 0.02 (-0.04; 0.08) 0.48 1.23 (0.85; 1.78) 0.27

Maternal body mass index model 0.00 (-0.06; 0.06) 0.95 1.15 (0.78; 1.69) 0.48

Maternal dyslipidemia model 0.02 (-0.04; 0.08) 0.53 1.22 (0.85; 1.77) 0.29

Child metabolic markers at 6 years model 0.02 (-0.04; 0.08) 0.48 1.25 (0.86; 1.81) 0.25

Child body mass index model 0.01 (-0.05; 0.06) 0.74 1.12 (0.78; 1.63) 0.54

Child visceral fat mass at 10 years model 0.01 (-0.05; 0.06) 0.78 1.22 (0.82; 1.81) 0.34

Child glucose concentrations model 0.02 (-0.04; 0.08) 0.50 1.25 (0.86; 1.81) 0.24

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per mater-
nal early-pregnancy glucose concentrations in mmol/l. Values are ORs (95% CIs) that reflect the risk of NAFLD at 10 years of age per 
maternal early-pregnancy glucose in mmol/l. Basic model: adjusted for child sex and age 10 years at outcome follow-up measurements. 
Main model: basic model additionally adjusted for maternal ethnicity, education, child physical activity. Maternal BMI model: main 
model additionally adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main model additionally adjusted for 
maternal dyslipidemia in early pregnancy. Child metabolic markers at 6 years model: main model additionally adjusted for child insulin, 
total-cholesterol, LDL and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child BMI model: main model additionally 
adjusted for child BMI at 10 years of age. Child visceral fat mass model: main model additionally adjusted for child MRI-measured vis-
ceral fat mass at 10 years of age. Child glucose concentrations model: main model additionally adjusted for child glucose concentrations 
at 10 years of age. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%. Abbreviations: BMI, Body Mass 
Index; NAFLD, non-alcoholic fatty liver disease; SDS, standard deviation score.
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Table S9. Sensitivity analyses on the associations between maternal early-pregnancy glucose with childhood 
liver fat fraction and non-alcoholic fatty liver disease among the European ancestry only group

Liver Fat at School Age

Maternal early-pregnancy glucose mmol/l Difference liver fat 
fraction SDS

(95% Confidence 
Interval) p value

Odds ratio NAFLD 
yes/no

(95% Confidence 
Interval) p value

Women without pre-existing or gestational diabetes (n = 1,184)

Basic model 0.03 (-0.03; 0.10) 0.29 1.95 (1.29; 2.97) <0.01

Main confounder model 0.03 (-0.03; 0.09) 0.31 1.99 (1.30; 3.05) <0.01

Maternal body mass index model 0.01 (-0.05; 0.07) 0.69 1.96 (1.27; 3.01) <0.01

Maternal dyslipidemia model 0.03 (-0.03; 0.09) 0.36 1.98 (1.29; 3.03) <0.01

Child metabolic markers at 6 years model 0.03 (-0.03; 0.09) 0.34 2.02 (1.30; 3.12) <0.01

Child body mass index model 0.02 (-0.04; 0.07) 0.62 1.67 (1.02; 2.72) 0.04

Child visceral fat mass at 10 years model 0.02 (-0.04; 0.08) 0.51 1.91 (1.21; 3.01) <0.01

Child glucose concentrations model 0.03 (-0.03; 0.09) 0.36 2.00 (1.30; 3.07) <0.01

Women included before 14 weeks gestation (n = 1,037)

Basic model 0.01 (-0.06; 0.08) 0.76 1.81 (1.18; 2.77) <0.01

Main confounder model 0.01 (-0.06; 0.07) 0.82 1.80 (1.17; 2.76) <0.01

Maternal body mass index model -0.01 (-0.08; 0.05) 0.69 1.72 (1.10; 2.69) 0.02

Maternal dyslipidemia model 0.01 (-0.06; 0.07) 0.85 1.86 (1.20; 2.89) <0.01

Child metabolic markers at 6 years model 0.01 (-0.06; 0.07) 0.86 1.88 (1.20; 2.95) <0.01

Child body mass index model -0.01 (-0.07; 0.06) 0.87 1.58 (0.95; 2.62) 0.08

Child visceral fat mass at 10 years model -0.01 (-0.07; 0.05) 0.71 1.70 (1.07; 2.68) 0.03

Child glucose concentrations model 0.01 (-0.06; 0.07) 0.86 1.82 (1.18; 2.81) <0.01

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per mater-
nal early-pregnancy glucose concentrations in mmol/l in mother-child pairs of European ancestry only. Values are ORs (95% CIs) that 
reflect the risk of NAFLD per maternal early-pregnancy glucose concentrations in mmol/l. Basic model: adjusted for child sex and age 
at outcome follow-up measurements. Main model: basic model additionally adjusted for maternal education, child physical activity. 
Maternal BMI model: main model additionally adjusted for maternal pre-pregnancy BMI. Maternal dyslipidemia model: main model 
additionally adjusted for maternal dyslipidemia in early pregnancy. Child metabolic markers at 6 years model: main model additionally 
adjusted for child insulin, total-cholesterol, LDL and HDL-cholesterol and triglycerides concentrations at 6 years of age. Child BMI mod-
el: main model additionally adjusted for child BMI at 10 years of age. Child visceral fat mass model: main model additionally adjusted 
for child MRI-measured visceral fat mass at 10 years of age. Child glucose concentrations model: main model additionally adjusted for 
child glucose concentrations at 10 years of age. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%. 
Abbreviations: BMI, Body Mass Index; NAFLD, non-alcoholic fatty liver disease; SDS, standard deviation score.
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Figure s1. Directed Acyclic Graph

 
Covariate selecti on was primarily based on the Directed Acyclic Graph and subsequent on backward model selecti on analysis. The 
fi nal model included child sex and age 10 years at follow-up measurements, maternal ethnicity, educati on, and child physical acti vity. 
We selected maternal ethnicity, educati on, smoking, alcohol consumpti on, folic acid supplement use, and child physical acti vity and 
screen ti me in the model, based on previous literature, their associati on with both the exposure and the outcome or change in eff ect 
esti mates of >10% in the basic model(1, 2). Thereaft er, we selected variables for the main model using backward selecti on and stopped 
when all p values <0.20(3). Maternal age, parity, and total daily caloric intake, and breastf eeding were not included in the main model 
as they did not aff ect the observed associati ons. Maternal smoking, alcohol consumpti on, folic acid supplement and child screen ti me 
were removed with backward selecti on from the main model having a p value >0.20(3). To observe the added confounding eff ect of 
maternal pre-pregnancy BMI in the observed associati ons we created an extra model, the maternal BMI model additi onally adjusted 
for maternal pre-pregnancy BMI. Previous studies have suggested that maternal pre-pregnancy BMI largely explains the associati ons 
between gestati onal diabetes and off spring outcomes(4, 5). Next to this, we assessed the possible confounding eff ect of maternal 
dyslipidemia in an extra model, the maternal dyslipidemia model: main model additi onally adjusted for maternal dyslipidemia. As we 
showed in our Directed Acyclic Graph, child metabolic markers at 6 years of age, BMI at 10 years, visceral fat mass at 10 years of age or 
child glucose concentrati ons at 10 years of age may mediate potenti al associati ons between maternal glucose concentrati ons and liver 
fat accumulati on at school age. To explore the mediati ng role of child metabolic markers at 6 years of age, BMI at 10 years, visceral fat 
mass at 10 years As we showed in our Directed Acyclic Graph, child BMI at 10 years of age or child glucose concentrati ons at 10 years of 
age may mediate potenti al associati ons between maternal glucose concentrati ons and liver fat accumulati on at school age. To explore 
the mediati ng role of child BMI at 10 years of age and child glucose concentrati ons at 10 years of age, we additi onally corrected for 
these characteristi cs in separate models.
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Abstract

Background: Sugar-containing beverage intake is a major risk for obesity in both children and 
adults and seems to be associated with non-alcoholic fatty liver disease in adults. To examine 
the associations of sugar-containing beverage intake at 1 year with liver fat accumulation and 
non-alcoholic fatty liver disease among school age children.
Methods: In a population-based prospective cohort study, we assessed sugar-containing bever-
age intake at 1 year with a validated Food Frequency Questionnaire among 1,940 infants. Liver 
fat fraction and non-alcoholic fatty liver disease (liver fat fraction ≥5.0%) were assessed with 
Magnetic Resonance Imaging.
Results: Higher sugar-containing beverage intake at 1 year was not associated with higher liver 
fat accumulation at 10 years (p value for trend 0.38). However, as compared to infants with <1.0 
serving/day, those with >2.0 servings/day had the highest odds of non-alcoholic fatty liver disease 
(Odds Ratio 3.02 (95% Confidence Interval 1.34, 6.83)). These associations were largely indepen-
dent by sugar-containing beverage intake and body mass index at school age. Stratified analyses 
suggested stronger associations of sugar-containing beverage intake at 1 year with non-alcoholic 
fatty liver disease at 10 years among children of mothers with low educational attainment and 
among overweight or obese children.
Conclusions: Higher sugar-containing beverage intake in infancy was associated with non-alco-
holic fatty liver disease in school age children, independent of sugar-containing beverage intake 
and body mass index at school age. Limiting the intake of sugar-containing beverages already in 
infancy may be helpful in preventing liver steatosis at school age.
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Introduction

High intake of sugar-containing beverage is a strong risk factor for obesity across the life course.1-3 
Results from prospective studies show that sugar-containing beverage intake already in infancy is 
related to body mass index (BMI) in adulthood.3-5 Also, findings from randomized controlled trials 
suggest that higher consumption of sugar-containing beverages increases adiposity in children.6-8 
Recent studies in adults observed that higher intake of sugar-containing beverages is not only 
associated with general adiposity, but also with increased liver fat accumulation.9 10 Increased 
liver fat accumulation and non-alcoholic fatty liver disease reflect a heterogeneous spectrum, 
ranging from liver steatosis, to steatohepatitis, fibrosis, cirrhosis, and eventually end-stage liver 
disease.11 We have recently reported associations of liver fat across the full spectrum with risk 
factors for cardio-metabolic disease already at school age.12 Early life exposures may contribute 
to the development not only of obesity, but also of liver fat accumulation and non-alcoholic fatty 
liver disease.11 13 14 We hypothesized that intake of sugar-containing beverages in infancy is associ-
ated with liver fat accumulation at school age.

We examined in a population-based prospective cohort study among 1,940 children the as-
sociations of sugar-containing beverages intake at age 1 year with liver fat accumulation and 
non-alcoholic fatty liver disease assessed with magnetic resonance imaging (MRI) at 10 years. 
We additionally explored whether any association was explained by socio-demographic, lifestyle 
factors, or sugar-containing beverage intake and BMI at school age.

Methods

Study population

This study was embedded in the Generation R Study, a population-based prospective cohort from 
early fetal life onwards, based in Rotterdam, the Netherlands.15 The study has been approved 
by the Medical Ethical Committee of the Erasmus University Medical Center in Rotterdam (MEC 
198.782/2001/31). Written informed consent was obtained from all parents.15 All children were 
born between April 2002 and January 2006. The infant food-frequency questionnaire (FFQ) was 
implemented at a later stage during the study, therefore this study was performed in a subgroup 
of the total population.16 Out of the 5,088 mothers who received the FFQ, 3,643 completed it. 
In total, 3,614 infants had valid information on dietary intake assessed by the FFQ at the age of 
1 year. A subgroup of these children were invited for MRI measurements at age 10 years. The 
population for analysis comprised 1,940 children (Figure 1).

Intake of sugar-containing beverages

Infant sugar-containing beverage intake was assessed at a mean age of 13.6 months (standard 
deviation (SD) 1.8). Parents of the children completed the FFQ, using the last month as reference 



122 Chapter 3.1

period. The 211-item semi-quantitative FFQ was designed in cooperation with the division of 
Human Nutrition of Wageningen University, the Netherlands, and based on an existing validated 
FFQ.17 The FFQ was modified to foods frequently consumed during early life, according to a 
National Dutch food consumption survey among 941 Dutch children aged 9 – 18 months.16 The 
intraclass correlation coefficient for sugar-containing beverage intake estimated from 3-day re-
calls and the FFQ was calculated in a validation study to be 0.76.3 Total sugar-containing beverage 
intake included intake of fruit juices, fruit concentrates, soft drinks and lemonades. As previously 
defined, we converted the intake of sugar-containing beverages consumption into the number 
of servings per day, with 1 serving equaling 150 g (NEVO-2011).18 The consumption of sugar-
containing beverages was assessed continuously and categorized into three categories: low <1.0 
serving/day, medium 1.0 – 2.0 servings/day, and high >2.0 servings/day. The reference group was 
<1.0 serving/day based on the cut-off in the diet quality score for preschool children.19

Liver fat at 10 years

As previously described, we measured liver fat using a 3.0 Tesla MRI scanner (Discovery MR750w, 
GE Healthcare, Milwaukee, Wisconsin, United States).15 20-22 The children wore light clothing 
without metal objects while undergoing the body scan. A liver fat scan was performed using a 
single-breath-hold, 3D volume and a special 3-point proton density weighted Dixon technique 
(IDEAL IQ) for generating a precise liver fat fraction image.23 The IDEAL IQ scan is based on a care-
fully tuned 6-echo echo planar imaging acquisition. The obtained fat-fraction maps were analyzed 
by the Precision Image Analysis (PIA, Kirkland, Washington, United States) using the sliceOmatic 
(TomoVision, Magog, Canada) software package. All extraneous structures and any image artifacts 
were removed manually.24 Liver fat fraction was determined by taking four samples of at least 

Figure 1. Study participants flowchart

Children with information on dietary intake in 
infancy

n = 3,643
Excluded due to invalid data on dietary intake 
in infancy

n = 29

Children with valid information on dietary intake 
and sugar-containing beverage intake in infancy 
and liver fat fraction at 10 years of age

n = 1,940

Excluded due to lack of data on liver fat 
fraction at 10 years of age

n = 1,674

Children with valid information on dietary intake 
and sugar-containing beverage intake in infancy

n = 3,614
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4cm2 from the central portion of the hepatic volume. Subsequently, the mean signal intensities 
were averaged to generate an overall mean liver fat estimation. Liver fat measured with IDEAL 
IQ using MRI is reproducible, highly precise and validated in adults.25 26 As previously described, 
non-alcoholic fatty liver disease was defined as liver fat ≥5.0%.20 26 27

Covariates

At enrolment in the study, we obtained information on maternal age, parity, education level, 
smoking, net household income and pre-pregnancy weight by questionnaires. We measured 
maternal height and calculated pre-pregnancy BMI. Information on child age, sex and birth 
weight was obtained from medical records. Child´s ethnicity was obtained by questionnaires and 
was defined based on country of birth of the parents.28 We categorized ethnicity into European 
(Dutch and other European) versus non-European (African (Cape Verdean, other African, Dutch 
Antillean, and Surinamese-Creole), American, Asian (Indonesian, other Asian, Surinamese-Hindu 
and Surinamese-unspecified), Turkish, Moroccan, Oceanian). At the 10-year follow-up visit, we 
measured childhood height and weight, both without shoes and heavy clothing, calculated BMI 
and further calculated sex- and age-adjusted childhood BMI standard deviation scores (SDS) based 
on Dutch reference growth charts (Growth Analyzer 4.0).29 Childhood BMI was categorized into 
normal weight versus overweight or obesity.30 Physical activity and screen time were assessed 
with questionnaires at school age.31 The child diet quality score for preschool children was used, 
previously calculated with information from the FFQ at 1 year of age.19 Sugar-containing beverage 
intake at the age of 8 years was assessed with the validated 71-item semi-quantitative FFQ.32 33 
The Dutch 2015 Guidelines for a Healthy Diet were used to calculate energy and nutrient intake 
at the age of 8 years.34

Statistical analysis

First, we conducted a non-response analysis among infants with a valid FFQ, comparing children 
with and those without liver MRI scans with Student’s t-tests, Mann-Whitney tests and Chi-
square tests. Second, we examined the associations of sugar-containing beverage intake with 
liver fat accumulation using linear regression models. Third, we used logistic regression models 
to assess the associations of sugar-containing beverage intake with the odds of non-alcoholic 
fatty liver disease. Analyses were performed using sugar-containing beverage intake as a con-
tinuous measure and categorized (low <1.0 serving/day (reference); medium 1.0 – 2.0 servings/
day; and high >2.0 servings/day). The basic model was adjusted for age at the MRI visit, sex and 
total energy intake at 1 year; the confounder model was additionally adjusted for maternal pre-
pregnancy BMI, education and net household income, child ethnicity, physical activity and screen 
time; and the mediator model was additionally adjusted for sugar-containing beverage intake at 
8 years and BMI at 10 years of age. Included covariates were based on previous studies, strong 
correlations with consumption of sugar-containing beverages and with liver fat accumulation, 
changes in effect estimates of >10% and based on the Directed Acyclic Graph we constructed with 
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these covariates (Supporting Fig. S1).10 35 36 As secondary analysis, we examined the associations 
of sugar-containing beverage intake at 8 years with liver fat accumulation at 10 years using similar 
models, with adjustment for total energy intake at 8 years. The distribution of liver fat was skewed 
and natural log-transformed values were used in all linear regression analyses. To assess whether 
the associations differed by type of sugar-containing beverage intake, we repeated the analyses 
separately for intake of fruit juice and for intake of soft drinks and lemonade. Based on previous 
findings, we hypothesized that the association of sugar-containing beverage intake with liver fat 
accumulation might differ by maternal educational level.36 Since we observed a statistically sig-
nificant interactions between sugar-containing beverage intake at 1 year with maternal education 
and with childhood BMI, we performed additional stratified analyses.12 36 We did not observe a 
statistically significant interaction between sugar-containing beverage intake at 1 year with child 
sex.3 35 As sensitivity analyses, we first repeated the confounder model with sugar-containing 
beverage intake standardized for total daily energy intake using the residual method and without 
adjustment for total daily energy intake as a confounder, since energy standardization could pos-
sibly reduce the measurement error.37 Second, we examined the associations of sugar-containing 
beverage intake at 1 year with liver fat accumulation among children of Dutch ethnicity only, 
and among singleton children only. Missing data in the covariates were multiple-imputed using 
Markov chain Monte Carlo approach. Five imputed datasets were created and analyzed together. 
All statistical analyses were performed using the Statistical Package of Social Sciences version 25.0 
for Windows (SPSS IBM, Chicago, Illinois, United States).

Results

Subject characteristics

Table 1 shows that the median sugar-containing beverage intake at 1 year was 0.9 serving per 
day (95% range 0.0 – 3.7). The median liver fat fraction was 2.0% (95% range 1.2 – 4.6), 1.9% 
(95% range 1.2 – 4.3) and 2.0% (95% range 1.2 – 6.1) in the groups with low, medium and high 
sugar-containing beverage intake at 1 year, respectively. Table S1 shows that children without 
liver fat measurement were less often European and had higher total daily energy intake at 1 
year. Although total sugar-containing beverage intake at 1 year and at 8 years was similar between 
study participants and non-participants, fruit juice intake at 1 year was slightly higher in non-
participating infants.

Sugar-containing beverage intake in infancy and liver fat accumulation

Figure 2 shows that the distribution of liver fat fraction at 10 years differed per infant sugar-
containing beverage intake category. The percentage of children with liver fat fraction of ≥5.0% 
liver fat increased from 1.4% (n = 14/1,015) in the low intake group to 4.0% (n = 14/353) in the 
high intake group. After adjusting for confounders, sugar-containing beverage intake at 1 year 
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Table 1. Subject characteristics

Total group Sugar-containing beverage intake in infancy

n = 1,940

Low
<1.0 
serving/day
n = 1,015

Medium
1.0-2.0 
servings/day
n = 572

High
>2.0 servings/
day
n = 353

Maternal characteristics

Age at enrollment, years 31.8 ± 4.3 32.1 ± 4.3 31.5 ± 4.2 31.4 ± 4.7

Pre-pregnancy BMI, kg/m2 23.4 ± 4.0 23.2 ± 3.8 23.6 ± 4.3 23.5 ± 3.9

Parity, nulliparous 1,154 (61.1) 604 (61.2) 343 (61.5) 207 (60.3)

Education, higher 1,181 (62.4) 643 (65.3) 341 (60.9) 197 (56.8)

Smoking during pregnancy, continued 188 (10.8) 84 (9.1) 51 (10.0) 53 (16.8)

Net household income, ≥2,200 euros/month 1,176 (70.4) 615 (70.9) 356 (71.9) 205 (66.3)

Child characteristics

Sex, male 937 (48.3) 490 (48.3) 275 (48.1) 172 (48.7)

Ethnicity, European 1,496 (77.4) 767 (75.8) 459 (80.5) 270 (76.9)

Birth weight, grams 3,452 ± 574 3,427 ± 584 3,481 ± 559 3,477 ± 568

Age at 1-year FFQ, months 13.6 ± 1.8 13.4 ± 1.6 13.7 ± 1.9 13.9 ± 2.1

Total energy intake at 1 year, kcal/day 1,306 ± 385 1,219 ± 357 1,323 ± 350 1,531 ± 421

Diet quality score at 1 year, 0-10 4.3 ± 1.4 4.4 ± 1.4 4.2 ± 1.3 4.2 ± 1.4

Sugar-containing beverages at 1 year, servings/day

Total 0.9 (0.0, 3.7) 0.5 (0.0, 1.0) 1.6 (1.0, 1.9) 2.8 (2.0, 5.6)

Fruit juice 0.1 (0.0, 1.9) 0.0 (0.0, 0.9) 0.1 (0.0, 1.9) 0.4 (0.0, 3.7)

Soft drinks and lemonade 0.7 (0.0, 2.8) 0.3 (0.0, 0.9) 1.1 (0.0, 1.9) 1.9 (0.0, 4.6)

Age at 8-year FFQ, years 8.1 ± 0.1 8.1 ± 0.2 8.1 ± 0.1 8.1 ± 0.2

Total energy intake at 8 years, kcal/day 1,469 ± 341 1,445 ± 342 1,481 ± 326 1,517 ± 356

Diet quality score at 8 years, 0-10 4.6 ± 1.2 4.6 ± 1.2 4.6 ± 1.2 4.5 ± 1.3

Sugar-containing beverages at 8 years, servings/day

Total 2.2 (0.1, 8.9) 2.0 (0.0, 7.8) 2.4 (0.1, 7.9) 2.6 (0.1, 10.4)

Fruit juice 0.4 (0.0, 3.2) 0.4 (0.0, 3.1) 0.4 (0.0, 3.6) 0.4 (0.0, 3.7)

Soft drinks and lemonade 1.5 (0.0, 7.8) 1.2 (0.0, 6.9) 1.5 (0.0, 7.4) 1.7 (0.0, 9.2)

Age at 10-year visit, years 9.8 ± 0.3 9.8 ± 0.2 9.8 ± 0.3 9.8 ± 0.3

Physical activity, hours/day 1.4 (0.3, 3.5) 1.3 (0.3, 3.3) 1.4 (0.3, 3.5) 1.5 (0.4, 3.8)

Screen time, ≥2 hours/day 796 (49.5) 384 (46.5) 239 (49.7) 173 (57.5)

BMI, kg/m2 17.2 ± 2.4 17.1 ± 2.5 17.1 ± 2.3 17.6 ± 2.5

Liver fat fraction, % 2.0 (1.2, 4.7) 2.0 (1.2, 4.6) 1.9 (1.2, 4.3) 2.0 (1.2; 6.1)

NAFLD 36 (1.9) 14 (1.4) 8 (1.4) 14 (4.0)

Values, but not imputed data, are observed and represent numbers (valid %), means ± SD, or medians (95% range) shown for the total 
group and stratified for sugar-containing beverage intake at 1 year. Maternal characteristics were obtained when they were enrolled in 
the study, mostly in early pregnancy. Child’s ethnicity based on the parents country of birth was categorized into European (Dutch and 
other European) and non-European (African (Cape Verdean, other African, Dutch Antillean, and Surinamese-Creole), American, Asian 
(Indonesian, other Asian, Surinamese-Hindu and Surinamese-unspecified), Turkish, Moroccan, Oceanian). Abbreviations: BMI, body 
mass index; FFQ, Food Frequency Questionnaire; NAFLD, nonalcoholic fatty liver disease.
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was neither conti nuously nor categorically associated with liver fat fracti on across the full range. 
There were no substanti al diff erences in results between the basic, confounder or mediator 
models (table 2, Figure s2 and Figure s3).

Figure 2. Associati ons of sugar-containing beverage intake at 1 year with liver fat fracti on in children of school 
age

Values are regression coeffi  cients (95% Confi dence Intervals) from linear regression models that refl ect diff erences in liver fat fracti on 
in SDS per sugar-containing beverage intake category as compared to the reference group (children with <1.0 serving per day intake 
of sugar-containing beverage). Associati ons are adjusted for child age at 10 years, sex, total energy intake, maternal pre-pregnancy 
BMI, educati on, net household income, child ethnicity, physical acti vity and screen ti me. The bars are presenti ng the liver fat fracti on 
categories (<2.0; 2.0 - 2.9; 3.0 - 3.9; 4.0 - 4.9; ≥5.0 % liver fat) per sugar-containing beverage intake. BMI, body mass index; CI, Confi -
dence Interval.

table 2. Associati ons between sugar-containing beverage intake in infancy and liver fat fracti on and non-
alcoholic fatt y liver disease in children at school age

Mri measured liver fat at school age
n = 1,940

sugar-containing beverages (servings/day) at 1 year Liver fat fracti on SDS nAFLd yes/no

Basic model 0.037 (0.02, 0.06) 1.44 (1.27, 1.64)*

Confounder model 0.026 (−0.02, 0.07) 1.34 (1.06, 1.69)**

Mediator model −0.004 (−0.05, 0.04) 1.34 (0.97, 1.83)

Values are regression coeffi  cients (95% CIs) from linear regression models that refl ect diff erences in liver fat fracti on in SDS per sugar-
containing beverage intake per day at 1 year. Values are ORs (95% CIs) that refl ect the risk of NAFLD per sugar-containing beverage 
intake per day at 1 year. *P value <0.01, **P value <0.05. Basic model: adjusted for child at 10 years of age, sex, and total energy intake. 
Confounder model: basic model additi onally adjusted for maternal pre-pregnancy BMI, educati on, net household income, child ethnic-
ity, physical acti vity and screen ti me. Mediator model: confounder model additi onally adjusted for sugar-containing beverage intake at 
8 years of age and BMI at 10 years of age. NAFLD was defi ned as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%. Abbrevia-
ti ons: CI, confi denti al interval; MRI, magneti c resonance imaging; OR, odds rati o; SDS, standard deviati on score.
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Higher sugar-containing beverage intake at 1 year was associated with higher odds of non-
alcoholic fatt y liver disease (p value for trend <0.05) (Figure 3). As compared to infants with 
<1.0 serving/day, infants with >2.0 servings/day had the highest odds of non-alcoholic fatt y liver 
disease (Odds Rati o (OR) 3.02 (95% CI 1.34, 6.83)). There were no diff erences in results between 
the basic and confounder models (table 2). Also, the eff ect esti mates were only slightly aff ected 
and of borderline signifi cance aft er additi onal adjustment for sugar-containing beverage intake at 
8 years and BMI at 10 years (table 2 and Figure s4 and Figure s5).

Analyses strati fi ed for maternal educati on level suggested that among children from mothers 
with lower or medium level of educati onal att ainment, higher sugar-containing beverage intake at 
1 year was associated with increased liver fat fracti on, whereas in mothers with higher educati on 
no associati on was observed (table s2). Strati fi ed analyses in sugar-containing beverage intake 
at 1 year with non-alcoholic fatt y liver disease, suggested that the odds of non-alcoholic fatt y 
liver disease are stronger among children of mothers with lower or medium level of educati onal 
att ainment compared to children of mothers with higher level of educati onal att ainment and 
among overweight or obese children compared to normal weight children (table s2).

Sugar-containing beverage intake at 1 year categorized in either fruit juice or soft  drinks and 
lemonade was not associated with liver fat fracti on or with non-alcoholic fatt y liver disease at 

Figure 3. Associati ons of sugar-containing beverage intake at 1 year with odds of non-alcoholic fatt y liver 
disease in children of school age

Values are Odds Rati os (95% Confi dence Intervals) that refl ect the risk of non-alcoholic fatt y liver disease per sugar-containing beverage 
intake category at 1 year as compared to the reference group (children with <1.0 serving per day intake of sugar-containing beverage). 
Associati ons are adjusted for child age at 10 years, sex, total energy intake, maternal pre-pregnancy BMI, educati on, net household 
income, child ethnicity, physical acti vity and screen ti me. The bars are presenti ng the liver fat fracti on categories (<2.0; 2.0 - 2.9; 3.0 - 
3.9; 4.0 - 4.9; ≥5.0 % liver fat) per sugar-containing beverage intake. BMI, body mass index; CI, Confi dence Interval.
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school age (table s3). Sugar-containing beverage intake at 8 years was not associated with liver 
fat fracti on or with non-alcoholic fatt y liver disease at school age (table s4).

Sensiti vity analyses

When we used sugar-containing beverage intake standardized for total daily energy intake instead 
of sugar-containing beverage intake unstandardized, the eff ect esti mates were largely similar for 
the associati ons with non-alcoholic fatt y liver disease (table s5). Also, we observed similar results 
to the main fi ndings when we restricted our analyses to children of Dutch ethnicity only or among 
singleton children only (table s5).

discussion

We observed that higher sugar-containing beverage intake during infancy is associated with an 
increased risk of non-alcoholic fatt y liver disease in children of school age. The associati ons seems 
to be independent of sugar-containing beverage intake at 8 years and BMI at 10 years, and tended 
to be stronger among children of mothers with lower educati onal att ainment and among children 
with overweight or obesity.

Figure 4. Associati ons between sugar-containing beverage intake in infancy and odds of NAFLD in children of 
school age - mediator model

The black circles represent ORs (95% CIs) that refl ect the risk of NAFLD per sugar-containing beverage intake category in infancy as 
compared to the reference group (children with <1.0 serving/day intake of sugar-containing beverage) as scaled on the left  y-axis. These 
associati ons are adjusted for child at 10 years of age, sex, total energy intake, maternal pre-pregnancy BMI, educati on, net household 
income, child ethnicity, physical acti vity, and screen ti me, sugar-containing beverage intake at 8 years of age and BMI at 10 years of age. 
The bars present the amount of children (in %) per liver fat fracti on categories (<2.0%, 2.0%-2.9%, 3.0%-3.9%, 4.0%-4.9%, ≥5.0% liver 
fat) per sugar-containing beverage intake as scaled on the right y-axis. Trend: OR, 1.41 (95% CI, 0.83-2.40) per 1 serving/day increase 
in sugar-containing beverage intake.
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Interpretation of main findings

Sugar-containing beverage consumption is the main source of added sugar intake in the total daily 
energy intake of children and adults nowadays.6 8 38 In adults, sugar-containing beverage intake is 
strongly associated with the development of non-alcoholic fatty liver disease.10 39 Increased liver 
fat accumulation and non-alcoholic fatty liver disease reflect a heterogeneous spectrum, ranging 
from liver steatosis, to steatohepatitis, fibrosis, cirrhosis, and eventually end-stage liver disease.11 
Non-alcoholic fatty liver disease is associated with an increased risk of cardiovascular disease, 
dyslipidemia and type 2 diabetes in adults.40 Using data from the same cohort as the current 
study, we recently reported associations of liver fat across the full spectrum with risk factors for 
cardio-metabolic disease already at 10 years.12 Dietary patterns in infancy have been shown to 
track into adulthood.39 Early lifestyle exposures are suggested to contribute to the development 
not only of obesity, but also of liver fat accumulation and non-alcoholic fatty liver disease.11 13 14 
We hypothesized that intake of sugar-containing beverages at 1 year is associated with liver fat 
accumulation in children of school age.

Two large cross-sectional studies among middle-aged adults observed that sugar-containing 
beverage consumption was, independently of BMI, associated with increased liver fat accu-
mulation.9 10 A recent randomized controlled trial among 40 adolescent boys diagnosed with 
non-alcoholic fatty liver disease, demonstrated that restricting sugar intake reduces liver fat 
accumulation.35 In the current study, we observed that infants who consume more than two 
sugar-containing beverage servings per day had the highest odds of non-alcoholic fatty liver 
disease at age 10 years. We also observed that the association of sugar-containing beverage 
intake at 1 year with non-alcoholic fatty liver disease at school age was largely independent of 
sugar-containing beverage intake at 8 years, which could be a possible mediator in the associa-
tion. Next to this, childhood BMI, a known risk factor for non-alcoholic fatty liver disease, did 
not seem to explain the observed associations. Stratified analyses showed stronger associations 
for sugar-containing beverage intake with both liver fat accumulation and non-alcoholic fatty 
liver disease among children from mothers with a lower level of educational attainment. The 
combination of lower maternal education, seen as proxy for family socio-economic status, and 
higher sugar-containing beverage intake at 1 year, might track from infancy into childhood and 
exacerbate liver fat accumulation. Stratified analyses on BMI at 10 years showed also stronger 
associations for sugar-containing beverage intake with non-alcoholic fatty liver disease among 
children with overweight or obesity. Thus, our findings suggest that sugar-containing beverage 
intake in infancy seems to be associated with the development of non-alcoholic fatty liver disease 
at age 10 years, and that these associations are stronger among overweight or obese children. 
We did not observe associations between sugar-containing beverage intake at 1 year and liver 
fat across the full range. It seems likely that due to the relatively large group of infants with low 
sugar-containing beverage intake at 1 year, together with the limited and still healthy spectrum 
of liver fat across the full range at school age, the differences in sugar-containing beverage intake 
at 1 year are too small to observe an effect on liver fat fraction across the full range at 10 years. 
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The absence of association of sugar-containing beverage intake at 8 years with liver fat might 
be explained by reverse causality since parents of children who are overweight or obese might 
reduce or underreport total energy intake and sugar-containing beverage intake.

Multiple mechanisms underlying the associations of sugar-containing beverage intake and 
liver fat accumulation have been proposed. It has been suggested that glucose, and especially 
fructose and fructose-containing sugars, all primarily metabolized in the liver increase hepatic de 
novo lipogenesis.1 35 41 Next to this, consumption of sugar-containing beverages induces peaks in 
blood glucose, insulin and triglyceride concentrations, which may lead to insulin resistance and 
subsequently to liver fat accumulation.1 9 10 39 Also, intake of liquid food leads to less satiety, more 
postprandial hunger and therefore to increased total daily energy intake.9 42 Based on our find-
ings, future studies should explore lifestyle interventions from infancy onwards to reduce sugar-
containing beverage intake and keep an adequate healthy total daily energy intake. Intervention 
studies from early life onwards will both provide important new insights into the effectiveness 
of these interventions and into the causality of the observed associations of sugar-containing 
beverage intake in infancy and non-alcoholic fatty liver disease in later life.

Methodological considerations

Major strengths of this study are the population-based prospective longitudinal design with a 
large sample size, with information on sugar-containing beverage intake during infancy and on 
liver fat fraction measured with MRI at age 10 years. A subgroup of the study population were 
invited for MRI measurements at age 10 years (54% (n = 1,940), the non-response at the outcome 
measurement could lead to biased effect estimates if associations were different between those 
included and not included in the analyses, but this seems unlikely. To assess the average sugar-
containing beverage intake at 1 year the 211 semi-quantitative FFQ was used, which may be 
subject to underreporting. The study population contained a relatively small number of children 
with overweight or obesity, which indicates a selection towards a lean population that might 
affect the generalizability of our findings. The healthy and young study population might also 
explain the small number of cases with non-alcoholic fatty liver disease, which could have limited 
our statistical power to detect significant associations. However, our findings are novel since 
prospective data on sugar-containing beverage intake during infancy and its relation with liver fat 
accumulation are lacking and lifestyle exposures in early life are suggested track into adulthood. 
Since we had a young study population, our results are not likely biased by alcohol use, known 
history of jaundice, hepatitis, smoking or medication use. We did not include breastfeeding as 
a covariate in our analyses, since previously we did not observe an association of breastfeeding 
with liver fat fraction43. Finally, although many covariates were included, there still might be some 
residual confounding, as in any observational study.
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Conclusions

Higher sugar-containing beverage intake in infancy was associated with non-alcoholic fatty liver 
disease in school age children, independently of sugar-containing beverage intake and of BMI at 
school age. These associations tended to be stronger among children of mothers with a lower 
level of educational attainment and among children with overweight or obesity. Future preventive 
strategies should focus on the intake of sugar-containing beverage already from infancy onwards 
to reduce the risk of non-alcoholic fatty liver disease in later life.
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Supplementary material
Table S1. Comparison of characteristics between participating and non-participating children

Participants
n = 1,940

Non-participants
n = 1,674 p value

Maternal characteristics

Age at enrollment, years 31.8 ± 4.3 30.9 ± 4.8 <0.01

Pre-pregnancy BMI, kg/m2 23.4 ± 4.0 23.4 ± 4.0 0.72

Parity, nulliparous 1,154 (61.1) 936 (57.5) 0.03

Education, higher 1,181 (62.4) 849 (53.5) <0.01

Smoking during pregnancy, continued 188 (10.8) 210 (14.2) <0.01

Net household income, ≥2,200 euros/month 1,176 (70.4) 887 (65.0) <0.01

Child characteristics

Sex, male 937 (48.3) 833 (49.9) 0.38

Ethnicity, European 1,496 (77.4) 1,212 (73.6) <0.01

Birth weight, grams 3,452 ± 574 3,433 ± 584 0.31

Age at 1-year FFQ, months 13.6 ± 1.8 13.7 ± 1.9 0.05

Total energy intake at 1 year, kcal/day 1,306 ± 385 1,349 ± 439 <0.01

Diet quality score at 1 year, 0-10 4.3 ± 1.4 4.2 ± 1.4 0.06

Sugar-containing beverages at 1 year, servings/day

Total 0.9 (0.0, 3.7) 1.0 (0.0, 4.6) 0.37

Fruit juice 0.1 (0.0, 1.9) 0.1 (0.0, 2.8) 0.37

Soft drinks and lemonade 0.7 (0.0, 2.8) 0.6 (0.0, 2.8) 0.57

Age at 8-year FFQ, servings/day 8.1 ± 0.1 8.1 ± 0.1 0.87

Total energy intake at 8 years, kcal/day 1,469 ± 341 1,483 ± 378 0.34

Diet quality score at 8 years, 0-10 4.6 ± 1.2 4.6 ± 1.2 0.99

Sugar-containing beverages at 8 years, servings/day

Total 2.2 (0.1, 8.9) 2.2 (0.0, 8.9) 0.76

Fruit juice 0.4 (0.0, 3.2) 0.5 (0.0, 3.7) 0.28

Soft drinks and lemonade 1.5 (0.0, 7.8) 1.5 (0.0, 7.8) 0.77

Age at 10-year visit, years 9.8 ± 0.3 9.7 ± 0.3 0.09

BMI, kg/m2 17.2 ± 2.4 17.2 ± 2.6 0.91

Physical activity, hours/day 1.4 (0.3, 3.5) 1.4 (0.3, 3.7) 0.94

Screen time, ≥2 hours/day 796 (49.5) 353 (49.3) 0.93

BMI, kg/m2 17.2 ± 2.4 17.2 ± 2.6 0.91

Values are observed and represent numbers (valid %). means ± SD, or medians (95% range). Differences were tested using Student t 
tests and Mann-Whitney tests for normally and non-normally distributed variables, respectively, and χ2 test was used for dichotomous 
variables. Maternal characteristics were obtained when they were enrolled in the study, mostly in early pregnancy. Child’s ethnicity 
based on the parents country of birth was categorized into European (Dutch and other European) and non-European (African (Cape 
Verdean, other African, Dutch Antillean, and Surinamese-Creole), American, Asian (Indonesian, other Asian, Surinamese-Hindu and 
Surinamese-unspecified), Turkish, Moroccan, Oceanian). Abbreviations: BMI, body mass index; FFQ, Food Frequency Questionnaire; 
SD, standard deviation.
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Table S2. Sugar-containing beverage intake at 1 year with liver fat fraction and non-alcoholic fatty liver disease 
in school-aged children, confounder model stratified

MRI measured liver fat at school age
n = 1,940

Sugar-containing beverages (servings/day) at 1 year Liver fat fraction SDS NAFLD yes/no

Lower/medium level of educational attainment n = 711 0.09 (0.03, 0.16)* 1.48 (1.12 1.97)*

Higher level of educational attainment n = 1,181 −0.04 (−0.09, 0.03) 1.04 (0.59, 1.81)

Normal weight n = 1,509 0.03 (−0.01, 0.07) 1.24 (0.78, 1.97)

Overweight or obese n = 285 0.05 (−0.09, 0.20) 1.47 (1.05, 2.07)**

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per sugar-
containing beverage intake per day at 1 year. Values are ORs (95% CIs) that reflect the risk of NAFLD per sugar-containing beverage 
intake per day at 1 year. *P value <0.01, **P value <0.05. Confounder model adjusted for child at 10 years of age, sex, total energy intake, 
ethnicity, physical activity, screen time, maternal pre-pregnancy BMI, education, and net household income. The analyses were strati-
fied for a lower/medium level of maternal educational attainment versus a higher level of maternal educational attainment and for 
children with normal weight versus children with overweight or obesity. NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” 
when liver fat <5.0%. Abbreviations; CI, confidence interval; MRI, magnetic resonance imaging; NAFLD, nonalcoholic fatty liver disease; 
OR, odds ratio; SDS, standard deviation score.

Table S3. Sugar-containing beverage intake at 1 year with liver fat fraction and non-alcoholic fatty liver disease 
in children of school age, confounder model for sugar-containing beverage intake subtype

MRI measured liver fat at school age
n = 1,940

Sugar-containing beverages (servings/day) at 1 year Liver fat fraction SDS NAFLD yes/no

Fruit juice 0.05 (−0.02, 0.12) 1.35 (0.96, 1.89)

Soft drinks and lemonade 0.01 (−0.04, 0.06) 1.33 (0.97, 1.84)

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per sugar-
containing beverage intake subcategory per day at 1 year. Values are ORs (95% CIs) that reflect the risk of NAFLD per sugar-containing 
beverage intake subcategory per day at 1 year. Confounder model adjusted for child at 10 years of age, sex, total energy intake, ethnic-
ity, physical activity, and screen time, maternal pre-pregnancy BMI, education, and net household income. NAFLD was defined as “yes” 
when liver fat ≥5.0% and as “no” when liver fat <5.0%.
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Table S4. Sugar-containing beverage intake at 8 years with liver fat fraction and non-alcoholic fatty liver dis-
ease in children of school age

MRI measured liver fat at school age
n = 2,352

Sugar-containing beverages (servings/day) at 8 years Liver fat fraction SDS NAFLD yes/no

Basic model −0.016 (−0.02, 0.01) 0.95 (0.83, 1.08)

Confounder model −0.003 (−0.02, 0.01) 0.95 (0.84, 1.08)

Mediator model −0.002 (−0.02, 0.01) 0.96 (0.84, 1.08)

Basic model

<1.0 serving/day Reference Reference

1.0-2.0 servings/day −0.034 (−0.14, 0.08) 0.75 (0.52, 1.09)

>2.0 servings/day −0.057 (−0.16, 0.05) 0.69 (0.36, 1.33)

p value for trend 0.285 0.292

Confounder model

<1.0 serving/day Reference Reference

1.0-2.0 servings/day 0.000 (−0.11, 0.11) 0.82 (0.39, 1.71)

>2.0 servings/day −0.009 (−0.11, 0.10) 0.81 (0.42, 1.59)

p value for trend 0.851 0.573

Mediator model

<1.0 serving/day Reference Reference

1.0-2.0 servings/day 0.022 (−0.08, 0.13) 0.74 (0.34, 1.60)

>2.0 servings/day 0.025 (−0.07, 0.12) 0.78 (0.39, 1.57)

p value for trend 0.637 0.541

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per sugar-
containing beverage intake per day at 8 years. Values are ORs (95% CIs) that reflect the risk of NAFLD per sugar-containing beverage 
intake per day at 8 years. Basic model: adjusted for child at 10 years of age, sex, total energy intake. Confounder model: basic model 
additionally adjusted for child ethnicity, physical activity, screen time, maternal pre-pregnancy BMI, education, and net household 
income. Mediator model: confounder model additionally adjusted for sugar-containing beverage intake at 8 years and BMI at 10 years. 
NAFLD was defined as “yes” when liver fat ≥5.0% and as “no” when liver fat <5.0%.
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Table S5. Sensitivity analyses of sugar-containing beverage intake at 1 year with liver fat fraction and non-
alcoholic fatty liver disease in children of school age

MRI measured liver fat at school age
n = 1,940

Sugar-containing beverages (servings/day) at 1 year Liver fat fraction SDS NAFLD yes/no

Residual method adjusted model n = 1,940 0.022 (−0.10, 0.14) 1.14 (0.49, 2.61)

Dutch-only model n = 1,371 0.019 (−0.03, 0.07) 1.44 (0.95, 2.18)

Residual method adjusted model

<1.0 serving/day Reference Reference

1.0-2.0 servings/day −0.076 (−0.19, 0.04) 0.92 (0.36, 2.38)

>2.0 servings/day 0.042 (−0.15, 0.24) 2.22 (0.68, 7.26)

p value for trend 0.95 0.26

Dutch-only model

<1.0 serving/day Reference Reference

1.0-2.0 servings/day 0.003 (−0.10, 0.11) 1.23 (0.36, 4.15)

>2.0 servings/day 0.071 (−0.06, 0.20) 2.51 (0.74, 8.50)

p value for trend 0.35 0.16

Values are regression coefficients (95% CIs) from linear regression models that reflect differences in liver fat fraction in SDS per sugar-
containing beverage intake per day at 1 year. Values are ORs (95% CIs) that reflect the risk of NAFLD per sugar-containing beverage 
intake per day at 1 year. Models are adjusted according to the confounder model: child at 10 years of age, sex, total energy intake, 
ethnicity, physical activity, and screen time, maternal pre-pregnancy BMI, education, and net household income. In residual method 
adjusted model, sugar-containing beverage intake was standardized for energy using the residual method. NAFLD was defined as “yes” 
when liver fat ≥5.0% and as “no” when liver fat <5.0%.
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Figure s1. Directed acyclic graph of associati ons between sugar-containing beverage intake in infancy and 
liver fat accumulati on at school age with potenti al covariates

Figure s2. Associati ons between sugar-containing beverage intake in infancy and liver fat fracti on in children 
of school age - basic model

 

The black circles represent regression coeffi  cients (95% CIs) from linear regression models that refl ect diff erences in liver fat fracti on 
in SDS per sugar-containing beverage intake category as compared to the reference group (children with <1.0 serving/day intake of 
sugar-containing beverage) as scaled on the left  y-axis. These associati ons are adjusted for child at 10 years of age, sex, and total energy 
intake. The bars present the amount of children (in %) per the liver fat fracti on categories (<2.0%, 2.0%-2.9%, 3.0%-3.9%, 4.0%-4.9%, 
≥5.0% liver fat) per sugar-containing beverage intake as scaled on the right y-axis. Trend: 0.04 SDS (95% CI, 0.01-0.06) per 1 serving/day 
increase in sugar-containing beverage intake.
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Figure s3. Associati ons between sugar-containing beverage intake in infancy and liver fat fracti on in children 
of school age - mediator model

 

The black circles represent regression coeffi  cients (95% CIs) from linear regression models that refl ect diff erences in liver fat fracti on in 
SDS per sugar-containing beverage intake category as compared to the reference group (children with <1.0 serving/day intake of sugar-
containing beverage) as scaled on the left  y-axis. These associati ons are adjusted for child at 10 years of age, sex, total energy intake, 
maternal pre-pregnancy BMI, educati on, net household income, child ethnicity, physical acti vity, and screen ti me, sugar-containing 
beverage intake at 8 years of age and BMI at 10 years of age. The bars present the amount of children (in %) per liver fat fracti on cat-
egories (<2.0%, 2.0%-2.9%, 3.0%-3.9%, 4.0%-4.9%, ≥5.0% liver fat) per sugar-containing beverage intake as scaled on the right y-axis. 
Trend: -0.01 SDS (95% CI, -0.07-0.05) per 1 serving/day increase in sugar-containing beverage intake.

Figure s4. Associati ons between sugar-containing beverage intake in infancy and odds of NAFLD in children 
of school age - basic model

 

The black circles represent ORs (95% CIs) that refl ect the risk of NAFLD per sugar-containing beverage intake category in infancy as 
compared to the reference group (children with <1.0 serving/day intake of sugar-containing beverage) as scaled on the left  y-axis. These 
associati ons are adjusted for child at 10 years of age, sex, total energy intake. The bars present the amount of children (in %) per liver 
fat fracti on categories (<2.0%, 2.0%-2.9%, 3.0%-3.9%, 4.0%-4.9%, ≥5.0% liver fat) per sugar-containing beverage intake as scaled on the 
right y-axis. Trend: OR, 1.70 (95% CI, 1.36-2.14) per 1 serving/day increase in sugar-containing beverage intake.
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Abstract

Background: Non-alcoholic fatty liver disease is the most common chronic liver disease in children 
in western countries. Adverse early-life exposures are associated with higher liver fat percentages 
in children. Differential DNA methylation may underlie these associations. We aimed to identify 
differential DNA methylation in newborns and children associated with liver fat accumulation 
in childhood. We also examined whether DNA methylation at 22 Cytosine-phosphate-Guanine 
sites (CpGs) associated with adult non-alcoholic fatty liver disease are associated with liver fat in 
children.
Methods: In a population-based prospective cohort study, we analyzed epigenome-wide DNA 
methylation data of 785 newborns and 344 10-year-old children in relation to liver fat fraction at 
10 years. DNA methylation was measured using the Infinium HumanMethylation450 BeadChip 
(Illumina). We measured liver fat fraction by Magnetic Resonance Imaging. Associations of single 
CpG DNA methylation at the two time points with liver fat accumulation were analyzed using 
robust linear regression models. We also analyzed differentially methylation regions using the 
dmrff package. We looked-up associations of 22 known adult CpGs at both ages with liver fat at 
10 years.
Results: The median liver fat fraction was 2.0% (95% range: 1.3, 5.1). No single CpGs and no 
differentially methylated regions were associated with liver fat accumulation. None of the 22 
known adult CpGs were associated with liver fat in children.
Conclusions: DNA methylation at birth and in childhood was not associated with liver fat ac-
cumulation in 10-year-old children in this study. This may be due to modest sample sizes or DNA 
methylation changes being a consequence rather than a determinant of liver fat.
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INTRODUCTION

Non-alcoholic fatty liver disease is a pathologic excess of ≥5% fat in hepatic cells, not caused 
by alcohol consumption, genetic or metabolic disorders, medication, or viral infections.1 Due to 
the high prevalence of obesity, non-alcoholic fatty liver disease has become the most common 
chronic liver disease in both children and adults in western countries.2-5 Non-alcoholic fatty liver 
disease is associated with an adverse cardio-metabolic risk profile in children.3 In adults it is asso-
ciated with cardio-metabolic diseases and hepatocellular carcinoma, and it is a leading indication 
for liver transplantation.4 6 An accumulating body of evidence suggests that adverse exposures in 
early life contribute to the development of obesity and non-alcoholic fatty liver disease.5 7

The mechanisms underlying the observed associations of early-life factors with liver fat in 
children and adults may include changes in DNA methylation.5 7 DNA methylation is an epigenetic 
mechanism that is highly dynamic in early life and affects accessibility of DNA for transcription 
and thereby gene expression.8 Various adverse early-life factors have been associated with differ-
ential DNA methylation.9-12 Recent studies using liver biopsy samples of adults with non-alcoholic 
fatty liver disease suggest differential DNA methylation is cross-sectionally associated with non-
alcoholic fatty liver disease.8 13-15 A meta-analysis of population-based cohorts in adults identified 
22 Cytosine-phosphate-Guanine sites (CpGs) in peripheral blood at which DNA methylation was 
associated with non-alcoholic fatty liver disease.6

We hypothesized that differential DNA methylation at birth and in childhood is associated with 
liver fat accumulation in children. We performed an epigenome-wide association study (EWAS) to 
assess whether DNA methylation at birth and at age 10 years is associated with liver fat accumula-
tion measured with Magnetic Resonance Imaging (MRI) in 10-year-old children participating in 
a population-based prospective cohort study. Analyses were focused on both single CpGs and 
differentially DNA methylated regions (DMRs). As a secondary analysis, we examined if DNA 
methylation at birth and at age 10 years is associated with higher (>2%) versus lower (≤2%) liver 
fat accumulation. We also examined whether DNA methylation at the 22 CpGs known to be asso-
ciated with non-alcoholic fatty liver disease in adults, is also associated with liver fat in children.6

Results

Subject characteristics

The median liver fat fraction was 2.0% for both groups (newborns 95% range: 1.3, 4.6; 10-year-old 
children 95% range: 1.3, 5.1)). The prevalence of non-alcoholic fatty liver disease at age 10 years 
was 2.2% (n = 17/785) in the group with DNA methylation data at birth and 2.6% (n = 9/344) in 
the group with DNA methylation data at age 10 years. The baseline characteristics of the study 
population are presented in Table 1. Non-response analyses comparing singleton children with 
DNA methylation data, with and without information on liver fat fraction available, showed that 
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participants in the newborn group were slightly more often female and more often overweight, 
had somewhat older and higher educated mothers, who more often stopped smoking during preg-
nancy compared to non-participants in the newborn group. In the childhood group, non-response 
analyses showed that participants were slightly older compared to the non-participants (Table 2).

Epigenome-wide association study of childhood liver fat accumulation

We assessed associations of DNA methylation in cord blood and in whole peripheral blood at 10 
years with liver fat as a continuous measure in 10-year-old children. In the main models, adjusted 
for maternal age, education level, early-pregnancy BMI and smoking, gestational age at birth 
(cord blood analyses) or child age (childhood analyses), child sex, cell type proportions and batch, 
we did not observe any CpGs at birth or at 10 years to be associated with liver fat accumulation 
at 10 years after Bonferroni (p value <1.0 x 10-7) or false-discovery rate (FDR) correction. The 
Manhattan plots of both EWAS analysis of liver fat accumulation are presented in Figure S1a and 
Figure S1b. Table S1 and S2 show the CpGs with p values <1.0 x 10-4 for newborns and for 10-year-
old children, respectively. We did not identify significantly associated differentially methylated 
regions associated with liver fat accumulation, nor did we find associations of individual CpG 

Table 1. Subject characteristics

Newborns
(n = 785)

Childhood
(n = 344)

Maternal characteristics

Age, mean (SD), years 32.1 ± 4.0 32.1 ± 4.0

Prepregnancy body mass index, mean (SD), kg/m2 23.2 ± 3.9 23.4 ± 4.0

Parity, n (%), nulliparous 477 (60.8%) 205 (59.6%)

Education, n (%), higher education 535 (68.2%) 232 (67.4%)

Smoking during pregnancy, n (%), continued 94 (12.0%) 43 (12.5%)

Child characteristics

Gestational age at birth, median (95%), weeks 40.4 (37.0 – 42.3) 40.3 (36.9 – 42.4)

Age, mean (SD), years 0 9.8 ± 0.3

Males, n (%) 378 (48.2%) 170 (49.4%)

Birth weight, mean (SD), g 3556 ± 505 3578 ± 515

Body mass index at 10 years, mean (SD), kg/m2 17.0 ± 2.1 17.1 ± 2.0

Children with

underweight, n (%) 62 (7.9) 19 (5.5)

normal weight, n (%) 637 (81.1) 287 (83.4)

overweight, n (%) 79 (10.1) 37 (10.8)

obesity, n (%) 7 (0.9) 1 (0.3)

Liver fat fraction, median (95% range), % 2.0 (1.3 – 4.6) 2.0 (1.3 – 5.1)

Prevalence non-alcoholic fatty liver disease, n (%) 17 (2.2%) 9 (2.6%)

Values are observed data and represent means ± SD, medians (95% range) or numbers of subjects (valid %).
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sites with higher versus lower liver fat accumulation. Table S3 and S4 show the differentially 
methylated regions with p values <1.0 x 10-4 for newborns and 10-year-old children, respectively. 
Table S5 and S6 show the CpGs with p values <1.0 x 10-4 for newborns and for 10-year-old children 
for higher versus lower liver fat, respectively. Results of the basic model and of the model ad-
ditionally adjusted for childhood body mass index (BMI) were not substantially different from the 
results in the main model. The mean percent differences in effect estimates between the main 
model and the basic model, and between the main model and the childhood BMI model in cord 
blood were 2.5% and 10.9%, respectively. In the child peripheral blood analyses at 10 years, the 
mean percent differences were 1.6% and 3.9%, respectively. In Table S7 and Table S8 we show 
the results of the basic and childhood BMI models for the CpGs probes with p values <1.0 x 10-4 
identified in the main model.

Table 3. Associations of 22 adult non-alcoholic fatty liver disease-associated CpGs with liver fat fraction in 
children*

Newborns Children

CpG Chr Position Gene Effect* SE* p value Effect* SE* p value

cg09469355 1 2161886 SKI 0.002 0.03 0.96 -0.002 0.07 0.98

cg17901584 1 55353706 DHCR24 -0.005 0.02 0.74 -0.069 0.04 0.08

cg03725309 1 109757585 SARS -0.012 0.02 0.45 0.027 0.05 0.56

cg14476101 1 120255992 PHGDH -0.003 0.02 0.99 0.011 0.04 0.78

cg19693031 1 145441552 TXNIP -0.011 0.03 0.72 -0.031 0.04 0.45

cg06690548 4 139162808 SLC7A11 -0.086 0.05 0.08 -0.027 0.06 0.67

cg05119988 4 166251189 SC4MOL 0.003 0.02 0.88 0.003 0.03 0.92

cg03957124 6 37016869 COX6A1P2** 0.011 0.02 0.59 0.027 0.05 0.58

cg18120259 6 43894639 LOC100132354** 0.024 0.02 0.31 -0.124 0.05 0.02

cg17501210 6 166970252 RPS6KA2 0.086 0.07 0.21 -0.137 0.08 0.10

cg21429551 7 30635762 GARS 0.015 0.02 0.42 0.017 0.03 0.52

cg11376147 11 57261198 SLC43A1 -0.004 0.03 0.89 0.107 0.07 0.11

cg00574958 11 68607622 CPT1A 0.028 0.04 0.43 -0.019 0.08 0.79

cg26894079 11 122954435 ASAM 0.004 0.03 0.88 -0.020 0.04 0.63

cg11024682 17 17730094 SREBF1 -0.023 0.04 0.54 -0.005 0.07 0.93

cg14020176 17 72764985 SLC9A3R1 0.006 0.03 0.84 -0.007 0.06 0.90

cg19016694 17 80821826 TBCD 0.016 0.03 0.55 -0.062 0.06 0.30

cg15860624 19 3811194 ZFR2 0.011 0.02 0.61 0.002 0.05 0.97

cg02711608 19 47287964 SLC1A5 -0.025 0.03 0.44 0.004 0.06 0.95

cg08309687 21 35320596 LINC00649** -0.004 0.03 0.88 -0.008 0.04 0.84

cg27243685 21 43642366 ABCG1 0.042 0.04 0.32 -0.023 0.09 0.81

cg06500161 21 43656587 ABCG1 0.018 0.03 0.57 0.023 0.05 0.66
*Effect estimates represent the change in liver fat fraction (%) per 10% difference in DNA methylation beta and standard error. Associa-
tions are adjusted for maternal age, education level, early-pregnancy BMI and smoking, age at birth or child age at measurement, child 
sex, cell type proportions and batch. *Gene names added using information from the UCSC Genome Browser build hg19. Other gene 
names from original paper by Ma et al, 2019. BMI, Body Mass Index; Chr, chromosome; n, number; SE, standard error.
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Look-up of CpGs associated with adult liver fat

None of the 22 CpGs differentially methylated regions known for their associations with non-
alcoholic fatty liver disease in adults, were associated with liver fat in children (Bonferroni cor-
rected p value cutoff <0.05/22 = 2.3 x 10-3, Table 3). We found no evidence for enrichment of the 
22 CpGs among the 18,848 nominally significant CpGs from the cord blood analysis and among 
the 23,173 nominally significant CpGs from the 10-year-old analysis (Fisher combined probability 
p value = 1.00 in newborns and p value = 0.68 in 10-year-old children).

Candidate genes analysis associated with liver fat

We examined if there was enrichment of CpGs located in regions within a 4 Mb window (+/- 2 
Mb) surrounding the 9 single-nucleotide polymorphisms (SNPs) identified to be associated with 
non-alcoholic fatty liver disease in adults, among all nominally significant CpGs in our analyses.16 17 
A total of 7,225 CpGs were present in these regions in the newborn dataset and 7,244 CpGs 
in the 10-year-old dataset. In newborns, 299 of these CpGs were nominally significant (p value 
<0.05). In 10-year-old children, this was the case for 347 CpGs. There was no enrichment for CpGs 
associated with liver fat accumulation at either age (Fisher combined probability p value = 0.47 in 
newborns and p value = 0.86 in 10-year-old children).

Top CpG probes functions and related biological processes

In an explorative analysis, significantly enriched gene ontology (GO) terms based on the annotated 
genes of the 32 CpG probes with p values <1.0 x 10-4 in cord blood pointed towards processes 
related to triglyceride, acylglycerol and lipid metabolic processes, digestive tract development, 
digestive system development and digestive tract morphogenesis, among others (Table S9). The 
same analysis using the 76 CpG probes with p values <1.0 x 10-4 in child peripheral blood revealed 
processes related to cell cycle functions, organ morphogenesis and development, among oth-
ers (Table S10). We did not observe functional enrichment of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) terms ((FDR <0.05). Next to this, we did not observe significant enrichment of 
DNAse hypersensitivity sites among the CpG <1.0 x 10-4 (smallest p value in cord blood analyses 
0.09 and in childhood analyses 0.25).

Discussion

In the first epigenome-wide association study on liver fat accumulation in children we did not 
observe differential DNA methylation in newborns or 10-year-old children related to liver fat 
accumulation analyzed as a continuous measure or related to higher versus lower liver fat ac-
cumulation measured by MRI at age 10 years. Also, DNA methylation at 22 CpGs known to be 
associated with non-alcoholic fatty liver disease in adults, was not associated with liver fat in 
children.
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Interpretation of main findings

Non-alcoholic fatty liver disease has an increasing prevalence in both children and adults.5 18 It 
is a major risk factor for adverse cardio-metabolic health in children and for cardio-metabolic 
diseases and liver diseases in adults.3 4 6 Adverse early-life factors have been described to be as-
sociated with liver fat development.5 7 These associations may be explained by DNA methylation 
changes in response to these early-life exposures that lead to liver fat development.5 19

Among adults it has been demonstrated that differential DNA methylation is present in liver 
biopsy samples of adults with non-alcoholic fatty liver disease.8 13-15 20 All these studies used liver 
histology, the current gold standard for diagnosing non-alcoholic fatty liver disease.2 5 As a con-
sequence, these studies are limited by small sample sizes, histologically heterogeneous groups 
varying in severity of non-alcoholic fatty liver disease, older study populations, wide BMI ranges 
and having only few or no healthy controls. None of these reports controlled for cell hetero-
geneity in their analyses. A recent meta-analysis of four multiethnic population-based cohort 
studies in adults showed that DNA methylation at 22 CpGs in peripheral blood was associated 
with non-alcoholic fatty liver disease diagnosed with either computed tomography or ultrasound 
imaging (FDR <0.05).6 In our study we did not observe differential DNA methylation at single CpGs 
or differentially methylated regions in cord blood or child peripheral blood associated with liver 
fat accumulation assessed by MRI in 10-year-old children. Also, DNA methylation at the 22 CpGs 
known from adults studies was not associated with liver fat in children.6 It is possible that small, 
but potentially biologically important, DNA methylation differences may be associated with liver 
fat accumulation in children. These differences would be difficult to detect in the moderate sample 
size of the current study. Besides this, the variability in liver fat accumulation in this population 
of children was relatively small, which may also partly explain the lack of identified associations. 
In addition, our study population is a relatively lean population. Associations of DNA methylation 
with liver fat accumulation may be more apparent among higher risk populations, as observed in 
adult studies.8 13-15 20 Another possibility is that DNA methylation truly is not associated with liver 
fat accumulation in children. As has been suggested for phenotypes such as obesity, differential 
DNA methylation may be mostly a consequence rather than a cause of liver fat accumulation. If 
that is indeed the case, then the duration of exposure to increased liver fat in this population of 
10-year-old children may not have been sufficient to induce differential DNA methylation.21

The present population-based study is the first to examine the association of differential DNA 
methylation with liver fat fraction measured with MRI in children. Although the hypothesis of 
early-life factors contributing to the development of liver fat accumulation through DNA meth-
ylation cannot be completely discarded based on this study, we found no evidence to support 
associations of differential DNA methylation in newborns or children with liver fat accumulation 
at 10 years. Future studies should investigate in large longitudinal studies the associations of 
differential DNA methylation with liver fat accumulation in children.
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Methodological considerations

Strengths of this study are the prospective and cross-sectional analyses with information on DNA 
methylation at two ages. We used a sensitive imaging-based method to enable non-invasive 
measurement of liver fat.22 23 Although our sample size is relatively large for epigenome-wide 
analyses, it might still be too small to detect more minor effect sizes.8 13-15 However, to the best 
of our knowledge, similar data on DNA methylation and MRI-measured liver fat accumulation in 
children are not currently available elsewhere. DNA methylation was measured in blood, which 
may differ from DNA methylation in liver cells. The relatively small number of children with obe-
sity in the included sample indicates a selection towards a lean population that may affect the 
generalizability of our findings.

Conclusions

DNA methylation at birth and in childhood was not associated with liver fat accumulation in 
10-year-old children in this study. This may be due to modest sample sizes or DNA methylation 
changes being a consequence rather than a determinant of liver fat. Future studies should investi-
gate in large longitudinal studies the associations and timing of differential DNA methylation with 
liver phenotypes in children.

Methods

Study design

This study was embedded in the Generation R Study, a population-based prospective cohort from 
early fetal life onwards, based in Rotterdam, the Netherlands.24 The study has been approved 
by the Medical Ethical Committee of the Erasmus MC, University Medical Center Rotterdam 
(MEC 198.782/2001/31). Written informed consent was obtained for all participants.24 All 9,778 
participating live-born children were born between April 2002 and January 2006. DNA methyla-
tion was measured in a randomly selected European-ancestry subset of 1,396 newborns and 464 
10-year-old children. The liver fat MRI measurements were performed in a subgroup of children 
at age 10 years. We excluded children without complete data on liver fat fraction and covariates. 
The population for analysis of this study comprised 785 newborns and 344 10-year-old children 
(Figure 1).

DNA methylation

DNA was extracted from cord blood and whole peripheral blood at 10 years using the salting-
out method. Five hundred nanograms of DNA per sample underwent bisulfite conversion using 
the EZ-96 DNA Methylation kit (Shallow) (Zymo Research Corporation, Irvine, CA, USA). Samples 
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were plated randomly onto 96-well plates. Samples were processed with the Illumina Infi nium 
HumanMethylati on450 (450k) BeadChip (Illumina Inc., San Diego, CA, USA). Quality control of 
analyzed samples was performed using standardized criteria. Quality control and normalizati on 
of the HumanMethylati on450 BeadChip array data was performed according to the Control 
Probe Adjustment and reducti on of global CORrelati on (CPACOR) workfl ow using R.25 26 Probes 
that had a detecti on p value ≥1E-16 were set to missing per array. Next, the intensity values were 
quanti le normalized for each of the six probe type categories separately: type II red/green, type I 
methylated red/green and type I unmethylated red/green. Beta values were calculated as propor-
ti on of methylated intensity value to the sum of methylated and unmethylated intensiti es plus 
100. Arrays with observed technical problems such as failed bisulfi te conversion, hybridizati on 
or extension, as well as arrays with a sex mismatch were removed from subsequent analyses. 
Additi onally, only arrays with a call rate >95% per sample were processed further. Probes on the 
X and Y chromosomes were excluded from the analyses. The fi nal datasets contained 457,774 
probes in the newborn dataset and 458,563 probes in the 10-year-old dataset. For all CpGs and 
diff erenti ally methylated regions, the offi  cial gene name of the nearest gene was noted using 
Illumina’s annotati on informati on and we enhanced the annotati on provided by Illumina with the 
UCSC Genome Browser build hg19.27 28

Figure 1. Study parti cipants fl owchart
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Liver fat fraction at 10 years

We measured liver fat using a 3.0 Tesla MRI (Discovery MR750w, GE Healthcare, Milwaukee, WI, 
USA).1 22-24 The children wore light clothing without metal objects while undergoing the body 
scan. A liver fat scan was performed using a single-breath-hold, 3D volume and a special 3-point 
proton density weighted Dixon technique (IDEAL IQ) for generating a precise liver fat fraction 
image.29 The IDEAL IQ scan is based on a carefully tuned 6-echo echo planar imaging acquisition. 
The obtained fat-fraction maps were subsequently analyzed by the Precision Image Analysis (PIA, 
Kirkland, WA, USA) using the sliceOmatic (TomoVision, Magog, QC, CAN) software package. All 
extraneous structures and any image artifacts were removed manually.30 Liver fat fraction was 
measured independent of any outcome, determined by taking four samples of at least 4 cm2 
from the central portion of the hepatic volume. Subsequently, the mean signal intensities were 
averaged to generate an overall mean liver fat fraction estimation. Liver fat fraction measured 
with IDEAL IQ using MRI is reproducible, highly precise and validated in adults.31 32 As previously 
described, non-alcoholic fatty liver disease was defined as liver fat fraction ≥5.0%.1 32 33 We studied 
liver fat accumulation across the full spectrum as our primary objective. As the secondary objec-
tive we dichotomized liver fat into low, ≤2.0%, and high, >2.0%, liver fat accumulation. This cutoff 
was based on the median in our population and on previous work from our group describing that 
liver fat accumulation above 2.0% is already associated with an increased cardio-metabolic risk 
profile in children.34 Due to lower numbers of cases, we could not dichotomize liver fat accumula-
tion based on the clinical cut-off of ≥5.0%.

Covariates

At enrolment in the study information on maternal age and educational level was obtained by 
questionnaires. Maternal smoking during pregnancy was assessed by questionnaires in preg-
nancy. We measured maternal height and weight at enrolment to calculate early-pregnancy 
BMI.35 Information on gestational age at birth, child sex and age at 10 years visit was obtained 
from medical records. We measured height and weight in the children, without shoes and heavy 
clothing. Childhood BMI was calculated and sex- and age-adjusted childhood BMI standard devia-
tion scores were calculated (Growth Analyzer 4.0, Dutch Growth Research Foundation).36

Look-up study of adult CpGs associated with liver fat

We examined in our data the associations of the 22 CpGs known from previous literature to 
be associated with liver fat accumulation in in adults with liver fat accumulation in children.6 
A Bonferroni corrected p value <0.05/22 = 2.3 x 10-3 was used to define significance. We also 
evaluated whether the 22 CpGs were enriched among CpGs with a p<0.05 in our results using a 
hypergeometric test.
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Genes previously associated with liver fat

We assessed the number of nominally significant single CpGs from our analyses that were located 
within a 4 Mb window (+/- 2 Mb) surrounding the 9 SNPs identified in two previous genome-
wide association studies (GWAS) of liver fat accumulation in adolescents and adults of European 
descent.16 17 With a hypergeometric test, we calculated enrichment of the CpGs surrounding the 
9 SNPs among CpGs with a p<0.05 in our results.

Pathway analysis

To identify biological processes associated with the genes annotated to the CpG probes with p 
values <1.0 x 10-4 identified in cord blood and in child peripheral blood at 10 years associated 
with liver fat accumulation, we used the DAVID bioinformatics resource to test for enrichment 
in GO biological processes and KEGG pathways.37 The online program epigenetic Functional ele-
ment Overlap analysis of the Results of Genome Wide Association Study Experiments (eFORGE) 
was used to examine enrichment for DNAse hypersensitivity site enrichment among the most 
significantly associated CpGs in both cord blood and in child peripheral blood at 10 years.38

Statistical analysis

First, non-response analysis was conducted among singleton children with DNA methylation data, 
and with or without complete data on liver fat and covariates available, using Student’s t-tests, 
Mann-Whitney tests and Chi-square tests. Second, we used robust linear regression models to 
assess the associations of DNA methylation in cord blood and in whole peripheral blood at 10 
years with liver fat fraction as a continuous measure in 10-year-old children.26 The analyses were 
performed in three models, namely a basic model (adjusted for gestational age at birth, child sex, 
cell type proportions and batch), a main model (additionally adjusted for maternal age, education 
level, early-pregnancy BMI and smoking), and a childhood BMI model (additionally adjusted for 
childhood BMI at 10 years). The statistical models for DNA methylation measured in 10-year-old 
children were the same, with the only difference that they were adjusted for child age at the time 
of measurement instead of gestational age at birth. We adjusted for leukocyte subtypes using the 
cord blood-specific Gervin reference for the cord blood analyses and the Reinius reference set for 
the analyses at 10 years using the minfi Bioconductor package in R.39-42 Included covariates were 
based on previous studies and strong correlations with DNA methylation and liver fat.2 6 Since 
the outcome liver fat had a skewed distribution, it was natural log-transformed. Multiple testing 
was accounted for using Bonferroni correction, with CpGs with a p value <1.0 x 10-7 considered 
significant. Additionally, we planned to report results using FDR correction for multiple testing, 
using the method by Benjamini and Hochberg.43 Third, we identified differentially methylated 
regions using the dmrff package (https://github.com/perishky/dmrff), which identifies differen-
tially methylated regions by combining EWAS summary statistics from nearby CpGs.44 Significant 
differentially methylated regions were defined based on the following criteria: 1. Within one 
differentially methylated region, the distance between two neighboring probes can be at most 
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500 base pairs; 2. the regions have nominal EWAS p values <0.05 and 3. EWAS effect estimates 
for the individual CpGs in a differentially methylated regions have the same direction. All analyses 
were performed using R version 3.4.3.26
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Abstract

Background: Non-alcoholic fatty liver disease is a major risk factor for cardio-metabolic disease 
in adults. The burden of liver fat and associated cardio-metabolic risk factors in healthy children 
is unknown.
Methods: In a population-based prospective cohort study among 3,170 10-year-old children, we 
assessed whether both liver fat accumulation across the full range and non-alcoholic fatty liver 
disease are associated with cardio-metabolic risk factors already in childhood. Liver fat fraction 
was measured by Magnetic Resonance Imaging and non-alcoholic fatty liver disease was defined 
as liver fat fraction ≥5.0%. We measured body mass index, blood pressure, and insulin, glucose, 
lipids and C-reactive protein concentrations. Cardio-metabolic clustering was defined as having 
three or more risk factors out of high visceral fat mass, high blood pressure, low high-density-
lipoprotein cholesterol or high triglycerides, and high insulin concentrations.
Results: Non-alcoholic fatty liver disease prevalences were 1.0%, 9.1% and 25.0% among normal 
weight, overweight and obese children, respectively. Both higher liver fat within the normal range 
(<5.0% liver fat) and non-alcoholic fatty liver disease were associated with higher blood pres-
sure, insulin resistance, total-cholesterol, triglycerides and C-reactive protein concentrations (p 
values <0.05). As compared to children with <2.0% liver fat, children with ≥5.0% liver fat had the 
highest odds of cardio-metabolic clustering (Odds Ratio 24.43 (95% Confidence Interval 12.25, 
48.60)). The associations remained similar after adjustment for body mass index and tended to 
be stronger in overweight and obese children.
Conclusions: Higher liver fat is, across the full range and independently of body mass index, as-
sociated with an adverse cardio-metabolic risk profile already in childhood. Future preventive 
strategies focused on improving cardio-metabolic outcomes in later life may need to target liver 
fat development in childhood.
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Introduction

Non-alcoholic fatty liver disease is a major risk factor for cardio-metabolic disease, end-stage 
liver disease and subsequent need for liver transplantation.1-4 In adults, non-alcoholic fatty liver 
disease is associated with cardiovascular disease, dyslipidemia, type 2 diabetes mellitus and 
metabolic syndrome.1 3 5 6 Due to high rates of childhood overweight and obesity, non-alcoholic 
fatty liver disease has become the most common chronic liver disease in children in western 
countries.3 7 The estimated prevalence in children varies from 3% to 11%, depending on popula-
tion characteristics and diagnostic methods.2 8 9 Studies on the cardio-metabolic consequences of 
non-alcoholic fatty liver disease in children are scarce. Previous studies in small population-based 
samples, among older or only obese children, suggested that non-alcoholic fatty liver disease is 
associated with increased risks of insulin resistance, hypertension and dyslipidemia.5 7 10-14 It is not 
known whether liver fat also influences cardio-metabolic risk factors in children without obesity 
or non-alcoholic fatty liver disease. The limited number of studies focused on liver fat in children 
is partly due to the difficulty in measuring liver fat. Liver biopsy is the gold standard for diagnosing 
non-alcoholic fatty liver disease, but is not possible to perform in population-based samples.2 6 
Magnetic Resonance Imaging (MRI) enables non-invasive measurement of liver fat.15 16

We performed a cross-sectional analysis among 3,170 10-year-old children participating in a 
population-based prospective cohort study to examine whether liver fat accumulation across the 
full range and non-alcoholic fatty liver disease assessed with MRI are associated with cardio-
metabolic risk factors.

Methods

Study population

This study was embedded in the Generation R Study, a population-based prospective cohort from 
early fetal life onwards, based in Rotterdam, the Netherlands.17 The study has been approved 
by the Medical Ethical Committee of the Erasmus University Medical Center in Rotterdam (MEC 
198.782/2001/31). Written informed consent was obtained from parents for all participants.17 All 
children were born between April 2002 and January 2006. In total, 4,245 children attended the 
MRI subgroup study at 10 years. None of these children had a history of jaundice, medication use, 
alcohol use, smoking and drugs, based on information from questionnaires at 10 years. We in-
cluded children with at least one cardio-metabolic outcome available. The population for analysis 
of this subgroup study comprised 3,170 children (Figure S1). Missing measurements were mainly 
due to no data on liver fat, MRI-artefacts or blood sampling.
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Liver fat at 10 years

We measured liver fat using a 3.0 Tesla MRI (Discovery MR750w, GE Healthcare, Milwaukee, 
Wisconsin, United States).15-18 The children wore light clothing without metal objects while 
undergoing the body scan. A liver fat scan was performed using a single-breath-hold, 3D volume 
and a special 3-point proton density weighted Dixon technique (IDEAL IQ) for generating a precise 
liver fat fraction image.19 The IDEAL IQ scan is based on a carefully tuned 6-echo echo planar imag-
ing acquisition. The obtained fat-fraction maps were analyzed by the Precision Image Analysis 
(PIA, Kirkland, Washington, United States) using the sliceOmatic (TomoVision, Magog, Canada) 
software package. All extraneous structures and any image artifacts were removed manually.20 
Liver fat fraction was determined by taking four samples of at least 4cm2 from the central portion 
of the hepatic volume. Subsequently, the mean signal intensities were averaged to generate an 
overall mean liver fat estimation. Liver fat measured with IDEAL IQ using MRI is reproducible, 
highly precise and validated in adults.21 22 As previously described, non-alcoholic fatty liver disease 
was defined as liver fat ≥5.0%.7 18 22 To study the associations across the full spectrum, liver fat was 
first categorized into six categories (0.0 – 0.9, 1.0 – 1.9, 2.0 – 2.9, 3.0 – 3.9, 4.0 – 4.9, and >5.0%). 
Since only 5 children were in the 0.0 – 0.9 group, we combined them with the 1.0 – 1.9 group. In 
total 5 categories were used; <2.0% (n = 1,590), 2.0 to 2.9% (n = 1,160), 3.0 to 3.9% (n = 250), 4.0 
to 4.9% (n = 80) and ≥5.0% (n = 90). The reference group was <2.0%, since it is the largest group 
and contains the median of the sample. Due to lower numbers, no further subcategories were 
possible for >5.0% liver fat.

Cardio-metabolic risk factors at 10 years

We measured blood pressure at the right brachial artery four times with one minute intervals, 
using the validated automatic sphygmanometer Datascope Accutor Plus (Paramus, New Jersey, 
United States).23 We calculated the mean value for systolic and diastolic blood pressure using 
the last three blood pressure measurements of each participant. Thirty minute fasting venous 
blood samples were collected to measure glucose, insulin, total-cholesterol, HDL-cholesterol, 
triglycerides and C-reactive protein concentrations.17 We consider the 30 minutes fasting samples 
non-fasting samples. This time-interval was chosen because of the design of our study, in which 
it was not possible to obtain fasting samples from all children. Glucose, total cholesterol, HDL-
cholesterol, C-reactive protein and triglycerides concentrations were measured using the c702 
module on the Cobas 8000 analyzer. Insulin was measured with electrochemiluminescence 
immunoassay (ECLIA) on the E411 module (Roche, Almere, the Netherlands). Concentrations 
of LDL-cholesterol were calculated according to the Friedewald formula.24 Insulin resistance 
was estimated with the homeostatic model assessment of insulin resistance (HOMA-IR) using 
the formula: insulin resistance = (insulin (µU/L) x glucose (mmol/l)) / 22.5.25 Visceral fat mass 
was obtained by MRI scans, as previously described.17 26 We defined children with clustering of 
cardio-metabolic risk factors being at risk for metabolic syndrome phenotype, in line with previ-
ous studies.27 28 Clustering of cardio-metabolic risk factors was defined as having three or more 
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out of the following four adverse risk factors: visceral fat mass above the 75th percentile; systolic 
or diastolic blood pressure above the 75th percentile; HDL-cholesterol below the 25th percentile or 
triglycerides above the 75th percentile; and insulin above the 75th percentile of our study popula-
tion.

Covariates

At enrolment in the study, we obtained maternal education level and pre-pregnancy weight by 
questionnaires, measured maternal height and calculated pre-pregnancy BMI. Information on 
child age and sex was obtained from medical records, and on ethnicity from questionnaires. 
We measured childhood height and weight, both without shoes and heavy clothing, calculated 
BMI at 10 years, and further calculated sex- and age- adjusted childhood BMI standard deviation 
scores (SDS) (Growth Analyzer 4.0, Dutch Growth Research Foundation).29 Childhood BMI was 
categorized into underweight, normal weight, overweight and obesity, using the International 
Obesity Task Force cutoffs.30

Statistical analysis

First, we examined differences in subject characteristics between childhood BMI groups with 
ANOVA tests for continuous variables and Chi-square tests for categorical variables. We used simi-
lar methods to assess the differences for cardio-metabolic risk factors between children with and 
without non-alcoholic fatty liver disease in normal weight, overweight and obese children. For 
non-response-analyses, we compared participants and non-participants with Student’s t-tests, 
Mann-Whitney tests and Chi-square tests.

Second, we used linear regression models to assess the associations of liver fat across the 
full range and non-alcoholic fatty liver disease, both compared to the reference group, with 
cardio-metabolic risk factors at 10 years. Analyses were performed for the total group and also 
separately for normal weight and overweight or obese children, to which we further refer as 
overweight children.

Third, we used logistic regression models to assess the associations of liver fat in categories 
with the odds of adverse levels of single and clustered cardio-metabolic risk factors at 10 years. 
Only cases with complete data on cardio-metabolic outcomes were used for the analyses with 
clustered cardio-metabolic risk factors. For all analyses, we presented a basic model, adjusted 
for child age, sex and ethnicity; and a confounder model, which was additionally adjusted for 
maternal pre-pregnancy BMI and education. Since we were interested in the associations of liver 
fat with cardio-metabolic risk factors independently of BMI, we analyzed an extra model, which 
was additionally adjusted for child BMI at 10 years (BMI model). We adjusted for child BMI in a 
separate model to observe the additional confounding effect of BMI in our associations. Covari-
ates were included in the models based on previous studies, strong correlations with liver fat, risk 
of non-alcoholic fatty liver disease and with cardio-metabolic risk factors, and if they changed the 
effect estimates >10%.2 8 Since insulin, HOMA-IR, triglycerides and C-reactive protein concentra-
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tions were skewed, we used their natural logged values in all linear regression analyses. Due to 
a violation of the normality of the residuals assumption in the linear regression models, caused 
by a skewed distribution of liver fat, we also log-transformed liver fat when used continuously. 
To enable comparison of effect sizes of different measures, we constructed SDS ((observed value 
– mean) / SD) for all variables. We found a statistically significant interaction between liver fat 
and BMI for systolic blood pressure, HOMA-IR, triglycerides and C-reactive protein. No statistical 
interactions between liver fat and sex or between liver fat and ethnicity were observed in the 
associations with cardio-metabolic risk factors. As sensitivity analyses, we repeated the analyses 
with adjustment for visceral fat mass instead of BMI, to explore whether any association was 
affected by visceral fat. Missing data of covariates were multiple-imputed using Markov chain 
Monte Carlo approach. Five imputed datasets were created and analyzed together. All statistical 
analyses were performed using the Statistical Package of Social Sciences version 25.0 for Windows 
(SPSS IBM, Chicago, Illinois, United States).

Results

Subject characteristics

The median liver fat fraction was 1.8% (95% range: 1.1, 3.1), 2.0% (95% range: 1.2, 4.1), 2.5% 
(95% range: (1.4, 8.7) and 3.1% (95% range: 1.7, 17.9) in underweight, normal weight, overweight 
and obese children, respectively (Table 1). Prevalences of non-alcoholic fatty liver disease were 
2.8% (n = 90) in the total group and 1.0% (n = 26), 9.1% (n = 41) and 25.0% (n = 23) in children 
with normal weight, overweight and obesity, respectively. We observed in all BMI groups higher 
levels of adverse cardio-metabolic risk factors in children with non-alcoholic fatty liver disease, 
compared to those without non-alcoholic fatty liver disease (Table 2). Non-response analyses 
showed that participants were slightly more often European and had lower BMI compared to 
non-participants (Table S1).

Liver fat and cardio-metabolic risk factors

Higher liver fat and non-alcoholic fatty liver disease were associated with higher systolic and 
diastolic blood pressure, HOMA-IR, and total-cholesterol, triglycerides and C-reactive protein 
concentrations (p values <0.05)(Figure 1). As compared to the reference group of children with 
<2.0% of liver fat, children with ≥5.0% of liver fat tended to have the strongest associations with 
the cardio-metabolic risk factors (differences for systolic blood pressure (0.76 (95% CI 0.55, 0.97) 
SDS), diastolic blood pressure (0.41 (95% CI 0.19, 0.62) SDS), HOMA-IR (0.41 (95% CI 0.16, 0.67) 
SDS, total-cholesterol (0.51 (95% CI 1.24, 3.67) SDS), triglycerides (0.81 (95% CI 0.56, 1.07) SDS), 
and C-reactive protein (1.06 (95% CI 0.81, 1.31) SDS). Figure S2 shows similar results for the basic 
models. These associations of liver fat and non-alcoholic fatty liver disease with cardio-metabolic 
risk factors were also present after additional adjustment for childhood BMI (Figure S3). Liver fat 
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and non-alcoholic fatt y liver disease were positi vely associated with insulin and LDL-cholesterol, 
negati vely associated with HDL-cholesterol and no associati ons were observed with glucose 
(table s2). Strati fi ed analyses showed that the associati ons of liver fat and non-alcoholic fatt y 
liver disease with cardio-metabolic outcomes were present among both normal weight and over-
weight children, with a tendency for stronger eff ect esti mates among overweight children (table 
s3). The sensiti vity analyses using visceral fat instead of BMI, showed no consistent diff erences 
in associati ons of liver fat and non-alcoholic fatt y liver disease with cardio-metabolic risk factors 
(table s4).

Figure 1. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with cardio-metabolic risk fac-
tors at school age

 

Values are regression coeffi  cients (95% Confi dence Intervals) from linear regression models that refl ect diff erences in childhood cardio-
metabolic risk factors in SDS per SDS change in childhood liver fat fracti on as compared to the reference group (children with <2.0% of 
liver fat; left  side of each fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (children with 
<5.0% of liver fat; right side of each fi gure). Associati ons are adjusted for child’s age, sex, ethnicity, maternal pre-pregnancy BMI and 
maternal educati on. BMI, body mass index; CI, Confi dence Interval; HOMA-IR, Homeostati c Model Assessment of Insulin Resistance; 
SDS, standard deviati on scores. Trend lines are given only when p value for linear trend <0.05.
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Liver fat and clustering of cardio-metabolic risk factors

In children with non-alcoholic fatt y liver disease the prevalence of cardio-metabolic clustering 
was 66.7% (n = 30) compared to a prevalence of 12.0% (n = 224) in children without non-alcoholic 
fatt y liver disease. Figure s4 and Figure s5 show liver fat conti nuously with cardio-metabolic 
clustering present and not present, respecti vely. Higher liver fat was associated with higher odds 
of cardio-metabolic clustering, already from a liver fat fracti on of ≥2.0% onwards (p values <0.05)
(Figure 2). As compared to the reference group of children with <2.0% of liver fat, children with 
≥5.0% of liver fat had the highest odds of cardio-metabolic clustering (Odds Rati o (OR) 24.43 
(95% CI 12.25, 48.60)). The strongest associati on for liver fat was observed with high visceral fat 
mass, with an OR 27.80 (95% CI 14.50, 53.30) (Figure 7 in Supplemental Material). Figure 6 in 
Supplemental Material shows similar results for the basic models and the associati ons were not 
materially aff ected aft er further adjustment for childhood BMI (Figure 8 in Supplemental Mate-
rial). Due to the moderate correlati on between liver fat and visceral fat, we also performed the 
analyses for the cardio-metabolic clustering excluding visceral fat, these showed slightly smaller 
but sti ll stati sti cally signifi cant odds rati os (table 5 in Supplemental Material).

Figure 2. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with odds of clustering of 
cardio-metabolic risk factors at school age

Values are odds rati os (95% Confi dence Intervals) analyzed in a subgroup of cases with complete data for all cardio-metabolic variables 
(n = 1,906) that refl ect the risk of cardio-metabolic clustering per increase in liver fat fracti on as compared to the reference group 
(<2.0%; left  side of the fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (children with 
<5.0% of liver fat; right side of the fi gure). Bars represent the percentage of cardio-metabolic clustering per liver fat fracti on group. 
Cardio-metabolic clustering was defi ned as having three or more risk factors (high (>75th percenti le) visceral fat mass, high (>75th 
percenti le) systolic or diastolic blood pressure, low (<25th percenti le) HDL-cholesterol or high (>75th percenti le) triglycerides, and high 
(>75th percenti le) insulin. Associati ons are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI and maternal educati on. 
SDS, standard deviati on scores. Trend lines is given only when p value for linear trend <0.05.
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Discussion

We observed that not only non-alcoholic fatty liver disease but also a higher liver fat across the 
full range is associated with an adverse cardio-metabolic profile in school age children. Adverse 
cardio-metabolic clustering was already observed from a liver fat fraction of ≥2.0% onwards. 
The associations were independent of BMI and tended to be stronger in overweight and obese 
children than in normal weight children.

Interpretation of main findings

Non-alcoholic fatty liver disease has a prevalence of up to 30% in the general adult population.6 31 
Due to the high rates of childhood overweight and obesity, non-alcoholic fatty liver disease has 
also become the most common chronic liver disease in children in the developed world.3 18 
Previous studies in selected populations estimated childhood prevalences of non-alcoholic fatty 
liver disease between 3% and 11%. The differences in prevalences were mainly due to hetero-
geneity in sample selection and diagnostic methods.2 8 9 In a population-based sample, using a 
sensitive imaging-based method for liver fat assessment, we observed a prevalence of 2.8% for 
non-alcoholic fatty liver disease in all children with the highest prevalence up to 25.0% among 
obese children. Non-alcoholic fatty liver disease was not only present among obese children, but 
also among normal weight children. This high prevalence of non-alcoholic fatty liver disease in 
10-year-old children is an important population health problem.

Non-alcoholic fatty liver disease is strongly associated with cardiovascular disease, dyslipid-
emia and type 2 diabetes mellitus in adults.1 3 5 18 A cross-sectional study in 571 obese children 
aged 8 – 18 years showed that, as compared to children without non-alcoholic fatty liver disease, 
those with non-alcoholic fatty liver disease had a higher BMI, insulin resistance and triglycerides 
concentrations.5 Three case-control studies reported that children with non-alcoholic fatty liver 
disease had a more adverse cardio-metabolic profile.11 12 14 In line with these previous studies, we 
observed that non-alcoholic fatty liver disease was associated with higher blood pressure, insulin 
resistance, adverse lipids profile and increased C-reactive protein concentrations at 10 years.

To the best of our knowledge, no previous studies assessed the associations of liver fat ac-
cumulation across the full range. The cut-off point for defining non-alcoholic fatty liver disease in 
children and adults is originally derived from adult studies.22 We observed that children with liver 
fat of ≥5.0% had the highest odds of cardio-metabolic risk factor clustering. However, we also 
observed that even small increases in liver fat from ≥2.0% onwards were associated with adverse 
cardio-metabolic risk factors. Our results suggest that in children the cut-off for increased risk of 
an adverse cardio-metabolic risk profile is already between 2.0% and 3.0% liver fat, instead of 
the current cut-off of ≥5%. We could not test a lower cut-off because in our study group, only 5 
children had liver fat lower than 1.0%. These findings suggest that diagnosing non-alcoholic fatty 
liver disease in children might need a lower threshold than 5.0% liver fat. Current conventional 
ultrasounds cannot measure this low liver fat percentage, but future improvements in resolution 
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of ultrasound techniques may enable detection of lower fat percentages. We also observed that 
the associations of liver fat with cardio-metabolic risk factors in childhood were independent 
of BMI, and present among both normal weight and overweight children, with stronger effect 
estimates among overweight children. The combination of a higher liver fat and a higher BMI 
might exacerbate the adverse cardio-metabolic health profile. Next to BMI, visceral fat is also 
known to correlate with liver fat.26 However, our results suggest that the associations of liver fat 
with cardo-metabolic risk factors were independent of visceral fat. Thus, not only non-alcoholic 
fatty liver disease, but also small increases in liver fat accumulation within the normal range are, 
independent of BMI and visceral fat, related to an adverse cardio-metabolic risk profile already 
in childhood.

The directions of the associations of liver fat with cardio-metabolic risk factors cannot be 
concluded from a cross-sectional analysis. Future prospective follow-up studies should explore 
prospectively whether liver fat in childhood leads to increased risks of cardiovascular disease. In 
our study, we will perform follow-up studies in cardiovascular risk factors at age 18 years. Several 
mechanisms have been described linking liver fat with cardio-metabolic risk factors.4 Increased 
visceral fat mass may alter lipid metabolism and trigger insulin resistance, that may subsequently 
lead to non-alcoholic fatty liver disease and cardiovascular disease.4 32 33 On the other hand, liver 
fat can be the source of systemic release of inflammatory cytokines and pro-atherogenic factors 
leading to cardio-metabolic diseases, including hypertension.3 4 26 33 Findings from previous studies 
suggest a strong association of non-alcoholic fatty liver disease with the metabolic syndrome.4 33 
Also, studies in both adults and children showed associations of non-alcoholic fatty liver disease 
with hypertension as part of the metabolic syndrome.34-36 Adults with non-alcoholic fatty liver 
disease had increased carotid-artery intima-media thickness and increased prevalence of carotid 
atherosclerotic plaques.35 Possible underlying mechanisms may include chronic inflammation 
leading to pro-atherogenic factors leading to arterial damage and hypertension.33 The strong as-
sociations of both higher liver fat with systolic blood pressure and with C-reactive protein in our 
study supports this hypothesis. Prospective analyses or mendelian randomization approaches may 
help to elucidate the directions of the observed associations. Our study suggests that increased 
levels of liver fat are common and associated with harmful cardio-metabolic consequences in 
childhood, predisposing children to cardiovascular disease later in life. Future studies should 
focus on specific lifestyle related factors influencing liver fat from early childhood onwards.

Methodological considerations

Major strengths of this study are the cross-sectional analysis performed in an ongoing prospec-
tive cohort study with a large sample size, with information on liver fat fraction measured with 
MRI and on cardio-metabolic outcomes in children at a young age. The non-response at MRI 
visit would lead to biased effect estimates if associations were different between those included 
and not included in the analyses, but this seems unlikely. We had a relatively small number of 
children with obesity, which indicates a selection towards a lean population that might affect the 
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generalizability of our findings. The healthy and young study population possibly also explains 
the small number of children with liver fat fraction above the clinical cut-off of 5.0%. This might 
have limited our statistical power to detect significant associations. However, these findings are 
novel since little data is available on liver fat in healthy children and its relation with cardio-
metabolic risk factors. The fasting time before blood sampling was limited to 30 minutes, and 
thus we consider our samples non-fasting samples.17 The blood samples were collected at differ-
ent time-points during the day, depending on time of the study visit. Since glucose and insulin 
levels shift very easily during the day and are sensitive towards carbohydrate intake, this may 
have led to non-differential misclassification of children with high- or low glucose and insulin 
levels and thus underestimation of the observed effect estimates. On the other hand, for lipid 
levels it has been shown that non-fastening blood sampling is superior to fasting in accurately 
predicting cardio-metabolic events for adults in later life.37 Therefore, we believe our findings 
for triglycerides and cholesterol are less likely influenced by the non-fasting state. Overall, these 
results need to be carefully interpreted and further studies are needed to replicate our findings 
with fasting blood samples in children. Since we had a young study population, our results are not 
likely biased by alcohol use, known history of jaundice, hepatitis, smoking, drugs and medication 
use. We had no data available on Tanner stages. The pubertal increase of sex hormones may be 
important in predisposition for non-alcoholic fatty liver disease.38 In our population we did not 
observe sex differences, possibly due to the young age. Although many covariates were included, 
there still might be some residual confounding, as in any observational study.

Conclusions

Liver fat across the full range is associated with an adverse cardio-metabolic risk profile already 
in children of school age. The associations were independent of BMI and tended to be stronger 
in overweight and obese children. Future preventive strategies focused on improving cardio-met-
abolic outcomes in later life may need to target liver fat metabolism already in young childhood.
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Supplementary material
Table S1. Comparison of child characteristics between children included and not included in the analyses

Characteristics Participants
(n = 3,170)

Non-participants
(n = 965) p value

Age, mean (SD), years 9.8 (0.3) 9.8 (0.4) 0.10

Boys, n (%) 1563 (49.3) 505 (52.3) 0.10

Ethnicity, n (%), European 2118 (68.2) 576 (61.2) <0.01

Birth weight, mean (SD), g 3446 (558) 3409 (531) 0.33

Body mass index, mean (SD), kg/m2 17.5 (2.7) 17.8 (3.0) 0.01

Systolic blood pressure, mean (SD), mmHg 103.3 (8.0) 103.3 (8.1) 0.49

Diastolic blood pressure, mean (SD), mmHg 58.6 (6.4) 58.8 (6.6) 0.61

Insulin, median (95% range), pmol/l 182.3 (35.2, 629.1) 174.3 (35.8, 740.4) 0.61

Glucose, mean (SD), mmol/l 5.3 (0.9) 5.2 (1.0) 0.04

HOMA-IR, median (95% range) 7.0 (1.1, 28.8) 6.7 (1.1, 32.4) 0.34

Total – cholesterol, mean (SD), mmol/l 4.3 (0.7) 4.3 (0.6) 0.38

HDL – cholesterol, mean (SD), mmol/l 1.5 (0.3) 1.5 (0.3) 0.52

LDL – cholesterol, mean (SD), mmol/l 2.3 (0.6) 2.3 (0.6) 0.42

Triglycerides, median (95% range), mmol/l 1.0 (0.4, 2.6) 1.0 (0.4, 2.4) 0.42

C-reactive protein, median (95% range), mg/l 0.3 (0.3, 5.7) 0.3 (0.3, 5.1) 0.28

Values are observed data and represent means (SD), medians (95% range) or numbers of subjects (valid %). Differences were tested 
using Student’s t-tests and Mann-Whitney tests for normally and non-normally distributed variables, respectively and using χ2-test 
for dichotomous variables. HOMA-IR was calculated using the formula: insulin resistance = (insulin (µU/L) x glucose (mmol/L)) / 22.5. 
LDL-cholesterol is calculated according to the Friedewald formula. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; n, 
number; SD, standard deviation.

Table S2. Associations of liver fat fraction and non-alcoholic fatty liver disease with insulin, glucose, HDL-
cholesterol and LDL-cholesterol

Insulin, Glucose, HDL-cholesterol and LDL-cholesterol at 10 years in 
Standard Deviation Scores Difference (95% Confidence Interval)

Insulin
(n = 2,246)

Glucose
(n = 2,252)

HDL-cholesterol
(n = 2,253)

LDL-cholesterol
(n = 2,242)

Liver fat fraction

Basic model 0.14 (0.10;0.18)* 0.02 (-0.02;0.07) -0.13 (-0.17;-0.09)* 0.09 (0.04;0.13)* 

Confounder model 0.14 (0.09;0.18)* 0.03 (-0.01;0.07) -0.11 (-0.15;-0.07)* 0.09 (0.05;0.13)*

BMI model 0.06 (0.02;0.11)* 0.05 (0.01;0.10)† -0.05 (-0.10;-0.01)† 0.05 (0.00;0.09)†

Non-alcoholic Fatty Liver Disease

Basic model 0.41 (0.16;0.66)* -0.04 (-0.29;0.21) -0.37 (-0.61;-0.12)* 0.30 (0.17;0.43)† 

Confounder model 0.38 (0.13;0.64)* -0.03 (-0.29;0.23) -0.31 (-0.56;-0.06)† 0.31 (0.05;0.56)†

BMI model 0.13 (-0.12;0.38) 0.02 (-0.24;0.28) -0.11 (-0.36;0.14) 0.16 (-0.09;0.42)

Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in insulin and glu-
cose in SDS per SDS change in childhood liver fat fraction. *p value <0.01, †p value <0.05. Associations are adjusted for child age, sex, 
ethnicity in the basic models, further adjusted for maternal pre-pregnancy BMI and maternal education in the confounder models and 
additionally adjusted for childhood BMI at ten years of age in the BMI model. N, number; SDS, standard deviation scores.
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Table S5. Associations of liver fat fraction with odds of clustering of cardio-metabolic risk factors without 
visceral fat mass – confounder models

Liver fat fraction (%) Clustering of cardio-metabolic risk factors without taking
into account visceral fat mass (n = 3,170)

< 2.0 Reference group

2.0 – 2.9 1.36 (1.08;1.71)*

3.0 – 3.9 2.85 (1.94;4.20)*

4.0 – 4.9 2.78 (1.50;5.14)*

≥ 5.0 6.68 (3.48;12,81)*

Values are odds ratios (95% Confidence Intervals) analyzed in a subgroup of complete cases (n = 1,906) that reflect the odds of cardio-
metabolic clustering without taking into account visceral fat mass, defined as having two or more out of high (>75th percentile) systolic 
or diastolic blood pressure, low (<25th percentile) HDL-cholesterol or high (>75th percentile) triglycerides, and high (>75th percentile) 
insulin for children with increasing liver fat fraction compared to the reference group (children with <2% of liver fat). *p value <0.01. 
Associations are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI and maternal education. N, number.
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Figure S1. Study participants flowchart 

 

 

Singleton children at 10 years with cardio-
metabolic data available for analysis 
 
n = 3,170 

Children at 10 years in MRI subgroup study  
 
n = 4,245 

n = 5 Excluded: no data on any of the cardio-
metabolic risk factors at 10 years 

 

n = 110 Excluded: non-singleton children 

Blood Pressure 
n = 3,170 
 
Blood lipids, C-reactive protein, glucose, 
insulin 
n = 2,253 

 

Singleton children at 10 years with 
information on liver fat fraction  available 
 
n = 3,175 

n = 960 Excluded: no data on liver fat fraction 
at 10 years 

Singleton children at 10 years in MRI 
subgroup study 
 
n = 4,135 
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Figure s2. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with cardio-metabolic risk 
factors at school age – basic models

 

Values are regression coeffi  cients (95% Confi dence Intervals) from linear regression models that refl ect diff erences in childhood cardio-
metabolic risk factors in SDS per SDS change in childhood liver fat fracti on as compared to the reference group (children with <2.0% of 
liver fat; left  side of each fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (children with 
<5% of liver fat; right side of each fi gure). Associati ons are adjusted for child age, sex, ethnicity. HOMA-IR, Homeostati c Model Assess-
ment of Insulin Resistance; SDS, standard deviati on scores. Trend lines are given only when p value for linear trend <0.05.
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Figure s3. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with cardio-metabolic risk fac-
tors at school age – body mass index models

 
Values are regression coeffi  cients (95% Confi dence Intervals) from linear regression models that refl ect diff erences in childhood cardio-
metabolic risk factors in SDS per SDS change in childhood liver fat fracti on as compared to the reference group (children with <2.0% of 
liver fat; left  side of each fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (children with 
<5% of liver fat; right side of each fi gure). Associati ons are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI, maternal 
educati on and childhood BMI at ten years of age. HOMA-IR, Homeostati c Model Assessment of Insulin Resistance; SDS, standard devia-
ti on scores. Trend lines are given only when p value for linear trend <0.05.
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Figure s4. Histogram of liver fat conti nuously of children with cardio-metabolic clustering

 Histogram of liver fat conti nuously (%) for children with cardio-metabolic clustering present.

Figure s5. Histogram of liver fat conti nuously of children without cardio-metabolic clustering

 Histogram of liver fat conti nuously (%) for children without cardio-metabolic clustering present.
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Figure s6. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with odds of adverse levels of 
single and clustered cardio-metabolic risk factors at school age – basic models

 
Values are odds rati os (95% Confi dence Intervals) that refl ect the risk of high (>75th percenti le) visceral fat mass, high (>75th percenti le) 
systolic or diastolic blood pressure, low (<25th percenti le) HDL-cholesterol or high (>75th percenti le) triglycerides, and high (>75th per-
centi le) insulin and of cardio-metabolic clustering per SDS increase in liver fat fracti on as compared to the reference group (<2.0%; left  
side of each fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (children with <5% of liver 
fat; right side of each fi gure). Cardio-metabolic clustering was defi ned as having three or more of these risk factors and was analyzed 
in a subgroup of cases with complete data for all cardio-metabolic variables (n = 1,906). Associati ons are adjusted for child age, sex, 
ethnicity. OR, Odds Rati o; SDS, standard deviati on scores. Trend lines are given only when p value for linear trend <0.05.
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Figure s7. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with odds of cardio-metabolic 
risk factors at school age – confounder models

 
Values are odds rati os (95% Confi dence Intervals) that refl ect the risk of high (>75th percenti le) visceral fat mass, high (>75th percenti le) 
systolic or diastolic blood pressure (shown as high blood pressure), low (<25th percenti le) HDL-cholesterol or high (>75th percenti le) 
triglycerides (shown as adverse lipids), and high (>75th percenti le) insulin per increase in liver fat fracti on as compared to the reference 
group (<2.0%; left  side of each fi gure), or for children with non-alcoholic fatt y liver disease as compared to the reference group (chil-
dren with <5% of liver fat; right side of each fi gure). Associati ons are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI 
and maternal educati on. SDS, standard deviati on scores. Trend lines are given only when p value for linear trend <0.05.
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Figure s8. Associati ons of liver fat fracti on and non-alcoholic fatt y liver disease with odds of adverse levels of 
single and clustered cardio-metabolic risk factors at school age – body mass index models

 
Values are odds rati os (95% Confi dence Intervals) that refl ect the risk of high (>75th percenti le) visceral fat mass, high (>75th percenti le) 
systolic or diastolic blood pressure (shown as high blood pressure), low (<25th percenti le) HDL-cholesterol or high (>75th percenti le) 
triglycerides (shown as adverse lipids), and high (>75th percenti le) insulin and of cardio-metabolic clustering per increase in liver fat 
fracti on as compared to the reference group (<2.0%; left  side of each fi gure), or for children with non-alcoholic fatt y liver disease as 
compared to the reference group (children with <5% of liver fat; right side of the fi gure). Cardio-metabolic clustering was defi ned as 
having three or more of these risk factors and was analyzed in a subgroup of cases with complete data for all cardio-metabolic variables 
(n = 1,906). Associati ons are adjusted for child age, sex, ethnicity in the basic models, further adjusted for maternal pre-pregnancy BMI 
and maternal educati on in the confounder models and additi onally adjusted for childhood BMI at ten years of age in the BMI model. 
OR, Odds Rati o; SDS, standard deviati on scores. Trend lines are given only when p value for linear trend <0.05.
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Abstract

Background: Non-alcoholic fatty liver disease may develop from childhood onwards. Early-life 
seems to be an important period for the development of obesity and also of non-alcoholic fatty 
liver disease. We developed an early-life prediction model for childhood non-alcoholic fatty liver 
disease.
Methods: In a multi-ethnic population-based prospective cohort study among 3,175 children, 
we measured liver fat fraction at 10 years of age by magnetic resonance imaging. Non-alcoholic 
fatty liver disease was defined as liver fat fraction ≥5.0%. The area under the receiver operating 
characteristics curve (AUC) were obtained with multiple logistic regression analyses from eight 
predefined prediction models.
Results: The main prediction model included child sex, ethnicity, age and body mass index (BMI) 
at 6 years of age. The AUC of this model was 0.70 (95% Confidence Interval (CI): 0.64; 0.75). The 
model performance increased with addition of maternal pregnancy factors including: maternal 
age, education, pre-pregnancy BMI, pregnancy smoking, pregnancy folic acid supplement use, 
(AUC 0.73 (95% CI: 0.68; 0.78)). In models additionally including infant factors, childhood blood 
pressure, childhood liver enzyme, and childhood metabolic factors did non-significantly increase 
the AUC effect estimate. All prediction characteristics combined in the full model yielded the 
best model performance with an AUC of 0.77 (95% CI: 0.73; 0.82), a sensitivity of 47% at 90% 
specificity.
Conclusions: We showed that easily obtainable childhood characteristics enable prediction of 
non-alcoholic fatty liver disease at 10 years of age in a population-based cohort. The discrimina-
tive value was further improved by adding early-life and child cardio-metabolic characteristics. If 
externally validated, these models might serve as a prediction tool in clinical practice for identifi-
cation of children in mid-childhood at risk for non-alcoholic fatty liver disease in later childhood.
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Introduction

Non-alcoholic fatty liver disease is the most common chronic liver disease in children in indus-
trialized countries, affecting 3% to 11% of the general pediatric population.1 2 The prevalence 
of childhood non-alcoholic fatty liver disease is increasing because of the global rise in children 
with obesity, which is the major risk factor for non-alcoholic fatty liver disease.2 3 Non-alcoholic 
fatty liver disease exhibits a spectrum of severity, ranging from simple liver steatosis and fibrosis, 
to cirrhosis or hepatocellular carcinoma and eventually end-stage liver disease.4 Children with 
non-alcoholic fatty liver disease have an increased risk for hypertension, dyslipidemia and insulin 
resistance.5 6 Also, children with non-alcoholic fatty liver disease may exhibit advanced liver and 
cardiovascular disease in young adulthood.2 7 Diagnosis of non-alcoholic fatty liver disease in chil-
dren is difficult, due to lack of specific symptoms and of easy methods to measure liver fat.2 Liver 
biopsy is the gold standard for diagnosing non-alcoholic fatty liver disease.1 8 Advanced imaging 
methods are not feasible with respect to high healthcare costs on population-based level.1 4 8 
Recent North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASP-
GHAN) guidelines for non-alcoholic fatty liver disease screening in children propose the use of 
alanine aminotransferase (ALT) concentrations.9 Unfortunately, since ALT cut-off points in children 
are not clearly defined, ALT screening remains controversial. In addition, measurement of ALT 
requires blood sampling, which may not be available in all settings. In adults, algorithms have 
been developed to predict magnetic resonance imaging (MRI)-derived non-alcoholic fatty liver 
disease based on anthropometric indices and routine blood biomarkers such as ALT, aspartate 
transaminase (AST), triglycerides and insulin concentrations.10-14 These adult prediction models 
have poor performance for prediction of non-alcoholic fatty liver disease in children.15-17 Thus, 
currently no accurate validated prediction tools for non-alcoholic fatty liver disease in childhood 
exist.17-19 Previously reported associations of maternal pregnancy, infant and childhood factors 
with childhood liver fat, suggest that early life might be a critical period for liver fat development 
and non-alcoholic fatty liver disease.4 20-24 The purpose of this study was to explore whether we can 
identify a combination of maternal, infant and childhood factors that can predict non-alcoholic 
fatty liver disease in children.

In a population-based prospective cohort study, we aimed to develop a prognostic prediction 
model for MRI-diagnosed non-alcoholic fatty liver disease in children 10 years of age based on 
maternal, infant and childhood characteristics.

Methods

Study population

This study was embedded in the Generation R Study. This is a multi-ethnic population-based 
prospective cohort from early fetal life onwards, based in Rotterdam, the Netherlands.25 The 
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study has been approved by the Medical Ethical Committee of the Erasmus MC, University 
Medical Center Rotterdam (MEC 198.782/2001/31). Written informed consent was obtained for 
all participants.26 All pregnant women were enrolled between 2001 and 2005. The enrollment 
procedure has been described in detail previously.27 At the follow-up visit at 10 years of age a 
subgroup of 4,245 children were included for the MRI measurements. For the current study, we 
included singleton children with MRI-based liver fat measurements at 10 years of age and at least 
one characteristic in early life or mid-childhood available. After applying exclusions, the popula-
tion for analyses was 3,175 children (Figure 1). None of these children had a history of jaundice, 
medication use, alcohol use, smoking, or drug use, based on information from questionnaires at 
10 years of age completed by parents. Missing measurements were mainly due to no data on liver 

fat or MRI artifacts.26

Early-life cardio-metabolic characteristics

We selected maternal preconception and pregnancy characteristics, as well as infant character-
istics as early-life predictors. In mid-childhood cardio-metabolic characteristics were selected as 
predictors. We selected the predictors based on their associations with non-alcoholic fatty liver 
disease in literature in children or adults.1 4 5 20 21 24 28 The predictors were clustered according 
to the clinical practice availability and time of assessment within the cohort. In the following 
paragraphs we describe the way in which the maternal and child characteristics were obtained 
per cluster of predictors.

Figure 1. Study participants flowchart

 

 

 

 

 

 

 

 

 

 

Singleton children with information on birth 
outcomes, data available at child 6 years and with 
liver fat fraction at 10 years of age 
 
n = 3,175 

Excluded: no data on liver fat fraction at 10 
years of age 
 
n = 960 

Excluded: twins or multiple births 
 
n = 110 

Children included in MRI subgroup study at 10 
years of age 

n = 4,245 

Singleton children included in MRI subgroup study 
at 10 years of age 

n = 4,135 
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Main characteristics: The mid-childhood characteristics in the main model were chosen based 
on both easy clinical accessibility and known important determinants of non-alcoholic fatty liver 
disease.21 Information on child sex was obtained from medical records.26 Child ethnicity was based 
on parental countries of birth obtained through questionnaire. A child was considered of Dutch 
background if both parents were born in the Netherlands, and of non-Dutch origin if one or both 
of the parents were born abroad. If the parents were born in different countries, the country of 
birth of the mother determined the ethnic background of the child. We categorized child ethnicity 
into European n = 2,119 (68.1%), Surinamese n = 229 (7.4%), Turkish n = 165 (5.3%), Moroccan 
n = 153 (4.9%), Cape Verdean or Dutch Antillean n = 189 (6.0%), and other n = 256 (8.2%). At the 
follow-up visit around 6 years of age, we measured childhood height and weight, both without 
shoes and heavy clothing, and calculated body mass index (BMI) as weight (in kg) divided by 
height (in m) squared and sex- and age-adjusted childhood BMI standard deviation scores based 
on Dutch reference growth charts (Growth Analyzer 4.0, Dutch Growth Research Foundation).29 
Child BMI categories were obtained using the International Obesity Task Force cutoffs.30

Maternal pregnancy characteristics: Information was obtained by questionnaires on maternal 
age, education level (highest completed education), smoking, folic acid supplement use, and pre-
pregnancy weight.25 Maternal height was measured at study enrolment and pre-pregnancy BMI 
was calculated and categorized in clinical categories.

Infant characteristics: Information about gestational age at birth was obtained from medical 
records and on breastfeeding in infancy by questionnaire.26 Infant sugar-containing beverage 
intake was assessed with the food-frequency questionnaire at a mean age of 13.6 months (stan-
dard deviation (SD) 1.8).31 As previously defined, we converted the intake of sugar-containing 
beverages consumption into the number of servings per day, with 1 serving equaling 150 grams 
(NEVO-2011).32

Childhood blood pressure: Blood pressure was measured at the right brachial artery four times 
with one-minute intervals, using the validated automatic sphygmomanometer Datascope Accu-
tor Plus (Paramus, New Jersey).33 We calculated the mean value for systolic and diastolic blood 
pressure using the last three blood pressure measurements of each participant.

Childhood metabolic markers: Non-fasting blood samples were collected to determine serum 
concentrations of ALT, total cholesterol, triglycerides, and C-Reactive Protein with the c702 mod-
ule of the Cobas 8000 analyzer, and for insulin with the electrochemiluminescence immunoassay 
on the E411 module of the Cobas 8000 analyzer (Roche, Almere, The Netherlands). Quality 
control samples demonstrated intra- and interassay coefficients of variation ranging from 1.34% 
to 1.98%, 0.77 % to 1.39%, and 0.87 to 2.40%, respectively.

Liver fat at 10 years

We measured liver fat using a 3.0 Tesla MRI scanner (Discovery MR750w, GE Healthcare, Milwau-
kee, Wisconsin, United States) as described previously.8 9 26 34 A liver fat scan was performed using 
a single-breath-hold, 3D volume and a special 3-point proton density weighted Dixon technique 
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(IDEAL IQ) for generating a precise liver fat fraction image.35 The IDEAL IQ scan is based on a care-
fully tuned 6-echo echo planar imaging acquisition. The obtained fat fraction maps were analyzed 
by the Precision Image Analysis (PIA) (Kirkland, Washington, United States) using the sliceOmatic 
(TomoVision, Magog, Canada) software package. All extraneous structures and any image artifacts 
were removed manually.36 Liver fat fraction was determined by taking four samples of at least 
4cm2 from the central portion of the hepatic volume. Subsequently, the mean signal intensities 
were averaged to generate an overall mean liver fat estimation. Liver fat measured with IDEAL 
IQ using MRI is reproducible, highly precise and validated in adults.37 38 Non-alcoholic fatty liver 
disease was defined as liver fat ≥5.0%.9 38 39 We studied liver fat fraction dichotomized in low, 
<5.0%, and high, ≥5.0%, based on the clinical cutoff for non-alcoholic fatty liver disease.40

Statistical analysis

A non-response analysis was conducted to compare characteristics of mothers and children 
with and without liver MRI scan measurements with Student’s t-tests, Mann-Whitney tests and 
Chi-square tests. All variables were categorized in clinical categories and a missing category was 
added to allow for missing values when using the final risk score. We used different predefined 
multivariable logistic regression models to assess the discriminative value for non-alcoholic fatty 
liver disease at 10 years of age. Eight models were constructed with clustering of variables based 
on literature, timing of assessment and ease of clinical accessibility, starting with a model with 
mid-childhood characteristics, then in addition to mid-childhood characteristics we assessed pre-
diction clusters separately and prediction clusters combined.1 5 20 21 28 The eight predefined models 
were (1) main model including child sex, ethnicity, age and BMI at 6 years; thereafter the main 
model combined with (2) maternal pregnancy model including maternal age, education, pre-
pregnancy BMI, smoking, and folic acid supplement use; (3) infant model including gestational 
age at birth, ever breastfed, and sugar-containing beverage intake at 1 year of age; (4) childhood 
blood pressure model including systolic blood pressure and diastolic blood pressure at 6 years of 
age; (5) childhood liver enzyme model including ALT at 6 years of age; (6) childhood metabolic 
model including total cholesterol, triglycerides, C-Reactive Protein, and insulin concentrations at 
6 years of age. Last, two models combing previous predictors: (7) easily obtainable characteristics 
including the main model combined with the variables included in the maternal pregnancy, infant 
and child blood pressure models; (8) full model including the main model combined with all 
other models. The predicted values from these regression models were obtained. The model 
performance on discriminative ability was assessed by calculation of the Area Under the Receiver 
Operating Characteristic curves (AUC), along with the sensitivity at different specificity levels. We 
compared the AUCs of the main model with the other models using the DeLong tests.41 Positive 
and negative predictive values, and positive and negative likelihood ratios were calculated. The 
AUC analyses were repeated for each cluster without the main model characteristics. We as-
sessed in secondary analyses the risk prediction for non-alcoholic fatty liver disease at 10 years 
of age for three children with different combinations of risk factors using the main model and 
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the model with the best AUC. As a sensitivity analysis, we explored whether the observed AUCs 
were affected by missing not at random in the blood samples, we repeated the analyses for the 
liver enzyme and childhood metabolic models in a subgroup of cases with complete data for all 
cardio-metabolic variables (n = 1,976). The statistical analyses were performed using the Statisti-
cal Product and Service Solutions (SPSS) Statistics version 25.0 for Windows (IBM, Chicago, Illinois, 
United States), and R version 3.6.3 (R Foundation for Statistical Computing) (R Core Team 2020).

Results

Subject characteristics

Table 1 shows that 90 (2.8%) children of the included 3,175 children had MRI-diagnosed non-
alcoholic fatty liver disease at 10 years of age. Non-response analyses showed that children 
without MRI-measured liver fat assessment were more likely to have mothers with lower edu-
cational attainment, the children were less often of European and more often of Turkish ethnic 
background and had a slightly higher BMI at 6 years of age (Table S1).

Prediction of child non-alcoholic fatty liver disease

The discriminative performance for prediction of non-alcoholic fatty liver disease of the main 
model was moderate (AUC 0.70 (95% Confidence Interval (CI): 0.64; 0.75), with a sensitivity of 32% 
at 90% specificity) (Figure 2 and Table 2). The model performance increased significantly with ad-
dition of the separate cluster of maternal pregnancy model (AUC 0.73 (95% CI: 0.68; 0.78)). Also, 
the combined cluster models improved the main model performance significantly (p values for 
model comparison to the main model all <0.05) (Table 2). The infant, childhood blood pressure 
and childhood metabolic biomarkers models slightly improved the AUC, but the differences with 
the main model were not significant. Also, adding ALT did not improve the model performance. 
Performance of the full model was fair (AUC 0.77 (95% CI: 0.73; 0.82), with a sensitivity of 47% 
at 90% specificity, a positive predictive value of 12.1% and negative predictive value of 98.3%, a 
positive likelihood ratio of 4.7 and negative likelihood ratio of 0.59) (Table 2). The odds ratios for 
the individual predictors of non-alcoholic fatty liver disease at 10 years of age in the final model 
are given in Table 3. Table S2 shows that without the mid-childhood characteristics of the main 
model considerably lower model performances were observed for all models of the early-life and 
child cardio-metabolic characteristics.

We calculated the non-alcoholic fatty liver disease risk prediction profiles for three children 
with different combinations of risk factors using the main and full prediction models (Figure 3, 
using the risk calculator Excel sheet 1)). A child with a healthy risk profile in mid-childhood had a 
risk of 0.7% and 1.4% for non-alcoholic fatty liver disease at 10 years of age according to the main 
and full model, respectively. For a child with an unhealthy risk profile in mid-childhood the risk 
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Table 1. Study population characteristics

Total group No NAFLD
(liver fat <5.0)
n = 3,085 (97.2%)

Yes NAFLD
(liver fat ≥5.0)
n = 90 (2.8%) p value

Maternal characteristics

Age at enrollment, years 31.1 ± 4.9 31.1 ± 4.8 30.6 ± 5.5 0.38

Pre-pregnancy BMI, kg/m2 22.6 (18.0, 34.9) 22.5 (18.0, 34.7) 24.6 (18.7, 40.6) <0.01

BMI at child 6 years, kg/m2 24.8 (19.1, 39.5) 24.8 (19.1, 39.5) 24.9 (19.5, 39.7) 0.90

Education, higher 1,542 (52.7) 1,514 (53.2) 28 (35.4) <0.01

Smoking during pregnancy, stopped or no 
smoking

2,127 (82.3) 2,064 (82.2) 63 (85.1) 0.51

Folic acid supplement use, yes 1,444 (71.3) 1,402 (71.5) 42 (65.6) 0.30

Birth characteristics

Sex, female 1,606 (50.6) 1,560 (50.6) 46 (51.1) 0.92

Gestational age at birth, weeks 40.1 (35.8, 42.3) 40.1 (35.8, 42.3) 39.7 (33.7, 42.5) <0.01

Child ethnicity

European 2,119 (68.1) 2,072 (68.5) 47 (43.4) <0.01

Surinamese 229 (7.4) 221 (7.3) 8 (9.1) 0.53

Turkish 165 (5.3) 150 (5.0) 15 (17.0) <0.01

Moroccan 153 (4.9) 150 (5.0) 3 (3.4) 0.50

Cape Verdean or Dutch Antilles 189 (6.1) 178 (5.9) 11 (12.5) 0.01

Other 256 (8.2) 252 (8.3) 4 (4.5) 0.20

Early-childhood characteristics

Ever breastfed, yes 2,493 (92.9) 2,430 (93.0) 63 (87.5) 0.07

Sugar-containing beverages, servings/day 
at 1 year

1.0 (0.0, 3.7) 1.0 (0.0, 3.7) 1.3 (0.0, 5.1) 0.19

Mid-childhood characteristics

Age at 6 years, years 6.0 ± 0.4 6.0 ± 0.4 6.1 ± 0.5 0.13

BMI at 6 years, kg/m2 15.8 (13.6, 20.3) 15.7 (13.6, 20.0) 17.3 (14.0, 23.8) <0.01

Systolic blood pressure, mmHg 102.1 ± 7.8 102.0 ± 7.8 105.1 ± 8.6 <0.01

Diastolic blood pressure, mmHg 60.3 ± 6.5 60.2 ± 6.5 62.5 ± 8.0 0.02

ALT u/l 20.0 ± 5.3 20.0 ± 5.4 19.9 ± 3.9 0.88

Total cholesterol, mmol/l 4.2 ± 0.6 4.2 ± 0.6 4.4 ± 0.6 0.07

Triglycerides, mmol/l 1.0 (0.4, 2.4) 1.0 (0.4, 2.4) 1.1 (0.4, 3.0) 0.17

C-Reactive Protein, mg/l 0.3 (0.1, 9.3) 0.3 (0.1, 9.3) 0.7 (0.0, 20.4) <0.01

Insulin, pmol/l 110.4 (17.0, 393.9) 110.2 (16.9, 394.2) 121.2 (23.8, 406.2) 0.70

Late-childhood characteristics

Age at 10 years, years 9.8 ± 0.3 9.8 ± 0.3 9.8 ± 0.4 0.60

BMI at 10 years, kg/m2 16.9 (14.0, 24.2) 16.9 (14.0, 23.8) 21.4 (14.7, 29.8) <0.01

Liver fat fraction, % 2.0 (1.2, 5.3) 2.0 (1.2, 4.1) 6.5 (5.1, 19.5) <0.01

Values are observed and represent numbers (valid %), means ± SD, or medians (95% range). Abbreviations: BMI, body mass index; 
NAFLD, non-alcoholic fatty liver disease.
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was 28.1% and 93.1% for non-alcoholic fatty liver disease at 10 years of age according to the main 
and full model, respectively.

Sensitivity analyses

When we repeated the analyses in the subgroup with complete blood sample information, we 
observed similar AUC effect estimates and no significant differences (Table S3).

Table 2. Model performance metrics of child non-alcoholic fatty liver disease prediction models

Non-alcoholic fatty liver disease at 10 years of age

Models

AUC
(95% Confidence 

Interval)

p value 
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AUCs*

Sensitivity at 
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70% 80% 90%

Main 0.70 (0.64; 0.75) Reference 57 48 32 8.5% 97.8% 3.2 0.76

Early-life characteristics

Maternal 0.73 (0.68; 0.78) 0.04 59 46 37 9.7% 98.0% 3.7 0.70

Infant 0.72 (0.67; 0.78) 0.11 62 46 36 9.5% 98.0% 3.6 0.71

Child cardio-metabolic characteristics

Blood pressure 0.72 (0.66; 0.77) 0.24 60 51 32 8.5% 97.8% 3.2 0.76

Liver enzyme 0.70 (0.66; 0.77) 0.37 60 44 32 8.5% 97.8% 3.2 0.76

Metabolic biomarkers 0.72 (0.67; 0.78) 0.20 59 54 34 9.0% 97.9% 3.4 0.73

Combined characteristics

Easily obtainable 0.76 (0.71; 0.81) <0.01 71 52 42 10.9% 98.2% 4.2 0.64

Full 0.77 (0.73; 0.82) <0.01 72 58 47 12.1% 98.3% 4.7 0.59

The Area Under the Receiver Operating Characteristic Curves (AUC) are shown for the prediction of non-alcoholic fatty liver disease 
at 10 years of age. *p values are obtained using DeLong’s test for comparison of the AUC of the main model with the AUC of the 
other models. The prevalence of non-alcoholic fatty liver disease was 2.8% (n = 90) in our study population. The sensitivity is given 
for different specificities derived of the corresponding AUCs. The positive and negative predicted value, and positive and negative 
likelihood ratio of the predictions models are calculated for a specificity of 90% with corresponding sensitivity. Main model: child sex, 
ethnicity, age and BMI at 6 years. Maternal model: main model with maternal age, education, smoking during pregnancy, folic acid 
supplement use during pregnancy, and pre-pregnancy BMI. Infant model: main model with gestational age at birth, ever breastfed, and 
sugar-containing beverage intake at 1 year of age. Blood pressure model: main model with systolic blood pressure and diastolic blood 
pressure at 6 years of age. Liver enzyme model: main model with ALT at 6 years of age. Cardio-metabolic biomarkers: main model with 
total cholesterol, triglycerides, C-Reactive Protein, and insulin at 6 years of age. Easy obtainable model: main combined with early-life 
characteristics and with blood pressure at 6 years of age. Full model: main model combined with early-life and child cardio-metabolic 
characteristics. Abbreviations: AUC, Area Under the Receiver Operating Characteristic Curves; NAFLD, Non-alcoholic fatty liver disease.
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Table 3. Odds ratios of the full model for non-alcoholic fatty liver disease at 10 years of age

Non-alcoholic fatty liver disease

Variable Categories Odds Ratio
(95% Confidence Interval)

Intercept 0.00

Child sex Girls (n = 1,606) Reference

Boys (n = 1,569) 1.08 (0.70; 1.69)

Child ethnicity European (n = 2,119) Reference

Surinamese (n = 229) 1.18 (0.52; 2.68)

Turkish (n = 165) 2.71 (1.35; 5.45)

Moroccan (n = 153) 0.46 (0.13; 1.62)

Cape Verdean or Dutch Antilles (n 
= 189)

1.79 (0.83; 3.87)

Other (n = 256) 0.64 (0.22; 1.85)

Missing (n = 64) 0.69 (0.13; 3.70)

Child age at 6 years <6 years (n = 1,734) Reference

6 - 7 years (n = 1,116) 1.74 (1.06; 2.87)

≥7 years (n = 114) 1.07 (0.34; 3.41)

Missing (n = 211) 1.97 (0.69; 2.81)

Child BMI at 6 years Underweight (n = 358) 1.44 (0.70; 2.99)

Normal weight (n = 2,003) Reference

Overweight (n = 199) 3.39 (1.76; 6.53)

Obesity (n = 40) 2.53 (0.68; 9.41)

Missing (n = 575) 1.07 (0.53; 2.13)

Maternal age <25 years (n = 364) 0.89 (0.46; 1.69)

25-35 years (n = 2,177) Reference

≥35 years (n = 634) 1.20 (0.68; 2.12)

Educational level High (n = 1,542) Reference

Low (n = 1,384) 1.37 (0.79; 2.36)

Missing (n = 249) 1.45 (0.58; 3.65)

Maternal smoking No (n = 2,127) Reference

Yes (n = 458) 0.83 (0.42; 1.64)

Missing (n = 590) 1.10 (0.61; 1.99)

Folic acid supplement use Yes (n = 817) Reference

No (n = 1,207) 0.82 (0.49; 1.39)

Missing (n = 1,151) 0.66 (0.37; 1.18)

Pre-pregnancy BMI <25 kg/m2 (n = 1,713) Reference

25.0-30.0 kg/m2 (n = 446) 1.86 (1.01; 3.39)*

≥30.0 kg/m2 (n = 164) 1.86 (0.83; 4.14)

Missing (n = 852) 1.26 (0.70; 2.29)
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Table 3. Odds ratios of the full model for non-alcoholic fatty liver disease at 10 years of age (continued)

Non-alcoholic fatty liver disease

Variable Categories Odds Ratio
(95% Confidence Interval)

Gestational age at birth Preterm (n = 173) 1.61 (0.72; 3.60)

Aterm (n = 2,829) reference

Missing (n = 133) 0.91 (0.09; 8.93)

Ever breastfed Yes (n = 2,493) Reference

No (n = 191) 1.48 (0.68; 3.20)

Missing (n = 491) 0.50 (0.19; 1.34)

Sugar-containing beverages intake at 
1 year of age

<2 servings per day (n = 1,540) Reference

≥2 servings per day (n = 353) 2.55 (1.25; 5.19)

Missing (n = 1,282) 0.83 (0.42; 1.66)

Systolic blood pressure at 6 years 
of age

<100 mmHg (n = 1,156) Reference

100 - 110 mmHg (n = 1,166) 1.71 (0.94; 3.12)

≥110 mmHg (n = 450) 1.70 (0.76; 3.81)

Diastolic blood pressure at 6 years 
of age

<60 mmHg (n = 1,365) Reference

60 - 70 mmHg (n = 1,209) 0.62 (0.36; 1.08)

≥70 mmHg (n = 198) 1.66 (0.74; 3.71)

Blood pressure Missing (n = 403) 0.58 (0.16; 2.05)

ALT concentrations <20 u/l (n = 1,079) Reference

20 - 25 u/l (n = 653) 1.15 (0.62; 2.12)

≥25 u/l (n = 280) 0.57 (0.21; 1.54)

Total cholesterol concentrations <4.0 mmol/l (n = 719) Reference

4.0 - 4.5 mmol/l (n = 637) 1.65 (0.78; 3.49)

4.5 - 5.0 mmol/l (n = 440) 1.56 (0.70; 3.49)

≥5.0 mmol/l (n = 184) 1.66 (0.64; 4.36)

Triglycerides concentrations <1.0 mmol/l (n = 1,069) Reference

1.0 - 1.5 mmol/l (n = 623) 1.24 (0.64; 2.41)

≥1.5 mmol/l (n = 324) 1.66 (0.76; 3.61)

C-Reactive Protein concentrations <1.0 mg/l (n = 1,552) Reference

1.0 - 5.0 mg/l (n = 356) 1.61 (0.83; 3.12)

≥5.0 mg/l (n = 118) 2.79 (1.08; 7.23)

Insulin concentrations <50 pmol/l (n = 381) Reference

50 - 100 pmol/l) (n = 530) 1.48 (0.57; 3.80)

100 - 150 pmol/l) (n = 407) 1.83 (0.69; 4.86)

150 - 200 pmol/l (n = 267) 0.74 (0.20; 2.74)

≥200 pmol/l (n = 417) 1.51 (0.56; 4.05)

Blood sample Missing (n = 1,173) 3.25 (1.14; 9.25)

Values are odds ratios for the predicted risk of child non-alcoholic fatty liver disease at 10 years of age assessed with the full model. 
Full model: child sex, ethnicity, age and BMI at 6 years, maternal age, education, smoking during pregnancy, folic acid supplement 
use during pregnancy, pre-pregnancy BMI, gestational age at birth, ever breastfed, sugar-containing beverage intake at 1 year of age, 
systolic blood pressure and diastolic blood pressure at 6 years of age, ALT, total cholesterol, triglycerides, C-Reactive Protein, and insulin 
at 6 years of age.
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Discussion

In this population-based prospective cohort study, we observed that easily obtainable child 
characteristics can moderately identify children at risk for developing non-alcoholic fatty liver 
disease in later childhood. The discriminative value of this prediction model was further improved 
with addition of maternal pregnancy, infant and child cardio-metabolic characteristics. The full 
model had a fair performance for the prediction of child non-alcoholic fatty liver disease in later 
childhood in a multi-ethnic low-risk population. After external validation, these models might 
serve as a prediction tool in clinical practice for identification of children in mid-childhood at risk 
for non-alcoholic fatty liver disease in later childhood.

Interpretation of main findings

The increasing prevalence of non-alcoholic fatty liver disease among children emphasizes the 
need for adequate early identification of children who will most likely benefit from preventive 
strategies to prevent liver fat accumulation development. Non-alcoholic fatty liver disease in 
children is a difficult disease to diagnose, as it is mostly a clinically silent disease and it is not easy 
to accurately measure liver fat.2 The gold standard for diagnosing non-alcoholic fatty liver disease 

Figure 2. Screening performance for child non-alcoholic fatty liver disease

Models AUC
(95% 

Confidence 
Interval)

Main (light blue line) 0.70 (0.64; 0.75)

Early-life characteristics

Maternal pregnancy (red line) 0.73 (0.68; 0.78)

Infant (dark green line) 0.72 (0.67; 0.78)

Child cardio-metabolic characteristics

Chilhood blood pressure (orange line) 0.72 (0.66; 0.77)

Childhood liver enzyme (yellow line) 0.70 (0.66; 0.77)

Childhood metabolic (turquoise line) 0.72 (0.67; 0.78)

Combined characteristics

Easy obtainable (pink line) 0.76 (0.71; 0.81)

Full (purple line) 0.77 (0.73; 0.82)

Eight models were used to calculate the Area Under the Receiver Operating Characteristic Curves (AUC) for the prediction of non-alco-
holic fatty liver disease at 10 years of age. The prevalence of non-alcoholic fatty liver disease was 2.8% (n = 90) in our study population. 
Main model: child sex, ethnicity, age and BMI at 6 years of age. Maternal pregnancy model: main model with maternal age, education, 
maternal smoking during pregnancy, folic acid supplement use during pregnancy, and pre-pregnancy BMI. Infant model: main model 
with gestational age at birth, ever breastfed, and sugar-containing beverage intake at 1 year. Childhood blood pressure model: main 
model with systolic blood pressure and diastolic blood pressure at 6 years of age. Childhood liver enzyme model: main model with 
ALT at 6 years of age. Childhood metabolic model: main model with total-cholesterol, triglycerides, C-Reactive Protein, and insulin at 
6 years of age. Easy obtainable model: main combined with maternal pregnancy, infant and childhood blood pressure models. Full 
model: main model combined with early-life and child cardio-metabolic characteristics.
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is liver biopsy, or with imaging methods, both are not feasible for routi ne screening with respect 
to health care expenditures and biopsy-related risks.1 4 8 Hence, there is a considerable interest 
in developing non-invasive, accurate and cost-eff ecti ve predicti on models. Several non-alcoholic 
fatt y liver disease predicti on models have been developed in adults to address this issue, but 
none of these models have suffi  ciently high predicti ve ability in children.15-17 This may partly be 

Figure 3. Risk predicti ons for child non-alcoholic fatt y liver disease for diff erent health
 

Values are percentages for the predicted risk of child non-alcoholic fatt y liver disease at 10 years of age for 3 children with diff erent 
example health profi les in mid-childhood. The risk predicti ons were calculated with both the main and full model. Main model: child 
sex, ethnicity, age and BMI at 6 years. Full model: main model with maternal age, educati on, smoking during pregnancy, folic acid 
supplement use during pregnancy, pre-pregnancy BMI, gestati onal age at birth, ever breastf ed, sugar-containing beverage intake at 
1 year of age, systolic blood pressure and diastolic blood pressure at 6 years of age, ALT, total-cholesterol, triglycerides, C-Reacti ve 
Protein, and insulin at 6 years of age.
Healthy: risk profi le represents a girl of 5 years of age with Dutch ethnic background and with normal weight. She has a mother who 
was 32 years of age during her pregnancy, with a high level of educati onal att ainment, who did not smoke during pregnancy, who took 
folic acid supplements during pregnancy, and who had a pre-pregnancy BMI of 23.5 kg/m2. The girl was born a term, and she was 
breastf ed. Her intake of sugar-containing beverages around 1 year of age were below 1 serving per day on average. At 5 years of age 
she has a blood pressure of 90 / 55 mmHg, her blood concentrati ons are: ALT 19.5 u/l, total-cholesterol 3.2 mmol/l, triglycerides 1.1 
mmol/l, C-Reacti ve Protein 0.8 mg/l, and insulin 75 pmol/l.
Intermediate: risk profi le represents a boy of 7 years of age with Dutch Anti llean ethnic background and with underweight. He has a 
mother who was 23 years of age during his pregnancy, with a low level of educati onal att ainment, no informati on about smoking during 
pregnancy, who took folic acid supplements during pregnancy, and who a pre-pregnancy BMI of 21.0 kg/m2. The boy was born a term, 
he was breastf ed. His intake of sugar-containing beverages around 1 year of age were less than 2 servings per day on average. At 7 years 
of age he has a blood pressure of 105 / 65 mmHg, his blood concentrati ons are: ALT 20.5 u/l, total-cholesterol 4.1 mmol/l, triglycerides 
1.6 mmol/l, C-Reacti ve Protein 1.2 mg/l, and insulin 120 pmol/l.
Unhealthy: risk profi le of a boy of 6.5 years of age with Turkish ethnic background and with overweight. He has a mother who was 36 
years of age during his pregnancy, with a low level of educati onal att ainment, who smoked during pregnancy, who took no folic acid 
supplements during pregnancy, and a who had a pre-pregnancy BMI of 29.0 kg/m2. The boy was born preterm, he was not breastf ed. 
His intake of sugar-containing beverages around 1 year of age were more than 2 servings per day on average. At 6.5 years of age he has 
a blood pressure of 105 / 75 mmHg, his blood concentrati ons are: ALT 24.5 u/l, total-cholesterol 4.4 mmol/l, triglycerides 2.1 mmol/l, 
C-Reacti ve Protein 5.5 mg/l, and insulin 140 pmol/l.
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due to differences in risk factors and the unique histological features of pediatric non-alcoholic 
fatty liver disease compared to adults, with a portal pattern of fibrosis in children rather than a 
lobar involvement in adults.2 42 In children only a few diagnostic algorithms have been developed, 
all of which without using early-life characteristics, and in selected populations, such as among 
hospitalized children or children with obesity. The diagnostic prediction models consisted of ei-
ther clinical and routine laboratory tests or of specialized tests, for instance of cytokeratin-18.43-45 
In a study of 203 children admitted to a tertiary care liver unit at a mean age of 12 years, of 
which 141 (69%) had biopsy-proven non-alcoholic fatty liver disease, the diagnostic Pediatric 
NAFLD fibrosis Index (PNFI) was developed, which is based on child age, waist circumference 
and triglyceride concentrations (AUC 0.85 (95% CI: 0.80; 0.90)).43 The high prevalence rate of 
non-alcoholic fatty liver disease in this pediatric population makes it difficult to generalize to 
a population-based pediatric population. Validation of the PNFI in a retrospective chart review 
study using clinical and laboratory data of 146 children with a mean age of 14 years with obe-
sity and confirmed non-alcoholic fatty liver disease showed inadequate sensitivity in accurately 
predicting fibrosis.17 Another study in 56 outpatient children with obesity and a mean age of 10 
years developed a diagnostic predictive model for MRI-diagnosed non-alcoholic fatty liver disease 
using waist-to-height ratio, insulin resistance, adiponectin and ALT (AUC 0.94 (95% CI: 0.89; 0.99); 
without adiponectin AUC 0.88 (95% CI: 0.79; 0.97)).18 The population prevalence of non-alcoholic 
fatty liver disease in that population was 46% (n = 26).18 This model has not yet been externally 
validated. To date there are no accurate validated screening tools for child non-alcoholic fatty liver 
disease in the general population.17-19 Previously reported associations of maternal pregnancy, 
infant and childhood factors with childhood liver fat, suggest that early life might be a critical 
period for liver fat development and non-alcoholic fatty liver disease.4 20-24 No previous study in 
children has considered early-life environment for predicting later childhood non-alcoholic fatty 
liver disease. Development of non-invasive child prediction tools is needed to accurate identify 
children at risk for non-alcoholic fatty liver disease already on a population level.

We developed different prediction models for prognostic prediction in mid-childhood of 
non-alcoholic fatty liver disease in later childhood. The models were developed in a population-
based cohort study using easy obtainable maternal, infant and childhood characteristics. We 
predefined the predictors based on their associations with non-alcoholic fatty liver disease in 
literature.1 4 5 20 21 24 28 The predictors were clustered a priori according to their availability in clinical 
practice and time of assessment within our cohort. A moderate model performance of our main 
model was already observed using only four mid-childhood characteristics. These predictors can 
easily and routinely be obtained in daily clinical practice. The addition of maternal preconception 
and pregnancy characteristics significantly improved the prediction model. We observed the best 
model performance for maternal pregnancy, infant, childhood cardio-metabolic characteristics 
together with the main childhood characteristics to predict child non-alcoholic fatty liver disease 
in later childhood.
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The limited additional predictive value of the cluster with ALT concentrations at 6 years of age is 
in contrast with the current NASPGHAN guidelines for non-alcoholic fatty liver disease screening 
in children, which recommends the use of ALT concentrations.9 Our observations could be due 
to the relatively healthy population, with ALT concentrations reflecting a relatively healthy range. 
Possibly, the predictive value of ALT concentrations would be stronger in high-risk populations. On 
the other hand, this finding is in agreement with studies performed in adults, showing that liver 
enzymes are not reliably associated with non-alcoholic fatty liver disease prediction as compared 
to liver biopsy.46 We found that the prediction models without the main childhood characteristics 
had an inferior model performance compared to models taking the main childhood characteris-
tics into account as well. These observations underline the importance of the predictors in the 
main childhood model for assessing the risk of later childhood non-alcoholic fatty liver disease.

After external validation, the proposed predictions models could provide a screening tool to 
estimate the child non-alcoholic fatty liver disease risk profile in mid-childhood. This could be 
applied on a population level to identify children who will most likely benefit from strategies to 
prevent liver fat accumulation development and subsequent associated comorbidities. Lifestyle 
modifications concerning diet and physical exercise are currently the mainstay of recommenda-
tions.2 47 A recent randomized controlled trial in 40 adolescent boys with non-alcoholic fatty liver 
disease showed that dietary sugar restriction was associated with significant improvements in 
liver steatosis, providing strong evidence for the potential benefits of sugar reduction in child-
onset non-alcoholic fatty liver disease.48 Currently, there is a lack of evidence for optimal lifestyle 
guidelines in children with non-alcoholic fatty liver disease. Further studies should develop 
lifestyle strategies to prevent child non-alcoholic fatty liver disease.

Methodological considerations

Major strengths of this study are the prospective data collection in an ongoing population-based 
cohort study with a large sample size and liver fat fraction measured with MRI. The non-response 
at the MRI visit might have led to selection of a healthier population, which might affect the 
generalizability of results to high-risk populations. We also had a relatively small number of cases 
with childhood non-alcoholic fatty liver disease. Therefore, we lacked statistical power to perform 
stepwise model estimation to select candidate predictors. As an alternative, we predefined 
predictors based on easy clinical applicability and their associations with non-alcoholic fatty liver 
disease in the literature.1 5 20 21 28 External validation of the prediction models is needed to assess 
generalizability to other pediatric populations. High quality data were obtained for a large number 
of maternal, infant and child characteristics through hands-on measurements, blood sampling 
and questionnaires. The fasting time before blood sampling was limited to 30 minutes, and thus 
we consider our samples non-fasting samples.26 The blood samples were collected at different 
time-points during the day, depending on time of the study visit. Since insulin concentrations 
vary during the day and are sensitive to carbohydrate intake, this may have led to non-differential 
misclassification of insulin concentrations.and thus underestimation of the observed effect esti-
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mates. However, semi-fasted insulin resistance is moderately correlated with fasting values.49 For 
lipid concentrations it seems that non-fasting blood sampling is superior to fasting in accurately 
predicting cardio-metabolic events for adults in later life.50 Therefore, we believe our findings for 
total cholesterol and triglycerides are less likely influenced by the non-fasting state. Although 
we used validated questionnaires to assess lifestyle and socio-demographic characteristics, 
measurement error, recall bias or reporting bias may still have affected the study and this could 
have resulted in non-differential misclassification and may have attenuated the studied model 
performance.

Conclusions

In mid-childhood, easily obtainable child characteristics can moderately predict which children 
are at risk for developing non-alcoholic fatty liver disease in later childhood. The discrimina-
tive value of this prediction model was further improved with addition of early-life maternal, 
infant and child cardio-metabolic characteristics. The full model had a fair performance for the 
prediction of child non-alcoholic fatty liver disease in later childhood in a multi-ethnic low-risk 
population-based cohort. After external validation, these models might serve as a prediction tool 
in clinical practice for identification of children in mid-childhood at risk for non-alcoholic fatty liver 
disease in later childhood.
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Supplementary Tables Chapter 3.4
Table S1. Comparison of characteristics between mothers and children with and without outcome measure-
ments

Participants Nonparticipants

n = 3,175 n = 960 p value

Maternal characteristics

Age at enrollment, years 31.1 ± 4.9 30.9 ± 5.2 0.36

Pre-pregnancy BMI, kg/m2 22.6 (18.0, 34.9) 22.6 (18.0, 34.0) 0.90

BMI at child 6 years, kg/m2 24.8 (19.1, 39.5) 24.8 (19.2, 39.6) 0.89

Education, higher 1,542 (52.7) 385 (44.7) <0.01

Smoking during pregnancy, stopped or no smoking 2,127 (82.3) 654 (82.5) 0.90

Folic acid supplement use, yes 1,444 (71.3) 455 (71.8) 0.84

Birth characteristics

Sex, female 1,606 (50.6) 460 (47.9) 0.15

Gestational age at birth, weeks 40.1 (35.8, 42.3) 40.1 (36.0, 42.3) 0.78

Child ethnicity

	 European 2,119 (68.1) 575 (61.4) <0.01

	 Surinamese 229 (7.4) 61 (6.5) 0.36

	 Turkish 165 (5.3) 91 (9.7) <0.01

	 Moroccan 153 (4.9) 58 (6.2) 0.13

	 Cape Verdean or Dutch Antilles 189 (6.1) 58 (6.2) 0.92

	 Other 256 (8.2) 93 (9.9) 0.11

Early-childhood characteristics

Ever breastfed, yes 2,493 (92.9) 702 (93.1) 0.84

Sugar-containing beverages, servings/day at 1 year 1.0 (0.0, 3.7) 1.0 (0.0, 3.8) 0.11

Mid-childhood characteristics

Age at 6 years, years 6.0 ± 0.4 6.1 ± 0.5 <0.01

BMI at 6 years, kg/m2 15.8 (13.6, 20.3) 15.9 (13.8, 20.8) 0.02

Systolic blood pressure, mmHg 102.1 ± 7.8 102.6 ± 8.4 0.08

Diastolic blood pressure, mmHg 60.3 ± 6.5 60.5 ± 7.0 0.46

ALT u/l 20.0 ± 5.3 19.6 ± 5.1 0.14

Total cholesterol, mmol/l 4.2 ± 0.6 4.3 ± 0.6 0.09

Triglycerides, mmol/l 1.0 (0.4, 2.4) 1.0 (0.4, 2.3) 0.38

C-Reactive Protein, mg/l 0.3 (0.1, 9.3) 0.3 (0.1, 13.4) 0.13

Insulin, pmol/l 110.4 (17.0, 393.9) 115.5 (17.0, 392,6) 0.23

Values are observed and represent numbers (valid %). means ± SD, or medians (95% range). Differences were tested using Student t 
tests and Mann-Whitney tests for normally and non-normally distributed variables, respectively, and χ2 test was used for dichotomous 
variables.



3.4

Predicti on of child liver fat 209

ta
bl

e 
s2

. S
cr

ee
ni

ng
 p

er
fo

rm
an

ce
 fo

r n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
ise

as
e 

of
 e

ac
h 

cl
us

te
r s

ep
ar

at
el

y 
w

ith
ou

t t
he

 m
ai

n 
ch

ild
 c

ha
ra

ct
er

isti
 c

s

Sc
re

en
in

g 
pe

rf
or

m
an

ce
 in

 c
hi

ld
re

n 
6 

ye
ar

s o
f a

ge
 fo

r n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
is

ea
se

 a
t 1

0 
ye

ar
s o

f a
ge

M
od

el
s

Au
c

(9
5%

 C
on

fi d
en

ce
 In

te
rv

al
)

p 
va

lu
e 

be
tw

ee
n 

Au
cs

*

Ea
rly

-li
fe

 c
ha

ra
ct

er
isti

 c
s

M
at

er
na

l (
lig

ht
 b

lu
e 

lin
e)

0.
65

 (0
.6

0;
 0

.7
0)

0.
03

In
fa

nt
 (r

ed
 li

ne
)

0.
65

 (0
.5

9;
 0

.7
1)

0.
07

Ch
ild

ca
rd

io
m

et
ab

ol
ic

 c
ha

ra
ct

er
isti

 c
s

Bl
oo

d 
pr

es
su

re
 (d

ar
k 

gr
ee

n 
lin

e)
0.

62
 (0

.5
6;

 0
.6

8)
0.

03

Li
ve

r e
nz

ym
e 

(o
ra

ng
e 

lin
e)

0.
53

 (0
.4

7;
 0

.5
9)

<0
.0

1

M
et

ab
ol

ic
 b

io
m

ar
ke

rs
 (y

el
lo

w
 li

ne
)

0.
61

 (0
.5

5;
 0

.6
6)

<0
.0

1

Co
m

bi
ne

d 
ch

ar
ac

te
ris

ti c
s

Ea
sy

 o
bt

ai
na

bl
e 

(t
ur

qu
oi

se
 li

ne
)

0.
72

 (0
.6

7;
 0

.7
7)

0.
30

Fu
ll 

(p
in

k 
lin

e)
0.

74
 (0

.6
9;

 0
.7

9)
0.

36

Se
ve

n 
m

od
el

s w
er

e 
us

ed
 to

 ca
lc

ul
at

e 
th

e 
Ar

ea
 U

nd
er

 th
e 

Re
ce

iv
er

 O
pe

ra
ti n

g 
Ch

ar
ac

te
ris

ti c
 C

ur
ve

s (
AU

C)
 fo

r t
he

 p
re

di
cti

 o
n 

of
 n

on
-a

lc
oh

ol
ic

 fa
tt 

y 
liv

er
 d

ise
as

e 
at

 1
0 

ye
ar

s o
f a

ge
. T

he
 p

re
va

le
nc

e 
of

 n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
ise

as
e 

w
as

 2
.8

%
 (n

 =
 9

0)
 in

 th
e 

st
ud

y 
po

pu
la

ti o
n.

 *
p 

va
lu

es
 a

re
 o

bt
ai

ne
d 

us
in

g 
De

Lo
ng

’s 
te

st
 fo

r c
om

pa
ris

on
 o

f t
he

 A
U

C 
of

 th
e 

m
od

el
s w

ith
ou

t t
he

 m
ai

n 
ch

ild
 c

ha
ra

ct
er

isti
 c

s w
ith

 th
e 

AU
C 

of
 th

e 
m

od
el

s w
ith

 
th

e 
m

ai
n 

ch
ild

 ch
ar

ac
te

ris
ti c

s a
s s

ho
w

n 
in

 Ta
bl

e 
2 

in
 th

e 
m

an
us

cr
ip

t. 
M

at
er

na
l m

od
el

: m
at

er
na

l a
ge

, e
du

ca
ti o

n,
 m

at
er

na
l s

m
ok

in
g 

du
rin

g 
pr

eg
na

nc
y, 

fo
lic

 a
ci

d 
su

pp
le

m
en

t u
se

 d
ur

in
g 

pr
eg

na
nc

y, 
an

d 
pr

e-
pr

eg
na

nc
y 

BM
I. 

In
fa

nt
 m

od
el

: g
es

ta
ti o

na
l a

ge
 a

t b
irt

h,
 e

ve
r b

re
as

tf e
d,

 a
nd

 su
ga

r-c
on

ta
in

in
g 

be
ve

ra
ge

 in
ta

ke
 a

t 1
 y

ea
r. 

Bl
oo

d 
pr

es
su

re
 m

od
el

: s
ys

to
lic

 b
lo

od
 p

re
ss

ur
e 

an
d 

di
as

to
lic

 b
lo

od
 p

re
ss

ur
e 

at
 6

 y
ea

rs
 o

f a
ge

. L
iv

er
 e

nz
ym

e 
m

od
el

: A
LT

 a
t 6

 y
ea

rs
 o

f a
ge

. M
et

ab
ol

ic
 b

io
m

ar
ke

rs
: t

ot
al

 c
ho

le
st

er
ol

, t
rig

ly
ce

rid
es

, C
-R

ea
cti

 v
e 

Pr
ot

ei
n,

 a
nd

 in
su

lin
 a

t 6
 y

ea
rs

 o
f a

ge
. E

as
y 

ob
ta

in
ab

le
 m

od
el

: e
ar

ly
-li

fe
 c

ha
ra

ct
er

isti
 c

s c
om

bi
ne

d 
w

ith
 b

lo
od

 p
re

ss
ur

e 
at

 6
 y

ea
rs

 o
f a

ge
. F

ul
l m

od
el

: e
ar

ly
-li

fe
 a

nd
 c

hi
ld

 c
ar

di
om

et
ab

ol
ic

 c
ha

ra
ct

er
isti

 c
s c

om
bi

ne
d.



210 Chapter 3.4

ta
bl

e 
s3

. S
cr

ee
ni

ng
 p

er
fo

rm
an

ce
 fo

r n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
ise

as
e 

w
ith

 c
om

pl
et

e 
bl

oo
d 

sa
m

pl
e 

in
fo

rm
ati

 o
n

Sc
re

en
in

g 
pe

rf
or

m
an

ce
 in

 c
hi

ld
re

n 
6 

ye
ar

s o
f a

ge
 fo

r n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
is

ea
se

 a
t 1

0 
ye

ar
s o

f a
ge

M
od

el
s

Au
c

(9
5%

 C
on

fi d
en

ce
 In

te
rv

al
)

p 
va

lu
e 

be
tw

ee
n 

Au
cs

*

M
ai

n 
(li

gh
t b

lu
e 

lin
e)

0.
69

 (0
.6

2;
 0

.7
6)

0.
92

Ea
rly

-li
fe

 c
ha

ra
ct

er
isti

 c
s

M
at

er
na

l (
re

d 
lin

e)
0.

75
 (0

.6
9;

 0
.8

1)
0.

75

In
fa

nt
 (d

ar
k 

gr
ee

n 
lin

e)
0.

72
 (0

.6
6;

 0
.7

9)
0.

99

Ch
ild

 c
ar

di
om

et
ab

ol
ic

 c
ha

ra
ct

er
isti

 c
s

Bl
oo

d 
pr

es
su

re
 (o

ra
ng

e 
lin

e)
0.

72
 (0

.6
5;

 0
.7

8)
0.

98

Li
ve

r e
nz

ym
e 

(y
el

lo
w

 li
ne

)
0.

70
 (0

.6
3;

 0
.7

7)
0.

98

M
et

ab
ol

ic
 b

io
m

ar
ke

rs
 (t

ur
qu

oi
se

 li
ne

)
0.

72
 (0

.6
6;

 0
.7

9)
0.

95

Co
m

bi
ne

d 
ch

ar
ac

te
ris

ti c
s

Ea
sil

y 
ob

ta
in

ab
le

 (p
in

k 
lin

e)
0.

78
 (0

.7
2;

 0
.8

4)
0.

63

Fu
ll 

(p
ur

pl
e 

lin
e)

0.
81

 (0
.7

5;
 0

.8
6)

0.
39

Ei
gh

t m
od

el
s 

w
er

e 
us

ed
 to

 c
al

cu
la

te
 w

ith
 A

re
a 

U
nd

er
 th

e 
Re

ce
iv

er
 O

pe
ra

ti n
g 

Ch
ar

ac
te

ris
ti c

 C
ur

ve
s 

(A
U

C)
 fo

r t
he

 p
re

di
cti

 o
n 

of
 n

on
-a

lc
oh

ol
ic

 fa
tt 

y 
liv

er
 d

ise
as

e 
at

 1
0 

ye
ar

s 
of

 a
ge

 in
 p

ar
ti c

ip
an

ts
 w

ith
 c

om
pl

et
e 

in
-

fo
rm

ati
 o

n 
on

 b
lo

od
 sa

m
pl

in
g 

(n
 =

 1
,9

76
). 

Th
e 

pr
ev

al
en

ce
 o

f n
on

-a
lc

oh
ol

ic
 fa

tt 
y 

liv
er

 d
ise

as
e 

w
as

 2
.6

%
 (n

 =
 5

1)
 in

 th
is 

su
b-

sa
m

pl
e 

po
pu

la
ti o

n.
 *

p 
va

lu
es

 a
re

 o
bt

ai
ne

d 
us

in
g 

De
Lo

ng
’s 

te
st

 fo
r c

om
pa

ris
on

 o
f t

he
 A

U
C 

of
 th

e 
m

od
el

 in
 th

e 
su

b-
sa

m
pl

e 
po

pu
la

ti o
n 

w
ith

 th
e 

AU
C 

of
 th

e 
fu

ll 
po

pu
la

ti o
n 

as
 sh

ow
n 

in
 Ta

bl
e 

2 
in

 th
e 

m
an

us
cr

ip
t. 

M
ai

n 
m

od
el

: c
hi

ld
 se

x,
 e

th
ni

ci
ty

, a
ge

 a
nd

 B
M

I a
t 6

 y
ea

rs
 o

f a
ge

. M
at

er
na

l m
od

el
: m

ai
n 

m
od

el
 

w
ith

 m
at

er
na

l a
ge

, e
du

ca
ti o

n,
 m

at
er

na
l s

m
ok

in
g 

du
rin

g 
pr

eg
na

nc
y, 

fo
lic

 a
ci

d 
su

pp
le

m
en

t u
se

 d
ur

in
g 

pr
eg

na
nc

y, 
an

d 
pr

e-
pr

eg
na

nc
y 

BM
I. 

In
fa

nt
 m

od
el

: m
ai

n 
m

od
el

 w
ith

 g
es

ta
ti o

na
l a

ge
 a

t b
irt

h,
 e

ve
r b

re
as

tf e
d,

 a
nd

 
su

ga
r-c

on
ta

in
in

g 
be

ve
ra

ge
 in

ta
ke

 a
t 1

 y
ea

r. 
Bl

oo
d 

pr
es

su
re

 m
od

el
: m

ai
n 

m
od

el
 w

ith
 sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e 
an

d 
di

as
to

lic
 b

lo
od

 p
re

ss
ur

e 
at

 6
 y

ea
rs

 o
f a

ge
. L

iv
er

 e
nz

ym
e 

m
od

el
: m

ai
n 

m
od

el
 w

ith
 A

LT
 a

t 6
 y

ea
rs

 o
f 

ag
e.

 M
et

ab
ol

ic
 b

io
m

ar
ke

rs
: m

ai
n 

m
od

el
 w

ith
 to

ta
l c

ho
le

st
er

ol
, t

rig
ly

ce
rid

es
, C

-R
ea

cti
 v

e 
Pr

ot
ei

n,
 a

nd
 in

su
lin

 a
t 6

 y
ea

rs
 o

f a
ge

. E
as

y 
ob

ta
in

ab
le

 m
od

el
: m

ai
n 

co
m

bi
ne

d 
w

ith
 e

ar
ly

-li
fe

 c
ha

ra
ct

er
isti

 c
s a

nd
 w

ith
 b

lo
od

 
pr

es
su

re
 a

t 6
 y

ea
rs

 o
f a

ge
. F

ul
l m

od
el

: m
ai

n 
m

od
el

 c
om

bi
ne

d 
w

ith
 e

ar
ly

-li
fe

 a
nd

 c
hi

ld
 c

ar
di

om
et

ab
ol

ic
 c

ha
ra

ct
er

isti
 c

s.







4 General discussion and future 
perspectives





4

General discussion and future perspectives 215

General discussion and future perspectives

Healthy early-life development and growth is of lifelong importance. Barker et al. proposed the 
Fetal Origins of Health and Disease hypothesis in the early 1990s.1 This hypothesis states that 
adverse exposures during critical periods of growth and development in early life lead to devel-
opmental adaption mechanisms. These adverse exposures may have short and long term con-
sequences for growth, body composition and cardio-metabolic health in later life. This concept 
has now been generally accepted as the Developmental Origins of Health and Disease (DOHaD) 
hypothesis and suggests an enormous potential for early-life prevention strategies.2 Currently, 
we are in the pandemic time window of the SARS-CoV-2 virus. Disproportionate burdens of infec-
tions, hospitalizations, and deaths from COVID-19 are observed in minority groups with higher 
prevalence of obesity and associated cardio-metabolic diseases.3-5 Before this pandemic, preven-
tive strategies and public health care lacked appreciation, possibly since the gain on personal level 
is less clear compared to curative health care. One of the most essential lessons we can already 
learn from the COVID-19 health crisis is the importance of preventive strategies and healthy 
lifestyle in general, and especially to strive to recognize and reduce social disparities. The future 
challenge is to hold on to these insights and implement preventive strategies to support society in 
a healthy lifestyle and thus to reduce the prevalence of lifestyle-related diseases from the earliest 
phases of life.

The overall objective of this thesis was to identify early-life factors which play an important role 
in the development of adverse fetal, pregnancy, birth and child cardio-metabolic outcomes in a 
low-risk, multi-ethnic population. Previous literature has suggested a putative role of maternal 
gestational diabetes in the health of the mother herself and in offspring early-life develop-
ment and health.6-11 In this thesis, I assessed as a first objective the associations of maternal 
early–pregnancy glucose concentrations across the full range with fetal, pregnancy, birth and 
child outcomes. As a second objective, I studied potential determinants, including maternal early-
pregnancy glucose concentrations and cardio-metabolic consequences of childhood liver fat. I 
specifically focused on DNA methylation as potential underlying mechanism for the associations 
of interest.

Maternal early-pregnancy glucose concentrations

Throughout the first part of this thesis, I focused on maternal early-pregnancy glucose concen-
trations using a population-based approach. I identified several associations of maternal early-
pregnancy glucose concentrations with fetal growth, maternal early-pregnancy blood pressure, 
size at birth, offspring DNA methylation and childhood liver fat accumulation.

In clinical practice, the diagnosis of gestational diabetes is usually made in second half of 
pregnancy. However, high glucose concentrations may already contribute to the risk of adverse 
effects on fetal, maternal and later offspring health before gestational diabetes and its associated 
complications, such as fetal macrosomia and polyhydramnios, become apparent.8 12 Addition-
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ally, these associations are stronger among women who are overweight or obese at the start 
of pregnancy.7 13 The role of maternal glucose metabolism in early pregnancy in relation to fetal 
development, pregnancy, birth and child outcomes in women without overt diabetes is not clear. 
Early pregnancy may be an important time window for the effects of suboptimal maternal glucose 
metabolism on fetal and maternal complications.8 Early placental development could play an es-
sential role in these associations, although the exact mechanisms through which maternal early-
pregnancy hyperglycemia affects placentation and placental function is unknown.14 Previously, it 
has been shown that women with HbA1c-defined prediabetes or with gestational diabetes are 
at increased risk for gestational hypertensive disorders.12 13 15 Treatment of gestational diabetes 
has shown to reduce the prevalence of pre-eclampsia.16 17 In Chapter 2.1, I hypothesized that 
higher maternal early-pregnancy glucose concentrations would be associated with suboptimal 
placental flow, higher blood pressure and increased risks of gestational hypertensive disorders. I 
expected to find stronger associations of maternal early-pregnancy glucose concentrations with 
blood pressure throughout pregnancy, due to prolonged exposure time to a hyperglycaemic 
environment. Instead, I observed associations of maternal early-pregnancy glucose concentra-
tions with maternal blood pressure in early pregnancy, but not in later pregnancy. I observed no 
associations of maternal early-pregnancy glucose concentrations with blood pressure in mid- or 
late pregnancy, placental hemodynamics or gestational hypertensive disorders. The difference 
in results with previous studies may be explained by my low-risk population. Also, maternal 
glucose concentrations in early pregnancy may not influence placental flow measures assessed 
later in pregnancy. My findings may be explained by the fact that an association of maternal 
early-pregnancy glucose concentrations with blood pressure in mid- or late pregnancy may be 
too small to detect, as the effect estimates observed for early-pregnancy blood pressure with 
values within the normal range were already small. Also, there might be no association between 
maternal early-pregnancy glucose concentrations and blood pressure. It might be that stronger 
associations of maternal early-pregnancy glucose concentrations with adverse pregnancy out-
comes are present in high-risk populations.

Next to pregnancy outcomes, the role of maternal glucose metabolism in early pregnancy in 
relation to fetal development and birth outcomes is important. Therefore, in Chapter 2.2 , I stud-
ied whether maternal glucose concentrations measured in early pregnancy are associated with 
fetal growth throughout pregnancy and with risks of adverse birth outcomes. Previously, higher 
maternal glucose concentrations below the threshold of gestational diabetes measured in mid 
and late pregnancy were shown to be associated with increased risks of perinatal complications.10 
I observed that among non-diabetic women, higher maternal early-pregnancy glucose concentra-
tions were associated with decreased fetal growth rates in mid-pregnancy and increased fetal 
growth rates from late pregnancy onwards resulting in larger size at birth. These associations 
were independent of maternal ethnicity, a well-known risk factor for gestational diabetes and an 
important determinant of fetal growth. Also, other maternal pregnancy-related factors, including 
pre-pregnancy body mass index, did not explain the observed associations. The presence of as-
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sociations for all fetal biometry measurements suggests that maternal early-pregnancy glucose 
concentrations affect both fetal fat development and skeletal growth. I also observed that a 
small increase in maternal early-pregnancy glucose concentrations within the normal range was 
related to an increased risk of delivering a large-for-gestational-age infant, but a decreased risk 
of delivering a small-for-gestational-age infant. These associations were independent of maternal 
pre-pregnancy body mass index.

Epigenetics, more specifically DNA methylation, has been suggested as a potential mechanism 
linking adverse exposures during pregnancy and impaired offspring health.18 19 In Chapter 2.3, I 
studied DNA methylation as a potential mechanism linking maternal glucose and insulin concentra-
tions in early pregnancy with impaired offspring health.18 19 Previous studies using candidate-gene 
approaches suggested that maternal gestational diabetes is associated with epigenetic modifica-
tions in placenta and cord blood at loci relevant to growth, energy homeostasis, and diabetes 
mellitus.18 20-22 Epigenome-wide association studies (EWAS) of gestational diabetes or maternal 
glucose concentrations showed varying results, with no clear pattern of associations.6 19 23-29 The 
inconsistent results of candidate-gene studies and EWAS may be due to differences in study 
design. The studies varied in their exposure definition: gestational diabetes as binary exposure 
or glucose concentrations after an oral challenge test. Also, the studies varied in tissues in which 
DNA methylation was measured: placenta or blood. Next to this, the studies were different in the 
extent of adjustment for covariates, with most studies not adjusting for cell type heterogeneity. 
Also, the majority had limited sample sizes with numbers ranging from 44 to 313 for cord blood 
samples.19 23 25-29 I observed that maternal early-pregnancy glucose and insulin concentrations 
were not associated with differential DNA methylation at birth in the full group. However, after 
stratification on maternal body mass index, maternal early-pregnancy glucose concentrations 
were associated with DNA methylation at one Cytosine phosphate Guanine (CpG) site located 
in XKR6 among women with normal weight and at another CpG site in IL17D among women 
with overweight or obesity. Associations of DNA methylation at these CpG sites did not persist 
in children 10 years of age. Also, I did not observe associations with offspring health outcomes, 
more specifically with birth weight and child glucose concentrations. The effect estimates of both 
CpGs were in opposite directions for women with normal weight and for women with overweight 
or obesity, which could imply a modifying effect of maternal body mass index in these associa-
tions. These results constitute a first step towards a better understanding of a potential role of 
DNA methylation underlying the associations of maternal glycaemic traits in early pregnancy with 
offspring health outcomes. In addition, they imply that different mechanisms may be involved in 
different subgroups.

Next to possible underlying mechanisms outcomes, the role of maternal glucose metabolism 
in early pregnancy in relation to adverse child outcomes is important. I assessed in Chapter 2.4 
the associations of maternal early-pregnancy glucose concentrations with offspring liver fat ac-
cumulation and non-alcoholic fatty liver disease measured using magnetic resonance imaging 
(MRI) at 10 years of age. Previous studies suggest that gestational diabetes is associated with 
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offspring markers of liver pathology.30-36 In this study in children 10 years of age, maternal early-
pregnancy glucose concentrations were not associated with childhood liver fat accumulation or 
with risk of non-alcoholic fatty liver disease. Because both glucose concentrations, liver fat and 
the associations between them may differ between ethnic subgroups, I performed analyses in the 
full multi-ethnic group and in the group of European ancestry only, as the largest ethnic subgroup. 
In the European ancestry group, I observed that a 1 mmol/l increase in maternal early-pregnancy 
glucose concentration was associated with an almost twofold increase in odds of non-alcoholic 
fatty liver disease, independent of maternal pre-pregnancy and child body mass index and of 
child glucose concentrations. This may suggest that there is also an intrauterine effect of maternal 
early-pregnancy glucose concentrations on childhood non-alcoholic fatty liver disease through 
other pathways in this subgroup. I did not observe associations of maternal early-pregnancy 
glucose concentrations with liver fat across the full range in the total study sample and in the 
European ancestry group. The lack of association in the total group might be due to a modifying 
effect of ethnicity, with directions of effect estimates differing per ethnic subgroup. The lack of 
association in European ancestry group could be due to the moderate sample size, combined 
with the relatively small variability in liver fat accumulation in this population of children. Further 
studies are needed to explore these associations among higher-risk populations and to evaluate 
liver fat accumulation in older offspring. Methodological considerations of these studies will be 
discussed in following paragraphs.

Main findings

·	 �Sugar-containing beverage intake at 1 year is associated with increased odds of non-
alcoholic fatty liver disease at 10 years of age, but not with liver fat accumulation across 
the full range. 

·	 �DNA methylation at birth and in childhood is not associated with liver fat accumulation 
in children 10 years of age. This may be due to modest sample sizes or DNA methylation 
changes being a consequence rather than a determinant of liver fat accumulation. 

·	 �Liver fat accumulation across the full range is associated with an adverse cardio-metabolic 
risk profile already in children 10 years of age. The associations were independent of 
child body mass index and tended to be stronger in children with overweight or obesity. 

·	 �Easily accessible clinical characteristics can be used to aid in prediction of which children 
are at risk for developing non-alcoholic fatty liver disease.

Underlying mechanisms

The cellular and molecular mechanisms underlying the observed associations of maternal glucose 
metabolism with fetal, pregnancy, birth and child cardio-metabolic outcomes are largely un-
known. A change in nutrient supply to the fetus is a plausible explanation, with glucose being the 
principal energy substrate and the primary stimulus for fetal secretion of the growth-promoting 
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hormone insulin.37 38 Early pregnancy is a critical period for optimal placental development.39 In 
this period, trophoblast invasion and spiral artery remodelling take place to ensure adequate 
blood flow to the developing placenta, leading to larger vessels with lower resistance and in-
creased end-diastolic flow.37 40 In pregnant women with pre-gestational diabetes, hyperglycemia 
is hypothesized to cause a pro-inflammatory environment and cytokine derangements that act 
on the endothelium and lead to placental vascular changes, placental insufficiency and as a result 
early fetal growth restriction.41 42 Studies have shown that hyperglycemia during pregnancy is 
associated with reduced invasiveness of the trophoblast, increased oxidative stress in the ma-
ternal and fetal milieu, disrupted vasculogenesis, and macroscopically and histologically altered 
placentae.37 41 43 Maternal insulin concentrations do not cross the placenta, but do affect maternal 
metabolism and the development of the placenta, leading to alterations in fetal-placental blood 
flow patterns.44 It has been suggested that the fetus may induce maternal hyperglycemia In re-
sponse to placental insufficiency, to improve nutrient supply and growth during the second half of 
pregnancy via placental signaling.37 45 It has also been hypothesized that maternal hyperglycemia 
in early pregnancy affects the development of the yolk sac, which is of great importance during 
the embryonic period, especially in nutrient transport towards the embryo. This may lead to 
impaired embryonic growth and development. When the yolk sac function is replaced by the 
placenta at the end of early pregnancy, maternal hyperglycemia together with increased transfer 
of other nutrients could induce an intrauterine environment which stimulates increased fetal 
adiposity and growth.13 37 46 Animal studies have suggested that in utero exposure to high glucose 
concentrations may induce ectopic fat storage.32-34 36 For instance, mouse models of maternal in-
sulin resistance have shown impairment of gene expression involved in fatty acid oxidative capac-
ity and lipogenesis in offspring liver.34 35 47 The accelerated hepatic fat storage in mouse offspring 
appear to persist into adulthood, suggesting a long-lasting impact of the maternal intrauterine 
environment on pathways of hepatic lipid metabolism.35 47 Another speculation is that higher 
insulin resistance in the offspring of mothers with gestational diabetes is associated with higher 
liver fat accumulation, although the direction of effect is not yet defined.48 49 In mothers with 
gestational diabetes a higher risk for non-alcoholic fatty liver disease after pregnancy is observed, 
supporting the hypothesis of a link between insulin resistance and liver fat accumulation.50

Various adverse early-life factors have been associated with differential DNA methylation.51-54 
I observed that maternal early-pregnancy glucose concentrations were associated with DNA 
methylation at one CpG in XKR6 among women with normal weight and at another CpG in IL17D 
among women with overweight or obesity. The effect estimates of both CpGs were in opposite 
directions for women with normal weight and for women with overweight or obesity, which could 
imply a modifying effect of maternal body mass index in these associations. Their role in mecha-
nisms underlying offspring health outcomes needs further study, especially whether these dif-
ferently methylated CpGs have an effect on gene expression as a functional consequence. These 
results await confirmation by future studies in larger samples with early-pregnancy information 
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on maternal fasting glucose metabolism and exploring potential functional consequences of the 
differential methylation.

Non-alcoholic fatty liver disease in children

Throughout the second part of this thesis, I focused on childhood liver fat accumulation measured 
with MRI at 10 years of age. I identified potential early-life determinants and possible cardio-
metabolic consequences of childhood liver fat accumulation, but no associated DNA methylation 
patterns. Subsequently, I combined the newly observed associations with existing literature and 
designed a prediction tool to select children early in childhood at risk for non-alcoholic fatty liver 
disease development at 10 years of age.

In children, non-alcoholic fatty liver disease is related to the current obesity epidemic and 
is now the most common cause of chronic liver disease worldwide.55 Early-life exposures may 
contribute to the development of not only obesity but also of liver fat accumulation and non-
alcoholic fatty liver disease.56-58 Sugar-containing beverage consumption is the main source of 
added sugar intake in the total daily energy intake of children and adults.59-61 Recent studies in 
adults showed that higher intake of sugar-containing beverages is associated with increased liver 
fat accumulation in addition to the observed associations with general adiposity.62 63 In Chapter 
3.1, I hypothesized that intake of sugar-containing beverages at 1 year of age is associated with 
liver fat accumulation at 10 years of age. I observed that as compared to infants with less than 1 
sugar-containing beverage serving per day, those who consumed more than two sugar-containing 
beverage servings per day had the highest odds of non-alcoholic fatty liver disease at 10 years 
of age. I also observed that the association of sugar-containing beverage intake at 1 year of age 
with non-alcoholic fatty liver disease at school age was largely independent of sugar-containing 
beverage intake at 8 years of age. Furthermore, childhood body mass index, a known risk factor 
for non-alcoholic fatty liver disease, did not explain the observed associations. Stratified analyses 
showed stronger associations between sugar-containing beverage intake and both liver fat ac-
cumulation and non-alcoholic fatty liver disease among children from mothers with a lower level 
of educational attainment. The combination of lower maternal education, used here as proxy 
for family socio-economic status, and higher sugar-containing beverage intake in infancy might 
track from infancy into childhood and exacerbate liver fat accumulation. Stratified analyses on 
body mass index at 10 years of age also showed stronger associations between sugar-containing 
beverage intake and non-alcoholic fatty liver disease among children with overweight or obesity. 
I did not observe associations between sugar-containing beverage intake at 1 year and liver fat 
accumulation across the full range. It appears likely that, due to the relatively large group of 
infants with low sugar-containing beverage intake in infancy, together with the limited variability 
and still healthy spectrum of liver fat accumulation across the full range at school age, the differ-
ences in sugar-containing beverage intake in infancy are too small to observe an effect on liver 
fat accumulation across the full range at 10 years of age. The differences observed for early-life 
intake of sugar-containing beverages with the risk of non-alcoholic fatty liver disease at 10 years 
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of age were not present for the sugar-containing beverage intake at 8 years of age. The absence of 
association between sugar-containing beverage intake at 8 years of age and liver fat accumulation 
might indicate that only early life is a critical period for the influence of sugar-containing bever-
age intake on the development of liver fat accumulation. However, it might also be explained 
by information bias, because parents of children who are overweight or obese might reduce or 
selectively underreport total energy intake and sugar-containing beverage intake. Alternatively, 
sugar-containing beverage intake in infancy may not track strongly into childhood or tracking 
might be affected by selective loss-to-follow-up in the infants with high sugar-containing beverage 
intake.

The mechanisms underlying adverse exposures in early life associated with liver fat accumulation 
in children and adults may include changes in DNA methylation.56 57 In Chapter 3.2, I hypothesized 
that differential DNA methylation assessed with EWAS at birth and in childhood is associated with 
liver fat accumulation at 10 years of age. Recent studies in adults with non-alcoholic fatty liver 
disease suggest differential DNA methylation is cross-sectionally associated with non-alcoholic 
fatty liver disease.64-67 All these studies used liver biopsy to histologically confirm non-alcoholic 
fatty liver disease, the current gold standard for diagnosing non-alcoholic fatty liver disease.56 68 
As a consequence, these studies are limited by small sample sizes, histologically heterogeneous 
groups varying in the severity of non-alcoholic fatty liver disease, older study populations, wide 
body mass index ranges, and having only few or no healthy controls. None of these reports con-
trolled for cell type heterogeneity in their analyses. A recent meta-analysis of four multi-ethnic 
population-based cohort studies in adults showed that DNA methylation at 22 CpGs in peripheral 
blood was associated with non-alcoholic fatty liver disease diagnosed with either computed to-
mography or ultrasound imaging.69 I did not observe differential DNA methylation at single CpGs 
or in differentially methylated regions in cord blood or child peripheral blood in association with 
MRI-diagnosed liver fat accumulation in children at 10 years of age. The associations of the 22 
CpGs identified in adults could also not be replicated in children.69 It is possible that small, but 
potentially biologically important, DNA methylation differences may be associated with liver fat 
accumulation in children. These differences would be difficult to detect in the moderate sample 
size of the current study. Besides this, the variability in liver fat accumulation in this population 
of children was relatively small, which may also partly explain the lack of identified associations. 
In addition, my study population is a relatively lean population. Associations of DNA methylation 
with liver fat accumulation may be more apparent among higher risk populations, as observed 
in adult studies.64-67 70 Another potential explanation for the fact that I did not find associations 
is that DNA methylation might not be associated with liver fat accumulation in children. As has 
been suggested for phenotypes such as obesity, differential DNA methylation may be mostly a 
consequence rather than a cause of liver fat accumulation. If this is the case, the duration of 
exposure to increased liver fat in this population of children 10 years of age may not have been 
sufficient to induce differential DNA methylation.71 72
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In adults, non-alcoholic fatty liver disease is associated with cardiovascular disease, dyslipid-
emia, type 2 diabetes mellitus, and metabolic syndrome.56 73-75 Studies on the cardio-metabolic 
consequences of non-alcoholic fatty liver disease in children are scarce. Previous studies in small 
population-based samples, among children who were older or only among children with obesity 
suggested that non-alcoholic fatty liver disease is associated with increased risks of insulin resis-
tance, hypertension and dyslipidemia.73 76-81 It is not known whether liver fat accumulation is also 
associated with cardio-metabolic risk factors in children without obesity or non-alcoholic fatty 
liver disease. In Chapter 3.3, I observed in a population-based sample a prevalence in all children 
of 2.8% for non-alcoholic fatty liver disease using a sensitive imaging-based method for liver fat 
assessment with the highest prevalence up to 25% among children with obesity. Non-alcoholic 
fatty liver disease was not only present among children with obesity, but also among children with 
normal weight. This high prevalence of non-alcoholic fatty liver disease in children of 10 years of 
age is an important population health problem. I observed that both liver fat accumulation across 
the full range and non-alcoholic fatty liver disease were associated with higher blood pressure, 
insulin resistance, adverse lipid profile, and increased C-reactive protein concentrations at 10 
years of age. These associations were independent of child body mass index and present both 
in children who were normal weight and who were overweight or obese with stronger effect 
estimates in the latter group.

The diagnosis of non-alcoholic fatty liver disease in children is difficult, partly due to the 
relatively clinically silent disease and because of the difficulty in measuring liver fat.82 Routine 
detection based on liver biopsy, which is the gold standard for diagnosing non-alcoholic fatty liver 
disease, or with imaging methods is not feasible with respect to health care expenditures and 
biopsy-related risks. In adults, algorithms have been developed to predict non-alcoholic fatty liver 
disease based on anthropometric indices and routine blood biomarkers such as transaminases, 
triglycerides and insulin.83-87 In children, there are no accurate prediction tools for non-alcoholic 
fatty liver disease.88 89 No previous study in children has considered early-life adverse lifestyle 
and physical characteristics in predicting childhood non-alcoholic fatty liver disease. When non-
alcoholic fatty liver disease presents earlier in life, affected children may exhibit advanced liver 
disease earlier in adulthood and have increased comorbidities, such as cardiovascular disease 
and metabolic syndrome. Thus, early detection may be key to the prevention of liver disease and 
its complications in the population. Therefore, I aimed to identify a set of basic clinical and bio-
marker characteristics to establish an accurate prediction tool for children at risk of non-alcoholic 
fatty liver disease in early childhood. In Chapter 3.4, I compared different predictor clusters and 
provide an early-life prediction model to aid in the clinical prediction of which children are at risk 
for developing non-alcoholic fatty liver disease. The early risk prediction for non-alcoholic fatty 
liver disease may help to develop future preventive strategies aimed at improving body composi-
tion and liver health throughout the life course. My childhood non-alcoholic fatty liver disease 
prediction models need to be externally validated to assess generalizability to other populations.

Methodological considerations of these studies will be discussed in following paragraphs.
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Main findings

·	 �Maternal early-pregnancy non-fasting glucose concentrations are associated with blood 
pressure in early pregnancy, but not with mid- and late-pregnancy blood pressure, and 
not with placental hemodynamics or gestational hypertensive disorders.

·	 �Maternal early-pregnancy non-fasting glucose concentrations are associated with de-
creased fetal growth rates in mid-pregnancy, and with increased fetal growth rates from 
late pregnancy onwards and with an increased risk of delivering a large-for-gestational-
age infant.

·	 �Maternal early-pregnancy non-fasting glucose concentrations, but not insulin concentra-
tions, are associated with offspring DNA methylation at one CpG each in the subgroups 
of women with normal weight and women with overweight or obesity. No associations 
of maternal early-pregnancy non-fasting glucose concentrations with offspring DNA 
methylation are present in the full group.

·	 �Maternal early-pregnancy non-fasting glucose concentrations are associated with off-
spring non-alcoholic fatty liver disease only among mothers of European ancestry. No 
associations are observed in the full multi-ethnic group.

Underlying mechanisms

Several mechanisms underlying the observed associations of sugar-containing beverage intake 
and liver fat accumulation, and of liver fat accumulation with cardio-metabolic risk factors have 
been proposed.

Glucose, and especially fructose and fructose-containing sugars, all primarily metabolized in the 
liver, have been suggested to increase hepatic de novo lipogenesis.90-92 Next to this, consumption 
of sugar-containing beverages induces peaks in blood glucose, insulin and triglyceride concentra-
tions, which may lead to insulin resistance and subsequently to liver fat accumulation.62 63 91 93 
Also, intake of liquid food leads to less satiety, more postprandial hunger and therefore to an 
increased total daily energy intake.62 94

The directions of the associations of child liver fat accumulation with cardio-metabolic risk fac-
tors cannot be concluded from my cross-sectional analyses. The link between liver fat accumula-
tion and cardio-metabolic risk factors has been explained by several mechanisms.95 When visceral 
fat mass is increased, this may alter lipid metabolism and trigger insulin resistance, that may sub-
sequently lead to non-alcoholic fatty liver disease and cardiovascular disease development.95-97 
On the other hand, liver fat can be the source of systemic release of inflammatory cytokines 
and pro-atherogenic factors leading to cardio-metabolic diseases, including hypertension.75 96-98 
Findings from previous studies suggest a strong association of non-alcoholic fatty liver disease 
with the metabolic syndrome.96 97 Also, studies in both adults and children showed associations 
of non-alcoholic fatty liver disease with hypertension.99-101 Adults with non-alcoholic fatty liver 
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disease had increased carotid-artery intima-media thickness and increased prevalence of carotid 
atherosclerotic plaques100. Possible underlying mechanisms may include chronic inflammation 
leading to pro-atherogenic factors leading to arterial damage and hypertension.97 The strong as-
sociations of both higher liver fat accumulation with systolic blood pressure and with C-reactive 
protein in my study support this hypothesis. Prospective longitudinal analyses or causal infer-
ence approaches such as Mendelian randomization may help to elucidate the directions of the 
observed associations.

Although the hypothesis of early-life adverse outcomes contributing to the development of 
liver fat accumulation through DNA methylation was not supported by my findings, it cannot be 
completely discarded based on my analyses. Future studies should investigate the associations of 
differential DNA methylation with liver fat accumulation in children in large longitudinal studies.

Methodological considerations

Strengths and limitations for each study are described in Chapter 2 and Chapter 3 of this thesis. 
In the following paragraphs general methodological considerations regarding selection bias, 
information bias, confounding, causality, and specific issues in epigenetic studies, that may have 
played a role in my studies are discussed.

Selection bias

Selection bias may occur due to selective non-response at baseline or selective loss to follow-up. 
Selection bias at baseline can arise from the procedures used to select study participants or fac-
tors that influence the study participation, leading to a difference in the estimated association 
between the exposure and the outcome of interest for those who participate in the study and 
those who were eligible for the study. In the Generation R Study the participation rate at birth was 
61%.102 The non-response appears not to be at random. As compared to the general population 
in Rotterdam, women from the Generation R Study were less likely to be from ethnic minority 
groups, had a higher socioeconomic status, and less often had adverse perinatal outcomes.103 This 
selective non-response at baseline suggests a selection towards a more affluent and healthy study 
population, which may have led to lower prevalence rates of gestational diabetes, childhood liver 
fat accumulation, and associated risk factors, and subsequently reduced statistical power. Also, it 
may affect the generalizability of my findings to less affluent and healthy populations. Selection 
towards a relatively healthy population may have biased the observed effect estimates, although 
it is difficult to quantify the extent. Multiple imputation was applied in my studies to limit the risk 
of selection bias due to random missing values in covariates.104 105

Selective loss to follow-up can arise when the association between the exposure and outcome 
of interest is different between those participating in the studies described in this thesis and 
those lost to follow-up. I used data from the follow-up at 6 and 10 years of age.102 Compared to 
the total follow-up group a lower percentage of children participated in the MRI measurements 
of liver and organ fat at 10 year of age, since a subgroup was invited for MRI measurements and 
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due to non-consent. Compared to the baseline characteristics, mothers and children who did visit 
the research centre in the follow-up evaluations were more frequently of Dutch ethnic origin, 
higher educated and generally had healthier lifestyle habits than mothers and children who did 
not participate in follow-up visits. I also used data from the subgroup of Dutch mothers and their 
children participating in additional EWAS assessments, in which the loss of follow-up at 6 and 
10 years of age was low. This selective loss to follow-up suggests a selection towards a healthier 
population. Although it is difficult to speculate if this might have biased my effect estimates, this 
seems unlikely since participants did not differ from non-participants regarding the exposures of 
interest, but it may affect the generalizability of my findings.

Information bias

Information bias may arise from measurement error or misclassification of an exposure or out-
come. In this thesis, I relied on anthropometric measurements, such as body mass index and 
blood pressure, which might have greater measurement error and be less accurate, but on the 
other hand are easier and cheaper to obtain in large epidemiological studies as compared to im-
aging techniques of body composition. High accuracy and reproducibility have been reported for 
MRI, which was used in this thesis.106 107 Misclassification can be non-differential or differential. 
These terms refer to the mechanism for misclassification. Non-differential misclassification is a 
random error and occurs unrelated to the exposure or outcome status, and generally leads to 
an underestimation of the effect estimates than the actual effect. Differential misclassification 
is a non-random error, which occurs when the exposure is misclassified and this is related to 
the outcome status, and generally leads to biased results, which can be either overestimated or 
underestimated. Similarly, misclassification of the outcome is non-differential when it is unrelated 
to the exposure, otherwise it is differential.

In this thesis, information on exposures and outcomes was obtained prospectively by physical 
and ultrasound examinations, blood samples, MRI data and parental questionnaires. Differential 
misclassification is unlikely, since exposure data used in my studies were collected before assess-
ment of the outcomes, the data collectors were blinded to the exposure status when assessing the 
outcomes and parents as well as data collectors were unaware of the specific research questions 
under study. However, non-differential misclassification might have occurred. If I had non-differ-
ential misclassification in my studies, the effect-estimates reported are conservative compared to 
the assumed true effect. We obtained high quality data for a large number of maternal and child 
characteristics through hands-on measurements, blood withdrawal and questionnaires. Although 
I used validated questionnaires to assess socio-demographic and lifestyle characteristics, these 
measurements may still have been affected by measurement error, recall bias and reporting bias.

In the studies included in this thesis, the fasting time before blood sampling was limited to 
30 minutes, and thus I consider my samples non-fasting samples.102 The blood samples were 
collected at different time-points during the day, depending on time of the study visit. Since 
glucose and insulin concentrations vary during the day and are sensitive to carbohydrate intake, 
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this may have led to non-differential misclassification of maternal glucose and insulin concentra-
tions. However, it has been suggested that maternal non-fasting glucose concentrations may 
better reflect the normal physiological state in pregnancy.108 109 In children these different blood 
sampling time points could have led to non-differential misclassification of glucose and insulin 
concentrations and thus underestimation of the observed effect estimates. However, semi-fasted 
insulin resistance is moderately correlated with fasting values.110 For lipid concentrations it seems 
that non-fasting blood sampling is superior to fasting in accurately predicting cardio-metabolic 
events for adults in later life.111 Therefore, I believe my findings for triglycerides and cholesterol 
are less likely influenced by the non-fasting state. Blood samples were collected, stored on ice 
and processed in a standardized way, but time from sampling to freezing could be up to four 
hours. This may have affected the measured glucose concentration, since glucose concentrations 
may decline in serum tubes, again possibly leading to non-differential misclassification and an 
underestimation of my associations.

Self-reported lifestyle habits, such as sugar-containing beverage intake studied as a potential 
determinant of child liver fat accumulation, may have been selectively underreported by parents 
due to for example prior knowledge. Parents can be aware of potential negative effects of the 
lifestyle behaviours collected in the study and this could have resulted in non-differential misclas-
sification and may have attenuated the studied associations.

Confounding

Confounding occurs when all or some of the observed effect between an exposure and an 
outcome is in fact explained by other variables that affect the outcome but are not themselves 
affected by the exposure. If a confounding factor is not taken into account, results might be biased 
and the true exposure effect is obscured. To account for confounding, I adjusted all analyses in this 
thesis for multiple potential confounding. I selected covariates based on their associations with 
the exposures and outcomes of interest as identified by literature or in my previous studies, or 
when a change in effect estimates of more than 10% was observed when adding the confounder 
to the basic model. As in any observational study, residual confounding might still be present due 
to unknown or unmeasured confounding variables.

Methodological issues in DNA methylation measurements

In my DNA methylation studies I used a hypothesis-free epigenome-wide approach, which gives 
the opportunity of finding new associations. The effect estimates in this type of research are 
generally small. In both EWAS, I used a Bonferroni-correction to adjust for multiple testing. This 
correction assumes that the tests performed are independent. However, DNA methylation is 
correlated between multiple CpG sites. Thus, the Bonferroni-correction may be too strict, po-
tentially leading to false negative results. One way of resolving this issue is by increasing power. 
Generation R has one of the largest datasets of childhood DNA methylation in the world, but the 
number of tests performed require even larger populations, which can only be achieved through 
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collaboration.112 Unfortunately, due to differences in assessment of the phenotypical variables it 
was not possible to perform meta-analyses with other cohorts. Another way to deal with multiple 
testing correction, is to reduce the number of tests performed. Besides single CpG sites, I also 
studied clusters of CpG sites using the dmrff package (https://github.com/perishky/dmrff), which 
identifies differentially methylated regions by combining EWAS summary statistics from nearby 
CpGs.113 Next to these methodological perspective, it is biologically plausible that DNA meth-
ylation in a region of correlated CpG sites explains more variance in the phenotype of interest 
than DNA methylation at a single CpG site alone.114 EWAS studies are subject to confounding by 
environmental, genetic, and technical factors. For instance, DNA methylation differences in blood 
samples are strongly influenced by cellular heterogeneity. Consequently, EWAS studies need to 
adjust for cell type composition, as was performed in my DNA methylation studies. A further 
challenge in EWAS is the question to what extent the DNA methylation levels in one tissue are 
informative of those in another, potentially more relevant tissue. In my studies, I had access to 
cord blood and peripheral blood. For instance, in the setting of the study of DNA methylation with 
liver fat accumulation, liver tissue would ideally be the tissue of interest, but this is not available in 
population studies. One study assessed the concordance between single CpG sites in peripheral 
blood and liver tissue in 27 adults and found that only 6% of the variable CpGs showed moderate 
correlations and 4% strong correlations.115 Even if there is no correlation between cord blood or 
peripheral blood DNA methylation with DNA methylation in liver tissue, methylation in blood may 
still be a possible biomarker of future or current non-alcoholic fatty liver disease.

Causality

The observational nature of the prospective cohort design in which the studies included in this 
thesis were embedded, does not allow to conclude causality in the associations. To imply in pro-
spective cohort studies whether there is evidence for a causal relationship between an exposure 
and outcome the Bradford Hill criteria can be used.116 These criteria include examination of the 
biological gradients, the consistency with previous literature, the temporality of the associations, 
the strength, specificity, and plausibility of the effect estimates and whether there is a dose-
response relationship. Most of my findings are in line with previous literature, and since the 
majority of the studies in this thesis had a longitudinal study design, this supports the temporality 
between exposures and outcomes. In the cross-sectional study on child liver fat accumulation 
with cardio-metabolic risk factors at the same age, I am unable to state the direction of effects be-
cause it is uncertain whether the exposure occurred before the outcomes. I observed a possible 
biological gradient for the association of higher maternal early-pregnancy glucose concentrations 
with fetal growth, birth weight and child liver fat accumulation at 10 years of age. I reported 
plausible underlying mechanisms of my results and reported on coherence with experimental 
and animal studies. For my EWAS studies, causality is even more complex, since DNA methylation 
can be an exposure as well as an outcome, or a biomarker for the actual outcome of interest.117 
Mendelian Randomization could be used as an approach to further examine causality.118 Mende-
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lian Randomization studies use known genetic variants associated with the exposure of interest 
as unconfounded instrumental variables not affected by confounding, to examine whether the 
exposure is causally related to the outcome.118

Future research

Current clinical practice is mainly focused on screening for gestational diabetes based on diag-
nostic thresholds of maternal glucose concentrations from mid-pregnancy onwards in higher risk 
women. However, based on findings of the studies in this thesis, altered fetal development can 
already occur among non-diabetic women before mid-pregnancy when screening for gestational 
diabetes and necessary interventions are currently implemented. Recent randomized controlled 
trials, which are considered the golden standard for studying causality, indicate that treatment of 
gestational diabetes and maternal hyperglycemia with lifestyle adaptations from mid-pregnancy 
onwards leads to a decreased risk of adverse birth outcomes compared to no treatment.17 119 120 
Based on my findings, future randomized controlled trials should already focus on glucose screen-
ing and treatment from preconception and early pregnancy onwards to further improve preg-
nancy outcomes, among both higher risk populations such as women with overweight or obesity 
and possibly also among lower risk populations. These studies should assess the effect of lifestyle 
interventions, which keep an adequate balance between reducing maternal blood glucose con-
centrations to prevent hyperglycemia, but without inducing hypoglycemia. These intervention 
studies from preconception and early pregnancy onwards will not only provide important novel 
insight into the effectiveness of these interventions, but also into the causality of the observed 
associations of maternal early-pregnancy glucose concentrations with altered fetal growth and 
adverse birth outcomes.

As mentioned previously, maternal glucose and insulin concentrations were measured once 
during early pregnancy. Future studies including maternal glucose and insulin concentrations 
measured at multiple time points during pregnancy, preferable also preconceptionally, are 
needed to observe whether normal glucose and insulin concentrations before or in early preg-
nancy will worsen or maintain normal during pregnancy and whether patterns of glucose and 
insulin concentrations during pregnancy may be more informative than single measurements. 
Also, potential misclassification of maternal early-pregnancy glucose and insulin concentrations 
might be present in the studies in this thesis. Ideally, data on oral glucose tolerance tests should 
be included in glucose metabolism related follow up studies.

Overall, there are still many questions with regard to childhood non-alcoholic fatty liver dis-
ease, as most studies to date have been conducted in adults. Understanding the natural history 
and pathogenesis of non-alcoholic fatty liver disease from early life to adulthood is essential, in 
order to better prevent and improve future care of the disease. Focus of further studies should be 
on identifying early-life factors, like nutrients, epigenetics, genetics, and environmental factors, 
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which influence the development of non-alcoholic fatty liver disease during childhood and should 
take ethnic background into account. The microbiome may be explored as possible key driver 
in early life of child non-alcoholic fatty liver disease, since it can influence nutrient utilization, 
immune function and host gene expression.121 Next to this, the field of metabolomics can also 
lead to advancements in understanding the systemic metabolic signatures of processes involved 
in non-alcoholic fatty liver disease in children. The relevance of screening for non-alcoholic fatty 
liver disease in children is emphasized with the growing evidence for the increasing prevalence 
of the disease, and beside the hepatic also the extra-hepatic complications of non-alcoholic fatty 
liver disease. Future studies should validate my current prediction model results. Risk stratifi-
cation could help to determine which children would benefit most from preventive strategies, 
intensive multidisciplinary care and treatment. Preventive strategies remain the cornerstone of 
preventing non-alcoholic fatty liver disease. Methods to prevent non-alcoholic fatty liver disease 
in children have not yet been studied. Based on my findings, future studies should explore new 
strategies for education, particularly on lifestyle interventions from infancy onwards, especially to 
reduce sugar-containing beverage intake. Intervention studies from early life onwards will provide 
important new insights into the effectiveness of these interventions as well as the causality of the 
observed associations between sugar-containing beverage intake in infancy and non-alcoholic 
fatty liver disease in later life.

In order to better understand how maternal pregnancy glucose concentrations and offspring 
DNA methylation are related during fetal and later child development, I need to further address 
issues of power, measurement error and cell-type specificity of tissue. Sample size and repro-
ducibility of my results within the field of epidemiology would benefit from more collaboration 
between different cohorts. In the last decade the number of CpG sites measured on profiling 
platforms increased, from 485,000 on the Illumina 450K array to the HumanMethylationEPIC 
Beadchip (EPIC) array, which measures 850,000 CpGs. The EPIC platform includes more CpG sites 
located at regulatory elements, like enhancer regions.122 123 Peripheral blood derived DNA was 
used in my studies. The cell-type specificity of DNA methylation makes it difficult to extrapolate 
the findings towards other, potentially pathophysiologically more relevant tissues, such as liver 
tissue.124 Also, future studies should investigate in large longitudinal studies the associations of 
differential DNA methylation with liver fat accumulation in children to assess whether DNA meth-
ylation is one of the underlying mechanisms in the association of early-life adverse outcomes 
with liver fat accumulation and to separate cause and effect. In this thesis, I have assessed DNA 
methylation, which is only one component of epigenomics. Data on DNA methylation is often 
studied solely, since it is relatively easy to obtain and to measure in larger populations. Future 
challenges include gaining a better understanding of how epigenetics, genetics and environment 
together may affect child health, as well as the integration of all types of epigenetic mechanisms 
and their functional consequences such as differences in gene expression.
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Implications for prevention and policy development

Early-life exposure to high maternal glucose concentrations from early pregnancy onwards might 
affect maternal and offspring health in the short and long term. The effect estimates for the ob-
served associations were small. However, these small effects might contribute to the total burden 
of cardio-metabolic disease in women and their offspring. They might induce intergenerational 
effects by influencing fetal growth and development. Given the high prevalence of both obesity 
and impaired glucose metabolism in preconceptional women and if proved causal, these may 
represent pivotal targets for public health in preventing offspring obesity and metabolic disease, 
such as non-alcoholic fatty liver disease.

Governmental policies currently focus more on secondary prevention than on primary preven-
tion of lifestyle medicine in fertile women and men. As the current COVID-19 pandemic also 
underlines, primary prevention is the most important health strategy. Therefore, especially dur-
ing preconception and early pregnancy, preventive strategies should educate and motivate both 
women and men of all social strata to pursue a healthy lifestyle. Health professionals should 
address lifestyle habits during regular appointments, since preconception consultations are not 
yet standard procedure in the Netherlands. Also, clinicians who provide preventive health care 
in the Netherlands should be better supported by the government. Promotion of preconception 
consultations and governmental campaigns might increase awareness among women and men 
with a wish to start a family.

The studies in this thesis provides the insight that sugar-containing beverage intake in infancy 
possibly affects child liver fat accumulation. These effects are even stronger among children of 
mothers with lower educational attainment and among children with overweight or obesity. 
These findings may imply that it is of great importance to invest in prevention of sugar-containing 
beverage intake already from infancy onwards. One of the main predictors of childhood liver fat 
accumulation is a higher child body mass index. The COVID-19 pandemic has forced countries 
worldwide to implement strict social distancing and sanitary regimes. These regimes include 
among others the lockdown, children being homeschooled by their remotely working parents. 
These events have further increased and probably are currently still increasing the prevalence of 
overweight and obesity among children due to more screen time, less physical activity, and less 
social activities while maintaining the same or a higher daily energy intake.125 This may lead to 
a further increase in the prevalence of child obesity and related diseases, such as non-alcoholic 
fatty liver disease. This alarming knowledge should again emphasize the importance of preventive 
strategies and healthy lifestyle in general. A recent intervention study in the Netherlands assessed 
whether a school environment promoting healthy behaviours in children with a daily healthy 
lunch and structured physical activity sessions each day could lower child body mass index.126 
The ‘Healthy Primary School of the Future’ was shown effective after 1 and 2 years of follow-up. 
Although, the long term effects on child body mass index still need to be explored, this interven-
tion study can be seen as an example that aiding in healthy lifestyle can contribute to reduce child 
health inequalities and improve the long-term health perspectives of children.
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Clinical relevance

The observations from my studies may have important relevance in current clinical practice to 
improve maternal and offspring health in early life and to prevent long-term cardio-metabolic 
complications:
§	 I show that maternal non-fasting glucose concentrations in early pregnancy are associated 

with decreased fetal growth rates in mid-pregnancy, with increased fetal growth rates from 
late pregnancy onwards, and with an increased risk of delivering a large-for-gestational-age 
infant. This is in line with previous literature showing that higher maternal glucose concentra-
tions below the threshold of gestational diabetes measured in mid and late pregnancy were 
associated with increased risks of perinatal complications.10 In current clinical practice, ges-
tational diabetes is usually diagnosed in the second half of pregnancy. However, high glucose 
concentrations may already contribute to the risk of adverse effects on fetal, maternal and 
later offspring health before gestational diabetes and its associated complications become 
apparent.8 12 Therefore, I suggest that intervention studies should assess whether glucose 
screening before or early in pregnancy supports early identification and prevention of ma-
ternal glucose related health problems during pregnancy and in later life of the offspring.

§	 I observed that high intake of sugar-containing beverages at 1 year of age is associated with 
increased odds of non-alcoholic fatty liver disease at 10 years of age. Since prevention is the 
major target in treating childhood non-alcoholic fatty liver disease, new strategies for educa-
tion, particularly on early-life nutrition and lifestyle modification are required. My results 
suggest that limiting the intake of sugar-containing beverages from infancy onwards may 
help to prevent non-alcoholic fatty liver disease at school age, which should be a target in 
future prevention strategies and education programs.

§	 My study on liver fat accumulation across the full range with adverse cardio-metabolic risk 
profiles in children of 10 years of age highlights the importance of assessing not only liver fat 
accumulation but also the cardio-metabolic profile in children with non-alcoholic fatty liver 
disease both in children of normal weight and in those with overweight or obesity. These re-
sults suggest that non-alcoholic fatty liver disease is already present in school age children 
and related with impaired cardio-metabolic health.

§	 The prognostic prediction model for child non-alcoholic fatty liver disease developed with 
easily accessible clinical characteristics may be used after external validation, to aid in predic-
tion of which children in mid-childhood are at risk for developing non-alcoholic fatty liver 
disease in later childhood. The early risk prediction for non-alcoholic fatty liver disease may 
help to develop future preventive strategies aimed at improving body composition, liver 
health and associated cardio-metabolic disease throughout the life course.
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Conclusions

Findings presented in this thesis suggest that early-life exposures, such as maternal early-preg-
nancy glucose concentrations, are associated with maternal and child health outcomes in the 
short and long term. In my studies, I identified associations between maternal early-pregnancy 
glucose concentrations and fetal growth, maternal early-pregnancy blood pressure, and child-
hood liver fat accumulation. I identified some evidence that maternal early-pregnancy glucose 
concentrations are associated with offspring DNA methylation stratified for maternal body mass 
index. Also, I observed that sugar-containing beverage intake in infancy was associated with 
childhood non-alcoholic fatty liver disease. I showed no evidence for associations between DNA 
methylation and child liver fat accumulation. Liver fat accumulation at 10 years of age was already 
associated with increased cardio-metabolic risk clustering. Early-life exposures can be used in 
mid-childhood for prediction of child non-alcoholic fatty liver disease in later childhood. Further 
studies should validate this prediction model in a low-risk multi-ethnic population. In the long 
run, this will lead to development of new preventive strategies and interventions before and 
in early-pregnancy, and for young children, aiming at a healthy development and growth from 
early-life onward.

Ultimately, this thesis may be like planting a few scientific seeds which will grow and blossom into 
beautiful and healthy green.
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Summary

Optimal development in early life is of great importance for lifelong health. The Developmental 
Origins of Health and Disease (DOHaD) hypothesis suggests that adverse exposures during criti-
cal periods of growth and development in early life lead to developmental adaptations. These 
fetal adaptations initially lead to short-term survival, but may lead to an increased susceptibility 
to cardio-metabolic diseases later in life. Several decades ago, the basis for this hypothesis was 
laid by large-scale epidemiological studies reporting that low birth weight, preterm birth and 
adverse maternal lifestyle factors are associated with an adverse cardiovascular health profile in 
the offspring. These findings emphasize the importance of early-life prevention strategies.

The first objective of this thesis was to examine the hypothesis that maternal early-pregnancy 
glucose concentrations are associated with adverse fetal, pregnancy, birth and child cardio-
metabolic outcomes. Also, as second objective, we studied potential determinants of a specific 
outcome, childhood liver fat, as well as the cardio-metabolic consequences of childhood liver 
fat. We focused on DNA methylation as potential underlying mechanisms for the associations 
of interest. All studies described in this thesis were conducted in the Generation R Study, a 
population-based cohort study in Rotterdam, the Netherlands. Below I present a brief overview 
of the individual studies and their results from this thesis.

Chapter 1 provides the background, hypothesis, aims and design for the studies presented in 
this thesis.

In Chapter 2, studies focusing on maternal early-pregnancy glucose concentrations are 
described. In Chapter 2.1, we tested our hypothesis that maternal early-pregnancy glucose con-
centrations are associated with suboptimal placental flow, higher blood pressure and increased 
risks of gestational hypertensive disorders. We observed that maternal early-pregnancy glucose 
concentrations were associated with higher maternal blood pressure in early pregnancy, but not 
in later pregnancy. Maternal early-pregnancy glucose concentrations were not associated with 
placental hemodynamics or gestational hypertensive disorders. The findings of our study do not 
support strong effects of maternal glucose concentrations in early pregnancy within the normal 
range on the risks of gestational hypertensive disorders. It might be that stronger associations of 
maternal early-pregnancy glucose concentrations with adverse pregnancy outcomes are present 
in higher-risk populations.

In Chapter 2.2, we assessed the associations of maternal early-pregnancy glucose concen-
trations with fetal growth throughout pregnancy and the risks of adverse birth outcomes. We 
observed that higher maternal early-pregnancy glucose concentrations were associated with 
altered fetal growth patterns, resulting in increased length and weight at birth. Maternal early-
pregnancy glucose concentrations were also associated with an increased risk for delivering a 
large-for-gestational-age infant, but a decreased risk for delivering a small-for-gestational-age 
infant. These associations were not explained by maternal sociodemographic or lifestyle factors, 
or by pre-pregnancy body mass index. Maternal early-pregnancy glucose concentrations were 
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not associated with preterm birth or delivery complications. If proven causal, maternal glucose 
metabolism may represent a pivotal target for public health in preventing offspring adverse 
health outcomes.

In Chapter 2.3, we examined whether maternal early-pregnancy glucose and insulin concen-
trations were associated with newborn DNA methylation. Maternal early-pregnancy glucose 
and insulin concentrations were not associated with DNA methylation at single CpG sites, nor 
with differentially methylated regions in the total population. In analyses stratified on maternal 
body mass index, maternal early-pregnancy glucose concentrations were associated with DNA 
methylation at a CpG site in XKR6 among women with normal weight and at another CpG site in 
IL17D among women with overweight or obesity. No stratum-specific associations were found 
for maternal early-pregnancy insulin concentrations. These results constitute a first step towards 
a better understanding of a potential role of DNA methylation in the associations of maternal 
glycaemic traits in early pregnancy with offspring health outcomes, since it implies a modifying 
effect of maternal body mass index in the observed associations. In addition, they imply that 
different mechanisms may be involved in different subgroups.

Gestational diabetes seems to be associated with offspring non-alcoholic fatty liver disease. In 
Chapter 2.4, we assessed the associations of maternal early‐pregnancy glucose concentrations 
with offspring fat accumulation and non-alcoholic fatty liver disease with magnetic resonance 
imaging (MRI) at 10 years of age. We observed that maternal early-pregnancy glucose concentra-
tions were associated with offspring non-alcoholic fatty liver disease, but only among mothers of 
European ancestry and not among the multi-ethnic population. These associations were indepen-
dent of maternal pre-pregnancy and child body mass index, and of child glucose concentrations. 
No associations were observed in the full multi-ethnic group, this might be due to a modifying 
effect of ethnicity, with directions of effect estimates differing per ethnic subgroup. These re-
sults await confirmation by future studies in larger samples with early-pregnancy information 
on maternal fasting glucose metabolism and exploring potential functional consequences of the 
differential methylation.

In Chapter 3, we describe studies focused on child liver fat accumulation. Sugar-containing 
beverage intake is a major risk factor for obesity in both children and adults and appears to be 
associated with non-alcoholic fatty liver disease in adults. The purpose of Chapter 3.1 was to 
examine the associations between sugar-containing beverage intake in infancy and child liver fat 
accumulation at 10 years of age. We observed that higher sugar-containing beverage intake in 
infancy is associated with an increased risk of non-alcoholic fatty liver disease in children of 10 
years of age. The associations were stronger among children of mothers with lower educational 
attainment as compared to those with higher educational attainment and among children with 
overweight or obesity as compared to children with normal weight. Our results suggest that 
limiting the intake of sugar-containing beverages from infancy onwards may help to prevent liver 
steatosis at school age, which could be a target in future prevention strategies and education 
programs.
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In Chapter 3.2, we aimed to identify whether DNA methylation in newborns and children was 
associated with liver fat accumulation at 10 years of age. We also examined if DNA methylation at 
CpG sites associated with adult non-alcoholic fatty liver disease is associated with liver fat in chil-
dren. DNA methylation at birth and in childhood was not associated with liver fat accumulation in 
children 10 years of age in this study. Also, DNA methylation at 22 CpGs known to be associated 
with non-alcoholic fatty liver disease in adults was not associated with liver fat in children. This 
may be due to modest sample sizes or to DNA methylation changes being a consequence rather 
than a determinant of liver fat. Although the hypothesis of early-life adverse outcomes contribut-
ing to the development of liver fat accumulation through DNA methylation was not supported 
by our findings, it cannot be completely discarded based on our analyses. Future studies should 
investigate the associations of differential DNA methylation with liver fat accumulation in children 
in larger longitudinal studies.

The burden of liver fat and associated cardio-metabolic risk factors in healthy children is un-
known. We performed a cross-sectional analysis in children at 10 years of age in Chapter 3.3, to 
examine whether liver fat accumulation and non-alcoholic fatty liver disease are associated with 
cardio-metabolic risk factors. We observed that not only non-alcoholic fatty liver disease, but 
also a higher liver fat fraction across the full range is associated with an adverse cardio-metabolic 
profile in children. Clustering of cardio-metabolic risk factors was already observed from a liver 
fat fraction of ≥2.0% onward. These associations were independent of child body mass index and 
tended to be stronger in children who were overweight and obese than in children who had a 
normal weight. These results suggest that non-alcoholic fatty liver disease is already present in 
children with both normal weight and overweight or obesity at school age and that it is related 
with impaired cardio-metabolic health.

In Chapter 3.4, we compared different child non-alcoholic fatty liver disease predictor clusters, 
and we provided an early-life prediction model to aid in the clinical prediction of which children 
are at risk for developing non-alcoholic fatty liver disease. Our childhood non-alcoholic fatty liver 
disease prediction models need to be externally validated to assess generalizability to other 
populations.

Finally, in Chapter 4, we discuss the findings and interpretations of the individual studies in the 
broader context of the existing literature. We conclude with several recommendations for future 
research and present implications for clinical practice and policy.

In conclusion, the studies presented in this thesis suggest that early-life exposures, such as ma-
ternal early-pregnancy glucose concentrations, are associated in the short- and long-term with 
maternal and child health outcomes. Next to this, we identified early-life predictors of child non-
alcoholic fatty liver disease. Ultimately, we expect that this will lead to the development of new 
preventive strategies and interventions before and in early pregnancy, and for young children, 
aiming at a healthy development and growth from early-life onwards.
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Samenvatting

In de beginfase van het leven optimaal groeien en ontwikkelen is van groot belang voor een 
levenslange gezondheid. Volgens de ‘Developmental Origins of Health and Disease (DOHaD)’ 
hypothese leidt blootstelling aan ongunstige omstandigheden tijdens essentiële perioden in de 
beginfase van het leven van het kind tot aanpassingen in de foetale ontwikkeling. Op de korte ter-
mijn dragen deze foetale aanpassingen bij aan een hogere kans op overleving, maar op de lange 
termijn leiden ze tot een verhoogd risico op hart- en metabole ziekten. Grote epidemiologische 
studies hebben beschreven dat er associaties zijn tussen enerzijds een laag geboortegewicht, 
vroeggeboorte en ongezonde maternale leefstijlfactoren tijdens de zwangerschap, en anderzijds 
een verhoogd risico op hart- en vaatziekten. Het identificeren van factoren die van invloed zijn op 
de hart- en metabole gezondheid van zwangere vrouwen en hun kinderen, zou kunnen bijdragen 
aan het ontwikkelen van preventiestrategieën om de optimale groei en ontwikkeling van jonge 
kinderen gedurende het hele leven én in toekomstige generaties te verbeteren.

Het doel van dit proefschrift is ten eerste te onderzoeken of maternale glucosewaarden vroeg 
in de zwangerschap van invloed zijn op nadelige hart- en metabole gezondheidsuitkomsten bij de 
foetus, op zwangerschapsuitkomsten, geboortecomplicaties en op de lange termijn ontwikkeling 
van het kind. Ten tweede is het doel te onderzoeken wat vroege determinanten van leververvet-
ting bij kinderen zijn, wat de hart- en metabole consequenties hiervan zijn en welke parameters 
men zou kunnen gebruiken om te voorspellen welke kinderen een verhoogd risico hebben op 
leververvetting. Daarnaast hebben we voor beide hoofdvragen DNA-methylering bestudeerd als 
mogelijk onderliggend mechanisme voor de gevonden associaties. Alle onderzoeken beschreven 
in dit proefschrift zijn uitgevoerd binnen het Generation R Onderzoek. Dit is een prospectieve co-
hort studie waarin kinderen, geboren in Rotterdam, gevolgd worden in hun ontwikkeling, gestart 
vanaf het foetale leven tot in de jongvolwassenheid. Het Generation R Onderzoek heeft tot doel 
om factoren die van invloed zijn op de groei, de ontwikkeling en de gezondheid in het foetale 
leven en in de kindertijd te identificeren.

Hoofdstuk 1 beschrijft de achtergrond voor de hypotheses die de basis vormen van de studies 
in dit proefschrift.

In Hoofdstuk 2 worden de studies beschreven waarin we de invloed van maternale glucose-
waarden vroeg in de zwangerschap op uitkomsten, bij zowel moeder als kind, hebben bestudeerd.

In Hoofdstuk 2.1 hebben we de hypothese getest of maternale glucosewaarden vroeg in 
de zwangerschap geassocieerd zijn met een suboptimale placentadoorbloeding, een hogere 
maternale bloeddruk en een verhoogd risico op hypertensieve zwangerschapscomplicaties. Uit 
onze studie blijkt dat maternale glucosewaarden vroeg in de zwangerschap geassocieerd zijn met 
een hogere maternale bloeddruk vroeg in de zwangerschap, maar niet later in de zwangerschap. 
Maternale glucosewaarden vroeg in de zwangerschap zijn niet geassocieerd met placentadoor-
bloeding of met het risico op hypertensieve zwangerschapscomplicaties. Deze bevindingen 
laten geen sterke effecten van maternale glucosewaarden vroeg in de zwangerschap zien op het 
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optreden van zwangerschapsgerelateerde hypertensieve aandoeningen. Mogelijk zijn er sterkere 
associaties aanwezig in hogere risico populaties.

In Hoofdstuk 2.2 hebben we de associaties van maternale glucosewaarden in de beginfase van 
de zwangerschap met de foetale groei tijdens de zwangerschap en met de risico’s van ongunstige 
geboorte-uitkomsten onderzocht. We hebben gezien dat hogere maternale glucosewaarden 
vroeg in de zwangerschap geassocieerd zijn met verandering in foetale groeipatronen, die 
resulteren in een toegenomen lengte en gewicht bij de geboorte. Daarnaast zijn hogere ma-
ternale glucosewaarden vroeg in de zwangerschap geassocieerd met een hoger risico op een 
te hoog geboortegewicht voor de zwangerschapsduur en met een lager risico op een te laag 
geboortegewicht voor de zwangerschapsduur. Onze bevindingen worden niet verklaard door 
maternale sociaal-demografische en leefstijlfactoren, of door maternale body mass index voor 
de zwangerschap. Maternale glucosewaarden vroeg in de zwangerschap zijn niet geassocieerd 
met vroeggeboorte of ongunstige geboorte-uitkomsten. Het maternaal glucosemetabolisme 
zou een belangrijke factor kunnen zijn bij het ontwikkelen van nieuwe preventiestrategieën ter 
verbetering van de gezondheid van moeder en kind.

In Hoofdstuk 2.3 hebben we gekeken of maternale glucose- en insulinewaarden in de beginfase 
van de zwangerschap geassocieerd zijn met DNA-methylering bij de geboorte. In onze totale 
onderzoekspopulatie zien we dat maternale glucose- en insulinewaarden vroeg in de zwanger-
schap niet geassocieerd zijn met DNA-methylering op CpG niveau en niet met differentiële 
methylering op regio niveau. Toen we de totale groep splitsten op basis van maternale body mass 
index, hebben we gezien dat maternale glucosewaarden vroeg in de zwangerschap geassocieerd 
zijn met DNA-methylering op een CpG in XKR6 bij vrouwen met een normaal gewicht en met 
DNA-methylering op een CpG in IL17D bij vrouwen met overgewicht of obesitas. Er zijn geen 
maternaal body mass index-specifieke associaties gevonden voor maternale insulinewaarden 
vroeg in de zwangerschap. De resultaten van deze studie zijn een startpunt in het beter begrijpen 
van de mogelijke rol van DNA-methylering in de associaties van maternaal glucosemetabolisme 
vroeg in de zwangerschap met gezondheidsuitkomsten van het kind. Bovendien impliceren deze 
bevindingen dat er verschillende DNA-methylering mechanismen betrokken zouden kunnen zijn 
bij verschillende subgroepen.

In Hoofdstuk 2.4 hebben we de associaties van maternale glucosewaarden vroeg in de zwan-
gerschap onderzocht met de hoeveelheid leververvetting bij 10-jarige kinderen. Het percentage 
leververvetting is gemeten met een MRI scan. We hebben aangetoond dat hogere maternale 
glucosewaarden vroeg in de zwangerschap geassocieerd zijn met het vaker optreden van niet-
alcoholische leververvetting bij kinderen. Deze associatie zien we alleen bij moeders van Europese 
afkomst. De gevonden associaties zijn onafhankelijk van de maternale body mass index voor de 
zwangerschap en onafhankelijk van de body mass index en glucosewaarden bij kinderen. In de 
totale, multi-etnische onderzoekspopulatie hebben we geen associaties gevonden. Toekomstige 
studies zouden ter bevestiging van onze resultaten het onderzoek moeten herhalen in grotere 
groepen met informatie over nuchter gemeten maternaal glucose in de vroege zwangerschap.
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In Hoofdstuk 3 worden de door ons uitgevoerde studies beschreven ten aanzien van leverver-
vetting bij het kind.

De inname van suikerhoudende dranken is bij zowel kinderen als volwassenen een belangrijke 
risicofactor voor het ontwikkelen van obesitas. Een hogere inname van suikerhoudende dranken 
lijkt verband te houden met niet-alcoholische leververvetting bij volwassenen. Het doel van 
Hoofdstuk 3.1 is om de associatie te onderzoeken tussen de inname van suikerhoudende dranken 
op de leeftijd van 1 jaar en de hoeveelheid leververvetting bij kinderen op 10-jarige leeftijd. We 
hebben vastgesteld dat een hogere inname van suikerhoudende dranken op de leeftijd van 1 
jaar geassocieerd is met een verhoogd risico op niet-alcoholische leververvetting bij kinderen op 
10-jarige leeftijd. Deze associatie is sterker bij kinderen van moeders met een lager opleidings-
niveau, dan bij kinderen van moeders met een hoger opleidingsniveau. Ook is deze associatie 
sterker bij kinderen met overgewicht of obesitas ten opzichte van kinderen met een normaal 
gewicht. Onze resultaten suggereren dat het beperken van de inname van suikerhoudende dran-
ken vanaf de peutertijd kan helpen om leververvetting op de schoolleeftijd te voorkomen. Dit zou 
een speerpunt kunnen worden in toekomstige preventiestrategieën.

In Hoofdstuk 3.2 hebben we de hypothese getest dat DNA-methylering bij de geboorte en op 
de schoolleeftijd geassocieerd is met de mate van leververvetting op 10-jarige leeftijd. We heb-
ben ook onderzocht of DNA-methylering op bekende CpGs geassocieerd met niet-alcoholische 
leververvetting bij volwassenen, ook geassocieerd is met leververvetting bij kinderen. DNA-
methylering bij de geboorte en op schoolleeftijd is in onze studie niet geassocieerd met de mate 
van leververvetting op 10-jarige leeftijd. Ook is de DNA-methylering waarvan bekend is dat het 
verband houdt met niet-alcoholische leververvetting bij volwassenen, niet geassocieerd met le-
ververvetting bij kinderen. Dit kan mogelijk komen door een te kleine studiepopulatie of doordat 
veranderingen in DNA-methylering eerder een gevolg, dan een determinant van leververvetting 
zijn. Hoewel onze bevindingen de hypothese dat ongunstige omstandigheden in het vroege leven 
bijdragen aan de ontwikkeling van leververvetting via DNA-methylering niet ondersteunen, kan 
deze hypothese op basis van onze analyses nog niet volledig worden verworpen. Toekomstige 
studies zouden DNA-methylering met de hoeveelheid leververvetting bij kinderen in grotere 
longitudinale studies moeten onderzoeken.

De impact van leververvetting en de bijbehorende hart- en metabole risicofactoren bij gezonde 
kinderen is onbekend. We hebben 10-jarige kinderen onderzocht in Hoofdstuk 3.3, waarbij we 
hebben gekeken of de mate van leververvetting en het optreden van niet-alcoholische leverver-
vetting geassocieerd is met hart- en metabole risicofactoren. We zien dat een hoger percentage 
leververvetting en het optreden van niet-alcoholische leververvetting geassocieerd zijn met een 
ongunstig hart- en metabool risicoprofiel bij 10-jarige kinderen. Clustering van hart- en metabole 
risicofactoren zijn al waargenomen vanaf een levervet-percentage van 2.0%. Deze associaties 
zijn onafhankelijk van de body mass index van kinderen en zijn sterker bij kinderen met over-
gewicht en obesitas dan bij kinderen met een normaal gewicht. Deze resultaten suggereren dat 
niet-alcoholische leververvetting al aanwezig is bij kinderen met zowel een normaal gewicht, als 
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met overgewicht of obesitas op de schoolleeftijd en dat leververvetting verband houdt met een 
verminderde hart- en metabole gezondheid.

In Hoofdstuk 3.4 hebben we verschillende clusters van voorspellende factoren voor niet-
alcoholische leververvetting bij kinderen vergeleken. We hebben laten zien dat gemakkelijk te 
verkrijgen karakteristieken van het kind een redelijk goede voorspelling kunnen genereren om 
kinderen met een verhoogd risico op het ontwikkelen van niet-alcoholische leververvetting te 
identificeren. De onderscheidende waarde van dit voorspellingsmodel is verder verbeterd door 
het toevoegen van maternale kenmerken en hart- en metabole kenmerken van het kind. Onze 
voorspellingsmodellen voor niet-alcoholische leververvetting bij kinderen moeten eerst extern 
worden gevalideerd om de bruikbaarheid in andere populaties te beoordelen. Hierna zouden ze 
in de klinische praktijk kunnen worden toegepast ter identificatie van kinderen die een verhoogd 
risico lopen op niet-alcoholische leververvetting.

In Hoofdstuk 4 sluiten we het proefschrift af met het bespreken van de belangrijkste bevindin-
gen uit de beschreven studies en plaatsen we de bevindingen in een bredere context. Daarnaast 
geven we aanbevelingen voor toekomstig onderzoek en beschrijven we implicaties voor de 
klinische praktijk en beleidsvorming.

Concluderend suggereren de studies in dit proefschrift dat blootstellingen in de beginfase van 
het leven, zoals maternale glucosewaarden tijdens de vroege zwangerschap, op korte en langere 
termijn geassocieerd zijn met de gezondheidsuitkomsten voor moeder en kind. Daarnaast heb-
ben we vroege voorspellende factoren voor niet-alcoholische leververvetting bij kinderen ge-
ïdentificeerd. Onze bevindingen zullen bijdragen aan nieuwe preventiestrategieën gericht op het 
verbeteren van de gezondheid voor en tijdens de vroege zwangerschap en in de vroege kindertijd, 
om een gezonde ontwikkeling en groei al vanaf het vroege leven na te streven.
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“Wisdom is like a baobab tree, no one individually can embrace it” – African proverb

Onderzoek is samenwerken, daarom een groot dankjewel aan iedereen die op welk vlak dan ook 
geholpen heeft. Ergens op de weg van het begin tot het einde, of tijdens mijn gehele promotie-
traject. Graag bedank ik een aantal van jullie in het bijzonder.

Allereerst heel veel dank aan de kinderen en ouders die meedoen aan de Generation R Studie en 
nu ook aan de Generation R Next Studie. Jullie deelname aan deze onderzoekcohorten, maakt het 
mogelijk om beter inzicht te krijgen in onze gezondheid vanaf het begin van ons leven. Dankjewel 
aan alle focus-medewerkers, jullie zorgen met enthousiasme voor de gastvrije ontvangst, de 
dataverzameling en strakke stroomlijning van de bezoeken van de kinderen en ouders aan het 
onderzoekscentrum. Ronald en Jolien, bedankt voor jullie begeleiding bij de uitvoering van beide 
cohorten. Datamanagement met Claudia, Marjolein, Annemiek en Eline, dank jullie wel voor alle 
hulp en inzet. Patricia, Lonneke, Maaike, Rose bedankt voor al het geweldige secretariële werk.

Mijn promotor, Prof. dr. Jaddoe. Beste Vincent, ontzettend bedankt op zoveel vlakken, van het kort 
en krachtig verwoorden van een onderzoekshypothese tot het leren ontcijferen van je e-mails. Ik 
heb heel veel bewondering voor je enthousiasme, je positiviteit en je passie voor het onderzoek. 
Ik citeer graag jouw eigen woorden “maar ik ben een outlier hoor”. Hoewel de context waarin 
je dit zei anders was, wil ik jouw uitspraak hier toch gebruiken. De definitie van een outlier is: 
een invloedrijk datapunt ver buiten het gemiddelde van de populatie. Ik denk dat als topklinisch 
epidemiologisch onderzoeker, deze omschrijving je meer dan past.

Mijn copromoter, dr. Felix. Lieve Janine, voordat ik bij Generation R zou gaan beginnen voorspelde 
een zekere Prof. dr. Reiss me dat wij vrijwel zeker met elkaar op zouden kunnen schieten. En dat 
is meer dan waar gebleken, ik ben heel blij met jouw persoonlijke begeleiding, aanmoediging en 
betrokkenheid tijdens mijn gehele promotietraject, een heel groot dankjewel! Ik bewonder je 
bevlogenheid, je analytische vermogen en jouw sterke gevoel voor wetenschappelijke integriteit 
als onderzoeker. Je vindt het leuk om deze kennis te delen, het liefst met een gezonde dosis 
humor. Dit doe je bijvoorbeeld door samen een artikel te reviewen, waarbij zelfs de input van Sem 
al door je is aangemoedigd en gewaardeerd. Extra leuk dat onze samenwerking een verlenging 
heeft kunnen krijgen.

Prof. dr. Rings, Prof. dr. Roseboom en Prof. dr. Sijbrands, hartelijk dank voor het lezen en beoor-
delen van dit proefschrift en voor jullie bereidheid om plaats te nemen in de kleine commissie.
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Dankzij jou als oud-opleider kindergeneeskunde, Prof. dr. de Hoog, beste Matthijs, heb ik de 
ruimte gekregen voor dit promotietraject tijdens mijn opleiding kindergeneeskunde. Dankjewel 
voor deze mogelijkheid, voor het aanvankelijk kritisch meedenken over de uitstap naar een pro-
motietraject, welk traject dit dan zou kunnen worden en later je volledige steun om deze stap te 
realiseren.
Dankjewel dr. de Vries, beste Andrica, als huidige opleider kindergeneeskunde voor het samen 
uitpuzzelen van een kleine (maar op papier uitdagende) verlenging van mijn onderzoekstijd. 
Daarnaast, heel veel dank dat je plaats neemt in mijn grote commissie. Ook wil ik graag de andere 
leden van de grote commissie, Prof. dr. Escher en dr. van Meurs, hartelijk danken voor jullie 
bereidheid om plaats te nemen in de grote commissie.

Mijn eerst dag bij Generation R ben ik tegelijkertijd met Rosalie en Chen gestart. Dit was nog 
in de periode voordat het flexwerken werd geïntroduceerd en we als “Generation R beginner” 
mochten starten op de “grote kamer”. Een gezellige kamer, waar ik samen heb gewerkt met 
Dionne, Jan, Ellis, Florianne, Annemarijne, Simone, Junwen, Arash en Agatha. Naast het harde 
werk zorgden de koffie, potjes tafelvoetbal, etentjes en samen Sinterklaas vieren ervoor dat ik 
me snel thuis voelde.
Dear Susana, thank you for your help and patience with my first research project concerning liver 
fat accumulation. I admire your knowledge and work spirit.
Beste Romy, samen met jou heb ik Eef mogen begeleiden en is maternaal glucose als hoofd-
onderwerp op mijn pad gekomen. Dankjewel voor dit leuke project en je supervisie. Ik heb veel 
bewondering voor de wijze waarop jij kliniek en onderzoek combineert en voor je inzicht en 
kennis van de wetenschap. Eef dankjewel voor de leuke tijd en de koffie bezoekjes later, je bent 
een kanjer!
De Generation R Next Studie ging net van start in mijn eerste promotiejaar en samen met Jan, 
Dionne en Rosalie mochten wij als “hardcore STARS” de eerste deelnemers welkom heten, dank 
jullie wel voor de leuke tijd, humor en uitstapjes naar de Markthal.
Lieve Jan, jouw RuPaul versies zijn de allerleukste! Lieve Dionne en Rosalie, we hebben samen 
zoveel gelachen, promotie avonturen gedeeld, chocolade en nootjes opgepeuzeld, dank jullie wel 
voor zoveel moois. Lieve Chen, dankjewel voor al je etentjes die jij hebt georganiseerd, dankzij jou 
ken ik nu de lekkerste plekjes van Rotterdam (en zijn er gelukkig nog heel veel om te ontdekken). 
Ook “hot-yoga” heb jij geïntroduceerd, samen met Neelke, Giulietta en Dionne hebben we daar 
heel wat uurtjes weg getranspireerd in de vroege ochtenden. De “boekenclub” met Danique, 
Rama, Clarissa, Neelke, Dionne en Rosalie, heeft me geïnspireerd tot (net als vroeger) meer voor 
de lol te lezen en tot het uitproberen van andere boeken (niet altijd succesvol zoals jullie dan te 
horen kregen) en het was een mooie gelegenheid om jullie beter te leren kennen. De Amstel Gold 
race in de mooie lente van 2019 met jou Dionne, samen met onze mannen en onze vaders, was 
naast een speciale sportprestatie een superleuk avontuur. Ook een mooie herinnering is de reis 
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naar Oulu, Finland, met jou Rosalie als mijn reismaatje. “No, you can’t actually see the WIFI” is 
daar een onsterfelijke uitspraak geworden.
Dankjewel aan al mijn coauteurs voor de bijdrage aan verschillende manuscripten. In het bijzon-
der dankjewel aan Rama voor je fijne samenwerking. Ook dankjewel aan alle andere Na-29ste 
verdieping bewoners als Carolina, Chalana, Clair, Elise, Evelyn, Meddy, Sophie, Suzanne, Sunayna 
en Victoria voor de gezelligheid in de wandelgangen en tijdens de lunches.

De arts-assistenten en ook oud arts-assistenten kindergeneeskunde, jullie zijn een geweldige 
groep ambitieuze, sociale en enthousiaste collega’s. Bedankt voor alle avonturen tot nu toe. 
Speciaal ook de Sophia wintersport commissie met Daphne, Miranda, Lisa en Tijn.

Dank jullie wel ‘Bewegings-wetenschappers’ alias ‘betere gedichtenschrijvers’ voor jullie te 
gekke vriendschap, humor en avonturen, Aafke, Bart, Sanne, Dennis, Kim, Milanne, Femke, Berry, 
Adinda, Melvin en nu ook Loek, Cato, Linde en Mare. Na wat vallen en opstaan heb ik dankzij jullie 
het snowboarden onder de knie gekregen en heeft pannenkoeken bakken (of gooien) voor altijd 
een extra dimensie.
Lieve Toetoepers, Jort, Remco, Teuntje, Vionne, Kees, Jente, Thomas, Adinda, Melvin, Linde en 
Mare, Solange, Oliver en Jeske, Doeschka, Malte en Dr. A. de Partis, jullie zijn stuk voor stuk 
kanjers en waardevolle vrienden. Dankjewel voor alle keren samen dansen, kamperen in een 
Thaise jungle, plonzen in een infinity-pool (leeft de unicorn nog?) en nog zoveel meer.
Lieve Femmeke en Nynke, blond gekrulde zusjes uit Brabant. Dankzij jullie heb ik zoveel compli-
menten voor zogenaamde muziekoptredens gekregen. Gelukkig kan ik nu ook echt iets spelen op 
de piano.
Lieve Gerthe en Ludo. Gerthe, in Tilburg hebben we elkaar ontmoet en onder andere onze ge-
deelde liefde voor Brabant schepte al snel een band. Nog gezelliger toen de mannen zich ook bij 
ons aansloten. Bedankt voor jullie te gekke vriendschap.
Lieve Mischa, Matthijs, Jasmijn en Danique, nog niet zo lang geleden klauterden we over de 
bergen van Oostenrijk met zijn viertjes. En nu gaan we met z’n zevenen op avontuur, al fietsend 
of met jullie camper mee, ook bordspellen spelen is altijd gezellig (met of zonder Madeloniseren). 
Dank jullie wel voor de speciale waardevolle vriendschap.
Lieve Nieske, ooit allebei ontsnapt uit een dorpje in Brabant en verliefd geworden op Amsterdam, 
inmiddels trotse mama’s en goede vriendinnen gebleven. Dankjewel dat je altijd voor me klaar 
staat en dat je samen met je zusje Sanne, het ontwerp voor dit proefschrift hebt willen maken.
In my dreams I wake up in South-Africa to visit beloved friends, my dearest Carryn and John with 
Andrew and Joshua, and together we go on an adventure. Probably, we will get stuck somewhere 
with our car, preferably at sunset in a wildlife park, which we always seem to do. Just keep an eye 
on the elephants and ‘alles zal reg kom’.
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Vrienden van de eerste uren van mijn studententijd, lieve Mirjam, Martijn, Ruud en Anne, jullie 
vriendschap is mij goud waard! Inmiddels zijn we uitgewaaid naar meerdere hoeken van het land, 
toch blijven we altijd dichtbij. En af en toe blijft het: ‘wedstrijdje?!’
Het zonnetje van Amsterdam, dat ben jij allerliefste Carlijn, lieve Lijn, een lach verschijnt op mijn 
gezicht als ik aan je denk. Samen met jouw zusjes en lieve ouders ben je onze cadeau-familie.

Ik ben ongelooflijk blij met jullie lieve steun en support Doeschka en Mirjam als mijn paranimfen.
Lieve Doeschka, mooie en dappere vriendin. Onze ontspannen vakantie op Las Palmas zullen we 
nooit vergeten. Jij toen net gestart bij de neurologie en ik net klaar met geneeskunde. Jij bent mijn 
voorbeeld dokter en doctor! Lieve Mirjam, ik zie ons nog naast elkaar zitten tijdens de Gras-week 
van Zwolle, toen nog onbevangen studentjes op zoek naar de hoofdprijs. Inmiddels (soort van) 
volwassen en met ieder onze eigen Martijn altijd in voor avontuur en plezier.

Lieve familie Geurtsen, Jansen van Roosendaal, Timmerman en de Voogd, dank jullie wel voor 
jullie belangstelling, support en fijne familiedagen.
Wat ben ik trots op jou lieve Mirjam, mijn schoonzusje, jouw strijd en doorzettingsvermogen 
hebben je al zover gebracht en gaan je vast nog veel meer moois brengen, samen met Joep.
Lieve Tilly en Leo, in gedachten en in mijn hart zijn jullie ook bij deze mijlpaal erbij. Lieve Tilly, deze 
laatste maanden had je vast, terecht, op me gemopperd dat ik niet zo hard zou moeten werken. 
En ook had je aan iedereen die wilde luisteren verteld hoe beretrots je was geweest. Lieve Leo, 
waarschijnlijk had je hier en daar nog wat schrijfadvies gegeven voordat dit werk naar de drukker 
was gegaan. En je had gevraagd of er nu weer tijd zou zijn voor een lange mooie wandeling door 
de natuur.
Mijn lieve grote sterke broertjes, Ruben en Seth. Lieve Ruben, de Viking met het grote hart. Jij 
hebt gedurfd voor jezelf te kiezen en een spectaculaire reis te maken. Steeds beter leer je jezelf 
kennen en het blijkt dat zelfs voor plantjes zorgen in je zit! Gelukkig zijn is aantrekkelijk en dat 
ben je met je knappe Joanne aan je zijde. Lieve Seth, handsome jongeman van binnen en buiten. 
Passievol met ideeën en plannen voor jouw toekomst, ik vind het inspirerend hoe jij je uit durft te 
spreken en wat je allemaal bereikt. Ik ben meer dan trots op mijn broertjes.
Lieve mama en papa, ik ben zo dankbaar voor jullie onvoorwaardelijke liefde, steun en vertrou-
wen die jullie mij altijd geven. Lieve mama, ik bewonder je creativiteit, je vaardigheid en precisie. 
Lieve papa, jouw reislust en nieuwgierigheid naar mensen van alle uithoeken van de wereld vind 
ik inspirerend. Ik heb geluk met jullie als mijn ouders. Ik vind het ontroerend en mooi om jullie nu 
als oma en opa te mogen zien.

Liefste Martijn, ooit ben ik voor je weggerend uit een Amsterdamse kroeg terwijl je alleen naar 
mijn telefoonnummer vroeg, later ben ik voor je weggerend bij een baobab boom, waar je vroeg 
of ik met je wilde trouwen. Gelukkig heb je me altijd met jouw liefde kunnen veroveren. Dank-
jewel voor wie jij bent, voor wie we samen zijn, voor al jouw onvoorwaardelijke liefde en steun, 
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positieve afleiding, humor, meedenken, voor steeds je woorden “ik hou elke dag weer een beetje 
meer van jou”. Ik kijk uit naar onze toekomst samen, ik houd ontzettend veel van jou!
Allerliefste Sem, jij bent het allermooiste wat Martijn en mij is overkomen. Jij bent onze charmeur 
en deugniet, onze nachtbraker en vrolijke man, jij bent en staat symbool voor waar ik dit werk 
voor schrijf. Jouw mooie gezonde toekomst en die van alle andere kinderen, daar gaan we voor!

“An end has a start” – Editors
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“Wisdom is like a baobab tree

no one individual can embrace it” 
- African proverb 


