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Chapter 1

Introduction

The prenatal period is a potentially critical time for the development of psy-
chiatric and behavioral disorders in the offspring. Substantial neural formation
and organization occur during this period, with the majority of cortical neurons
forming prior to 20 weeks, and cortical neuron migration peaking between ges-
tational weeks 12 and 20 (Monk et al., 2019). Thus, the fetal central nervous
system is highly plastic, and variations in centralnervous system organization
that occur during this period will impact later neural network patterns and
behavioral development (Anderson and Thomason, 2013). Beyond the central
nervous system, fetal development may impact psychiatric health through a
number of mechanisms. DNA methylation, the binding of a methyl group to a
DNA position, primarily at sites where a cytosine is next to a guanine, can alter
the binding of transcription factors, impacting gene expression, and through
that expression, any number of offspring characteristics (Felix et al., 2018).
DNA methylation changes substantially during fetal development, meaning en-
vironmental impacts during the prenatal period could result in durable, long-
lasting alterations to DNA methylation (Marsit, 2015). In addition, large doses
of teratogenic substances like alcohol and tobacco have been associated with
a number of systemic changes in offspring, including HPA axis dysregulation,
increased oxidative stress, and cell apoptosis (Ornoy et al., 2018). Fetal tissue
development also relies on a sufficient supply of maternal micronutrients, and
micronutrient deficiencies during pregnancy can negatively impact offspring
health in a number of ways. Examples of this include the relationship between
folate deficiency and neural tube defects, and offspring rickets resulting from
severe maternal vitamin D deficiency (Gernand et al., 2016).
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Consumption of large volumes of teratogenic substances like alcohol have clear
and well-established negative effects on offspring health (Streissguth et al.,
1980). However, evaluation of the effect of low to moderate exposure to these
substances during pregnancy on offspring psychiatric health is challenging.
First, because of the potential for harm, randomized control trials of moderate
use of such substances are often unethical to conduct in pregnant women. Sec-
ond, observational studies of the topic are also difficult. Many common meth-
ods for estimating causal effects in observational data rely on an assumption
that individuals at different levels of the exposure are conditionally exchange-
able with regards to counterfactual outcome, meaning that, within levels of
the other variables in the model, had individuals who received one level of
the exposure received another level of the exposure, they would have the same
outcome as those individuals who actually received the different level of the ex-
posure (Hernan and Robins, 2018). To meet this assumption, many commonly
used methods, including outcome regression, the g-formula, inverse probability
of treatment weighting, and g-estimation, rely on identification, measurement,
and adjustment for confounders (common causes of the exposure and outcome)
(Hernan and Robins, 2018). Observational studies of the use of substances
during pregnancy are troublesome because of the large number of potential
confounders that are difficult to accurately measure. Such confounders include
shared genetic factors, socioeconomic status, maternal health behaviors, overall
diet, social support, and engagement with healthcare providers. Previous stud-
ies have found that alcohol consumption during pregnancy was associated with
older maternal age, cigarette smoking, use of illicit drugs, pregnancy unwant-
edness, domestic violence, single parenthood, primiparity, and pre-pregnancy
drinking (Giglia and Binns, 2007; O’Keeffe et al., 2015; Walker et al., 2011).
A retrospective study of Dutch mothers found that higher education, older
maternal age, smoking, and primiparity were all associated with consuming
any alcohol during pregnancy (Lanting et al., 2015). Many of these factors are
also associated with differences in risk of offspring psychiatric disorders. Small
qualitative studies have found that women who chose to abstain from alcohol
reported doing so due to “a sense that alcohol was generically harmful”, and
guilt over breaking perceived social norms against drinking during pregnancy
(Jones and Telenta, 2012). Women who did consume alcohol during pregnancy
generally reported they felt alcohol was important to their social functioning,
and perceived low and moderate consumption of alcohol during pregnancy to
be low risk (Meurk et al., 2014). This suggests that women who abstain com-
pletely from alcohol may be especially conscientious, and may be more likely
to engage in other behaviors to reduce harm to the fetus than mothers who
consume moderate amounts of alcohol. However, especially conscientious moth-
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ers may also experience more stress during pregnancy than less conscientious
mothers, which might also impact offspring psychiatric health (O’Donnell et al.,
2014; Van den Bergh et al., 2017). Both this additional stress and engagement
in other health behaviors could potentially impact offspring behavioral health
outcomes, resulting in confounding.

Estimates of the average causal effect of differences in micronutrient status are
similarly vulnerable to bias from unmeasured confounding. Vitamin D status
is primarily determined by endogenous production in the skin, with a rela-
tively small contribution from oral intake of foods such as fatty fish, egg yolks,
mushrooms, and yeast (Macdonald et al., 2011). Because endogenous vitamin
D production differs according to sun exposure and skin tone, the effects of
vitamin D status on offspring psychiatric health will generally be confounded
by race/ethnicity (Clemens et al., 1982; Kessler et al., 2006; Merikangas et al.,
2010), as well as safe access to unpolluted outdoor spaces (Macdonald et al.,
2011; McCormick, 2017). Moreover, pregnant women’s use of vitamin D sup-
plements may itself be related to their general tendency towards health-seeking
behaviors, discussions with their healthcare providers, and their ability to af-
ford supplements (Barnes et al., 2019). Altogether, this suggests that causal
inference methods that rely on confounder identification and adjustment may
produce biased estimates in the setting of pregnancy exposures and offspring
outcomes.

It is understandable, then, that some in the research community have argued
for broader use of alternative causal inference methods (Gage et al., 2016),
as well as increased research into physiologic mechanisms by which prena-
tal exposures could impact later life outcomes (Sujan et al., 2019). In par-
ticular, some researchers have recommended using Mendelian randomization
(MR), a method that has been growing in popularity in recent years, to study
the effects of prenatal exposures on the offspring. Under certain assumptions,
MR, an application of instrumental variable (IV) methods proposing single nu-
cleotide polymorphisms (SNPs) as instruments, allows for unbiased estimation
of causal effects even in the presence of unmeasured exposure-outcome con-
founding. Specifically, an MR study proposing a single SNP as an instrument
requires that (Hernán and Robins, 2006):

1. The SNP Z is associated with the exposure A.

2. Z does not affect the outcome Y except through A.
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3. Individuals at different levels of Z are comparable (i.e. exchangeable) with
regards to counterfactual outcome Y a.

(Throughout this dissertation, unless otherwise noted, we use Z to denote
SNPs or proposed instruments, X or A to denote exposures, and Y to denote
outcomes). These assumptions alone are only sufficient for sharp causal null
hypothesis testing and bounding (Hernán and Robins, 2006). In order to obtain
point estimates for the average causal effect, investigators must also make one of
a set of possible homogeneity assumptions. Essentially, these are assumptions
about the extent to which the causal effect of interest varies across the study
population. Formally, investigators must assume one of the following holds
(Hernan and Robins, 2018; Tchetgen et al., 2017; Wang and Tchetgen, 2018):

4a. The effect of A on Y is identical (constant) for all individuals
in the population.

4b. No additive effect modification of the A-Y relationship by Z in
either the treated or untreated.

4c. No multiplicative effect modification of the A-Y relationship by Z in
either the treated or untreated.

4d. No additive effect modification of the A-Y relationship by the
confounders U.

4e. The Z-A association on the additive scale is constant across
levels of the confounders U.

Settings in which these conditions might be violated are discussed in Chapter 3
and Chapter 8. Some alternative estimators have been proposed, though these
require similarly strong homogeneity conditions (Bowden et al., 2015; Bowden
et al., 2016; Hartwig et al., 2017; Tchetgen et al., 2017).

Prenatal exposures present an especially compelling case for the use of MR.
Because an individual’s genes are with them for life, the MR conditions can be
violated if the relationship between a genetic variant proposed as an instrument
and the exposure change over time (which will necessarily occur if an individ-
ual’s exposure level changes over time, and exposure levels at the second time
point are affected by the genetic variants directly) (Labrecque and Swanson,
2019). However, when maternal genetic variants are proposed as instruments
for an offspring’s exposure to exposures during pregnancy, said offspring is only
directly exposed to maternal genetic variants and levels of exposure in utero.
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An investigator can then more reasonably argue that a SNP-exposure relation-
ship remains constant over the 9-month period of pregnancy, and that MR
studies of prenatal exposures are less likely to be biased in this way (though
children are of course indirectly exposed to parental exposures through behav-
iors and the passive effects of behaviors like smoking).

However, it is important to note that MR conditions 2,3, and all versions of 4a-
e are unverifiable, and, like any causal inference approach, should be carefully
considered and weighed within the context of a specific research question and
study population. Unlike most MR studies, where the proposed genetic instru-
ment, exposure, and outcome are measured within the same person, pregnancy
MR combines data on proposed genetic instruments and exposures in mothers
with outcome data in offspring. While this separation has distinct advantages,
it also presents a unique causal structure that may complicate the interpre-
tation of certain estimates and could result in unique biases. To this point,
no study has investigated what types of violations of the MR conditions are
discussed in pregnancy MR studies, and what methods are used to mitigate
bias resulting from these violations.

Importantly, MR studies frequently propose large numbers of SNPs as joint
instruments. When multiple genetic variants are proposed as instruments, the
MR conditions must hold for all SNPs proposed as instruments both indi-
vidually and jointly. While this means that MR studies impose increasingly
large numbers of assumptions as they propose larger numbers of SNPs as in-
struments, the availability of multiple proposed instruments could also provide
opportunities for novel applications of existing IV methods. Historically, al-
though the additional homogeneity conditions are often implausible, bounding
approaches have been unpopular. Under the primary IV conditions alone, one
can estimate bounds, meaning upper and lower limits on the average causal ef-
fect (Balke and Pearl, 1997; Manski, 1990; Robins, 1989). Importantly, bounds
are distinct from confidence intervals (and in fact have their own confidence
intervals). In contrast to a confidence interval, a bound will not collapse to
point in an infinite sample. The unpopularity of this approach may be be-
cause, in the all-binary setting, IV bounds are often wide. However, in the
context of MR studies with multiple proposed instruments, it may be possi-
ble to narrow bounds enough to identify directions of effect without additional
point-estimating assumptions. Similarly, the instrumental inequalities, a fal-
sification method implied by the IV model, are rarely used in applied studies
because the method is only able to detect extreme biases when used with a
single binary proposed instrument (Glymour et al., 2012). In MR studies with
multiple proposed instruments, the instrumental inequalities may prove to be
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more informative. Moreover, by applying both the instrumental inequalities
and bounding approaches across different combinations of a set of SNPs pro-
posed as instruments, we may be able to identify subsets of SNPs that are less
likely to provide biased estimates, and to evaluate how strongly our conclusions
depend upon a particular assumption in the model.

1.1 Aims

Given this, the ultimate aim of this dissertation was to explore how to improve
the analysis of observational data to study the effect of maternal nutritional and
substance use exposures on offspring psychiatric outcomes. To do so, we inves-
tigated potential physiologic mechanisms by which prenatal exposures might
impact psychiatric health in children, and explored the use of MR to study
effects of pregnancy exposures on offspring outcomes. In Chapter 2, I discuss
a study of the associations between maternal mid-pregnancy vitamin D suf-
ficiency and offspring DNA methylation in cord blood. In Chapter 3, I then
review the use of MR to study pregnancy exposures and offspring outcomes in
the existing literature, with particular attention to the reporting of method-
ologic limitations. Next, in Chapter 4, I explore the use of the instrumental
inequalities in MR studies with multiple proposed instruments through simu-
lations as well as an application to the study of prenatal vitamin D sufficiency
and offspring psychiatric symptoms in real data. I also provide software for the
implementation and visualization of the instrumental inequalities. In Chapter
5, to evaluate how the instrumental inequalities performed in other study set-
tings, I then apply the instrumental inequalities to MR studies of the effects of
several commonly studied exposures on coronary heart disease in a large sam-
ple on adults in the United Kingdom. In Chapter 6, to investigate the use of
bounding approaches in MR studies with multiple proposed instruments, I then
calculate bounds on the average causal effect of maternal alcohol consumption
during pregnancy on offspring attention deficit –hyperactivity disorder in two
European cohorts. I also provide software for the implementation and visual-
ization of the IV bounds. Finally, in Chapter 7, I describe how information
about bounds on a causal effect of interest generated in different study popula-
tions can be combined, using an application to the study of maternal pregnancy
alcohol consumption and offspring attention-deficit hyperactivity disorder. In
Chapter 8, I discuss the broader implications of the findings of this dissertation
and directions for future research, including those involving the mathematical
connections between the instrumental inequalities and the bounds.
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1.2 Setting

With the exception of Chapters 3 and 5, the studies presented in this dis-
sertation were all conducted within one or more prospective cohort studies
of European or North American mothers and children. The study of mater-
nal pregnancy vitamin D sufficiency and offspring DNA methylation shown in
Chapter 2 included analyses in 7 cohorts from the Pregnancy and Childhood
Epigenetics Consortium, based in the Netherlands, United Kingdom, Norway,
Finland, Canada, and the United States (Felix et al., 2018). The study on the
use of the instrumental inequalities in Chapter 4 was embedded within Gen-
eration R, a prospective cohort from fetal life onward, based in Rotterdam,
the Netherlands (Jaddoe et al., 2006). The studies on bounding approaches
presented in Chapters 6 and 7 are based on results in the Avon Longitudinal
Study of Parents and Children (ALSPAC) and the Norwegian Mother, Father,
and Child Cohort Study (MoBa). ALSPAC is a longitudinal prospective cohort
study that recruited pregnant women in former Avon county, United Kingdom
in 1991 and 1992, and continues to follow the offspring of those pregnancies
today (Boyd et al., 2013). MoBa is a large population-based cohort study con-
ducted by the Norwegian Institute of Public Health, which recruited pregnant
women across Norway between 1999 and 2008, and has continued to collect
data on both parents and offspring of those pregnancies (Magnus et al., 2006).
The study presented in Chapter 5, which focuses on applying the instrumental
inequalities to non-pregnancy MR context, used data from the UKBiobank, a
prospective cohort study of approximately 500,000 individuals in the United
Kingdom, aged between 40 and 69 at initial recruitment (Bycroft et al., 2018).
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2.1 Abstract

Background: Low maternal vitamin D concentrations during pregnancy have
been associated with a range of offspring health outcomes. DNA methylation
is one mechanism by which maternal vitamin D status during pregnancy could
impact offspring health in later life.
Objective: We aimed to evaluate whether maternal vitamin D insufficiency
during pregnancy was conditionally associated with DNA methylation in off-
spring cord blood.
Methods: Maternal vitamin D insufficiency (plasma 25-hydroxy Vitamin D
≤ 75 nmol/L) during pregnancy and offspring cord blood DNA methylation,
assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was col-
lected for 3,738 mother-child pairs in 7 cohorts as part of the Pregnancy and
Childhood Epigenetics (PACE) consortium. Associations between maternal
vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal
smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, ma-
ternal education, gestational age at measurement of 25(OH)D, parity, and cell
type composition, were estimated using robust linear regression in each cohort,
and a fixed effects meta-analysis was conducted.
Results: The prevalence of Vitamin D insufficiency ranged from 44.3% to
78.5% across cohorts. Across 364,678 CpG sites, none were associated with
maternal Vitamin D insufficiency at an epigenome-wide significant level after
correcting for multiple testing using Bonferroni correction or a less conservative
Benjamini-Hochberg False Discovery Rate approach (FDR p > 0.05).
Conclusions: In this epigenome-wide association study, we did not find con-
vincing evidence of a conditional association of vitamin D insufficiency on off-
spring DNA methylation at any measured CpG site.
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2.2 Introduction

Vitamin D is a fat soluble vitamin and precursor to 1,25-dihydroxyvitamin D
(1,25(OH)2D), which plays a key role in calcium homeostasis and bone health
(Holick and Chen, 2008). There are two physiologically active forms of Vitamin
D: D2, found primarily in mushrooms and yeast, and D3, which is synthesized in
the skin via UV radiation, and is found in a limited number of foods, including
fatty fish and egg yolks (Holick, 2006). Both forms are hydroxylated in the
liver to form 25-hydroxyvitamin D (25(OH)D), the major circulating form and
indicator of vitamin D status, which is then hydroxylated again, primarily in
the kidneys, to form 1,25(OH)2D (Holick and Chen, 2008; Jones et al., 1998).

Vitamin D concentrations are associated with a range of health outcomes,
though these relationships are often nonlinear. Severely deficiencies can result
in the development of rickets or osteomalacia, but extremely high concentra-
tions (typically above 375 nmol/L), can result in vitamin D toxicity and a
range of severe symptoms including recurrent vomiting, confusion, polyuria,
and dehydration (though toxicity usually results from overconsumption of sup-
plements or comorbid disorders) (Liu et al., 2018; Marcinowska-Suchowierska
et al., 2018). Nonlinearities have also been noted in associations between vita-
min D concentrations and other health outcomes, including preterm birth and
cardiovascular disease (Bodnar et al., 2015; Welles et al., 2014). Individuals are
typically considered to be clinically vitamin D deficient at a 25(OH)D concen-
tration ≤ 50 nmol/L and vitamin D insufficient at a 25(OH)D concentration
≤ 75 nmol/L (Hollis, 2005).

Previous research has found that vitamin D insufficiency is relatively common
in pregnancy, impacting between 42.1% and 97% of pregnant study partici-
pants, depending on location and race/ethnicity (Bodnar et al., 2007; Ginde et
al., 2010; Johnson et al., 2011). Maternal 25(OH)D readily crosses the placen-
tal barrier, and is likely hydroxylated in fetal kidneys and the placenta itself to
form 1,25(OH)2D (Larqué et al., 2018). Low maternal 25(OH)D concentrations
during pregnancy have been associated with a wide range of health outcomes in
offspring, including bone health, symptoms of Attention Deficit-Hyperactivity
Disorder, symptoms of Autism Spectrum Disorder, asthma, eczema, and au-
toimmune conditions (Boghossian et al., 2019; Erkkola et al., 2011; Javaid et al.,
2006; Magnusson et al., 2016; Morales et al., 2015; Song et al., 2017; Wei et al.,
2016). Results of randomized trials of vitamin D supplementation in pregnancy
have produced mixed results, but meta-analyses have suggested that Vitamin
D supplementation during pregnancy may reduce risk of low birthweight off-
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spring (Palacios et al., 2019; Roth et al., 2017). However, the mechanism by
which maternal Vitamin D levels impact offspring outcomes is not yet clear.

One possible mechanism is through offspring DNA methylation. 1,25(OH)2D
has a known impact on gene expression through direct binding of vitamin D
response elements via the vitamin D receptor transcription factor (Pike and
Meyer, 2014), but some studies have suggested that vitamin D levels may also
impact DNA methylation (Beckett et al., 2016; Fetahu et al., 2014). To this
point, research on the relationship between maternal vitamin D and offspring
DNA methylation has been limited, and little is known about the potential
magnitude of possible effects of vitamin D on methylation. To our knowledge,
only one previous epigenome wide association study of maternal pregnancy
vitamin D and offspring cord blood methylation has been conducted (Suder-
man et al., 2016). While the previous study did not identify any associations
between maternal vitamin D and offspring methylation after adjusting for mul-
tiple tests, the study sample included 1,416 mother child pairs, and was likely
underpowered to detect weak or moderate epigenetic effects. The aim of this
meta-analysis was therefore to investigate associations between maternal mid-
pregnancy Vitamin D insufficiency and DNA methylation in offspring cord
blood in a sample expanded from the original 1,416 pairs to a total of 3,738
mother-child pairs.

2.3 Methods

Participating Cohorts

This study was conducted as part of the Pregnancy and Childhood Epigenetics
(PACE) consortium (Felix et al., 2018). A total of 7 cohorts participated in the
study: the Avon Longitudinal Study of Parents and Children (ALSPAC), the
Effects of Aspirin in Gestation and Reproduction (EAGeR) trial, the Genetics
of Glucose regulation in Gestation and Growth (Gen3G) cohort, the Generation
R Study, the Norwegian Mother, Father, and Child Study (MoBa1, MoBa2),
the Prediction and Prevention of Preeclampsia and Intrauterine Growth Re-
striction (PREDO) study, and Project Viva. To limit confounding by ancestry,
samples were restricted to participants of self-reported white European ances-
try. We additionally excluded offspring of multiple births, and offspring with
known congenital abnormalities. To reduce confounding by familial related-
ness, where multiple children of the same mother were included in a cohort,
only one randomly selected child was included in the final analytic sample.
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Ethical approvals for all study protocols were obtained for all participating co-
horts. Details on study methods for each cohort are described in detail in the
Appendix.

Measures
Maternal Vitamin D Insufficiency
With the exception of ALSPAC, maternal vitamin D insufficiency was eval-
uated using serum or plasma samples taken between gestational weeks 8-25.
Within ALSPAC, serum samples could be taken at any point during preg-
nancy, but all samples were normalized to obtain an estimate of concentration
at 28 weeks gestation. Maternal vitamin D sufficiency was defined as maternal
serum or plasma total 25(OH)D ≤ 75 nmol/L, as recommended by the En-
docrine Society (Hollis, 2005). As noted previously, nonlinearities have been
noted in associations between vitamin D concentrations and several outcomes,
including preterm birth and adult cardiovascular disease (Bodnar et al., 2015;
Welles et al., 2014). Evidence supports an association between maternal preg-
nancy clinical vitamin D insufficiency at this threshold and various adverse
outcomes, including preterm birth, type 1 diabetes mellitus, multiple sclerosis,
allergies, and atopic disorders (De-Regil et al., 2016). In order to focus our
study on the impact of clinically relevant insufficiency on offspring outcomes,
we chose to evaluate the relationship between dichotomous maternal vitamin
D insufficiency and offspring methylation, rather than continuous 25(OH)D.

Offspring Cord Blood DNA Methylation
Offspring cord blood DNA methylation was evaluated using Illumina Infinium
450k or EPIC BeadChip in all cohorts. Each cohort normalized methylation
beta values using their own preferred published normalization method and
conducted their own quality control pipeline for probe and sample filtering,
as detailed in the Supplementary Materials. To remove outliers, methylation
sets were trimmed using the interquartile range (IQR) strategy, meaning beta
values below (25th percentile -3*IQR) and above (75th percentile + 3*IQR)
were removed.

Covariates
All cohorts ran models adjusted for fetal sex, maternal smoking, maternal
age, maternal pre-pregnancy or early pregnancy (< 15 weeks gestation) BMI,
maternal education, gestational age at measurement of 25(OH)D, parity, and
cell type composition. All covariates were selected based on previous litera-
ture in order to reduce confounding bias or to remain consistent with previous
analyses (Bakulski et al., 2016; Busche et al., 2015; Jaffe and Irizarry, 2014;
Krieger et al., 2018; Suderman et al., 2016}). In analyses in MoBa1, MoBa2,
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Generation R, PREDO, and ALSPAC, maternal smoking was divided into 3
categories (no smoking during pregnancy, smoking during first trimester only,
smoking throughout pregnancy). However, in EAGeR and Project Viva, insuf-
ficient data was available to apply this categorization. Within EAGeR, smok-
ing was dichotomized into smoking during pregnancy vs. no smoking during
pregnancy. Within Project Viva, smoking status was grouped into 3 cate-
gories (never smoked, former smoker, smoked during pregnancy). Maternal
self-reported education was categorized according to each cohort’s discretion
(see Appendix for cohort-specific details). Cell counts were estimated in each
cohort using the Bakulski reference set (Bakulski et al., 2016). To control for
ancestry, all samples except MoBa were restricted to mother-child pairs of self-
reported white European ancestry. MoBa does not collect data on self-reported
ancestry. However, only 5.6% of all MoBa mothers report a first language other
than Norwegian, suggesting the sample is primarily of Scandinavian ancestry
(Magnus et al., 2006). In addition, where maternal genetic data were available,
models were adjusted for the first 4 principal components, or a number deter-
mined by the cohort to be sufficient for their sample, from DNA methylation
data. In some cases, if maternal genetic data was not available, offspring prin-
cipal components were used as a proxy for maternal genetic ancestry. Each
cohort also adjusted for batch effects using methods appropriate to the cohort,
and where necessary, included additional covariates to correct for study design
(Appendix).

The primary source of vitamin D for most adults is sun exposure (Holick and
Chen, 2008). However, sunlight exposure, and thus vitamin D sufficiency sta-
tus, varies seasonally (Holick and Chen, 2008). A limited amount of research
has suggested that season of birth itself may be associated with DNA methy-
lation (Lockett et al., 2016). As season of 25(OH)D measurement was directly
related to season of birth, season of measurement may therefore confound the
effect of maternal pregnancy vitamin D sufficiency on offspring methylation.
In addition to stimulating vitamin D production in the skin, sunlight expo-
sure appears to degrade folate in the skin (Off et al., 2005; Steindal et al.,
2008; Tam et al., 2009). Folate is a source of the one carbon group used to
methylate DNA, and maternal folate status has been associated with offspring
DNA methylation in both human and animal studies (Crider et al., 2012; Jou-
bert et al., 2016). Maternal sunlight exposure during pregnancy may therefore
also impact offspring DNA methylation through folate levels. In order to limit
this possible source of confounding, in secondary analyses we additionally ad-
justed models for season of measurement, which was grouped into 4 categories
(February-April, May-July, August-October, and November-January), based
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on previous research suggesting vitamin D sufficiency follows a seasonal pat-
tern lagged from astronomical seasons by approximately 8 weeks (Kasahara
et al., 2013). All cohorts were located in the Northern Hemisphere, meaning
they followed a similar season pattern. Notably, because vitamin D levels in
ALSPAC were pre-adjusted for season using a method described previously
(Lawlor et al., 2013), ALSPAC results were included only in models adjusted
for season of measurement, and not in the base model.

Statistical Methods

Each cohort performed independent epigenome-wide association studies accord-
ing to a common pre-specified analysis plan. Associations between maternal
vitamin D insufficiency and methylation at each CpG site were evaluated using
3 nested robust linear regression models. In the first model, maternal mid-
pregnancy vitamin D sufficiency was modelled as the exposure, and offspring
methylation at each CpG site was modelled as the outcome, with adjustment
for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy BMI,
maternal education, gestational age at measurement of 25(OH)D, parity, and
cell type composition. The second model was additionally adjusted for season
of measurement.

Prior to meta-analysis, cross-reactive probes flagged by Chen et al or Mc-
Cartney et al. were removed (Chen et al., 2013; McCartney et al., 2016). We
additionally removed all control and polymorphic probes as annotated by meffil
(Min et al., 2018), and all probes located on sex chromosomes. As methylation
patterns between the Illumina 450K and EPIC arrays are highly correlated
(Solomon et al., 2018), analyses conducted on EPIC and 450K arrays were
meta-analyzed together. Because only one cohort evaluated DNA methylation
using EPIC, probes exclusive to EPIC were removed. In addition, all probes
available in less than 3 cohorts or 1000 participants were removed. Flowcharts
detailing probe removal are available in the Appendix. QQ plots, PZ plots
comparing observed p-values to those calculated from reported beta estimates
and standard errors, boxplots of beta distributions, and volcano plots were gen-
erated for each analysis and visually inspected to identify possible inflation or
bias of test statistics (See Appendix for results). Precision plots were generated
across cohorts for each model. Fixed effects inverse-variance weighted meta-
analysis of cohort specific results was conducted using Metasoft (Han and Es-
kin, 2011). Correction for multiple testing was conducted using the Bonferroni
method (p < 1.37 ∗ 10−7, 364,678 tests). In addition, because the Bonferroni
method can be unnecessarily conservative, we also evaluated whether associ-
ations met a significance level corresponding to false discovery rate of 0.05,
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using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). As
a sensitivity analysis, a random effects meta-analysis of cohort specific results
was also conducted using Metasoft. In addition to the primary meta-analysis
conducted by the first author at Erasmus MC, a shadow meta-analysis was con-
ducted independently by authors at University of Helsinki to minimize human
error.
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2.4 Results

The prevalence of vitamin D insufficiency varied between 44.3% and 78.5%
across cohorts (Table 2.1). In our primary analysis, with dichotomous Vita-
min D insufficiency as the exposure, we meta-analysed results from a total of
3,239 mother-child pairs. In secondary analyses additionally adjusting for sea-
son of measurement we meta-analyzed results from 3,738 mother-child pairs
(ALSPAC participants were included only in models additionally adjusted for
season of measurement). Table 2.1 summarizes the characteristics of each co-
hort. Genomic control lambdas (base model 1.06, season of measurement model
0.93) and QQ plots (See Appendix) suggested only mild genomic inflation in
the base model, and did not suggest inflation in the season of measurement
model. Maternal mid-pregnancy vitamin D insufficiency was not significantly
associated with DNA methylation at any individual CpG site when applying a
Bonferroni correction for multiple testing (p < 1.37 ∗ 10−7), or when applying
a more permissive Benjamini-Hochberg threshold (FDR < 0.05) (Figure 2.1).
P-values were less than 5 ∗ 10−5 at only 36 CpG sites in this primary analy-
sis. In secondary analyses, methylation was not significantly associated with
maternal mid-pregnancy vitamin D sufficiency after adjustment for season of
at any measured CpG site (Figure 2.2). Betas from both regression models
tended to be small, with relatively large confidence intervals. Results of the
random effects meta-analysis were broadly similar. The meta-analysis results
for all probes will be made available in a public respository.
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2.5 Discussion

In our study of European ancestry mothers and children, we did not find evi-
dence of a conditional association between maternal mid-pregnancy vitamin D
insufficiency and offspring DNA methylation at any of the measured CpG sites
after correction for multiple testing.

This study was, to our knowledge, the largest study of maternal vitamin D
during pregnancy and offspring DNA methylation to date. The sample size
for our primary analyses (n=3,239 mother-child pairs), was more than double
the size of the largest previous analysis of vitamin D during pregnancy. Con-
sistent with that previous study, this study did not find convincing evidence
of an association between maternal vitamin D levels and offspring cord blood
DNA methylation (Suderman et al., 2016). This lack of an association can, un-
der the assumptions of positivity, consistency, no model misspecification, and
conditional exchangeability, be interpreted as evidence that either Vitamin D
insufficiency does not have a causal effect on offspring DNA methylation in cord
blood at any measured site, or that any possible causal effects of vitamin D in-
sufficiency on offspring cord blood methylation are small (Hernan and Robins,
2018; Hernán, 2018). This analysis was also less vulnerable to reverse causation
than many other EWAS designs, because maternal vitamin D sufficiency sta-
tus during pregnancy occurs prior to offspring DNA methylation in cord blood
(measured at birth), and fetal DNA methylation is relatively unlikely to affect
maternal vitamin D status during pregnancy.

However, we were only able to estimate associations for 364,678 sites, rather
than the approximately 28 million CpG sites contained within the human
genome. Although the Illumina 450k array is targeted at regions with poten-
tial regulatory functions, it is possible that maternal vitamin D insufficiency
impacts offspring DNA methylation at other regions of the epigenome. In par-
ticular, previous studies have argued that distal regulatory elements, including
enhancers, are severely underrepresented on the 450K (Busche et al., 2015;
Pidsley et al., 2016). While previous work has suggested that EWAS designs
including more than 1,000 participants are well-powered to detect moderate
and small effects (Mansell et al., 2019), it is also likely that our sample size,
while large relative to previous studies of maternal vitamin D and offspring
DNA methylation, remains too small to detect very weak effects on offspring
methylation. Within the cohorts included in this analysis, prevalence of vi-
tamin D insufficiency ranged from 44.3% to 78.5%. This suggests that our
analysis was not limited by a low prevalence of the exposure, but rather that
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any possible associations of Vitamin D insufficiency with methylation are small,
and would require larger sample sizes for detection.

The limitations of our study include possible selection bias. The majority of
cohorts in this meta-analysis had a modest participation rate and measured
methylation only within a subset of their total sample. If vitamin D insuffi-
ciency or offspring methylation were differentially associated with selection into
the sample, this could have resulted in bias (Hernan et al., 2004). Previous
studies have found inconsistent associations between markers of socioeconomic
status and vitamin D insufficiency, though these associations may be partially
explained by differences in racial/ethnic background of participants in different
socioeconomic groups (Krieger et al., 2018; Malacova et al., 2019; Tønnesen
et al., 2016; Voortman et al., 2015). Because some of the studies included in
this analysis show evidence of selection on socioeconomic status, a true asso-
ciation between vitamin D insufficiency and socioeconomic status could have
resulted in selection bias (Fraser et al., 2013; Jaddoe et al., 2006). It is also
possible that our study may have been impacted by residual confounding by
supplement use, as women who are wealthier and more health conscious may
use vitamin D supplements more often, and may also engage in other behaviors
that differentially impact offspring DNA methylation. It is also possible that
our results may have been impacted by error in the measurement of vitamin
D concentrations, as previous work has found that quality of 25(OH)D mea-
surement varies substantially across cohorts, partly as a result in of differing
methods of assessment (Cashman et al., 2015).

Our study was also limited by the measurement of methylation within cord
blood. While we did not find any strong associations between maternal vi-
tamin D insufficiency, it is possible that maternal vitamin D insufficiency is
more strongly associated with DNA methylation in other offspring tissue types,
such as brain tissue, bone, or respiratory tract tissues, though such tissues are
obviously much more difficult to obtain. Similarly, our study relies on ma-
ternal vitamin D measurements at a single pregnancy time point, generally
in mid-pregnancy. However, maternal vitamin D levels may change during
pregnancy, and impact methylation more strongly in early or late pregnancy.
Importantly, our analysis may have been further limited by the restriction of
the sample to participants of white European ancestry to reduce confounding
by race/ethnicity. While this restriction was necessary to reduce bias in the
analysis, it is possible that the potential effects of vitamin D insufficiency on
offspring methylation may be stronger in non-white participants, who are also
more likely to experience more severe levels of vitamin D insufficiency (Webb,
2006). Of course, this also limits the generalizability of these results to non-
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white women. Our results might be similarly impacted by residual confounding
by sunlight exposure. In order to reduce computational burden on participating
cohorts, we chose to adjust for sunlight through grouping date of measurement
into seasonal categories. However, sunlight exposure varies substantially by
latitude, calendar year, and local climate patterns, meaning these categories
may be insufficient to completely control for confounding. Our results may also
have been impacted by our choice to dichotomize vitamin D at clinical insuf-
ficiency levels. While this dichotomization may have limited the power of our
analyses to detect epigenetic effects, the relationship between vitamin D and
many health outcomes appears to be nonlinear (De-Regil et al., 2016; Holick,
2006; Wang et al., 2018), and our cut-off was selected based on clinical cut-offs
relevant to medical decision making.

2.6 Conclusions

We did not find strong evidence of an association between maternal mid-
pregnancy vitamin D insufficiency and offspring cord blood methylation levels
at any measured CpG site among white European ancestry mother-child pairs.
Our results, consistent with a previous study of the topic, suggest that large, ro-
bust changes in neonatal DNA methylation in response to maternal vitamin D
insufficiency are unlikely. However, it is possible that our study was limited by
sample size and potential selection bias. Future studies of the relationship be-
tween maternal vitamin D insufficiency and offspring DNA methylation could
include more racial/ethnically diverse samples, larger sample sizes, measure-
ment of methylation in other offspring cell types, and may consider exploring
associations between offspring DNA methylation in cord blood and maternal
vitamin D levels on offspring methylation at different periods across gestation.
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Appendix

Cohort-specific descriptions of data collection

ALSPAC
Study population

ALSPAC is a “transgenerational prospective observational study investigating
influences on health and development across the life course” (Boyd et al., 2013;
Fraser et al., 2013). Participants comprise a cohort of offspring born to preg-
nant women recruited in 1991-2 in Bristol, UK. Participants have been followed
through a series of ongoing data collection waves involving questionnaires and
clinical assessments. Please note that the study website contains details of all
the data that is available through a fully searchable data dictionary (http://
www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). While data
is available for a total of 14,451 mother-child pairs, DNA methylation was mea-
sured in cord blood for approximately 1000 mother-child pairs. For the current
study, we restricted analyses to pairs with complete data on mid-pregnancy
Vitamin D, offspring cord blood methylation, and all covariates, resulting in a
total analytic sample of 499.

Maternal mid-pregnancy Vitamin D

25(OH)D concentrations were measured in serum of non-fasting blood sam-
ples taken as part of antenatal care. Samples could be taken from any stage
of pregnancy. Measurements were made using high-performance liquid chro-
matography tandem mass spectrometry in one laboratory. Since vitamin D
levels may change with time of the year, and pregnant women with length of
gestation, measurements were simultaneously adjusted for both factors to ob-
tain an estimate at 28 weeks gestation (Lawlor et al., 2013). Other estimates to
0 and 34 weeks gestation were highly correlated (R ~ 0.6 and 0.9, respectively).

Offspring cord blood DNA methylation

DNA methylation was measured for approximately 1000 mother-child pairs
in the cord blood and peripheral blood of study children at ages 7 and 15-
17 years and in the peripheral blood of mothers approximately 18 years after
the birth of the study child. The resulting profiles comprise the Accessible
Resource for Integrated Epigenomics Studies (Relton et al., 2015) (ARIES,
http://www.ariesepigenomics.org.uk/). All data are available by request from
the Avon Longitudinal Study of Parents and Children Executive Commit-
tee (http://www.bristol.ac.uk/alspac/researchers/access/) for researchers who
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meet the criteria for access to confidential data. Ethical approval for the study
was obtained from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees.

Genomic DNA was obtained from blood samples and bisulphite converted using
the Zymo EZ DNA MethylationTM kit (Zymo, Irvine, CA). DNA methylation
was quantified using the Illumina HumanMethylation450 BeadChip according
to manufacturer’s instructions. During the data generation process a wide
range of batch, variables were recorded in a purpose-built laboratory informa-
tion management system (LIMS) (Boyd et al., 2013).The LIMS also reported
quality control (QC) metrics from the standard control probes on the 450k
BeadChip for each sample. Samples failing QC were excluded from further
analysis and the assay repeated. Sample QC and normalization was completed
using the meffil package as previously described (Min et al., 2018). Briefly,
probe intensities underwent a functional normalization approach (Fortin et
al., 2014) using the first 10 PCs of the Illumina 450K array control probes.
This approach includes subset quantile normalization of the data and normal-
exponential out-of-band background correction. In addition, twenty surrogate
variables (Leek and Storey, 2007) were generated and included in all regression
models.

Covariates

Maternal smoking status, pre-pregnancy weight, maternal education, maternal
age, and parity were obtained by questionnaire during pregnancy. Information
on fetal sex was obtained via self report and administrative records. Estima-
tion of six different white blood cell types (CD8+ T and CD4+ T lymphocytes,
CD56+ natural killer cells, CD19+ B cells, CD14+ monocytes, and granulo-
cytes) by Houseman method (Jaffe and Irizarry, 2014).

EAGeR

Study Population

The Effects of Aspirin in Gestation and Reproduction (EAGeR) trial was a
block-randomized, double-blind, placebo-controlled trial evaluating the effect
of preconception-initiated daily low dose aspirin on live birth. Details of the
trial design have been described in detail elsewhere (Schisterman et al., 2013).
Briefly, participants who had previously experienced 1-2 prior pregnancy losses,
and were currently attempting to conceive were recruited from 2007 to 2011
at 4 United States medical centers. Exclusion criteria for the study included a
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known history of infertility treatment, pelvic inflammatory disease, tubal oc-
clusion, endometriosis, anovulation and polycystic ovarian syndrome, or uter-
ine abnormality, resulting in enrollment of 1,228 women. Participants were
followed for six menstrual cycles while attempting pregnancy or throughout
pregnancy if they conceived. For the current study, we restricted the sample to
women who had conceived, and had complete data on midpregnancy vitamin
D, offspring cord blood methylation, and all covariates, resulting in an analytic
sample of 361 mother-child pairs.
Maternal midpregnancy Vitamin D
Serum samples were collected at 8 weeks gestation and cryostored at -80° C
prior to analysis. Total 25-hydroxy-vitamin D [25(OH)D] was measured in
serum with the 25-hydroxyvitamin D ELISA solid phase sandwich enzyme
immunoassay (BioVendor R&D, Ashville, NC, USA). Further details on the
measurement of 25(OH)D in the EAGeR trial have been published previously
(Mumford et al., 2018).
Offspring Cord Blood Methylation
Beginning in 2009, the trial collected 10 ml cord blood from over 90% of
deliveries at the Utah trial site. Cord blood was centrifuged and separated
into plasma and buffy coat. Samples were subsequently frozen at -80 degrees
C. Genome-wide DNA methylation was measured with the Infinium Methyla-
tionEPIC Bead Chip. Methylation data were processed using the minfi package
in R, which included identification of failed probes and scaling with Illumina
control probes to determine methylation values. Quantile normalization was
used to normalize beta values between two types of probes. We used principal
component analysis (PCA) to detect further outliers and samples mismatched
for sex. Samples mismatched for sex were excluded. Beta values were replaced
as missing if the detection P-value was > 0.01 or bead counts < 3. In the
analyses the results were set as “NA”, when the missing values of the CpG site
is greater than 3% to enable the code to run without the need to remove the
missing values.
Covariates
Cell type mixture was estimated on the full set of normalized methylation data
using the Bakulski et al., 2016 Bakulski et al., 2016 reference dataset for cord
blood (FlowSorted.CordBlood.450K package). Maternal age, smoking status,
and income were measured via self-report. Maternal pre-pregnancy BMI was
measured directly, prior to pregnancy.
Gen3G
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Study Population

The Genetics of Glucose regulation in Gestation and Growth (Gen3G) cohort
is a prospective observational pre-birth cohort study aimed at investigating
glucose regulation determinants in pregnancy and fetal growth, based on the
Eastern Townships Region of Quebec, Canada (Guillemette et al., 2016). All
women who received prenatal care directly at the Centre Hospitalier Univer-
sitaire de Sherbrooke (CHUS), a CHUS affiliated health center, or planned
delivery at CHUS between January 2010 and June 2013, were considered eligi-
ble. A total of 1034 pregnant were women were recruited at the 1st trimester, of
which 10 were excluded due to the presence of a multiple pregnancy. Additional
exclusion criteria included known pre-pregnancy diabetes, use of a medication
known to influence glucose tolerance, glycated haemoglobin (HBA1c) >= 6.5%
of 1 h glucose >= 10.3 mmol/L post 50 g glucose challenge test, miscarriage,
medical abortions, or health problems that prohibited participation. A total of
854 participants were followed through delivery. Recruitment and characteris-
tics of the cohort have been described in detail elsewhere (Guillemette et al.,
2016). For the current study, we restricted to mother-child pairs with complete
data on maternal mid-pregnancy Vitamin D, offspring DNA methylation, and
available covariates, resulting in a total analytic sample of 175 pairs.

Maternal mid-pregnancy Vitamin D

Non-fasting blood samples were collected at the first study visit (mean 9.6
weeks gestation). Aprotinin was added to blood samples, which were cen-
trifuged at 2500g at 4 degrees C for 10 minutes, and aliquoted for storage
at -80 degrees C. 25(OH)D2 and 25(OH)D3 concentrations were assessed using
liquid-liquid extraction followed by liquid chromatography-electrospray tandem
mass spectrometry (Quattro micro mass spectrometer; Waters, Milford, MA).
25(OH)D concentrations were calculated as the total of the two measurements
(Switkowski et al., 2019).

Offspring DNA methylation

Cord blood samples were collected via syringe from the umbilical vein after de-
livery. Bisulfite conversion was performed using the EZ-96 DNA methylation
kit (Zymo research Corporation, Irvine, USA). We used the Infinium Human-
Methylation450 BeadChip (Illumina Inc., San Diego, USA) to measure the
methylation level as a beta value ranging from 0 (no methylation) to 1 (com-
plete methylation). During quality control, we removed samples that were
outliers on the MDS plot, samples with > 5% missingness, probes missing in
more than 20% of samples, and duplicates. DASEN normalization was per-
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formed using the watermelon package in R. In analyses, ComBat was used to
adjust for sample Plate while protecting dichotomized vitamin D in the model
statement.

Covariates

Fetal sex was collected from medical records. Maternal age and parity were
assessed via questionnaire at the beginning of pregnancy. Gestational age was
calculated based on reported last menstrual period, and corrected by ultra-
sound dating when appropriate. Maternal smoking self-reported in the first
trimester questionnaire, and grouped into 3 categories (no smoking in preg-
nancy, stopped smoking in the beginning of pregnancy, and smoked during
pregnancy). Maternal early pregnancy BMI was calculated using weight and
height measured by research staff according to standard procedures at the first
trimester visit. Measures of maternal education were not available in this co-
hort. The sample included in this analysis is comprised entirely on women of
European ancestry. We used the Bakulski -based Houseman method (Bakulski
et al., 2016; Houseman et al., 2012) with the estimate Cell Counts function
in the Minfi package (Jaffe and Irizarry, 2014) in R (Team, 2020) to estimate
relative proportions of six white blood cell subtypes (CD4+ T-lymphocytes,
CD8+ T-lymphocytes, natural killer (NK) cells, B-lymphocytes, monocytes
and granulocytes).

Generation R Study

Study Population

The GenerationR Study is a prospective birth cohort from fetal life to young
adulthood, based in Rotterdam, the Netherlands (Jaddoe et al., 2006; Kooij-
man et al., 2016). Pregnant women who lived in the Rotterdam area and had
a delivery date between April 2002 and January 2006 were recruited by partic-
ipating midwives and obstetricians. While the study aimed to recruit women
during early pregnancy, women were allowed to enroll at any point during preg-
nancy, or in the first months after birth during routine visits to child health
centers. In total 9,778 mothers were enrolled, 8,880 of whom were enrolled
during pregnancy. Recruitment and characteristics of the cohort have been
described in detail elsewhere (Jaddoe et al., 2006; Kooijman et al., 2016). Par-
ticipants were only eligible for methylation analysis if they were additionally
part of the Generation R Focus cohort, a subset of the study selected charac-
terized by Dutch ethnicity and a high level of completeness of collected data.
For the current study, we restricted the sample to mother –child pairs with
complete data on maternal mid-pregnancy vitamin D, offspring DNA methy-
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lation, and all covariates, resulting in an analytic sample of 1,154 mother-child
pairs.

Maternal mid-pregnancy Vitamin D

Maternal vitamin D concentrations were measured in serum samples taken in
weeks 18.1-24.9 of gestation. Details of the collection procedure have been
described in detail elsewhere (Vinkhuyzen et al., 2016). Briefly, 50 µL milli-
Q water and 50 µL of acetonitrile (ACN) containing 6,19,19-[2H3]-25OHD2
and 6,19,19-[2H3]-25OHD3 at 10 nmol/L each were added to 3 µL plasma,
sonicated, vortexed and centrifuged. The supernatant was filtered using a
TiO2/ZrO2 filter plate (Glygen, USA) and evaporated to dryness. Samples
were derivatised using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) and recon-
stituted in ACN:H2O (1:3) prior to analysis. Samples were quantified using
isotope dilution liquid chromatography-tandem mass spectrometry. The an-
alytical system was comprised of a Shimadzu Nexera UPLC coupled to an
AbSciex 5500 QTRAP equipped with an APCI source. Chromatographic sep-
aration was achieved using a Kinetex XB-C18 column (50 * 2.1 mm, 1.7 µm;
Phenomenex, USA), and 72% acetonitrile/32% aqueous 0.1% formic acid at a
flow rate of 0.5 mL/min. Total Serum 25(OH)D was calculated as the sum of
Serum 25(OH)D2 and 25(OH)D3.

Offspring DNA methylation

Directly after delivery, obstetricians and midwives collected a maximum of 30
ml cord blood from the umbilical vein. DNA extraction from all children us-
ing the Qiagen Flexigene Kit (Qiagen Hilden, Germany)(Miller and Dd, 1988).
In a subgroup of 1339 Generation R children of Dutch ancestry, 500 ng DNA
per sample underwent bisulfite conversion using the EZ-96 DNA Methylation
kit (Shallow) (Zymo Research Corporation, Irvine, USA). Samples were plated
onto 96-well plates in no specific order. Samples were processed with the Il-
lumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego,
USA), which analyses methylation at 485,577 CpG sites. Preparation and nor-
malization of the HumanMethylation450 BeadChip array data was performed
according to the CPACOR workflow1 using the software package R2. In detail,
the idat files were read using the minfi package. Probes that had a detection
p-value above background (based on sum of methylated and unmethylated in-
tensity values) ≥ 1E-16 were set to missing per array. Next, the intensity values
were stratified by autosomal and non-autosomal probes and quantile normal-
ized for each of the six probe type categories separately: type II red/green,
type I methylated red/green and type I unmethylated red/green. Beta val-
ues were calculated as proportion of methylated intensity value on the sum

48



of methylated+unmethylated+100 intensities. Arrays with observed technical
problems such as failed bisulfite conversion, hybridization or extension, as well
as arrays with a mismatch between sex of the proband and sex determined
by the chr X and Y probe intensities were removed from subsequent analyses.
Additionally, only arrays with a call rate > 95% per sample were processed
further. Probes on the X and Y chromosomes were excluded from the dataset.
The final dataset contained information on 458,563 CpGs.

Covariates

Fetal sex, maternal smoking (categorized as no smoking during pregnancy,
stopped smoking in early pregnancy, or continued smoking in pregnancy),
maternal age at birth, maternal education (categorized as no education, pri-
mary education, secondary education (phase 1), secondary education (phase 2),
higher education (phase 1), or higher education (phase 2)) , parity, and pre-
pregnancy BMI were assessed via self-report questionnaire during pregnancy.
Cell type correction was applied using the reference-based Houseman method3
in the minfi package4 in R2, using the cord blood-specific Bakulski reference
(Bakulski et al., 2016). Because the subsample of Generation R data with avail-
able methylation data was entirely of European ancestry, principal components
were calculated using only Generation R children of European ancestry, and
the first 10 principal components were included as covariates in the models.

MoBa
Study population

The Norwegian Mother, Father, and Child Study (MoBa) is a prospective pop-
ulation based birth cohort conducted by the Norwegian Institute of Public
Health. Between 1999 and 2008, all pregnant women in Norway were invited
to take part in MoBa via postal invitation distributed after their routine ultra-
sound examination at 17-18 week’s gestation, of which 40.6% agreed to partic-
ipate. Detailed information is available elsewhere (Magnus et al., 2016). The
cohort contains linked data on 114,500 children, 95,200 mothers, and 75,200
fathers. MoBa1 and MoBa2 are two subsets of the total MoBa sample on which
methylation data were obtained. MoBa1 consists of a case-control sample of
3,000 randomly drawn MoBa children born between July 2002 and July 2003,
along with all MoBa children born between July 2002 and July 2004 whose
mother reported they had received a diagnosis of asthma by age 3 and were us-
ing an inhalation medication for asthma at age 3, and who had remained in the
study through age 3 (Håberg et al., 2011). MoBa2 consisted of a second sam-
ple of 685 MoBa children with complete data on maternal plasma folate during
pregnancy (Joubert et al., 2016). The two samples were analyzed separately.
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For the current analysis, we restricted samples to individuals with complete
data on maternal vitamin D during pregnancy, offspring methylation, and all
covariates, resulting in analytic samples of 783 and 177 for MoBa1 and MoBa2,
respectively.

Maternal Mid-pregnancy Vitamin D

25OHD concentrations were measured in plasma from blood samples taken at
the 17th-18th week of pregnancy (Rønningen et al., 2006). Maternal plasma
levels of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 were analyzed using
a liquid chromatography-tandem mass spectrometry method (LC–MS/MS) at
the BEVITAL laboratory. BEVITAL is approved by the Vitamin D External
Quality Assurance Scheme. The sum of 25-hydroxyvitamin D3 and -D2, termed
25(OH)D, was used in the analysis. Further details on blood collection, storage,
and measurement of 25(OH)D are available elsewhere (Magnus et al., 2013).

Offspring cord blood DNA methylation

Details of the assessment of cord blood DNA methylation in both MoBa1 and
MoBa2 have been described previously (Håberg et al., 2011; Joubert et al.,
2016). Cord blood samples were collected at birth and frozen at -80 degrees
C (Rønningen et al., 2006). Bisulfite conversion was performed using the EZ-
96 DNA Methylation kit (Zymo Research Corporation, Irvine, CA) and DNA
methylation was measured at 485,577 CpGs in cord blood using Illumina’s
Infinium HumanMethylation450 BeadChip47. Raw intensity (.idat) files were
handled in R using the minfi package to calculate the methylation level at each
CpG as the beta-value (β=intensity of the methylated allele (M)/(intensity
of the unmethylated allele (U) + intensity of the methylated allele (M) +
100)) and the data were exported for quality control and processing. Probe
and sample-specific quality control was performed in the MoBa1 and MoBa2
datasets separately. Control probes (N=65) and probes on X (N=11,230) and Y
(N=416) chromosomes were excluded in the datasets. Remaining CpGs missing
> 10% of methylation data were also removed (none in MoBa2). Samples
indicated by Illumina to have failed or or have an average detection p-value
across all probes < 0.05 (N=35 MoBa2) and samples with gender mismatch
(N=8 MoBa2) were also removed. As for MoBa1 we accounted for the different
probe designs by applying the intra-array normalization strategy Beta Mixture
Quantile dilation (BMIQ) (Teschendorff et al., 2013). The Empirical Bayes
method via ComBat was applied separately in each dataset for batch correction
using the sva package in R (Leek et al., 2012). Finally four samples determined
to be ancestry outliers based on the principle components analysis of Illumina
HumanCore genotype data were excluded from the analysis.
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Covariates

Fetal sex, maternal smoking status, maternal age at birth, maternal pre-
pregnancy BMI, maternal education, and parity were assessed via maternal
questionnaire during pregnancy or from birth registry (Magnus et al., 2006).
Maternal age was included as a continuous variable. Maternal smoking status
during pregnancy was classified into three groups: non-smoker, stopped
smoking in early pregnancy , and smoked throughout pregnancy. Mater-
nal educational level was categorized into four groups based on years of
education: less than high school/secondary school, high school/secondary
school completion, some college or university, or 4 years of college/university
or more. Estimation of six different white blood cell types (CD8+ T and
CD4+ T lymphocytes, CD56+ natural killer cells, CD19+ B cells, CD14+
monocytes, and granulocytes) by Houseman method (Jaffe and Irizarry, 2014)
was performed using the default implementation of the estimateCellCounts
function in the minfi package (Team, 2020).

PREDO

Study Population

The Prediction and Prevention of Preeclampsia and Intrauterine Growth Re-
striction (PREDO) study is prospective, multicenter longitudinal pregnancy
cohort. The study recruited women with a singleton, intrauterine pregnancy
who visited any of 10 study hospitals in Finland for an ultrasound screening
at 12-13 weeks gestation between 2006 and 2010. Recruitment and character-
istics of the cohort have been described elsewhere (Girchenko, Lahti, Tuovi-
nen, et al., 2017). The sample is comprised of two subsamples, one of which
recruited women with a known risk factor for preeclampsia and intrauterine
growth restriction, and one of which recruited women regardless of risk fac-
tor status. To be eligible for the high-risk subsample, women must have had
one of the following: preeclampsia in previous pregnancy, intrauterine growth
restriction in previous pregnancy, gestational diabetes in previous pregnancy,
pre-pregnancy obesity, chronic hypertension, Type 1 Diabetes, maternal age
at birth < 20 years, maternal age at birth > 40 years, systemic lupus ery-
thematosus, Sjogren’s syndrome, previous pregnancy with fetal demise at >
22 weeks gestation or over 500g fetal weight. 110 women without any known
risk factors were included to provide a normal pregnancy reference for blood
samples. Exclusion criteria for the high-risk subsample included asthma di-
agnosed by a physician, allergy to ASA, tobacco smoking during pregnancy,
previous peptic ulcer, previous placental ablation, inflammatory bowel disease,
rheumatoid arthritis, haemophilia or thrombophilia, and multiple pregnancy.
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Of 5,332 recruited women, 4,785 were eligible and consented to participate. Of
these, 1,083 were part of the high risk subsample, and 3,702 were from the
general subsample. 4,777 of these pregnancies resulted in a live birth. For the
current study, we restricted the sample to mother-child pairs with complete
data on maternal mid-pregnancy Vitamin D, offspring DNA methylation, and
all covariates, resulting in a total analytic sample of 301 mother-child dyads.

Maternal mid-pregnancy Vitamin D

Maternal 25(OH)D levels were measured from maternal serum samples taken at
14.43 to 22.86 weeks of gestation. 25(OH)D concentrations were measured with
a fully automated IDS-iSYS analyzer (Immunodiagnostic Systems Ltd., Bolton,
UK). The method was validated against liquid chromatography tandem mass
spectrometry (LC-MS/MS) in house, as well as by the manufacturer. The two
have good linear agreement, though the method used by PREDO gives 0.72-fold
lower results. Intra- and inter-assay CV% were <5% and 7%. The quality and
accuracy of the serum 25(OH)D analysis in PREDO is validated on an ongoing
basis by participation in the vitamin D External Quality Assessment Scheme
(DEQAS, Charing Cross Hospital, London, UK). iSYS shows a 3% positive bias
against all laboratory trimmed mean values and a 10% positive bias compared
with NIST standards in international comparisons Within the sample, levels
ranged between 26.80 and 139.9 nmol/L (mean: 69.58, SD: 19.04).

Offspring DNA methylation

Epigenome-wide methylation in cord blood samples was assessed using Illu-
mina 450K microarrays. We randomized all samples on 96-well plates based on
gender and maternal risk factors. Quality control was conducted using the R
package minfi. Samples were excluded if they were duplicates, outliers in me-
dian intensities, or sex discrepant based on X and Y chromosomes. Probes on X
or Y chromosomes, probes containing SNPs, cross-hybridizing probes, and CpG
sites with low detection p-values in at least 50% of samples were also removed
from the analysis. Maternal blood contamination was tested using methylation
data at 10 CpGs independently identified as differentially methylated between
cord and adult blood and indicative of maternal blood contamination. Sam-
ples with DNA methylation values above previously identified thresholds at
>4 of the 10 sites were considered contaminated and removed from all future
analyses. The final dataset contained data on 428,619 CpG sites. Betas were
normalized using the funnorm function, incorporating the first 10 principal
components from internal control probes. To check for batch effects, principal
components were computed on these normalized betas. Two batches were sig-
nificantly associated with main principal components and removed iteratively
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using the combat package. Additional details on these procedures are available
elsewhere (Girchenko, Lahti, Czamara, et al., 2017). Cell type proportions
were estimated using the Bakulski reference set (Bakulski et al., 2016).

Covariates

Gestational age at measurement of Vitamin D, fetal sex, season of vitamin D
measurement, parity, and maternal age at delivery were assessed using data
from the Finnish Medical Birth Register and Population Register. Maternal
smoking was assessed using Finnish Medical Birth register data, and was cat-
egorized into 3 levels; no smoking during pregnancy, quit smoking in the first
trimester, continued smoking through pregnancy. Maternal early-pregnancy
BMI was based on weight and height measured at the first antenatal clinic
visit (mean 8 weeks gestation) derived from the Finnish Medical Birth Regis-
ter. Maternal education was assessed using self-report questionnaire at 12-13
weeks gestation, and was classified into primary education, secondary educa-
tion, lower tertiary education, or upper tertiary education, as recommended
by Statistics Finland. Ancestry was evaluated using offspring GWAS data,
and 2 principal components with eigenvalues > 1 were included in the mod-
els. As PREDO is a highly ethnically homogenous sample of Finnish-speaking
mothers from Southern Finland, this is likely sufficient to adjust for population
stratification.

Project Viva

Study Population

Project Viva is a longitudinal pre-birth cohort established to examine the ef-
fects of events during early development on lifetime health outcomes (Oken et
al., 2015). Recruitment and characteristics of the cohort have been described in
detail elsewhere (Oken et al., 2015). Between April 1999 and November 2002,
the study recruited women in early pregnancy from eight obstetric of Atrius
Harvard Vanguard Medical Associates, a multispecialty group practice in east-
ern Massachusetts. Exclusion criteria included multiple gestation, inability to
answer questions in English, gestational age >= 22 weeks at recruitment, and
plans to move away from the study area before delivery. Of 2670 enrolled par-
ticipants, 2128 were still enrolled at delivery and had a live birth. For the
current study, we restricted to mother-child pairs of white race/ethnicity with
complete data on mid-pregnancy Vitamin D, offspring DNA methylation, and
non-missing covariates resulting in a total analytic sample of 283 mother-child
pairs.

Maternal mid-pregnancy Vitamin D
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Vitamin D concentrations were assessed in plasma samples collected at 23.8-
36.4 weeks gestation. Blood samples were initially refrigerated, then plasma
was separated and stored at -80 degrees C. Samples were analyzed in duplicate
for 25(OH)D concentration, using an automated chemiluminescence immunoas-
say (Ersfeld et al., 2004) and a manual radioimmunoassay (Hollis et al., 1993).
Values from the two assays were averaged to obtain more stable estimates of
25(OH)D level (Burris et al., 2014).

Offspring Cord Blood Methylation

Cord blood samples collected at birth were centrifuged within 24 hours of col-
lection. Genomic DNA was extracted from nucleated cells using commercially
available PureGene Kits (Fisher, Catalog Nos. A407-4, A416-4; Qiagen, Cata-
log Nos.158908, 158912, 158924), and frozen at -80 degrees C. Extracted DNA
underwent bisulfite conversion using the Zymo EZ DNA Methylation kit (Zymo
Research), and epigenome wide methylation was measured using the Illumina
HM450K microarray. Data were preprocessed using the minfi package in R.
Failed samples, replicates, non-CpG probes, and probes on X and Y chromo-
somes were removed. Data were checked for gender mismatch using X and
Y chromosomes. CpG sites with low detection p-values were identified and
flagged. Raw methylation values were Noob adjusted (background and dye
bias adjusted), and methylation values were normalized using a beta-mixture
quantile normalization method.

Covariates

Analyses in Project Viva were restricted to subjects of self-reported white race.
Fetal sex, maternal smoking status, maternal age at enrollment, early preg-
nancy BMI, maternal education, and parity were assessed by self-administered
questionnaires and interviews during pregnancy. Season of vitamin D measure-
ment was categorized into 4 groups (Feb-Apr, May-Jul, Aug-Oct, Nov-Jan).
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Supplementary Results

Figure 2.3: Flowchart describing probe inclusion
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Table 2.2: Lambdas for each participating cohort (Base Model)

Cohort n λ

EAGeR 361 1.044
MoBa1 783 1.01
MoBa2 177 1.465
PREDO 301 0.85
Gen3G 175 1.321
Generation R 1154 1.033
Project Viva 283 0.929

Table 2.3: Lambdas for each participating cohort (Season of Measurement
Model)

Cohort n λ

ALSPAC 499 0.981
EAGeR 361 1.047
MoBa1 783 0.861
MoBa2 177 1.157
PREDO 301 0.817
Gen3G 175 1.126
Generation R 1154 0.841
Project Viva 283 0.958
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Figure 2.4: Q-Q plots for each participating cohort (Base Model)
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Figure 2.5: Q-Q plots for each participating cohort (Season of Measurement Model)
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Figure 2.6: Q-Q plot for full meta-analytic results (Base Model)

Figure 2.7: Q-Q plots for full meta-analytic results (Season of Measurement Model)
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Figure 2.8: P-Z plots for each participating cohort (Base Model)
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Figure 2.9: P-Z plots for each participating cohort (Season of Measurement Model)
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Figure 2.10: Boxplots of Betas for each participating cohort (Base Model)
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Figure 2.11: Boxplots of Betas for each participating cohort (Season of Measurement
Model)
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Figure 2.12: Plot of precision relative to sample size (Base Model)

Figure 2.13: Plot of precision relative to sample size (Season of Measurement Model)
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Figure 2.14: Volcano plots for each participating cohort (Base Model)
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Figure 2.15: Volcano plots for each participating cohort (Season of Birth Model)
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3.1 Abstract

Background: Mendelian randomization (MR) designs apply instrumental
variable techniques using genetic variants to study causal effects. MR is in-
creasingly used to evaluate the role of maternal exposures during pregnancy on
offspring health.
Objectives: We review the application of MR to prenatal exposures and de-
scribe reporting of methodologic challenges in this area.
Data sources: We searched Pubmed, Embase, Medline Ovid, Cochrane Cen-
tral, Web of Science, and Google Scholar.
Study selection and data extraction: Eligible studies met the following
criteria: (1) a maternal pregnancy exposure ; (2) an outcome assessed in off-
spring of the pregnancy; and (3) a genetic variant or score proposed as an
instrument or proxy for an exposure.
Synthesis: We quantified the frequency of reporting of MR conditions stated,
techniques used to examine assumption plausibility, and reported limitations.
Results: 43 eligible studies were identified. When discussing challenges or
limitations, the most common issues described were known potential biases in
the broader MR literature, including population stratification (n=29), weak
instrument bias (n=18), and certain types of pleiotropy (n=30). Of 22 studies
presenting point estimates for the effect of exposure, four defined their causal
estimand. Twenty-four studies discussed issues unique to prenatal MR, includ-
ing selection on pregnancy (n=1) and pleiotropy via postnatal exposure (n=10)
or offspring genotype (n=20).
Conclusions: Prenatal MR studies frequently discuss issues that affect all MR
studies, but rarely discuss problems specific to the prenatal context, including
selection on pregnancy and effects of postnatal exposure. Future prenatal MR
studies should report and attempt to falsify their assumptions, with particu-
lar attention to issues specific to prenatal MR. Further research is needed to
evaluate the impacts of biases unique to prenatal MR in practice.
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3.2 Background

Many pregnancy exposures, including maternal nutrition, substance use, and
chronic health conditions, are associated with offspring adverse birth outcomes
and health across the life course (Fleming et al., 2015; Linnet et al., 2003; Mar-
ques et al., 2013; Sacks et al., 2016). However, mothers who differ in specific
prenatal behaviors and traits are also likely to differ in socioeconomic status
and many other health behaviors, including substance use, exercise habits,
diet, social support, and engagement with medical professionals, that could
likewise affect or be associated with offspring outcomes (Smith, 2008). These
confounders of the relationship between pregnancy exposures and offspring out-
comes are complex constructs that are difficult to measure, as they often relate
to an individual’s latent tendency to engage in healthy behaviors or to be
exposed to risk factors associated with socioeconomic position. Therefore, es-
timates of causal effects of exposures during pregnancy using more traditional
analytic techniques that require measuring and adjusting for confounders may
be biased.
Instrumental variable analysis proposing genetic variants as instruments, also
known as Mendelian randomization (MR), is an alternative approach to esti-
mate causal effects of exposures on outcomes. In prenatal MR designs, the
mothers’ genetic variants (e.g., single nucleotide polymorphisms [SNPs]) are
proposed as instruments to examine the effect of an exposure during pregnancy
on an offspring outcome. Under specific conditions, MR allows for unbiased
estimation of an average causal effect of an exposure on an outcome, even in
the presence of unmeasured confounding of the exposure-outcome relationship
(Hernan and Robins, 2018). An MR study requires an instrument, defined as
a variable that meets the following conditions:

1. The instrument Z (i.e., the genetic variant) must be associated with the
exposure X

2. The instrument Z does not affect the outcome Y except through its
possible effect on the exposure X (also known as the exclusion restriction)

3. Individuals at different levels of the instrument Z are exchangeable (i.e.,
comparable) with regard to counterfactual outcome.

One important implication of condition 3 is that the instrument Z and the
outcome Y cannot share any unmeasured causes. A causal structure that
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meets these requirements is portrayed in Figure 3.1.

Z X Y

U

Figure 3.1: Causal DAG representing an MR study where Z is a valid instrument for
the effect of X on Y.

Under these three conditions, investigators can test whether there is an effect of
the exposure on the outcome for at least one individual in the study population
(Swanson et al., 2018), and can estimate bounds for the average causal effect
(Balke and Pearl, 1997; Robins, 1989). In order to obtain a point estimate of
an average causal effect, investigators must assume one of a set of additional
conditions holds. These conditions vary in strength and plausibility, and some
choices of weaker conditions will produce estimates of average causal effects
in unidentifiable subgroups of the study population (see Appendix for further
detail). This choice of condition alters the population to which the estimated ef-
fect applies, and a subgroup average causal effect can differ dramatically from
the population average causal effect. Therefore, guidelines for MR analyses
recommend explicit reporting of this “fourth” point-identifying condition and
the targeted effect estimand (Didelez et al., 2010; Didelez and Sheehan, 2005;
Swanson and Hernán, 2013). Of further note, there are several estimators al-
lowing for relaxation of MR conditions 2 and 3, although these require some
alternative assumptions and often the availability of multiple possible instru-
ments (Bowden et al., 2015; Bowden et al., 2016; Kang et al., 2016; Tchetgen
et al., 2017).

Although the application of MR to pregnancy exposures is growing, to our
knowledge, no existing study has examined the frequency of this design, or the
assumptions and analytic strategies commonly employed in such applications.
As guidelines for MR suggest that the key conditions need to be assessed on a
case-by-case basis relative to the study design and research question (Glymour
et al., 2012; Holmes et al., 2017; Swanson, 2017; Swanson and Hernán, 2013;
VanderWeele et al., 2014), and prenatal MR studies present several unique
challenges relative to other types of MR designs (Diemer et al., 2020; Lawlor
et al., 2017), it is important to understand how prenatal MR studies report
on both study-specific and general challenges to the validity and interpretation
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of MR results. In addition, by identifying key areas of concern reported by
researchers, we may be able to determine which sources of bias in prenatal MR
are in most need of further research. Therefore, the aim of this study was to
review the use of MR designs to study the effect of the prenatal environment on
offspring outcomes, and to describe the nature and reporting of key potential
strengths and weaknesses of the design in this context.

3.3 Methods

To investigate the use of MR in studies of pregnancy exposures, we searched
Pubmed, Embase, Medline Ovid, Cochrane Central, Web of Science, and
Google Scholar. Each database was searched from its start date to May 14,
2019. Inclusion in our review required the study met the following criteria: 1)
the exposure of interest was a characteristic of the maternal environment that
occurred during or proximate to pregnancy, 2) the outcome was assessed in the
offspring of the pregnancy and 3) a genetic variant or genetic variant score was
proposed as an instrument and used either as a proxy for an exposure or to
conduct an instrumental variable analysis of the effect of exposure on outcome.
The inclusion of proxy approaches is especially important for a review of
prenatal MR designs, because some early studies did not conceptualize this
approach as an application of previously established instrumental variable
methods, but rather viewed genetic variants as unconfounded proxies for the
exposure of interest. Testing the association between such a genetic variant
and an outcome is equivalent to sharp null hypothesis testing in MR, and
requires the same MR conditions hold (Swanson, 2017). Because birthweight is
used both as a characteristic of the offspring and as a proxy for a broad range
of characteristics of the prenatal environment, which complicate comparisons
to MR analyses of other specific prenatal exposures, we excluded studies using
birthweight as an exposure from this review. We also required that the study
include analysis of real data and we eliminated any duplicate analyses. All
studies were independently reviewed by two coauthors (ED & AN), and any
disagreements between coauthors were resolved by third author (JL) review
and discussion (see Figure 3.2). Details of the search terms and identified
studies are available in the Appendix.

Authors extracted data from each included study using a form with open re-
sponse fields for each data point. Data collected from eligible studies included
the study exposure, study outcome, sample size, methodologic approach used,
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Figure 3.2: Flowchart depicting article eligibility
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falsification tests and sensitivity analyses performed, and limitations men-
tioned. For each of the MR conditions, rather than pre-specifying a list of
possible types of violations and noting whether a particular article described
said violation, reviewers listed all sources of bias described by the article under
review that would violate the MR conditions. Although this approach relies
on the ability of the reviewer to correctly identify sources of violation that are
not explicitly described in the language of instrumental variables (particularly
with regard to the fourth assumption), it allows for identification of novel and
subject-specific approaches and potential sources of bias, rather than restrict-
ing responses to a predefined set of possible violations of the MR conditions.
Data was extracted by the first author (ED); to assess accuracy in extraction,
5 included studies were randomly chosen for independent extraction by a coau-
thor (JL) (see Appendix for details of extraction comparison procedure). Both
authors agreed on 56/60 data points (93%) across 5 articles.

3.4 Results

Initial searches resulted in 772 potentially eligible articles. Of these, 680 ar-
ticles were excluded based on review of the abstract. Of the 92 articles that
underwent full manuscript review, 43 articles met eligibility criteria and were
included in this review (Figure 3.2).

Study settings

The included studies covered a wide range of exposures, including alcohol or
tobacco use (n=12, 28%), caffeine use (n=1, 2%), C-reactive protein (n=2,
5%), diabetes (n=4, 9%), thyroid hormone levels (n=1, 2%), anthropometric
traits (n=8, 19%), placental methylation (n=1, 2%), hemoglobin levels (n=3,
7%), blood lipid levels (n=2 , 5%), blood pressure (n=1, 2%), and micronutri-
ent levels (n=13, 30%) (Table 3.1 Column 3). Of the micronutrient studies, 6
focused on folate, 2 on vitamin B-12, 2 on homocysteine, 2 on vitamin D, and 1
on polyunsaturated fatty acids. Outcomes of interest included DNA methyla-
tion, autoimmune conditions, cognitive development, anthropometric measures
(e.g. adiposity-related outcomes), birthweight, bone density, behavioral disor-
ders, smoking initiation, adverse birth outcomes, orofacial cleft, wheezing, and
blood pressure (Table 3.1 Column 4). The majority (n=34, 79%) of the studies
used data from a birth cohort, with a few studies using case-control designs
(n=4) or cross-sectional data (n=5). Three studies (7%) used a 2-sample de-
sign, in which the association between the proposed instrument and exposure,
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and between the proposed instrument and outcome, are estimated in indepen-
dent samples.

Table 3.1: Included Studies

First Author Proposed
Instrument(s)

Exposure Outcome

Allard et al., 2015 2 step*: glucose
genetic risk score
(GRS), methylation
GRS

2 step:
maternal
fasting
glucose,
methylation

2 step: methylation,
cord blood leptin

Alwan et al., 2012 C282Y Iron blood pressure,
waist circumference,
body mass index
(BMI)

Bech et al., 2006 NAT2, CYP1A2,
GSTA1

caffeine stillbirth

Bédard et al.,
2018

maternal 12 SNP
weighted GRS

hemoglobin wheezing, asthma,
atopy, low lung
function

Bernard et al.,
2018

8 FADS variants omega 3 and
omega 6
polyunsatu-
rated fatty
acids

gestational
duration,
birthweight, birth
length

Binder and
Michels, 2013

MTHFR rs1801133,
rs1801131

Folate genome-wide
methylation

Bonilla, Lawlor,
Ben-Shlomo,
et al., 2012

GRS fasting
glucose, type
2 diabetes

Intelligence quotient
(IQ) at age 8

Bonilla, Lawlor,
Taylor, et al.,
2012

rs492602, rs1801198,
rs96-6756

vitamin B12 IQ at age 8
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Table 3.1: Included Studies (continued)

First Author Proposed
Instrument(s)

Exposure Outcome

Caramaschi et al.,
2017

2 step: rs492602 +
rs1047781 for vitamin
b12, rs5750236,
rs1890131 for
methylation

2 step:
vitamin B12,
methylation

2 step: methylation,
IQ

Caramaschi et al.,
2018

rs1051730 smoking
heaviness

autism spectrum
disorder

Evans et al., 2019 403 SNP GRS maternal
type 2
diabetes

birthweight

Geng and Huang,
2018

35, 25, and 41 SNP
GRS

waist-to-hip
ratio
adjusted for
BMI, hip
circumference
adjusted for
BMI, waist
circumference
adjusted for
BMI

birthweight, birth
length, head
circumference,

Granell et al.,
2008

MTHFR C677T Folate atopy, asthma

Howe et al., 2019 rs1229984 alcohol facial morphology

Humphriss et al.,
2013

ADH1B rs1229984 alcohol 3 composite balance
scores (dynamic
balance, static
balance eyes open,
static balance eyes
closed)
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Table 3.1: Included Studies (continued)

First Author Proposed
Instrument(s)

Exposure Outcome

Hwang et al.,
2019

96, 82, and 60 SNP
GRS

High density
lipoprotein
(HDL)
cholesterol,
low density
lipoprotein
(LDL)
cholesterol,
triglycerides

birthweight

Korevaar et al.,
2014

GRS Thyroid
stimulating
hormone
(TSH), free
thyroxine
(FT4)

Soluble fms-like
tyrosine kinase-1
(sFlt1), placental
growth factor
(PlGF)

Lawlor et al.,
2008

FTO BMI fat mass at age 9-11

Lawlor et al.,
2017

GRS BMI BMI, fat mass index

Lee et al., 2013 MTHFR C677T homocysteine birthweight

Lewis et al., 2009 MTHFR C677T folate intake total weight,total
body fat mass, total
lean mass

Lewis et al., 2012 10 SNP in ADH4,
ADH1A, AHD1B,
ADH7 (rs4699714,
rs3763894, rs4148884,
rs2866151, rs975833,
rs1229966, rs2066701,
rs4147536, rs1229984,
rs284779)

alcohol cognitive score (IQ
at age 8)

Lewis et al., 2014 GRS based on
rs1799945, rs1800562,
rs4820268

Iron IQ at age 8
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Table 3.1: Included Studies (continued)

First Author Proposed
Instrument(s)

Exposure Outcome

Mamasoula et al.,
2013

MTHFR rs1801133 folate congenital heart
disease

Morales et al.,
2011

rs1205 c-reactive
protein
(CRP)

wheezing, lower
respiratory tract
infection

Morales et al.,
2016

rs1983204, rs344008,
rs6795327, rs7637701,
rs11929637

methylation
at top-ranked
cpg site for
placental
methylation
in smokers

birthweight

Murray et al.,
2016

GRS ADH1A
rs2866151, rs975833,
AHD1B rs4147536,
ADH7 rs284779

alcohol conduct problem
trajectories (6
measures of
strengths and
difficulties
questionnaire)

Richmond et al.,
2016

GRS BMI HIF3A methylation

Richmond et al.,
2017

GRS BMI BMI, fat mass index

Scholder et al.,
2014

ADH1B rs1229984 alcohol academic
achievement
(KS1,KS2,KS3,
GCSE)

Shaheen et al.,
2014

ADH1B rs1229984 alcohol childhood atopic
disease

Graaff and Roza,
2012

MTHFR C677T folate emotional and
behavioral score
(child behavior
checklist)
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Table 3.1: Included Studies (continued)

First Author Proposed
Instrument(s)

Exposure Outcome

Steer and Tobias,
2011

MTHFR C677T folate Bone mineral
content, bone
mineral density,
bone area

Taylor et al., 2014 rs1051730 smoking latent class of
offspring smoking
initiation

Thompson et al.,
2019

separate 7 SNP GRS vitamin D,
calcium

Birthweight

Tyrrell et al.,
2016

GRS BMI, fasting
glucose,
diabetes,
triglycerids,
HDL, blood
pressure,
vitamin D,
adiponectin

birthweight

Wehby, Fletcher,
et al., 2011

14 SNPs smoking Birthweight

Wehby, Jugessur,
et al., 2011

4 SNPS (rs1435252,
rs1930139, rs1547272,
rs2743467

smoking orofacial cleft

Wehby and
Scholder, 2013

smoking: rs12914385,
rs1051730, alcohol:
ADH1B rs1229984,
BMI: rs8050136

smoking.
alcohol use,
obesity

birthweight

Yajnik et al., 2014 MTHFR rs1801133 homocysteine birthweight

Zerbo et al., 2016 rs3116656, rs2794520 CRP autism spectrum
disorder

Zhang et al., 2015 GRS maternal
height

birth length, birth
weight
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Table 3.1: Included Studies (continued)

First Author Proposed
Instrument(s)

Exposure Outcome

Zuccolo et al.,
2013

rs1229984 alcohol (1st
trimester)

IQ at age 8,
educational
attainment

Note:
2 step Mendelian randomization designs are a subtype of Mendelian randomization
design proposed to investigate mediation of the relationship between maternal expo-
sures and offspring outcomes by offspring DNA methylation, under additional strong
assumptions. In this approach, maternal genetic variants are proposed as instruments
for the effect of maternal exposures on offspring methylation across all measured sites.
For any methylation sites where a non-null effect was detected for any individual in
the population, offspring genetic variants associated with methylation at that site
are proposed as instruments for the effect of methylation at that site on offspring
outcomes.

The type and number of proposed instruments used varied across included
studies. Most (n=31, 72%) studies proposed only maternal genetic factors as
instruments, while the remainder used offspring genetic factors either alone or
in tandem with maternal genetic factors. Overall, 19 studies (44%) proposed
a single SNP as an instrument, while 24 (56%) used multiple genetic loci.
Studies’ discussion of key conditions

Eighteen studies (42%) mentioned weak instrument bias, with 10 studies (23%)
reporting F-statistics as a measure of proposed instrument strength (range:
0.66 to 74) (Appendix Table 3.4 Column 6). Seventeen studies (40%) incor-
porated methods explicitly to limit weak instrument bias into their analysis
by leveraging multiple genetic loci as either a genetic risk score or using lim-
ited information maximum likelihood and weak instrument robust confidence
intervals (Finlay and Magnusson, 2009; Stock et al., 2002).
Of 15 studies using genetic risk scores, rather than individual SNPs, 2 explicitly
removed SNPs with known pleiotropic effects, that is, SNPs known both to be
associated with the exposure and to impact the outcome through paths other
than the exposure, from the genetic risk scores. Ten studies (23%) used al-
ternative methods - Egger regression, weighted median regression, and sisVive
-which allow for specific types of violations of MR condition 2 under alterna-
tive conditions (Bowden et al., 2015; Bowden et al., 2016; Kang et al., 2016)
(Appendix Table 3.4 Column 11). Ten analyses (23%) controlled for offspring
genotype, incorporated offspring genotype into a structural equation model,
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or used only non-transmitted haplotypes as assumed instruments to mitigate
violations of MR condition 2 by offspring genotype.

Twenty-six of the included studies (61%) used some method to avoid viola-
tions of MR condition 3 by population stratification, a type of confounding
of the proposed instrument-outcome relationship by ancestry group, primarily
(n=19, 44%) via restricting the maternal sample to white European women.
Twelve studies (27.9%) included a sensitivity or primary analysis adjusting for
GWAS derived principal components, to limit residual confounding by popula-
tion stratification. Three studies discussed possible violations of MR condition
3 by assortative mating, a bias resulting from parents selecting mates based
on particular characteristics that can result in confounding of the proposed
instrument-outcome relationship. One study used linear mixed modeling to
mitigate bias resulting from relatedness within the sample.

Causal parameters of interest and reporting of additional key condi-
tions

Twenty-one studies (49%) reported proposed instrument-outcome associations
only, and twenty-two (51%) used IV estimation to derive a point estimate of
an effect of the exposure on the outcome (Appendix Table 3.4 Column 5). Of
the studies that reported such a point estimate, four explicitly reported their
estimand of interest (See Appendix for details).

Reported sensitivity analyses and falsification tests

While MR conditions 2 and 3 cannot be empirically verified, they can be falsi-
fied or indirectly assessed using a variety of techniques (Glymour et al., 2012;
Jackson and Swanson, 2015). However, some of these techniques only detect
extreme biases, and, particularly in the case of covariate balance, can be dif-
ficult to interpret (Glymour et al., 2012; Jackson and Swanson, 2015). Three
analyses (7%) reported the results of a falsification test (Table 3.2). One study
(2%) estimated a weighting function, and two (5%) used overidentification tests
(Angrist and Imbens, 1995; Hausman, 1978). No studies reported instrumen-
tal inequalities (Diemer et al., 2020; Pearl, 1995) . Twenty-one studies (49%)
reported the balance of covariates across levels of their proposed instrument,
17 of which compared this to covariate balance across levels of exposure; no
studies used bias or bias component plots to report these comparisons (Jackson
and Swanson, 2015) (Appendix Table 3.4 Column 11).

Eleven studies (26%) reported analyses stratified across levels of the exposure
or conducted tests of instrument-exposure interaction or interaction between
the instrument and a potentially confounded determinant of exposure. One
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Table 3.2: Falsification approaches and sensitivity analyses reported by in-
cluded articles

Falsification Tests and Sensitivity Analyses Percent studies
reporting (n)

Falsification Technique
Overidentification Test 5% (2)
Weighting Function 2% (1)
Covariate Balance 49% (21)

Sensitivity Analysis
Alternative Methods (MR-Egger, weighted median,

nontransmitted haplotype, SisVive, mode-based
estimator)

23% (10)

Pruned GRS 5% (2)
Simulations to evaluate impact of specific type of

violation
9% (4)

Adjustment for additional factors 14% (6)
Exposure stratification (would only be valid if no

unmeasured confounding of exposure and outcome)
26% (11)

study (2%) stratified across a level of maternal behavior in which the exposure
was expected not to exist, and one study (2%) adjusted for several possible
consequences of the proposed instrument and exposure. Because stratifying on
or controlling for the exposure or a consequence of the exposure (as in a test of
instrument-exposure interaction) can induce collider bias, these analyses will
provide a valid falsification test only if there is no confounding of the exposure-
outcome relationship, which is extremely unlikely given the typical motivation
for conducting an MR analysis (Didelez and Sheehan, 2005).

Reported limitations

39 studies (91%) discussed versions of potential violations of the MR condi-
tion 2, with 30 (70%) describing pleiotropy, 10 (23%) noting possible postnatal
effects of the proposed genetic instrument, 14 (33%) discussing possible expo-
sure measurement error, 3 (7%) noting possible preconceptional effects of the
proposed genetic instrument on egg quality or maternal characteristics, and
6 (14%) noting their exposure was assumed constant over the course of the
pregnancy (Table 3.3). Thirty four studies (79%) discussed versions of poten-
tial violations of MR condition 3, with most (n=29, 67% of total) focusing on
population stratification. Twenty eight studies (65%) mentioned low statistical
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Table 3.3: Possible sources of violation of the MR conditions reported by the
included articles

Assumption Percent Studies
Reporting (n)

Assumption 1
Weak Instrument Bias 42% (18)
Can’t Prove Assumption 1 7% (3)
Winner’s Curse 2% (1)

Assumption 2
Pleiotropy 70% (30)
Exposure Measurement Error 33% (14)
Postnatal Effects of Genotype 23% (10)
Preconceptional Effects of Genotype 7% (3)
Exposure Assumed Constant over Pregnancy 14% (6)
Offspring Genotype 47% (20)

Assumption 3
Population Stratification 67% (29)
Assortative Mating 7% (3)
Residual Confounding 16% (7)
Relatedness 2% (1)

Other Concerns
Modeling Assumptions 37% (16)
Selection Bias - Loss to Followup 26% (11)
Selection on Pregnancy 2% (1)
Outcome Measurement Error 19% (8)
Low Power 65% (28)
Limited Generalizability 19% (8)
Use of GWAS in nonpregnant adults may be

inappropriate
9% (4)

Noncomparable cohort populations (2 sample
designs only)

2% (1)
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power. Eleven studies (26%) discussed possible selection bias related to miss-
ingness of exposure and outcome data. One study (2%) explicitly mentioned
selection bias related to the use of a cohort defined by successful pregnancy
completion. Sixteen studies (37%) discussed the vulnerability of their analysis
to model misspecification resulting from nonlinearity or heterogeneity or vio-
lation of proportional hazards. Four studies (9%) noted that they used genetic
risk scores weighted based on large GWAS of men and non-pregnant women,
which might result in model misspecification when applied to prenatal MR. Of
the three studies using two-sample designs, one discussed bias resulting from
non-comparability of the samples.

3.5 Comment

Principal findings
The use of MR designs is becoming more frequently applied to study a wide
range of types of prenatal exposures, and is most often conducted in large,
well-characterized birth cohorts. Overall, investigators appear to be aware of
possible bias due to pleiotropy and weak associations between proposed instru-
ments and exposures, as well as the low power of MR studies, and demonstrate
efforts to address the potential impact of these issues. However, some violations
of the MR conditions that are more specific to and perhaps more common in
prenatal MR, including violation of MR condition 2 by postnatal or preconcep-
tional exposure status, and selection on pregnancy, are rarely mentioned. The
fourth condition used to report point estimates is rarely stated.

Strengths of the study

This study is, to our knowledge, the first to investigate the use of the prenatal
MR design and the possible violations discussed by applications of this design.
The use of prenatal MR is increasing, and a clear evaluation of reported and
unreported sources of potential bias is a key consideration for future authors
and consumers of prenatal MR studies. By using an open-ended extraction
strategy, rather than predefining biases of interest, we were able to identify
novel sources of bias specific to this setting. This flexible approach enabled
reviewers to identify violations of point-identifying assumptions that were not
explicitly described in the language of instrumental variables.

Limitations of the data

However, this extraction strategy is, by definition, somewhat subjective. Be-
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cause this approach relies on the expertise of the reviewer, reproducibility may
be impacted. However, when data from 5 articles were independently extracted
by a second coauthor, there was a high degree of agreement between reviewers.
As with all systematic reviews, it is also possible that our search algorithm
was incomplete, and we did not identify all relevant articles. This limitation is
especially relevant to early prenatal MR studies, which did not always use the
same language to describe their analysis, or conceptualize their analysis as an
application of instrumental variables.

Our study focused exclusively on reporting, and therefore could not determine
whether any potential bias meaningfully impacted the results of a particular
study. However, key MR conditions are unverifiable, meaning the absence of
all potential biases cannot be proven. Given this, MR studies should, whenever
possible, attempt to falsify their assumptions, and provide sensitivity analyses
quantifying the impact of possible biases. If the impact of particular bias is
believed to be minor, justification of this assumption based on subject matter
knowledge is vital to the interpretation of study findings.

Interpretation

Zmother X Y

U

Zchild

Zfather

Figure 3.3: Causal DAG depicting a maternal genetic loci that violates the MR
conditions. Here, offspring genotype (Zchild) is an open backdoor path between the
proposed instrument (Zmother) and the outcome (Y ), violating MR condition 2. How-
ever, conditioning on Zchild may induce a collider bias if paternal genotype (Zfather)
is also related to Y, potentially via paternal exposure.

Violations of MR condition 2 were some of the most noted problems in this re-
view. Pleiotropy, where genetic loci proposed as an instrument affect both
the exposure and another maternal factor associated with the outcome, is
a well-recognized problem for all MR studies, and was mentioned by nearly
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three-quarters of the studies (70%) in this review. However, several types of
violations of MR condition 2 are relatively unique to the prenatal MR design,
some of which remain rarely acknowledged. When maternal genetic factors are
proposed as instruments, MR condition 2 could be violated if the offspring’s
own genotype has an effect on the outcome (Figure 3.3) (Lawlor et al., 2017).
This type of bias may be especially common in settings where the maternal
exposure and offspring outcome are similar, including studies of the effect of
maternal pregnancy BMI on offspring BMI (Lawlor et al., 2017). However,
this type of bias could also occur in any setting where offspring exposure level
might impact the outcome, or where the mechanism by which a genetic variant
proposed as an instrument impacts exposure might also impact the outcome.
In MR studies of the effect of prenatal micronutrient exposures on offspring
outcomes in later life, MR condition 2 would be violated if offspring micronu-
trient levels after birth also affect the outcome, because offspring genotype
likely impacts their micronutrient levels after birth. Some approaches to limit
this bias have been proposed, including controlling for offspring genotype, the
use of non-transmitted haplotypes, and a specific linear structural equation
model. However, both the nontransmitted haplotype approach and control-
ling for offspring genotype can induce collider bias via paternal genotype, as
both condition on offspring genotype. The structural equation modeling ap-
proach proposed by Warrington et al., 2018 avoids this issue, but require much
stronger assumptions regarding linearity and relationships between covariates
than conventional MR (VanderWeele, 2012).

Z Xpregnancy Xpostnatal Y

U

Figure 3.4: Causal DAG depicting a maternal genetic locus proposed as an instrument
(Z), that violates the MR conditions. Here, Z affects maternal exposure levels both
during and after pregnancy, and maternal postnatal exposure also impacts offspring
outcomes. Thus, maternal postnatal exposure (Xpostnatal) creates an open backdoor
path between Z and the outcome (Y ), violating MR condition 2.

For maternal proposed genetic instruments, if the outcome of interest occurs
after birth, MR condition 2 can be violated if the mother’s postnatal exposure
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status also affects the offspring (Figure 3.4) (VanderWeele et al., 2014). This is
because the mother’s genes would logically affect her exposure after birth, and
the postnatal effect of the exposure creates an open path between the proposed
instrument and the outcome not via prenatal exposure. For example, if the
exposure of interest impacts the content of the mother’s breastmilk, this would
violate MR condition 2. That path is particularly relevant for studies of the
effects of obesity, diabetes, substance use, and vitamin B12, all of which have
been associated with altered breastmilk content (Allen, 2005; Andreas et al.,
2014; Giglia and Binns, 2006; Koletzko et al., 2008; Rowe et al., 2013; Soder-
borg et al., 2016; Young et al., 2017) . In contrast, previous work has not found
any association between maternal iron status and breastmilk content (Allen,
2005). Altered social exposures and parenting behaviors resulting from mater-
nal postnatal exposure status (e.g., altered socioeconomic status or attachment
style resulting from alcohol consumption) may also violate MR condition 2. For
studies proposing offspring genetics as instruments, a similar violation can oc-
cur if the offspring’s genetic factors continue to impact their exposure after
birth. For example, as with biases resulting from the causal effect of mater-
nal genotype on offspring genotype, in studies of the effect of micronutrients
that propose offspring genetic factors as instruments will be biased if offspring
micronutrient levels after birth impact their outcome, as offspring genotype
likely continues to affect micronutrient levels after birth. Further, MR condi-
tion 2 can be violated if the mother’s preconceptional exposure status affects
her offspring, through mechanisms like alterations in oocyte quality.

Although an MR estimate of a maternal exposure with postnatal or preconcep-
tional effects could retrieve a valid estimate of the effect of maternal exposure
from oocyte formation to outcome measurement, such an approach implies
exposures remain the same over several years (in the case of preconceptional
effects, from the mother’s own gestation to outcome measurement) and do not
change as a result of pregnancy, an unreasonable assumption for many expo-
sures of interest (Labrecque and Swanson, 2018). In addition, if the relationship
between the proposed genetic instruments and maternal exposure status varies
over the course of pregnancy, prenatal MR will produce biased estimates even
if the exposure has no postnatal effect (Labrecque and Swanson, 2018; Swan-
son et al., 2017). Time-varying gene-exposure relationships were not explicitly
mentioned in any of the articles reviewed here, though 10 studies mentioned
pleiotropy via postnatal or prepregnancy effects as a possible limitation, and
6 noted the exposure was assumed constant over the course of pregnancy. In
settings where postnatal exposure status is believed to substantially affect off-
spring outcomes, and the gene-exposure relationship varies over time (either
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before or after birth), prenatal MR with the usual MR estimators will likely
be an inappropriate approach, and investigators should consider alternative
methods.

Z Xpre−pregnancy Xpregnancy Y

U1

Pregnancy

U2

Figure 3.5: Causal DAG depicting a maternal genetic locus proposed as an instrument
(Z) that violates the MR conditions. Here, the maternal exposure Xpre−pregnancy im-
pacts a woman’s ability to become pregnant. As outcomes (Y ) can only be measured
in children of women who successfully conceive and carry a pregnancy to term, a
prenatal MR study must necessarily select on pregnancy status, which will generate
collider bias in this scenario, violating the MR conditions.

Violations of MR condition 3 by population stratification, a problem recognized
in the broader MR literature, were well-discussed by studies included in this
review (n= 29, 67%) (Davey Smith and Ebrahim, 2003; Didelez and Sheehan,
2007; Frangakis and Rubin, 1999; Lawlor et al., 2017; Palmer et al., 2012).
Violations by selection bias related to participant loss to followup, another
known problem in MR, were also mentioned by almost a third of studies in this
review (n= 11, 26%) (Davey Smith and Ebrahim, 2003; Didelez and Sheehan,
2007; Frangakis and Rubin, 1999; Lawlor et al., 2017; Palmer et al., 2012).
However, because many exposures also negatively impact fertility or ability to
carry a pregnancy to term, prenatal MR studies are also uniquely vulnerable to
bias resulting from selecting on successful pregnancy completion (Figure 3.5),
which would result in a violation of the MR condition 3, a limitation mentioned
by only 1 study in this review (Canan et al., 2017). This bias could also occur if
women with particular substance use and dietary behaviors were less interested
in becoming pregnant, or have other lifestyle factors that make it difficult to
become pregnant. Previous research suggests that women who are obese are
less likely to become pregnant than women who are not obese (Jokela et al.,
2008). Folate status, diabetes, alcohol use, and smoking have been associated
with worsened fertility, miscarriage, or stillbirth in experimental animal models
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and previous observational research 45-56 (Altmäe et al., 2010; Bailey and
Sokol, 2011; Boots and Stephenson, n.d.; Dechanet et al., 2010; Elbers et
al., 2011; Fan et al., 2017; Feodor Nilsson et al., 2014; Gaskins et al., 2012;
Laanpere et al., 2010; Waylen et al., 2008; Whitworth et al., 2011). Research
on becoming pregnant in relation to other exposures included in this review,
such as iron status, caffeine use, and c-reactive protein, is less conclusive 57-
60 (Hanson et al., 2017; Wathes et al., 2007; Wesselink et al., 2016; Yadegari
et al., 2016). Importantly, while selection due to miscarriage can also bias
studies of prenatal exposures using more conventional confounder adjustment
methods, selection bias due to differences in becoming pregnant affect only
prenatal MR designs. Because the vast majority of prenatal MR studies are
conducted in cohorts recruited based on the presence of a pregnancy, direct
correction of estimates using inverse probability weights, a correction approach
used in other applications of instrumental variable methods (Canan et al.,
2017), will rarely be possible. Under specific conditions, the recently proposed
MR GENIUS estimator may retrieve unbiased estimates of the causal effect in
the presence of selection bias, though this motivation for applying the estimator
has not been thoroughly evaluated (Tchetgen et al., 2017). As an alternative,
authors using prenatal MR might consider using sensitivity analyses informed
by previous research on their exposure and fertility in similar populations to
evaluate the robustness of findings to selection bias (Swanson, 2019). However,
to this point, no research has examined the magnitude of bias resulting from
selection on pregnancy completion in prenatal MR, or optimal bias mitigation
and sensitivity analysis strategies in the context of cohorts recruited based on
the presence of a pregnancy. It is therefore unclear to what extent prenatal
MR studies are biased by selection on pregnancy, and what measures future
studies should take to limit or identify this bias.

Some sources of bias in prenatal MR may be particularly difficult to identify
via the types of sensitivity analyses and falsification tests used by articles in
this review. Comparisons of covariate balance across levels of the instrument
and exposure, used by nearly half of the studies in this review, can be diffi-
cult to interpret, as even small differences in balance can result in substantial
bias (Jackson and Swanson, 2015). Other methods used in this review, such as
overidentification tests, which evaluate the null hypothesis that effect estimates
from multiple different instruments are identical, and certain alternative meth-
ods allowing for relaxation of MR condition 2, assume that different estimates
are not biased in the same way. While this assumption might be reasonable
for some forms of horizontal pleiotropy, it will be violated if MR conditions 2
or 3 are violated as a result of a shared mechanism like postnatal effects of the
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exposure, or by selection on pregnancy (Swanson, 2019). Two studies in this
review attempted to limit pleiotropy by manually removing SNPs proposed as
instruments that had known pleiotropic effects from genetic risk scores. This
approach is a useful way of leveraging existing research to identify invalid IVs.
However, identifying potentially pleiotropic SNPs in this way requires large
GWAS of traits on potential pleiotropic pathways, which may be unavailable
for many exposures used in prenatal MR.

While over half of the studies presented point estimates for a causal effect of
exposure, few analyses explicitly discuss their estimand (n=4, 9% of total) or
any form of model misspecification (n=15, 35% of total). Importantly, certain
choices of weaker modeling assumptions will identify point estimates in dif-
ferent subsets of the population, and violations of modeling assumptions can
also impact the interpretation of alternative methods, as well as falsification
techniques like overidentification tests. Thus, explicit reporting of investigator
assumptions is crucial to critical evaluation of MR analyses. This is especially
true in prenatal MR, where certain subpopulations are not characterized in the
same way as conventional MR, and, in the case of certain exposures, includ-
ing maternal alcohol consumption and smoking, there is evidence that some
modeling assumptions are unreasonable (see Appendix).

3.6 Conclusion

The use of prenatal MR is especially popular in the study of the effects of adi-
posity, micronutrient sufficiency, and substance use during pregnancy on off-
spring health. Because offspring are only directly exposed to maternal genetic
factors and certain exposures during gestation, prenatal MR is an appealing
method to examine the impact of maternal behaviors on offspring outcomes in
the presence of unmeasured exposure-outcome confounding. Authors explicitly
discuss and attempt to combat issues that could affect all MR studies, includ-
ing population stratification, weak instruments, and certain types of pleiotropy,
but much less frequently discuss some of the more specific challenges of prenatal
MR designs, such as postnatal effects of the exposure and selection bias related
to becoming pregnant. The evaluation of prenatal MR point estimates is also
complicated by infrequent reporting of the authors’ modeling assumptions and
effect of interest, although this pattern has been seen in MR studies and even
in other types of instrumental variable analyses more generally (Swanson and
Hernán, 2013; Swanson et al., 2017).
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Importantly, the presence of such potential biases in general in prenatal MR
studies does not necessarily invalidate their existence. All causal inference
is vulnerable to bias, and even biased studies can provide useful information
about the world around us, particularly if the bias is well-understood. Future
studies in this area should include explicit reporting and justification of the
authors’ assumptions, including those specific to the prenatal context, as well
as falsification tests and sensitivity analyses to evaluate the impact of violations
of those assumptions. Further research is needed to evaluate how selection
bias related to fertility affects prenatal MR estimates, and to determine the
best choice of analysis in the presence of violations of the MR conditions in
studies of prenatal exposures. Altogether, the relatively frequent reporting of
non-specific challenges while underreporting challenges specific to prenatal MR
designs may also serve as an important lesson to the developers, teachers, and
methodologic collaborators of MR analyses: while published MR applications
may be increasingly better at reporting “standard” strengths and limitations
of MR studies, critical assessment of the unique challenges of an MR study
nonetheless needs to be done on a case-by-case basis.
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Appendix

Details of search terms used in systematic review

embase.com 218 215
Medline Ovid 177 24
Web of science 250 129
Cochrane CENTRAL 16 1
Google scholar 200 136
Total 861 505

embase.com 218 (‘instrumental variable analysis’/exp OR ((mendelian*
NEAR/3 random*) OR (instrumental* NEAR/3 variab*)):ab,ti) AND
(‘prenatal exposure’/exp OR ‘prenatal drug exposure’/exp OR ‘pregnant
woman’/exp OR ‘pregnancy’/exp OR ‘prenatal disorder’/exp OR ‘pregnancy
disorder’/exp OR ‘parameters concerning the fetus, newborn and preg-
nancy’/exp OR ‘prenatal development’/exp OR ‘maternal nutrition’/exp OR
‘maternal smoking’/exp OR ‘Maternal Exposure’/exp OR ‘embryonic and
placental structures’/exp OR (prenatal* OR perinatal* OR pregnan* OR
in*-uter* OR intrauter* OR gestation* OR maternal* OR offspring OR birth-
weight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR placenta*
OR embryo* OR fetomaternal* OR PreEclampsia OR Eclampsia):ab,ti)

Medline Ovid 262 (Mendelian Randomization Analysis/ OR ((mendelian*
ADJ3 random*) OR (instrumental* ADJ3 variab*)).ab,ti.) AND (exp Preg-
nancy Complications/ OR Maternal Exposure/ OR pregnant women/ OR
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exp pregnancy/ OR exp Fetal Diseases/ OR exp Pregnancy Complications/
OR exp Birth Weight/ OR exp Infant, Low Birth Weight/ OR Perinatal
Mortality/ OR Perinatal Death/ OR Embryology/ OR exp “Embryonic
and Fetal Development”/ OR exp Maternal Nutritional Physiological Phe-
nomena/ OR exp Embryonic Structures/ OR (prenatal* OR perinatal* OR
pregnan* OR in*-uter* OR intrauter* OR gestation* OR maternal* OR
offspring OR birthweight OR birth-weight OR fetus OR fetal OR foetus OR
foetal OR placenta* OR embryo* OR fetomaternal* OR PreEclampsia OR
Eclampsia).ab,ti.)

Cochrane CENTRAL 16 (((mendelian* NEAR/3 random*) OR (instrumen-
tal* NEAR/3 variab*)):ab,ti) AND ((prenatal* OR perinatal* OR pregnan*
OR in*-uter* OR intrauter* OR gestation* OR maternal* OR offspring OR
birthweight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR pla-
centa* OR embryo* OR fetomaternal* OR PreEclampsia OR Eclampsia):ab,ti)

Web of science 250 TS=((((mendelian* NEAR/2 random*) OR (instrumental*
NEAR/2 variab*))) AND ((prenatal* OR perinatal* OR pregnan* OR in*-
uter* OR intrauter* OR gestation* OR (maternal* NEAR/3 (exposure* OR
smoking OR drinking OR alcohol)) OR offspring OR birthweight OR birth-
weight OR fetus OR fetal OR foetus OR foetal OR placenta* OR embryo* OR
fetomaternal* OR PreEclampsia OR Eclampsia)))

Google scholar “mendelian randomization|randomisation”| “instrumental
variable” prenatal|perinatal|pregnancy| pregnant|“in-uterus”|intrauterine|
gestational|maternal| offspring|birthweight| “birth-weight”|fetus|fetal|foetus|
foetal|placenta| embryo|fetomaternal

Details of Extraction Procedure

Data points were extracted by the first author (ED); to ensure accuracy in
extraction, 5 included studies were randomly chosen for independent extrac-
tion by a coauthor (JL). Data points on discussion of MR assumptions were
considered in agreement when both authors agreed on the presence/absence of
any discussion of violations of the assumption in question.

Sensitivity analyses and limitations were excluded from the comparison check-
ing due to variability in how specific secondary analyses and limitations were
categorized. This is because, rather than prespecifying sets of possible limita-
tions and sensitivity analyses of interest, extraction of data points related to
both sensitivity analyses and limitations discussed were open-ended to allow
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for unexpected or unknown analyses and perspectives. This approach meant
that each independent extractor could generate an arbitrarily large number of
reported limitations and sensitivity analyses based on the same article. Thus,
it would be difficult to measure the degree to which independent extractors
agreed on datapoints related to sensitivity analyses and limitations discussed,
as it is not possible to measure the number of datapoints the two authors agreed
were not present in the dataset.

Description of Included Studies
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Assumptions required for point estimation

Investigators can test whether there is a non-null effect of the exposure on the
outcome for at least one individual in the study population, and can estimate
bounds for the average causal effect using only the 3 instrumental variable
assumptions discussed in the main text (Hernán and Robins, 2006). To estimate
the average causal effect of an exposure X on an outcome Y, using an instrument
Z in the total study population, investigators must assume one of the following
conditions hold (Hernan and Robins, 2018; Hernán and Robins, 2006; Tchetgen
et al., 2017).

4a. The effect of X on Y is identical (constant) for all individuals in the
population: E(Y x=x − Y x = 0|X = x) = E(Y x=x − Y x=0|X = 0)

4b. No effect modification by the instrument Z in all levels of the exposure X :
E(Y x=x − Y x=0|X = x, Z = z) = E(Y x=x − Y x=0|X = x, Z = z′)
Or equivalently
E(Y x=x − Y x=0|X = x, Z = z) = E(Y x=x − Y x=0|X = x′, Z = z)

Recent research has found that the average causal effect can also be identified,
even in the presence of violations of the second and third assumption, under
one of two alternative assumptions by an additional variable J, as can be seen
in Figure 3.6 (Tchetgen et al., 2017). In this case, the usual 3 IV conditions
are replaced by the following:

1. Z 6⊥⊥ Y |J

2. Z ⊥⊥ U | X

3. Z ⊥⊥ Y | (J, U, X)

4. Y x ⊥⊥ (Z,X) | (J,U)

Under these conditions, point estimation of the average causal effect is possible
if one of the two following conditions hold:

4c. No additive U − Z interaction on E(X|Z, J, U): E(X|Z = z, J, U) -
E(X|Z = 0, J, U) = E(X|Z = z, J) - E(X|Z = 0, J)

119



4d. No additive U −X interaction on the average causal effect of X on Y :
E(Y x=x − Y X=0|J, U) = E(Y X=x − Y X=0|J)

If the above assumptions are not plausible for a particular analysis, researchers
can estimate the average causal effect within the compliers, those individuals
for whom XZ=a > XZ=b for all a > b (Hernán and Robins, 2006). This value is
also known as the local average treatment effect, or LATE. In order to estimate
this quantity, researchers must assume:

4e. The causal effect of Z on X is monotonic, that is, it only works in one
direction for every individual in the study population. Formally, Xz is a non-
decreasing function of z on the support of Z.

Z X Y

U

J

Figure 3.6: Causal DAG representing an instrumental variable model with violation
of assumption 3 by J. Under this model, valid estimation of E(Y X=x − Y X=0) is still
possible using the assumptions presented by Tchetgen et al., 2017.

Interpretation of certain additional point-estimating as-
sumptions in prenatal MR

Four studies in this review reported additional point-estimating assumptions
and their targeted estimand. Of these, 3 assumed monotonicity (condition 4e)
in order to estimate the average causal effect among the compliers, and 1 as-
sumed no effect modification by the instrument in all levels of the exposure
(condition 4b) to estimate the average causal effect in the total study popula-
tion.

In the context of certain pregnancy exposures, there is evidence that conditions
4a, 4b, 4c, and 4d are unreasonable. When genes related to alcohol metabolism
are used as instruments for maternal drinking during pregnancy, fetal exposure
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to alcohol and alcohol metabolites will depend on maternal intake and the
speed at which the mother can metabolize alcohol, as well as other environ-
mental factors. For the same level of maternal alcohol intake, offspring of slow
metabolizers will have a longer exposure to alcohol, and would be at greater
risk of negative health outcomes (Smith, 2010). This means that the average
causal effect of alcohol exposure on offspring outcomes will be modified by the
level of the maternal genetic variant proposed as an instrument, violating con-
ditions 4a, 4b, 4c, and 4d. For this reason, most studies of alcohol use during
pregnancy in this review focused on a testing approach, rather than point es-
timation. The same logic applies to other metabolism-related genetic variants
proposed as instruments for substance use behaviors, like smoking and caffeine
use. In these cases, studies may choose to focus on approaches with weaker
assumptions, such as the complier average treatment effect, testing approaches,
or bounds.

It is important to note that, in prenatal MR proposing maternal genetic fac-
tors as instruments, the interpretation of “compliers” and the complier average
causal effect (described above) are different than the usual interpretation in MR
studies or most studies using instrumental variable analyses (Swanson, 2017).
This is because a mother-child pair’s compliance status is determined by the re-
lationship between a mother’s genetics and exposure, while the average causal
effect of interest occurs in the offspring of those mothers. In typical MR and
instrumental variable studies, the proposed instrument, exposure, and outcome
are all measured within the same individual. In those cases, under condition 4e,
researchers can estimate the average causal effect among the compliers. In con-
trast, in pregnancy MR designs, under condition 4e, researchers can estimate
the average causal effect among the offspring of mothers who are compliers,
although the offspring themselves would not necessarily be compliers.
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4.1 Abstract

Background: Investigators often support the validity of Mendelian random-
ization (MR) studies, an instrumental variable approach proposing genetic vari-
ants as instruments, via subject matter knowledge. However, the instrumental
variable model implies certain inequalities, offering an empirical method of fal-
sifying (but not verifying) the underlying assumptions. While these inequalities
are said to detect only extreme assumption violations in practice, to our knowl-
edge they have not been used in settings with multiple proposed instruments.
Methods: We applied the instrumental inequalities to an MR analysis of the
effect of maternal pregnancy Vitamin D on offspring psychiatric outcomes,
proposing four independent maternal genetic variants as instruments. We as-
sessed whether the proposed instruments satisfied the instrumental inequalities
separately and jointly and explored the instrumental inequalities’ properties via
simulations.
Results: The instrumental inequalities were satisfied (i.e., we did not falsify
the MR model) when considering each variant separately. However, the in-
equalities were violated when considering four variants jointly and for some
combinations of two or three variants (2 of 36 two-variant combinations and
18 of 24 three-variant combinations). In simulations, the inequalities detected
structural biases more often when assessing proposed instruments jointly, while
falsification in the absence of structural bias remained rare.
Conclusions: The instrumental inequalities detected violations of the MR as-
sumptions for genetic variants jointly proposed as instruments in our study,
though the instrumental inequalities were satisfied when considering each pro-
posed instrument separately. We discuss how investigators can assess instru-
mental inequalities to eliminate clearly invalid analyses in settings with many
proposed instruments.
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4.2 Introduction

Mendelian randomization (MR), an increasingly popular tool for studying
causal effects even when unmeasured confounding appears insurmountable, is
a type of instrumental variable (IV) model where genetic variants are proposed
as instruments. Briefly, a valid MR analysis with one genetic variant requires:

1. The genetic variant Z is associated with the exposure X

2. The genetic variant Z does not affect the outcome Y except through its
effect on the exposure X

3. Individuals at different levels of the genetic variant Z are exchangeable
(i.e., comparable) with regard to counterfactual outcome

Conditions 2 and 3 are unverifiable. Forms of these conditions are necessary
but not usually sufficient for all versions of MR analyses: obtaining point
estimates of an average causal effect requires additional assumptions (Hernán
and Robins, 2006), although these three conditions suffice for estimating
bounds and sharp causal null testing (Balke and Pearl, 1997; Manski, 1990;
Robins, 1989).
Frequently, MR analyses propose that multiple single nucleotide polymor-
phisms (SNPs) act as instruments and therefore that those SNPs jointly satisfy
the MR assumptions. Leveraging multiple proposed instruments mitigates
issues with power and weak instrument biases that can arise in analyses with a
single proposed instrument (Burgess and Thompson, 2013; Pierce et al., 2011),
though investigators are then challenged to support that the MR assumptions
are satisfied for each SNP and for all SNPs jointly. As many genetic loci jointly
proposed as instruments are derived from genome-wide association studies and
the exact biologic mechanisms are often poorly understood, it is likely that
these required assumptions do not hold for many MR analyses. Given this,
several recently developed estimators allow for specific relaxations in exchange
for additional, different assumptions (Bowden et al., 2015; Bowden et al.,
2016; Kang et al., 2016; Tchetgen et al., 2017; Verbanck et al., 2018; Zhu
et al., 2018) . For example, some approaches only require a subset of proposed
instruments are true instruments (Bowden et al., 2016; Hartwig et al., 2017).
Often missing from the MR literature, however, is any discussion of whether the
data are consistent with the MR model proposed. Over two decades ago, Pearl
showed that the IV assumptions imply the following inequality for discrete
proposed instruments, exposures, and outcomes:
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maxi=1..n

∑m
j=1 maxk=1..lP (X = i, Y = j|Z = k) ≤ 1 (Pearl, 1995),

which is equivalent to the set of inequalities resulting from∑m
j=1 P (X = i, Y = j|Z = ki,j) ≤ 1

for all 1 ≤ i ≤ n, ki,j ∈ 1, ..., l (Balke and Pearl, 1997).

For an IV model with an exposure with n levels, an outcome with m levels,
and a proposed instrument with l levels, this equation will result in a set of
nlm inequalities. Later, Bonet proved the IV model also implies additional
constraints, and that such inequalities can be generalized to settings in which
the proposed instrument and outcome, but not the exposure, are continuous
(Bonet, 2001). Although Bonet’s additional constraints are often difficult to
state with straightforward equations, he did provide one expression for the
case of a trichotomous instrument, dichotomous exposure, and dichotomous
outcome:

P (X = 1, Y = 2|Z = 2) + P (X = 1, Y = 1|Z = 3) + P (X = 1, Y = 2|Z =
1) + P (X = 2, Y = 2|Z = 2) + P (X = 2, Y = 1|Z = 1) ≤ 2 (Bonet, 2001).

If the inequalities presented by Pearl and Bonet, known as instrumental in-
equalities, do not hold, the IV model cannot hold (Bonet, 2001; Pearl, 1995).
This means that investigators can attempt to falsify the IV model with their
data alone when they have a dataset with measures of the proposed instru-
ment, exposure, and outcome: if the instrumental inequalities are not satisfied,
the data tell us that one or more of our assumptions are not satisfied. Rec-
ognizing the importance of falsification strategies (when available) for causal
inference, multiple reporting guidelines recommend assessing the instrumental
inequalities in all IV analyses (Glymour et al., 2012; Labrecque and Swanson,
2018; Swanson and Hernán, 2013). Despite this, few MR analyses use them,
perhaps because, for dichotomous proposed instruments, it has been suggested
that only extreme assumption violations will be detected in practice (Glymour
et al., 2012; Swanson and Hernán, 2013). No study has applied the instru-
mental inequalities to investigate the validity of multiple genetic loci jointly
proposed as instruments. Here, we aim to explore the utility of the instrumen-
tal inequalities in identifying violations of the assumptions required for MR
with multiple proposed instruments in real and simulated data, and to provide
adaptable software for the implementation and visualization of the instrumen-
tal inequalities. We begin by describing how to interpret the results of the
instrumental inequalities when applied to a specific MR model and dataset.
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4.3 Interpretation of the instrumental inequal-
ities

A

Z X Y

U

B

Z X Y

U

Figure 4.1: DAGs representing an MR study with one genetic variant Z, proposed as
an instrument for the effect of X on Y. In A, Z is a valid instrument. In B, the MR
assumptions are violated by a direct effect of Z on Y.

Because such falsification tests are relatively uncommon, let us begin by con-
sidering for illustrative purposes a scenario in which we believe that the two
causal diagrams in Figure 4.1 are the only possible relationships between a
particular SNP, exposure, and outcome. If the instrumental inequalities failed
to hold, 4.1A could not be true, meaning that 4.1B must be true and the SNP
has a direct effect on the outcome. However, if the instrumental inequalities
hold, the data are consistent with the SNP having a direct effect or having no
direct effect on the outcome, as we have failed to falsify 4.1A.
The same logic applies where multiple SNPs are believed to be instruments.
Figure 4.2 presents a causal diagram in which four independent SNPs are valid
instruments both individually and as a single joint variable. When multiple
SNPs are available, MR analyses using different subsets of SNPs, and thus
slightly different assumptions, can be proposed. As such, the instrumental
inequalities can be applied to each SNP individually, to any combination of
two, three, or four of the SNPs, or to a summary score derived from these
SNPs (e.g., an allele score) to evaluate the validity of each subset as a (jointly)
proposed instrument. For example, one could propose all four SNPs jointly as
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instruments by combining the SNPs into a 34 = 81 level variable, where each
level represents a different possible combination of alleles for the four SNPs.
Violations of the instrumental inequalities when proposing this combination
variable as an instrument provide evidence against the causal diagram in Figure
4.2. Likewise, violations of the instrumental inequalities when considering any
SNP individually or any subset of SNPs would also provide evidence against
this particular causal diagram.

Z1

Z2

Z3

Z4

X Y

U

Figure 4.2: DAG representing an MR study four independent genetic variants Z1, Z2,
Z3, and Z4, proposed as instruments for the effect of X on Y. Here, all four genetic
variants are valid instruments individually and jointly.

It is possible to apply the instrumental inequalities directly to an allele score.
Violations of the instrumental inequalities when proposing this allele score as an
instrument could also provide evidence against the causal diagram in Figure 4.2.
However, allele scores imply additional linearity and additivity assumptions,
which are not required for the use of MR or the instrumental inequalities, and
may result in loss of power (Pierce et al., 2011), though this approach may be
useful to investigators considering using the allele score in their particular MR
analysis.

Importantly, the instrumental inequalities do not actually require us to spec-
ify an alternative causal diagram like we did in Figure 4.1. The instrumental
inequalities simply show us whether a proposed MR model is false. In fact,
without additional assumptions, the instrumental inequalities do not give ev-
idence as to how the MR assumptions are violated, only that the MR model
cannot be true in the dataset.

In practice, the usefulness of the instrumental inequalities for evaluating many
proposed instruments may be hindered by sample size. As the number of SNPs
jointly proposed as instruments increases, the number of individuals within a
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given stratum of the proposed joint instrument becomes increasingly small, and
it becomes more likely that the instrumental inequalities will fail to hold by
random chance. The concept of random violations of MR assumptions is similar
to that of “random confounding” (Greenland and Mansournia, 2015; Hernan
and Robins, 2018): in randomized trials, although randomization implies we
expect balance of covariates across trial arms on average, it does not guarantee
balance within a particular study. If there are imbalances in the distribution
of a risk factor for the outcome in a study, adjustment for the imbalanced risk
factor is recommended to produce unbiased causal effect estimates. Analo-
gously, even if the MR assumptions for a proposed joint instrument are met
in a theoretical super-population, the distribution of the proposed instrument,
exposure, and outcome within a particular sample might deviate substantially
from the expected distribution in the super-population, especially in small sam-
ples, which are more prone to notable deviations from what is expected. As a
result, the MR assumptions, and thus, the instrumental inequalities could fail
to hold by chance. Such violations may occur more often in small samples. As
in a randomized trial with “random confounding”, an MR analysis in a sample
where the assumptions were violated by chance is expected to produce biased
estimates of causal effects. Furthermore, in contrast to testing for chance im-
balances of risk factors in randomized trials, the source of a violation of the
instrumental inequalities cannot be determined without further assumptions.
Thus, any evidence of a violation of the MR assumptions should be considered
as important evidence about the validity of an MR analysis for that specific
dataset. It remains important to understand the impact of sample size on the
ability to detect structural violations of the MR assumptions, as it would other-
wise remain unclear whether a violation found in one dataset provides evidence
against a similar MR model in another dataset.

The application of the instrumental inequalities to multiple proposed instru-
ments allows for many layers of falsification strategies: we can attempt to falsify
the model for any proposed instrument individually, any combination of pro-
posed instruments jointly, and any summary score. A potential advantage of
applying the instrumental inequalities to each of these is that they might be
used to identify subsets of SNPs for which the MR assumptions definitely do
not hold, and subsets of SNPs where an MR analysis could be pursued with
caution.

In the next section, we explore this possibility in a study of the effects of
maternal prenatal Vitamin D levels on childhood behavioral health outcomes,
and introduce a new visualization for the instrumental inequalities. We fol-
low this application with a simulation study in order to better understand
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the impact of sample size on the instrumental inequalities. All analyses were
conducted in R 3.4.1 (Team, 2020). We provide adaptable R functions that al-
low the user to calculate the instrumental inequalities for multiple proposed
instruments and display the results in a novel graph format. These func-
tions, which appear in the supplement to the published version of this arti-
cle (https://journals.lww.com/epidem/Fulltext/2020/01000/Application_of_
the_Instrumental_Inequalities_to_a.7.aspx), are omitted from this disserta-
tion for the sake of brevity.

4.4 Data example: Estimating the effects of
maternal pregnancy vitamin D on child-
hood behavioral health outcomes in Gen-
eration R

Study population

Generation R is a population-based cohort from fetal life to young adulthood,
based in Rotterdam, the Netherlands. Mothers with a delivery date between
April 2002 and January 2006 who lived in the study area were eligible for par-
ticipation. Further information about the study is available elsewhere (Jaddoe
et al., 2010). In total, 8,880 mothers were enrolled during pregnancy. To avoid
overt violation of the MR assumptions by population stratification or related-
ness, we restrict our analysis to the 3,188 mother-child pairs for which mothers
were of self-reported Dutch ancestry and the child was the first offspring of the
mother included in the cohort. For each MR model investigated, analysis was
restricted to individuals with complete data available on exposure, outcome,
and all proposed instruments, resulting in analytic samples of 1,970 (perva-
sive developmental problems[PDP]), 1,971(mother-reported attention deficit-
hyperactivity disorder [ADHD] symptoms), and 1,146 (teacher-reported ADHD
symptoms) for each outcome studied, respectively (see Appendix for descriptive
statistics). This complete case analysis approach aligns with common practices
in MR analyses, but it can violate the MR assumptions (and in fact may be the
reason for violations of the instrumental inequalities in these samples) (Canan
et al., 2017; Swanson, 2019). Future studies might mitigate this issue by con-
ducting the instrumental inequalities and MR models in samples weighted by
the inverse probability of selection (Canan et al., 2017). The study was ap-
proved by the Medical Ethics Committee of Erasmus Medical Center and was
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in accordance with the World Medical Association Declaration of Helsinki.

Proposed Instruments

Maternal genotyping was performed using Taqman allelic discrimination assay
(Applied Biosystems, Foster City, CA), with an error rate of less than 1%
confirmed in a random subsample (n=276) (Kruithof et al., 2014). Based on
existing literature, we proposed four independent maternal SNPs (rs2282679,
rs12785878, rs6013897, rs10741657) as instruments. These SNPs have been
associated genome-wide with serum vitamin D in a sample of 42,274 individuals
(Wang et al., 2010), and are often used in MR studies of vitamin D (Mokry
et al., 2015; Ong et al., 2016; Vimaleswaran et al., 2013). For all models, we
coded SNPs trichotomously, based on the presence of 0,1, or 2 risk alleles.

Exposure

Pregnancy serum vitamin D status was defined using the storage form of vita-
min D, total 25OHD, measured in venous blood taken between 18.1 and 24.9
weeks gestation (Vinkhuyzen et al., 2016). We defined exposure dichotomously
and trichotomously, based on established clinical cutoffs at which treatment for
vitamin D is recommended (Holick, 2009; Holick et al., 2011; Vieth, 2011). To-
tal serum 25OHD was dichotomized at 75 nmol/L based on sufficiency; and
trichotomized as deficiency (0-50 nmol/L), insufficiency (50-74.99 nmol/L),
and sufficiency (≥ 75 nmol/L). While these categorizations imply strong as-
sumptions about a step-function relationship between vitamin D and offspring
behavioral health, it is important to recognize that modeling vitamin D con-
tinuously in MR typically makes a likewise strong and potentially inaccurate
assumption of a linear relationship.

Outcomes

Maternal-reported pervasive developmental disorder (PDD) and attention
deficit hyperactivity disorder (ADHD) symptoms at age 5 years were assessed
from the Persistent Developmental Problems and the Attention Deficit-
Hyperactivity subscales, respectively, of the Dutch translation of the Child
Behavior Checklist (Achenbach and Rescorla, 2000; Tick et al., 2007). The
former subscale has been used as a screening tool to identify children with
autism spectrum disorder (Sikora et al., 2008), while the latter has shown
good convergent validity with clinician ratings (Hudziak et al., 2004; Soma
et al., 2009). We used the 98th percentile of each subscale’s T-scores (PDD:
T ≥ 8.98; ADHD: T ≥ 9) as cutoffs to classify children with mother-reported
PDP and ADHD symptoms in the clinical range. Teacher-reported ADHD
symptoms at age 7 were defined as a T-score above the 98th percentile on
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the Teacher Report Form Attention Problems subscale (T ≥ 15) (Achenbach,
1991; de Groot et al., 1996; Verhulst et al., 1985).

4.4.1 Analysis

We assessed whether the instrumental inequalities would identify violations of
MR models for the causal effect of maternal serum vitamin D during pregnancy
on offspring PDP and ADHD symptoms, using the above-mentioned four SNPs
proposed as instruments. For each possible combination of SNPs, we applied
the instrumental inequalities to MR models for the causal effect of maternal
vitamin D on an outcome. We then extracted the maximum value of the instru-
mental inequalities, along with the number of strata of the proposed instrument
with exactly 0 or fewer than 10 individuals. For binary exposure models, we
also applied the Bonet inequality for trichotomous instruments to each SNP
marginally. Although in any plausible scenario where an allele score satisfies
the MR assumptions, each contributing SNP would also individually and jointly
satisfy those assumptions (Burgess and Thompson, 2013), we also applied the
instrumental inequalities to MR models with a categorical, unweighted allele
score proposed as an instrument.

Though the instrumental inequalities cannot be applied to continuous mea-
sures of exposures, evaluating models based on categorized measures could still
be informative. However, the MR assumptions can be violated if the expo-
sure is inappropriately categorized (VanderWeele et al., 2014), implying the
instrumental inequalities might be detecting this mismeasurement rather than
another MR assumption violation. If that were the case, we may expect to see
decreasing instances in which the instrumental inequalities were violated as the
number of categories of the exposure increases, though evaluating this property
might require prohibitively large samples. To see if coding of the exposure vari-
able altered the conclusions, we evaluated the instrumental inequalities using
dichotomous and trichotomous exposure definitions, as described above.

4.4.2 Results

For all definitions of exposures and outcomes, the instrumental inequalities,
including the stronger inequalities developed by Bonet, held for each SNP in-
dividually, indicating that there was no evidence in the data alone against
each specific proposed instrument being valid. However, as the number of
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SNPs jointly proposed as instruments increased, the instrumental inequalities
increasingly failed to hold (Figure 4.3).
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When the instrumental inequalities were applied to MR models for the causal
effect of maternal vitamin D coded dichotomously on mother-reported PDP
symptoms, the instrumental inequalities failed to hold for half of the combina-
tions of three SNPs jointly proposed as instruments and the combination of all
four SNPs (Tables 4.1-4.3). When applied to MR models for the causal effect
of maternal vitamin D on mother-reported ADHD symptoms, the instrumen-
tal inequalities failed to hold for all three SNP and four SNP combinations, as
well as the allele score. For teacher-reported ADHD symptoms, the instrumen-
tal inequalities failed to hold for the allele score, all three SNP and four SNP
combinations, and one two-SNP combination.

When we coded maternal vitamin D trichotomously, the maximum value of the
instrumental inequalities for each possible combination of SNPs proposed as
instruments was less than or equal to the maximum value of the inequalities in
models with a dichotomized measure of maternal vitamin D. For some models,
the instrumental inequalities held in the trichotomous exposure case but not
the dichotomous exposure case, including two settings in which the allele score
was the proposed instrument.

145



Ta
bl
e
4.
1:

Su
m
m
ar
y
of

th
e
in
st
ru
m
en
ta
li
ne

qu
al
iti
es

fo
rs

tu
dy

in
g
th
e
eff

ec
to

fm
at
er
na

lv
ita

m
in

D
on

m
ot
he

r-
re
po

rt
ed

pe
rv
as
iv
e
de

ve
lo
pm

en
t
pr
ob

le
m
s
sy
m
pt
om

s
w
ith

va
ry
in
g
co
m
bi
na

tio
ns

of
pr
op

os
ed

in
st
ru
m
en
ts

an
d

de
fin

iti
on

s
of

ex
po

su
re
.

P
ro
po

se
d
In
st
ru
m
en
t(
s)

N
on

ze
ro

C
el
l

C
ou

nt
/T

ot
al

C
el
lC

ou
nt

N
um

be
r

C
el
ls

≤
10

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

bi
na

ry
ex
po

su
re
?

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

3-
le
ve
l

ex
po

su
re
?

rs
22
82
67
9

3/
3

3
ye
s
(0
.7
5)

ye
s
(0
.4
6)

rs
12
78
58
78

3/
3

3
ye
s
(0
.6
3)

ye
s
(0
.4
1)

rs
60
13
89
7

3/
3

3
ye
s
(0
.6
3)

ye
s
(0
.4
1)

rs
10
74
16
57

3/
3

3
ye
s
(0
.6
5)

ye
s
(0
.4
3)

{r
s2
28
26
79
,r

s1
27
85
87
8}

9/
9

9
ye
s
(0
.8
3)

ye
s
(0
.5
7)

{r
s2
28
26
79
,r

s6
01
38
97
}

9/
9

8
ye
s
(0
.8
2)

ye
s
(0
.5
2)

{r
s2
28
26
79
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.8
7)

ye
s
(0
.5
4)

{r
s1
27
85
87
8,

rs
60
13
89
7}

9/
9

8
ye
s
(0
.7
0)

ye
s
(0
.5
8)

{r
s1
27
85
87
8,

rs
10
74
16
57
}

9/
9

9
ye
s
(0
.7
3)

ye
s
(0
.4
7)

{r
s6
01
38
97
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.7
1)

ye
s
(0
.5
8)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7}

26
/2
7

21
ye
s
(0
.9
0)

ye
s
(0
.7
3)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
10
74
16
57
}

27
/2
7

22
ye
s
(1
.0
0)

ye
s
(0
.8
3)

{r
s2
28
26
79
,r

s6
01
38
97
,r

s1
07
41
65
7}

27
/2
7

21
no

(1
.1
1)

no
(1
.0
6)

{r
s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

27
/2
7

22
no

(1
.0
4)

no
(1
.0
4)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

73
/8
1

35
no

(1
.1
7)

no
(1
.1
4)

A
lle

le
Sc
or
e

8/
8

7
ye
s
(0
.8
1)

ye
s
(0
.5
4)

146



Ta
bl
e
4.
2:

Su
m
m
ar
y
of

th
e
in
st
ru
m
en
ta
li
ne

qu
al
iti
es

fo
rs

tu
dy

in
g
th
e
eff

ec
to

fm
at
er
na

lv
ita

m
in

D
on

m
ot
he

r-
re
po

rt
ed

at
te
nt
io
n
de

fic
it
hy

pe
ra
ct
iv
ity

di
so
rd
er

sy
m
pt
om

sw
ith

va
ry
in
g
co
m
bi
na

tio
ns

of
pr
op

os
ed

in
st
ru
m
en
ts

an
d
de

fin
iti
on

s
of

ex
po

su
re

P
ro
po

se
d
In
st
ru
m
en
t(
s)

N
on

ze
ro

C
el
l

C
ou

nt
/T

ot
al

C
el
lC

ou
nt

N
um

be
r

C
el
ls

≤
10

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

bi
na

ry
ex
po

su
re
?

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

3-
le
ve
l

ex
po

su
re
?

rs
22
82
67
9

3/
3

3
ye
s
(0
.7
5)

ye
s
(0
.4
6)

rs
12
78
58
78

3/
3

3
ye
s
(0
.6
3)

ye
s
(0
.4
1)

rs
60
13
89
7

3/
3

3
ye
s
(0
.6
3)

ye
s
(0
.4
1)

rs
10
74
16
57

3/
3

3
ye
s
(0
.6
5)

ye
s
(0
.4
4)

{r
s2
28
26
79
,r

s1
27
85
87
8}

9/
9

9
ye
s
(0
.8
3)

ye
s
(0
.5
9)

{r
s2
28
26
79
,r

s6
01
38
97
}

9/
9

8
ye
s
(0
.8
4)

ye
s
(0
.5
2)

{r
s2
28
26
79
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.9
3)

ye
s
(0
.5
9)

{r
s1
27
85
87
8,

rs
60
13
89
7}

9/
9

8
ye
s
(0
.7
9)

ye
s
(0
.5
7)

{r
s1
27
85
87
8,

rs
10
74
16
57
}

9/
9

9
ye
s
(0
.7
1)

ye
s
(0
.4
9)

{r
s6
01
38
97
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.7
1)

ye
s
(0
.5
9)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7}

26
/2
7

21
no

(1
.1
7)

ye
s
(1
.0
0)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
10
74
16
57
}

27
/2
7

22
no

(1
.0
4)

ye
s
(0
.8
8)

{r
s2
28
26
79
,r

s6
01
38
97
,r

s1
07
41
65
7}

27
/2
7

21
no

(1
.2
2)

no
(1
.1
7)

{r
s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

27
/2
7

22
no

(1
.0
6)

no
(1
.0
6)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

73
/8
1

35
no

(1
.5
0)

no
(1
.5
0)

A
lle

le
Sc
or
e

8/
8

7
no

(1
.0
2)

ye
s
(0
.6
2)

147



Ta
bl
e
4.
3:

Su
m
m
ar
y
of

th
e
in
st
ru
m
en
ta
li
ne

qu
al
iti
es

fo
rs

tu
dy

in
g
th
e
eff

ec
to

fm
at
er
na

lv
ita

m
in

D
on

te
ac
he

r-
re
po

rt
ed

at
te
nt
io
n
de

fic
it
hy

pe
ra
ct
iv
ity

di
so
rd
er

sy
m
pt
om

sw
ith

va
ry
in
g
co
m
bi
na

tio
ns

of
pr
op

os
ed

in
st
ru
m
en
ts

an
d
de

fin
iti
on

s
of

ex
po

su
re

P
ro
po

se
d
In
st
ru
m
en
t(
s)

N
on

ze
ro

C
el
l

C
ou

nt
/T

ot
al

C
el
lC

ou
nt

N
um

be
r

C
el
ls

≤
10

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

bi
na

ry
ex
po

su
re
?

In
st
ru
m
en
ta
l

in
eq
ua

lit
ie
s

ho
ld

fo
r
a

3-
le
ve
l

ex
po

su
re
?

rs
22
82
67
9

3/
3

3
ye
s
(0
.7
3)

ye
s
(0
.4
6)

rs
12
78
58
78

3/
3

3
ye
s
(0
.6
3)

ye
s
(0
.4
2)

rs
60
13
89
7

3/
3

3
ye
s
(0
.6
6)

ye
s
(0
.4
3)

rs
10
74
16
57

3/
3

3
ye
s
(0
.6
4)

ye
s
(0
.4
2)

{r
s2
28
26
79
,r

s1
27
85
87
8}

9/
9

8
ye
s
(0
.7
9)

ye
s
(0
.4
8)

{r
s2
28
26
79
,r

s6
01
38
97
}

9/
9

8
ye
s
(0
.9
2)

ye
s
(0
.6
0)

{r
s2
28
26
79
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.8
8)

ye
s
(0
.5
4)

{r
s1
27
85
87
8,

rs
60
13
89
7}

9/
9

8
no

(1
.0
3)

no
(1
.0
3)

{r
s1
27
85
87
8,

rs
10
74
16
57
}

9/
9

9
ye
s
(0
.7
1)

ye
s
(0
.4
9)

{r
s6
01
38
97
,r

s1
07
41
65
7}

9/
9

9
ye
s
(0
.7
4)

ye
s
(0
.5
0)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7}

25
/2
7

19
no

(1
.5
0)

no
(1
.1
2)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
10
74
16
57
}

27
/2
7

19
no

(1
.2
9)

no
(1
.1
2)

{r
s2
28
26
79
,r

s6
01
38
97
,r

s1
07
41
65
7}

27
/2
7

19
no

(1
.3
3)

no
(1
.3
3)

{r
s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

26
/2
7

20
no

(1
.1
1)

no
(1
.1
1)

{r
s2
28
26
79
,r

s1
27
85
87
8,

rs
60
13
89
7,

rs
10
74
16
57
}

68
/8
1

25
no

(2
.0
0)

no
(2
.0
0)

A
lle

le
Sc
or
e

8/
8

7
no

(1
.1
5)

ye
s
(0
.8
2)

148



4.5 Simulation study

4.5.1 Methods

We simulated four independent binary genetic variants Z1 − Z4 with causal
effects on the exposure X. While Z2, Z3, and Z4 were true causal instruments,
Z1 also had a direct causal effect on the outcome Y, thereby violating the
MR assumptions. We then applied the instrumental inequalities in scenar-
ios with varying sample sizes (n=1,000; 10,000; 100,000), proposed instrument
strengths, and strengths of the direct effect of Z1 on Y. Details of simulated
parameters are available in the Appendix. Code for the simulations were pub-
lished in the supplement to the published version of this article, and were
omitted from the dissertation for brevity.

4.5.2 Results

The instrumental inequalities were increasingly violated for combinations of
proposed instruments including Z1 as the strength of violation and number of
proposed instruments included in a combination increased (Figure 4). When
the strength of violation was relatively weak, the instrumental inequalities were
more often violated for combinations including Z1 in the smaller (n=1,000)
samples.
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Figure 4.4: Results of six simulations with four dichotomous proposed instruments
Z1, Z2, Z3, and Z4, a dichotomous exposure X, dichotomous outcome Y, and con-
tinuous exposure-outcome confounder U. For each setting, we simulated 1,000 sam-
ples such that Z1i ∼ bernoulli(0.5), Z2i ∼ bernoulli(0.5), Z3i ∼ bernoulli(0.5),
Z4i ∼ bernoulli(0.5), Ui ∼ norm(0, 1), Xi ∼ bernoulli(expit[0.6 + 0.1 ∗ Ui + 0.1 ∗
Z1i + 0.1 ∗Z2i + 0.1 ∗Z3i +Z4i]). We varied sample sizes (n= 1,000, 10,000, 100,000)
across simulations. In addition, in each of the six simulations, Z1 violated the MR
conditions, with Yi ∼ bernoulli(expit[0.02 + 0.1 ∗Ui +βz1 ∗Z1i]). Here, each horizon-
tal line represents a single variable, and each vertical line connects a set of variables
proposed as joint instruments (with the number of included variables increasing from
left to right). Unlike Figure 4.3, here the color of each node represents the number of
samples where the instrumental inequalities were violated, out of 1,000 total samples
for each setting. This is in contrast to Figure 4.3 where the color of each node rep-
resented the maximum value of the inequalities for each set of proposed instruments
within a particular dataset. See Appendix for further details.

In samples of 100,000 individuals, the instrumental inequalities were never vi-
olated for combinations not including Z1, regardless of instrument strength or
strength of violation (Appendix). In simulated samples of 10,000 and 1,000
individuals, the instrumental inequalities were occasionally violated for some
combinations not including Z1 (i.e., for combinations when no structural bias
was present), though this occurred in less than 1% of simulations for each true
instrument marginally (Appendix). This was especially likely when consid-
ering the three valid instruments jointly in the smallest sample size and the
strongest proposed instrument strength simulated, in which 90% of the time

150



the inequalities were violated. In all cases in which the inequalities were vio-
lated for a combination that did not include Z1, the instrumental inequalities
were also always violated for combinations including Z1. When we proposed
Z1 − Z4 jointly as instruments in these settings, the instrumental inequalities
were violated in more than 95% of simulations.

4.6 Discussion

Our results indicate that, for studies of the causal effect of maternal preg-
nancy vitamin D on offspring PDP and ADHD within Generation R, there are
clear violations of the MR assumptions when proposing four SNPs (rs2282679,
rs12785878, rs6013897, rs10741657) jointly as instruments, as well as for several
combinations of three of the four SNPs. We did not detect violations of the
MR assumptions when each SNP was proposed as an instrument marginally, or
for most combinations of two of the four SNPs. The results of our simulations
suggest that the instrumental inequalities will be increasingly violated as the
magnitude of the violation of the MR assumptions grows, are more sensitive
to violations of the MR assumptions when multiple instruments are proposed
jointly, and that, within our simulations, small sample sizes appear to increase
the probability of finding a true structural violation with limited risk of incor-
rectly detecting a structural violation when none existed.

Because a violation of the instrumental inequalities for any of the sets of SNPs
proposed as instruments would indicate that the four SNPs are not jointly valid
instruments, our results clearly demonstrate that certain MR analyses would
be biased if conducted in our dataset. Moreover, for teacher-reported and
mother-reported ADHD using a dichotomous exposure, the MR assumptions
fail to hold when every possible overlapping combination of three of the four
SNPs are proposed jointly as instruments, which for independent SNPs logically
implies that the MR assumptions cannot hold for at least two of the included
SNPs individually. Altogether, our results then suggest that MR analyses which
require all four SNPs to be jointly instruments (e.g., analyses proposing an allele
score) are inappropriate in our dataset, and also that MR analyses that only
require a subset of SNPs to be instruments (e.g., the median-based approach
[Bowden et al., 2016]) should be pursued with extreme caution. Our dataset
found no particular pattern suggestive of a specific problematic SNP, and thus
is not helpful in pruning clearly invalid instruments. On the other hand, our
simulations suggest that a pattern consistent with one “bad apple” is possible to
detect and may aid in pruning clearly invalid instruments: investigators might
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consider removing the offending SNP from their proposed instrument set and
continuing with an MR analysis. It is also possible for investigators to consider
MR estimators that allow for all proposed instruments to be invalid in specific
ways, although these methods require alternative assumptions beyond those
considered here (Bowden et al., 2015; Tchetgen et al., 2017) and the results
of the instrumental inequalities would only be informative if coupled with a
strong biologic rationale for these alternative assumptions. Finally, it is worth
reiterating two important points on interpretation. First, the instrumental
inequalities falsify but do not verify the MR model. Thus, if an application of
the inequalities detects no violation it is still possible for the MR analysis to
be biased. Investigators should still weigh subject matter knowledge, perform
other falsification strategies and sensitivity analyses, and choose an appropriate
method if they decide to pursue an MR analysis, as outlined in prior guidelines
(Swanson and Hernán, 2013). The relevance of this point is underscored by
our simulations, in which a bias was always structurally present but remained
undetected in several simulated samples. Second, the instrumental inequalities
are a falsification strategy for the core MR assumptions but do not assess the
additional point-identifying assumptions (Glymour et al., 2012).
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Finding the instrumental inequalities are not satisfied, however, does not tell
us why they are not satisfied. In our data example, there are several structural
reasons why the MR assumptions could be violated, some of which are depicted
in Figure 5 and described in the Appendix (Bowden et al., 2015; Bowden et al.,
2016; Lawlor et al., 2017; Swanson et al., 2018; VanderWeele et al., 2014; Ver-
banck et al., 2018). It is also possible that the falsification of the MR model
indicated by our findings are specific to our dataset, which motivated our sim-
ulations. As previously discussed, as sample size decreases and the number of
proposed instruments increases, the MR assumptions, and thus the instrumen-
tal inequalities, can be more readily violated by chance. In the simple scenario
constructed in our simulations, the instrumental inequalities appear to be vi-
olated for combinations excluding the invalid proposed instrument only when
the bias for the invalid instrument is very strong and the sample is relatively
small, in which cases the instrumental inequalities also indicate that the set of
four jointly proposed instruments violate the MR conditions. The frequency of
this type of sample-specific violation appears to decline with sample size, and
there was no evidence of finding violations for combinations with no structural
bias in simulated samples of 100,000 participants. Overall, the results of our
simple simulations suggest that, even in settings with small samples and strong
instruments, where it is possible detected violations are sample-specific, the in-
strumental inequalities still provide strong evidence regarding the validity of
MR analyses within a particular dataset. However, in such settings, it may be
difficult, if not impossible, to determine the source of said violations if it is truly
limited to a subset of the proposed instruments. It is unclear how this property
of the inequalities will be affected when larger numbers of SNPs are proposed
as instruments. Although the instrumental inequalities may be impacted by
sample size, outside of the all-binary case, statistical inference procedures have
not been fully developed (Ramsahai and Lauritzen, 2011; Wang et al., 2017).
Critically, this means that it is not yet possible to differentiate random vio-
lations from structural ones. In addition to development of such statistical
inference methods, further research is needed to more thoroughly evaluate the
ways in which sample size might impact the ability of the instrumental inequal-
ities to correctly detect structural violations of the MR conditions in a range
of realistic settings.

In our data example, the fact that violations by SNPs jointly proposed as
instruments were detected by some of the instrumental inequalities applied to
allele scores, which have a smaller number of strata, as well as the relative
weakness of the proposed instruments, suggests that not all the violations in
our dataset are attributable to sample size. If the violations detected are not
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sample specific, but rather indicative of structural biases related to the SNPs
proposed as instruments, this might suggest these 4 SNPs should not be used
as instruments for the effect of maternal vitamin D on offspring behavioral
outcomes.

More broadly, our data example provides a concrete case in which the in-
strumental inequalities falsified a model proposing multiple variables jointly
as instruments, underscoring previous calls for the use of the instrumental in-
equalities in all IV analyses (Glymour et al., 2012; Labrecque and Swanson,
2018; Swanson and Hernán, 2013). Like all observational research, MR requires
strong, unverifiable assumptions. However, in the context of one-sample MR
with multiple proposed instruments, the instrumental inequalities may allow
us to eliminate clearly invalid analyses and focus efforts on more potentially
informative studies.
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Novel visualization methods for the instrumental inequal-
ities

One disadvantage of other methods of representing the instrumental inequal-
ities, like forest plots, heatmaps, and tables, is that the ordering in which
SNP combinations appear is relatively arbitrary, and it can be difficult to
identify consistent patterns, such as single SNP appearing in all sets which
violate the instrumental inequalities. While traditional network graphs can
somewhat improve this issue, when the number of included SNPs grows large,
these graphs begin to resemble “hairballs” and become increasingly difficult to
interpret (Longabaugh, 2012). To ease interpretation, we developed a new visu-
alization method for the instrumental inequalities, roughly based on BioFabric
(Longabaugh, 2012). In these visualizations, each horizontal line represents a
SNP, and each vertical line connects a set of SNPs proposed as instruments
(with the number of included SNPs increasing from left to right). Each node
thus represents a particular set of SNPs. In real data, the color of each node
represents the value of the instrumental inequalities for a particular set of SNPs
proposed jointly as instruments, with white indicating values ≤ 1, meaning the
instrumental inequalities held, and darker colors indicating increasing maxi-
mum values of the instrumental inequalities.
In simulation studies, this same visualization can be used to visualize the num-
ber of simulations in which the instrumental inequalities failed to hold for a
given set of simulated proposed instruments. In that setting, the color of the
nodes would represent the number of simulations in which the instrumental
inequalities were violated for each set of variables jointly proposed as instru-
ments, with darker colors indicating increasing numbers of simulations in which
the instrumental inequalities were violated, rather than the value of the instru-
mental inequalities for a particular set of SNPs jointly proposed as instruments.
One benefit of these visualizations is that they provide a simpler and less dense
means of representing the values of the instrumental inequalities for large num-
bers of SNPs than tables. For very large numbers of SNPs, future research in
this area might consider reducing computational burden by eliminating calcu-
lations of the inequalities for sets of SNPs containing subsets that had already
violated the instrumental inequalities and marking such sets with a unique
color on the resulting visualization.
One notable advantage of this visualization technique is that it allows for easier
identification of a consistent pattern of violations of the MR assumptions origi-
nating from a single SNP. As we can see in Figure 4.4D, when all violations are
of sufficient magnitude, and originate from a single SNP (Z1), we see a single
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dark horizontal line (a SNP where the instrumental inequalities were violated
for most or all sets of SNPs jointly proposed as instruments including that par-
ticular SNP), and inconsistent dark patterns across the other SNPs (showing
violations only in sets of SNPs jointly proposed as instruments including the
problem SNP). This contrasts with Figure 4.4C, where we only see violations of
the instrumental inequalities when Z1, Z2, Z3, and Z4 are all jointly proposed
as instruments. In Figure 4.4C, we do not have enough evidence to suggest
that violations of the MR assumptions arise from a single SNP, only that the
MR conditions cannot hold for all 4 variables jointly proposed as instruments
in the sample.

Details of the Simulation Parameters

We conducted simulations of a relationship between 4 binary proposed instru-
ments (Z1, Z2, Z3, and Z4), a binary exposure X, and a binary outcome Y ,
where the relationship between X and Y was confounded by a continuous
variable U, and the proposed instrument Z1 was an invalid instrument with
a direct effect (β2) on the outcome Y. Each simulation was constructed such
that Z1i ∼ bernoulli(0.5), Z2i ∼ bernoulli(0.5), Z3i ∼ bernoulli(0.5), Z4i ∼
bernoulli(0.5), Ui ∼ norm(0, 1), Xi ∼ bernoulli(expit(0.6+0.1∗Ui +β1 ∗Z1i +
β1∗Z2i+β1∗Z3i+β1∗Z4i)), and Yi ∼ bernoulli(expit(0.02+0.1∗Ui+β2∗Z1i)).
In order to examine the effects of changing sample size and varying magnitudes
of violation of the MR assumptions on the instrumental inequalities, we var-
ied simulations across 3 samples sizes (1,000 individuals, 10,000 individuals,
100,000 individuals), 4 possible instrument strengths (β1= 0.01, 0.1, 0.5, and
1.0, corresponding roughly to risk differences of 0.003, 0.021, 0.071, 0.079), and
7 possible strengths of violations of the MR assumptions (β2 = 0.01, 0.1, 0.5,
1, 1.5, 2, 4, resulting in violation strengths on the risk difference scale of 0.001,
0.025, 0.121, 0.189, 0.230, 0.315, 0.377, and 0.478). For each combination of
sample size, instrument strength, and magnitude of direct path violation, we
conducted 1,000 simulations.
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Possible sources of structural violations of the MR condi-
tions within the data example

Pleiotropy, in which genetic loci affect multiple traits, violating the 2nd as-
sumption, is one of the most commonly noted sources of potential bias in MR
(Figure 4.5a) (Bowden et al., 2015; Bowden et al., 2016; Verbanck et al., 2018).
Although we restricted our sample to mothers of European ancestry, it is pos-
sible that this strategy did not adequately control for population stratification,
or that our sample contained substantial cryptic relatedness, both of which
could result in assumption violations (Figure 4.5b). Previous research has also
found that the required assumptions can be violated for MR analyses proposing
maternal genetic factors as instruments for the effect of pregnancy exposures
on offspring outcomes if the offspring’s own genotype has a causal effect on the
outcome, the mother’s exposure status continues to affect the offspring after
birth, or if the association between maternal genotype and vitamin D status
changed over the course of pregnancy (Figures 4.5c, 4.5d, 4.5e) (de Groot et
al., 1996; VanderWeele et al., 2014; Verhulst et al., 1985). In addition, if Vi-
tamin D exposure impacted fertility or ability to carry a pregnancy to term,
the MR assumptions could be violated by selection bias resulting from condi-
tioning on live birth (Figure 4.5f). As previously mentioned, categorization of
a truly continuous exposure, which is necessary for the use of the instrumental
inequalities, can also violate the assumptions of an MR analysis (Figure 4.5g)
(VanderWeele et al., 2014). If maternal genotype is related to missingness of
exposure or outcome data, the MR assumptions could be violated by our use
of complete case analysis (Figure 4.5h). These possible sources of bias are not
mutually exclusive, and all could be present in our data at some level. In ad-
dition, further research is needed to evaluate the potential magnitude of bias
resulting from these sources in plausible scenarios.
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5.1 Abstract

Background: Mendelian randomization (MR) is an increasingly popular ap-
proach to estimating causal effects. Although the assumptions underlying MR
cannot be verified, they imply certain constraints, the instrumental inequalities,
which can be used to falsify the MR assumptions. However, the instrumental
inequalities are rarely applied in MR.

Methods: Using 132 single nucleotide polymorphisms (SNPs), we applied
the instrumental inequalities to MR models for the effects of vitamin D
concentration, alcohol consumption, C-reactive protein (CRP), triglycerides,
high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL)
cholesterol on coronary artery disease in the UK Biobank. For their relevant
exposure, we applied the instrumental inequalities to MR models proposing
each SNP as an instrument individually, and to MR models proposing
unweighted allele score deciles as an instrument.

Results: We did not identify any violations of the MR assumptions when
proposing each SNP as an instrument individually. When proposing allele
scores as instruments, we detected violations of the MR assumptions for 2 of 6
exposures.

Conclusions: The instrumental inequalities are useful to identify violations
of the MR assumptions when proposing multiple SNPs as instruments, but
may be less useful in determining which SNPs are not instruments. This work
demonstrates how incorporating the instrumental inequalities into MR analyses
can help researchers to identify and mitigate potential bias.
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5.2 Introduction

Mendelian randomization (MR) has become a popular approach for estimat-
ing causal effects and is increasingly popular as new large genetic databases
become available (Johansson et al., 2010; Lor et al., 2019). Like any causal in-
ference approach using observational data, MR requires assumptions. In brief,
these methods require that genetic variants are (i) associated with the expo-
sure of interest, (ii) only cause the outcome via the exposure, and (iii) share
no causes with the outcome. We will refer to these conditions collectively as
the instrumental conditions. Notably, these conditions are sufficient only for
sharp null testing and bounding. Additional assumptions are necessary for
point estimation (Hernán and Robins, 2006).

Though the instrumental conditions (ii) and (iii) are not verifiable, there are
methods that can be used to falsify them. In particular, the instrumental
conditions imply a set of mathematical constraints, known as the instrumental
inequalities, which, if violated, show that that particular dataset’s observed
data distribution is inconsistent with the instrumental conditions (Balke and
Pearl, 1997; Bonet, 2001; Diemer et al., 2020; Pearl, 1995; Richardson and
Robins, 2010). Investigators can thus check these instrumental inequalities
as one approach for falsifying the instrumental conditions. An application
and description of how to do this in the setting of MR, especially in settings
with multiple genetic variants being proposed as instruments, was presented in
Chapter 4.

The question remains whether the instrumental inequalities are violated in
other research settings, including in commonly studied exposures or commonly
studied databases. Here, we aimed to apply the instrumental inequalities in the
context of analysis of the effect of vitamin D concentration, alcohol consump-
tion, C-reactive protein (CRP), triglycerides, high-density lipoprotein (HDL)
cholesterol and low-density lipoprotein (LDL) cholesterol in the UK Biobank.

5.3 Methods

Study Design
The UK Biobank is a large prospective study of 502,648 adults, aged 40-69,
recruited from across the United Kingdom between 2006 and 2010. Details of
the cohort, including recruitment, assessment procedures, and quality control
have been described in detail elsewhere (Bycroft et al., 2018; Sudlow et al.,
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2015). The UK Biobank received ethical approval for the National Health Ser-
vice National Research Ethics Service North West (Research Ethics Committee
[REC] reference: 11/NW/0382), and all participants provided written informed
consent. For each exposure under study, we restricted the eligible population
to individuals with complete data on that exposure, the outcome of coronary
artery disease, and that exposure’s proposed genetic instruments, resulting in
final sample sizes between 424,978 and 486,195 individuals (see Appendix for
details). While this complete case analysis may result in selection bias (Swan-
son, 2019), it is consistent with common approaches in MR studies within UK
Biobank.

Exposures
We selected 6 exposures whose relationship to cardiovascular disease were
previously studied using MR: vitamin D concentration, alcohol consumption,
C-reactive protein (CRP), triglycerides, high-density lipoprotein (HDL)
cholesterol, and low-density lipoprotein (LDL) cholesterol (Beasley et al.,
2019; Funck-Brentano et al., 2019; Havdahl et al., 2019).

Vitamin D, triglyceride, CRP, HDL-, and LDL- cholesterol levels were mea-
sured in blood samples collected at either the initial assessment visit or a repeat
assessment visit conducted between 2012 and 2013. Details of biomarker mea-
surements and assay performance in UK Biobank have been described in detail
elsewhere (Fry et al., 2019). Briefly, vitamin D concentration was assessed
based on total 25-hydroxyvitamin D (25(OH)D) levels measured using the Di-
asorin Liason, a chemoluminescent immunoassay. CRP levels were measured
using an immunoturbidimetric assay in a Beckman Coulter analyzer (AU5800
Analyzer, Beckman Coulter, CA). Triglyceride concentrations were measured
using an enzymatic analysis on said Beckman Coulter analyzer. HDL choles-
terol levels were measured by enzyme inhibition analysis, and LDL cholesterol
levels were measured using enzymatic protective selection analysis on said Beck-
man Coulter analyzer. Because the instrumental inequalities can only be used
with categorical exposures, all these exposures were categorized into deciles.
Frequency of alcohol consumption was assessed based on self-report question-
naire. Participants were asked “About how often do you drink alcohol?” with
response options “never”, “special occasions only”, “1 to 3 times a month”,
“once or twice a week”, “3 to 4 times a week”, or “daily or almost daily”. If
participants felt the answer varied, they were instructed to give an average
over the past year. This exposure was categorized using all available response
categories.

Outcome
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Participant electronic health records, including International Classification of
Disease (ICD-10) diagnosis codes and Office of Population and Censuses Sur-
veys (OPCS-4) procedure codes, have been integrated into UK Biobank. Addi-
tionally, patients were asked to report diagnoses of cardiovascular disease using
questionnaires, which were subsequently checked during a verbal interview with
a trained nurse. Participants were considered to have coronary artery disease
(CAD) if they had experienced angina pectoris and acute or subsequent my-
ocardial infarction or other acute or chronic ischemic heart disease (ICD-10
I20X, I21X, I123X, I24X, I25.5, I25.6, I25.8, I25.9) or previously underwent
coronary procedure (OPCS-4 K40, K41, K43, K46, K49, K75, K45, K50.1-3)
(see Appendix for details).

Genetic Variants
In order to identify genetic variants that had previously been used in MR
studies with the UK Biobank, we conducted a systematic review of PubMed and
the UK Biobank archive using the search terms “Mendelian randomization”,
“Mendelian random*”, and each of the six exposures. Studies were eligible for
inclusion in the review if they (1) explicitly reported using an MR approach, (2)
studied either vitamin D, alcohol use, triglyceride levels, CRP, LDL-, or HDL-
cholesterol as an exposure, and (3) conducted the analysis within a UK Biobank
sample. This resulted in 30 articles, of which 13 were rejected based on full
text review. After review, 8 articles on vitamin D concentration, 3 articles on
alcohol use, 2 articles on CRP, and 4 articles on lipoproteins (LDL-cholesterol,
HDL-cholesterol, or triglycerides) met the criteria and were included in the
review (see Appendix for details).

We proposed single nucleotide polymorphisms (SNPs) as instruments for one of
the six exposures if they had been proposed as instruments in at least 2 previous
MR studies in UK Biobank. SNPs were not included if previous studies indi-
cated that they were associated with another phenotype on possible pleiotropic
pathway. For all exposures with more than one proposed instrument, we also
constructed an unweighted categorical allele score. In total, we proposed 132
independent SNPs as instruments, including 11 SNPs as instruments for vita-
min D concentration, 2 SNPs as instruments for alcohol consumption, 1 SNP
as an instrument for CRP, 8 SNPs as instruments for triglyceride levels, 43
SNPs as instruments for HDL-cholesterol, and 67 SNPs as instruments for
LDL-cholesterol.

Statistical Analysis

The properties and use of the instrumental inequalities have been described
in detail elsewhere (Diemer et al., 2020; Richardson and Robins, 2010). Es-
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sentially, for a specific MR model, the instrumental inequalities are a set of
inequalities based on combinations of proportions of particular values of the
proposed instruments, exposure, and outcome being less than one. If these
inequalities do not hold (meaning the sum of proportions is greater than one),
the instrumental conditions are incompatible with the observed data distribu-
tion. However, if the instrumental inequalities do hold, we do not have evidence
for or against the instrumental conditions. Thus, the instrumental inequalities
can be used to falsify (but not verify) an MR model. Importantly, the instru-
mental inequalities cannot show why the instrumental conditions are violated,
only that they are. For MR studies, such violations can result from a num-
ber of different bias structures, including pleiotropy, selection bias, population
stratification, and assortative mating (Diemer et al., 2020; VanderWeele et al.,
2014). One key limitation of the instrumental inequalities is that they cannot
be applied to continuous exposures (Bonet, 2001). While it is relatively easy
to resolve this by discretising the continuous exposures of interest, the instru-
mental conditions can then be violated by the measurement error induced by
this discretization, which is why we chose deciles over a smaller number of
quantiles. When multiple SNPs are proposed as instruments in MR, we can
also apply the instrumental inequalities to sets of SNPs jointly (see Chapter
4). For each exposure-outcome combination, we applied the instrumental in-
equalities to models proposing each SNP as an instrument individually, and
(where multiple SNPs had been proposed as instruments), to a model propos-
ing unweighted allele score deciles as an instrument, using R code developed in
Chapter 4. As a sensitivity analysis to understand how results are impacted by
residual population stratification, we also calculated the instrumental inequali-
ties using inverse probability weights to adjust for 10 principal components (see
Appendix for details). All analyses were conducted in R version 3.2.6 (Team,
2020).

5.4 Results

The study population in our final analytic subpopulations consisted of partic-
ipants with a mean ages between 56 (range 38-78 years) and 57 years (range
38-73 years) who were primarily of white, British ethnicity. The proportion
of women varied between 53.5%-54.2% across analytic subpopulations (Table
5.1).

The instrumental inequalities held for all 132 SNPs proposed as instruments
when considering each SNP individually (Table 5.2). The instrumental in-
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equalities also held when allele scores were proposed as instruments for alcohol
consumption, HDL-, and LDL-cholesterol. However, the instrumental inequal-
ities were violated when proposing allele scores as instruments for vitamin D
and triglyceride levels, indicating the instrumental conditions were violated
for those models. Results were generally consistent when inverse probability
weighted for 10 principal components (see Appendix for details).

5.5 Discussion

In our investigation of 6 exposures and an accompanying 132 SNPs used in
prior MR studies in UK Biobank, we detected no violations of the instrumental
conditions when considering each SNP individually as a proposed instrument.
Violations of the instrumental conditions were detected for some allele scores
proposed as instruments.

These findings suggest that the instrumental inequalities may be helpful in
detecting violations of the instrumental conditions for sets of SNPs proposed
as instruments, but, per prior conventional wisdom, may not detect which
specific SNP or SNPs are not instruments. Moreover, these findings do not
explain why the allele scores are not instruments: we do not know if the con-
ditions are violated due to a selection bias, pleiotropy, or another structural
violation; or whether it is due to one or several SNPs marginally violating the
instrumental conditions; or whether the violation is study-specific and not indi-
cating a structural violation with that allele score being an instrument for that
exposure-outcome in another study setting (Chapter 4). It is worth reiterating
that detecting no violations when considering each SNP individually should
only be interpreted as a failure to falsify, and not as support for the validity. It
is possible that the instrumental conditions are violated for the SNP, exposure
and outcome combinations in this study, but the instrumental inequalities did
not detect these violations. Our results also need to be interpreted in light of
the imposed categories of the exposures (see Chapter 4).

MR studies rely on strong, unverifiable assumptions, but investigators have an
arsenal of tools for falsifying these assumptions and attempting to mitigate
violations, along with robust methods that leverage alternative assumptions
as a means to relax some others (Bowden et al., 2015; Bowden et al., 2016).
The instrumental inequalities are an easily implementable technique, which, if
integrated into this MR toolbox, could help to identify violations of the instru-
mental conditions in common MR settings with multiple proposed instruments,
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including biases that may be difficult to identify through other means.
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Appendix

Details of systematic review to identify commonly pro-
posed genetic instruments

To identify SNPs commonly proposed as instruments for each exposure, we
searched the UK Biobank archive (https://www.ukbiobank.ac.uk) and PubMed
and the using the following search terms:

Vitamin D (“Mendelian
Randomization Analysis”[Mesh] OR
mendelian-random*[tiab]) AND (UK
Biobank[tiab] OR UK-biobank[tiab]) AND
(“Vitamin D”[Mesh] OR
“25-Hydroxyvitamin D 2”[Mesh])

Alcohol (“Mendelian
Randomization Analysis”[Mesh] OR
mendelian-random*[tiab]) AND (UK
Biobank[tiab] OR UK-biobank[tiab]) AND
(“Drinking Behavior”[Mesh])

CRP (“Mendelian
Randomization Analysis”[Mesh] OR
mendelian-random*[tiab]) AND (UK
Biobank[tiab] OR UK-biobank[tiab]) AND
(“C-Reactive Protein”[Mesh])

Lipoprotein
(LDL-cholesterol,
HDL-cholesterol,
triglycerides)

(“Mendelian
Randomization Analysis”[Mesh] OR
mendelian-random*[tiab]) AND (UK
Biobank[tiab] OR UK-biobank[tiab]) AND
(‘Triglycerides”[Mesh] OR “Cholesterol,
HDL”[Mesh] OR “Cholesterol, LDL”
[Mesh])

Databases were searched from their start date to March 2020. Initial searches
resulted in 30 potentially eligible studies. Studies were eligible for inclusion in
the review if they (1) explicitly reported using an MR approach, (2) studied ei-
ther vitamin D, alcohol use, triglyceride levels, CRP, LDL-, or HDL-cholesterol
as an exposure, and (3) conducted the analysis within a UK Biobank sample.
Importantly, studies were not required to use coronary artery disease as an
outcome. Of the 30 articles, 13 were rejected based on full text review. After
review, 8 articles on vitamin D concentration, 3 articles on alcohol use, 2 arti-
cles on CRP, and 4 articles on lipoproteins (LDL-cholesterol, HDL-cholesterol,
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or triglycerides) met criteria and were included in the review. A list of included
articles and SNPs proposed in each is available below. A list of included articles
and SNPs proposed in each will be available in the supplement to the published
version of this article, and is omitted from this dissertation for brevity.
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ICD-10 and OPCS-4 coding and descriptions

Table 5.3: ICD-10 Codes

International Classification of Disease, tenth revision (ICD-10)

I20X Angina pectoris

I21X Acute myocardial infarction

I22X Subsequent myocardial infarction

I23X Current complications following acute myocardial infarction

I24X Other acute ischemic heart diseases

I25.1 Atherosclerotic heart disease

25.2 Old myocardial infarction

I25.5 Ischaemic cardiomyopathy

I25.6 Silent myocardial ischemia

I25.8 Other forms of chronic ischaemic heart disease

I25.9 Chronic ischaemic heart disease, unspecified)

I23X Current complications following acute myocardial infarction

I24X Other acute ischemic heart diseases

I25X I251 Atherosclerotic heart disease

I25.2 Old myocardial infarction

I25.5 Ischaemic cardiomyopath
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Table 5.4: ICD-10 Codes Continued

International Classification of Disease, tenth revision (ICD-10)

I25.6 Silent myocardial ischemia

I25.8 Other forms of chronic ischaemic heart disease

I25.9 Chronic ischaemic heart disease, unspecified)

K40 Saphenous vein graft replacement of coronary artery

K41 Other autograft replacement of coronary artery

K43 Prosthetic replacement of coronary artery

K46 Other bypass of coronary artery

K49 Transluminal balloon angioplasty of coronary artery

K75 Percutaneous transluminal balloon angioplasty and stenting of coronary artery

K45 Connection of thoracic artery to coronary artery

K50.1 Percutaneous transluminal laser coronary angioplasty

K50.2 Percutaneoucors transluminal coronary thrombolysis using streptokinase

K50.3 Transluminal atherectomy of coronary artery
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Table 5.5: OPCS-4 Codes

Office of Population Censuses and Surveys Classification of
Surgical Operations and Procedures, fourth revision (OPCS-4)

K40 Saphenous vein graft replacement of coronary artery

K41 Other autograft replacement of coronary artery

K43 Prosthetic replacement of coronary artery

K46 Other bypass of coronary artery

K49 Transluminal balloon angioplasty of coronary artery

K75 Percutaneous transluminal balloon angioplasty and stenting of
coronary artery

K45 Connection of thoracic artery to coronary artery

K50.1 Percutaneous transluminal laser coronary angioplasty

K50.2 Percutaneoucors transluminal coronary thrombolysis using
streptokinase

K50.3 Transluminal atherectomy of coronary artery

Data Fields in UK Biobank

Exposure Data Field
Vitamin D 30890
Alcohol Intake Frequency 1558
C-reactive Protein 30710
Triglycerides 30870
HDL-cholesterol 30760
LDL-cholesterol 30780
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Outcome Data Field
Non-cancer illness code 20002
Operation Code 20004
Vascular/heart problems diagnosed by a doctor 6150
Diagnoses ICD10 41270
Operative Procedures OPC4 41272
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Flowcharts of participant inclusion in analytic study pop-
ulations

Figure 5.1: Vitamin D
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Figure 5.2: C-reactive Protein

Figure 5.3: Alcohol Intake
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Figure 5.4: Triglycerides

Figure 5.5: HDL-cholesterol
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Figure 5.6: LDL-cholesterol

Details of the inverse probability weighting procedure

For each proposed instrument Z, unstabilized inverse probability probability
weights (W a) were estimated as follows,

WA = 1/P (Zl|PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10)

To estimateWA, we fitted multinomial logistic regression models predicting Zl

assuming the principal components contributed additively and linearly on the
logit scale. Values were subsequently back-transformed to probabilities, and
we calculated
1/P (Zl|PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10)
for each individual using these back-transformed probabilities.
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6.1 Abstract

Point estimation in Mendelian randomization (MR), a type of instrumental
variable model, requires strong homogeneity assumptions beyond the core in-
strumental conditions. Bounding approaches, which do not require homogene-
ity assumptions, are infrequently applied in MR. Using data from the Norwe-
gian Mother, Father, and Child Cohort Study and Avon Longitudinal Study
of Parents and Children (n=4,457, 6,216) to study the average causal effect of
prenatal alcohol exposure on offspring attention deficit hyperactivity disorder
symptoms, we proposed 11 maternal SNPs as instruments. We then computed
bounds assuming a subset of SNPs were jointly valid instruments, for all combi-
nations of SNPs where the MR model was not falsified. The MR assumptions
were violated for all sets with more than 4 SNPs in one cohort and for all
sets with more than 2 SNPs in the other. Bounds assuming one SNP was
an individually valid instrument barely improved on assumption-free bounds.
Bounds tightened as more SNPs were assumed to be jointly valid instruments,
and occasionally identified the direction of effect, though bounds from different
sets varied. Our results suggest that, when proposing multiple SNPs as instru-
ments, MR bounds can contextualize plausible magnitudes and directions of an
effect. Computing bounds over multiple assumption sets underscores the need
for evaluation of the unverifiable assumptions of each MR model.
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6.2 Introduction

When estimating causal effects using methods based on confounder adjust-
ment, studies are vulnerable to bias from unmeasured confounding. This is
especially problematic for exposure-outcome relationships where confounders
are complex or difficult to measure. Mendelian randomization (MR), an instru-
mental variable model proposing single nucleotide polymorphisms (SNPs) as
instruments, is an increasingly popular alternative. Under certain conditions,
MR allows for estimation of causal effects even in the presence of unmeasured
confounding. Specifically, when proposing a single SNP as an instrument, MR
requires that the SNP is associated with the exposure, does not affect the out-
come except through the exposure, and individuals at different levels of the
SNP are exchangeable with regards to counterfactual outcome (Hernan and
Robins, 2018). To obtain a point estimate for the average causal effect in the
population, investigators must additionally make one of a set of possible ho-
mogeneity assumptions, described in detail elsewhere (Balke and Pearl, 1997;
Manski, 1990; Robins, 1989; Tchetgen et al., 2017). Unfortunately, these point
estimating conditions are often biologically implausible in MR (Diemer et al.,
2020; Hernán and Robins, 2006).

In contrast, bounding of the average causal effect can be conducted under the
3 primary MR conditions alone. Historically, bounding approaches have been
unpopular, possibly because bounds based on a single binary proposed instru-
ment are often wide (Swanson and Hernán, 2013). However, when multiple
SNPs are proposed as instruments, there are underrecognized opportunities.
First, we might tighten bounds by proposing joint sets of SNPs as instruments
(Richardson and Robins, 2014; Swanson, 2017). Second, by comparing bounds
computed under different assumptions, we might learn more about our reliance
on assumptions in informing plausible effect sizes (Cole et al., 2019; Robins
and Greenland, 1996; Swanson et al., 2018).

This approach may be especially helpful for MR studies of the effect of preg-
nancy alcohol consumption on offspring outcomes. While several non-MR stud-
ies have found positive associations between maternal pregnancy alcohol use
and offspring attention deficit hyperactivity disorder (ADHD) (Han et al., 2015;
Linnet et al., 2003; Pagnin et al., 2019), these estimated effects may be con-
founded by other maternal health behaviors. However, because offspring alco-
hol exposure depends both on the amount of alcohol consumed by the mother
and the speed of the mother’s alcohol metabolism, most versions of homogeneity
assumptions required for point estimation using MR are violated when propos-
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ing alcohol dehydrogenase-related SNPs as instruments: the effect of alcohol
exposure would likely be heterogeneous across offspring of mothers with differ-
ent genetic variants (Hernán and Robins, 2006; Swanson and Hernán, 2013).
Additionally, because the effect of alcohol exposure is likely heterogeneous for
other reasons, homogeneity assumptions are also suspect when proposing non-
alcohol dehydrogenase SNPs as instruments (Hernán and Robins, 2006). Here,
we demonstrate the use of bounds derived from multiple proposed instruments
in an MR study where effect heterogeneity is expected, and provide adaptable
software for the implementation of the bounds across combinations of proposed
instruments.

6.3 Methods

Data
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a lon-
gitudinal birth cohort, which aimed to recruit all pregnant women in for-
mer Avon county with a due date between April 1st, 1991 and December
31st, 1992 and continues to follow the offspring. 75.3% of contacted women
agreed to participate, resulting in a total of 14,541 pregnancies enrolled dur-
ing this period. When the oldest children were approximately 7 years old,
the study recruited additional eligible children who had not previously par-
ticipated. The study now includes data on the offspring of 15,454 pregnan-
cies. Further detail is available elsewhere (Boyd et al., 2013; Fraser et al.,
2013; Northstone et al., 2019). The study website contains details on available
data through a fully searchable data dictionary and variable search tool (http:
//www.bristol.ac.uk/alspac/researchers/our-data/). Informed consent for the
use of data collected via questionnaires and clinics was obtained from partici-
pants following the recommendations of the ALSPAC Ethics and Law Commit-
tee at the time. Ethical approval was obtained from the ALSPAC Ethics and
Law Committee and the Local Research Ethics Committees. We restricted
analyses to singleton pairs of self-reported white European origin with com-
plete data on maternal genotype, maternal pregnancy drinking behavior, and
offspring outcomes, resulting in a total analytic sample of 4,457 mother-child
pairs (Appendix Figure 6.5).

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a
population-based pregnancy cohort study conducted by the Norwegian Insti-
tute of Public Health. Participants were recruited from all over Norway from
1999-2008. The women consented to participation in 41% of the pregnancies.
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The cohort now includes 114,500 children, 95,200 mothers, and 75,200 fathers.
Detailed information is available elsewhere (Magnus et al., 2016; Paltiel et al.,
2014). The current study is based on version 12 of the quality-assured data files
released for research in January 2019. The establishment of MoBa and initial
data collection was based on a license from the Norwegian Data Protection
Agency and approval from The Regional Committee for Medical and Health
Research Ethics. MoBa is now based on regulations related to the Norwegian
Health Registry Act. The current study was approved by The Norwegian
Regional Committee for Medical and Health Research Ethics (2016/1702).
For this study, we restricted our sample to singleton pairs with complete data
on maternal genetics, maternal pregnancy drinking behavior, and offspring
outcomes, resulting in a final analytic sample of 6,216 mother-child pairs
(Appendix Figure 6.6).

Measures
Genetic variants
We selected SNPs based on a recent genome-wide association study of alcohol
use in UK Biobank (Clarke et al., 2017). Of the 14 SNPs identified at genome-
wide significance in that analysis, we excluded 3 SNPs previously found to be
associated with traits that could violate MR assumptions via pleiotropy, or
were within genes that were associated with such traits (Brazel et al., 2019;
Chambers et al., 2008; Kanai et al., 2018; Linnér et al., 2019; Strawbridge et al.,
2018; Zhong et al., 2019). The 11 independent SNPs we thus proposed as in-
struments were rs145452708, rs193099203, rs11940694, rs29001570, rs3114045,
rs140280172, rs9841829, rs35081954, rs9991733, rs149127347, chr18:72124965.
ALSPAC mothers were genotyped using the Illumina human660W-quad, and
imputed to the 1000 Genome Project. MoBa mothers were genotyped using
either Illumina HumanCoreExome or Illumina Global Screening Array, and
genotypes were imputed to Haplotype Reference Consortium (HRC) version
1.1. Details of ALSPAC and MoBa genotyping procedures are available in the
Appendix.

In contrast to GWA studies, measurement error of SNPs proposed as instru-
ments will not bias average causal effect estimates of the exposure of interest
on the outcome, as long as measurement error of the SNPs is at most dif-
ferentially associated with the exposure, and not with the outcome (Hernán
and Robins, 2006). For this reason, we did not exclude proposed instruments
with minor allele frequencies under 5% or imputation quality below 0.8. How-
ever, assortative mating can violate MR assumptions (Hartwig et al., 2018).
While Hardy Weinberg equilibrium tests for all SNPs proposed as instruments
were conducted as part of the quality control pipeline in both cohorts, these
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tests may be underpowered to detect small deviations (Salanti et al., 2005).
However, such deviations could cause large biases in MR. We estimated the
correlation between maternal and paternal genotype for each SNP proposed
as an instrument in one cohort to identify SNPs which may be particularly
vulnerable to this bias (Appendix).

Because there is incomplete overlap of loci between 1000Genomes and HRC,
not all 11 SNPs were available in MoBa. Proxies for unavailable SNPs were
selected using LDProxy, based on maximum r2 (Machiela and Chanock, 2015).
Within MoBa, rs145441283 was used as a proxy for rs193099203 and rs1154447
was used as a proxy for rs35081954. Because chr18:72124965 was unavailable
in either cohort, rs201288331 was used as proxy in ALSPAC, and rs12955142
was used as a proxy in MoBa.

Alcohol Use
Alcohol use in the second and third trimester was assessed via postal ques-
tionnaire around gestational weeks 18 and 32 in ALSPAC, in which mothers
reported their average volume and frequency of alcohol consumption in the
last few weeks. In MoBa, mothers reported average volume and frequency of
alcohol consumption between gestational weeks 13-24 and after week 25 via a
postal questionnaire at week 30. Although drinking in pregnancy is not truly
a binary process, and mild drinking likely incurs different effects than heavy
drinking, the bounding approach used here (described below) requires a binary
exposure. For that reason, mothers were categorized as ever drinkers if they
reported drinking any amount of alcohol during the second or third trimester,
and never drinkers if they did not report any drinking during either trimester.
Because heavy and moderate drinking were included in the same category, this
approach may be vulnerable to bias from poorly defined interventions. To eval-
uate whether this caused violations of the instrumental inequalities, we applied
the instrumental inequalities when grouping alcohol consumption into 3 cate-
gories (never drinking, <2 drinks per week, ≥ 2 drinks per week), 4 categories
(never drinking, < 1 drink per week, 1-2 drinks per week, > 2 drinks per week),
and 7 categories (never drinking, <1 drink per week, 1-2 drinks per week, 3-4
drinks per week, 5-6 drinks per week, 7-13 drinks per week, > 13 drinks per
week). In secondary analyses, we restricted the study population to compare
never drinking and moderate drinking, defined as drinking less than or equal to
32 grams of alcohol per week (approximately 2 drinks per week). Restricting
the analytic population in this way can generate selection bias (Swanson et al.,
2015), which is why this is not the primary approach.

ADHD
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Table 6.1: Prevalence of Maternal Alcohol Use and Offspring Attention Deficit-
Hyperactivity (ADHD) Symptoms in the Avon Longitudinal Study of Parents
and Children (ALSPAC) and the Norwegian Mother, Father, and Child Study
(MoBa).

ALSPAC MoBa

n 4457 6216
Alcohol use during 2nd and 3rd
trimester of pregnancy
0 g/week 66.9 (1522) 90.6 (5606)
= 32 g/week 9.5 (216) 9.0 (555)
> 32 g/week 23.6 (536) 0.4 (25)

Offspring ADHD symptoms 2.0 (90) 2.6 (163)

In ALSPAC, mother-reported ADHD symptoms at age 7 were assessed us-
ing the Development and Well-being Assessment (Goodman et al., 2000). In
MoBa, mother-reported ADHD symptoms at age 5 were assessed using the
Child Behavior Checklist attention deficit hyperactivity subscale (Achenbach
and Rescorla, 2000). Children with subscale T scores at or above the 98th
percentile within the full MoBa cohort (raw score 8, equivalent to the 84th
percentile in published norm data) were considered to have ADHD symptoms
(Achenbach and Rescorla, 2000). Table 6.1 shows the prevalence of maternal
alcohol use and offspring ADHD symptoms.

Statistical Analysis

When multiple SNPs are believed to be individually valid instruments, several
MR models using different subsets of SNPs, and thus slightly different assump-
tions, are possible. We could conduct MR models separately for each SNP
proposed as an instrument. If we were willing to assume several SNPs were
individually and jointly valid instruments, we could also conduct MR analyses
proposing the set of SNPs as joint instruments. Our analysis plan included
computing bounds under combinations of assumptions related to the 10 SNPs
being proposed as instruments, as described below. Prior to computing any
of these bounds, we applied the instrumental inequalities to attempt to falsify
each assumption set (Bonet, 2001; Pearl, 1995). Specifically, in each cohort,
we applied the Balke-Pearl instrumental inequalities across all possible combi-
nations of the SNPs proposed as instruments and to a categorical, unweighted
allele score, using code developed previously (Diemer et al., 2020). We also
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applied the Bonet instrumental inequalities to each SNP individually. All sets
that violated the instrumental inequalities (e.g., resulted in values greater than
1 for the Balke-Pearl inequalities, or greater than 2 for the Bonet inequalities)
were eliminated from further analysis. When multiple SNPs are proposed as
joint instruments, the MR model can also be falsified if the bounds calculated
using the sets flip, meaning the lower bound is higher than the upper bound.
Sets that produced flipped bounds were also removed from the results.

As increasingly large numbers of SNPs are proposed as joint instruments, it
is increasingly likely that the MR conditions, and thus the instrumental in-
equalities, will be violated by chance, rather than by a structural bias in the
super-population of interest. These random violations are similar to the con-
cept of “random confounding” in randomized control trials (Greenland and
Mansournia, 2015). Such violations are of particular concern to the analyses in
ALSPAC, due to the relatively small sample size and the number of combina-
tions of SNPs proposed as instruments. However, as with random confounding
in randomized control trials, if random violations of the MR conditions are
present within a sample, an MR analysis in that sample is expected to produce
biased effect estimates (Diemer et al., 2020). By eliminating all sets that vi-
olated the instrumental inequalities, we could eliminate all sets for which the
MR conditions were clearly falsified. However, because it is unclear which vio-
lations of the inequalities represent structural violations of the MR conditions,
as opposed to random violations, the extent to which results of the instrumental
inequalities in this study can be generalized to other datasets is unclear.

In the setting of a binary exposure and outcome, bounds on the average causal
effect can be calculated using exposure and outcome data alone, without any
assumptions (Manski, 1990; Robins, 1989). These assumption-free bounds will
always have width 1 and always include the null, meaning they cannot iden-
tify the direction of effect. Under the MR assumptions, narrower bounds on
the average causal effect are possible. When a set of SNPs are assumed to
be jointly valid instruments, the set can be combined into a single variable,
with levels representing every unique combination of alleles from the included
SNPs. This combined variable can then be used to generate bounds using the
expression described by Richardson and Robins, 2014. To evaluate differences
in the bounds across different joint instruments in each cohort, we calculated
Richardson-Robins bounds for all combinations of the 11 SNPs that did not
violate the instrumental inequalities (Appendix).

If at least some number k SNPs, but not all 11, were jointly valid instruments,
then the average causal effect would lie within the union of the Richardson-
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Robins bounds computed proposing combinations of k SNPs as joint instru-
ments (Swanson, 2017). To explore this, we computed bounds in each cohort
assuming only a subset of the 11 SNPs were jointly valid instruments, for all
subset sizes where at least some combinations did not violate the instrumental
inequalities.

In the context of alcohol-dehydrogenase related SNPs and prenatal alcohol,
the additional homogeneity assumption required for point estimation of the
average causal effect in MR is likely invalid. However, in order to explore how
conclusions from point estimation and bounding in MR differ, we computed
point estimates using two stage least squares (Appendix).

Although MoBa and ALSPAC are relatively ethnically homogenous, residual
population stratification may bias our results. We therefore also calculated the
instrumental inequalities and bounds for each possible combination of the pro-
posed instruments using inverse probability weighting to adjust for 10 principal
components (Appendix) (Hernan and Robins, 2018).

All analyses were conducted in R version 3.6.1 (Team, 2020). Adaptable R code
for application of the instrumental variable bounds, filtered by the instrumental
inequalities, will be published in the supplement to the published version of this
article, and are omitted from this dissertation for brevity.

6.4 Results

When comparing any alcohol consumption to no alcohol consumption, in
ALSPAC, the instrumental inequalities held for all SNPs individually, 28
combinations of 2 SNPs, 16 combinations of 3 SNPs, two combinations of
4 SNPs, and no combinations of 5 or more SNPs (Appendix Figure 6.7).
In MoBa, the instrumental inequalities held for 9 combinations of 2 SNPs,
and did not hold for any combination of 3 or more SNPs (Appendix Figure
6.8). In addition, the instrumental inequalities failed to hold for 3 SNPs
individually in MoBa. A similar amount and pattern of instrumental inequality
violations were observed when comparing moderate alcohol consumption to no
alcohol consumption (Appendix Figures 6.9-6.10). Results of the instrumental
inequalities were also broadly similar when categorizing alcohol consumption
into 3,4, or 7 categories (Appendix Figures 6.11-6.16), and when samples were
IP weighted for 10 principal components (Appendix Figures 6.17-6.20).

In ALSPAC, bounds assuming at least one SNP was an individually valid in-
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Figure 6.1: Bounds on the average causal effect of any vs no alcohol consumption
during the second and third trimester on offspring attention deficit hyperactivity dis-
order symptoms in the Avon Longitudinal Study of Parents and Children, proposing
different sets of SNPs as instruments.

strument were very wide (-0.52, 0.47), and barely improved on the assumption-
free bounds (-0.53,0.47). Bounds calculated using each instrument individually
were similarly wide (Figure 6.1). As the number of SNPs assumed to be jointly
valid instruments increased, the bounds narrowed substantially, and sometimes
fell completely on one side of the null, identifying the direction of effect. How-
ever, bounds from different sets of proposed instruments varied substantially,
even identifying opposite directions of effect. With few exceptions, point esti-
mates generally fell within the bounds (Appendix Table 6.2).

In MoBa, bounds were consistent across different assumptions (Figure 6.2). In
all cases, the bounds covered the null. In most cases, the bounds did not differ
substantially from the assumption-free bounds (-0.12, 0.88), with the narrowest
bounds computed being based on the assumption that two SNPs (rs29001570
and rs9841829) were jointly valid (-0.07, 0.73). In 5 of 16 sets of proposed
instruments, point estimates fell outside of the bounds (Appendix Table 6.3).

Bounds computed to estimate the effect of moderate alcohol consumption,
rather than any alcohol consumption, followed a similar pattern in both co-
horts (Figures 6.3-6.4, Appendix Tables 6.4-6.5). In ALSPAC, bounds propos-
ing combinations of 3 or more SNPs narrowed more substantially than the
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Figure 6.2: Bounds on the average causal effect of any alcohol vs. no alcohol con-
sumption during the second and third trimesters of pregnancy on offspring attention
deficit hyperactivity disorder symptoms in the Norwegian Mother, Father, and Child
Study, proposing varying combinations of SNPs as instruments.

any alcohol models, though bounds still varied substantially and several sets
resulted in flipped bounds. Results in each cohort were generally consistent
when IP weighted for 10 principal components (Appendix Figures 6.21-6.24,
Appendix Tables 6.6-6.9). Correlation between maternal and paternal geno-
types was generally very small (Appendix Table 6.10).
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Figure 6.3: Bounds on the average causal effect of moderate (< 2 drinks/week) vs
no alcohol consumption during the second and third trimester on offspring attention
deficit hyperactivity disorder symptoms in the Avon Longitudinal Study of Parents
and Children, proposing varying combinations of SNPs as instruments.

6.5 Discussion

When single SNPs were proposed as instruments, bounds on the average causal
effect of both any and moderate prenatal alcohol consumption on offspring
ADHD were wide, and were consistent with negative, null, and positive effects.
However, in ALSPAC, as increasing number of SNPs were assumed to be joint
instruments, bounds narrowed and sometimes identified the direction of effect,
though bounds varied substantially across different proposed instruments. In
MoBa, the instrumental inequalities held for far fewer sets of proposed instru-
ments compared to ALSPAC. Bounds on the average causal effect of moderate
and any alcohol consumption on offspring ADHD remained wide and fairly
constant across several different sets of assumptions in MoBa.

Although bounds proposing a single SNP as an instrument barely improved
on the assumption-free bounds, the width of the bounds did decrease as we
incorporated stronger assumptions. Our ability to evaluate how incorporating
stronger assumptions might narrow the bounds was limited by the fact that
the strongest assumption sets we considered a priori (that all 11 SNPs were
jointly valid instruments) were found to be violated. Nonetheless, bounds in
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Figure 6.4: Bounds on the average causal effect of moderate alcohol consumption
moderate (<2 drinks/week) vs no alcohol consumption during the second and third
trimester on offspring attention deficit hyperactivity disorder symptoms in the Nor-
wegian Mother, Father, and Child Study, proposing varying combinations of SNPs as
instruments.

our analysis did narrow as larger numbers of SNPs were proposed as joint
instruments, and sometimes identified the direction of effect. This suggests
that, when multiple SNPs are proposed as jointly valid instruments, bounds
may be able to inform decision-making without additional point estimating
assumptions. This may be especially helpful for contexts, like MR studies of
prenatal alcohol exposure, where homogeneity assumptions are implausible.

An advantage of computing bounds over many different assumptions is that
such approaches can clarify how different assumptions can change study con-
clusions (Swanson et al., 2015). In our application, we were only able to iden-
tify a direction of effect under the strong assumption that multiple SNPs were
jointly valid instruments. Moreover, in ALSPAC, proposing different sets of
SNPs as joint instruments resulted in bounds that identified opposite direc-
tions of effects. This variation would have been difficult to identify in many
MR point estimation approaches, but is clearly apparent when bounds are
evaluated over several possible assumptions. In highlighting these variations,
computing bounds over many different assumptions about the SNPs proposed
as instruments could shift the focus of MR studies towards the question of what
assumptions are most plausible, and thus which range of effects we should be
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most confident in.

This property may be enhanced by combining bounding with applications of
the instrumental inequalities, which could allow for the elimination of analyses
based on clearly invalid assumptions (Diemer et al., 2020). Our results showed
that at least 7 of the SNPs in our analysis could not be valid instruments in
ALSPAC, and at least 9 of the 11 could not be valid instruments in MoBa.
This is surprising, as the full set of proposed instruments contained 4 SNPs
in alcohol dehydrogenase regions, whose relationship to alcohol consumption is
relatively well understood. This detected bias could have resulted from several
different causes (some of which are detailed in the Appendix, see Chapter 3
for further detail), but indicates that MR studies of prenatal alcohol exposure
may be more vulnerable to bias than was previously understood, and should be
viewed with caution. Further investigation is needed to clarify how maternal
alcohol-related SNPs impact offspring behavioral health.

The variation in the bounds across assumption sets also illustrates how strongly
point estimation in MR relies on the homogeneity assumptions. Even under
the strongest unfalsified assumption sets, bounds often covered a moderately
large range of effect sizes, meaning point estimation under those sets would
still depend heavily on the homogeneity assumptions. Under weaker sets of as-
sumptions, like proposing a single SNP as an instrument, the conclusions of MR
studies using point estimation would be informed almost entirely by those ad-
ditional homogeneity assumptions. This suggests that greater attention should
be paid to evaluating the validity of point-estimating assumptions in MR. In
our application, point estimates sometimes fell outside the bounds, indicating a
violation of the point-identifying assumptions. These sets included SNPs inside
and outside of alcohol dehydrogenase regions. While violations of homogeneity
were expected in our context, this suggests the resulting bias was severe, and
future MR studies might benefit from closer evaluation of the plausibility of
the point estimating assumptions.

Even in settings where both the primary MR assumptions and the additional
point estimating assumptions are plausible, presentation of the bounds along-
side point estimates could help readers and investigators to understand how
strongly MR studies depend on assumptions. This is true even, and perhaps
especially, when the bounds are wide. Several studies have called for presenta-
tion of bounds in observational studies, particularly for instrumental variable
models like MR (Cole et al., 2019; Robins and Greenland, 1996; Swanson
et al., 2018; Swanson et al., 2015). Robins and Greenland noted that “wide
bounds make clear the degree to which public health decisions are dependent
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on merging the data with strong prior beliefs” (12) (Robins and Greenland,
1996). Incorporating bounds into MR practice would clarify the amount of
information present in the data alone, and the need for critical evaluation of
assumptions within each study’s unique context.

Further research is needed to extend bounding approaches for instrumental
variables and MR in several ways, including but not limited to extensions
for: estimation procedures incorporating sampling variability (Swanson et al.,
2018; Tamer, 2010); time-varying interventions (Labrecque and Swanson, 2019;
Robins, 1994, 2014); conditional instrumental variables incorporating mea-
sured covariates (Hernán and Robins, 2006); non-binary exposures (Burgess
and Labrecque, 2018; VanderWeele et al., 2014); and two-sample approaches
(Lawlor, 2016). Though this list is not exhaustive, we believe it represents
priorities for maximizing the usefulness and applicability of bounding in MR.

6.6 Conclusion

Our results show that, when multiple SNPs are proposed as instruments, it is
possible to narrow bounds on the average causal effect. The extent of this nar-
rowing will likely depend on the study question and population, but sometimes
may allow for identification of the direction of effect. Further, the variation
of the bounds observed across different proposed instruments provides a clear
example of how bounding can be used to evaluate how heavily an MR analysis
depends on assumptions regarding a particular SNP.

MR studies frequently propose large numbers of SNPs as joint instruments,
and thus make equivalently large numbers of assumptions about the joint va-
lidity of those proposed instruments. Adding to the growing arsenal of sensi-
tivity analyses, bounding may allow researchers to leverage these assumptions
to make meaningful conclusions about effects without additional homogeneity
assumptions. Even when homogeneity assumptions are biologically plausible,
estimating bounds across different combinations of proposed instruments may
allow investigators to better evaluate the dependence of their conclusions on
those assumptions.
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Appendix

Description of genotyping in ALSPAC

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip
genotyping platforms. The resulting raw genome-wide data were subjected to
standard quality control methods. Individuals were excluded on the basis of
gender mismatches; minimal or excessive heterozygosity; disproportionate lev-
els of individual missingness (> 3%) and insufficient sample replication (IBD <
0.8). Population stratification was assessed by multidimensional scaling analy-
sis and compared with Hapmap II (release 22) European descent (CEU), Han
Chinese, Japanese and Yoruba reference populations; all individuals with non-
European ancestry were removed. SNPs with a call rate of < 95% or evidence
for violations of Hardy-Weinberg equilibrium (P < 5 ∗ 10−7) were removed.
Cryptic relatedness was measured as proportion of identity by descent (IBD >
0.1). Related subjects that passed all other quality control thresholds were re-
tained during subsequent phasing and imputation. 9,115 subjects and 500,527
SNPs passed these quality control filters.

ALSPAC mothers were genotyped using the Illumina human660W-quad array
at Centre National de Génotypage (CNG) and genotypes were called with Il-
lumina GenomeStudio. PLINK (v1.07) was used to carry out quality control
measures on an initial set of 10,015 subjects and 557,124 directly genotyped
SNPs. SNPs were removed if they displayed more than 5% missingness or a
Hardy-Weinberg equilibrium P value of less than 1 x 10−06. Samples were ex-
cluded if they displayed more than 5% missingness, had indeterminate X chro-
mosome heterozygosity or extreme autosomal heterozygosity. Samples showing
evidence of population stratification were identified by multidimensional scal-
ing of genome-wide identity by state pairwise distances using the four HapMap
populations as a reference, and then excluded. Cryptic relatedness was assessed
using a IBD estimate of more than 0.125 which is expected to correspond to
roughly 12.5% alleles shared IBD or a relatedness at the first cousin level. Re-
lated subjects that passed all other quality control thresholds were retained
during subsequent phasing and imputation. 9,048 subjects and 526,688 SNPs
passed these quality control filters.

After combining genotype data in the mothers and the children, SNPs with
genotype missingness above 1% were removed due to poor quality (11,396
SNPs removed) and a further 321 subjects were removed due to potential ID
mismatches. This resulted in a dataset of 17,842 subjects. Imputation of the
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target data was performed using Impute V2.2.2 against the 1000 genomes ref-
erence panel (Phase 1, Version 3) (all polymorphic SNPs excluding singletons),
using all 2186 reference haplotypes (including non-Europeans).

This gave 8,196 eligible mothers with available genotype data after exclusion
of related subjects using cryptic relatedness measures described previously.

Description of genotyping in MoBa

Genotyping of MoBa participants is currently ongoing, and this analysis was
conducted using the first available maternal genetic data. Approximately
17,000 trios from MoBa were genotyped in 3 batches. Samples were selected
randomly, and excluded from genotyping if the trio met any of the follow-
ing exclusion criteria: 1) offspring stillborn, 2) offspring deceased, 3) twin
offspring, 4) non-existent Medical Birth Registry data, 5) missing anthropo-
metric measures at birth in Medical Birth Registry, 6) pregnancies where the
mother did not answer the first questionnaire (as a proxy for higher fallout
rate), 7) missing parental DNA samples. The first batch, comprising 20,664
individuals (including parents and children), was genotyped at the Genomics
Core Facility (Iceland) using the Illumina HumanCoreExome (Illumina, San
Diego, USA) genotyping array, version 12 1.1. The second batch, compris-
ing 12,874 individuals, was genotyped at the Genomics Core Facility (Iceland)
using the Illumina HumanCoreExome (Illumina, San Diego, USA) genotyping
array, version 24 1.0. The third batch, comprising 17,949 individuals, was geno-
typed at Erasmus MC (the Netherlands) using the Illumina Global Screening
Array (Illumina, San Diego, USA) version 24 1. Genotypes were called using
GenomeStudio (Illumina, San Diego, USA) and converted to PLINK format
files.

PLINK version 1.90 beta 3.36 (http://pngu.mgh.harvard.edu/purcell/plink/)
was used to conduct the quality control, which has been previous described by
Helgeland et al (Helgeland et al., 2019). Known problematic SNPs previously
reported by the Cohorts for Heart and Aging Research in Genomic Epidemi-
ology consortium and Psychiatric Genomics Consortium were excluded from
each batch. Duplicate samples were removed, and each batch was split into
parents and offspring. Quality control was conducted separately for parents
and offspring.

Individuals were excluded if they had a genotyping call rate below 95% or au-
tosomal zygosity greater than four standard deviations from the sample mean.
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SNPs were excluded if they were ambiguous, had a genotyping call rate below
98%, or Hardy-Weinberg equilibrium p-value less than 1 x 10−6. Population
stratification was assessed using the HapMap phase 3 release 3 as a reference,
by principal component analysis using EIGENSTRAT version 6.1.4. Visual
inspection identified a homogenous population of European ethnicity, and in-
dividuals of non-european ethnicity were removed. A sex check was done by
assessing the sex declared in the pedigree with the genetic sex, which was im-
puted based on the heterozygosity of chromosome X. When sex discrepancies
were identified, the individual was flagged. Relatedness was assessed by flag-
ging one individual from each pairwise comparison of identity-by-descent with
a pi-hat greater than 0.1.

Parent and offspring datasets were then merged into one dataset per genotyping
batch. All individuals passing the genotyping call rate and normal heterozygos-
ity measures were included in the merged datasets, meaning individuals who
had previously been flagged or excluded for being a duplicate, having a sex
discrepancy, being an ethnic outlier, or having a high level of relatedness, were
included. Concordance checks were then conducted on validated duplicates.
Duplicate and tri-allelic SNPs, as well as SNPs that were discordant between
validated duplicates were excluded. Indivudals with a genotyping call rate be-
low 98% in the merged datasets were removed. Insertions and deletions were
excluded.

Phasing was conducted using Shapeit 2 release 837 and the duoHMM approach
was used to account for pedigree structure. Imputation was conducted using
the Haplotype Reference Consortium release 1.1 as the reference panel. The
Sanger Imputation Server was used to perform the imputations with the Po-
sitional Burrows-Wheeler Transform. Phasing and imputation were conducted
separately for each genotyping batch.

Imputation quality control was performed by initially converting dosages to
best-guess genotypes. Individuals were removed if they had a genotyping call
rate less than 99% or were of non-European ethnicity. SNPs with a genotyping
call rate less than 98%, or a Hardy-Weinberg equilibrium p-value less than 1
x 10−6 were removed. Relatedness was assessed intergenerationally and across
batches by flagging one individual from each pairwise comparison of identity-
by-descent with a pi-hat greater than 0.15 (excepting known parent-offspring
relationships). Individuals were flagged for removal only if the other member
of the pair would otherwise be included in the same analysis. One individual
from each pair was flagged at random, except when retaining one individual
would keep more duo/trio data available, in which case the other member was
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dropped. After quality control, a core homogenous sample of European eth-
nicity (based on PCA of markers overlapping with available HapMap markers)
individuals across all batches and array were available for analysis, resulting in
a total n of 14,804 mothers prior to analysis-specific exclusions.

Expression for Richardson-Robins bounds for all possible
combinations of instruments

Richardson and Robins, 2014 considered a model in which X and Y are binary,
taking states {0, 1}, and Z takes states {1, 2, .., k} under 4 different assump-
tions:
(i) Z⊥⊥Y x1 , Y x0 , Xz1 , ..., Xzk

(ii) Z⊥⊥Y x0 , Y x1

(iii) for i ∈ {1, ..., k}, j ∈ {0, 1}, Z⊥⊥Xzi , Y xj

(iv) there exists a U such that U⊥⊥Z and for j ∈ {0, 1}, Y xj⊥⊥X,Z|U

Each of these assumptions is a slightly different version of the IV conditions
used in the literature (Swanson et al., 2018). Under assumption (i), (ii), (iii),
or (iv), for all i, j ∈ 0, 1, P (Y xi = j) ≤ g(i, j) where

g(i, j) = min{minz[P (X = i, Y = j|Z = z) + P (X = 1− i, |Z = z)],
minz,z̃:z 6=z̃[P (X = i, Y = j|Z = z) + P (X = 1 − i, Y = 0|Z = z) + P (X =
i, Y = j|Z = z̃) + P (X = 1− i, Y = 1|Z = z̃)]}

Because P (Y x0) and P (Y x1) are variation independent, the average causal
effect of X on Y, denoted ACE(X → Y ), is bounded by

1− g(1, 0)− g(0, 1) ≤ ACE(X → Y ) ≤ g(0, 0) + g(1, 1)− 1

Returning to our setting with multiple proposed instruments, we can consider
the set of proposed instruments B = {b1, b2, .., bn}. We note that any combina-
tion of the proposed instruments in B that are themselves categorical variables
can be combined into a single joint instrument Z which takes states {1, 2, .., k},
where each state is a unique possible combination of values of the proposed
joint instruments in the subset. Thus the Richardson-Robins bounds can be
applied to any joint instrument Z, assuming (i), (ii), (iii), or (iv) hold both
individually and jointly for each proposed instrument included in Z. In our
application, we considered this for all possible subsets of our set of proposed
instruments.

220



Point estimation procedures

For each proposed joint instrument Zl, point estimates for the average causal ef-
fect were estimated using two-stage least squares, using linear regression models
for both steps. 95% confidence intervals were estimated using basic bootstrap.
Two stage squares were estimated using the ivreg() function from the AER
package (Kleiber et al., 2020), and bootstrapping was conducting using the
boot.ci() function from the boot package (Ripley, 2010).

In the context of categorical exposures and outcomes, two stage least squares
using linear regression is vulnerable to measurement error, which can result
in predicted values of the exposure outside of the 0-1 range, and may violate
the assumption of bivariate normally distributed errors (Rassen et al., 2009).
However, some research has suggested this issue may be primarily theoretical,
and has limited impact on practical applications (Angrist, 2001; Johnston et
al., 2008; Rassen et al., 2009). Some MR researchers attempt to avoid this issue
by using models based on logistic regression. However, these approaches will
produce estimates of the causal odds ratio, rather than the average causal effect
on the risk difference scale. In order to produce point estimates of the average
causal effect on the same risk difference scale as the bounds, we therefore chose
to use two stage least squares based on linear regression.

Expression of inverse probability weights for each proposed
joint instrument

For each proposed joint instrument Zl , unstabilized inverse probability weights
(Robins, 1997) to account for 10 principal components were estimated as fol-
lows:

WA = 1/P (Zl|PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10)

To estimateWA, we fitted multinomial logistic regression models predicting Zl

assuming the principal components contributed additively and linearly on the
logit scale. Values were subsequently back-transformed to probabilities, and
we calculated

1/P (Zl|PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10)

for each individual using these back-transformed probabilities.
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Possible violations of the MR assumptions in this analysis

The MR assumptions are strong, and any or all the SNPs proposed as instru-
ments in our analysis may have been affected by a number of different biases.
While the complete case approach used in this analysis aligns with common
practice in MR, both analytic samples were much smaller than the original
recruited cohort, meaning the results may have been affected by selection bias
due to loss to followup and missing data. Further, because both cohorts were
recruited based on the presence of a pregnancy, and offspring ADHD status
can only be evaluated in women who become pregnant and carry to term, the
MR conditions would have been violated if a woman’s alcohol consumption
impacted her probability of becoming pregnant (Diemer et al., 2020). Results
were largely consistent when inverse probability weighted for 10 principal com-
ponents, suggesting that the results were not affected by residual population
stratification. The correlation between maternal and paternal genotype was
small, implying the study was not strongly biased by assortative mating. While
the MR assumptions can be violated if offspring outcomes are affected by off-
spring genotype, this path was unlikely to have impacted our analyses, because
alcohol dehydrogenase genes are not expressed in fetuses or young children,
who process alcohol through a different mechanism (van Faassen and Niemelä,
2011). The MR conditions could also be violated if maternal genetic variants
impacted offspring ADHD through mechanisms other than alcohol consump-
tion, such a consumption of other substances, if maternal alcohol consumption
after birth also impacted offspring ADHD, or if the relationship between mater-
nal genotype and alcohol consumption changed over the course of pregnancy.
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Supplementary figures 1-20

Figure 6.5: Flowchart of Avon Longitudinal Study of Parents and Children included
in analytic sample

223



Figure 6.6: Flowchart of Norwegian Mother, Father, and Child Study included in
analytic sample
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bounds computed in
multiple study populations:
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7.1 Abstract

Background: Researchers often use random-effects or fixed-effects meta-
analysis to combine findings from multiple study populations. However, the
causal interpretation of these models is not always clear, and they do not
easily translate to settings where bounds, rather than point estimates, are
computed.
Methods: If bounds on an average causal effect of interest in a well-defined
population are computed in multiple study populations under specified
identifiability assumptions, then under those assumptions that average causal
effect would lie within all study-specific bounds and thus the intersection of the
study-specific bounds. We demonstrate this by pooling bounds on the average
causal effect of prenatal alcohol exposure on attention deficit-hyperactivity
disorder symptoms computed under several sets of assumptions in Mendelian
randomization (MR) analyses conducted in two European cohorts.
Results: For all assumption sets considered, pooled bounds were wide and
did not identify the direction of effect. The narrowest pooled bound computed
was [-.041, .306].
Conclusions: All pooled bounds computed in our application covered the
null, illustrating how strongly point estimates from prior MR studies of
this effect rely on within-study homogeneity assumptions. We discuss how
the interpretation of both pooled bounds and point estimation in MR is
complicated by possible heterogeneity of effects and heterogeneity of exposure
definitions across populations. We argue this highlights a broader need for
consideration of effect modification and consistency when basing clinical or
policy recommendations on MR studies.
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7.2 Introduction

When data from multiple study populations are available, combining evidence
across populations can improve our understanding of causal effects. For ex-
ample, researchers commonly attempt to synthesize information from multiple
studies using meta-analysis, combining study-specific point estimates using ei-
ther random-effects or fixed-effects models to obtain pooled effect estimates
(DerSimonian and Laird, 1986; Higgins et al., 2009; Laird and Mosteller,
1990). However, the causal interpretation of estimates derived from these meta-
analyses is not always clear, especially when random-effects models are used
(Dahabreh et al., 2020; Manski, 2020). Moreover, traditional meta-analytic ap-
proaches do not readily translate to pooling information from studies in which
bounds rather than point estimates are computed (Swanson et al., 2018; Tamer,
2010).

Here, we describe and apply an alternative approach to standard meta-
analysis, which pools information from study-specific bounds as opposed to
study-specific point estimates. In brief, we demonstrate how, if each study
is viewed as a random sample from the same well-defined superpopulation,
logical combinations of the data and underlying assumptions allow for partial
identification of causal effects by the intersection or union of the bounds
computed in each study (Manski, 2020). While bounds can be computed
in a variety of study designs, our application focuses on pooling two sets
of Mendelian randomization (MR) analyses, an application of instrumental
variable methods proposing genetic variants as instruments, in order to bound
the average causal effect of alcohol consumption during pregnancy on offspring
attention deficit hyperactivity disorder (ADHD) symptoms (Chapter 6). The
individual studies computed bounds under many different sets of assumptions,
as they had proposed multiple genetic variants as instrumental variables
(Chapter 6; Swanson, 2017), thereby giving an opportunity to explore how
different sets of assumptions may come together in this pooled approach. We
begin by describing the general theory.

7.3 Pooling two bounds computed across stud-
ies under the same set of assumptions

Suppose we are interested in the average causal effect of an exposure A on an
outcome Y, E(Y a=a − Y a=a′), in some well-defined population. We conduct
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k studies, which we will index with S = {1, 2, . . . k}, and within each study
have computed bounds on this population average causal effect for each of
the k studies under some arbitrary set of identifiability assumptions. Then,
assuming all sets of identifiability assumptions hold, the average causal effect
E(Y a=a − Y a=a′) is bounded by the intersection of all these bounds, that is,
[maxs(LBs),mins(UBs)]. A simple proof of this is given in the Appendix.
(We note that we are not claiming that these bounds are sharp; see Appendix.)
Notably, if the intersection of the bounds computed in each study is an empty
set, that is evidence that at least one of the identifiability assumptions in at
least one study is violated.

Before continuing, we wish to flag that the logic of the above statements, and
the proof in the Appendix, rely on several subtle points that merit scrutiny in
practice. For one, the computation of the bounds in each study as bounding the
population average causal effect will rely on principles that have been described
in the context of transportability (Dahabreh et al., 2020). Namely, we must
have a well-defined population in mind, and specify why each of these studies
are targeting an effect in that population. Most often, this will require some
form of homogeneity assumption (Steele et al., 2020), as implicitly is required
for interpretability of traditional fixed-effect meta analyses. We return to this
and other likely challenges that would arise in common data settings in the
discussion.

One could also consider pooling bounds under a relaxed set of assumptions
that results in using set unions rather than set intersections. Suppose, for
example, we wished to compute bounds under the assumption that at least one
of the k studies’ identifiability assumptions held, but we do not have evidence
of which study. In that case, the average causal effect would lie in the union
of the bounds from each study population, that is, [mins(LBs),maxs(UBs)]
(Swanson, 2017). However, in many settings, it is difficult to imagine a bias that
would invalidate at least one study without invalidating all included studies,
particularly if the same identifiability assumptions are evoked for computing
all study-specific bounds.

7.4 Pooling multiple bounds computed across
studies under multiple sets of assumptions

A single study may present multiple opportunities to bound the same average
causal effect under slightly different identifiability assumptions. For example,
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in MR, researchers often propose multiple genetic variants as instruments to
estimate the same exposure-outcome relationship. In this case, researchers
could consider generating bounds separately for each genetic variant, under
the assumption that each genetic variant was an individually valid instrument.
Alternatively, under the assumption that multiple genetic variants were individ-
ually and jointly valid instruments, bounds could be calculated by proposing
a set of genetic variants as a joint instrument (Chapter 6). This approach
could be applied not only to the complete set of genetic variants proposed as
instruments, but also to every possible subset of those genetic variants.

In this case, bounds can be pooled across study populations separately for each
assumption set used to generate the bounds. In an MR study proposing multi-
ple genetic variants as instruments, investigators can generate pooled bounds
on E(Y a=a − Y a=a′) separately for each subset of genetic variants proposed as
instruments. These pooled bounds can then be compared to one another to
“triangulate” results and thus indirectly and directly evaluate the dependence
of the results on the validity of the MR conditions for each genetic variant
proposed as an instrument.

In addition, investigators can consider pooling bounds across different sets of
assumptions. If two studies computed bounds on the same average causal effect
using methods that relied on two different assumption sets, then we would
expect the average causal effect to be within the intersection of those bounds
under the combined (but study-specific) assumptions.

7.5 Application

Data

We computed pooled bounds on an average causal effect of maternal alco-
hol consumption during pregnancy on offspring ADHD, using results of our
previous MR analysis conducted in the Avon Longitudinal Study of Parents
and Children (ALSPAC) and the Norwegian Mother, Father, and Child Study
(MoBa) (Chapter 6; Boyd et al., 2013; Fraser et al., 2013; Magnus et al., 2016).
For an individual single nucleotide polymorphism (SNP), partial identification
of the average causal effect is achieved if the SNP Z is associated with the
exposure A, the SNP Z has no effect on the outcome Y except through the ex-
posure A and individuals at different levels of the SNP Z are exchangeable with
regards to counterfactual outcome (Hernán and Robins, 2006). When a set of
SNPs are proposed as joint instruments, these conditions must hold for the set
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of SNPs individually and jointly. Importantly, conditions 2 and 3 are unver-
ifiable. The previous study laid out several reasons why the MR conditions
may not hold in this context, including selection on pregnancy, various forms
of pleiotropy, assortative mating, and time-varying SNP-exposure relationships
(Chapter 6).

We previously computed bounds under the MR model in each cohort sepa-
rately, proposing 11 maternal SNPs (rs145452708, rs193099203, rs11940694,
rs29001570, rs3114045, rs140280172, rs9841829, rs35081954, rs9991733,
rs149127347, chr18:72124965) as instruments for the effect of any alcohol con-
sumption during pregnancy on offspring ADHD. Within MoBa, rs145441283
was used as a proxy for rs193099203 and rs1154447 was used as a proxy
for rs35081954. Because chr18:72124965 was unavailable in either cohort,
rs201288331 was used as proxy in ALSPAC, and rs12955142 was used as a
proxy in MoBa. The outcome was mother-reported ADHD symptoms in
the clinical range in the offspring, measured using either the Development
and Wellbeing Assessment or the Child Behavior Checklist Attention Deficit
Hyperactivity subscale (Achenbach and Rescorla, 2000; Goodman et al.,
2000). In the first model, the exposure A=1 if mothers reported any alcohol
consumption during the second and third trimester of pregnancy, and A=0
if they did not report any alcohol consumption. In the second model,
mothers who consumed more than 32 grams of alcohol per week (equivalent
to approximately 2 cans of beer or glasses of wine) were removed from the
analytic dataset. While this second question focuses more explicitly on the
effects of light alcohol consumption on offspring ADHD, conditioning on the
exposure in this way can result in selection bias (Swanson, Robins, et al.,
2015).

Statistical analyses conducted in the prior study

Analyses in both cohorts were restricted to mother-child pairs without missing
data on the exposure, outcome, or any of the proposed genetic instruments.
Within ALSPAC, analyses were restricted to participants of self-reported white
British ancestry. Because MoBa does not collect data on self-reported ancestry,
we did not restrict the MoBa sample based on ancestry. However, only 5.6% of
all MoBa participants report a first language other than Norwegian, suggesting
the study population is primarily of Scandinavian ancestry (Magnus et al.,
2006). These restrictions resulted in analytic samples of 4,457 mother-child
pairs in ALSPAC and 6,216 mother-child pairs in MoBa. Prevalence of alcohol
consumption and ADHD symptoms in both cohorts are shown in Table 6.1.

Prior to calculating bounds, we had eliminated combinations of SNPs proposed
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as instruments for which the MR conditions were falsified (Bonet, 2001; Diemer
et al., 2020; Pearl, 1995). For each set that was not falsified, the Richardson-
Robins bounds were then calculated (Richardson and Robins, 2014).

Statistical analysis for the pooled results

To pool results, we assume the bounds computed within ALSPAC and MoBa
identify the average causal effect in the population of western European mother-
child pairs. Here, we assumed that any assumption set that was falsified in
either cohort represented a structural violation of the MR conditions in the
population of interest, and removed the set from further analysis.

Otherwise, for each subset of the SNPs proposed as instruments, we pooled
bounds by taking the intersection of bounds calculated in ALSPAC and MoBa.
Because we do not have an a priori reason to believe that a source of bias
might exist that is completely unique to only one cohort, we do not present
union bounds.

To evaluate the sensitivity of the results to potential residual population strati-
fication, we also apply this method to models incorporating inverse-probability
weights for 10 principal components. All analyses were conducted in R version
3.6.1 (Team, 2020).

7.6 Results

We first consider pooling bounds on the effect of any alcohol consumption com-
pared to no alcohol consumption during pregnancy among European women,
proposing single SNPs as instruments. As shown in Table 7.1, under the as-
sumptions that the SNP in question is a valid instrument in both study pop-
ulations, and that there is no effect modification by study population, the
estimated bounds on the true average causal effect in the study population
will be the intersection of the bounds calculated in each cohort. E.g., when
rs11940694 is proposed as an instrument, bounds on the average causal effect
were [.508, .431] in ALSPAC and [-.108, .878] in MoBa. The pooled bounds
are therefore [-.108, .431]. Notably, because the instrumental inequalities failed
to hold for 4 individual SNPs in MoBa, we have evidence that those SNPs are
not valid instruments in at least one cohort (MoBa), and therefore do not meet
the assumptions necessary for pooling. For every SNP proposed as an instru-
ment individually, the pooled bounds were consistent with maternal alcohol
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consumption slightly decreasing risk of offspring ADHD, having no effect, or
increasing risk of offspring ADHD to a small or moderate degree.
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When pooling the bounds computed in each cohort assuming multiple SNPs
were valid instruments, the pooled bounds are slightly narrower than those gen-
erated proposing individual SNPs as instruments (Table 7.2). Overall, similar
to bounds generated proposing single SNPs as instruments, the pooled bounds
were consistent with maternal alcohol consumption slightly reducing risk of off-
spring ADHD, having no effect, or increasing risk of offspring ADHD to a small
or moderate degree. The pooled bounds were generally similar when comput-
ing bounds for the effect of light alcohol consumption, and when weighting for
10 principal components (Figure 7.1).

Figure 7.1: Pooled bounds on the average causal effect of alcohol consumption during
pregnancy on offspring ADHD symptoms under different exposure definitions, and
with and without inverse probability weighting to account for residual confounding.A
and C show bounds on the average causal effect of any vs no alcohol consumption
during pregnancy, in the unweighted study population (A) and a pseudo-population
IP weighted for 10 principal components (C). B and D show bounds on the average
causal effect of light alcohol consumption (≤ 32 grams/week) in the unweighted study
population (B), and in a pseudo-population IP weighted for 10 principal components
(D).
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7.7 Discussion

Methods for combining bounds generated using MR in different studies have
not been clearly established. Here, we demonstrate a straightforward approach
for pooling MR bounds calculated in different cohorts with available individual
level data, and clarify the assumptions necessary to perform such an analysis.
Not only does this pooling procedure provide a method for synthesizing results
from MR bounds analyses in multiple cohorts, it also will necessarily produce
bounds that are equal in length or narrower than bounds computed in each
cohort separately. In fact, because the narrowness of a set-intersection bound
depends both on the size of the bounds being pooled and their position relative
to one another, pooling theoretically can yield substantially narrower bounds
even when the bounds from each study population are fairly wide (Manski,
2020).

As with any causal inference, it is critical to clearly define the population of
interest. The ambiguity that results from an ill-defined population compound
when we consider pooling data across studies (Dahabreh et al., 2020; Hernán
and VanderWeele, 2011). It is common to imagine study populations as being
drawn from an infinite super-population of individuals meeting particular eligi-
bility criteria, and to aim to extend inferences to that infinite super-population.
For the current application, one could argue that we are interested in the effect
of alcohol consumption during pregnancy on offspring ADHD among all west-
ern European women who have become pregnant since the beginning of study
recruitment, or will ever become pregnant in the future, a population that is
effectively infinite. However, the idea that study populations were randomly
sampled from such an infinite super-population is a fiction (Hernan and Robins,
2018; Robins, 1988). Within our application, each study population was re-
stricted to a particular country, and, like all studies, were restricted to partic-
ular time periods. Beyond this, previous research has found that participants
in cohort studies differ from non-participants in meaningful ways (Goldberg
et al., 2001; Macera et al., 1990; Nilsen et al., 2009; Nohr et al., 2006).

How then, are we able to justify using these study-specific data and results
to bound a population average causal effect? One answer is that these pool-
ing methods implicitly require an assumption of no effect modification of the
exposure-outcome relationship by study S on the relevant scale (here, additive).
In practice, even if each study population was not a true random sample of the
super-population, this assumption would hold if S was not related to either
the outcome or any effect measure modifiers of the exposure-outcome relation-
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ship. However, if the distribution of modifiers differed in different cohorts, this
assumption would be violated. This is because the average causal effect in
the super-population would be a weighted average of the effect within strata
of the modifiers, with weights based on the distribution of modifiers in the
super-population. Meanwhile, the pooled bounds we computed are based on
the distribution of modifiers present within each cohort. If study populations
differed in the distribution of an effect modifier from the super-population, then
the true average causal effect would not necessarily lie within the intersection
or union or study-specific bounds.

Unfortunately, this homogeneity assumption is implausible in many settings,
including ours. Where individual level data on the proposed instrument, ex-
posure, outcome, and potential effect modifiers are available in both the pop-
ulations used to generate the bounds, and the distribution of potential effect
modifiers is known for the target population of interest, it is possible that ex-
isting methods for transporting point estimates of average causal effects could
be adapted to bounds of average causal effects in order to ameliorate this issue,
e.g., by reweighting study populations to reflect the distribution of effect mod-
ifiers in a target population (Dahabreh et al., 2020). In the specific context of
MR, this is substantially more complicated in practice compared to alternative
analyses, as many plausible effect modifiers may be downstream of the SNP
proposed as an instrument. In the case of our application, for example, the ef-
fect of alcohol consumption in pregnancy on offspring ADHD may be modified
by the speed at which a woman metabolizes alcohol, or by offspring genotype.
Moreover, since the existing transportability methods require an assumption
of homogeneity conditional on covariates (Dahabreh et al., 2020; Steele et al.,
2020), this may be further difficult to justify in the context of bounds computed
under MR or other IV-based assumptions. An intrinsic motivation for the use
of partial identification over point estimation in IV approaches is the desire
to avoid strong, potentially implausible homogeneity assumptions (Swanson et
al., 2018). It is therefore somewhat troublesome that, in order to pool bounds
across study populations, we must make another homogeneity assumption.

Though this issue presents a specific complication to the use of pooled bounds,
it also highlights a broader issue with the conduct and interpretation of MR
studies, which are now frequently being used as evidence for policy interven-
tions (Dixon et al., 2020; Harrison et al., 2020; Scholder et al., 2014). This
includes the application here, in which previous MR studies on alcohol con-
sumption during pregnancy have been cited in support of policy recommen-
dations (Kenny and Hedges, 2018; to the UK Chief Medical Officers, 2016).
Yet, as established, the study populations these effects are estimated in are not
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necessarily selected randomly from the population in which the guidelines or
policies are being given. This is all the more true when MR study populations
are restricted to white European ancestry groups to avoid bias from popula-
tion stratification (Davies et al., 2018). Extending inferences from these MR
studies to a defined population then also requires homogeneity assumptions.
Regardless of whether such a homogeneity assumption might truly hold, they
are rarely, if ever, discussed.

There is also an issue of consistency in exposure definition that one needs to
consider: pooling study-specific bounds on a population average causal effect
is further complicated in practice by whether consistency can be reasonably as-
sumed. Formally, these pooling methods require that if Ai = a then Y a

i = Yi for
every individual i in the target population and the included study populations.
This implies that the exposure of interest must be the same across studies, and
that study participation does not impact the outcome. Within observational
studies, this may become especially problematic when a single binary expo-
sure encompasses several versions of treatment, but the distribution of those
treatment versions differs between study populations. In our primary example,
we have grouped into two categories, never versus ever drinking during preg-
nancy. However, beyond possible issues of measurement error, it is likely that
the amount of drinking, and not just the presence, during pregnancy affects
ADHD symptom risk. If so, and individuals in each study population who
consume alcohol differ in the amount of alcohol they consume, then there is
relevant treatment variation (Hernán and VanderWeele, 2011), and the causal
interpretation of bounds pooled across these study populations would be un-
clear. In practice, this may be an especially important consideration for MR
studies that suggest they are targeting the “lifetime effect” of an exposure,
rather than the 9 month gestation period our application focused on. In such
MR designs, a single definition of the exposure could encompass many different
exposure trajectories over the life-course, the distribution of which may differ
between study populations.

We have focused primarily on identification, without discussing issues of statis-
tical imprecision. However, bounds are impacted by the uncertainty created by
sampling variation. While there is a growing literature on confidence interval
estimation and statistical inference for bounds (Swanson et al., 2018; Tamer,
2010), currently there is no consensus on the best approach to accounting for
this uncertainty in bounding approaches within studies, including the set inter-
section methods we describe. This is doubly important for MR studies that use
the instrumental inequalities for falsification, as the instrumental inequalities
are themselves partially identified parameters (Richardson and Robins, 2010).
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Estimation would also be further complicated if the population of interest was
in fact finite (Chan, 2017).

In our applied example, while bounds on the effects of prenatal alcohol expo-
sure on ADHD did narrow, they did not identify a direction of effect. Readers
might therefore question whether the many complications of pooling in practice
are worthwhile, or how such pooled bounds could actually be integrated into
decision-making. Importantly, bounds do not necessarily replace point identi-
fication strategies, but instead can be presented alongside point estimates. In-
deed, to make recommendations about drinking behaviors and offspring ADHD
risk based on these MR applications, we would need either to add further
point-identifying assumptions or to use another causal inference approach. Yet
bounds still have a vital place in such discourse. As has been extensively argued
previously, bounds, especially wide bounds, can help show how strongly a par-
ticular analysis relies on assumptions (Cole et al., 2019; Robins and Greenland,
1996; Swanson et al., 2018; Swanson, Holme, et al., 2015) . Within individual
MR studies with multiple SNPs proposed as instruments, computing bounds
using different subsets of SNPs allows investigators to evaluate how results are
affected by assumptions about both homogeneity and the validity of specific
SNPs proposed as instruments. By quantifying the degree to which an analysis
depends on such assumptions, bounding approaches can identify cases where
potential violations of these assumptions should be more closely evaluated. Al-
though pooled bounds are not directly comparable to fixed- or random- effects
meta-analysis, incorporating pooled bounds into meta-analyses could similarly
show how the conclusions of such an analysis might be impacted by hetero-
geneity of effects within studies. The use of such bounds also highlights the
implicit assumption of homogeneity of effects and consistency across popula-
tions made whenever MR estimates are generalized to broader populations. By
making these assumptions explicit, pooling approaches could help researchers
and readers to identify areas in need of further investigation (e.g. evaluation of
the extent to which effects of interest vary across populations of interest).

7.8 Conclusion

The use of these or related pooled-bounding methods in practice is compli-
cated by issues of effect homogeneity, definitions of populations of interest,
and consistency. While these issues pose a challenge to the use of pooling or
meta-analytic methods, they also make clear the implicit assumptions made
each time MR estimates are used to inform policy recommendations for larger
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populations, or more generally, when any estimates from MR studies or other
observational studies are being “triangulated”. The presentation of both study-
specific and pooled bounds across different assumption sets can help clarify the
extent to which the conclusions of an analysis depend on the investigator’s
assumptions, rather than the data alone. Calculation of pooled bounds may
also help investigators and readers to clarify the exact causal questions under
study, and identify assumptions that should be further investigated.
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Chapter 8

Discussion

The main aim of this dissertation was to explore strategies to improve the
study of causal effects of maternal exposures on offspring outcomes in observa-
tional data. To achieve this, we investigated potential physiologic mechanisms
by which exposures during pregnancy might affect offspring outcomes, and
explored the use of MR to study effects of prenatal exposures and offspring
outcomes. In this discussion, I review the main findings of this project, high-
light key implications of these results, and propose future directions for further
research in this area.

8.1 Principal Findings

In Chapter 2, we aimed to explore the effect of maternal mid-pregnancy vita-
min D sufficiency on offspring DNA methylation in cord blood. In an analysis
of data from 3,738 mother-child pairs across 7 European cohorts, we did not
find evidence of associations between maternal mid-pregnancy vitamin D suf-
ficiency and offspring DNA methylation at any measured CpG site. Under the
assumptions of exchangeability, positivity, consistency, and no model misspec-
ification, this suggests that either that maternal vitamin D sufficiency has a
null effect on offspring cord blood methylation in these populations, or that
the effects are too small to be detected with available sample sizes. The as-
sumptions necessary for estimating causal effects using this study are somewhat
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more reasonable in this study than in many previous EWAS, as maternal vi-
tamin D status during pregnancy is unlikely to be affected by offspring DNA
methylation at birth, meaning the study is less vulnerable to reverse causation.
However, as discussed in detail with Chapter 2, it remains difficult to justify an
assumption of no unmeasured confounding in EWAS. This is because the de-
terminants of DNA methylation, and thus potential confounders, are not fully
known, and may be affected by an individual’s own tendency toward health pro-
moting behaviors and perceived stress. In the specific context of null findings
in EWAS, as in Chapter 2, considerations of confounding would also require
grappling with faithfulness regarding a possibly perfect cancellation of bias and
effect size.

How could possible confounding bias in EWAS be addressed? Some researchers
have proposed incorporating MR into EWAS in order to avoid issues related
to unmeasured confounding (Felix and Cecil, 2019; Relton and Davey Smith,
2012). The appeal of MR in this setting is understandable. Under the condi-
tions laid out in the introduction, MR allows for unbiased estimation of average
causal effects even in the presence of unmeasured confounding. For the study
of prenatal exposures, where exposure-outcome confounders are often complex
and difficult to measure, the MR conditions may seem like a more reason-
able choice. Moreover, prenatal MR studies may be less vulnerable to bias
due to time-varying SNP-exposure relationships than other MR designs, as off-
spring are only directly exposed to proposed maternal genetic instruments for 9
months, rather than their entire life course. However, prenatal MR is a unique
context, and may be subject to unique biases not found in other MR designs.

To explore these biases, in Chapter 3, we conducted a systematic review of
prenatal MR studies. There, we aimed to explore the nature and reporting of
key strengths and weaknesses of the MR design in the context of pregnancy
exposures and offspring outcomes. We found that researchers rarely discussed
issues specific to the prenatal MR context, including selection on pregnancy,
pleiotropy via offspring genotype, or pleiotropy via pre- or post-conceptional
maternal exposure status. In addition, although the majority of prenatal MR
studies in this review presented point estimates, the additional assumptions
necessary for point estimation were rarely discussed. This is especially con-
cerning in the context of prenatal MR, where certain estimands are defined
differently, and there is biologic evidence that the point-identifying assump-
tions cannot hold for certain exposures of interest (see Chapter 1 and Chapter
6). In this review, falsification strategies were rarely applied, and no studies
applied the instrumental inequalities to attempt to falsify their MR model.
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As discussed in Chapter 4, although the primary MR assumptions cannot be
verified, they can be falsified (Balke and Pearl, 1997; Pearl, 1995). Pearl showed
that the instrumental conditions, and thus the MR conditions, imply a set of
inequalities. If these inequalities do not hold, the MR model cannot hold in
the dataset. Bonet subsequently proved that the instrumental variable model,
and thus the MR model, actually imply additional inequalities beyond those
described by Pearl (Bonet, 2001). However, neither the inequalities described
by Balke & Pearl nor Bonet, known as the instrumental inequalities, had ever
been applied to an MR study with multiple proposed instruments. In Chap-
ter 4, we applied the instrumental inequalities to an MR study of the effect
of maternal vitamin D sufficiency on offspring psychiatric symptoms, propos-
ing 4 maternal SNPs as instruments. We found that, within our dataset, the
MR assumptions were violated for at least half of the 4 SNPs proposed as
instruments. This provides a clear example of how, in the context of multi-
ple proposed instruments, the instrumental inequalities can be used to detect
violations of the instrumental conditions. Further, simulations conducted as
part of this study suggest that the inequalities will be increasingly violated as
the magnitude of violations grow, and are more sensitive as larger numbers of
variables are proposed as joint instruments.

The results of the instrumental inequalities are always specific to the research
question and study population to which they were applied. After finding that
the instrumental inequalities identified violations of the MR model for at least
half of the 4 SNPs proposed as instruments in Chapter 4, we were interested
in exploring the utility of the instrumental inequalities in detecting violations
of the MR conditions in different research contexts. In Chapter 5, we therefore
applied the instrumental inequalities to MR models proposing SNPs as instru-
ments for the effects of 6 common exposures on cardiovascular disease in the
UK Biobank. In that study, we detected no violations of the MR conditions
when proposing each SNP as an instrument individually. However, when ge-
netic risk scores were proposed as instruments, the instrumental inequalities
detected violations of the MR conditions for 2 of the 6 exposures of interest.

Importantly, the instrumental inequalities are only able to falsify the 3 primary
MR conditions. However, in order to obtain a point estimate, MR studies must
also make one of a set of possible homogeneity conditions (Hernan and Robins,
2018). However, although historically unpopular, bounding approaches may
provide information about the direction and plausible magnitudes of effect un-
der the 3 primary MR conditions alone. In Chapter 6, we set out to investigate
whether bounds can be usefully applied in the context of MR studies with
multiple proposed instruments. We found that, when single SNPs were pro-
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posed as instruments for the effect of maternal alcohol consumption during
pregnancy on offspring ADHD, bounds on the average causal effect were wide,
and barely improved on the assumption-free bounds. However, when larger
numbers of SNPs were proposed as joint instruments, the bounds narrowed
and were sometimes able to identify the direction of effect. In addition, the
variation we observed across bounds calculated using different sets of proposed
instruments in this study highlights how MR bounds can be used to compare
and critically evaluate assumption sets used in MR. In our study, bounds com-
puted using different sets of SNPs sometimes identified different directions of
effect, an indicator of how strongly the conclusions of MR studies could change
depending on the which genetic variants are assumed to be valid instruments.

In Chapter 6, we computed bounds using the same MR model in two sepa-
rate study populations. Whenever results for the same research questions are
available in multiple study populations, as in Chapter 6, it would be helpful
to combine information across study populations. However, common meta-
analytic techniques, such as fixed- and random-effects models, do not translate
easily to the context of bounds. In Chapter 7, we describe an approach to
pooling information from bounds calculated in different study populations, and
apply it to the study results presented in Chapter 6. Using the same data and
research question described in Chapter 6, we show that bounds computed in
different study populations can be combined using the set-intersection meth-
ods described by Manski (Manski, 2020). However, the interpretation of these
pooled bounds is complicated by the fact that these methods implicitly re-
quire an assumption of no effect modification by study population. The use
of these bounds is further complicated by the fact that consistency (meaning
that if Ai = a then Y a

i = Yi for every individual i in the target population
and the included study populations) may not truly hold across different study
populations for our study question. This could occur if definitions of expo-
sures differed across studies, or if categories of exposures contained multiple
versions of treatment that varied in distribution across study populations. Be-
yond the potential utility of these pooled bounds for meta-analysis, this work
highlights a broader issue with the interpretation of MR, that consistency and
effect homogeneity across populations are implicitly assumed to hold any time
MR estimates are used to conduct two-sample MR, to inform policy, or to
triangulate effects in a broader population.

8.2 General Synthesis
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8.2.1 Broader Implications

In Chapter 3, we found that prenatal MR is subject to a number of specific
biases, which previous applications of this method have rarely discussed or
attempted to mitigate. The effects of these biases on the MR literature may
be severe. Indeed, the fact that the instrumental inequalities found violations
of the MR conditions for several SNPs proposed as instruments for maternal
vitamin D sufficiency and maternal alcohol consumption in multiple cohorts
suggests that either the potential pleiotropic effects of these SNPs are stronger
than was previously understood, or that the prenatal MR model is severely
vulnerable to structural biases like selection on pregnancy, assortative mating,
or pleiotropy via pre- or postnatal exposure status. This second possibility
is a concerning indictment of prenatal MR in general, as authors of prenatal
MR studies often describe these studies as superior to other causal inference
designs (Allard et al., 2015; Alwan et al., 2012; Evans et al., 2019; Geng and
Huang, 2018; Humphriss et al., 2013; Korevaar et al., 2014), and such studies
are sometimes used as evidence to support policy recommendations (Dixon et
al., 2020; Harrison et al., 2020; Kenny and Hedges, 2018; to the UK Chief
Medical Officers, 2016). Of course, it is important to note that the results of
the instrumental inequalities are always specific to the research question and
study population to which they are applied. Therefore, the violations of the MR
conditions detected in applications to maternal pregnancy vitamin D sufficiency
and alcohol consumption (Chapters 4 & 6) are not necessarily a sign that all
prenatal MR studies are biased, or even that all MR studies of these specific
questions are biased. However, we detected violations of the MR conditions
for multiple exposures and in multiple cohorts, including some violations when
proposing SNPs as instruments individually, which generally indicates more
severe violations of the MR conditions. This, alongside the smaller number of
violations detected in adult analyses in UK Biobank (Chapter 5), suggests (but
does not conclusively imply) that prenatal MR studies are more vulnerable to
severe bias than was previously understood. Overall, our findings indicate that
greater attention must be paid to the validity of the MR conditions in prenatal
MR studies, especially for behavioral outcomes. Further research is needed to
evaluate the impact of systematic biases specific to the prenatal MR context,
including selection on pregnancy and assortative mating, on applied prenatal
MR studies. It is also critical that researchers applying prenatal MR be made
aware of the unique limitations of the prenatal MR design, and how to discuss
or mitigate these potential biases in their studies.

Beyond the specific context of prenatal exposures, the studies presented here
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suggest that both the instrumental inequalities and instrumental variable
bounding approaches should be more broadly applied in instrumental vari-
able studies, especially MR studies proposing multiple genetic variants as
instruments. Historically, neither the instrumental inequalities nor instru-
mental variable bounds have been frequently applied in instrumental variable
analyses. Indeed, to our knowledge, the study presented in Chapter 3 was
the first time the instrumental inequalities had ever been applied to an MR
study with multiple proposed instruments. As previously discussed, the
unpopularity of the instrumental inequalities may be because previous work
has suggested that, in the setting of dichotomous proposed instruments, only
extreme violations of the MR conditions could be detected (Glymour et al.,
2012). Similarly, bounding approaches may be unpopular because, in the
case of binary proposed instruments, exposures, and outcomes, bounds on the
average causal effect are often wide, and may not identify the direction of
effect. Yet, the research presented here provides two clear lines of reasoning
as to why both the instrumental inequalities and bounding approaches
should be regularly applied in instrumental variable studies, especially in MR
studies proposing multiple genetic variants as instruments. First, the studies
presented in Chapters 4, 5, and 6 provide clear evidence that the instrumental
inequalities are able to detect violations of the MR conditions when multiple
SNPs are proposed as joint instruments, and are sometimes able to detect
violations of the MR conditions when SNPs are proposed as instruments
individually. Similarly, although the bounds computed proposing single SNPs
as instruments in Chapter 6 were quite wide, bounds on the average causal
effect narrowed substantially when multiple SNPs were proposed as joint
instruments, and were sometimes able to identify directions of effect. These
studies provide clear examples of cases when the instrumental inequalities and
instrumental variable bounds provide meaningful information about an MR
model, either by falsifying the model or by identifying a direction of effect
without additional, potentially implausible assumptions.

Second, in the case of bounds, even if these approaches fail to identify a direc-
tion of effect, they still provide an opportunity to contextualize point estimates,
both within individual studies (as shown in Chapter 6) and in meta-analyses
(as shown in Chapter 7). To clarify this, let us first review the concept of
bounding, which is described in more detail in Chapter 6. Put heuristically,
studies generally combine data with strong assumptions in order to obtain a
point estimate of a causal effect, a single number somewhere in the range of
all possible values of the causal effect of interest. However, by combining data
with weaker assumptions, investigators could instead obtain bounds, a range
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of possible values of the causal effect of interest (rather than a single number).
Importantly, bounds are distinct from confidence intervals, and indeed require
their own confidence intervals. In contrast to confidence intervals, bounds will
not typically collapse to a single point in an infinite dataset, as infinite data
would only resolve the random error (attributable to sampling variability and
stochastic counterfactuals), and would not allow us to observe all counterfac-
tual outcomes for all participants. To explore the process of bounding, let us
take as an example the research question presented in Chapter 6. There we
were interested in estimating the average causal effect of binary maternal alco-
hol consumption on the binary presence of offspring ADHD symptoms, on the
risk difference scale. Without any data, this average causal effect is already
bounded by -1 (maternal alcohol consumption universally prevents offspring
ADHD symptoms), and 1 (maternal alcohol consumption universally causes
offspring ADHD symptoms). However, within a dataset, we already have in-
formation on the outcomes among individuals who were actually exposed and
who were not actually exposed. Using the data and consistency alone, with-
out any other assumptions, we can generate narrower bounds by imputing the
missing counterfactual values for each individual to the most extreme possible
outcome (e.g., assuming that everyone whose mother consumed alcohol during
pregnancy would not have developed ADHD symptoms if their mother had not
consumed alcohol during pregnancy, or that everyone whose mother did not
consume alcohol during pregnancy would have developed ADHD symptoms if
their mother did consume alcohol during pregnancy). These bounds, called
the assumption-free bounds, will always have width 1, and will always include
the null, meaning they cannot identify the direction of effect (Manski, 1990;
Robins, 1989). Under the instrumental conditions, narrower bounds can be
estimated, as described in Chapter 6. As we discuss in Chapter 6 and above,
these narrow bounds can sometimes identify the direction of effect.

Specifically, because MR bounds rely on fewer assumptions than point esti-
mation approaches in MR, and because they can be calculated for different
assumption sets, bounds, even wide bounds, allow readers and investigators to
understand how much information about a causal effect of interest is available
in data alone, and how much relies on particular assumptions, either about the
validity of a specific SNP proposed as an instrument, or about the heterogene-
ity of the effect across groups. In the results presented in Chapter 6, we can
see that, when single SNPs are proposed as instruments, the bounds are very
wide, and always cover the null. This would mean that conclusions from an MR
analysis proposing one of those SNPs as an instrument would depend almost
entirely on the homogeneity assumptions made by the investigators. When

285



larger numbers of SNPs were proposed as joint instruments, bounds from dif-
ferent sets of SNPs sometimes identified opposite directions of effect. Because
the same average causal effect cannot be simultaneously negative and posi-
tive, this indicates at least one of the sets of proposed instruments are invalid,
meaning the conclusions of such an analysis are also strongly dependent on the
validity of each proposed genetic instruments. It is clear from both the studies
presented here and previous research that bounds, especially wide bounds, have
an inherent value for epidemiologic research. As Robins and Greenland put it,
“wide bounds make clear the degree to which public health decisions are de-
pendent on merging the data with strong prior beliefs” (Robins and Greenland,
1996). Causal inference always requires strong assumptions. But by presenting
bounds alongside point estimates, and comparing bounds across multiple dif-
ferent assumption sets, investigators could evaluate how plausible causal effect
sizes and directions change depending on the assumptions used. Incorporating
bounds into a broader range of studies could therefore help to shift conversa-
tions around causal effects towards the question of what assumptions readers
and investigators feel most confident in, and how strongly particular estimates
and decisions rely on assumptions that feel suspect.

In an even more general sense, our findings argue for the importance of con-
sidering existing methods based on minimal assumptions, rather than trying
to reinvent the wheel. Recent years have seen an explosion of sensitivity anal-
yses and robust methods for MR (Bowden et al., 2015; Bowden et al., 2016;
Cho et al., 2020; Hartwig et al., 2017; O’Connor and Price, 2018; Tchetgen
et al., 2017; Verbanck et al., 2018; Zhu et al., 2018). Each of these methods
was developed specifically to limit biases resulting from violations of the MR
conditions, particularly the second and third MR conditions. Yet, almost all
of these methods implicitly or explicitly require homogeneity conditions, even
though biologic knowledge suggests this homogeneity is implausible for many
exposures of interest and proposed instruments. Of course, MR estimates can
be used as a test of the sharp null under the 3 primary MR conditions alone,
and some researchers have argued that these alternative methods should be
considered as tests of this sharp null. Yet, the results of such studies are typi-
cally interpreted as valid point estimates, rather than sharp null tests, and some
estimators may even require homogeneity for sharp null testing. In contrast,
neither the instrumental inequalities nor the instrumental variable bounding
approach presented here require homogeneity assumptions. Despite this, and
despite the fact that both methods were originally described well before MR
became popular, neither has been meaningfully incorporated into the MR lit-
erature. Yet, our results show that these methods can be usefully applied to
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MR studies. Beyond the implication that these specific methods should be ap-
plied to MR studies, these findings also suggest that it might be useful to more
carefully consider the history of epidemiologic methods and existing epidemi-
ologic methods when studying new research questions. There may be other
methods based on minimal assumptions which have not been broadly accepted
in epidemiologic research. Indeed, the concept of bounding in general has reg-
ularly been touted as a useful tool for epidemiologic research, but is rarely
applied in practice (Cole et al., 2019; Robins and Greenland, 1996; Swanson
and Hernán, 2013; Swanson et al., 2018). In addition, it may be that such
methodologic advances have been ignored because they preceded the data and
computing advances necessary for their productive use. Both the g-formula
and g-estimation, for example, were limited in their initial applications be-
cause of the substantial computing power they required (Robins, 1986). The
applications of the instrumental inequalities and bounds in MR shown in this
dissertation would not have been possible prior to the current era of cheap
and abundant genetic data. It is possible that there are many other methods
that were simply ahead of their time, and could be productively applied with
today’s computing and data. While innovation is critical to science, our results
suggest that older, less popular methods may still be useful, and should not be
dropped by the wayside.

Our findings also suggest that the potential heterogeneity of effects of prenatal
exposures is too often overlooked, especially in applications of MR. In general,
we do not expect that the effects of an exposure will be exactly constant across
an entire population. Indeed, that sort of constancy is not only biologically
implausible, but also mathematically impossible in some cases (Hernan and
Robins, 2018). In most cases, we expect that there will be some type of ef-
fect modification in measure present in a population. By effect modification
in measure, we mean that for a given variable V, the average causal effect of
A on Y varies across strata of V on the relevant scale. For example, for the
average causal effect of A on Y, effect measure modification by V on the ad-
ditive scale is present if E(Y a=a − Y a=a′ |V = v) 6= E(Y a=a − Y a=a′ |V = v′).
The existence of effect modification is not necessarily a problem in and of it-
self. After all, an average causal effect is an average, weighted accorded to the
proportions of effect modifiers in the study population. However, as previously
stated, in order to obtain a point estimate in MR, researchers must make one
of a set of additional homogeneity assumptions. One of the most commonly
used assumptions to estimate the average causal effect is that there is no effect
modification of the average causal effect of A on Y by the proposed instru-
ment Z in any exposure category (Hernán and Robins, 2006). However, this
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assumption is highly implausible for many prenatal exposures of interest. As
described in Chapter 6, there is clear biologic evidence that this assumption
will not hold when proposing alcohol dehydrogenase variants as instruments
for the effect of maternal alcohol consumption of offspring outcomes. This
is because offspring alcohol exposure during pregnancy depends both on the
amount of alcohol consumed by the mother and the speed at which the mother
is able to metabolize alcohol. Because alcohol metabolism is directly affected
by alcohol dehydrogenase variants, the effect of pregnancy alcohol consumption
on offspring will vary across levels of the maternal genetic variants proposed as
instruments. This same violation of homogeneity conditions will likely occur
whenever genetic variants related to the metabolism of a substance are pro-
posed as instruments for the consumption of said substance during pregnancy.
This homogeneity condition also poses a problem when non-metabolism related
variants are proposed as instruments. Previous work has shown that, for a valid
instrumental variable model, if any unmeasured confounder of the exposure A
and outcome Y is also an effect modifier of the A-Y relationship on the rele-
vant scale, then the proposed instrument Z will necessarily modify the effect
of A on Y in some exposure category, violating the homogeneity condition
described above (Hernán and Robins, 2006). It is likely that many key unmea-
sured confounders of maternal pregnancy exposures and offspring outcomes are
also effect modifiers of that relationship. It is easy to imagine that, especially
for offspring psychiatric outcomes, the effect of maternal pregnancy exposures
are both confounded and modified by factors like family socio-economic status,
parental mental health status, maternal health consciousness and interaction
with the medical system, and substance use behaviors like smoking.

As an alternative to this assumption, researchers sometimes make an assump-
tion of monotonicity. That is, the effect of the proposed instrument Z on A
only works in one direction for every individual in the study population. Im-
portantly, under monotonicity, one can only estimate the average causal effect
within the compliers, the individuals for whom Az=z > Az=z′ for all z > z′.
These compliers cannot actually be identified (though we can calculate the pro-
portion of compliers in a study population) (Hernan and Robins, 2018; Swanson
and Hernán, 2013). Because of the unidentifiable nature of compliers, and the
fact that the nature and proportion of compliers is specific to the proposed
instrument and population, several authors have argued that the complier av-
erage causal effect is not necessarily an especially useful measure (Deaton, 2010;
Hernan and Robins, 2018). In addition, there are several challenges to the use
of the monotonicity assumption for prenatal MR studies. First, while it is
relatively easy to assume monotonicity holds in the context of a randomized
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trial, the assumption is more difficult to justify in the context of observational
studies, especially when the mechanisms by which a proposed genetic instru-
ment affects the exposure of interest are unknown. Second, monotonicity is
always specific to the particular genetic variant proposed as an instrument,
and the populations of compliers for different genetic variants may not overlap
at all. Thus, when multiple genetic variants are proposed as instruments, the
estimated effect may actually be an average of effects within entirely disjoint
subsets of the study population. Third, as discussed in Chapter 3, the definition
of a complier in a prenatal MR study is slightly different than the definition
in most MR designs. In most MR designs, the proposed instrument, exposure,
and outcome are all measured within the same individual. However, for pre-
natal MR, the proposed instrument and exposure are measured in the mother,
but the outcome is measured within the child. This means that, although the
effect of interest is estimated within offspring, compliance status is based on
the relationship between the mother’s genetic variants and exposure status.
Thus, for prenatal MR studies, monotonicity allows one to estimate an average
causal effect among the subset of children whose mothers are compliers, even
though the offspring themselves may not be compliers (as defined by their own
genetic variants and exposure status).

The effects of violations of these homogeneity conditions are potentially serious.
In Chapter 6, we found that bounds on the average causal effect were often
wide, and covered the null, meaning the conclusions of an analysis of the same
model using point estimation would depend almost entirely on the homogeneity
conditions. In that study, we also found that point estimates for the average
causal effect sometimes fell outside of the bounds, indicating a violation of the
homogeneity conditions. Assuming the 3 primary MR conditions hold, this
can occur when the bias resulting from heterogeneity of the effect is so large
that it moves the point estimate outside of the valid bounds on the average
causal effect. While violations of homogeneity were expected in the context of
an MR study of maternal alcohol consumption, the fact that point estimates
fell outside the bounds indicates that the bias resulting from these violations
was severe. And yet, we found that prenatal MR studies almost never report
their choice of point-identifying assumption. Only 4 of 22 studies reporting MR
point estimates in Chapter 3 actually explicitly stated their point-identifying
assumptions.

Beyond the challenges it presents to the internal validity of prenatal MR stud-
ies, thinking about effect heterogeneity is also critically important to interpret-
ing results of MR studies, translating those results into recommended practice,
and designing studies that answer the questions that are most important to us.
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Causal effects can vary across populations, including those defined by location
and by racial/ethnic ancestry. The vast majority of prenatal MR studies are
conducted within white European ancestry populations located within North
America or Western Europe (Chapter 3), and, given that the majority of GWAS
studies have similar demographic characteristics (Haga, 2010), it is likely that
the majority of MR studies more generally focus on this same population. Be-
yond data availability, the choice to limit study populations to white European
ancestry participants is often a result of attempts to limit bias. MR requires
that individuals at different levels of the proposed instrument are exchangeable
with regards to counterfactual outcome, meaning that there cannot be any
unmeasured common causes of the proposed instrument and outcome (Her-
nan and Robins, 2018; Hernán and Robins, 2006). However, different ancestry
groups differ in their distribution of genetic variants, and may also differ in their
distribution of outcomes for unrelated reasons. Thus, ancestry can be a con-
founder of the genetic variants proposed as instruments and the outcome, and
thus can violate the MR conditions (VanderWeele et al., 2014). Researchers
often attempt to mitigate this bias by restricting the study population based on
self-reported race/ethnicity (in addition to the use of principal components for
ancestry). Because of the demographics of the total study populations these
analyses are often conducted in, white European ancestry individuals often
make up the largest subgroup, and are therefore chosen for analysis.

However, as we show in Chapter 7, pooling bounds calculated in different study
populations requires an assumption of no effect modification by study popula-
tion on the relevant scale. This same assumption is required any time results
from MR studies are generalized to a broader population. Yet, prenatal MR
studies are used as evidence to support policy recommendations for diverse
countries (Kenny and Hedges, 2018; to the UK Chief Medical Officers, 2016)
and are interpreted as evidence of universal biologic effects (Murray et al.,
2016; Zhang et al., 2015). This is concerning for multiple reasons. Although
the presence of effect measure modification cannot be empirically verified (Van-
derWeele, 2012), evidence of effect modification has important implications for
MR. Identifying populations where the effect varies, or is not present at all,
can serve as a method of evaluating the MR assumptions (Glymour et al.,
2012). Moreover, when MR is used as a means of exploring possible biologic
relationships, ignoring effect modification could limit our ability to understand
the mechanisms by which exposures impact outcomes. If effects are stronger or
weaker, or not present at all, in specific subgroups, that could provide evidence
about the relative importance of different mechanisms of action. Thinking
about possible heterogeneity of effects is also vital when basing policy decisions
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on MR. As previously mentioned, effects can easily vary across populations, and
the same intervention could be ineffective or worse, actively harmful, if applied
to a population that differs substantially from the study population the in-
tervention was evaluated in. In addition to the lack of racial/ethnic diversity
in many prenatal MR studies, the demographics of many influential cohorts
differ substantially from the broader populations they were drawn from. For
example, participants in the Avon Longitudinal Study of Parents and Children,
based in Avon County, UK, were generally more likely to be married and of
higher socioeconomic status than residents of the county or of the UK more
broadly (Fraser et al., 2013). Assuming the effects estimated in MR studies of
entirely white, socioeconomically advantaged individuals will be homogenous
across the entire population of the UK seems difficult. It is not clear that in-
terventions whose effects were estimated in prenatal MR studies within these
types of cohorts would necessarily translate to broader populations. Further,
in some cases, because of the potential for selecting on colliders affected by the
proposed genetic instruments, this can result in biased estimates of the effect
within the study population. But these issues are not insurmountable. Indeed,
they are relatively easy to fix. First and foremost, we need to carefully consider
whether the causal effects we are interested in might vary across populations
of interest, or across potentially relevant variables. Second, we need to recruit,
genotype, and maintain more geographically, racially, and socioeconomically di-
verse study populations for genetic epidemiologic research. Critically, this will
also involve recruiting more diverse populations for the development of popula-
tion reference panels for imputation of genetic data, and creating genomewide
microarrays that provide adequate coverage in populations with different link-
age disequilibrium patterns than European ancestry populations (Nelson et al.,
2013; Peterson et al., 2019). Third, when making recommendations based on
the results of MR studies, we need to explicitly define the target population
to which such recommendations should be applied, and when necessary, apply
methods for transporting effects from one population to another.

8.2.2 Future Directions

Overall, these findings have both substantive and methodologic implications,
and suggest a need for further research in several areas. In particular, the
results shown in this dissertation indicate a need for further applied research
on the relationship between maternal genetic variants and offspring psychiatric
outcomes, and how these relationships might bias MR estimates. Our findings
also highlight a need for further methods development in several areas of MR.
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Beyond these research directions, a critical aspect of future work in this area
will be making both the instrumental inequalities and instrumental variable
bounding approaches accessible to a broader audience.

8.2.2.1 Applied Genetic and Prenatal Epidemiology

The results of this dissertation suggest both that prenatal MR is subject to
a number of unique biases that are rarely discussed within the prenatal MR
literature, and that prenatal MR studies in general may be more vulnerable
to structural biases than has been previously understood. Further research is
needed to establish whether the assumption violations detected in the prenatal
MR studies presented here affect other prenatal MR studies, and, more gen-
erally, how the forms of biases described in Chapter 3 impact prenatal MR
studies in practice.

As previously mentioned, the instrumental inequalities cannot determine why
the MR conditions are violated, only that they are violated. There are several
reasons why the MR conditions might be violated in a particular prenatal MR
study, some of which are detailed in Chapter 3. It is possible that the SNPs
proposed as instruments in our analyses have a previously unknown pleiotropic
relationship to offspring ADHD and ASD symptoms. For the case presented in
Chapter 4, it is also possible that the MR conditions may be violated through
pleiotropy via offspring genotype, if offspring vitamin D sufficiency also im-
pacts their risk of ADHD or ASD symptoms. In the case of maternal alcohol
consumption during pregnancy, offspring genotype is unlikely to be a source
of bias, because alcohol dehydrogenase genes are not expressed in fetal life
or early childhood (van Faassen and Niemelä, 2011). Future research might
explore these potential issues through the application of existing methods for
detection of these forms of bias (Bowden et al., 2015; Bowden et al., 2016; Cho
et al., 2020; Evans et al., 2019; Hartwig et al., 2017; Tchetgen et al., 2017).
However, it is important to note that these methods themselves rely on addi-
tional homogeneity assumptions, alongside other alternative conditions, which
may not be met in all cases. This is especially true in the context of alcohol
dehydrogenase-related SNPs proposed as instruments for the effect of mater-
nal alcohol consumption during pregnancy, where both biologic knowledge and
this dissertation suggest homogeneity assumptions commonly used for point
estimation will not hold.

As we discuss in Chapter 3, the violations of the instrumental inequalities
we detected in Chapters 4 and 6 could also result from variation in maternal
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SNP-exposure relationships over time. Because we expect maternal genetic
variants to impact maternal exposure status throughout the lifecourse, not
only during pregnancy, such a situation could occur if maternal exposure sta-
tus prior to pregnancy affected offspring outcomes (e.g. through mechanisms
such as oocyte quality), or if maternal exposure status after pregnancy im-
pacts offspring outcomes (e.g. through mechanisms like breast milk content,
altered socio-economic status, or attachment style). Further, if the relation-
ship between proposed genetic instruments and exposures vary over the course
of pregnancy, MR estimates of the effect of prenatal exposure would be biased
even if pre- or post-pregnancy exposure status did not affect the offspring. Fu-
ture research could consider evaluating the potential impact of these issues by
evaluating the extent to which relationships between maternal proposed genetic
instruments and exposures of interest change over time, either within pregnancy
or over the maternal life course. In addition, researchers could apply IV mod-
els that allow for time-varying exposure status (Robins, 1989; Tchetgen et al.,
2017), though these methods come with their own assumptions, and as with
the methods for evaluation of pleiotropy, require homogeneity assumptions.

It is also possible that the violations we observed in Chapters 4 and 6 were
a result of assortative mating, a form of bias that can occur when parents in
the study select mates based on particular traits, which can create a form of
proposed instrument-outcome confounding. Essentially, if mating in the pop-
ulation is nonrandom, this could result in an open backdoor path between
maternal genotype and offspring outcome via paternal genotype. Very little
research has been conducted on the impact of assortative mating on prena-
tal MR, and existing prenatal MR studies rarely mention it. Out of the 43
studies evaluated in Chapter 3, only 3 mention potential bias due to assor-
tative mating. Because assortative mating may affect all SNPs proposed as
instruments, commonly used sensitivity analyses for prenatal MR, including
MR-Egger and weighted median regression, may be unable to detect bias due
to assortative mating. Assortative mating is a violation of Hardy-Weinberg
equilibrium (HWE), and should theoretically be identified by the HWE tests
typically conducted as part of quality control pipelines for genetic data. How-
ever, previous work has suggested that HWE tests are generally underpowered
to detect violations of HWE, including assortative mating (Salanti et al., 2005).
This is especially concerning for MR studies using point estimation, because
weak instruments can amplify other biases. This could mean that even small
violations of HWE could result in substantially biased MR point estimates.
Further work is needed to establish the impact of assortative mating on pre-
natal MR studies in real data, and to evaluate possible mitigation strategies.
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While some existing research has studied these biases in more general MR de-
signs (Brumpton et al., 2020; Hartwig et al., 2018), it has not been evaluated
in the specific context of prenatal MR.

One other understudied potential source of bias in our analyses is selection
on pregnancy. It is only possible to measure exposures during pregnancy and
offspring outcomes among women who actually become pregnant and carry the
pregnancy to term. However, in prenatal MR studies, the genetic variants pro-
posed as instruments are set at the mother’s own conception. If either the ge-
netic variant itself or pre-pregnancy exposure status impacts women’s ability to
become pregnant or carry to term, this could result in selection bias. Previous
research has shown that several exposures of interest, including obesity, alcohol
consumption, and smoking, have relatively strong associations with number of
live births, number of pregnancies, and the presence of any pregnancy (Eg-
gert et al., 2004; Weng et al., 2004; Wesselink et al., 2019). This suggests
that selection on pregnancy may be a key form of bias for prenatal MR stud-
ies. This is especially concerning for two reasons. As with assortative mating,
many existing methods to detect and limit bias in MR, such as MR-Egger and
weighted median regression, would be unable to detect bias due to selection on
pregnancy, because they rely on additional assumptions that would be violated
by the presence of selection on pregnancy (Bowden et al., 2015; Bowden et al.,
2016), which would generally result in an equal magnitude of bias across SNPs
if the selection was due to differences in realized fertility across women with
different exposure levels prior to pregnancy. Second, the majority of prenatal
MR studies are conducted in study populations selected based on the presence
of a pregnancy. This means that, although selection bias can often be resolved
through the use of inverse probability of treatment weighting (Canan et al.,
2017; Robins et al., 2000), inverse probability weighting cannot be applied
in most prenatal MR studies, because no data is available to construct the
weights. In this dissertation, we have suggested that researchers could consider
sensitivity analyses using weights generated in external datasets to evaluate the
potential impact of selection bias on their results, though this approach would
require further assumptions about the transportability of weights across study
populations. Despite the potential impact of this bias, almost no research has
been conducted on selection on pregnancy, and out of the 43 prenatal MR
studies evaluated in Chapter 3, only one mentioned selection on pregnancy.
Further research is needed to evaluate the impact of selection on pregnancy
in prenatal MR studies, to identify optimal bias reduction methods and sensi-
tivity analyses, and to educate researchers and research consumers about the
potential impact of this issue. Work on this topic would ideally include both
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simulation studies and analyses in real data, in order to estimate the impact of
this potential violation on real studies. However, evaluating selection on preg-
nancy in real data would require data on pregnancy exposures in women and
offspring outcomes in samples that were not selected based on the presence of a
pregnancy or interest in becoming pregnant, which may be difficult to obtain.

Even if we were able to obtain the type of dataset necessary to evaluate the
potential impact of selection on pregnancy, evaluation of this bias also raises a
bit of a philosophical question regarding the ideal choice of estimand. In some
ways, not becoming pregnant can be viewed as a sort of competing event for
the outcome of offspring ADHD symptoms, as women who do not have children
necessarily cannot have children who develop ADHD symptoms. The inverse
probability weighted estimate we propose may then be interpreted as an esti-
mate of the effect of a joint intervention on pregnancy status and the exposure
during pregnancy. In the simplest interpretation, we would be comparing the
mean outcome had everyone in the population become pregnant and been ex-
posed, relative to the mean outcome had everyone become pregnant but no one
had been exposed. Formally, we would be estimating E(Y a=a,p=1−Y a=a′,p=1),
where P denotes ever becoming pregnant. This estimand may not actually map
well to an intervention of interest in the real world. Further research on the
impact and nature of competing risks in prenatal MR could help to establish
what causal quantities are of most interest, and the extent to which prenatal
MR can estimate those quantities.

8.2.2.2 Methods Development

Throughout this dissertation, we have focused primarily on issues of identi-
fication. However, both instrumental variable bounds and the instrumental
inequalities are impacted by uncertainty resulting from sampling variation.
Because both the instrumental inequalities and bounding procedures described
here involve minimum and maximum operations, the common techniques for
estimating confidence intervals, such as the nonparametric bootstrap, will not
generally produce valid confidence intervals for either procedure (Swanson et
al., 2018). There is a growing body of literature surrounding the development
of confidence intervals for partially identified parameters, but to this point,
no single method has been determined to be preferable (Swanson et al., 2018;
Tamer, 2010). Further research is needed to identify the best approach to esti-
mating confidence intervals and developing statistical inference around partially
bounded parameters, and to apply these methods to real data.
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The expansion of research on this topic will be critical to expanded use of both
the instrumental inequalities and instrumental variable bounds. One key use of
bounds, which we have highlighted throughout this discussion, is their utility
for policy decisions. As previously discussed, a key aspect of the use of MR
for decision-making is careful consideration of what assumptions are required
to generalize the results of a specific study to a broader population. In just
the same way, it is important to recognize that the study populations in which
we have calculated bounds are not infinite, and that it is critical to appropri-
ately incorporate uncertainty into bounding. In addition, the development of
confidence intervals for instrumental variable bounds would allow them to be
more easily compared to point estimates, allowing researchers to more easily
evaluate how dependent their results were on their point-identifying assump-
tions. The development of confidence intervals for the instrumental inequalities
is similarly important, though their application may be slightly more complex.
Even without confidence intervals, the instrumental inequalities can be used
as a falsification test for the MR conditions within a specific sample. How-
ever, as previously stated, the instrumental inequalities cannot differentiate
between random and structural violations of the MR conditions (see Chapter
4 for further details on this differentiation). Within a specific study, regardless
of whether a violation is a result of structural or random biases, the result of
a violation of the instrumental inequalities will be the same. The proposed
instrument that violated the inequalities should not be used, and an alterna-
tive should be proposed. However, the development of confidence intervals for
the instrumental inequalities could allow researchers to better differentiate be-
tween structural and random violations of the MR conditions, a delineation
which could be useful in several ways. From a practical perspective, determin-
ing whether violations of the instrumental inequalities result from a structural
violation would provide evidence for or against the use of the same MR model in
other datasets. This could help to minimize time wasted on replication studies
doomed to fail as a result of structurally invalid instruments (as opposed to ran-
dom violations that would not necessarily occur in other datasets). In addition,
differentiating between random and structural violations could help determine
what cohort-specific results to include in meta-analyses. If violations of the
MR conditions for a specific proposed instrument in a particular cohort were
deemed to be random, results from that cohort should be eliminated from the
analysis, but results for the same proposed instrument from other cohorts could
still be meta-analyzed. In contrast, if violations of the instrumental inequalities
were believed to result from structural biases, the invalid proposed instrument
should be removed entirely from the meta-analysis, because the structural vio-
lation would impact results in all cohorts, even if the instrumental inequalities
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did not falsify the model in other cohorts. Importantly, this strategy assumes
that any identified bias is not due to study-specific selection bias, which would
result in structural violations of the MR conditions, but would not necessarily
cause bias in other study populations. If researchers believed selection bias was
present, they could evaluate this assumption by conducting sensitivity analy-
ses using inverse-probability weighting to account for selection bias conditional
on the exposure and all variables that are believed to independently predict
both selection into the study population and the outcome in each study sample
(Hernan et al., 2004).

Developing confidence intervals for the instrumental inequalities could also help
researchers to better understand potential pleiotropic effects of SNPs proposed
as instruments, and thus the potential biologic mechanisms by which those
SNPs affect various phenotypes. Under the assumption that individuals at
different levels of the proposed instrument are exchangeable with regards to
counterfactual outcome, meaning that there are no unmeasured confounders of
the proposed instrument and outcome, and that there is no selection bias, the
instrumental inequalities can actually be re-interpreted as bounds on the aver-
age controlled direct effect of the proposed instrument on the outcome when the
exposure is held constant at a specific level (Cai et al., 2008). In the all binary
case, for example, the instrumental inequalities can be interpreted as bounds
on the effects P (Y z=1,a=0 − Y z=0,a=0) and P (Y z=1,a=1 − Y z=0,a=1), respec-
tively. Although controlled direct effects cannot be used to identify indirect
effects, controlled direct effect estimation has historically been of considerable
interest to policy evaluation (VanderWeele and Vansteelandt, 2009). The use
of the instrumental inequalities to bound controlled direct effects may there-
fore be of particular use to studies proposing policy instruments. Recent work
has also shown that, if the instrumental inequalities fail to hold, the same
proportions used to generate the instrumental inequalities can also be used to
generate lower bounds on natural direct effects within each principal strata,
even without additional monotonicity or cross-world assumptions (Zaidi and
VanderWeele, 2020). Although we have previously discussed the various dif-
ficulties in the interpretation of principal strata effects when multiple SNPs
are proposed as instruments, further exploration of these topics, especially the
development of confidence intervals and statistical inference for these meth-
ods, could be a fruitful area of future exploration. Although the methods
described by Zaidi and VanderWeele, 2020 and Cai et al., 2008 both have some
limitations, they pose a useful way of thinking about how the instrumental in-
equalities could be used to identify genetic variants with pleiotropic effects, and
about the extent to which such relationships can be used to evaluate possible
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biologic pathways between genotypes and phenotypes. Further development of
methods based on the instrumental inequalities may be especially useful when
investigating relationships between traits that have not been evaluated in suffi-
ciently large genome-wide association studies (GWAS), or where GWAS studies
of the outcome are not available. In such cases, the lack of data would prevent
researchers from using existing methods for detection of pleiotropy, such as
linkage disequilibrium score regression (Bulik-Sullivan et al., 2015), that rely
on the availability of results for both variables from existing GWAS. In these
cases, the instrumental inequalities might be a useful way to evaluate possi-
ble pleiotropy, or at the very least to obtain useful information on potential
pleiotropy from an MR study in which the model of interest has been falsified.

Another key area of future methods research is the development of methods for
pooling bounds across multiple study populations when effects are heteroge-
nous across study populations. As we discussed in Chapter 7, the use of set
intersection methods for pooling bounds implicitly requires an assumption of
no effect modification by study population (this assumption is distinct from
the homogeneity assumptions required for point estimation). This is especially
troublesome, because the average causal effect within a study population is a
weighted average of the average causal effects within each strata of the effect
modifiers, meaning that, if the distribution of effect modifiers of the exposure-
outcome relationship differed across included study populations, this assump-
tion would be violated. Essentially, in order to pool bounds across multiple
study populations, one must assume that all included study populations were
drawn randomly from the same theoretical super-population. This assump-
tion is likely unreasonable in most contexts, and further research is needed to
develop methods that do not require such strong assumptions. One possible
direction for exploring this issue is expanding the transportability methods de-
veloped by Dahabreh et al. for point estimation of causal effects (Dahabreh
et al., 2020). These methods use inverse probability of treatment weighting to
allow for transport of estimates to a new target population, where they can
subsequently be meta-analyzed. This approach requires an assumption of no
effect modification conditional on the covariates included in the weights. If the
weights included all measured effect modifiers, this would be a more reasonable
choice of assumption. However, at present, such methods have only been devel-
oped in the context of point estimation, and have not been expanded to studies
which calculate bounds on average causal effects. Moreover, in the setting of
instrumental variables, the application of these methods may be especially
complex if an effect modifier is downstream of the proposed instrument.

Broader use of the instrumental inequalities and instrumental variable bounds
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in MR will also require the development of methods allowing for time-varying
relationships between the proposed instrument and exposure. When the rela-
tionship between a proposed genetic instrument and an outcome changes over
time, then MR estimates of the effect of the exposure will be biased (Labrecque
and Swanson, 2019). Because genotypes are fixed at conception, and most ex-
posures change over the lifetime, this is likely an issue for many MR studies.
Prenatal MR is a relatively unique case, in that pregnancy is generally only
9 months long, meaning offspring are only directly exposed to maternal geno-
types for those 9 months. We could therefore plausibly believe the relation-
ship between maternal genetic variants and pregnancy exposures was constant
through pregnancy, and that offspring are not affected by maternal pre- or
post-pregnancy exposure status, meaning the effect would be isolated to preg-
nancy (under the assumption that other forms of bias, such as pleiotropy via
offspring genotype or selection on pregnancy are not at play). As we discuss in
Chapter 3, there are several cases where these assumptions will not necessar-
ily hold (either because the gene-exposure relationships vary over the course
of pregnancy, or because maternal exposure status before or after pregnancy
continues to impact offspring outcomes), meaning prenatal MR is still vulner-
able to bias from time-varying gene-exposure relationships. Nonetheless, the
assumption of a constant gene-exposure relationship may be more plausible
for prenatal MR studies than other MR designs. Valid use of instrumental
variable bounding approaches in other MR designs will therefore require ex-
pansions allowing for time-varying associations between proposed instruments
and exposures. For point estimates, it is possible to use extensions of structural
mean models to estimate period or lifetime effects of exposures in instrumental
variable studies with multiple measurements of the exposure, with parameters
estimated using g-estimation (Robins, 1989). However, beyond the instrumen-
tal conditions, these methods still require potentially implausible homogeneity
assumptions. To this point, methods for partial identification of this type of ef-
fect have not been established. Researchers might consider identifying bounds
on time-varying effects either by considering how established methods for point
identification of time-varying exposures might generalize to settings without ef-
fect homogeneity (Robins, 1989; Tchetgen et al., 2017), or by extending recent
flexible methods for the identification of bounds to the context of a vector of
time-varying exposures (Finkelstein and Shpitser, 2020; Poderini et al., 2020).

For MR models using a single exposure time point, the instrumental inequalities
may in fact detect bias resulting from time-varying gene-exposure relationships.
However, even bounds allowing for time-varying relationships between proposed
instruments and exposures will still rely on the MR conditions. Thus it would
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be helpful to develop extensions of the instrumental inequalities allowing for
time-varying instrument-exposure relationships, in order to determine whether
such models could be falsified. Because the instrumental inequalities are closely
related to bounding approaches (Richardson and Robins, 2010), it would be
logical to apply similar frameworks to extend both methods. Future research
could therefore extend the instrumental inequalities to the setting of time-
varying exposures using the same framework we previously discussed for bounds
on causal effects of interest. One particular advantage of this approach is that it
may allow for sharper inequality constraints than the Balke-Pearl inequalities.

Beyond time-varying SNP-exposure relationships, it would also be useful to
explore the uses of further inequalities in MR studies with multiple proposed
instruments, and to explore what can be inferred from patterns of violations
across different combinations of SNPs proposed as instruments. Although the
Balke-Pearl inequalities are sharp in the all binary setting (meaning they are the
strongest possible constraints implied by the IV model, and no other constraint
would be able to falsify an IV model that was not falsified by the Balke-Pearl
inequalities), they are not sharp for proposed instruments with larger numbers
of levels, or when multiple SNPs are proposed as joint instruments (Bonet,
2001; Richardson and Robins, 2010). This means that it may be possible
to derive further constraints on the MR model when proposing larger num-
bers of genetic variants as instruments. Some previous research has described
additional constraints on non-binary instrumental variable models, but some
of these constraints have yet to be presented as implementable formula, and
become increasingly computationally difficult in higher dimensional settings
(Bonet, 2001; Evans, 2012). More recent research has established methods for
identifying inequality constraints on models, including instrumental variable
models, in more computationally simple ways (Finkelstein and Shpitser, 2020;
Poderini et al., 2020), but these methods have not been applied to the context
of MR with multiple proposed instruments. It is also interesting to note that
the instrumental inequalities are themselves a special case of Bell’s inequality
(Pearl, 1995; Robins et al., 2015; Suppes, 1988), a concept that has been well
explored within physics. It is possible that other modelling constraints identi-
fied and applied within physics, including entropic inequalities, might also be
usefully applied to the setting of MR, or instrumental variable models more
broadly.

The simulations we conducted in Chapter 4 suggest that, even when the in-
strumental inequalities hold for all SNPs proposed as instruments marginally, it
may be possible to identify a pattern of violations of the instrumental inequal-
ities across different subsets of the proposed instruments that are consistent
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with the idea of a single “bad apple” – one SNP that responsible for all identi-
fied violations of the MR conditions. However, this approach has not yet been
formalized, and further work is needed to clarify in what contexts this is actu-
ally possible, as well as what the benefits and limitations of such an approach
are.

Along these same lines, it is also unclear whether it is possible to use the ex-
act values of the instrumental inequalities to compare relative degrees of bias
across models with different numbers of proposed joint instruments. As previ-
ously discussed, the instrumental inequalities can be considered bounds on the
controlled direct effect of the proposed instrument on the outcome (Cai et al.,
2008). In the all binary setting, it might be possible to compare values of the
instrumental inequalities across different proposed instruments to determine
which is the most biased. However, the Balke-Pearl inequalities are not nec-
essarily sharp outside of the all binary case, and the sharpness of the bounds
may differ when different numbers of SNPs are proposed as joint instruments
(Richardson and Robins, 2010), which would complicate comparisons of the
inequalities across sets. Further, the current lack of confidence intervals makes
it difficult to compare values of the inequalities in settings where the number of
individuals within strata of the proposed instrument might differ substantially.
Take as an example the case presented in Chapter 4, in which 4 SNPs were pro-
posed as instruments for the effect of a binary exposure. When each SNP was
proposed as an instrument individually, each strata of the proposed instrument
contained at least 10 individuals. However, when all 4 SNPs are proposed as
joint instruments, 35 of the 81 strata of the proposed joint instrument contained
less than 10 individuals. Several of the instrumental inequalities for latter case
take the form P (Y = y,A = a|Z = z) + P (Y = y′, A = a|Z = z′) ≤ 1. It
is relatively easy to imagine a situation in which at least two strata of a pro-
posed joint instrument with a large number of levels (e.g., a setting where a
large number of SNPs are proposed as joint instruments) each contain only a
single individual, or mother-child pair, as the case may be. If each of those
two individuals reported particular values of the exposure and outcome, one
could easily run into a situation where P (Y = y,A = a|Z = z) = 1 and
P (Y = y′, A = a|Z = z′) = 1, meaning that the maximum value of the instru-
mental inequalities would be 2, the maximum possible value the inequalities
could take when applied to a binary outcome. To be sure, this is still evidence
of a violation of the MR conditions, and should be taken seriously. If the MR
conditions were not violated, at least one of those strata would contain 0 in-
dividuals with that particular combination of the exposure and outcome. Yet,
it is unclear that this violation, resulting from two people, would result in a
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more biased estimate of a causal effect than a violation of the instrumental in-
equalities with a maximum value of 1.2 from a proposed joint instrument with
hundreds of individuals within each strata of the proposed instruments. In the
future, simulation studies may help to clarify the relationship of the magnitude
of violations to the relative magnitude of bias in MR estimates when comparing
proposed joint instruments incorporating different numbers of SNPs.

8.2.2.3 Teaching and Software Development for MR

The instrumental inequalities and instrumental variable bounding approaches
were first described more than 20 years ago (Balke and Pearl, 1997; Manski,
1990; Pearl, 1995; Robins, 1989), though the specific bounding approach used
in this dissertation was first published in 2014 (Richardson and Robins, 2014).
Despite their age, and, in the case of bounds, several calls for their use in
causal inference (Cole et al., 2019; Robins and Greenland, 1996; Swanson and
Hernán, 2013), neither method has been broadly applied in MR, or instrumen-
tal variables analyses more generally. Indeed, to our knowledge, the studies
included in Chapters 4, 5, and 6 are the first applications of the instrumental
inequalities and instrumental variable bounds on the average causal effect to
MR studies with multiple proposed instruments. In contrast, the MR-Egger
method was first described in 2015 (Bowden et al., 2015), and the original pa-
per has been cited more than 1200 times in the subsequent years. This rapid
and wide uptake of MR-Egger is likely attributable both to the accessibility of
simple tools for the implementation of MR-Egger, and the work of the original
authors in expanding writing and teaching about MR-Egger and related meth-
ods. In the MR-Base package, MR-Egger regression can be run with a single
line of code in R (Hemani et al., 2018). One key strength of this dissertation
is our development and inclusion of adaptable R functions for the application
and visualization of the instrumental inequalities and the Richardson-Robins
bounds across larger numbers of proposed instruments. To our knowledge, prior
to this dissertation, no software was available for the implementation of either
method across combinations of proposed instruments. In order to increase the
use of the instrumental inequalities and instrumental variable bounds in MR,
we will need to improve the usability of this software, and to develop addi-
tional software for use of these methods in computing languages other than R.
Further work is needed to improve the efficiency of the R functions we pro-
vide here, which will likely involve allowing for parallelization and potentially
incorporating other methods to improve processing speed. In addition, it will
be important in the future to incorporate these functions into an R package to
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simplify the installation process for users, and to develop similar functions in
other languages, including SAS, Stata, SPSS, and Python.

Hopefully, use of the instrumental inequalities and instrumental variable
bounds will also expand as a result of further research into their properties
and how these methods behave in real data. One reason researchers may
be hesitant to use these methods is that they are distinct from other causal
inference methods, and can be difficult to understand. The instrumental
inequalities can be especially confusing to new users, because the reasoning
that underlies them is not necessarily obvious, and they can seem like a bit
of a black box. This opaqueness, alongside the fairly dense mathematical
language used in papers describing the inequalities, could cause researchers
to feel hesitant about using these methods. Ideally, the solution to this issue
would be a mixture of explanatory articles and further methodological research
on the instrumental inequalities and bounding approaches. In particular,
simulation studies exploring the properties of the inequalities and bounds
under different data-generating mechanisms, along with applications of the
methods to real data, may help researchers and readers feel more confident in
these types of analyses and their validity, even if their theoretical underpinning
is difficult to understand.

8.3 Conclusions

While the use of the observational epidemiology can and should be focused
on developing interventions to promote human health, it is inherently a risky
endeavor, because it is based on unverifiable assumptions, and may give us the
wrong answers. This is especially true in MR, because we have a limited under-
standing of the mechanisms at play. Unlike other causal inference methods, we
also have a relatively weak conceptualization of how violations of the required
assumptions translate into magnitudes of bias in estimates. Moreover, because
of the relative makeup of genotyped cohorts and valid concerns regarding pop-
ulation stratification, MR studies are primarily conducted in white European
ancestry populations, and it is unclear how such effects translate to other pop-
ulations. To limit harm, it is critical that researchers incorporate a quality
of humbleness into their work. Wider use of bounding approaches, falsifica-
tion methods like the instrumental inequalities, and a clearer awareness of the
impact of heterogeneity on analyses are key steps in this process. Adding falsi-
fication and bounding into standard MR would formalize an attitude of healthy
skepticism, encouraging researchers to clarify the reliance of their conclusions
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on the assumptions of their model and to refocus attentions away from what
findings are simply eye-catching, and towards the plausibility of their models.

304



References

Allard, C., Desgagné, V., Patenaude, J., Lacroix, M., Guillemette, L., Battista,
M. C., Doyon, M., Ménard, J., Ardilouze, J. L., Perron, P., Bouchard,
L., & Hivert, M. F. (2015). Mendelian randomization supports causal-
ity between maternal hyperglycemia and epigenetic regulation of lep-
tin gene in newborns. Epigenetics, 10 (4), 342–351. https://doi.org/10.
1080/15592294.2015.1029700

Alwan, N. A., Lawlor, D. A., McArdle, H. J., Greenwood, D. C., & Cade, J. E.
(2012). Exploring the relationship between maternal iron status and
offspring’s blood pressure and adiposity: A mendelian randomization
study. Clin Epidemiol, 4 (1), 193–200.

Balke, A., & Pearl, J. (1997). Bounds on treatment effects from studies with
imperfect compliance. Journal of the American Statistical Association,
92 (439), 1171–1176.

Bonet, B. (2001). Instrumentality tests revisited. Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence, 48–55.

Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization
with invalid instruments: Effect estimation and bias detection through
egger regression. International journal of epidemiology, 44 (2), 512–525.

Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent
estimation in mendelian randomization with some invalid instruments
using a weighted median estimator. Genetic epidemiology, 40 (4), 304–
314.

Brumpton, B., Sanderson, E., Heilbron, K., Hartwig, F. P., Harrison, S., Vie,
G. Å., Cho, Y., Howe, L. D., Hughes, A., & Boomsma, D. I. (2020).
Avoiding dynastic, assortative mating, and population stratification bi-
ases in mendelian randomization through within-family analyses. Na-
ture communications, 11 (1), 1–13.

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Pat-
terson, N., Daly, M. J., Price, A. L., & Neale, B. M. (2015). Ld score
regression distinguishes confounding from polygenicity in genome-wide
association studies. Nature genetics, 47 (3), 291–295.

Cai, Z., Kuroki, M., Pearl, J., & Tian, J. (2008). Bounds on direct effects in
the presence of confounded intermediate variables. Biometrics, 64 (3),
695–701.

Canan, C., Lesko, C., & Lau, B. (2017). Instrumental variable analyses and
selection bias. Epidemiology (Cambridge, Mass.), 28 (3), 396.

305

https://doi.org/10.1080/15592294.2015.1029700
https://doi.org/10.1080/15592294.2015.1029700


Cho, Y., Haycock, P. C., Sanderson, E., Gaunt, T. R., Zheng, J., Morris, A. P.,
Smith, G. D., & Hemani, G. (2020). Exploiting horizontal pleiotropy to
search for causal pathways within a mendelian randomization frame-
work. Nature communications, 11 (1), 1–13.

Cole, S. R., Hudgens, M. G., Edwards, J. K., Brookhart, M. A., Richardson,
D. B., Westreich, D., & Adimora, A. A. (2019). Nonparametric bounds
for the risk function. American journal of epidemiology, 188 (4), 632–
636.

Dahabreh, I. J., Petito, L. C., Robertson, S. E., Hernán, M. A., & Steingrims-
son, J. A. (2020). Toward causally interpretable meta-analysis: Trans-
porting inferences from multiple randomized trials to a new target
population. Epidemiology, 31 (3), 334–344.

Deaton, A. (2010). Instruments, randomization, and learning about develop-
ment. Journal of economic literature, 48 (2), 424–55.

Dixon, P., Hollingworth, W., Harrison, S., Davies, N. M., & Smith, G. D. (2020).
Mendelian randomization analysis of the causal effect of adiposity on
hospital costs. Journal of Health Economics, 70, 102300.

Eggert, J., Theobald, H., & Engfeldt, P. (2004). Effects of alcohol consump-
tion on female fertility during an 18-year period. Fertility and sterility,
81 (2), 379–383.

Evans, D. M., Moen, G. H., Hwang, L. D., Lawlor, D. A., & Warrington, N. M.
(2019). Elucidating the role of maternal environmental exposures on
offspring health and disease using two-sample mendelian randomiza-
tion.

Evans, R. J. (2012). Graphical methods for inequality constraints in marginal-
ized dags. 2012 IEEE International Workshop on Machine Learning
for Signal Processing, 1–6.

Felix, J. F., & Cecil, C. A. M. (2019). Population dna methylation studies
in the developmental origins of health and disease (dohad) framework.
Journal of developmental origins of health and disease, 10 (3), 306–313.

Finkelstein, N., & Shpitser, I. (2020). Deriving bounds and inequality con-
straints using logical relations among counterfactuals. Conference on
Uncertainty in Artificial Intelligence, 1348–1357.

Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey
Smith, G., Henderson, J., Macleod, J., Molloy, L., & Ness, A. (2013).
Cohort profile: The avon longitudinal study of parents and children:
Alspac mothers cohort. International journal of epidemiology, 42 (1),
97–110.

306



Geng, T. T., & Huang, T. (2018). Maternal central obesity and birth size:
A mendelian randomization analysis. Lipids Health Dis, 17 (1). https:
//doi.org/10.1186/s12944-018-0831-4

Glymour, M. M., Tchetgen Tchetgen, E. J., & Robins, J. M. (2012). Credi-
ble mendelian randomization studies: Approaches for evaluating the
instrumental variable assumptions. American journal of epidemiology,
175 (4), 332–339.

Haga, S. B. (2010). Impact of limited population diversity of genome-wide
association studies. Genetics in Medicine, 12 (2), 81–84.

Harrison, S., Dixon, P., Jones, H. E., Davies, A. R., Howe, L. D., & Davies,
N. M. (2020). Robust causal inference for long-term policy decisions:
Cost effectiveness of interventions for obesity using mendelian random-
ization. medRxiv.

Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in
summary data mendelian randomization via the zero modal pleiotropy
assumption. International journal of epidemiology, 46 (6), 1985–1998.

Hartwig, F. P., Davies, N. M., & Davey Smith, G. (2018). Bias in mendelian
randomization due to assortative mating. Genetic epidemiology, 42 (7),
608–620.

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D.,
Laurin, C., Burgess, S., Bowden, J., & Langdon, R. (2018). The mr-
base platform supports systematic causal inference across the human
phenome. Elife, 7, e34408.

Hernan, M. A., Hernandez-Diaz, S., & Robins, J. M. (2004). A structural ap-
proach to selection bias. Epidemiology, 615–625.

Hernan, M. A., & Robins, J. M. (2018). Causal inference. Chapman; Hall/CRC.
Hernán, M. A., & Robins, J. M. (2006). Instruments for causal inference: An

epidemiologist’s dream? Epidemiology, 360–372.
Humphriss, R., Hall, A., May, M., Zuccolo, L., & Macleod, J. (2013). Prena-

tal alcohol exposure and childhood balance ability: Findings from a
uk birth cohort study. BMJ Open, 3 (6). https://doi.org/10.1136/
bmjopen-2013-002718

Kenny, C., & Hedges, S. (2018). Parental alcohol misuse and children (tech.
rep.). UK Parliament, Parliamentary Office of Science and Technology.

Korevaar, T. I. M., Steegers, E. A. P., Schalekamp-Timmermans, S., Ligth-
art, S., de Rijke, Y. B., Visser, W. E., Visser, W., de Muinck Keizer-
Schrama, S. M. P. F., Hofman, A., & Hooijkaas, H. (2014). Soluble
flt1 and placental growth factor are novel determinants of newborn
thyroid (dys) function: The generation r study. The Journal of Clini-
cal Endocrinology and Metabolism, 99 (9), E1627–E1634.

307

https://doi.org/10.1186/s12944-018-0831-4
https://doi.org/10.1186/s12944-018-0831-4
https://doi.org/10.1136/bmjopen-2013-002718
https://doi.org/10.1136/bmjopen-2013-002718


Labrecque, J. A., & Swanson, S. A. (2019). Interpretation and potential biases
of mendelian randomization estimates with time-varying exposures.
American journal of epidemiology, 188 (1), 231–238.

Manski, C. F. (1990). Nonparametric bounds on treatment effects. The Amer-
ican Economic Review, 80 (2), 319–323.

Manski, C. F. (2020). Toward credible patient-centered meta-analysis. Epidemi-
ology, 31 (3), 345–352.

Murray, J., Burgess, S., Zuccolo, L., Hickman, M., Gray, R., & Lewis, S. J.
(2016). Moderate alcohol drinking in pregnancy increases risk for chil-
dren’s persistent conduct problems: Causal effects in a mendelian ran-
domisation study. Journal of child psychology and psychiatry, 57 (5),
575–584.

Nelson, S. C., Doheny, K. F., Pugh, E. W., Romm, J. M., Ling, H., Laurie, C. A.,
Browning, S. R., Weir, B. S., & Laurie, C. C. (2013). Imputation-based
genomic coverage assessments of current human genotyping arrays. G3:
Genes, Genomes, Genetics, 3 (10), 1795–1807.

O’Connor, L. J., & Price, A. L. (2018). Distinguishing genetic correlation
from causation across 52 diseases and complex traits. Nature genet-
ics, 50 (12), 1728–1734.

Pearl, J. (1995). On the testability of causal models with latent and instrumen-
tal variables. Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, 435–443.

Peterson, R. E., Kuchenbaecker, K., Walters, R. K., Chen, C.-Y., Popejoy,
A. B., Periyasamy, S., Lam, M., Iyegbe, C., Strawbridge, R. J., & Brick,
L. (2019). Genome-wide association studies in ancestrally diverse pop-
ulations: Opportunities, methods, pitfalls, and recommendations. Cell,
179 (3), 589–603.

Poderini, D., Chaves, R., Agresti, I., Carvacho, G., & Sciarrino, F. (2020).
Exclusivity graph approach to instrumental inequalities. Uncertainty
in Artificial Intelligence, 1274–1283.

Relton, C. L., & Davey Smith, G. (2012). Two-step epigenetic mendelian ran-
domization: A strategy for establishing the causal role of epigenetic
processes in pathways to disease. International journal of epidemiol-
ogy, 41 (1), 161–176.

Richardson, T. S., & Robins, J. M. (2010). Analysis of the binary instrumen-
tal variable model. Heuristics, Probability and Causality: A Tribute to
Judea Pearl, 415–444.

Richardson, T. S., & Robins, J. M. (2014). Ace bounds; sems with equilibrium
conditions. Statistical Science, 29 (3), 363–366.

308



Robins, J. (1986). A new approach to causal inference in mortality studies
with a sustained exposure period—application to control of the healthy
worker survivor effect. Mathematical modelling, 7 (9-12), 1393–1512.

Robins, J. M. (1989). The analysis of randomized and non-randomized aids
treatment trials using a new approach to causal inference in longitu-
dinal studies. Health service research methodology: a focus on AIDS,
113–159.

Robins, J. M., & Greenland, S. (1996). Identification of causal effects using
instrumental variables: Comment. Journal of the American Statistical
Association, 91 (434), 456–458.

Robins, J. M., Hernan, M. A., & Brumback, B. (2000). Marginal structural
models and causal inference in epidemiology. Epidemiology, 11 (5), 550–
560.

Robins, J. M., VanderWeele, T. J., & Gill, R. D. (2015). A proof of bell’s in-
equality in quantum mechanics using causal interactions. Scandinavian
Journal of Statistics, 42 (2), 329–335.

Salanti, G., Amountza, G., Ntzani, E. E., & Ioannidis, J. P. A. (2005).
Hardy–weinberg equilibrium in genetic association studies: An empir-
ical evaluation of reporting, deviations, and power. European journal
of human genetics, 13 (7), 840–848.

Suppes, P. (1988). Probabilistic causality in space and time. Causation, chance
and credence (pp. 135–151). Springer.

Swanson, S. A., & Hernán, M. A. (2013). Commentary: How to report instru-
mental variable analyses (suggestions welcome). Epidemiology, 24 (3),
370–374.

Swanson, S. A., Hernán, M. A., Miller, M., Robins, J. M., & Richardson, T. S.
(2018). Partial identification of the average treatment effect using in-
strumental variables: Review of methods for binary instruments, treat-
ments, and outcomes. Journal of the American Statistical Association,
113 (522), 933–947.

Tamer, E. (2010). Partial identification in econometrics. Annu. Rev. Econ.,
2 (1), 167–195.

Tchetgen, E. J. T., Sun, B., & Walter, S. (2017). The genius approach to robust
mendelian randomization inference. arXiv preprint arXiv:1709.07779.

to the UK Chief Medical Officers, G. D. G. (2016). Health risks from alcohol:
New guidelines - list of supporting evidence.

VanderWeele, T. J. (2012). Confounding and effect modification: Distribution
and measure. Epidemiologic methods, 1 (1), 55–82.

309



VanderWeele, T. J., Tchetgen, E. J. T., Cornelis, M., & Kraft, P. (2014).
Methodological challenges in mendelian randomization. Epidemiology
(Cambridge, Mass.), 25 (3), 427.

VanderWeele, T. J., & Vansteelandt, S. (2009). Conceptual issues concerning
mediation, interventions and composition. Statistics and its Interface,
2 (4), 457–468.

van Faassen, E., & Niemelä, O. (2011). Biochemistry of prenatal alcohol expo-
sure.

Verbanck, M., Chen, C.-Y., Neale, B., & Do, R. (2018). Detection of widespread
horizontal pleiotropy in causal relationships inferred from mendelian
randomization between complex traits and diseases. Nature genetics,
50 (5), 693.

Weng, H. H., Bastian, L. A., Taylor Jr, D. H., Moser, B. K., & Ostbye, T.
(2004). Number of children associated with obesity in middle-aged
women and men: Results from the health and retirement study. Jour-
nal of Women’s Health, 13 (1), 85–91.

Wesselink, A. K., Hatch, E. E., Rothman, K. J., Mikkelsen, E. M., Aschengrau,
A., & Wise, L. A. (2019). Prospective study of cigarette smoking and
fecundability. Human Reproduction, 34 (3), 558–567.

Zaidi, J. M., & VanderWeele, T. J. (2020). On the identification of individ-
ual level pleiotropic, pure direct, and principal stratum direct effects
without cross world assumptions. Scandinavian Journal of Statistics.

Zhang, G., Bacelis, J., Lengyel, C., Teramo, K., Hallman, M., Helgeland, Ø.,
Johansson, S., Myhre, R., Sengpiel, V., Njølstad, P. å., Jacobsson, B., &
Muglia, L. (2015). Assessing the causal relationship of maternal height
on birth size and gestational age at birth: A mendelian randomization
analysis. PLoS Med, 12 (8). https://doi.org/10.1371/journal.pmed.
1001865

Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson,
M. R., McGrath, J. J., Visscher, P. M., & Wray, N. R. (2018). Causal
associations between risk factors and common diseases inferred from
gwas summary data. Nature communications, 9 (1), 224.

310

https://doi.org/10.1371/journal.pmed.1001865
https://doi.org/10.1371/journal.pmed.1001865


Chapter 9

Summary / Samenvatting

311



9.1 Summary

Previous work has suggested that the prenatal period is a potentially critical
time for the development of psychiatric and behavioral outcomes in children. In
particular, maternal substance use behaviors and micronutrient sufficiency may
have an effect on offspring psychiatric health. However, conventional epidemi-
ologic studies of such causal effects are vulnerable to bias from unmeasured
confounding. The aim of this dissertation was therefore to explore how the
validity of observational studies of the effect of maternal nutritional and sub-
stance use exposures on psychiatric symptoms in children could be improved.
To do so, we investigated potential physiologic mechanisms by which prenatal
exposures might impact psychiatric health in children, and explored the use
of Mendelian randomization (MR) to study effects of pregnancy exposures on
child outcomes.

In Chapter 2, we investigated the effect of maternal mid-pregnancy vitamin D
insufficiency on offspring DNA methylation in cord blood in European ancestry
mother-child pairs. In this study of 3,738 mother-child pairs across 7 European
and North American cohorts, we did not find any evidence of associations
between maternal vitamin D insufficiency in pregnancy and child cord blood
DNA methylation at any measured site. Within this population, this suggests
either that vitamin D insufficiency has no effect on offspring DNA methylation
or that any such effects were too small to be detected in the current study.

The study in Chapter 2 relies on a strong assumption, that there was no un-
measured confounding of the exposure and outcome. One alternative to the
outcome regression models used in Chapter 2 is MR. However, MR is vulner-
able to certain unique biases, especially when applied to the prenatal context.
To investigate the reporting of strengths and weaknesses of MR in the prena-
tal context, in Chapter 3 we conducted a systematic review of prenatal MR
studies. We found that while researchers often reported sources of bias that
affect all MR studies, they rarely discussed issues specific to the prenatal MR
setting, including selection on pregnancy, pleiotropy via offspring genotype,
and pleiotropy via pre- or post-conception exposure status. Although many
studies reported point estimates, the additional assumptions required for point
estimation were rarely mentioned.

In Chapter 4, we applied the instrumental inequalities, a falsification test for the
instrumental variable model, to an MR study of the effect of maternal vitamin
D insufficiency in pregnancy on child attention deficit-hyperactivity disorder
(ADHD) and autism spectrum disorder symptoms. We found that, within our
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dataset, the MR assumptions were violated for at least half of the 4 single
nucleotide polymorphisms (SNPs) proposed as instruments. In simulations,
we also found that the instrumental inequalities were more likely to detect
violations of the MR assumptions when more genetic variants were proposed
as instruments together, and when violations were larger.

To study whether the instrumental inequalities might be useful in detecting
violations of the MR conditions in other settings, in Chapter 5 we applied the
instrumental inequalities to MR models proposing SNPs as instruments for the
effects of 6 exposures on cardiovascular disease in the UK Biobank. We did not
detect any violations of the MR assumptions when proposing single SNPs as
instruments. However, when proposing genetic risk scores as instruments, we
found violations of the MR conditions for 2 of the 6 exposures.

In Chapter 6, we aimed to evaluate whether MR bounds, which do not re-
quire the additional assumptions needed for point estimation, could be usefully
applied to MR studies. To do so, we computed bounds on the average causal
effect of maternal alcohol consumption during pregnancy on child ADHD symp-
toms in two European cohorts. We found that, when proposing single SNPs
as instruments, the bounds were very wide. When proposing multiple SNPs
as instruments, the bounds narrowed and were sometimes able to identify a
direction of effect.

In Chapter 7, we describe how bounds on the same causal effect in different
study populations can be combined. We also apply this approach to bounds on
the average causal effect of maternal alcohol consumption on offspring ADHD
symptoms calculated in Chapter 6. All of the pooled bounds computed in this
study covered the null. We discuss how bounds, even wide bounds, can be
incorporated into scientific discourse.

Finally, in Chapter 8, we discuss overarching findings of this dissertation, the
implications of those findings, and potential directions for future research on
this topic.
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9.2 Samenvatting

Eerdere onderzoeken suggereerden dat de prenatale periode van belang is bij de
psychische- en gedragsontwikkeling van kinderen. Met name middelengebruik
van de moeder tijdens de zwangerschap zou een effect kunnen hebben op de
psychische gezondheid van het kind. Conventionele epidemiologische studies
die dit soort causale effecten bestuderen zijn gevoelig voor ongemeten con-
founding. Om die reden was het doel van dit proefschrift om te onderzoeken
hoe de validiteit van observationele onderzoeken die het effect bestuderen van
voeding en middelengebruik van zwangere vrouwen op het voorkomen van psy-
chiatrische symptomen bij kinderen, verbeterd kan worden. Om dit doel te be-
werkstelligen onderzochten we potentiele fysiologische mechanismen waardoor
blootstellingen tijdens de prenatale periode impact zouden kunnen hebben op
de psychische gezondheid van kinderen en onderzochten we het gebruik van
Mendeliaanse randomisatie (MR) als onderzoekmethode voor het bestuderen
van de effecten van blootstelling aan risicofactoren tijdens de prenatale periode
op uitkomsten in kinderen.

In hoofdstuk 2 onderzochten we het effect van vitamine D-insufficiëntie
gedurende mid-pregnancy op veranderingen in DNA methylatie, gemeten in
navelstrengbloed van Europese moeder-kind paren. Het onderzoek, waarin
3.738 moeder-kind paren uit 7 Europese en Noord-Amerikaanse cohorten
werden bestudeerd, leverde geen bewijs op voor een associatie tussen ma-
ternale vitamine D-insufficiëntie tijdens de zwangerschap en veranderingen
in DNA methylatie in navelstrengbloed. Dit suggereert dat, binnen deze
onderzoekspopulatie, vitamine D geen effect heeft op veranderingen in DNA
methylatie in het kind of dat deze effecten te klein zijn om gedetecteerd te
kunnen worden.

Het onderzoek in hoofdstuk 2 berust op een sterke aanname, namelijk dat er
geen ongemeten confounding is van de risicofactor en de uitkomstmaat. Een
alternatief voor de regressiemodellen die in hoofdstuk 2 zijn gebruikt, is het
toepassen van MR. MR is echter gevoelig voor unieke vormen van bias, vooral
als deze wordt toegepast in de context van de prenatale periode. Om te bestud-
eren hoe de sterke en zwakke punten van MR in de context van de prenatale
periode worden gerapporteerd in de literatuur, voerden we een systematische
review uit waarbij we prenatale MR studies includeerden (hoofdstuk 3). We
zagen dat onderzoekers vaak bronnen van bias rapporteerden die betrekking
hadden op alle MR studies, maar dat er zelden discussie was over issues die
specifiek zijn voor de prenatale MR setting, zoals het selecteren van deelnemers
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op zwangerschap, pleiotropie via het genotype van het kind of pleiotropie door
verschillen in pre- of postconceptionele blootstelling aan factoren. Hoewel veel
onderzoeken puntschattingen rapporteren, werden de aanvullende aannames
die zijn vereist bij het maken van puntschattingen zelden genoemd.

In hoofdstuk 4 pasten we de instrumentele ongelijkheden, een falsificatietest
voor het instrumentele-variabele model, toe op een MR onderzoek naar
het effect van maternale vitamine D-insufficiëntie. tijdens de zwangerschap
op aandachtsdeficiëntie- en aandachtshyperactiviteitsstoornis (ADHD) en
autisme spectrumstoornis-symptomen bij kinderen. We toonden aan dat, in
onze dataset, de MR aannames waren geschonden bij ten minste de helft van
de vier enkel-nucleotide polymorfismen (SNPs) die werden aangedragen als
instrumenten. Uit simulaties bleek ook dat de instrumentele ongelijkheden
eerder schendingen van MR aannames detecteren wanneer er meer genetische
varianten gezamenlijk werden aangedragen als instrumenten en wanneer de
schendingen grover waren.

Om te onderzoeken of de instrumentele ongelijkheden van pas komen om
schendingen van aannames te detecteren in andere settingen, pasten we
in hoofdstuk 5 de instrumentele ongelijkheden toe op MR-modellen die
SNPs aandroegen als instrumenten om de effecten van blootstellingen aan 6
factoren op hart- en vaatziekten in de UK Biobank te bestuderen. We vonden
geen schendingen van de MR-aannames wanneer individuele SNPs werden
aangedragen als instrumenten. Daarentegen vonden we bij 2 van de 6 factoren
schendingen van de MR voorwaarden wanneer genetische risicoscores werden
aangedragen als instrumenten.

In hoofdstuk 6 was ons doel om te evalueren of MR-bounds, welke geen aanvul-
lende aannames vereisen die wel nodig zijn bij het maken van puntschattingen,
toegepast konden worden op MR-onderzoek. Om dit te doen, berekenden we
bounds van het gemiddelde causale effect van maternale alcoholconsumptie ti-
jdens de zwangerschap op ADHD-symptomen bij kinderen in twee Europese
cohorten. Ons onderzoek toonde aan dat wanneer individuele SNPs als in-
strumenten werden aangedragen, dit resulteerde in brede bounds. Wanneer
meerdere SNPs werden aangedragen als instrumentele variabelen, waren de
bounds smaller, zodanig dat er soms een richting van het effect aangetoond
kon worden.

In hoofdstuk 7 beschrijven we hoe bounds van hetzelfde causale effect, verkre-
gen uit verschillende studie populaties, gecombineerd kunnen worden. Tevens
passen we deze methode toe op bounds van het gemiddelde causale effect van
maternale alcoholconsumptie tijdens de zwangerschap op ADHD-symptomen
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bij kinderen, berekend in hoofdstuk 6. Alle in dit onderzoek berekende gecom-
bineerde bounds bevatten de waarde nul. We bespreken hoe bounds, zelfs brede
bounds, geïncorporeerd kunnen worden in het wetenschappelijke discours.

Tot slot, in hoofdstuk 8, bediscussiëren we de overkoepelende bevindingen van
dit proefschrift, de implicaties van deze bevindingen en potentiele richtingen
voor toekomstig onderzoek over dit onderwerp.
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