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GENERAL INTRODUCTION 

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease with a 
worldwide estimated prevalence of 0.24% [1], affecting twice as many women 
compared to man [2]. In RA, cartilage lining the joints are mistakenly recognized as 
foreign tissue and therefore attacked by leukocytes [3–5]. This causes inflammation 
and joint swelling, which can influence a patient’s mobility and daily activities. In 
addition, the inflammation can damage other organs, causing serious comorbidities 
such as: cardiovascular disease, osteoporosis and gastrointestinal disease [6,7]. The 
first few months from diagnosis form the so-called ‘window of opportunity’, in which 
joint damage can be restricted and the disease pathogenesis can still be modified 
[8–12]. If patients are not treated, serious bone deformities can occur, which is why 
early aggressive treat-to-target interventions are required [13,14]. 

Treatment management in RA
First-line treatment consists of methotrexate (MTX) alone or in combination with short-
term glucocorticoids and/or leflunomide or sulfasalazine [14]. Response to MTX can be 
determined after three to six months using the validated response measures: disease 
activity score 28 (DAS28) (linear) and European League against rheumatism (EULAR) 
response criteria (categorical) [15]. Step-up treatment with biologic DMARDs (bDMARDs) 
or targeted synthetic DMARDs (tsDMARDs) is prescribed when 1) no sufficient decrease in 
DAS28 is observed at 3 months, or 2) or remission (DAS28 <2.6) or low dose activity (LDA: 
DAS28<3.2) is not reached at 6 months [14]. If step-up treatment fails, which is determined 
after another 3 – 6 months, the bDMARD or tsDMARD can be changed for a biosimilar or 
bDMARD/tsDMARD from a different class. This trial-and-error strategy continues until the 
treatment target is reached [14]. Following these guidelines, it can take months before an 
effective therapy has been found, during which the window of opportunity to restrain 
joint damage becomes narrower. Prediction of insufficient responders prior to MTX 
therapy would allow to skip the first three to six months of waiting for a first response. 
Using this personalized (group based) approach, insufficient responder to MTX could 
step-up treatment from the start, taking advantage of the window of opportunity.  Good 
responders on the other hand, could safely start MTX treatment and be spared costly 
bDMARDs. However, to enable this personalized treatment approach, baseline predictors 
for response to MTX are required. At the moment, there are no reliable models available to 
predict MTX inefficacy in the early course of treatment leading to ‘trial-and-error’ approach 
finding the right drug (and concentration).
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Methotrexate in rheumatoid arthritis
Methotrexate (MTX) is a disease-modifying anti-rheumatic drug (DMARD), which was 
initially developed as chemotherapeutic agent and prescribed in high dosages (single 
doses up to 1000 mg) in leukaemia. In 1951, Aminopterin, the forerunner of MTX was 
first used in inflammatory diseases, and appeared to have anti-inflammatory effects in 
lower doses (15-25 mg/week) [16]. MTX still is the anchor drug in RA after all these years 
[14], despite development of new treatments in RA, such as: bDMARDs (e.g. TNF-alpha 
inhibitors, IL-6 inhibitors[17]) or more recently tsDMARDs (e.g. JAK-inhibitors [18–21]). This 
is due to its low costs, its safety and relatively high and similar response rates, as compared 
to MTX in combination with bDMARDs as recently compared [22]. MTX requires some time 
to accumulate and reach a steady-state in red blood cells [23,24], hence glucocorticoids are 
often prescribed concomitant during the first months as bridging therapy [25]. Still, up 
to 40% of RA patients does not benefit from MTX treatment and discontinue or step-up 
therapy due to adverse events or insufficient response. 

Figure 1. Simplified schematic representation of MTX metabolomic pathway. FOLR=folate receptor, 
SLC=solute carrier receptor family, ABCC=ATP-binding cassette transporter family, ABCG2=ATP-binding cassette 
super family G member2, MTX-PG=methotrexate-polyglutamate, FPGS=folylpolyglutamate synthetase, 
GGH=gamma-glutamyl hydrolase, DHFR=dihydrofolate reductase, MTHFR=methylenetetrahydrofolate reductase, 
TS=thymidylate synthase, ATIC=5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) formyltranfsferase, 
GART=phosphoribosylglycinamide formyltransferase, MTR=methionine synthase, MTRR=methionine synthase 
reductase, MAT=methionine adenosyltransferase, SAM=S-adenosylmethionine, SAH=S-adenosylhomocysteine, 
SAHH= SAH hydrolase.
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Mechanism of action of MTX 
MTX is an antifolate and shares a similar chemical structure with folate, containing one 
glutamate group. Circulating MTX is transported into tissue mainly through the solute 
carrier family 19 member 1/reduced folate carrier (SLC19A1/RFC) [26,27], for which MTX has 
highest affinity (Km= 1-10 μM).  In the intestine, MTX is mainly transported through the 
solute carrier family 46 member 1/proton coupled folate transporter (SLC46A1/PCFT), 
which functions well in an acidic environment [28]. Furthermore, MTX is transported 
through folate receptors (FOLR) 1 and 2 via endocytosis and for which MTX has much 
lower binding affinity (Kd = 10−300 nM) (Figure 1) [29,30]. 
 Intracellularly, the enzyme folylpolyglutamate synthetase (FPGS) attaches 
additional polyglutamate groups to MTX in a process called polyglutamylation, while 
gamma-glutamyl hydrolase (GGH) reverts this action through de-polyglutamylation. 
Polyglutamylation of MTX is required to remain intracellular, because longer MTX-PG 
chains (MTX-PG4-5) are no targets for the ATP binding cassette (ABC) efflux transporter. 
In RA patients, polyglutamylation of up to 5 MTX-PGs has been observed [24,31–34]. Long-
chain MTX-PGs have been associated with better response [24,34] and have shown to have 
higher affinity to its downstream targets. Yet, large longitudinal studies on cellular MTX 
pharmacokinetics and pharmacodynamics are lacking and large inter-patient variability 
in erythrocyte MTX-PGs has been observed, which complicates its use for therapeutic 
drug monitoring. Intracellular downstream targets of MTX include: thymidylate synthase 
(TS) and phosphoribosylglycinamide formyltransferase (GART), which are required 
for DNA synthesis. Additionally, it inhibits dihydrofolate reductase (DHFR) in the 
folate pathway, which is involved in donation of methyl groups for (DNA) methylation 
reactions [35,36]. Another target is the 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) formyltransferase (ATIC), resulting in increased AICAR and enhanced adenosine 
release, which has anti-inflammatory effects [37,38]. Folic acid is prescribed along (but not 
on the same day as) MTX to reduce adverse events, which does not reduce the efficacy 
of MTX [39,40]. As folic acid restores the intracellular folate pool required for DNA synthesis 
and is not related to the release of adenosine, the adenosine pathway is proposed to be 
the most likely mechanism of anti-inflammatory action of MTX [26]. 

PREDICTION OF MTX INEFFICACY

Clinical predictors of response to MTX
Clinical parameters would be easiest to use as predictors for response, since these are often 
readily available without the need for laboratory assessments. Several clinical variables 
have been associated with response to MTX such as symptom duration, baseline Health 
Assessment Questionnaire (HAQ), baseline DAS28 (components), smoking, Body Mass 
Index (BMI), and psychological predictors (i.e. higher Hospital Anxiety and Depression 
Scale anxiety score) [41–43]. However, not all of these predictors have been validated or could 
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not accurately predict insufficient response. Compared to clinical outcomes, biological 
predictors are objective measures of response and are not influenced by the feeling of a 
patient [44], which may therefore improve prediction of treatment response. 

Biological predictors of response to MTX
A biomarker is defined by the World Health Organization (WHO) as: “any substance, 
structure, or process that can be measured in the body or its products and influence or 
predict the incidence of outcome or disease” [45]. An ideal biomarker for MTX response is 
easily accessible and can identify insufficient responders from sufficient responders with 
high sensitivity and specificity. Single nucleotide polymorphisms (SNPs) are an example 
of biomarkers that have the advantage that they are stable over time, easy to measure 
and are present long before clinical symptoms show. The relationship between SNPs and 
response to MTX has therefore been extensively examined in genetic candidate studies 
for genes related to the metabolic pathway of MTX (e.g. in the RFC-1 [46], FPGS, ABCC1, 
ABCC3 [47,48]), in downstream effectors of the MTX pathway (e.g. ATIC, MTHFR, AICAR) 
[46, 49–53], or in genome-wide association studies (GWAS) [50,54]. Previously, we have also 
performed a candidate study, where ABCC3 and ABCB1 were significantly associated with 
treatment response to MTX [47]. Unfortunately, results so far have mainly been inconsistent 
as extensively reviewed [55,56], or could not be replicated due to homogeneous cohorts and 
different outcome measures, except for SLC19A1 rs1051266 [57]. 
 Besides SNPs, epigenetic markers can alter gene expression without changing the 
DNA sequence. A monozygotic twin pair discordant for RA showed that external (lifestyle) 
and internal (pathogenic) factors affected the aetiology of RA through differences in 
DNA methylation [58]. This is in line with other studies that showed a relationship between 
epigenetic changes in relation to RA aetiology and development [59–63]. Hypothetically, 
differences in epigenetic regulation could therefore also be predictive for treatment 
response. So far, few studies have observed a relationship between DNA methylation and 
response to MTX treatment [36,64–68]. Also, non-coding microRNAs [69,70] and a splice variant 
(partial retention in intron 8 of FPGS: 8PR), leading to a dysfunctional FPGS enzyme, were 
associated with non-response to MTX [71]. Overall, much is still unknown about the role of 
epigenetic biomarkers and prediction of MTX response [72,73], hence further investigation 
is required.  
 Once the disease has been diagnosed and symptoms have shown, other biomarkers 
for response may be more predictive for treatment response, which comprise cytokines, 
autoantibodies or metabolites that all play a role in RA pathogenesis and other 
inflammatory diseases [74–76]. Metabolomics comprises all chemical processes and therefore 
directly reflects the current pathogenic phenotype of a cell. Up to now, only a handful of 
metabolic studies in relation to response to MTX in RA patients have been performed 
[75,77–80]. Most studies were metabolic profiling studies and targeted metabolites in the MTX 
pathway [77,81]. Besides low erythrocyte-folate, that was suggested to reflect insufficient 
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uptake/metabolism of MTX, other 1-carbon metabolites such as homocysteine, vitamin 
B12 or B6 were assessed without success [81]. To date, still not all metabolic targets of 
MTX have been fully understood; hence new biomarkers could have been missed using 
a targeted approach. Moreover, metabolites are components of large interconnected 
pathways and information on underlying pathways may give more insight in relation to 
response. That, and the fact that these cover all possible targets is why untargeted “-omic” 
studies (e.g. transcriptomics, proteomics, metabolomics) may be more suitable for the 
search of new potential biomarkers of insufficient response to MTX. Of all -omic fields, 
metabolomics is closest to the biological phenotype of a cell and directly reflects current 
chemical cellular processes. Therefore, metabolomics might provide the highest chance 
of finding new predictors for insufficient response. 

Prediction models: the era of machine learning
Given that RA is a multidisciplinary disease, single predictors are unlikely to be strong 
enough to predict insufficient treatment response. That is why we and others already 
proposed prediction models combining multifactorial predictors (e.g. genetics, life style 
predictors, clinical and laboratory variables) to identify insufficient responders [42,82–89]. 
These models were all based on multivariable logistic regression.
 In view of the development of untargeted/-omic approaches, more complex and 
much larger datasets are obtained. This pile of data has lead to the introduction of machine 
learning algorithms into the healthcare domain [90–93]. Machine learning algorithms 
facilitate examination of complex (non-) linear associations in large datasets. As a matter 
of fact, these algorithms are data-driven instead of hypothesis driven and are designed to 
make predictions on unseen data. Besides, internal cross-validation of the models leads to 
increased generalization of the models and improve clinical applicability.  Considering this, 
machine-learning algorithms may outperform classical statistical approaches in prediction 
of non-response to MTX therapy in RA. The use of machine-learning algorithms already 
showed promising results in the prediction of treatment response (MTX and Etanercept) 
in juvenile idiopathic arthritis (JIA) patients [94,95] and to bDMARDs in RA patients [96,97]. 
However, these studies did not compare conventional logistic regression to machine-
learning algorithms in parallel, hence it is unclear whether machine-learning algorithms 
result in superior prediction of insufficient response or whether similar predictive results 
could be achieved using logistic regression.   
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AIMS AND OUTLINE OF THIS THESIS

The ultimate aim is to enable prescription of personalized treatment in RA patients 
according to a personal risk score instead of “one-drug-fits-all” approach (Figure 2). To 
reach this goal, the primary aim of this thesis is to develop a prediction model to identify 
insufficient responders to MTX prior to treatment start. Secondary aims were to examine 
potential new 1) epigenetic predictors of insufficient response: global DNA (hydroxy)
methylation and genome wide DNA methylation and 2) metabolomic predictors using 
an untargeted  approach. Finally, we will externally validate a previously developed 
prediction model [82] and assess whether machine learning algorithms can improve the 
predictive power of the model. 
 The thesis outline, covering above mentioned aims will be as follows:  Chapter 2 
we examine whether DNA methylation and hydroxymethylation are stable upon storage 
to investigate if stored material can be used in epigenetic studies. In Chapter 3, we 
investigate if global DNA methylation is associated to response to MTX in RA patients. This 
research is extended in Chapter 4, where genome-wide DNA methylation and response 
to MTX in treatment naïve RA patients is assessed. In Chapter 5, we focus on potential 
metabolic predictors and therefore perform an untargeted metabolomics study prior to 
treatment in relation to response to MTX. A previously developed prediction model for 
insufficient response to MTX will be validated in an external cohort in Chapter 6, where 
we will also enhance the model for clinical implementation. Finally, in Chapter 7, we study 
whether machine-learning algorithms perform better in the prediction of insufficient 
response compared to conventional multivariable logistic regression analysis. 
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ABSTRACT

Background:  Epigenetic markers are often quantified and related to disease in 
stored samples. While, effects of storage on stability of these markers have not been 
thoroughly examined. In this longitudinal study, we investigated the influence of 
storage time, material, temperature, and freeze-thaw cycles on stability of global 
DNA (hydroxy)methylation.

Methods: EDTA blood was collected from 90 individuals. Blood (n = 30, group 1) and 
extracted DNA (n = 30, group 2) were stored at 4°C, -20°C and -80°C for 0, 1 (endpoint 
blood 4°C), 6, 12 or 18 months. Additionally, freeze-thaw cycles of blood and DNA 
samples (n = 30, group 3) were performed over three days. Global DNA methylation 
and hydroxymethylation (mean ± SD) were quantified using liquid chromatography-
electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with between-
run precision of 2.8% (methylation) and 6.3% (hydroxymethylation). Effects on 
stability were assessed using linear mixed models.

Results:  global DNA methylation was stable over 18 months in blood at -20°C 
and -80°C and DNA at 4°C and -80°C. However, at 18 months DNA methylation 
from DNA stored at -20°C relatively decreased -6.1% compared to baseline. Global 
DNA hydroxymethylation was more stable in DNA samples compared to blood, 
independent of temperature (p = 0.0131). Stability of global DNA methylation and 
hydroxymethylation was not affected up to three freeze - thaw cycles.

Conclusion: Global DNA methylation and hydroxymethylation stored as blood and 
DNA can be used for epigenetic studies. The relevance of small differences occuring 
during storage depend on the expected effect size and research question.
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INTRODUCTION

With the introduction of the term ‘epigenetics’ and the development of more accurate 
techniques to quantify epigenetic changes, this field has gained more interest over the 
last thirty years [1]. Epigenetics comprises the reversible process of DNA and histone 
modifications that alter gene expression without changing the DNA sequence. DNA 
methylation is the most studied epigenetic modification, which involves the addition 
of a CH3  group to the DNA, which is in humans predominantly found on cytosines 
(5-methylcytosine; 5mC) [2]. DNA methylation can be actively de-methylated through 
the oxidation by Ten-eleven-Translocation (TET) enzymes to 5-hydroxymethylcytosine 
(5hmC) which can also act as an epigenetic modifier itself [3,4]. DNA methylation and 
hydroxymethylation have previously been associated with several diseases like cancer, 
heart disease, autoimmune diseases, and neurological disorders [5–10], and are therefore 
potential biomarkers for disease onset, progression, or response to medication [11]. DNA 
is required for epigenetic studies, which is mainly extracted from blood samples that 
have been collected from patients over several years and has therefore been stored for 
different time periods prior to the start of a study. Despite the increasing number of 
studies that relate differences in DNA (hydroxy)methylation to disease, only a handful of 
studies have examined the effect of storage material and temperature on the stability 
of global DNA methylation over longer storage duration. These studies, focused either 
at DNA methylation of targeted regions for specific research questions or only included 
a few subjects [12–18]. Stability of DNA hydroxymethylation was examined in even fewer 
studies. An increase in DNA hydroxymethylation was observed at two different sites in 
brain tissue of Alzheimer patients compared to age-matched controls [19], which was not 
influenced by tissue storage time. Unfortunately, storage duration and temperature were 
not specified in this study.
 In this longitudinal study, we examined the stability of global DNA methylation and 
DNA hydroxymethylation in EDTA blood and extracted DNA samples at three different 
temperatures (4°C, −20°C, −80°C) for the duration of 0, 1, 6, 12 and 18 months. Additionally, 
we investigated the effect of freeze-thaw cycles on the stability of global DNA (hydroxy)
methylation.

METHODS

Subjects and study design
EDTA whole blood was collected from leftover blood samples of the department of clinical 
chemistry at the Erasmus MC University medical centre of 90 individuals and divided into 
three groups of 30 individuals. Blood from patients from the oncology department was 
excluded due to the chance of decreased white blood cell concentrations, required for 
DNA extraction. None of the subjects included in the study objected for the use of their 
material for scientific research (opt in-opt out procedure) and all samples were anonymized 
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after collection and the study follows the principles of the Declaration of Helsinki of 1975. 
4 mL EDTA blood of the first 30 subjects (group 1) was stored in aliquots of 375 μL. From 
the second group, 4 mL EDTA blood was used to extract DNA, where after DNA samples 
were stored in aliquots of 25 μL. Blood and DNA aliquots were stored at three different 
temperatures (4°C, −20°C, −80°C) for 1, 6, 12 or 18 months prior to (hydroxy)methylation 
quantification (Figure 1). Blood samples stored at 4°C were stored for 1 month, as 
blood storage at this temperature is usually short term. From all subjects, one sample 
was processed and quantified immediately, which was used as baseline measurement. 
From the third group, 1.6 mL EDTA blood was collected of which half was used to store 
blood samples and half was used to extract and store DNA. Blood and DNA samples of 
this group were used to assess the effect of freeze-thaw cycles over three consecutive 
days after blood collection (0, 1, 2, 3 times) on the stability of DNA (hydroxy)methylation. 
DNA and blood samples were frozen at −80°C and thawed at room temperature on a 
laboratory tube roller for 2 h (=1 cycle) before they were refrozen or further processed 
for DNA (hydroxy)methylation quantification. DNA (hydroxy)methylation was quantified 
within the same day in all samples.

DNA extraction

DNA was extracted from EDTA whole blood using the MagNA Pure Compact Nucleic Acid 
Isolation Kit I, following manufacturer’s protocol (cat.no: 03730964001, Roche Molecular 
Biochemicals®) [10]. DNA concentrations were assessed using a NanoDrop ND-1000 
Spectrophotometer with DNA-50 default settings (NanoDrop Technologies, Wilmington, 
DE, USA).

Figure 1. Experimental set up of material stored at different temperatures. EDTA blood of 30 individuals 
and extracted DNA samples of another 30 individuals were aliquoted and stored at three different temperatures 
for different time durations as indicated. Blood samples stored at 4°C were stored for one month only. Baseline 
samples were immediately processed and quantified which is why no storage temperature was given (-).
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DNA (hydroxy)methylation quantification
Quantification of DNA (hydroxy)methylation was performed using a liquid 
chromatography – electrospray ionization – tandem mass spectrometry (LC-ESI-MS/MS) 
method, as previously described [10]. To reduce technical variances, a batch sample of 
internal standard and a batch calibration curve (stored at −80°C) were used for (hydroxy)
methylation quantification at each time point. For hydroxymethylation, samples with 
analyte areas <50 000 were excluded, as these were too low to correctly quantify DNA 
hydroxymethylation. For DNA methylation, all areas were above 50 000. As an additional 
quality check, we assessed the ratios between areas of the quantifier and qualifier of 
2’-deoxyguanosine, as these should be similar each day. DNA methylation samples in 
which this ratio deviated >10% from the mean of that day, were excluded. A random 
DNA sample was stored in batches of 27 ng/µL at −80°C which was used as batch control: 
these samples were digested and quantified in each run together with the rest of the 
samples and acted as quality control. The method was previously validated. To determine 
precision 5-hmdC/2-dG and 5-mdC/2-dG were quantified in fourfold over 5  days in 
DNA samples with low (27 ng/µL) and high (54 ng/µL) concentrations. Results of the 
precision experiment are shown in Table 1. Samples were all diluted to 30 ng/µL, hence 
for this study, we compared samples to the precision of the method for the low DNA 
concentration (27 ng/µL). The LLOQ for DNA hydroxy(methylation) was 10 ng/mL, which 
was determined according to Clinical Laboratory and Standards Institute (CLSI) protocol 
EP-17a. To determine the dynamic range of the method, a random DNA sample of 27 ng/
ul was spiked with 6 increasing concentrations, each measured in quadruple. Linearity 
was assessed using a lack-of-fit test using the Excel plug-in Analyse-it, where values <3.29 
were considered linear. The range and corresponding lack-of-fit measure were as follows: 
5-hmdC between 5.9 and 36  nM (lack-of-fit  =  0.16), 5-mdC between 552 and 3553  nM 
(lack-of-fit = 2.47) and 2-dG between 13159 and 23159 nM (lack-of-fit = 2.22).

Table 1. Precision results of method validation.

Component DN concentration (ng/µL) Within-run CV% Between-run CV%

5-hmdC/2-dG 27 6.3 6.3

54 7.6 7.7

5-mdC/2-dG 27 1.7 2.8

54 1.5 2.5

CV=coefficient of variation. 

Statistics
Percentages of global DNA (hydroxy)methylation were presented as mean ± standard 
deviation (SD). Linear mixed models were used to assess changes in DNA (hydroxy)
methylation over time. Main effects included in the models were: temperature, material, 
and time. To assess whether DNA (hydroxy)methylation changed differently over time for 
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DNA and blood samples stored at different temperatures, two and three-way interaction 
terms between temperature, material, and time were examined. The models with two-
way interaction terms and a model with a three-way interaction term between time, 
material, and temperature were compared using a chi-square log likelihood ratio test, 
where a p-value <0.05 was considered a significant difference. Additionally, overall 
model qualities were assessed using the Akaike information criterion (AIC), where the 
lower the AIC the better the model fits the data. Here, a difference of at least two AIC 
units was considered a significantly better fit [29]. Upon significance of (higher-term) 
interactions, all lower-term interactions were kept in the model to keep the models 
hierarchically well formulated (HWF) [30,31]. Additionally, to assess whether DNA (hydroxy)
methylation was stable over time, we completely removed time from the model and 
compared the model with and without time component. Upon a change of ≥2 units in 
AIC upon removal of the time component, time was considered significantly important 
for the model, meaning that there are changes over time. Random effects included in 
the model were: (A) random intercept for time (accounting for inter-subject variability in 
(hydroxy)methylation levels at baseline, which may influence stability over time) and (B) 
random slopes for subjects (hydroxymethylation) or for subjects grouped within storage 
temperature (methylation), adjusting for the fact that samples from the same subject 
were higher correlated over time than from different subjects. Final model for the analysis 
of DNA methylation over time per condition was: lme(fixed = methylation ~ material * 
temperature * time, random = ~time|id/temperature) and for DNA hydroxymethylation: 
lme(fixed = hydroxymethylation ~ temperature + material * time, random = ~time|id). For 
the analysis of freeze-thaw cycles on the stability of DNA (hydroxy)methylation we used 
a linear mixed model including fixed effects for: material and number of cycles (cycles) 
and the following random effects: random intercept and random slope for subjects (id). 
Final models for both DNA methylation and hydroxymethylation upon freezing and 
thawing were as followsꓽ lme(data = DF, fixed = (hydroxy)methylation ~ material * cycles, 
random = ~ 1 | id). All analyses were performed in R studio (R version 3.6.1 (2019–07-05)) 
using the linear mixed effect model (lme) function of the ‘nlme’ package and were fitted 
using the maximum likelihood ‘ML’ method [32].

RESULTS

Stability over time and under different storage conditions
Global DNA methylation
The effects of storage time, temperature, and material were assessed in the same model 
showing that global DNA methylation significantly changed over time, as the model 
including the time variable (Akaike information criterion; AIC  =  −819.06) significantly 
better fit the data (p < 0.0001) than the model without time variable (AIC = −685.23). To 
assess whether this significant change over time was affected by the type of material or 
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storage temperature a three-way interaction between time, material, and temperature 
was performed, which was significant (p < 0.0001; Supplementary Table S1), indicating 
that DNA methylation evolved significantly different over time between blood and DNA 
samples and between samples stored at different temperatures. Global DNA methylation 
was not significantly different in blood and DNA samples stored at 4°C (when compared 
over 1  month), nor between blood and DNA samples stored at −80°C (compared over 
18 months) (Figure 2; Supplementary Table S2). Global DNA methylation in blood and 
DNA samples was stable at −20°C up to 12 months (Figure 2). However, after 12 months 
mean global DNA methylation in DNA samples stored at −20°C decreased and slightly 
deviated from the slope of EDTA blood samples (Figure 2; Supplementary Table S2). 
After 18 months, mean global DNA methylation in these DNA samples was 4.15 ± 0.23, 
which is a relative decrease of 6.1% compared to baseline (4.42  ±  0.11). In all other 
conditions, relative differences fluctuated between 0.5% and 4.1% compared to baseline 
(Supplementary Table S2), which is more comparable to the precision of the method 
(coefficient of variation; CV% = 2.3%).

Figure 2. DNA (hydroxy)methylation over time for blood and DNA samples stored at different 
temperatures. Mean ± SD DNA methylation (upper panel) and hydroxymethylation (lower panel) quantified in 
samples stored as blood (solid line) or DNA (dashed line). The slope is calculated for 1.5 year from the linear mixed 
model summary. *Blood samples stored at 4°C were stored for one month only, so the slope was calculated for 
1 month.
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Global DNA hydroxymethylation
The influence of time, material, and temperature on the stability of global DNA 
hydroxymethylation was assessed in a linear mixed model. Global DNA hydroxymethylation 
changed significantly over time as the AIC of the model including time variable 
(AIC  =  −5944.98) fit the data significantly better (p  <  0.0001) compared to the model 
without time variable (AIC  =  −5920.03). Changes over time were significantly different 
for blood and DNA samples, which is described by the significant two-way interaction 
between time and material (p  =  0.0131; Supplementary Table S1), but independent of 
storage temperature, as a three-way interaction between time, material, and storage was 
not significant and therefore excluded from the model (Supplementary Table S1). Up to 6 
months of storage, there was no difference in global DNA hydroxymethylation between 
blood and DNA samples (Figure 2). However, global DNA hydroxymethylation slightly 
increased in blood samples after 6 months but did not change in DNA samples (Figure 2).  
Over 12  months, mean global DNA hydroxymethylation in blood samples stored at 
−20°C and −80°C increased to 0.040 ± 0.007 and 0.039 ± 0.008, respectively, which are 
relative changes of 17.6% and 14.7% compared to baseline (0.034 ± 0.005). Global DNA 
hydroxymethylation stored at −20°C also increased relatively with 12.5% at 12  months 
compared to baseline. Under all other conditions, differences over time were smaller 
and fluctuated between 0.0% and 9.4% relative to baseline. After 12 months, global DNA 
hydroxymethylation in blood and DNA samples stored at these temperatures decreased 
again to a relative difference of ≤6.3% compared to baseline, which is within the precision 
of the method (CV = 7.2%). At 18 months, fewer global DNA hydroxymethylation samples 
could be quantified from blood due to lower DNA yield upon extraction, especially from 
blood samples stored at −20°C (Supplementary Table S2).

Stability after repetitive freezing and thawing
DNA methylation assessed in stored blood or extracted DNA upon freezing and 
thawing fluctuated between 4.23  ±  0.20 and 4.29  ±  0.17 over three cycles (Figure 3   
and supplementary Table S3), which was no significant change (p  =  0.7904). Changes 
compared to baseline were all <1%, which is within the within-run precision of the method 
(CV = 1.7%). 

For global DNA hydroxymethylation in stored blood and extracted DNA samples, mean 
global DNA hydroxymethylation fluctuated between 0.034 ± 0.005 and 0.036 ± 0.008 upon 
freezing and thawing. Relative differences compared to baseline were all <6%. Although, 
this change was significant (p = 0.0169; Supplementary Table S3), these differences were 
within the within-run precision of our method (CV = 6.3%).
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DISCUSSION

For the use of stored samples in epigenetic studies it is important to know whether the 
stability of epigenetic markers is affected by storage conditions like time, material and 
temperature. In this study, we therefore examined the effect of these storage conditions 
on the stability of DNA methylation and hydroxymethylation. We showed that overall 
global DNA methylation and global DNA hydroxymethylation are stable when stored as 
blood or extracted DNA over a period of 18  months. However, storage of DNA at −20°C 
for longer than 12 months led to a significant but small decrease of 6.1% in global DNA 
methylation relative to baseline. Global DNA hydroxymethylation was more stable in stored 
DNA compared to blood after 6 months, which was independent of storage temperature. 
Furthermore, freeze-thaw cycles did not influence the stability of global DNA methylation 
and hydroxymethylation. Considering all this, we would recommend to store samples as 
extracted DNA at −80°C.
 We have chosen storage temperatures and time according to daily practice. 
Therefore, EDTA blood at 4°C was stored for 1 month as in most laboratories longer storage 
takes place at −20°C or −80°C. Although global DNA methylation in blood samples stored 
at 4°C for 1 month slightly decreased, this decrease was similar to that in blood stored at 
−20°C and −80°C and to DNA samples stored at 4°C during the first month, where after 
mean methylation in all these conditions increased again towards the mean of baseline 
measurements. These changes lay within the precision of the method, indicating that 
these are probably due to between-run variances.
 Mean DNA methylation levels were comparable to previously reported levels 
quantified by liquid chromatography – electrospray ionization – tandem mass spectrometry 

Figure 3. Effect of freezing and thawing on the stability DNA (hydroxy)methylation. Mean percentage DNA 
methylation (left) and hydroxymethylation (right) for 0 (fresh material), 1, 2 or 3 freeze-thaw cycles. Error bars 
represent the standard deviation.
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(LC-ESI-MS/MS) with mean DNA methylation between ~2 − 5% and hydroxymethylation 
of ~0.03% [20–22]. These DNA methylation levels are also comparable to quantification using 
enzyme-linked immunosorbent assay (ELISA) – based methods with mean levels in the 
same range [23]. However, LC-MS has been shown to be more specific compared to ELISA-
based methods [24]. Other methods that are used as a proxy for global DNA methylation 
usually measure highly repetitive and densely methylated regions, which is the case 
for long interspersed nuclear elements (LINE-1) and short interspersed nuclear elements 
(SINE), together constituting of ~30% of the genome. Because these regions are highly 
methylated, quantification of DNA methylation results in higher percentages (>50%). For 
the quantification of actual global DNA methylation and hydroxymethylation percentages 
LC-MS/MS is the gold standard, while for other research questions other methods could 
be considered [24,25].
 Few other groups investigated the stability of global DNA methylation. One study 
observed a strong decrease in global DNA methylation upon three days of whole blood 
storage at room temperature, 4°C and −80°C, assessed using a dot-blot assay [16]. They 
observed a strong decrease in DNA methylation, however, this was a small study, including 
10 subjects only and the decrease was accompanied by a decrease in DNA concentration 
due to white blood cell lysis. In another study, the authors examined mean methylation 
of multiple CpG sites grouped within specific genomic regions (transcription start site, 
promoter, gene body, CpG islands, and shores) assessed by bisulphite conversion followed 
by pyrosequencing. In line with our results, they observed similar methylation patterns 
over time for DNA extracted from stored blood (4°C, -80°C) for 20 years and fresh samples. 
Like in our study, small differences over time were observed; however, their study design 
was cross-sectional and ours longitudinal. They observed that the variation between 
fresh samples and stored samples was similar, indicating that there was no real effect of 
storage [15]. In our study, we observed small differences over time that were comparable to 
the precision of the method, with the exception of stored DNA at −20°C after 12 months 
and blood after 12 months, here we saw a relative decrease in global DNA methylation 
and a relative increase in global DNA hydroxymethylation respectively that exceeded the 
precision of the method.
 In contrast to our study, most studies focused on the stability of DNA methylation 
at candidate genes. These results depended on the targeted site, the technique used and 
the material stored. Schröder et al. for instance observed a strong increase in mean DNA 
methylation in the intron 1 of HIF3A gene of blood stored at room temperature, 2–8°C, 
−20°C and −70°C, after 10 months of storage, assessed using bisulphite sequencing [17]. 
While, others did not find significant differences in the hypermethylated promoter region 
of testis-specific histone 2B (TSH2B) and the hypomethylated transcription start site of 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) quantified using methylated DNA 
immunoprecipitation coupled with next-generation sequencing (MeDIP-seq) in dried 
blood spots (DBS) stored at room temperature for 16 years compared to freshly extracted 
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material [26]. Thus, global DNA methylation is mainly stable upon storage, however, changes 
may occur at gene-specific sites.
 Finally, stability of global DNA methylation and hydroxymethylation were not 
affected by freezing and thawing of blood or DNA samples for at least three freeze-thaw 
cycles at −80°C, which is in accordance with Li and colleagues who observed no effect 
of freeze-thaw cycles on DNA methylation [15]. Additionally, to our knowledge we were 
the first to assess the stability of global DNA hydroxymethylation, thus more studies are 
required to confirm our findings.
 Strengths of this study are that this is a longitudinal study, excluding potential 
differences due to inter-subject variability over time. Relative to other studies, our study 
groups were large, as most studies assessing DNA methylation stability only included 
6–10 subjects per condition. Additionally, for all subjects, fresh material was collected 
and stored at the same time, so there was no time-to storage variability between the 
samples and samples from similar materials were quantified at the same time to reduce 
between-run variability. Additionally, global DNA methylation and hydroxymethylation 
were quantified using a global LC-MS/MS method, which is the gold standard method for 
analysis of global DNA methylation and enables to assess mean stability of methylated 
and hydroxymethylated cytosines all over the genome [27]. An advantage of our method 
over other global DNA methylation methods is that no bisulphite conversion nor 
whole genome amplification is required to distinguish methylated from unmethylated 
cytosines, which minimizes the risk to introduce biases. Also, in our study DNA was 
digested into single nucleotides representing cytosines from the whole genome instead 
of a surrogate measure for global DNA methylation, like repetitive elements. Additionally, 
DNA hydroxymethylation was quantified simultaneously, which allows us to compare 
DNA methylation and hydroxymethylation within the same samples. A limitation of the 
method is that we cannot draw conclusions from stability at targeted CpG sites, while 
methylation at some sites have been shown to be more stable than others.
 Other limitations of our study are that we did not account for cell type ratios. From 
literature, it is known that different cell types have different (hydroxy)methylomes [28].  
Previously, it was suggested that some cell types are more stable than others upon 
storage, which may lead to different cell type ratios upon cell lysis and consequently in 
different DNA methylation percentages [17]. Although, in our study, this seems unlikely as 
we then would expect to find changes in blood samples over time and not in stored DNA 
samples, which was not the case.
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CONCLUSION

In conclusion, overall global DNA (hydroxy)methylation was stable. However, small 
significant differences over time were observed in global DNA methylation and global 
DNA hydroxymethylation upon storage. Therefore, when samples are stored for extended 
periods of time or when samples are stored for different time durations, small differences 
in relation to disease should be interpreted with caution. Subsequently, for the assessment 
of global DNA (hydroxy)methylation, samples can best be stored at −80°C as extracted 
DNA.
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SUPPLEMENTAL MATERIAL

Supplementary Table S1. Final linear mixed model variables.

Methylation Hydroxymethylation

numDF denDF F-value p-value numDF denDF F-value p-value

(Intercept)
Material
Time
Temperature
Time:temperature
Time:material
Material:temperature
Material:time:temperature

1
1
1
2
2
1
2
2

612
58

612
116
612
612
116
612

243198.57
0.12
9.56
1.48
4.94
5.62
0.70

17.83

<.0001
0.7319
0.0021
0.2319
0.0074
0.0180
0.4994
<.0001

1
1
1
2

1

706
58

706
706

706

3882.46
0.60

12.60
3.45

-
6.18

-
-

<.0001
0.4414
0.0004
0.0324

0.0131

F test for all fixed effects in the model for the course of DNA methylation (left) and hydroxymethylation (right).  
Colons indicate two – or three way interactions between predictors. A dash indicates that the predictor was not 
included in the model as it was not significant. All lower-order interaction terms were kept in the model as long 
as higher order interaction terms were significant. numDF= degrees of freedom numerator , denDF= degrees of 
freedom denominator.

Supplementary Table S3. Linear mixed model for freeze-thaw cycles.

Methylation Hydroxymethylation

numDF denDF F-value p-value numDF denDF F-value p-value

(Intercept)
Freeze-thaw cycles
Material

1
3
1

194
194
194

30570.62
0.348
0.771

<.0001
0.7904
0.3810

1
3
1

151
151
151

882.93
3.510
0.642

<.0001
0.0169
0.4242

F test for all fixed effects in the model for the course of DNA methylation (left) and hydroxymethylation (right) 
upon freeze-thaw cycles. numDF= degrees of freedom numerator , denDF= degrees of freedom denominator.
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ABSTRACT

Background: Low-dose methotrexate (MTX) is the first-line therapy in early 
rheumatoid arthritis (eRA). Up to 40% of eRA patients do not benefit from MTX 
therapy. MTX has been shown to inhibit one-carbon metabolism, which is involved 
in the donation of methyl groups. In this study, we investigate baseline global DNA 
methylation and changes in DNA methylation during treatment in relation to clinical 
non-response after 3 months of MTX treatment.

Methods: Two hundred ninety-four blood samples were collected from the 
Treatment in the Rotterdam Early Arthritis Cohort (tREACH, ISRCTN26791028), a 
multicenter, stratified single-blind clinical trial of eRA patients. Global DNA (hydroxy)
methylation was quantified using liquid chromatography-electrospray ionization-
tandem mass spectrometry (LC-ESI-MS/MS) and validated with a global DNA LINE-
1 methylation technique. MTX response was determined as ΔDAS28. Additionally, 
patients were stratified into two response groups according to the European League 
Against Rheumatism (EULAR) response criteria. Associations between global DNA 
methylation and response were examined using univariate regression models 
adjusted for baseline DAS28, baseline erythrocyte folate levels, and body mass index 
(BMI).

Results: Higher baseline global DNA methylation was associated with less decrease 
of DAS28 (β = 0.15, p = 0.013) and with MTX non-response (OR = 0.010, 95% CI = 0.001–
0.188). This result was validated in LINE-1 elements (β = 0.22,  p = 0.026). Changes 
in global DNA (hydroxy)methylation were not associated with MTX response over 
3 months.

Conclusions: These results show that higher baseline global DNA methylation in 
treatment naïve eRA patients is associated with decreased clinical response after 
3 months of treatment of eRA patients and can be further evaluated as a predictor 
for MTX therapy non-response. 
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BACKGROUND

Rheumatoid arthritis (RA) is an autoimmune disease affecting about 1% of the world’s 
population [1]. The disease onset is unknown; nevertheless, medication can restrain 
disease activity and permanent joint damage. The disease-modifying anti-rheumatic drug 
(DMARD) methotrexate (MTX) is the first-line therapy in early rheumatoid arthritis (eRA) 
[2] and is often prescribed in combination with sulfasalazine (SSZ), hydroxychloroquine 
(HCQ), and corticosteroids. Up to 40% of treated patients do not adequately respond to 
therapy and need to switch to expensive biologicals after 3 to 6 months of therapy, or 
withdraw because of severe adverse events [3]. Therefore, new biomarkers are required to 
distinguish non-responders prior to treatment.
 MTX is a folate antagonist of which the underlying mechanism in RA is still not fully 
elucidated. MTX was originally designed for cancer therapy to inhibit DNA synthesis by 
inhibiting key intracellular enzymes in folate metabolism. These include dihydrofolate 
reductase (DHFR) and thymidylate synthase (TS). The anti-inflammatory mechanism 
of action of low-dose MTX treatment used in eRA probably relates to the inhibition of 
key enzymes in the purine de novo synthesis pathway and release of anti-inflammatory 
adenosine [4]. MTX also inhibits methionine S-adenosyltransferase (MAT), followed by the 
inhibition of S-adenosyl methionine (SAM) in vivo and in vitro [5, 6]. SAM is responsible for 
the donation of methyl groups required for global DNA methylation. MTX is therefore 
hypothesized to inhibit global DNA methylation, although elevated global DNA 
methylation was observed in peripheral blood mononuclear cells (PBMCs) of MTX-
treated patients [7]. If the effect of MTX is related to a decrease in global DNA methylation 
through inhibition of MAT and SAM, then we hypothesize that higher baseline global DNA 
methylation might be more difficult to inhibit and therefore affects MTX responsiveness.
 In the current prospective study, we investigated whether higher baseline global 
DNA (hydroxy)methylation in leukocytes of early RA patients is associated with MTX 
clinical non-response over the first 3 months of treatment. Furthermore, we assessed 
whether a lesser decrease in global DNA methylation during treatment or higher global 
DNA methylation at 3 months of MTX treatment was associated with MTX clinical non-
response.

MATERIALS AND METHODS

Subjects and samples
Four hundred ninety-six subjects were eligible from the Treatment in the Rotterdam 
Early Arthritis Cohort (tREACH, ISRCTN26791028), a multicenter, stratified single-blind, 
randomized controlled trial of eRA patients, as previously described [8]. In brief, included 
patients were diagnosed with RA based on the American College of Rheumatology (ACR) 
1987 classification criteria for RA [9] and were categorized in high, intermediate, or low 
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probability groups for persistent disease, according to the Visser prediction model [10]. All 
patients who received MTX mono or combination (MTX + corticosteroids and MTX + SSZ 
+ HCQ + corticosteroids) therapy were enrolled in this study (n = 336). An escalating dose 
of MTX was prescribed in the first 3 weeks from 10 mg (week 1) up to 17.5 mg (week 2) and 
25 mg (week 3). Additionally, all patients received weekly 10 mg folic acid, at least 24 h 
after MTX administration, as recommended [2]. Whole blood leukocytes were collected 
at baseline (T0) and after 3 months of MTX therapy (T3) and stored at − 80 °C. This study 
was approved by the medical ethics committee of the Erasmus University Medical Center: 
MEC-2006-252. Medical ethics committees at each participating center approved the 
study protocol, and written informed consent was obtained for all patients.

LC-ESI-MS/MS

DNA digestion
Genomic DNA was isolated using the MagNA Pure Compact Nucleic Acid Isolation Kit 
(Roche Molecular Biochemicals®) according to the manufacturer’s instructions. DNA 
concentration was quantified using a NanoDrop ND-1000 Spectrophotometer with DNA-
50 default settings (NanoDrop Technologies), and 260/280 ratios ~ 1.8 were considered 
pure DNA. Samples were stored at − 80 °C and diluted to 30 ng/μl 1 day prior to the start 
of the experiment. Six hundred nanograms of genomic DNA was added to the following 
digestion mixture: 1 μl DNA Degradase Plus™ enzyme (5 U/ml, Zymo Research®), 2.5 μl 
10× DNA Degradase Reaction Buffer, and 1.5 μl Milli-Q, with a total reaction volume of 
25 μl. The samples were centrifuged for 1 min at 3100 rpm and placed in a Thermo Mixer®C 
(Eppendorf ) for 5 h at 37 °C, followed by an enzyme heat inactivation step for 20 min at 
70 °C.

Quantification of global DNA (hydroxy)methylation
Following DNA degradation, the 25 μl reaction volume was 1:1 diluted with an Internal 
Standard mixture (IS, 19.2 nM 5-hmdc-d3, 205 nM 5-mdc-d3, 1.84 μM 2-dG-15N5). A 
calibration curve was made as follows: for each component, a calibrator was diluted to 
a final concentration of 10 nM (5-hmdC), 1000 nM (5-mdC), and 20,000 nM (2-dG), which 
were then serially 1:1 diluted to 0 in 5 steps. Of each dilution, 400 μl was added to 600 μl of 
diluted IS. Global DNA methylation and hydroxymethylation were measured using liquid 
chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in 
the positive ionization mode. Twenty microliters was injected on a T3-high strength silica 
column (Acquity UPLC®, Waters, C18, 2.1 × 100 mm, 1.8 μm) at 35 °C. 0.1% formic acid in 
Milli-Q (A), and acetonitrile (B) was used as the mobile phase at a flow rate of 0.20 ml/min. 
The following gradient was used: 0–0.5 min (98% A and 2% B), 5 min (0% A and 100% B), 
5.50 min (0% A and 100% B), 5.51 min (98% A and 2% B), and 7 min (98%A and 2%B), where 
all gradient steps were linear. An aliquoted DNA sample was measured as quality control 
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(QC) in every run to uncover potential errors during sample preparation and DNA (hydroxy)
methylation quantification. The coefficient of variation (%CV) was calculated from all the 
QC measurements (n = 24) and was 2.4% for methylation and 7.7% for hydroxymethylation 
measurements. The percentage of (hydroxy)methylation was calculated in relation to the 
total guanine concentration, using the following formulas:

“%5mdC = (nM 5mdC/nM 2-dG) x 100”
“%5hmdC = (nM 5hmdC/nM 2-dG) x 100”

 
Sequenom EpiTYPER LINE-1 assay
LINE-1 global DNA methylation was determined in DNA from leukocytes, isolated using 
the Sequenom EpiTYPER® assay (Agena Bioscience™) as previously described [11,  12]. 
Briefly, 500 ng of purified genomic DNA was treated with sodium bisulfite to distinguish 
methylated from non-methylation cytosines using the EZ DNA MethylationTM Kit (Zymo 
Research®) according to the manufacturer’s instructions. Converted DNA concentrations 
were quantified using a ND-1000 NanoDrop Spectrophotometer (NanoDrop Technologies 
Inc.) using the RNA-40 default settings, as recommended (Zymo Research®). Bisulfite-
converted DNA was stored no longer than 1 month at − 80 °C or until the experiment was 
performed. A LINE-1 bisulfite-targeted PCR was performed on the C-1000 Touch Thermal 
Cycler™ (Bio-Rad) using the following primers: 5’aggaagagagGTGTGAGGTGTTAGTGTGTT
TTGTT-3’and 3’cagtaatacgactcactatagggaggaaggctATATCCCACACCTAACTCAAAAAAT-’5. 
The PCR was followed by Shrimp Alkaline Phosphatase treatment, RNA transcription, 
and Sequenom analysis as previously described [12]. A mixture consisting of 100% 
enzymatically methylated DNA and 0% methylated DNA, due to a genetic knockout for 
methyltransferases, resulted in 50% DNA methylation and was used as a positive control 
during all steps. Milli-Q water was used as a negative control. DNA methylation was 
quantified using a Matrix-assisted Laser Desorption/Ionization-Time Of Flight (MALDI-
TOF) MassARRAY® (Sequenom) analyzer according to the manufacturer’s instructions. 
Methylation percentage was calculated using the following formula: % Methylation = (area 
methylate peak)/(area unmethylated peak + area methylated peak) × 100. All samples 
were measured in triplet and samples with a variation coefficient (CV) of > 10% were 
checked for outliers by means of Dixon’s  Q  test. Outliers were removed, and if CV still 
exceeded 10% for the remaining duplicate, the sample was excluded. Twelve CpG sites 
were present within the LINE-1 PCR fragment of which CpG 6.7, CpG 8.9, and CpG 11.12 
were combined, since these sites could not be separated. CpG 4 could not be analyzed 
because of a silent signal, and CpG 10 could not be analyzed due to a low mass fragment. 
Finally, the following seven CpG sites (CpG1, CpG2, CpG3, CpG5, CpG6.7, CpG8.9, and 
CpG11.12) were analyzed for differences in methylation [12].
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Statistical analysis
We performed paired analysis to assess the change in global DNA (hydroxy)methylation 
over the first 3 months using paired-sample  t  tests. Associations between global DNA 
(hydroxy)methylation at baseline, at 3 months and over 3 months (Δ(hydroxy)methylation) 
with response (ΔDAS28-ESR) were first analyzed in a univariate linear regression model, 
after which the associations were adjusted for confounders. Baseline DAS28 score, 
baseline erythrocyte folate levels, BMI, age, sex, and smoking status (current versus 
former + never) are known to be associated with MTX response and DNA methylation and 
were therefore tested as confounders [13,14,15,16]. The presence of anti-citrullinated protein 
antibodies (ACPA) has previously been related to decreased MTX response [17]. ACPA 
positivity was therefore tested as potential covariate. Confounders and covariates were 
only considered important when the effect size (beta coefficient, B) changed with > 10% 
upon adjustment. In addition, the relation between baseline global DNA methylation 
and MTX response was assessed dichotomously (non-responders versus moderate/good 
responders), according to the EUropean League Against Rheumatism (EULAR) response 
criteria at 3 months [18]. Associations between global DNA methylation and response 
were assessed in a crude logistic regression model and in a model adjusted for baseline 
DAS28, baseline erythrocyte folate, and BMI. Results are expressed in odds ratios (OR) 
with 95% confidence interval (CI). Incomplete cases were excluded prior to the analysis. 
For the correlation analysis, distributions of the variables were tested for normality using 
the Shapiro-Wilkinson test, where  p > 0.05 was considered normally distributed. The 
correlation between baseline erythrocyte folate and global DNA methylation was tested 
using Spearman’s correlation due to the skewed distribution of erythrocyte folate, and the 
correlation between global DNA methylation determined by LC-ESI-MS/MS and LINE-1 
was tested using Pearson’s correlation test (normally distributed variables). All statistical 
analyses were conducted using R Studio Software (Version 1.1.423; RStudio Team 2015), 
and  p  values< 0.05 were considered significant. Models tested for both methylation 
and hydroxymethylation were corrected for multiple comparisons using the Bonferroni 
correction, where p < 0.025 (0.05/2 = 0.025) was considered significant. LINE-1 analysis was 
corrected using the Bonferroni correction for the 7 CpGs that were tested simultaneously; 
hence, p < 0.007 (0.05/7 = 0.007) was considered significant.

RESULTS

Subject baseline characteristics
Genomic DNA was available and isolated from leukocytes of 265 treatment-naive early 
RA patients and from 275 subjects at T3. A minimum of 600 ng was required for reliable 
(hydroxy)methylation measurements. Nine (T0) and five (T3) extracted DNA samples 
did not reach up to this minimum and were therefore excluded. Global DNA (hydroxy)
methylation was successfully quantified in 294 patients, comprising 249 (T0) and 257 
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(T3) samples. Baseline characteristics of these 294 subjects are summarized in Table  1. 
The mean age was 53.4 ± 14.2 years, and 70.4% was female. Mean DAS28 at baseline was 
4.7 ± 1.2 and decreased to 3.0 ± 1.2 over the first 3 months (Table  1). All patients were 
treatment naive at baseline and received MTX mono- or combination therapy for at least 
3 months (Table 1).

Table 1. Baseline characteristics of early ra patients from the treach.

Mean ± SD

Patients, n
Male, n (%)
Age (years)
Das28 score
Das28 score three months *
Erythrocyte – folate (nmol/l) *
BMI (kg/m2) *
Smoking status *
- Current, n (%
- Never + former, n (%)
Treatment groups
- MTX,  n (%)
- MTX + prednisone p.o., N (%)
- MTX + SSZ + HCQ + prednisone p.o., N (%)
- MTX + SSZ + HCQ + corticosteroids i.m., N (%)

294
87.0 (29.6%)
53.4 ± 14.2
4.7 ± 1.2
3.0 ± 1.2
936.0 ± 356.2
26.3 ± 5.1

91.0 (31.0%)
180.0 (61.2%)

54.0 (18.4%)
81.0 (27.6%)
83.0 (28.2%)
76.0 (25.9%)

Abbreviations: SD=standard deviation, SSZ=sulfasalazine, HCQ=hydroxychloroquine, BMI=body mass index, 
P.O.=per os, I.M.=intra muscular. * Data was missing for das28 score at T3 (N=10), Baseline erythrocyte folate 
(N=75), BMI (N=3) and smoking status (N=23).

Global DNA hydroxymethylation increases during three months of MTX therapy
Mean global DNA methylation at baseline was 4.41 ± 0.13% and did not change 
significantly over the first 3 months of therapy (p = 0.454) (Additional  file  1: Table S1). 
Global DNA hydroxymethylation increased significantly with 0.0008% over the first 
3 months (p = 0.013; Additional file 1: Table S1).

Higher baseline global DNA methylation is associated with MTX non-response at 
3 months
Baseline global DNA methylation was associated with ΔDAS28 over the first 3 months 
when assessed in a crude univariate linear regression model (B = 1.36,  p = 0.044). One 
percent difference in global DNA methylation at baseline corresponds to 1.41 difference 
in ΔDAS28 between patients, when adjusted for baseline DAS28, baseline erythrocyte 
folate, and BMI (B = 1.41, p = 0.013; Table 2).
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In addition, we stratified subjects accordingly: non- and moderate/good responders 
according to the EULAR response criteria at 3 months.

Higher baseline global DNA methylation was associated with EULAR non-response in both 
a crude logistic model (OR = 0.027, 95% CI = 0.002–0.377) and when adjusted for baseline 
DAS28, baseline erythrocyte folate, and BMI (OR = 0.010, 95% CI = 0.001–0.188; Fig. 1).

Baseline global DNA hydroxymethylation was not significantly associated with ΔDAS28 
in a crude univariate model (B = 19.56, p = 0.288), nor when adjusted for baseline DAS28, 
baseline erythrocyte folate, BMI, age, and sex (B = 6.90, p = 0.664; Table 2) and was therefore 
not further assessed between non-responders and moderate/good responders.

As folate is related to DNA methylation through one-carbon metabolism, we examined 
the correlation between baseline global DNA methylation and erythrocyte folate. We 

Table 2. Associations between baseline global DNA (hydroxy)methylation and ΔDAS28 before and 
after 3 months of therapy.

Methylation Before MTX After MTX

B (SE) β p B(SE) β p

1 Methylation 1.36 (0.67) 0.15 0.044 0.40 (0.55) 0.05 0.471

2 Methylation
DAS28 
Erythrocyte-folate (nmol/L)
BMI (kg/m2)
Age (years)
Gender 
Smoking (current)
Observations

1.41 (0.56)
-0.51 (0.06)
-1.00x10-3 
(2.00x10-4)
0.03 (0.02)

0.15
-0.49
-0.17
0.14

-
-
-

181

0.013
<0.001
0.006
0.025

0.44 (0.47)
-0.50 (0.06)
-4.00x10-4 
(2.00x10-4) 
0.04 (0.02)

0.27 (0.16)
0.28 (0.16)

0.06
-0.49
-0.12
0.18

-
0.11
0.11
179

0.385
<0.001
0.063
0.005

0.098
0.084

Hydroxymethylation Before MTX After MTX

B (SE) β p B(SE) β p

1 Hydroxymethylation 19.56 (18.38) 0.08 0.288 12.52 (19.26) 0.05 0.517

2 Hydroxymethylation
DAS28 
Erythrocyte-folate (nmol/L)
BMI (kg/m2)
Age (years)
Gender 
Smoking (current)
Observations

6.90 (15.89)
-0.54 (0.07)
-1.00x10-3 
(2.00x10-4)
0.03 (0.02)
0.01 (0.01) 
0.22 (0.17)

0.03
-0.52
-0.18
0.12
0.10
0.08

-
181

0.664
<0.001
0.007
0.062
0.125
0.176

5.92 (16.75)
-0.52 (0.07)
-5.00x10-4

(2.00x10-4)
0.04 (0.02)
0.01 (0.01)
0.28 (0.16)
0.28 (0.16)

0.02
-0.51
-0.14
0.18
0.13
0.11
0.11
177

0.724
<0.001
0.035
0.006
0.057
0.087
0.090

Association between mean % global DNA (hydroxy)methylation and ΔDAS28 were tested in a crude univariate 
model (1) and adjusted for potential confounders (2). Potential confounders were: baseline DAS28 score, baseline 
erythrocyte – folate levels (nmol/L), BMI (kg/m2), age (years), gender and smoking status (current smoker versus 
former + never smoker). Only biomarkers that changed the association with >10% were considered confounders. 
B= beta coefficient, SE=standard error, β =standardized beta coefficients. P<0.05 was considered significant. 
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did not observe a correlation between baseline global DNA methylation and baseline 
erythrocyte folate concentrations (R = 0.084, p = 0.24).

(Change in) global DNA methylation at 3 months is not associated with disease activity
Global DNA methylation at 3 months of therapy was not associated with ΔDAS28 (B = 0.40, 
p = 0.471), nor was global DNA hydroxymethylation at 3 months (B = 12.52, p = 0.517; Table 2). 
In addition, differences between DNA (hydroxy)methylation at baseline and after 3 months 
of therapy were not associated with changes in DAS28 (Δmethylation B = − 0.68, p = 0.182, 
Δhydroxymethylation B = − 1.55, p = 0.925; Table 3).

Figure 1. Higher mean (± SD) baseline global DNA 
methylation in EULAR non-responders compared to 
moderate/good responders. Response was determined 
according to the EULAR response criteria at 3 months. The p 
value is the result of a logistic regression analysis between 
baseline global DNA methylation and EULAR response 
criteria adjusted for baseline DAS28, baseline erythrocyte 
folate, and BMI. *P<0.05 was considered significant.

Table 3. Associations between changes in % (hydroxy)methylation and changes in DAS28 over the 
first three months (t3-t0) of mtx therapy.

Methylation Before MTX After MTX

Biomarkers B (SE) β p B(SE) β p

1 Δ(hydroxy)methylation -0.50 (0.60) -0.07 0.403 -9.32 (19.40) -0.04 0.632

2 Δ(hydroxy)methylation 
DAS28
Erythrocyte folate (nmol/L)
BMI (kg/m2)
Age (years)
Sex
Smoking (current)
ACPA status (positive)

-0.68 (0.51)
-0.51 (0.07)
-1.00 x10-3
(2.00 x10-4)
0.05 (0.03)
0.01 (0.01)

0.29 (0.17)

-0.09
-0.51
-0.15
0.19
0.10

          -
0.11

-

0.182
<0.001
0.027
0.005
0.134

0.086

-1.55 (16.35)
-0.52 (0.07)
-1.00 x10-3
(2.00 x10-4)
0.04 (0.02)
0.01 (0.01)
0.20 (0.17)
0.28 (0.17)

-0.01
-0.51
-0.16
0.18
0.11
0.08
0.11

-

0.925
<0.001
0.024
0.008
0.130
0.240
0.101

Observations  163   161  

Associations were tested using crude univariate models (1) and adjusted for confounders (2). Potential 
confounders were: baseline das28 score, baseline erythrocyte – folate levels (nmol/l), bmi (kg/m2), age (years), 
gender and smoking status (current smoker versus former + never smoker) and acpa status. Only biomarkers 
that changed the effect size with >10% were considered confounders. B= beta coefficient, se= standard error, 
β=standardized beta coefficient. P<0.05 Was considered significant. 
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Higher LINE-1 methylation associated with decreased MTX response
LINE-1 global DNA methylation was determined in DNA isolated from leukocytes of 120 
patients and was successfully quantified in 104 subjects. Seventy-eight individuals had no 
missing data in any of the variables needed in the analysis and were therefore used. LINE-1 
methylation in CpG2 was not significantly associated with ΔDAS28 in a crude univariate 
model (B = 0.09,  p = 0.242). However, it was associated with ΔDAS28 when adjusted for 
baseline DAS28, baseline erythrocyte folate, BMI, and smoking status (B = 0.16, p = 0.026; 
Table 4). Methylation at the other 6 CpG sites within LINE-1 was not associated with DAS28 
nor was mean LINE-1 methylation (Additional file 1: Table S2).

Furthermore, we examined the correlation between global DNA methylation obtained 
with LC-ESI-MS/MS and global DNA methylation in CpG2 assessed with the LINE-
1 method. Here, we found a significantly positive correlation, although not strong 
(R = 0.34, p = 0.00061; Additional file 1: Fig. S1).

Association baseline global DNA methylation and non-response strongest in MTX 
monotherapy group
To assess whether the association between baseline global DNA methylation and disease 
activity was specific for MTX response and not due to combination therapy, subjects were 
stratified by therapy and univariate linear regression analyses were performed. The effect 
size was 1.8-fold higher in the MTX monotherapy group (B = 2.06, p = 0.074) compared to 

Table 4. Validation of associations between global dna methylation with ΔDAS28 (T3-T0) in line-1 
CPG2.

Before MTX

Biomarkers B (SE) β p

1 Methylation 0.09 (0.08) 0.13 0.242

2 Methylation  
DAS28
Erythrocyte folate
BMI
Age 
Gender
Smoking status
ACPA status

0.16 (0.07)
-0.49 (0.09)

-1.00x10-3 4.00x10-4)
0.03 (0.02)

-
-

0.33 (0.23)
-

0.22
-0.53
-0.12
0.16

-
-

0.14
-

0.026
<0.001
0.197
0.100

-
-

0.156
-

 Observations 78

Association between % baseline (T0) global DNA methylation in LINE-1 element CPG2 with ΔDAS28 (T3-T0), 
tested in a crude univariate model (1) and adjusted for potential confounders (2).  Potential confounders were: 
baseline DAS28 score, baseline erythrocyte – folate levels (nmol/L), BMI (kg/m2), age (years), gender and smoking 
status (current smoker versus former + never smoker). Only biomarkers that changed the association with >10% 
were considered confounders. B= beta coefficient, SE= standard error, β= standardized beta coefficient. P<0.05 
was considered significant. 
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the triple therapy group (B = 1.12, p = 0.173), although the associations were not significant 
(Table 5).

Table 5. Linear regression models for the association between global dna methylation before MTX 
and ΔDAS28 over three months stratified by treatment group.

Therapy N B (SE) β p

MTX 
MTX + Corticosteroids
MTX + SSZ + HCQ + Corticosteroids

36
48
97

2.06 (1.12)
1.51 (1.08)
1.12 (0.81)

0.29
0.18
0.11

0.074
0.172
0.173

Associations were adjusted for baseline DAS28, baseline erythrocyte-folate and BMI. MTX=methotrexate, 
SSZ=sulfasalazine, HCQ=hydroxychloroquine, B=beta coefficient, SE=standard error, β=standardized beta 
coefficient. P<0.05 was considered significant. 

DISCUSSION

In this study, we examined the association between global DNA (hydroxy)methylation, 
before-, at 3 months, and over 3 months of MTX therapy, in relation to changes in disease 
activity in leukocytes of eRA patients. We showed that higher baseline global DNA 
methylation is associated with clinical non-response, determined at 3 months of MTX 
treatment. This is in line with our hypothesis that higher baseline global DNA methylation 
levels are more difficult to inhibit and that this is associated with non-response. 
Furthermore, mean global DNA methylation did not change during MTX treatment, and 
global DNA methylation at and over 3 months was not associated with clinical efficacy. 
To our knowledge, we are the first to report an association between baseline global DNA 
methylation and early MTX response in eRA patients.
 To predict response, associations prior to treatment are most suitable. Very few 
studies examined global DNA methylation status prior to treatment in relation to MTX 
response. Glossop and colleagues have identified 21 differentially methylated CpG sites 
in T-lymphocytes of 46 treatment-naive early RA patients. Of these, a combination of 1 
hyper- and 1 hypomethylated CpG site gave the strongest predictive value [15]. A second 
study, in which 450k methylation arrays were performed, identified 2 baseline differentially 
methylated positions between 36 non-responders and 36 good responders that were 
associated with changes in c-reactive protein, but not with the complete DAS28 score [19].
 Changes in global DNA methylation upon treatment were examined to give 
us more insight in the underlying mechanism. Despite the fact that MTX inhibits the 
universal methyl donor SAM, MTX administration has been shown to lead to increased 
global DNA methylation in peripheral blood mononuclear cells (PBMCs) of eRA patients 
[7, 20]. In contrast, we did not find significant methylation changes in leukocytes over the 
first 3 months. In our study, DNA was isolated from unsorted peripheral leukocytes. 
Leukocytes are a cell mixture of polymorphonuclear cells (PMN) and PBMCs, which have 
different methylomes. Changes in DNA methylation in PBMCs therefore might have been 
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overshadowed, which possibly explains the different results between these and our study. 
In addition, in our study, all subjects were supplemented with folic acid, which stimulates 
methyl-group donation. In contrast to global DNA methylation, we did observe a small, 
but significant increase in global DNA hydroxymethylation during the first 3 months of 
therapy. Future studies are necessary to assess this observed effect of MTX on global DNA 
hydroxymethylation.
 Previously, we demonstrated that lower baseline erythrocyte folate concentration 
was associated with non-response at 3 months [14]. Assuming that erythrocyte folate 
concentrations reflect folate concentrations in leukocytes, and knowing that folate donates 
one-carbon groups required for methylation reactions, a correlation with baseline DNA 
methylation was expected, despite we did not observe a correlation between baseline 
erythrocyte folate and baseline global DNA methylation. Furthermore, from the adjusted 
beta values in our model, we observed that baseline erythrocyte folate and global DNA 
methylation both explained ~ 15% of variation in DAS28, although the associations were 
in opposing directions. In addition, upon adjustment of the model for confounders, which 
included erythrocyte folate, we showed that the positive association between global DNA 
methylation and DAS28 is independent from baseline erythrocyte folate concentration.
 According to the EULAR response criteria, response to therapy is determined at 
6 months. However, the tREACH study is designed to produce the greatest treatment 
differences during the first 3 months of therapy [8], which is why we examined response 
over the first 3 months of therapy. Upon stratification by treatment, the association 
between baseline global DNA methylation and DAS28 was strongest in the MTX 
monotherapy group, despite the fact that this group was the smallest. This suggests that 
the association is regulated through MTX treatment. The associations upon stratification 
were not significant, which was probably due to a loss of power.
 Strength of this study is that all patients received the same MTX dose due to the 
prospective study design of the tREACH. Moreover, DNA methylation and hydroxymethylation 
were quantified for each patient simultaneously with the same technique. Furthermore, the 
association between global DNA methylation and changes in disease activity upon MTX 
treatment were validated with a second technique. Limitations are that the majority of the 
patients received MTX-combination therapy and that the group size for LINE-1 methylation 
was limited, thus replication in larger MTX monotherapy studies is required. In addition, it 
would be interesting to examine DNA methylation in sorted peripheral blood leukocytes.

CONCLUSIONS

In this paper, we showed that global DNA methylation is independently associated with 
disease activity over the first 3 months of MTX therapy. However, the underlying pathway, 
as well as the potential added value of global DNA methylation in a prediction model for 
MTX response requires further exploration.
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SUPPLEMENTAL MATERIAL

Additional Table 1. Global DNA methylation and hydroxymethylation levels before MTX and three 
months after MTX therapy.

 N Before MTX After MTX P

Methylation (%), mean ± SD
Hydroxymethylation (%), mean ± SD

212
210

4.41 ± 0.13
3.64x10-2 ± 5.00x10-3

4.40 ± 0.16
3.72 x10-2 ± 5.00x10-3

0.454
0.013

P-values are the result of a paired sample t-tests. P-values <0.05 were considered significant. 

Additional Table 2. Linear regression models of %methylation in 6 LINE-1 CpG sites in relation to 
ΔDAS28 over three months of MTX therapy.

CpG1 CpG3 CpG5 CpG6.7 CpG8.9 CpG11.12

N
Mean% ± SD

79
66.77 ± 0.03

78
74.08 ± 1.81

78
38.34 ± 1.65

79
70.81 ± 2.26

79
70.39 ± 1.70

79
84.31 ± 1.37

β (p) β (p) β (p) β (p) β (p) β (p)

Methylation
DAS28
Folate
BMI 
Age 

Gender
Smoking 

-0.02 (0.816)
-0.50 <0.001)
-0.23 (0.021)
0.12 (0.226)
-
-
-
0.10 (0.330)

0.09 (0.429)
-0.51 <0.001)
-0.22 (0.021)
0.12 (0.208)
-
-
-0.01 (0.938)
0.11 (0.247)

0.07 (0.474)
-0.52 <0.001)
-0.20 (0.034)
0.12 (0.225)
-
-
-
-

0.13 (0.245)
-0.51 <0.001)
-0.22 (0.021)
0.14 (0.148)
-
-
0.01 (0.918)

0.14 (0.269)
-
-0.34 (0.003)
0.21 (0.064)
-
-
-0.08 (0.521)
0.15 (0.170)

0.13 (0.207)
-0.54 <0.001)
-
0.13 (0.178)
-0.05 (0.620)
-0.08 (0.391)
-
-

Potential confounders were: baseline DAS28 score, baseline erythrocyte – folate levels (nmol/L), BMI (kg/m2), 
age (years), gender and smoking status (current smoker versus former + never smoker). Only biomarkers that 
changed the association with >10% were considered confounders. β= standardized beta coefficient. P<0.05 
were considered significant.



Chapter 3

62

Additional Figure 1. Pearson correlation between global DNA methylation quantified and the LC-ESI-MS/MS 
and LINE-1 technique.
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ABSTRACT

Introduction: To identify differentially methylated positions (DMPs) and regions 
(DMRs) that predict response to Methotrexate (MTX) in early rheumatoid arthritis 
(RA) patients. 

Methods: DNA from baseline peripheral blood mononuclear cells was extracted from 
72 RA patients. DNA methylation, quantified using the Infinium MethylationEPIC, 
was assessed in relation to response to MTX (combination) therapy over the first 3 
months. 

Results: Baseline DMPs associated with response were identified; including hits 
previously described in RA. Additionally, 1309 DMR regions were observed. However, 
none of these findings were genome-wide significant. Likewise, no specific pathways 
were related to response, nor could we replicate associations with previously identified 
DMPs. 

Conclusion: No baseline genome-wide significant differences were identified as 
biomarker for MTX (combination) therapy response; hence meta-analyses are required.
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INTRODUCTION

Methotrexate (MTX) is currently the anchor drug in the treatment of rheumatoid arthritis 
(RA), in agreement with the recommendations of the European league against rheumatism 
(EULAR)/ American college of rheumatology (ACR) [1]. However, treatment strategies are 
still trial and error due to the fact that treatment response is unknown until 3 to 6 months 
from initiation. While, about 30-40% of patients do not benefit from MTX. Clearly, there is a 
need for biomarkers to predict response prior to treatment in order to enable tight control 
of disease activity within the ‘window of opportunity’ and to restrain radiographic joint 
damage and functional disability [2]. 
 Genomic DNA methylation at CpG dinucleotides has previously been associated 
with disease onset of RA [3–6] and therefore could possibly be utilized as a predictor 
for response to treatment with MTX (combination) therapy. Previously, we found an 
association between global DNA methylation and response to MTX in RA [7]. Other studies 
examined the relationship between differentially methylated positions (DMPs) in blood 
cells and DAS28 using Illumina’s HumanMethylation450 BeadChip [8,9]. While Glossop et 
al. described that a combination of methylation levels at cg03018489 and cg14345882 
in T-lymphocytes at baseline best predicts response to DMARD therapy at 6 months 
according to the EULAR criteria [8], Nair et al. did not find significant associations at 
baseline with changes in DAS28 over 6 months [9]. However, in the latter study, 4 DMPs 
at 4 weeks were associated with changes in single DAS28 components, such as swollen 
joint count and c−reactive protein, over 6 months [9]. Since a few years, Illumina has made 
available a new DNA methylation platform, the HumanMethylationEPICBeadChip array 
including >850,000 probes. This newly designed array is an extension of the Illumina 
HumanMethylation450 BeadChip, covering ~ 90% of previous sites and over 400,000 new 
probes of which the majority is positioned in potential enhancers [10]. 
 In this study, we examine differentially methylated positions and regions in treatment 
naïve early RA patients in relation to treatment response to MTX assessed over the first 3 
months of treatment initiation.

Materials and methods

Patients and materials
Patients were included from the treatment in early arthritis cohort Rotterdam (tREACH, 
registration number: ISRCTN26791028), a multicenter stratified single-blinded clinical 
trial of early rheumatoid arthritis (RA) patients [6]. Patient inclusion for current study was 
based on the availability of baseline Peripheral Blood Mononuclear Cells (PBMCs), which 
resulted in the inclusion of 83 patients. The tREACH was described earlier [6]. In short, 
inclusion criteria for the tREACH were the presence of arthritis in one or more joint(s), 
age ≥18 years and symptom duration < 1 year. This study was approved by the medical 
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ethics committee of the Erasmus MC, University Medical Center Rotterdam (MEC-2006-
252). Medical ethics committees at each participating center (Erasmus MC, University 
Medical Center, Rotterdam; Sint Franciscus Gasthuis, Rotterdam; Maasstad Ziekenhuis, 
Rotterdam; Vlietland Ziekenhuis, Schiedam; Admiraal de Ruyter Ziekenhuis, Goes and 
Vlissingen; Zorgsaam Ziekenhuis, Terneuzen; Albert Schweitzer Ziekenhuis, Dordrecht) 
approved the study protocol and written informed consent was obtained for all including 
patients. Patients were recruited between July 2007 and April 2014 from outpatient 
clinics in participating centers in and near Rotterdam. The research for this manuscript 
took place in the Erasmus MC University Medical Center, Rotterdam. For current study, at 
baseline all patients were treatment naïve and were randomized to start methotrexate 
with corticosteroids as monotherapy or in combination with other disease modifying 
antirheumatic drugs (DMARDs): sulfasalazine (SSZ) and hydroxychlorqiuine (HCQ). In the 
tREACH, MTX dose was quickly increased (from 10 mg to 25 mg/week) within the first 
3 weeks. Due to this aggressive treatment strategy in the tREACH, early response rates 
were expected at 3 months. If the target low disease activity (DAS28 <3.2) at 3 months 
was not reached, step-up treatment with biological or targeted synthetic DMARDs was 
prescribed. Additionally, patients weekly received 10 mg folic acid to reduce adverse 
events. PBMCs were extracted from whole blood using BD vacutainer ® CPT and stored in 
Roswell Park Memorial Institute (RPMI) 1640 Medium (R0883, with sodium bicarbonate, 
without L-glutamine, Merck) and 10% dimethylsulfoxide in liquid nitrogen. 

DNA extraction
DNA extraction was performed for these 83 subjects using AllPrep DNA/RNA mini kit (Qiagen, 
Hilden, Germany) for simultaneous DNA and RNA isolation with a minimum input of 1 x 
105 cells. DNA concentrations were assessed using a Nanodrop (NanoDrop Technologies, 
Wilmington, Germany). 72 samples with 260/280 ratios between 1.7 and 2.0 and of at least 
500 ng were included in further analysis.  

Human Methylation EPIC BeadChip 
72 samples of 500 ng DNA were bisulfite treated using the Zymo EZ-96 DNA methylation 
kit (Zymo Research, Irvine, CA, USA). DNA methylation was quantified using the Infinium 
Human Methylation EPIC BeadChip Array according to manufacturer’s protocol (Illumina, 
Inc., San Diego, CA, USA). Quality control and normalization was performed in R according 
to the incorporating Control Probe Adjustment and reduction of global CORrelation 
(CPACOR) workflow, as described previously [12]. In short, intensity values were stratified 
to autosomal and non-autosomal probes followed by quantile normalization for the 
six probe type categories separately (type I methylated red/green, type I unmethylated 
red/green and type II red/green). Beta values were calculated as a ratio between the 
fluorescence intensities of the methylated (M) and the M + unmethylated (U) probe 
intensity + a constant as follows: beta value= M/(M+U+100). Beta values below the 
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first quartile - 1.5 x interquartile range (IQR) or above the third quartile + 1.5 x IQR were 
considered outliers and were set to missing. Three samples did not pass quality control 
(N=2 due to unsuccessful bisulfite conversion, and N=1 due to unsuccessful hybridization) 
and were excluded. No gender mismatches or sample call rates below 98% were identified. 
Furthermore, probes with an intensity detection p-value ≥ 10-16 in > 5% of the samples 
were removed (N=14,184). The final dataset contained 846,415 probes and 69 patients. 

Gene annotation
CpGs were annotated using the Illumina annotation file Version B.04. Missing gene names 
from the file were replaced by annotations using the Genomic Regions Enrichment of 
Annotations Tool (GREAT) (Human GRCh37 UCSC hg19, Feb/2009), where nearest basal 
regulatory regions within 5 kb upstream and 1 kb downstream of the transcription start 
site (TSS) with a maximum up to 1 MB were considered. 

Epigenome-wide association study (EWAS)
Associations between baseline differentially methylated positions (DMP) and changes 
in disease activity over the first three months (∆DAS28) were examined using MOMENT; 
a mixed-linear-model-based method using OmicS-data-based Complex train Analysis 
(OSCA) software [13]. This method tests for associations between baseline methylation 
and the linear outcome: ∆DAS28 and fits all distal probes in multiple random-effect 
components to account for unobserved confounders resulting in fewer false positive 
rates than other methods [13]. Prior to analysis, all beta values and the outcome were 
standardized to improve the comparison of effect sizes across probes. In our model the 
outcome was linear ∆DAS28 (i.e. 3 months DAS28 – baseline DAS28) as response rates 
were expected within 3 months due to the study design of the tREACH. We corrected 
for cell type composition using the Houseman method [14]. The association analysis in 
treatment naïve PBMCs was adjusted for the following covariates: baseline DAS28, gender, 
age, smoking and cell type composition (Houseman predicted: CD4T lymphocytes, CD8T 
lymphocytes, B lymphocytes, natural killer cells and monocytes). The smoking status of 
individuals included in our study was predicted using methylation profiles of targeted 
CpG sites known to be strongly associated with smoking, using the ‘EpiSmokEr’ package 
in R [15]. In addition, batch effects (plate and position) were treated as random effects to 
adjust for technical biases. Furthermore, MTX-polyglutamate concentrations that were 
previously determined in tREACH erythrocyte cell pellets [11] were used to assess treatment 
compliance in this study. With the aim of increasing the power of our study and with the 
rational that big differences between response groups would not be observed in probes 
with low biological methylation variance [16], association analyses were repeated filtering 
out lowly variable probes (probes with baseline methylation standard deviation <0.02) 
and excluding sex chromosomes. All tests were adjusted for multiple comparisons using 
Bonferroni correction. 
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Differentially methylated regions 
To examine whether probes that lay in the same epigenomic region show the same 
relation to response to MTX (combination) therapy, differentially methylated regions 
(DMR) analyses were performed. DMRs were assessed using the DMRff package, which has 
been shown to be robust and control well for false positive rates [17]. Standard parameters 
of the DMRff package were applied to define genomic regions: at least two CpGs had to 
be present to form a region, the distance between probes within a DMR was maximum 
500 base pairs, additionally CpGs had nominal EWAS p-values <0.05 and effect estimates 
of probes within a DMR were in the same direction [17]. 

Pathway analysis
Explorative gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed using the top 1000 probes of DMP results, if 
nominal DMP p−values were <0.05, using the ‘missMethyl’ package in R. 

RESULTS

Patient characteristics
14,184 probes out of 860,599 were removed during quality control. Hereafter, 69 subjects 
and 846,415 probes were included. The majority of patients were female (58%) with a 
mean age of 50.6 ± 15.4 years (Table 1). Mean DAS28 at baseline was 4.8 ± 1.3. 79.7% of 
the patients were positive for anti-citrullinated protein antibody (ACPA) and 82.6% were 
positive for rheumatoid factor. All patients received methotrexate with corticosteroids, of 
which 59.4% additionally received SSZ and HCQ (Table 1). Mean ± SD response determined 
over three months (∆DAS28) was not significantly different for different treatment groups 
(High A: -1.9 ± 1.3, High B: -1.9 ± 1.1, High C: -1.8 ± 1.1, p= 0.963). Smoking status could not 
be determined for 1 subject; hence 68 subjects were included in the analysis. 

Analysis complete probe set
The association between DMPs at baseline and changes in DAS28 over the first three 
months was assessed in a linear mixed model corrected for baseline DAS28, age, 
gender, smoking status and cell type composition. The Quantile-Quantile (QQ) plot with 
corresponding lambda, a measure to quantify the inflation in the test statistic, is shown in 
Fig 1. We did not observe genome-wide significant differences (0.05/846,415= 5.9 x 10-8) 
nor DMPs located in certain chromosomes, as can be seen from the Manhattan plot (Fig 2). 
The top 10 DMPs with nominal p-values ≤ 1.0 x 10-4 are presented in Table 2. 
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Table 1. Baseline characteristics of subjects in the study.

Mean ± SD

Subjects, N
Sex, Female (%)
Age (years) 
Baseline DAS28 

69
40 (58.0)
50.6 (15.4)
4.8 (1.3)

BMI (kg/m2)
ACPA positive, N (%)
RF positive, N (%)
Smoking score, median (IQR)

26.8 (5.3) *
55 (79.7)
57 (82.6)
3.5 (1.3)

Treatment, N (%)
MTX + SSZ + HCQ + i.m. corticosteroids
MTX + SSZ + HCQ + p.o. corticosteroids
MTX + p.o. corticosteroids

21 (30.4)
20 (29.0)
28 (40.6)

*BMI: 1 missing value. MTX= methotrexate, SSZ= sulfasalazine, HCQ= hydroxychloroquine, i.m. = inter muscular, 
p.o.= per os. A smoking score was calculated using the EpiSmokEr package in R.

Figure 1. QQ-plot of linear mixed model for the association of DMPs and ∆DAS28.
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All adjusted p-values for multiple comparisons were ≥0.985. Results of the DMP analysis 
were used as input for the DMR analysis to examine whether closely located probes in 
certain regions show the same effect sizes and directions. We identified 1309 DMR regions, 
of which none were genome-wide significant. The top 10 DMRs at nominal p-values < 1.0 
x 10-3 are presented in Table 3. Additionally, to examine if certain Gene Ontology (GO) 
terms were enriched, pathway analysis was performed on the top 1000 most significant 
DMP results, all at nominal p-values <2.5 x 10-3 and adjusted p-values of ≥ 0.960. The top 

Figure 2. Manhattan plot of DMP analysis with all probes in association with ∆DAS28. Associations 
were adjusted for age, gender, smoking and cell type ratios. The red line indicates genome-wide significance 
according to Bonferroni correction (p-value= 5.91−8).

Table 2. Top 10 DMP results from the analysis with complete probe set and the association with 
∆DAS28.

Probe Chr Position Gene Relation 
to gene

450k 
loci

β se p

cg16944926 6 32940976 BRD2 Body Yes 0.42 0.10 3.09 x 10-05

cg11177738 3 193828742 HES1, OPA1* - No 0.45 0.11 4.42 x 10-05

cg00519627 16 4466650 CORO7 TSS200 Yes -0.45 0.11 5.43 x 10-05

cg15697822 1 107684751 NTNG1 5'UTR Yes 0.41 0.10 6.54 x 10-05

cg02802788 17 49369718 UTP18 Body No -0.39 0.10 7.09 x 10-05

cg14665002 12 64919341 RASSF3, TBK1* - No 0.40 0.10 7.80 x 10-05

cg07248935 6 90643780 BACH2 Body No 0.68 0.17 7.81 x 10-05

cg11311263 16 11829117 TXNDC11 Body No -0.40 0.10 8.31 x 10-05

cg00095674 1 150122654 PLEKHO1 Body Yes -0.42 0.11 8.36 x 10-05

cg26426470 5 169181253 DOCK2 Body Yes -0.39 0.10 8.60 x 10-05

β=standardized beta coefficient.*Genes annotated using the GREAT tool (Human GRCh37 UCSC hg19). 
Chr=chromosomes, TSS200= 0-200 bases from transcriptional start site (TSS), TSS1500= 200-1500 bp from TSS. 
Relation to gene was obtained from the Illumina annotation file version B4, a dash means that probes were not 
related to a gene by Illumina. 
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10 identified GO terms are presented in S1 Table, however, no genome-wide significantly 
enriched pathways were observed.

Table 3. Top 10 DMR results with complete probe set.

Chr start end Nearest gene (distance to TSS) N b se p-value

8 87355594 87355773 WWP1 (+717) 3 -0.40 0.10 1.05 x 10-04

22 41252959 41253041 XPNPEP3 (-102) 3 -0.31 0.08 1.17 x 10-04

19 50380748 50380763 TBC1D17 (+74) 2 -0.49 0.13 1.24 x 10-04

7 1610694 1610747 PSMG3 (-1092) 2 -0.06 0.02 1.35 x 10-04

9 99540409 99540427 ZNF510 (-80) 3 -0.44 0.11 1.39 x 10-04

4 59850015 59850171 None 2 0.18 0.05 1.42 x 10-04

6 32829062 32829208 PSMB9 (+7197) 3 -0.14 0.04 1.47 x 10-04

3 49157911 49158377 USP19 (+120) 6 -0.33 0.09 1.64 x 10-04

2 98262546 98262568 COX5B (+54) 2 -1.05 0.28 1.72 x 10-04

3 45017855 45017955 ZDHHC3 (-231) 2 -0.72 0.19 1.90 x 10-04

Chr= chromosome, N= number of probes within DMR, b= change in DAS28 upon 1% difference in baseline 
methylation.

Analysis filtered probes

To increase power to detect significantly associated probes with treatment response, 
association analysis was also carried out on a restricted set of probes (N=393,282), after 
the removal of low variance probes and probes on sex chromosomes. Despite the strong 
reduction in the number of tested probes, we could not identify probes with genome-
wide significance (0.05/393,282 = 1.3 x 10-7). Manhattan and QQ-plots are presented 
in Supporting Information file S1 and S2 Figs. The top 10 DMPs that reached nominal 
significance of p< 1.82 x 10-04 are presented in S2 Table. DMR analysis did not find 
genome-wide significant regions, however 359 nominally significant candidate regions 
were identified, of which the top 10 regions had a nominal p-value <1.0 x 10-3 (S3 Table). 

Look up of previously identified loci
A study by Glossop et al described two CpGs (cg03018489 and cg14345882) in T 
lymphocytes of treatment naïve rheumatoid arthritis patients that could discriminate 
non-responder and moderate/good responders at baseline with an area under the curve 
of 0.85. We did a look up of these CpGs in our study. Cg03018489 was removed during 
the quality control steps in our study and could therefore not be assessed. Mean DNA 
methylation of cg14345882 was similar across good responders (mean= 0.23, sd= 0.09), 
moderate responders (mean = 0.23, sd= 0.09) and non-responders (mean= 0.19, sd= 0.06) 
as depicted in S3 Fig. 
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DISCUSSION

We present the first study that assesses baseline differential DNA methylation in relation 
to DAS28 in rheumatoid arthritis (RA) patients using Illumina’s Human Methylation EPIC 
array. In this study, we did not identify genome-wide significant DMPs or DMRs in relation 
to changes in DAS28 over the first 3 months of treatment. However, some of the genes with 
p-values of <10-4 have previously been associated with RA. Examples include BRD2[18], 
which binds to IL-6 promoters in macrophages where it stimulates IL-6 production, 
PLEKHO1, which regulates joint inflammation[19] and BACH2[20–22] and DOCK2[23,24] 
which are important in B cell differentiation and T cell regulation, both important events 
in the development of early RA. These probes are therefore interesting targets for future 
studies. 
 To examine whether the top 10 most significant probes in DMP analysis were part 
of a DMR, we compared the top 10 DMP and DMR results. However, we did not observe 
any overlap between the top 10 most significant findings. Moreover, explorative pathway 
analysis was performed on the top 1000 results, which did not suggest a specific pathway 
that was differentially methylated in relation to MTX (combination) therapy response. 
Importantly, the results from our pathway analysis should be interpreted with care, as the 
top 1000 DMP results were not genome-wide significant. 
 Furthermore, a look up of previously described baseline CpGs related to prediction 
of response to MTX did not show similar results in our data. These results may reflect 
differences in cell types assessed [8]. Our results were from a cell mixture, hence T cell 
specific differences that were previously observed could have been underestimated in 
our results. Another explanation could be that we show larger biological variance as our 
intermediate (n=28) and good responder groups (n=31) were slightly larger compared to 
the study of Glossop et al. 
 Next, we repeated our association analysis by filtering out low variance probes and 
probes on sex chromosomes as we postulated that these probes are expected to be less 
informative and their exclusion could increase the power of our study. This resulted in a 
shift of the top findings. Most significant hits in previous DMP analysis appeared to have 
been in lowly variable probes as they were no longer present after filtering. Only one of 
the previous top 10 findings (probe cg07248935 located in the BACH2 gene) remained in 
the top 10 CpGs of this second EWAS. Genes listed in top 10 most significant DMPs in the 
second EWAS were all part of the top 30 most significant results of the first EWAS: including 
all the probes. As expected, effect sizes between the two EWAS studies were similar. Upon 
exclusion of lowly variable probes, probe cg07639783 in the top 10 DMP list, located in 
PSMG3 promoter, overlapped with a top 10 most significant DMR regions. This region was 
also observed in the top 10 DMR analyses with all probes. This supports that is could be an 
interesting target. It should however be noted that this region only consisted of two DMPs 
and this finding was not genome-wide significant. Hence, this potential finding should be 
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further investigated in other studies.
 On the one hand, the observation that the most significant findings were found 
for lowly variable probes may indicate false positive results due to the small biological 
variance (SD < 0.02). On the other hand, differences in methylation related to RA response 
have been shown to be small; hence our findings may still be clinically relevant. To find 
genome-wide significant results for small differences (2%) in case – control studies, 
very large sample sizes (>1000) are required [25]. We calculated the power of our study 
based upon two equal groups and this showed that we had 80% power to detect a mean 
difference of 8% in 77.5% of all genomic sites with recommended significance threshold 
of 9.42 x 10-8. If we assume that the power calculation for two equal groups is at least 
comparable to our linear analysis, we would have enough power to find large differences 
(>8%) in the majority of probes. However, we did not observe such large differences. This 
power calculation also indicates that we may have missed smaller differences. Therefore, 
meta-analyses are required to increase statistical power and investigate whether smaller 
differences in DNA methylation profiles are clinically relevant. Thus far, other studies 
assessing response to MTX have been conducted using the 450k array. In principle, such 
studies could be meta-analyzed with our study, however, challenges when combining 450k 
and EPIC array results exist. Not all probes have been shown to replicate well across the 
two platforms and several probes are not common to the two arrays [26]. Also, differences 
in cell types used for the experiments complicate combining studies. Therefore, more 
studies using the EPIC array in PBMCs are required prior to perform meta-analysis in order 
to assess whether smaller mean differences are related to response to MTX (combination) 
therapy.
 Strengths of this study are that it was performed in a prospective cohort where 
subjects received controlled treatment of similar dosages of MTX (combination) therapy. 
Despite that the majority received combination therapy, which could potentially influence 
the outcome (∆DAS28), no significant differences in ∆DAS28 between treatment groups 
were observed. Moreover, erythrocyte methotrexate-polyglutamate levels at 3 months 
were quantified in all patients [11,27]. In the majority of the samples (66/68), MTX 
polyglutamate levels were present, supporting treatment compliance. Another strength 
is that results were acquired from PBMCs consisting of monocytes and lymphocytes but 
not granulocytes. This is important, as the methylome of granulocytes is very different 
compared to that of cells of the lymphoid lineage [19]. The downside of using PBMCs is 
that it is still a cell mixture and that it is more labor intensive to extract them first from 
whole blood. However, in this study we assessed the cell type composition using the 
Houseman method [14] and included cell type percentages as covariates. Furthermore, 
RA is an infiltrating disease; hence for future studies DNA methylation statuses from 
leukocytes in the synovial fluid may be more predictive in relation to disease activity. 
Another weakness is that we may have missed small differences due to the limited group 
size. Furthermore, what could have influenced the relationship between DNA methylation 
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and DAS28 was the presence of anti-citrullinated protein antibody (ACPA) [20]. However, 
in our study 80% of the patients were positive for ACPA, accordingly we did not correct for 
ACPA positivity in the models.  
 In conclusion, we performed the first DNA methylation association analysis using the 
Illumina MethylationEPIC array to test for treatment response in naïve early rheumatoid 
arthritis patients. We did not observe genome-wide significant DMPs or DMRs in relation 
to changes in DAS28 over the first 3 months of treatment. Larger studies are required to 
demonstrate or rule out the use of DNA methylation sites as predictive marker for response 
to MTX. Potential biomarkers could be combined with other clinical and laboratory 
predictors to improve prediction to response and personalize treatment in early RA. 
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SUPPORTING INFORMATION

Table S1. Top gene ontology (GO) terms from pathway analysis of 1000 most significant probes in 
DMP analysis with full probe set.

Gene Ontology term Nr. of 
genes in 
GO term

Nr. of genes 
differentially 
methylated

P-value

GO:0050872 BP white fat cell differentiation 13 5 3.15 x 10-04

GO:1904798 BP positive regulation of core promoter 
binding

7 3 1.96 x 10-03

GO:0051965 BP positive regulation of synapse assembly 61 9 2.56 x 10-03

GO:0002268 BP follicular dendritic cell differentiation 2 2 2.72 x 10-03

GO:0033257 CC Bcl3/NF-kappaB2 complex 2 2 2.72 x 10-03

GO:0007416 BP synapse assembly 59 9 2.77 x 10-03

GO:0005592 CC collagen type XI trimer 2 2 3.21 x 10-03

GO:0033523 BP histone H2B ubiquitination 9 3 3.23 x 10-03

GO:0042351 BP 'de novo' GDP-L-fucose biosynthetic 
process

2 2 3.34 x 10-03

GO:0035252 MF UDP-xylosyltransferase activity 8 3 4.19 x 10-03

BP= biological process, CC= cellular component, MF= molecular function. 

Figure S1. QQ-plot of DMP analysis with selected probe set.
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Figure S2. Manhattan plot of DMP analysis with selected probe set. Low variance probes (baseline 
methylation SD<0.02) and probes on sex chromosomes were excluded. Associations were adjusted for age, 
gender, smoking and cell type ratios.

Table S2. Top DMPs from selected probe set and the association with ∆DAS28.

Probe Chr bp Gene Relation 
to gene

450k 
loci

b se p

cg07248935 6 90643780 BACH2 Body No 0.68 0.17 8.40 x 10-05

cg22457050 11 71790060 LRTOMT; 
NUMA1

TSS1500,Body; 
5’UTR

No 0.42 0.11 9.92 x 10-05

cg05062393 8 8861278 ERI1 Body No 0.40 0.10 1.13 x 10-04

cg07639783 7 1610747 PSMG3; 
KIAA1908

TSS1500; 
Body

Yes -0.43 0.11 1.24 x 10-04

cg09835161 2 21023915 LDAH TSS1500 No 0.38 0.10 1.51 x 10-04

cg02711899 6 42410890 TRERF1 5’UTR Yes -0.40 0.11 1.59 x 10-04

cg18288462 10 103986268 ELOVL3 1stExon; 5’UTR Yes 0.41 0.11 1.71 x 10-04

cg14152587 5 148612561 ABLIM3 Body No -0.41 0.11 1.80 x 10-04

cg21672276 3 44754072 ZNF502 TSS200 Yes 0.41 0.11 1.83 x 10-04

cg17445273 13 23489472 SGCG* TSS-265kb Yes -0.43 0.11 1.84 x 10-04

Effect=beta coefficient; the change in DAS28 corresponding to an increase in methylation of 1%. *Genes annotated 
using the GREAT tool (Human GRCh37 UCSC hg19). Chr=chromosomes, TSS1500= 200-1500 base pairs from 
transcriptional start site (TSS). Relation to gene was obtained from the Illumina annotation file version B4. 
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Table S3. Top 10 DMR results with selected probe set.

Chr start end Nearest gene (distance from TSS) N b se p-value

7 1610694 1610747 PSMG3 (-1092) 2 -0.06 0.02 1.45 x 10-04

7 887534 887678 GET4 (-28583), SUN1 (+15468) 2 -0.12 0.03 3.68 x 10-04

1 152087889 152088085 TCHH (-1431) 2 0.07 0.02 3.70 x 10-04

6 32829062 32829208 PSMB9 (+7197), HLA-DMB (+79712) 2 -0.15 0.04 4.89 x 10-04

12 130908778 130909093 PIWIL1 (+86504),  RIMBP2 (+93474) 2 -0.14 0.04 5.52 x 10-04

5 78281819 78281983 ARSB (-293) 5 -0.06 0.02 7.04 x 10-04

7 994666 994742 ADAP1 (-371) 3 0.10 0.03 7.96 x 10-04

8 107459398 107460168 OXR1 (-369) 9 -0.05 0.02 8.66 x 10-04

17 39204767 39204882 KRTAP2-1 (-1257) 2 0.12 0.04 8.82 x 10-04

15 78632109 78632144 CRABP1 (-539) 2 -0.07 0.02 9.44 x 10-04

Chr= chromosome, distance from transcriptional start site (TSS) is reported in ase pairs. N= number of probes, 
b= change in DAS28 upon 1% difference in baseline methylation. 

Figure S3. Look up study of CpG finding from Glossop et al. Dashed horizontal line represents previously 
established cut-off value. Response was categorized in non−responders (n=10), moderate responders (n=28) 
and good responders (n=31) according to the EULAR criteria at 3 months.
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ABSTRACT

Introduction: This study aimed to identify baseline metabolic biomarkers for response to 
methotrexate (MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. 

Methods: In total, 82 baseline plasma samples (41 insufficient responders and 41 sufficient 
responders to MTX) were selected from the Treatment in the Rotterdam Early Arthritis 
Cohort (tREACH, trial number: ISRCTN26791028) based on patients’ EULAR response at 
3 months. Metabolites were assessed using high-performance liquid chromatography-
quadrupole time of flight mass spectrometry. Differences in metabolite concentrations 
between insufficient and sufficient responders were assessed using partial least square 
regression discriminant analysis (PLS-DA) and Welch’s t-test. The predictive performance of 
the most significant findings was assessed in a receiver operating characteristic plot with 
area under the curve (AUC), sensitivity and specificity. Finally, overrepresentation analysis 
was performed to assess if the best discriminating metabolites were enriched in specific 
metabolic events. 

Results: Baseline concentrations of homocystine, taurine, adenosine triphosphate, 
guanosine diphosphate and uric acid were significantly lower in plasma of 
insufficient responders versus sufficient responders, while glycolytic intermediates 
1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were 
significantly higher in insufficient responders. Homocystine, glycerol-3-phosphate and 
1,3-/2,3-diphosphoglyceric acid were independent predictors and together showed 
a high AUC of 0.81 (95% CI: 0.72–0.91) for the prediction of insufficient response, with 
corresponding sensitivity of 0.78 and specificity of 0.76. The Warburg effect, glycolysis and 
amino acid metabolism were identified as underlying metabolic events playing a role in 
clinical response to MTX in early RA. 

Conclusions: New metabolites and potential underlying metabolic events correlating with 
MTX response in early RA were identified, which warrant validation in external cohorts.

Graphical abstract:
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting joint linings, resulting 
in pain and inflammation [1]. Methotrexate (MTX) is the first-line therapy in rheumatoid 
arthritis (RA); however, treatment strategies still consist of trial and error [2]. MTX is an 
antifolate with a long background in cancer chemotherapy acting as a potent inhibitor 
of folate metabolism impacting numerous targets in one-carbon metabolism, nucleotide 
and amino acid biosynthesis [3]. The mechanism of MTX in RA is still not fully understood, 
which is why it is still unknown why some patients respond better than others to MTX 
[4,5]. Response to MTX-based therapy can be determined after 3 to 6 months according 
to changes in disease activity score 28 (DAS28) and insufficient responders require step-
up treatment with biologic disease modifying anti rheumatic drugs (bDMARDs; e.g., TNF-
alpha inhibitors, IL-6 inhibitors [6]) or targeted synthetic DMARDs (tsDMARDs, e.g., Janus-
kinase inhibitors [7,8]) as described in the EULAR recommendations for the management 
of RA [2]. To enable quicker treatment adjustments, earlier identification of insufficient 
responders to MTX will be of great clinical importance in personalized medicine.
 Several studies investigated baseline biomarkers to predict clinical response to 
MTX at 3 and/or 6 months in a targeted way [9]. We have previously developed [10] and 
externally validated [11] a baseline clinical prediction model for insufficient response to 
MTX. Apart from clinical predictors, this prediction model includes biomarkers such as 
erythrocyte folate and adenosine triphosphate (ATP) binding cassette (ABC) transporter 
polymorphisms. Applying an untargeted approach might reveal new and overlooked 
biomarkers and provide new insights into the etiology of non-response to MTX. Others 
have shown that RA patients have a different serum metabolite signature compared to 
healthy controls [12,13,14,15]. Study results from a literature review showed that essential 
amino acids (citric acid, isoleucine, methionine, valine) and non-essential amino acids 
(threonine, histidine and alanine) were consistently lower in RA patients compared to 
healthy controls [16]. Additionally, differences in metabolic profiles have been associated 
with different stages of disease [14,15] as well as in relation to treatment response [17,18,19,20]. 
The aim of the current study was to identify potential baseline biomarkers in treatment-
naive patients for the prediction of insufficient response to MTX at 3 months in RA patients 
using an untargeted approach.

MATERIALS AND METHODS

Materials and Subjects
Baseline plasma samples of 82 early RA patients were selected from the treatment 
in the Rotterdam early arthritis cohort (tREACH; ISRCTN registered trial, number: 
ISRCTN26791028) [21], based on plasma availability and their European League Against 
Rheumatism (EULAR) response at 3 months, including 41 insufficient responders and 41 
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sufficient responders. Insufficient response was defined as: 3-month DAS28-ESR > 5.1 and 
improvement of DAS28-ESR ≤ 1.2. Sufficient response was defined as: 3-month DAS28-ESR 
≤ 3.2 and improvement in DAS28-ESR > 1.2 over the first 3 months. All subjects received 
MTX (combination) therapy (see  Table 1) and all accomplished the American College 
Rheumatism (ACR)/EULAR 2010 classification criteria for rheumatoid arthritis (RA) [22].

After blood collection in ethylenediamine tetraacetic acid (EDTA) tubes, samples 
were immediately placed on ice, followed by centrifugation for 10 min at 1700× g at a 
temperature of 4 °C. Plasma samples were stored at −80 °C, as previously described [23]. 
This study was approved by the medical ethics committee of Erasmus Medical Center 
(MEC-2006-252) and written informed consent was obtained for included patients. All 
procedures performed were in accordance with the 1964 Helsinki Declaration and its later 
amendments.

2.2. Metabolomics Study

Metabolomics analysis was performed using a semi-quantitative analysis at the Core Facility 
Metabolomics of the Amsterdam UMC as described previously [24]. In short, a mixture of 75 
µL of the following internal standards in water was added to 25 µL plasma: adenosine-15N5-
monophosphate (100 µM), adenosine-15N5-triphosphate (100 µM), D4-alanine (100 µM), 
D7-arginine (100 µM), D3-aspartic acid (100 µM), D4-citric acid (100 µM), 13C1-citrulline (100 
µM), 13C6-fructose-1,6-diphosphate (100 µM), guanosine-15N5-monophosphate (100 µM), 
guanosine-15N5-triphosphate (100 µM),  13C6-glucose (1 mM),  13C6-glucose-6-phosphate 

Table 1. Characteristics of RA patients with insufficient response versus sufficient response to MTX 
(combination) therapy.

 Insufficient responders
(DAS28-ESR > 3.2) 
N=41

Sufficient responders
(DAS28-ESR ≤ 3.2) 
N=41

P−value

Baseline DAS28, mean ± SD
Age, mean ± SD
Sex, Male, N (%)
BMI (kg/m2), mean ± SD
RF positive, N (%)
ACPA positive, N (%)

4.3 ± 1.3
50.0 ± 11.9
8 (20)
28.1 ± 5.4
26 (63)
25 (61)

5.6 ± 1.0
52.6 ± 16.9
15 (37)
24.3 ± 4.1#

33 (80)
31 (76)

<0.001
0.41
0.14
<0.001
0.14
0.24

Treatment

MTX + SSZ + HCQ + corticosteroids i.m. 
MTX + SSZ + HCQ + corticosteroids per os
MTX + corticosteroids per os
MTX 

8 (20)
11 (27)
13 (32)
9 (22)

15 (37)
15 (37)
7 (17)
4 (10)

0.14
0.48
0.20
0.23

#BMI, N=1 missing value, BMI= body mass index, MTX= Methotrexate, SSZ= Sulfasalazine, 
HCQ= hydroxychloroquine, i.m. = intramuscular,
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(100 µM), D3-glutamic acid (100 µM), D5-glutamine (100 µM),  13C6-isoleucine (100 µM), 
D3-leucine (100 µM), D4-lysine (100 µM), D3-methionine (100 µM), D6-ornithine (100 µM), 
D5-phenylalanine (100 µM), D7-proline (100 µM),  13C3-pyruvate (100 µM), D3-serine (100 
µM), D5-tryptophan (100 µM), D4-tyrosine (100 µM), D8-valine (100 µM). Subsequently, 
425 µL water, 500 µL methanol and 1 mL chloroform were also added and the samples 
were mixed and centrifuged for 10 min at 14,000 rpm. The polar phase was dried using a 
vacuum concentrator at 60 °C. Subsequently, dried samples were reconstituted in 100 µL 
methanol/water (6/4; v/v). Then, 5 µL metabolic extract was injected onto a SeQuant 100 
× 2.1 mm ZIC-cHILIC column, 3 μm particle diameter (Merck, Darmstadt, Germany). The 
column temperature was maintained at 30 °C and samples at 12 °C during analysis. An 
impact II quadrupole time of flight (QTOF) (Bruker Daltoniks) mass spectrometer (MS) was 
used in the negative and/or positive electrospray ionization mode where mass spectra of 
the metabolites were obtained by continuous scanning from m/z 50 to m/z 1200 with a 
resolution of 50,000 full half-maximum width (FHMW). Data were analyzed using Bruker 
TASQ software version 2.1.22.3. All reported metabolite intensities were normalized to 
internal standards with comparable retention times and response in the MS. Metabolite 
identification was based on a combination of accurate mass, (relative) retention times 
and fragmentation spectra, compared to the analysis of a library of standards. Statistical 
analysis and visualization of the acquired data were done in a R environment using the 
ggplot2, ropls and mixOmics packages [25,26,27]. Identified metabolites were classified 
according to the Human Metabolome Database [28].

2.3. Statistics

Mean and standard deviation (± SD) between baseline group characteristics were 
compared using a two-sample  t-test. Proportions in baseline characteristics were 
compared using a two-proportion test in R. To identify metabolites that could discriminate 
insufficient responders from sufficient responders, we used partial least square regression 
discriminant analysis (PLS-DA). Variable Importance Projection (VIP) scores were examined 
to select best discriminating variables, where a VIP score of ≥1 was considered important [29]. 
Furthermore, to investigate differences in mean concentrations between response groups 
at baseline, a Welch’s t test was performed and fold changes were calculated, which were 
together visualized in a volcano plot. We corrected for multiple comparisons using the 
Benjamini–Hochberg method. A multivariable model was built with metabolites that were 
significantly different between insufficient and sufficient responders and had a VIP score 
>1. As highly correlated variables could influence logistic regression, correlations between 
metabolites were first assessed using Pearson’s correlation in a correlation matrix using 
the “corrplot” package in R. In the same analysis, the relation between metabolites and 
inflammatory factors (erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP]) 
was assessed to examine whether the metabolites were a surrogate for inflammation. 
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Metabolites with a Pearson’s correlation coefficient of >0.6 were considered strongly 
correlated. In case two metabolites were strongly correlated, only the metabolite with 
the highest VIP score in relation to response was included in the model. From the model, 
a receiver operating characteristic (ROC) curve with area under the curve (AUC) was 
produced. Sensitivity and specificity were calculated using the “pROC” package in R. In 
addition, non-linear relationships between metabolites and the outcome were examined 
in a random forest analysis, which is an ensemble classification method. For the random 
forest analysis, a random seed was set to 415 to make the analysis reproducible. Mean 
decrease in accuracy (how well the model performs) and decrease in Gini score (how pure 
the nodes are at the end of the tree) were assessed to evaluate variable importance upon 
removal of each variable. Hence, the larger the decrease in accuracy and Gini score, the 
more important the variable.
 To obtain a better understanding of which metabolic pathways were enriched 
between insufficient and sufficient responders to MTX, an overrepresentation analysis 
(ORA) was performed using the online “Metabolite Set Enrichment Analysis” (MSEA) tool 
as integrated in the MetaboAnalyst software 4.0 [30]. Compound names of metabolites 
with a VIP score >1 produced by the PLS-DA analysis were used as input. Small molecule 
pathway database (SMPDB) was selected as reference library containing 99 metabolite 
sets based on normal human metabolic pathways. A hypergeometric test was performed 
to evaluate if combinations of differentially expressed metabolites were represented 
more than expected by chance, providing a one-tailed p-value. p-values were adjusted 
for multiple testing using the Holm–Bonferroni method and false discovery rate (FDR) 
according to the Benjamini–Hochberg method.

RESULTS

Baseline Comparisons
Mean baseline DAS28 was lower in RA patients with insufficient response to MTX 
therapy (4.3 ± 1.3) compared to RA patients with sufficient response to therapy (5.6 ± 1.0,  
p  < 0.001;  Table 1), while BMI was higher in the insufficient responder group  
(p < 0.001; Table 1). Other characteristics such as age, sex, rheumatoid factor (RF) positivity, 
anti-citrullinated protein antibody (ACPA) positivity and medication were similar between 
both groups.

3.2. Metabolite Analysis

Metabolites were examined as a potential biomarker for response to MTX. A list of the 50 
most important variables was created according to their VIP scores from to the PLS-DA 
analysis (Supplementary Figure S1) and  p-values acquired from Welch’s  t-test, which is 
presented in Supplementary Table S1. Moreover, 1,3-diphosphoglyceric acid (DPG)/2,3-
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DPG and homocystine had the largest VIP scores (2.439 and 1.927, respectively) and were 
most significantly different between insufficient responders and sufficient responders  
(p  = 0.001 and  p  = 0.004, respectively;  Table S1). Homocystine, taurine, adenosine 
triphosphate (ATP), guanosine diphosphate (GDP) and uric acid concentrations were 
significantly lower in insufficient responders versus sufficient responders, while 
1,3-diphosphoglyceric acid (1,3-DPG) and 2,3-diphosphoglyceric acid (2,3-DPG), glycerol-
3-phosphate and phosphoenolpyruvate (PEP) were significantly higher in insufficient 
responders versus sufficient responders (Table S1 and Figure 1).

Figure 1. Volcano plot of significantly different metabolites in insufficient responders (DAS28-ESR > 3.2) and 
sufficient responders (DAS28-ESR ≤ 3.2).

From the significantly different metabolites, GDP had the largest log2 fold change (1.647) 
as depicted in a volcano plot (Figure 1). No significant differences were observed after 
correction for multiple testing.
 It should be noted that, in this study, we aimed to find a new biomarker for response 
and not another surrogate marker for inflammation, such as the erythrocyte-sedimentation 
rate (ESR) or C-reactive protein (CRP). To examine whether the most promising candidate 
metabolites were independent of inflammation, we examined their correlation with ESR 
and CRP (Figure 2).
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Figure 2. Correlation matrix between significantly different metabolites at baseline and inflammatory factors. 
Included metabolites shown were significantly different in relation to response at 3 months according to 
results of a Welch’s t-test. The color indicates the strength of the correlation: dark red indicates a strong 
negative correlation and dark blue a strong positive correlation. The Pearson’s correlation coefficient is printed 
in the squares. Erythrocyte-sedimentation rate (ESR) and C-reactive protein (CRP) were added as a proxy for 
inflammation.
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All correlations with ESR and CRP were weak (Pearson’s correlation coefficient r < 0.33), 
indicating that these metabolites do not reflect inflammation. The most significant 
metabolites were analyzed together in a multivariable logistic regression model to assess 
their performance as biomarkers in predicting insufficient response to MTX, including: 
homocystine, PEP, glycerol-3-phosphate, 1,3-DPG/2,3-DPG, uric acid and taurine. ATP and 
GDP concentrations were also significantly different between response groups; however, 
these were highly correlated with taurine (Figure 2). Of this model, a receiver-operating 
characteristic (ROC) plot was constructed with an area under the curve (AUC) of 0.82 (95% 
CI: 0.73–0.91). From all predictors in the model, only homocystine (p = 0.007) and glycerol-
3-phosphate (p = 0.020) were significant independent predictors, while 1,3-/2,3-DPG was 
borderline significant (p = 0.080), for which reason we reduced the model to these three 
predictors. Using the combination of these predictors, a new ROC curve was constructed 
with an AUC of 0.81 (95% CI: 0.72–0.91; Figure 3) and corresponding sensitivity of 0.78 and 
specificity of 0.76.

Figure 3. Receiver operating characteristic (ROC) 
curve (black solid line) of prediction of insufficient 
response (DAS28-ESR > 3.2) including significantly 
different metabolites in relation to response at 3 
months. Predictors included in the model were: 
baseline homocystine, glycerol-3-phosphate and 
1,3-diphosphoglyceric acid/2,3-diphosphoglyceric 
acid. The grey dotted line represents “the line of no 
discrimination”.

Random Forest Analysis
Additionally, non-linear relationships between metabolites and response were tested 
using a random forest analysis. Variable importance was determined according to the 
decrease in accuracy and Gini score upon removal of variables from the models tested. 
The most significant variables again were homocystine and 1,3-DPG/2,3-DPG (Figure 4).
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Enrichment Analysis
Finally, to examine whether certain cellular processes were overrepresented in 
insufficient versus sufficient responders, we performed an overrepresentation analysis 
(ORA). Metabolites with a VIP score >1 (Table S1) were included in the analysis. The most 
significantly enriched metabolic events were related to cellular respiration: Warburg effect 
(FDRpadjust = 5.59 × 10−5), gluconeogenesis (FDRpadjust = 1.38 × 10−4), glycolysis (FDRpadjust = 
5.69 × 10−4), lactose synthesis (FDRpadjust  = 8.22 × 10−4), pentose phosphate pathway 
(FDRpadjust = 8.22 × 10−4), urea cycle (FDRpadjust = 8.22 × 10−4) and to amino acid metabolism 
(Figure 5 and Supplementary Table S2).

Figure 4. Variable importance plot from random forest analysis. Variable importance was determined using the 
mean decrease in accuracy and mean decrease in Gini score upon removal of the variable.
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Figure 5. Results of overrepresentation analysis (ORA) between insufficient and sufficient responders to MTX. 
Summary of overrepresentation analysis results at baseline in relation to response to MTX at 3 months. The X-axis 
shows the fold enrichment between response groups and the color indicates the significance level, where red 
is most significant. p-values < 0.05 were considered significant. For details on the number of metabolites per 
pathway, see Supplementary Table S2.

DISCUSSION

In this study, we examined metabolite profiles prior to treatment initiation in early RA patients 
to identify potential biomarkers for response to MTX. At baseline, significantly different 
concentrations were observed between insufficient responders and sufficient responders 
in eight metabolites. Homocystine, taurine, ATP, GDP and uric acid concentrations were 
significantly lower in insufficient responders, while glycolytic intermediates 1,3-DPG/2,3-
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DPG, glycerol-3-phosphate and phosphoenolpyruvate (PEP) were significantly higher in 
sufficient responders. The most promising biomarkers, homocystine, glycerol-3-phosphate 
and 1,3-DPG/2,3-DPG, together constructed a ROC with high AUC of 0.81 (95% CI: 0.72–
0.91) and sensitivity of 78% and specificity of 76%. Furthermore, overrepresentation analysis 
indicated that metabolic processes related to cellular respiration and amino acid metabolism 
at baseline were potentially associated with treatment response, which might be interesting 
pathways to further explore in MTX-based therapies for RA.
 In this study, lower baseline plasma levels of uric acid and taurine were related 
to insufficient response to MTX. Uric acid concentrations should be interpreted with 
caution in this study, as the analytical variation for this metabolite exceeded 25%. Uric 
acid was also previously quantified in 226 patients receiving MTX in the tREACH dataset, 
measured using a routine chemistry method on a Roche Cobas 8000 system (Roche, 
Almere, Netherlands) [10]. In this set, uric acid was borderline insignificant in a crude logistic 
regression model (OR = 0.04, 95% CI: 0.00–1.66, p = 0.09) and when adjusted for baseline 
DAS28 (OR = 0.02, 95% CI: 0.00–1.16, p = 0.06). Although not significant, the effect sizes 
pointed in the same direction as findings in the current study, suggesting that uric acid 
might play a role in response to MTX. This result is also in agreement with a study by Wang 
et al., who assessed 38 early RA patients on MTX monotherapy (13 insufficient responders 
versus 25 sufficient responders) at baseline and at 24 weeks [31].
 The same trend was observed for taurine in the present study and the one by 
Wang et al. [31]. Interestingly, for taurine, the opposite was observed in serum samples of 
established RA patients, where taurine levels were lower in sufficient responders prior 
to TNFα inhibitor initiation after insufficient response to DMARD therapy [20]. Although 
these studies support taurine as a potential biomarker to choose between therapies, it 
has to be considered that the latter study was performed in a group of established RA 
patients from whom it was not clear what the effect of previous DMARD use was on 
the metabolite concentrations. In the same study [20], glycerol-3-phosphate was lower 
in sufficient responders at the start of TNFα inhibitor initiation, which is consistent with 
our findings that glycerol-3-phosphate was higher in insufficient responders at the start 
of MTX combination therapy, suggesting that insufficient responders to MTX with low 
glycerol-3-phosphate may be insufficient responders to TNFα inhibitors as well. Sasaki 
and colleagues [19] also observed higher glycerol-3-phosphate levels in the plasma of RA 
patients versus non RA controls; however, they did not observe differences in relation 
to response to MTX and/or corticosteroid therapy. This may be due to the small group 
sizes of patients receiving MTX (n  = 27 sufficient responders versus n = 12 insufficient 
responders). Plasma amino acid metabolites that were previously described in relation 
to DAS28 by Smolenska et al. [17], such as threonine, tryptophan (positive correlation) and 
histidine and phenylalanine (negative correlation), could also separate insufficient and 
sufficient responders in our study (Figure 4). However, we did note that the Gini score was 
largely unaltered upon removal of threonine, tryptophan, histidine and phenylalanine 
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compared to other metabolites in the variable importance plots (e.g., homocystine and 
1,3-DPG; Figure 4). This means that threonine, tryptophan, histidine and phenylalanine 
were less important in discriminating insufficient responders compared to metabolites 
ranked higher in the variable importance plots. However, the intercorrelation between 
metabolites can influence their contribution to the model and their ranking in  Figure 
4. This may, for instance, apply to taurine, which seems to have only minor importance 
in the random forest analysis but was significantly different between response groups 
at baseline (0.021) and had a VIP score of (1.607;  Table S1). However, taurine is highly 
correlated to GDP and ATP (Figure 2); hence, the inclusion of GDP and ATP in the model in 
the random forest analysis made taurine redundant in this case (Figure 4).
 From the most successful, 1,3-DPG/2,3-DPG has not been previously described 
in relation to response to MTX treatment. Homocystine consists of two homocysteine 
molecules connected by a disulfide bond [32]. Previous studies showed that homocysteine 
concentrations increase upon MTX treatment in RA, while concentrations are reduced 
again by supplementation with folic acid [33,34], which is prescribed to RA patients to 
avoid adverse events. Total homocysteine is quantified as a mixture of all bound and 
unbound homocysteine molecules, including homocystine, which is first reduced to 
free homocysteine components. Higher total homocysteine levels could therefore be 
influenced by higher homocystine levels. Total homocysteine was also previously quantified 
in the plasma samples of 285 individuals from the tREACH study [23]; however, no relation 
was observed between homocysteine and response to MTX. Moreover, homocystine from 
the current metabolomic study and previously observed total homocysteine levels in the 
same individuals did not correlate (R = 0.03, p = 0.77). The precise role of homocystine in 
relation to response to MTX warrants further investigation.
 Under normal physiological circumstances, phosphorylated metabolites are 
usually maintained intracellularly. There could be several reasons that phosphorylated 
metabolites were identified in plasma samples analyzed in this study. Inflammatory/
oxidative stress conditions related to the pathogenesis of RA have been reported to 
trigger the extracellular release of lactate, ATP, ADP and AMP [14]. These extracellular 
adenine nucleotides represent a potential pro-inflammatory metabolite during the early 
stages of RA [35]. However, ectophosphatases CD73 and CD39 on immune-competent 
cells, or alkaline phosphatase, can convert extracellular ATP, ADP and AMP into adenosine, 
which acts as an anti-inflammatory regulator via interaction with adenosine receptors 
on leukocytes [36,37]. Accordingly, low CD39 expression on regulatory T-cells has been 
identified as a biomarker for MTX resistance in RA [38,39].
 Furthermore, parallel changes in glycerol-3-phosphate, 2,3-DPG and PEP in good 
and poor responders point to alterations in glycolysis at the level of the regulatory enzyme 
pyruvate kinase (PK). In fact, RBC enzymopathies due to PK deficiency are characterized 
by increased levels of glycerol-3-phosphate, 2,3-DGP and PEP (and low ATP/GTP) [40,41] 
whereas enzymopathies due to hyperactive PK activity feature marked downregulation 
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of the three glycolytic intermediates (but high ATP/GTP) [42].
 To better understand the biological relevance of our findings, an overrepresentation 
analysis was performed, of which the results should be considered as exploratory given 
that solely metabolites with VIP > 1 were included and not all metabolites were significantly 
different at baseline. From this perspective, results from the overrepresentation analysis 
showed that differences in baseline metabolites in relation to MTX response were primarily 
involved in the Warburg effect and glycolysis. These findings are consistent with recent 
studies in the field of “immunometabolism”, describing alternate metabolic signatures 
during the activation of immune cells and autoimmune pathogenesis [15,43]. Especially the 
Warburg effect, describing a shift towards inefficient energy production through aerobic 
glycolysis, and well recognized for its impact on drug response in cancer cells [44], has been 
extensively described in RA patients, as well as the upregulation of glycolysis [45,46,47,48,49]. As 
these processes have been associated with a proinflammatory state, targeting the Warburg 
effect or glycolysis has been suggested as a potential RA therapy [50,51,52,53]. However, these 
processes have, to date, not been linked to the response to existing therapies in RA. The 
results of our study suggest that there may be a subgroup within early RA patients prior to 
treatment in which the Warburg effect and enhanced glycolysis could play a role in relation 
to response to MTX combination therapy. Moreover, MTX is a metabolite inhibitor itself, 
with primary targets in the folate/one-carbon metabolism pathway (e.g., dihydrofolate 
reductase (DHFR), thymidylate synthase (TYMS) and 5-aminoimidazole-4-carboxamide 
ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC)), which have many 
downstream effects, varying per immune cell type. For instance, as reviewed by Cronstein 
and Aune [5], MTX indirectly inhibits NF-κB activity in T-cells through the induction of long 
intergenic non-coding RNA p21 (lncRNA-p21). Interestingly, lncRNA-p21 also promotes 
HIF1-α upregulation under hypoxic circumstances, which regulates the Warburg effect [54]. 
This might be an interesting link between response to MTX and the Warburg effect that 
deserves further investigation.
 Strengths of this study were that it consisted of two equal groups with extremes in 
responses to MTX, which allowed us to identify the largest differences between response 
groups. Secondly, we used an untargeted approach, which led to new insights into possible 
metabolic biomarkers and pathways involved in the response to MTX. Furthermore, the 
study was performed on blood plasma samples, which are easily accessible for routine 
biomarker purposes. Limitations to this study were that it was performed using a semi-
quantitative assay, meaning that metabolite concentrations cannot be directly compared 
with measurements by other methods and in other studies, but only between response 
groups in the same study. Moreover, our sample size was limited; thus, validation using 
other methods is warranted. Finally, correlations between top findings and BMI were low 
(Pearson’s r < 0.3), and due to the low number of patients per group, we did not take into 
consideration other factors such as comorbidity, food intake and lifestyle factors, such as 
smoking, which may have influenced metabolic profiles [55].
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 For future studies, it would also be interesting to examine metabolite samples 
longitudinally. As a predictor for response, baseline samples are most suitable, as 
treatment adjustments can be made from the start of treatment initiation when 
appropriate. However, to obtain a better understanding of MTX’s mechanism(s) of action 
and, in particular, its effect on metabolic processes, it would be interesting to follow 
metabolites longitudinally before and after MTX in relation to treatment response. This 
approach may reveal certain biomarkers that could possibly also serve as early markers 
for response during the first few months of treatment. A decrease in uric acid, for instance, 
has been observed in good responders to MTX in RA patients [56]. This, together with our 
results demonstrating that lower uric acid levels in insufficient responders were observed 
at baseline, could indicate that MTX acts better when certain pathways are upregulated 
prior to treatment. Nevertheless, both results first require validation.
 Up to now, many other baseline variables have been assessed in relation to  
MTX response without much success, as previously reviewed [5,9,57,58]. Ideally, biomarkers 
should be combined in prediction models, including clinical, laboratory and lifestyle 
parameters [11,59,60]. Conceivably, metabolomic biomarkers for MTX response could be used 
as standalone or in addition to such a prediction model to identify insufficient responders 
prior to treatment and enabling prescription of step-up treatment from the start.
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Table S1. Results of overrepresentation analysis at baseline in relation to response to MTX at 3 
months in early RA patients.

Total Exp. Hits Raw p Holm p FDR

Warburg Effect 58 2.27 12 5.71E-07 5.59E-05 5.59E-05

Gluconeogenesis 35 1.37 9 2.82E-06 2.74E-04 1.38E-04

Alanine Metabolism 17 0.66 6 2.19E-05 2.10E-03 5.69E-04

Glycolysis 25 0.98 7 2.32E-05 2.21E-03 5.69E-04

Nucleotide Sugars Metabolism 20 0.78 6 6.27E-05 5.90E-03 8.22E-04

Lactose Synthesis 20 0.78 6 6.27E-05 5.90E-03 8.22E-04

Pentose Phosphate Pathway 29 1.13 7 6.71E-05 6.17E-03 8.22E-04

Urea Cycle 29 1.13 7 6.71E-05 6.17E-03 8.22E-04

Aspartate Metabolism 35 1.37 7 2.43E-04 2.19E-02 2.49E-03

Glycine and Serine Metabolism 59 2.30 9 2.54E-04 2.26E-02 2.49E-03

Purine Metabolism 74 2.89 10 3.07E-04 2.70E-02 2.73E-03

Glutamate Metabolism 49 1.91 8 3.67E-04 3.19E-02 3.00E-03

Mitochondrial Electron Transport Chain 19 0.74 5 5.48E-04 4.72E-02 4.13E-03

Starch and Sucrose Metabolism 31 1.21 6 8.65E-04 7.35E-02 5.92E-03

Glutathione Metabolism 21 0.82 5 9.06E-04 7.61E-02 5.92E-03

Ammonia Recycling 32 1.25 6 1.03E-03 8.58E-02 6.33E-03

Cysteine Metabolism 26 1.02 5 2.53E-03 2.08E-01 1.44E-02

Galactose Metabolism 38 1.48 6 2.64E-03 2.14E-01 1.44E-02

Arginine and Proline Metabolism 53 2.07 7 3.29E-03 2.63E-01 1.70E-02

Phenylalanine and Tyrosine Metabolism 28 1.09 5 3.57E-03 2.82E-01 1.75E-02

Thiamine Metabolism 9 0.35 3 3.94E-03 3.08E-01 1.84E-02

Propanoate Metabolism 42 1.64 6 4.47E-03 3.44E-01 1.99E-02

Citric Acid Cycle 32 1.25 5 6.52E-03 4.95E-01 2.78E-02

Pantothenate and CoA Biosynthesis 21 0.82 4 7.39E-03 5.55E-01 2.92E-02

Amino Sugar Metabolism 33 1.29 5 7.46E-03 5.55E-01 2.92E-02

Phosphatidylethanolamine Biosynthesis 12 0.47 3 9.52E-03 6.95E-01 3.59E-02

Glucose-Alanine Cycle 13 0.51 3 1.20E-02 8.67E-01 4.37E-02

Phosphatidylcholine Biosynthesis 14 0.55 3 1.49E-02 1.00E+00 5.22E-02

Selenoamino Acid Metabolism 28 1.09 4 2.07E-02 1.00E+00 7.01E-02

Histidine Metabolism 43 1.68 5 2.27E-02 1.00E+00 7.40E-02

Phosphatidylinositol Phosphate Metabolism 17 0.66 3 2.57E-02 1.00E+00 8.12E-02

Fructose and Mannose Degradation 32 1.25 4 3.25E-02 1.00E+00 9.96E-02

Pyruvate Metabolism 48 1.88 5 3.49E-02 1.00E+00 1.04E-01

Riboflavin Metabolism 20 0.78 3 3.97E-02 1.00E+00 1.11E-01

Threonine and 2-Oxobutanoate Degradation 20 0.78 3 3.97E-02 1.00E+00 1.11E-01

Phenylacetate Metabolism 9 0.35 2 4.50E-02 1.00E+00 1.19E-01
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Lactose Degradation 9 0.35 2 4.50E-02 1.00E+00 1.19E-01

Nicotinate and Nicotinamide Metabolism 37 1.45 4 5.19E-02 1.00E+00 1.34E-01

Malate-Aspartate Shuttle 10 0.39 2 5.49E-02 1.00E+00 1.38E-01

Glycerol Phosphate Shuttle 11 0.43 2 6.55E-02 1.00E+00 1.53E-01

Trehalose Degradation 11 0.43 2 6.55E-02 1.00E+00 1.53E-01

Cardiolipin Biosynthesis 11 0.43 2 6.55E-02 1.00E+00 1.53E-01

Glycerolipid Metabolism 25 0.98 3 7.00E-02 1.00E+00 1.58E-01

Pyrimidine Metabolism 59 2.30 5 7.44E-02 1.00E+00 1.58E-01

Oxidation of Branched Chain Fatty Acids 26 1.02 3 7.70E-02 1.00E+00 1.58E-01

Phytanic Acid Peroxisomal Oxidation 26 1.02 3 7.70E-02 1.00E+00 1.58E-01

Inositol Phosphate Metabolism 26 1.02 3 7.70E-02 1.00E+00 1.58E-01

Valine, Leucine and Isoleucine Degradation 60 2.34 5 7.88E-02 1.00E+00 1.58E-01

Tryptophan Metabolism 60 2.34 5 7.88E-02 1.00E+00 1.58E-01

Methionine Metabolism 43 1.68 4 8.20E-02 1.00E+00 1.61E-01

Folate Metabolism 29 1.13 3 9.99E-02 1.00E+00 1.92E-01

Inositol Metabolism 33 1.29 3 1.34E-01 1.00E+00 2.53E-01

Beta Oxidation of Very Long Chain Fatty Acids 17 0.66 2 1.40E-01 1.00E+00 2.59E-01

Beta-Alanine Metabolism 34 1.33 3 1.43E-01 1.00E+00 2.60E-01

Methylhistidine Metabolism 4 0.16 1 1.48E-01 1.00E+00 2.63E-01

Butyrate Metabolism 19 0.74 2 1.68E-01 1.00E+00 2.88E-01

Ethanol Degradation 19 0.74 2 1.68E-01 1.00E+00 2.88E-01

Sulfate/Sulfite Metabolism 22 0.86 2 2.11E-01 1.00E+00 3.50E-01

Transfer of Acetyl Groups into Mitochondria 22 0.86 2 2.11E-01 1.00E+00 3.50E-01

Biotin Metabolism 8 0.31 1 2.74E-01 1.00E+00 4.47E-01

Mitochondrial Beta-Oxidation of Short Chain 
Saturated Fatty Acids

27 1.05 2 2.85E-01 1.00E+00 4.50E-01

Mitochondrial Beta-Oxidation of Medium Chain 
Saturated Fatty Acids

27 1.05 2 2.85E-01 1.00E+00 4.50E-01

Mitochondrial Beta-Oxidation of Long Chain 
Saturated Fatty Acids

28 1.09 2 3.00E-01 1.00E+00 4.56E-01

Homocysteine Degradation 9 0.35 1 3.02E-01 1.00E+00 4.56E-01

De Novo Triacylglycerol Biosynthesis 9 0.35 1 3.02E-01 1.00E+00 4.56E-01

Lysine Degradation 30 1.17 2 3.29E-01 1.00E+00 4.89E-01

Taurine and Hypotaurine Metabolism 12 0.47 1 3.82E-01 1.00E+00 5.58E-01

Sphingolipid Metabolism 40 1.56 2 4.70E-01 1.00E+00 6.72E-01

Bile Acid Biosynthesis 65 2.54 3 4.73E-01 1.00E+00 6.72E-01

Fatty acid Metabolism 43 1.68 2 5.09E-01 1.00E+00 7.11E-01

Spermidine and Spermine Biosynthesis 18 0.70 1 5.15E-01 1.00E+00 7.11E-01

Table S1. Continued

Total Exp. Hits Raw p Holm p FDR
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Tyrosine Metabolism 72 2.81 3 5.44E-01 1.00E+00 7.41E-01

Steroid Biosynthesis 48 1.88 2 5.70E-01 1.00E+00 7.56E-01

Betaine Metabolism 21 0.82 1 5.71E-01 1.00E+00 7.56E-01

Carnitine Synthesis 22 0.86 1 5.88E-01 1.00E+00 7.68E-01

Plasmalogen Synthesis 26 1.02 1 6.50E-01 1.00E+00 8.38E-01

Phospholipid Biosynthesis 29 1.13 1 6.90E-01 1.00E+00 8.78E-01

Arachidonic Acid Metabolism 69 2.70 2 7.67E-01 1.00E+00 9.64E-01

Compound names of metabolites with VIP score >1 were used as input. The small molecule pathway database 
was selected as reference library. Hits= number of metabolites that were enriched in the pathway. Expected is 
number of hits expected in the pathway due to chance. FDR=False Discovery Rate. FDR- adjusted p-values <0.05 
were considered significant. 
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ABSTRACT

Introduction: Methotrexate (MTX) constitutes the first-line therapy in rheumatoid 
arthritis (RA), yet approximately 30% of the patients do not benefit from MTX. 
Recently, we reported a prognostic multivariable prediction model for insufficient 
clinical response to MTX at 3 months of treatment in the treatment in the Rotterdam 
Early Arthritis Cohort (tREACH), including baseline predictors: Disease activity score 
28 (DAS28), Health Assessment Questionnaire (HAQ), erythrocyte folate, single-
nucleotide polymorphisms (SNPs; ABCB1, ABCC3), smoking, and BMI. The purpose 
of the current study was (1) to externally validate the model and (2) to enhance the 
model’s clinical applicability.

Methods: Erythrocyte folate and SNPs were assessed in 91 early disease-modifying 
antirheumatic drug (DMARD)-naïve RA patients starting MTX in the external 
validation cohort (U-Act-Early). Insufficient response (DAS28 > 3.2) was determined 
after 3 months and non-response after 6 months of therapy. The previously 
developed prediction model was considered successfully validated in the U-Act-
Early (validation cohort) if the area under the curve (AUC) of the receiver operating 
characteristic (ROC) was not significantly lower than in the tREACH (derivation 
cohort).

Results: The AUCs in U-Act-Early at three and 6 months were 0.75 (95% CI 0.64–0.85) 
and 0.71 (95% CI 0.60–0.82) respectively, similar to the tREACH. Baseline DAS28 > 5.1 
and HAQ > 0.6 were the strongest predictors. The model was simplified by excluding 
the SNPs, while still classifying 73% correctly. Furthermore, interaction terms between 
BMI and HAQ and BMI and erythrocyte folate significantly improved the model 
increasing correct classification to 75%. Results were successfully implemented in 
Evidencio online platform assisting clinicians in shared decision-making to intensify 
treatment when appropriate.

Conclusions: We successfully externally validated our recently reported prediction 
model for MTX non-response and enhanced its clinical application thus enabling its 
evaluation in a clinical trial.
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INTRODUCTION

Methotrexate (MTX) is the first-line therapy in rheumatoid arthritis (RA) [1]. Although 
efficacious in a large proportion of patients, MTX is poorly effective in approximately 30% 
of early RA patients [2,3]. Patients on MTX who do not show improvement at 3  months 
(insufficient responders) or do not reach the treatment target of low disease activity/
remission at 6 months (non-responders) are switched to biologic disease-modifying anti-
rheumatoid drug (bDMARD) therapies or novel targeted synthetic DMARD (tsDMARD) 
therapies, including, e.g., Janus kinase (JAK) inhibitors [1,4,5], with or without concomitant 
MTX treatment. To ensure that only patients unresponsive to MTX receive early 
(additional) treatment with b/tsDMARDs and those responsive to MTX are spared costly 
biologics or synthetic drugs, we and others have constructed models to predict MTX 
(non)-response [6,7,8,9]. Our prognostic multivariable prediction model for the prediction 
of insufficient response, defined as: disease activity score 28 (DAS28 > 3.2) at 3 months of 
MTX therapy, was constructed in the treatment in the Rotterdam Early Arthritis Cohort 
(tREACH) and included clinical predictors (DAS28 and Health Assessment Questionnaire 
[HAQ]), life-style predictors (smoking and BMI) and laboratory parameters involved in 
MTX metabolism (erythrocyte folate and single-nucleotide polymorphisms: SNPs) [9]. This 
model classified 80% of patients correctly (area under the curve [AUC] of the receiver 
operating characteristic [ROC]: 0.80 [95% CI 0.73–0.86]) and was externally validated in 
the MTX-Rotterdam cohort showing a similar prognostic performance (AUC 0.80 [95% CI 
0.69–0.91]) even though BMI and smoking predictors were absent from this validation 
cohort [9]. The aim of the current study was to validate the complete prediction model, 
including BMI and smoking status predictors, in an external early RA cohort (U-Act-Early) 
from a different geographic region and to enhance the model’s applicability in clinical 
practice [10].

METHODS

The methodology of this study followed transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD) guidelines [11].

Patients
The external validation cohort consisted of 91 patients from the U-Act-Early cohort, a 
multicenter, double-blind, placebo-controlled strategy trial, registered at ClinicalTrials.gov 
(number: NCT01034137) [10]. DMARD- and glucocorticoid (GC)-naïve early RA patients were 
eligible for inclusion once classified as RA patients according to the 1987 America College 
of Rheumatology (ACR) [12] (n = 7, 8%) or the 2010 ACR/EULAR classification criteria (n = 84, 
92%) [13], and had a disease duration < 12 months and active disease at baseline (disease 
activity score 28; DAS28 ≥ 2.6). Patients were randomly assigned to a treatment strategy 
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with tocilizumab (TCZ) + placebo, MTX + placebo or their combination (TCZ + MTX) and 
treated to the target of sustained remission (i.e., a DAS28 < 2.6 and swollen joint count 
of ≤ 4 joints of the 28 joints assessed, during ≥ 24 weeks). All 91 patients included were 
derived from the initial MTX + placebo strategy arm. The starting MTX dose was 10 mg/
week orally and increased stepwise 5 mg every 4 weeks up to 30 mg/week until remission 
or the maximum tolerable dose. During the trial, GC use was not permitted. The tREACH 
(n = 285) cohort was described earlier [9]. Importantly, in the tREACH, the optimal MTX dose 
of 25 mg/week was reached within 3 weeks (combined with other conventional synthetic 
(cs) DMARDs and/or GCs) and therapy was targeted to low disease activity (DAS28 ≤ 3.2) at 
3 months. If this failed, step-up treatment with additional csDMARDs (sulfasalazine and/or 
hydroxychloroquine) or bDMARDs (i.e., TNF-alpha inhibitor) was initiated. In both cohorts, 
folic acid (10 mg/week) was prescribed during MTX treatment. This study was approved 
by the medical ethics committee of the University Medical Center Utrecht (ML22497) and 
the medical ethics committee of Erasmus Medical Center (MEC-2006-252). All procedures 
performed in studies involving human participants were in accordance with the ethical 
standards of the institutional and/or national research committee and with the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards. Written 
informed consent was obtained for all patients.

Outcome and Clinical Predictors
The primary outcome was insufficient MTX response after 3 months of treatment start, 
defined as DAS28 > 3.2, where DAS28 was based on the erythrocyte sedimentation 
rate (DAS28-ESR). All predictors were dichotomized prior to analyses. Cut-off values 
were defined previously in the tREACH cohort as: DAS28 > 5.1, HAQ > 0.6, erythrocyte 
folate < 750  nmol/l, current smoking, BMI > 25  kg/m2,  ABCB1  rs1045642 (GG/GA vs. AA) 
genotype, and ABCC3 rs4793665 (TC/CC vs. TT) genotype [9]. As erythrocyte-folate levels 
were slightly higher in U-Act-Early, new cut-off points were examined for erythrocyte-
folate (deciles) and BMI (> 30  kg/m2) in U-Act-Early and tested for improvement of the 
model. The secondary outcome measure was non-response to MTX after 6  months of 
treatment, defined as DAS28-ESR > 3.2.

Erythrocyte Folate and Genetic Variants
In U-Act-Early, erythrocyte folate and genetic variants included in the original prediction 
model [9] were determined from EDTA whole blood samples stored at − 80  °C, as 
described elsewhere [14,15]. DNA was obtained from whole blood using a MagNAPure 
Compact (Roche Life Science, Almere, The Netherlands) and genotypes were determined 
for ABCB1 rs1045642 and ABCC3 rs4793665 using real-time PCR with Taqman, as described 
previously [15]. Samples were tested for deviation from the Hardy–Weinberg equilibrium 
(HWE). SNPs were determined in the same lab and according to the same protocols as the 
tREACH study [9]. Importantly, there were methodological differences in the measurement 
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of folate between the tREACH and U-Act-Early cohorts. The Elecsys® Folate III assay (Ref 
7027290190; Roche Diagnostics) has been re-standardized since 2017 in accordance 
with the WHO International Standard NIBSC Code 03/178. This resulted in 10% lower 
erythrocyte folate levels (U-Act-Early) compared to those quantified using the previous 
assay (tREACH). Furthermore, serum folate levels, required for folate correction in whole 
blood, were not available in U-Act-Early. As serum folate levels take up only a small part of 
the total folate concentrations, whole blood folate levels were corrected for the average 
serum folate concentration in the tREACH (25 nmol/l).

Statistical Analysis
Clinical and laboratory parameters for the tREACH (derivation) and U-Act-Early (validation) 
cohorts were compared. The difference in DAS28 at 3  months (compared to baseline) 
was expressed as a  mean with standard deviation (± SD) and assessed using a paired-
sample  t  test. Differences between cohort variables were tested using an independent 
two-group t test, if the assumptions of normal distribution (visual inspection) and equal 
variances (tested using the Levene’s test) were met. If these assumptions were not met, 
non-parametric Mann–Whitney  U  test was performed. Differences in proportions were 
tested using a two-sample proportion test. Due to missing informed consent at the start 
of this validation study, eight subjects from the tREACH (derivation) cohort were excluded 
from analyses in this study. This is why the model as described previously was first re-
analyzed on the tREACH data excluding these eight subjects, resulting in negligible 
differences in effect sizes compared to previous study [9]. Next, to validate the prediction 
model in the external validation cohort (U-Act-Early), the predictors, DAS28 > 5.1, HAQ > 0.6, 
erythrocyte folate < 750  nmol/l, current smoking, BMI > 25  kg/m2,  ABCB1  rs1045642 
genotype and  ABCC3  rs4793665 genotype were entered into a multivariable logistic 
regression and the probability for insufficient response was calculated using the pROC 
package in R according to the following formula:

where β0 represents the constant, β, β2, and βn represent the regression coefficients for 
each of the predictors x1, x2, xn. Subsequently, an ROC curve with AUC was constructed 
using the predicted probabilities and compared with results in the tREACH. The previously 
developed prediction model in tREACH (derivation) was considered successfully validated 
in the U-Act-Early (validation) if the area under the curve (AUC) of the receiver operating 
characteristic (ROC) was not significantly lower than in the tREACH. Goodness of fit 
between the predicted probabilities and observed values was tested using the Hosmer–
Lemeshow test, where p > 0.05 indicated that a model fit the data well. All analyses were 
performed in R studio (Version: 3.5.3, “2019-03-11”).  P  values < 0.05 were considered 
statistically significant. Subjects with missing data (N = 104) were excluded from analyses 
(complete-case analysis).To enhance the model’s clinical applicability and thus facilitate 
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its clinical implementation, we applied the prediction model on the combined dataset of 
tREACH and U-Act-Early (N = 264) using the step-up approach. Therefore, the model could 
be simplified using fewer predictors and possible two-way interactions could be examined 
in a combined cohort with more power. Statistically significant interactions (p < 0.05) 
were added to the model. To simplify the model, we assessed individual contribution of 
variables to the predictive power of the model by sequential addition of predictors. Model 
fits were compared using the likelihood ratio test. Probability for insufficient response was 
calculated for each patient as well as the corresponding specificity, positive predictive 
value (PPV), sensitivity, and negative predictive value (NPV) were determined, using the 
“pROC” package in R. The final prediction model was uploaded onto the online platform 
‘Evidencio’ providing a tool for clinicians to decide whether to start MTX combination 
therapy.

RESULTS

Cohort Comparisons
In U-Act-Early (validation cohort), mean DAS28 decreased from 5.0 (± 1.1) to 3.6 (± 1.6) 
during the first 3 months (p < 0.001). Mean DAS28 in tREACH (derivation cohort) was 5.0 
(± 1.1), which decreased to a mean DAS28 of 3.1 (± 1.2, p < 0.001). Baseline DAS28 in U-Act-
Early was comparable to that of tREACH (p = 0.613; Table 1). In U-Act-Early, 58 patients (64%) 
were categorized as insufficient MTX responders (i.e., DAS28 > 3.2 at 3 months) compared 
to 114 (43%) in tREACH (p = 0.006). In U-Act-Early, 39 (44%) patients were classified as 
MTX non-responders (i.e., DAS28 > 3.2 at 6 months), which was not significantly different 
from 38% in tREACH (Table  1). Additionally, U-Act-Early consisted of significantly more 
rheumatoid factor positive patients (81%) compared to tREACH (65%) (p = 0.007; Table 1), 
whereas no significant differences were found for anti-citrullinated protein antibody 
(ACPA) positivity (p = 0.214; Table 1). Despite the lower folate levels due to (international) 
re-standardization of the method, the erythrocyte-folate levels were still significantly 
higher in U-Act-Early compared to tREACH (p = 0.006; Table 1) and genotype GG/GA 
for ABCB1 was significantly more frequent in tREACH (p = 0.016; Table 1), while genotypes 
for  ABCC3 were similar between cohorts. Importantly, besides MTX, co-medication was 
prescribed in tREACH (derivation) but not in U-Act-Early (validation; Table 1).
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Table 1. Descriptives of the derivation (tREACH) and external validation (U-Act-Early) cohorts.

Clinical parameters tREACH
Derivation cohort
N=277

U-Act-Early
Validation cohort
N=91

P-value

DAS28>3.2 at 3 months
DAS28>3.2 at 6 months
Gender, male 
Age, mean ± SD
Baseline DAS28, mean ± SD
HAQ>0.6

43%
38%
30%
54 ± 14
5.0 ± 1.1
76%

64%
44%
36%
53 ± 13
5.0 ± 1.1
70%

0.006**
0.417
0.300
0.498
0.613
0.330

Laboratory parameters

Erythrocyte folate, median (IQR)#

ABCB1 GG/GA
ABCC3 TC/CC
Rheumatoid factor positive
ACPA positive

862 (665 – 1163)
73%
66%
65%
71%

1020  (795 – 1221)
58%
67%
81%
79%

0.006**
0.016*
0.909
0.007**
0.214

Life style parameters

BMI, median (IQR)
Current smokers, N (%)

25 (23 - 29)
84 (33)

25 (23 - 29)
28 (31)

0.950
0.820

Co-medication

Other DMARDs
Oral corticosteroids
Parental corticosteroids
Subcutaneous 

56%
58%
28%
0%

0%
0%
0%
0%

<0.001***
<0.001***
<0.001***

Missing values tREACH: DAS28 at 3 months N=13, DAS28 at 6 months, N= 28, erythrocyte folate N=78, rheumatoid 
factor N=35, BMI N=3, smoking status N=21, HAQ N=18, ABCB1 N=21, ABCC3 N=20. Missing values U-Act-Early: 
DAS28 at 6 months, N=2, rheumatoid factor N=1, ACPA status N=1. Percentages shown are of valid data points. 
*P<0.05 was considered significant, **P<0.01, ***P<0.001. 
# Expressed in nmol/L 

Validation of Prediction Model at 3 Months
The model combining all predictors accomplished an AUC of 0.75 (95% CI 0.64–0.85) 
(Fig.  1) in U-Act-Early (validation), which means that 75% of the patients could be 
classified correctly. The strongest predictor for insufficient response to MTX in U-Act-Early 
was baseline DAS28 > 5.1 (p = 0.008; Table 2). Odds ratios (ORs) for the predictors DAS28, 
HAQ, erythrocyte folate, BMI and smoking in U-Act-Early (validation) were in the same 
direction as in the tREACH (derivation; Table 2). The OR of the ABCC3 SNP was however 
in the opposite direction in U-Act-Early (OR = 0.6, 95% CI 0.23–1.79) compared to tREACH 
(OR = 3.1, 95% CI 1.39–6.94).
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Table 2. Validation of multivariable logistic regression models for insufficient response to MTX 
(DAS28 >3.2) at 3 months of treatment in an external validation cohort (U-Act-Early).

 tREACH derivation cohort N= 173 U-Act-Early validation cohort N= 91

Predictors OR (95% CI) OR (95% CI)

DAS28 >5.1 3.7 (1.62 – 8.38)** 4.1 (1.44 – 11.82)**

HAQ >0.6 2.8 (1.15 – 7.00)* 2.1 (0.67 – 6.35)

ABCB1 GG/GA 2.4 (1.06 – 5.23)* 1.0 (0.37 – 2.75)

ABCC3 TC/CC 3.1 (1.39 – 6.94)** 0.6 (0.23 – 1.79)

Folate <750 nmol/L 2.1 (0.97 – 4.40) 3.4 (0.88 – 12.79)

Smoker 4.2 (1.91 – 9.42)** 1.3 (0.44 – 4.00)

BMI >25 kg/m2 3.3 (1.52 – 7.21)** 1.6 (0.62 – 4.23)

AUC (95% CI) 0.81 (0.74 – 0.87) 0.75 (0.64 – 0.85)

Left column presents data from the derivation cohort (tREACH) and right of the external validation cohort 
(U-Act-Early). OR= odds ratio, CI= confidence interval.  Predictors that contributed significantly to the model 
were indicated with an asterisk, where *P<0.05 and **P<0.01. 

Figure 1. ROC curve for the prediction of insufficient response (DAS28 > 3.2)  to MTX after 3 months of treatment. 
Area under the curve (AUC) is  reported as follows: AUC (95% confidence interval). Predictors were:  baseline 
DAS28 > 5.1, baseline HAQ > 0.6, ABCB1 genotype,  ABCC3 genotype, baseline erythrocyte folate, BMI > 25 kg/m2 

and current smoking.
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Similar results were found for the prediction of non-response at 6 months. An ROC curve 
was constructed with an AUC of 0.71 (95% CI 0.60–0.82; Supplementary Figure S1) in 
U-Act-Early (validation), which is comparable to the predictive value of the tREACH model 
(derivation) at 6 months (AUC 0.75, 95% CI 0.67–0.83; Supplementary Figure S1).

Enhancement of the Model’s Clinical Applicability
Next, the U-Act-Early and tREACH cohort were combined to increase power and enhance 
the model’s clinical applicability. In this combined cohort, the ORs for all predictors were 
greater than 1 and all predictors, except for the SNPs were significant (Supplementary 
Table S1). The combined model reached an AUC of 0.74 (95% CI 0.68–0.80; Supplementary 
Table S1 and Fig. 1) at 3 months.
 Additionally, in this combined set, we investigated whether all predictors were 
required to reach 74% predictive power or whether the model could be further simplified. 
To do so, we analyzed changes in AUC upon sequential addition of predictors to the model. 
We started with the most readily available clinical predictors DAS28 > 5.1 and HAQ > 0.6, 
which generated an ROC with an AUC of 0.67 (95% CI 0.61–0.74; Table 3).

Table 3. Logistic model building in combined datasets: U-Act-Early + tREACH.

Model Predictors Log likelihood Chisquare P AUC (95% CI)

1 DAS28 + HAQ -168.68 0.67 (0.61 – 0.74)

2 DAS28 + HAQ + smoking -165.52 6.32 0.01* 0.70 (0.64 – 0.76)

3 DAS28 + HAQ + smoking + BMI -162.98 5.08 0.02* 0.72 (0.66 – 0.78)

4 DAS28 + HAQ + smoking + BMI + 
erythrocyte folate

-160.43 5.11 0.02* 0.73 (0.67 – 0.79)

5 DAS28 + HAQ + smoking + BMI + 
erythrocyte folate + ABCC3

-158.57 3.71 0.05 0.74 (0.68 – 0.80)

6 DAS28 + HAQ + smoking + BMI + 
erythrocyte folate + ABCB1

-160.15 0.57 0.45 0.74 (0.68 – 0.80)

7 DAS28 + HAQ + smoking + BMI + 
erythrocyte folate + ABCC3 + ABCB1

-158.29 4.28 0.12 0.74 (0.68 – 0.80)

Each model was compared to the previous model. Model 6 and 7 were compared to model 4. *P-value<0.05 was 
considered significant. DAS28= DAS28 >5.1, HAQ = HAQ>0.6, smoking= current smoking, BMI= BMI >25kg/m2, 
erythrocyte folate= erythrocyte folate <750 nmol/L, ABCC3= genotype TC or CC, ABCB1= genotype GG or GA. 

Upon addition of smoking to the model, the AUC significantly increased (p = 0.01) to 
0.70 (95% CI 0.64–0.76), followed by BMI, upon which the AUC further improved to 0.72 
(95% CI 0.66–0.78,  p = 0.02). Upon addition of erythrocyte folate to the model the AUC 
reached 0.73 (95% CI 0.67–0.79, p = 0.02). Addition of ABCB1 and ABCC3 genotypes did not 
significantly improve the model (AUC = 0.74, 95% CI 0.68–0.80, p = 0.12; Table 3). Hence, 
the model could be simplified to a model where SNP genotypes were excluded resulting 
in a model with predictive power of 73%.
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 To fine-tune the model, all two-way interaction terms between predictors were 
tested. An interaction term between HAQ and BMI (OR = 3.68 95% CI 1.07—13.14) 
significantly contributed to the model. This means that a BMI > 25 kg/m2 was associated 
with worse disease activity when HAQ values were > 0.6. Furthermore, an interaction 
term between HAQ and erythrocyte folate (OR = 0.23, 95% CI 0.06–0.86) also significantly 
contributed to the model, indicating that low erythrocyte folate concentrations 
(< 750 nmol/l) significantly predicted insufficient response when HAQ values were < 0.6. 
Hence, interaction terms for HAQ and BMI and HAQ and erythrocyte folate were added 
to the model. Upon addition of these interaction terms to the model, the AUC of the 
final model, shown in Table 4, increased to 0.75 (95% CI 0.69–0.81). As mentioned in the 
Methods section, we generated new cut-off values for erythrocyte folate and the BMI in 
the U-Act-Early cohort which, when included, did not result in higher AUCs.

Model Translation to the Clinic
In order to apply the model in clinical practice, the prediction model was integrated 
into an online platform “Evidencio” [16]. Using this tool, clinicians can easily enter DAS28, 
HAQ, erythrocyte folate, smoking, and BMI for individual patients using sliding scales 
and buttons. The model then automatically calculates and presents a probability of 
insufficient response to MTX for this specific patient. Specificity, positive predictive value 
(PPV), sensitivity, and negative predictive values (NPV) were calculated for different cut-off 
values of these probabilities for insufficient response and are presented in Supplementary 
File S1.

Table 4. Final prediction model enhanced for clinical implementation.

β OR (95% CI) p

Intercept -1.67 0.19 (0.07 – 0.44) <0.001***

Baseline DAS28 > 5.1 1.34 3.81 (2.12 – 6.99) <0.001***

HAQ >0.6 0.44 1.56 (0.58 – 4.33) 0.383

BMI >25 kg/m2 -0.34 0.71 (0.24 – 2.04) 0.528

Erythrocyte folate <750nmol/L 1.79 5.98 (2.00 – 19.09) 0.002**

Smoking (current smoker) 0.81 2.26 (1.25 – 4.16) 0.008**

HAQ >0.6 x BMI >25 kg/m2 1.30 3.68 (1.07 – 13.14) 0.040*

HAQ >0.6 x Erythrocyte folate <750nmol/L -1.46 0.23 (0.06 – 0.86) 0.031*

AUC .75 (95% CI: 0.69 – 0.81)

Hosmer – Lemeshow test 0.634

β= beta coefficient of the final logistic regression model. OR (95% CI)= odds ratio with 95% confidence 
interval. The model was constructed in the combined dataset (tREACH + U-Act-Early, N=264).  *P-values < 0.05, 
**P-values < 0.01, ***P-values<0.001. AUC= area under the curve. The multiplication sign indicates that there is 
an interaction between two predictors. 
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 Our online model can be found in Evidencio using the following link: 
https://www.evidencio.com/models/show/2191. A patient-specific report presenting the 
results and model interpretation can be downloaded from Evidencio (Supplementary 
File S1). An example is shown in Fig. 2, where a patient with DAS28 score = 4.9, HAQ = 0.4, 
BMI = 22 kg/m2, erythrocyte-folate = 720 nmol/l, and current smoking status = yes, has a 
probability of insufficient response of 71.7%, with corresponding specificity of 86% and 
PPV of 75%.

Figure 2. Example of online platform Evidencio for the implementation of the prediction model. Values for 
each individual patient can be filled out using the buttons and slides. Corresponding probability for insufficient 
response is automatically calculated using the prediction model.

DISCUSSION

We externally validated our previously developed prediction model for insufficient response 
to MTX therapy at 3 and 6 months after treatment initiation in early RA patients including 
all predictors DAS28 > 5.1, HAQ > 0.6,  ABCB1  rs1045642 genotype,  ABCC3  rs4793665 
genotype, erythrocyte folate < 750 nmol/l, current smoking and BMI > 25 kg/m2. To enhance 
clinical applicability and facilitate implementation, the validated model was applied in 
the combined derivation and validation cohort. This model, without  ABCB1  rs1045642 
genotype and ABCC3 rs4793665 genotype, had an AUC of 0.75, meaning that it classified 
75% of the insufficient responders correctly. Currently, according to the EULAR treatment 
guidelines, MTX is the first-line therapy in RA. Treatment is only up-scaled after 3 to 
6  months of insufficient response to MTX, despite evidence supporting a ‘window of 
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opportunity’ for targeted treatment [1, 17]. This window of opportunity is a limited period 
between diagnosis and RA progression in which the disease could still be modified, 
radiographic damage/functional disability could be limited, and progression could be 
slowed down upon early control of disease activity, for which sufficient treatment is 
required [17]. Our prediction model could assist in identification of insufficient responders 
at diagnosis: for those with high probability of insufficient response to MTX, additional 
biologics or JAK inhibitors could be prescribed, while for patients with low probabilities 
of insufficient response these expensive treatments could be spared. This distinction at 
diagnosis could save precious time for insufficient responders, allowing earlier control of 
disease activity resulting in better long-term outcomes.
 We externally validated the model for the first time in its entirety as, besides the 
clinical and laboratory predictors, the lifestyle predictors (BMI and smoking) were also 
examined in the U-Act-Early cohort (as opposed to the initial validation in the MTX-
Rotterdam cohort, which lacked the life-style predictors) [9]. The strongest predictor was 
high disease activity at baseline (DAS28 > 5.1) confirming previous findings [7,  18]. Due 
to differences in treatment intensities (i.e., MTX dose and co-medication) between the 
derivation and the validation cohort, we investigated whether the model was applicable 
at 6  months despite step-up treatments after the 3-month mark. Indeed, 71% of the 
non-responders to MTX were classified correctly, which was similar to the 75% in the 
tREACH derivation cohort at 6  months. In the combined cohort, all predictors except 
for  ABCB1  and  ABCC3  genotypes significantly contributed to the predictive power of 
the model. Addition of ABCB1 and ABCC3 genotypes to the model showed only minimal 
improvement, resulting in an absolute change in AUC of 0.01, which was not statistically 
significant. A meta-analysis on the relationship between ABCB1 genotype and response 
to MTX in 2014 RA patients showed an association between this genotype and response 
to MTX, yet our patient group was too small to validate this result [9]. Another recent GWAS 
study did not show a relationship between ABCB1 or ABCC3 and treatment response [19]. 
Since the differences in predictive power were minor and the effect of ABCC3 genotype 
pointed in opposite directions in the two cohorts, possibly indicating a spurious finding, 
we excluded both genotypes from the model.
 In agreement with our study, increased BMI (obese > 30 kg/m2) was previously found 
to be associated with insufficient response to MTX in RA patients [20, 21]. It is postulated that 
the effect of BMI on non-response to MTX could be due to the release of proinflammatory 
adipokines [e.g., leptin, interleukin-6, and or tumor-necrosis factor alpha (TNF-α)] from 
the adipose tissue [20]. Also, the predictive power of smoking was is in accordance with 
previous studies [6, 7, 20, 22].
 So far, several prediction models for MTX non-response have been proposed, which 
resulted in an AUC between 0.65 and 0.85 [6,7,8, 22, 23]. Different outcome measures at different 
time points and combination therapies complicate comparison between models and their 
validation. However, the best-performing models all included clinical parameters and 
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laboratory parameters, which is in line with our findings [6, 8]. We also showed that clinical 
predictors (DAS28 > 5.1 and HAQ > 0.6) alone classified fewer insufficient responders 
correctly (67%) compared to the model combining clinical, life-style (BMI and smoking) 
and laboratory predictors (erythrocyte folate), which classified 73% of patients correctly. 
Most clinical predictors and life-style predictors are easy to assess. Erythrocyte folate may 
not be available in every laboratory, however the assay is relatively easy to assess [24].
 Strengths of this study are that both derivation and validation studies were 
prospectively designed and that patients in the external validation cohort were included 
from different districts in the Netherlands. Limitations are that the size of the external 
validation cohort was limited, however the number of cases in both the internal 
(tREACH) and external (U-Act-Early) cohort were similar. In addition, the model was 
validated in an MTX monotherapy group, while it was designed in a combination (GC 
and csDMARD) therapy group. Commonly, however MTX is co-prescribed with a short 
course of glucocorticoids (prednisone) as MTX’s optimal effect ensues after 8–12 weeks 
[1]. Despite differences in co-medication between the cohorts, the prediction model had 
similar predictive value and OR for predictors were in the same direction in both cohorts, 
indicating that co-medication did not affect the prediction of response to MTX. Another 
limitation is that smoking status was assessed using questionnaires; possibly biasing the 
results as smoking behavior could be underreported or underestimated. In future studies, 
cotinine, the degradation product of nicotine, could be quantified as an objective measure 
for smoking status, which can easily be determined in serum [25].
 Furthermore, we showed that the online platform Evidencio provides an easy tool for 
implementation of the prediction model in clinical practice. Evidencio is freely available 
so that the data can be uploaded to automatically validate the model in specific cohorts. 
In addition, using the Evidencio platform, clinicians can directly use the model in their 
practice. When a new patient is diagnosed with RA, patient’s information on DAS28, HAQ, 
erythrocyte-folate, BMI, and smoking status can be provided to Evidencio. Subsequently, 
a probability of insufficient response to MTX with corresponding specificity, positive 
predictive value (PPV), sensitivity, and negative predictive value (NPV) are provided by 
the tool and may help clinicians and patients in shared decision-making on step-up 
treatment with bDMARDs or tsDMARDs. The choice of a cut-off depends on the clinical 
goal. Taking into consideration the “window of opportunity” [17] for optimal treatment, 
we consider it crucial to adequately treat insufficient MTX responders with additional 
bDMARDs/tsDMARDs. Therefore, our goal for this prediction model was to identify as 
many insufficient responders as possible, while at the same time attempting to restrict 
the use of bDMARDs/tsDMARDs to those patients who really need them, hence to avoid 
misclassification of sufficient responders. Considering this, a cut-off probability of 70% 
(of insufficient response) could be chosen. At this cut-off, 75% of patients classified as 
insufficient responder match actual insufficient responders (PPV) and could be treated 
with additional bDMARDs/tsDMARDs. Additionally, at this cut-off, 86% of all sufficient 
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responders would be correctly classified as such (specificity) and could be spared 
additional treatment.
 The importance of erythrocyte-folate for the predictive power of the model implies 
that this model is specific in predicting insufficient response to MTX, as MTX is structurally 
similar to folate. Hence, low erythrocyte folate levels are possibly a surrogate measure 
for poor MTX absorption, transportation, and MTX accumulation in the cell, as described 
previously [14]. However, it is possible that a certain proportion of insufficient responders  
to MTX are difficult-to-treat RA patients who are poorly responsive to various b/ts  
DMARDs [26,  27]. So far, we cannot identify difficult-to-treat RA patients in advance. 
Furthermore, as recently argued, treatment strategies could be more important than 
specific drugs, implying that these patients could still benefit from quicker and more 
aggressive treatment to reach a certain treatment target when earlier identified as 
insufficient responders [28, 29].

CONCLUSIONS

We successfully externally validated our previously published prognostic prediction 
model of insufficient response to MTX, which correctly classified 75% of insufficient 
responders at 3 months and 71% of non-responders at 6 months of treatment. The model 
can be used in clinical practice to identify insufficient responders to MTX with the goal 
of treating them with additional biologic or JAK inhibitors as early as possible to reduce 
disease activity and limit joint damage. Application of the tool by means of a clinical trial 
is warranted. 
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SUPPLEMENTAL FILES

Supplementary File S1. Model performance given different risk cut-offs for insufficient response (Gosselt et al, 
2020) Calculations alone should never dictate patient care, and are no substitute for professional judgement. See 
our full disclaimer at: https://www.evidencio.com/disclaimer.

Research authors: Gosselt HR, Verhoeven MMA, de Rotte MCFJ, Pluijm SMF, Muller IB, Jansen G, Tekstra J, Bulatović-Ćalasan M, Heil

SG, Lafeber FPJG, Hazes JMW, and de Jonge R.

RESULT 2020-06-30 11:22

Model-id: 2191 | Version: 1.28 | Revision date: 2020-06-09

PREDICTION OF 3 MONTHS MTX NON-RESPONSE (DAS28>3.2) IN EARLY
RHEUMATOID ARTHRITIS

Validated prediction model to identify DMARD-naïve rheumatoid arthritis patients with high risk of
insufficient response to MTX.

Probability of MTX non-response after 3 months of treatment: 71.7 %

Based on the following parameters:

Baseline DAS28 4.9 points

HAQ 0.4 points

BMI 22 kg/m2

Erytrocyte folate 720 nmol/L

Smoking Yes

Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.
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OUTCOME STRATIFICATION

Result interval 60 to 80

Based on a probability cut-off of 70% risk of insufficient respons to methotrexate, calculated sensitivity,
speciƼcity, positive predictive value (PPV) and negative predictive values (NPV) were: 

Sensitivity: 43%                SpeciƼcity: 86%                 PPV: 75%                  NPV: 61%
 

Result interval 70 to 90

Based on a probability cut-off of 80% r isk of insufficient respons to methotrexate, calculated sensitivity,
speciƼcity, positive predictive value (PPV) and negative predictive values (NPV) were: 

Sensitivity: 8%                 SpeciƼcity: 96%                 PPV: 67%                  NPV: 52%
 

CONDITIONAL INFORMATION

An interaction term was acitivated and added to the model:
Based on the provided input, a two-way interaction term between HAQ and erythrocyte folate (OR = 0.23,
95% CI 0.06 – 0.86) was automatically added to the model. This interaction term was found to signiƼcantly
contribute to the model, meaning that low erythrocyte folate concentrations (<750 nmol/L) signiƼcantly
predicted insufficient response when HAQ values were <0.6. 
 

RESULT INTERPRETATION

How this model should be used: 
This prediction model could assist in identiƼcation of insufficient responders at diagnosis. For patients with
high probability of insufficient response to MTX, additional biologics or JAK-inhibitors could be prescribed.
For those with low probabilities of insufficient response, these expensive treatments could be spared. This
distinction at diagnosis could save precious time for insufficient responders, allowing earlier control of
disease activity resulting in better long-term outcomes.

Model performance: 
Discriminative power of the model was assessed through evaluating the area under the receiver operating
characteristic curve (AUC). The AUC of the model was 0.75 (95% CI: 0.69 – 0.81), indicating that the model
correctly classiƼed patients in 75% of the cases.

Goodness-of-Ƽt between the predicted probabilities and observed values was tested using the Hosmer-
Lemeshow test. The associated P-value was 0.634, indicating good model Ƽt. 

Decisions on appropriate risk cut-offs:
Taking into consideration the “window of opportunity” for optimal treatment we consider it crucial to
adequately treat insufficient MTX responders with additional bDMARDs/tsDMARDs. Therefore, our goal for
this prediction model was to identify as many insufficient responders as possible, while at the same time
attempting to restrict the use of bDMARDs/tsDMARDs to those patients who really need them, hence to
avoid misclassiƼcation of sufficient responders. Considering this, a cut-off probability of 70% (of insufficient
response) could be chosen.

At this cut-off, 75% of patients classiƼed as insufficient responder match actual insufficient responders
(PPV) and could be treated with additional bDMARDs/tsDMARDs. Additionally, at this cut-off 86% of all
sufficient responders would be correctly classiƼed as such (speciƼcity) and could be spared additional
treatment.

Supplementary File S1. Continued
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Figure 1. Model performance given different risk cut-offs for insuƾcient response (Gosselt et al, 2020)

Supplementary File S1. Continued

Supplementary Figure S1. ROC curve for the 
prediction of non-response (DAS28>3.2) to 
MTX after six months of treatment. Area 
under the curve (AUC) is reported as follows: 
AUC (95% confidence interval). Predictors 
were: baseline DAS28 >5.1, baseline HAQ >0.6, 
ABCB1 genotype, ABCC3 genotype, baseline 
erythrocyte folate, BMI >25kg/m2 and current 
smoking.
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Supplementary Table S1. Effect sizes of multivariable logistic regression models for insufficient 
response to MTX (DAS28 >3.2) at 3 months of treatment in the combined data set.

U-Act-Early + tREACH Combination cohorts N=264

Predictors OR (95% CI)

DAS28 >5.1 3.6 (1.98 – 6.47)**

HAQ >0.6 2.1 (1.08 – 3.90)*

ABCB1 GG/GA 1.2 (0.71 – 2.17)

ABCC3 TC/CC 1.8 (0.99 – 3.11)

Folate <750 nmol/L 1.9 (1.06 – 3.50)*

Smoker 2.2 (1.23 – 4.00)**

BMI >25 kg/m2 1.9 (1.11 – 3.31)*

AUC (95% CI) 0.74 (0.68 – 0.80)

Model shown is from the combined data set (U-Act-Early + tREACH). OR= odds ratio, CI= confidence interval.  
Predictors that contributed significantly to the model were indicated with an asterisk, where *P<0.05 and 
**P<0.01.
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ABSTRACT

Introduction: To examine whether machine-learning algorithms outperform multi-
variable logistic regression in prediction of insufficient response to MTX. Secondly, to  
examine which features are essential for correct prediction. Finally, to investigate 
whether the best-performing model specifically identifies insufficient responders to 
MTX (combination) therapy.

Methods: Prediction of insufficient response (3-month DAS28-ESR>3.2) was assessed 
using: logistic regression, least absolute shrinkage and selection operator (LASSO), 
random forest and extreme gradient boosting (XGBoost). Baseline features of 355 
rheumatoid arthritis (RA) patients from the “treatment in the Rotterdam Early Arthritis 
CoHort” (tREACH) and U-Act-Early trial were combined for analyses. Model performances 
were compared using area under the curve (AUC) of receiver operating characteristic 
(ROC) curves, 95% confidence intervals (95% CI), sensitivity and specificity. Finally, 
the best performing model following feature selection was tested on 101 RA patients 
starting tocilizumab (TCZ)-monotherapy.

Results: Logistic regression (AUC=0.77 95% CI:0.68 – 0.86) performed equally well to 
LASSO (AUC=0.76, 95% CI:0.67 – 0.85), random forest (AUC=0.71, 95% CI:0.61=0.81) and 
XGBoost (AUC=0.70, 95% CI:0.61–0.81), yet logistic regression reached highest sensitivity 
(81%). Most important features were baseline DAS28 (components). For all algorithms, 
models with 6 features performed similarly to those with 16. When applied to the TCZ-
monotherapy group, logistic regression’s sensitivity significantly dropped from 83% to 
69% (p=0.03).

Conclusions: In current dataset, logistic regression performed equally well compared 
to machine-learning algorithms in prediction of insufficient response to MTX. Models 
could be reduced to 6 features, which are more conducive for clinical implementation. 
Interestingly, the prediction model was specific for MTX (combination) therapy response.

Graphical abstract:
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INTRODUCTION

Methotrexate (MTX) is the anchor drug in the treatment of rheumatoid arthritis (RA) 
patients. Currently, every early RA patient receives MTX (combination) therapy for at least 
3-6 months, which is the interval to build-up dose and reliably determine response to 
MTX [1]. A substantial proportion of patients do not benefit from MTX treatment due to 
inefficacy or adverse events and require step-up treatment with targeted synthetic - or 
biologic disease modifying antirheumatic drugs (ts/bDMARDs) [1]. Preferably, personalized 
medicine is implemented; allowing predicted insufficient responders to MTX to step-up 
treatment from the start. To enable personalized medicine we and others have previously 
proposed prediction models to identify insufficient responders to MTX prior to treatment 
initiation [2–6]. We recently externally validated our model and implemented it in the online 
clinical tool Evidencio [7]. Until now, these clinical prediction models have been developed 
using multivariable logistic regression. In recent years, the use of machine-learning 
algorithms has gained popularity in healthcare due to their flexibility in handling large 
complex datasets and non-linear relationships [8,9]. Also, in the RA healthcare domain there 
are many opportunities for the application of machine-learning algorithms: for instance 
categorization of different arthritis subtypes or prediction of treatment response [10–12]. 
Others already successfully examined whether machine-learning algorithms could be 
used to predict response to MTX therapy in JIA patients [13] and to Anti–Tumor Necrosis 
Factor in RA patients [14]. However, it is unclear whether these algorithms outperform 
multivariable logistic regression models in prediction of insufficient response, as these 
statistical techniques have not been examined in parallel.
 To facilitate clinical implementation, an insightful model using least number of 
variables, referred to as “features”, is preferred. Several feature selection methods exist to 
determine the essential features, of which some automated feature selection methods 
are embedded within machine-learning algorithms (e.g., least absolute shrinkage and 
selection operator [LASSO]) [15]. Furthermore, it is essential to predict insufficient response 
specifically to MTX (combination) therapy, because these patients would benefit from 
a step-up treatment, while other strategies are required for RA patients that are also 
irresponsive to non-conventional DMARDs (e.g. toculizumab [TCZ]) [16].
 Based on the points described above, the primary aim of this study is to assess 
the performance of machine-learning algorithms compared to multivariable logistic 
regression in prediction of insufficient response to MTX (combination) therapy in RA 
patients. Secondly, feature selection is performed to examine which features are essential 
to predict insufficient response in RA. Lastly, to investigate whether the model identifies 
insufficient responders specifically to MTX (combination) therapy, the best-performing 
model will also be assessed on a similar group of RA patients starting TCZ-monotherapy. 
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MATRIALS AND METHODS

Patients
355 subjects were included in current study. 264 patients randomized to start MTX-
monotherapy or MTX combination therapy with conventional DMARDs (i.e. sulfasalazine 
[SSZ], hydroxychloroquine [HCQ]) and corticosteroids, satisfying the 2010 American college 
of Rheumatology (ACR)/European League Against Rheumatism (EULAR) classification 
criteria for RA and of whom DAS28 was available at 3 months were eligible from the 
treatment in the Rotterdam Early Arthritis Cohort (tREACH, registered retrospectively at 
ISRCTN, registry number: ISRCTN26791028 on 23 August 2007) and 91 of the U-Act-Early 
trial registered at ClinicalTrials.gov (number: NCT01034137). 
 The tREACH, described previously [17] was designed to achieve early response rates 
(within 3 months), by quickly increasing MTX dosage up to 25 mg/week within the first 3 
weeks. U-Act-Early, also previously described [18], consisted of three treatment arms: MTX 
+ placebo, TCZ + MTX and TCZ + placebo. MTX dosage was increased 5 mg per 4 weeks 
up to 30 mg/week with a starting dose of 10 mg/week and the use of corticosteroids was 
not permitted. 91 patients of the MTX-monotherapy arm and 101 RA patients from the 
TCZ-monotherapy arm of U-Act-Early were included in current study. Two patients from 
the total TCZ arm (N=103) were excluded from the analyses due to missing DAS28 scores 
at 3 months. 
 U-Act-Early was approved by the medical ethics committee of the University Medical 
Center Utrecht (ML22497) and tREACH by the medical ethics committee of Erasmus 
Medical Center Rotterdam (MEC-2006-252). Written informed consent was obtained for 
all included patients.

Features and outcome
Features related to RA pathogenesis (RF, ACPA status and DAS28 components) or to MTX 
metabolism (e.g. SNPs in ABC transporter genes and erythrocyte folate) that were available 
in both the tREACH and U-Act-Early were included (Table 1). The outcome ‘insufficient 
response’ was defined as DAS28 >3.2, based on the erythrocyte sedimentation rate (ESR) 
and determined at 3 months, because after that time point treatment could be intensified 
with a bDMARD in tREACH. 
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Train and test data
The total dataset contained 355 subjects and 16 features (Table 1). The data was first 
split into a train (70%, N=249) and a test set (30%, N=106). A stratified split was applied, 
meaning that the ratio between insufficient and sufficient responders was kept similar to 
the ratio in the complete data set. Hence, the train set contained N=124/249 insufficient 
responders (50%) and the test set N=53/106 insufficient responders (50%) at 3 months. 
Moreover, train and test set were fixed upfront using a random seed. To prevent data 
leakage, preprocessing steps were performed on the train and test set separately. At the 
start, all features contained <20% missing values. Missing values were imputed using 
K-nearest neighbors, a widely used technique where imputation is based on values of 
other patients (neighbors) with most similar data [19]. To prevent ties in imputation of 
categorical features only odd numbers (K=3, 5, 7, 9, 11) were tested. K=5 was initially 
randomly chosen en showed comparable results to the other K values and was therefore 
used for imputation. All analyses were performed in RStudio Version 1.3.1056. 

Algorithms, preprocessing and statistics
Mean baseline characteristics between insufficient and sufficient responders to MTX 
(combination) therapy in the complete dataset were compared using a Welch’s two-
sample t-test and proportions were compared using the two-sample test for equality 
of proportions. The following random selection of popular supervised classification 

Table 1. List of baseline features that were included in the study.

ABCB1 genotypes AA vs AG/GG
ABCC3 genotypes TT vs TC/CC
Age, years 
Alcohol (Never consumed: 0, Ever consumed: 1)
Anti-citrullinated protein antibody (ACPA, negative/positive)
Body mass index (BMI), kg/m2

C-reactive protein (CRP), mg/l
Disease activity score 28 (DAS28) 
DMARD and/or corticosteroid use (no use: 0, use: 1)
Erythrocyte folate (nmol/L packed erythrocytes)
Erythrocyte-sedimentation rate (ESR), mm/first hour
Gender (male/female)
Health assessment questionnaire (HAQ)
Rheumatoid Factor (RF, negative/positive)
Smoking, never/former vs current
Tender joint count 28 (TJC28) 

List of features included in the study based on availability and clinical rationale. ABCB1 = ATP binding cassette 
subfamily B member 1, ABCC3 = ATP binding cassette subfamily C member 3, DMARD= disease modifying 
antirheumatic drug.
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algorithms were tested and compared to logistic regression for the prediction of 
insufficient response: least absolute shrinkage and selection operator (LASSO) [20], random 
forest and extreme gradient boosting (XGBoost) [21,22]. The latter two algorithms are based 
on decision trees. Pre-processing for LASSO included centering and scaling of the features. 
We performed 10-fold stratified cross-validation to tune the hyperparameters to avoid 
overfitting. Hyperparameters were automatically tuned [23] and best hyperparameters 
of final models were: random forest (mtry=4, ntree=500), LASSO (alpha=1, 0.017) and 
XGBoost (eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, 
subsample=0.67).
 First, model performances on the train set (70%) were assessed using the area 
under the curve (AUC) of the receiver-operating characteristic (ROC) curves. Second, 
performances of tuned models were examined on the test set. Again, a random seed was 
set to make model assessments reproducible. Differences between two ROC curves were 
tested using the DeLong’s test. Additionally, accuracy, precision, sensitivity, specificity, 
negative predictive value (NPV), positive predictive value (PPV) were assessed using 
the pROC package [24]. A cut-off was chosen based on highest possible sensitivity and 
specificity of ≥0.60. The rationale behind this step was correct identification of as many 
insufficient responders as possible (sensitivity), while maintaining correct classification of 
sufficient responders (specificity). Differences in sensitivity were tested using a 2-sample 
test for equality of proportions with continuity correction. Third, feature selection was 
performed in order to simplify the models for clinical application. To determine the 
essential features for prediction of insufficient response, feature importance plots were 
created based on their regression coefficients (logistic/LASSO) or decrease in accuracy/
Gini score (random forest/XGBoost). Additionally, feature correlations were examined 
using Pearson’s correlation test. In case of two highly correlated features (r > 0.60), the 
feature that was easiest to clinically assess was included. Finally, best-performing model 
was applied to a TCZ-monotherapy group and its performance was compared to that on 
the MTX (combination) therapy group (for which it was developed). First, power calculation 
for the AUCs were performed using the pROC package in R to assure that enough cases 
were included [25]. Next, calibration curves were generated for the two treatment groups 
(i.e., MTX combination therapy or TCZ-monotherapy) in order to examine concordance 
between calculated (using model) and observed probability of insufficient response. 
Furthermore, to compare the model’s fit on the MTX (combination) therapy group and 
TCZ-monotherapy group, a risk score for insufficient response was calculated according 
to the logistic model coefficients (intercept + β1 x pred1 + β2 x pred2, etc). To compare 
differences between the two calibration curves, the main effects “risk score” and “treatment 
group” and their interaction term were assessed in relation to prediction of insufficient 
response in a logistic regression model on the total dataset (MTX combination therapy + 
TCZ, N=435), excluding cases with incomplete values for any feature. 
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RESULTS

Baseline comparisons
Our data was balanced with 49.9% insufficient responders (DAS28 >3.2) after 3 
months of treatment and 50.1% sufficient responders (Table 2). The majority received 
combination therapy with SSZ, HCQ and/or corticosteroids. Significantly more patients 
on MTX-monotherapy (p=0.01) and on MTX combination therapy with intra-muscular 
corticosteroids (p=0.04) were insufficient responders. 

Table 2. Baseline comparisons between sufficient and insufficient responders.

Insufficient responders 
(3-month DAS28 >3.2)

Sufficient responders
(3-month DAS28 ≤3.2)

P-value

N (%) 177 (49.9%) 178 (50.1%)

Age, mean ± SD
Gender, male
Rheumatoid factor, positivity
ACPA positivity 

54 ± 13
50 (28.2%)
108 (67.1%)
122 (69.3%)

53 ± 15
63 (35.4%)
113 (70.6%)
136 (76.4%)

0.35
0.18
0.57
0.17

Behandeling

MTX + SSZ + HCQ + i.m. cortico
MTX + SSZ + HCQ + cortico per os
MTX + cortico per os
MTX

28 (15.8%)
31 (17.5%)
41 (23.2%)
77 (43.5%)

45 (25.3%)
45 (25.3%)
36 (20.2%)
52 (29.2%)

0.04*
0.10
0.63
0.01*

*p-value < 0.05 was considered significant. MTX= methotrexate. SSZ= Sulfasalazine. 
HCQ= hydroxychloroquine. i.m. = intramuscular. Cortico = corticosteroids. Missing values: erythrocyte folate 
N=71, ABCB1 N=16, ABCC3 N=15, RF N=34, ACPA N=1, BMI N=3, HAQ N=15, smoking N=14, alcohol use N=14, 
CRP N=1.

Model performances on test set – including all features
Performances between tuned algorithms on the train set were comparable with AUCs 
ranging from 0.71 to 0.73 (Supplemental Table S1). Next, trained models were tested on 
the test set (N=106). The highest AUC of 0.77 (95% CI: 0.68 – 0.86) was reached with logistic 
regression (Table 3). 

Table 3. Results model performances on test set (N = 106).

AUC (95%CI) Sensitivity Specificity Accuracy PPV NPV 

Logistic regression
LASSO 
Random forest
XGBoost

0.77 (0.68 – 0.86)
0.76 (0.67 – 0.85)
0.71 (0.61 – 0.81)
0.70 (0.61 – 0.81)

0.81
0.79
0.66
0.75

0.60
0.60
0.64
0.60

0.71
0.70
0.65
0.68

0.67
0.67
0.65
0.66

0.76
0.74
0.65
0.71

The threshold was chosen according to the highest sensitivity where specificity was at least 0.60. Baseline 
features included in the model: ABCB1 genotype, ABCC3 genotype, age, alcohol use, ACPA status, BMI, CRP, 
DAS28, DMARD/cortico use, erythrocyte-folate, ESR, gender, HAQ, RF positivity, smoking, tender joint count 28 
(TJC28). Abbreviations: LASSO= least absolute shrinkage and selection operater, XGBoost= extreme gradient 
boosting, PPV= positive predictive value, NPV= negative predictive value.
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Largest differences in AUCs were observed between logistic regression and random forest 
(Figure 1), although these were not significantly different (p=0.09). 

Sensitivity was significantly higher in logistic regression (p=0.02) and borderline 
significantly higher in LASSO (p=0.05) compared to random forest (Table 3). A sensitivity 
of 0.81 (logistic regression) indicates that 81% of all insufficient responders were correctly 
identified as such. The PPV, indicating percentage of predicted insufficient responders 
that were true insufficient responders, were comparable between algorithms.

Feature importance 
Features’ contributions to the model performances are presented in Figure 2. Features 
that were important for all algorithms were baseline DAS28 or DAS28 components (TJC28, 
ESR/CRP, HAQ). Depending on the algorithm also, current smoking, erythrocyte folate, 
ABCC3 genotype, BMI and the use of DMARDs/corticosteroids were important features 
in identification of insufficient responders. RF positivity, ACPA positivity and alcohol 
use were least important for the majority of the algorithms. Of all algorithms, LASSO 
performed most rigorous feature selection, selecting: DAS28, HAQ, TJC28, smoking, ESR, 
ABCC3 genotype, DMARD/corticosteroid use, CRP and gender. Although, gender and CRP 
were less important compared to the other selected features.

Figure 1. ROC curves of algorithms tested on test set (N=106). Abbreviations: RF=Random forest, Logistic = 
logistic regression, XGB=Extreme gradient boosting, LASSO = least absolute shrinkage and selection operator.
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Figure 2. Feature importance plots of baseline features for (a) logistic regression, (b) LASSO, (c) random forest 
and (d) XGBoost in prediction of insufficient response at 3 months. Feature importance was determined based 
on regression coefficients (regression models) and Gini score (RF and XGBoost) of final models. Most important 
feature was set to 100 and the rest is relative to that feature. Abbreviations: DAS28= disease activity score 28, 
TJC28= tender joint count 28, HAQ= Health Assessment Questionnaire, ESR= erythrocyte sedimentation rate, 
BMI= body mass index, DMARD_cortico1=use of DMARDs or corticosteroids (0=no, 1=yes), Smoking (never/
former versus current), CRP= c-reactive protein, ABCB1 AA vs AG/GG, ABCC3 TT vs TC/CC, RF= rheumatoid factor, 
Alcohol use (0=1 no, 1=yes), ACPA= anti-citrullinated protein (positive versus negative).

Feature selection 
Feature selection was performed to boost model performances and retrieve more clinically 
applicable concise models. We started from the features selected by LASSO. Additionally, 
we excluded one out of two highly correlated features, e.g.: DAS28 and TJC28 (r=0.73) and 
CRP and ESR (r=0.61). TJC28 requires fewer clinical assessments compared to DAS28 and 
the outcome was based on DAS28-ESR, which is why TJC28 and ESR were chosen. Even 
though ABCC3 genotype was selected by LASSO, we excluded this feature because of 
its absence in the TCZ-monotherapy group and its minor contribution compared to the 
other features. Hence, features included after selection were: TJC28, HAQ, BMI, smoking, 
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ESR and the use of DMARDs/corticosteroid use. All models performed equally well with 
only 6 features (Table 4) compared to the complete set of features (=16 features; Table 1). 
The ROCs are presented in Supplemental Figure S1 and confusion matrices in Figure S2. 

Model assessment on TCZ-monotherapy arm
To assess whether the prediction model was specific for identification of insufficient 
responders to MTX (combination) therapy, the logistic regression model with 6 features 
was assessed on the TCZ-monotherapy arm of U-Act-Early. This group consisted of 101 
patients of which 16 patients (16%) were insufficient responders at 3 months (DAS28 >3.2). 
Confusion matrices are presented in Supplemental Figure S3. Upon application of the 
model to the TCZ-monotherapy group, an AUC of 0.73 (95% CI: 0.60 – 0.86) was reached 
(Supplemental Figure S4) with a power of 86%, which was not significantly different from 
the AUC of 0.78 (95% CI: 0.69 – 0.87) with a power of 99% in the MTX combination therapy 
group (p=0.54). However, the sensitivity dropped significantly from 83% on the MTX 
combination therapy group to 69% on the TCZ-monotherapy group (p=0.03). Additionally, 
the model was better calibrated on the MTX (combination) therapy group than on the TCZ-
monotherapy group in which the percentage of actual insufficient responders was largely 
overestimated (Figure 3). This was also confirmed in a logistic regression model assessing 
risk score, treatment group and their interaction in relation to insufficient response on the 
complete dataset. The interaction term was just insignificant (p=0.09). 

Table 4. Model performances on test set (N = 106) after feature selection.

AUC (95%CI) Sensitivity Specificity Accuracy PPV NPV 

Logistic regression
LASSO 
Random forest
XGBoost

0.78 (0.69 – 0.87)
0.77 (0.68 – 0.86)
0.76 (0.66 – 0.85)
0.77 (0.67 – 0.86)

0.83
0.79
0.79
0.79

0.60
0.60
0.62
0.62

0.72
0.70
0.71 
0.71

0.68
0.67
0.68
0.68

0.78
0.74
0.75
0.75

Included features after feature selection were: TJC28, HAQ, BMI, smoking, ESR, DMARD/corticosteroid use. 



7

Complex machine learning algorithms and multivariable logistic regression on par 
in prediction of insufficient clinical response to methotrexate in rheumatoid arthritis

143

Figure 3. Calibration curves on test set of MTX (combination) therapy group and TCZ-monotherapy group. 
Logistic regression with 6 features (i.e., BMI, HAQ, smoking, ESR, TJC28, DMARD/corticosteroid use) was used to 
create calibration curves.

DISCUSSION

In this study, we showed that logistic regression performed equally well compared to 
machine-learning algorithms such as LASSO, random forest and XGBoost in prediction of 
insufficient response to MTX in RA patients on current dataset. This result is in accordance 
with a recent systematic review where no benefit was discovered for the use of machine-
learning algorithms in clinical prediction models compared to logistic regression [26]. 
Nevertheless, the approach of data analysis used for machine learning could still be very 
useful. First, the machine-learning approach allows internal validation by splitting of the 
data into a train and a test set, thus reducing overfitting. Second, feature importance 
plots are an easy way to quickly inspect the importance of (combined) predictors on the 
outcome. Also, a larger number of features can be evaluated regardless of the number of 
cases. Furthermore, machine-learning algorithms such as XGboost or random forest may 
be superior if the relationship between features and the outcome is more complex (non-
linear). 
 To enable comparisons between algorithm performances on the test set, we 
compared performance measures at the same cut-off on the ROC curve, for which any 
cut-off could have been chosen. In this study we have chosen the cut-off where most 
insufficient responders were correctly classified (highest sensitivity) and at least 60% of 
sufficient responders were correctly classified (specificity). However, the best threshold for 
the trade-off between sensitivity and specificity depends on the clinical goal, as previously 
discussed [2,7]. 
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 According to the feature plots, we made a selection and showed that all models could 
be reduced from 16 to 6 essential features for prediction of insufficient response. Features 
included were: TJC28/DAS28, HAQ, ESR/CRP, BMI, smoking and DMARD/corticosteroid 
use. Importantly, to select features according to feature importance plots, these plots 
should be carefully interpreted. Highly correlated features could make one feature seem 
irrelevant while that is not necessarily the case. An example is the low position of DAS28 in 
the logistic regression feature importance plot, which is due to its strong correlation with 
its component TJC28 (r=0.73). In this case TJC28 and baseline DAS28 were interchangeable, 
hence in clinical practice either one of the two correlated features could be used in the 
model. The same holds for ESR and CRP. 
 Our dataset contains a relatively high proportion (50%) of insufficient responders at 
3 months, which can be explained by the design of the U-Act-Early trial. First of all, MTX 
dosage in U-Act-Early was slowly increased reaching a dosage of 25 mg/week only after 
3 months, while this dosage was reached in tREACH within 3 weeks. This resulted in more 
insufficient responders from the U-Act-Early trial at 3 months. Moreover, all U-Act-Early 
patients received MTX-monotherapy, which in turn meant significantly more insufficient 
responders on MTX alone. This was accounted for in the model using the feature “DMARD/
corticosteroids use”. 
 The majority of baseline features selected by LASSO were clinical features (e.g. DAS28, 
HAQ, BMI, smoking) and were in accordance with features from previously validated 
prediction model on the same cohorts [7]. Also, same predictors were previously identified 
by others [5,6,27–29], although results on the direction of the effect of baseline DAS28 have 
been conflicting [5,6,30]. The exclusion of erythrocyte folate by LASSO was surprising, as this 
feature was required for the high AUC in our previous published model [7]. It seems that 
baseline ESR/CRP, not included in our previous model, could be used instead of erythrocyte 
folate to retain the high predictive power. ESR/CRP levels are easier to acquire compared 
to erythrocyte folate, hence inclusion of this predictor instead strongly facilitates model 
implementation. The fact that some features are interchangeable leads to multiple 
combinations of predictors with similar predictive power. This has the advantage that 
clinicians can choose to use a model based on feature availability in their own dataset. 
The model with 6 clinical features described in this study was therefore also uploaded in 
Evidencio: https://www.evidencio.com/models/show/2415). 
 Lastly, we showed that the final logistic regression model with 6 features performed 
better on the MTX (combination) therapy group than on the TCZ-monotherapy group, 
suggesting specific prediction of insufficient response to MTX (combination) therapy. 
Unfortunately, erythrocyte folate and ABCC3 genotypes, involved in the MTX metabolism [31],  
were not available in the TCZ-monotherapy group; hence their contribution to specific 
prediction to MTX combination therapy could not be assessed. Baseline CRP/ESR and 
TJC28 are more generic predictors for response, shown to be associated with TCZ response 
in RA patients (CRP/ESR) and with etanercept response (TJC28) in Juvenile Idiopathic 
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Arthritis (JIA) patients [32,33]. Nevertheless, even with these generic predictors, the sensitivity 
dropped significantly from 83% on the MTX (combination) therapy group to 69% in the 
TCZ-monotherapy group. Additionally, the calibration curves showed that predicted and 
observed risks fairly match in the MTX combination therapy group, while predicted risks 
largely overestimate the actual number of insufficient responders in the TCZ-monotherapy 
group (Figure 3).
 Strengths of this study are that algorithms were tested head-to-head in the same 
group enabling direct comparisons of algorithm performances. Additionally, the final 
model was assessed on an independent therapy group starting TCZ without previous 
DMARD use suggesting that the model specifically identified insufficient responders to 
MTX (combination) therapy. Limitations were the relatively small number of patients 
included. It is noteworthy that the number of cases in the TCZ monotherapy was limited 
(N=16), however the ROC curve for this group still had a power of 86%. Also we may have 
missed new features that could potentially improve prediction to MTX (combination) 
therapy (e.g. global DNA methylation [34]) because we were limited to data availability in 
all included cohorts. Contrarily, clinical features currently included in the model are often 
readily available and commonly assessed, which eases implementation of the model into 
clinical practice.
 In conclusion, logistic regression and machine-learning algorithms were on par in 
the prediction of insufficient response to MTX (combination) therapy. The model could 
be reduced to 6 features and was specific for prediction of insufficient response in a MTX 
(combination) therapy group.  
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SUPPLEMENTARY FILES

Table S1. Algorithm performances on the train set (N = 249).

Algorithm AUC 

Logistic regression 0.72

LASSO regression 0.73

Random Forest 0.71

XGBoost 0.73

Algorithms performances are the result of 10-fold cross validation on the train set. 50% were insufficient 
responders. Insufficient response was determined at 3 months (DAS28>3.2).

Supplementary Figure S1. ROC curve of models tested on test set (N=106) after feature selection. Features 
included in the model were: TJC28, HAQ, BMI, smoking, ESR, DMARD/cortico use Logistic= logistic regression, 
LASSO= LASSO regression, RF= random forest, XGB= XGBoost.
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Supplementary Figure S2. Confusion matrices on test set (N=106) after feature selection. Features included in 
the model were: TJC28, HAQ, BMI, smoking, ESR, DMARD/cortico use. Thresholds were chosen where sensitivity was 
highest and specificity was at least 0.60. Grey-scale cells are correctly identified patients.  IR=insufficient responder 
(DAS28 >3.2), R=sufficient responder (DAS28 ≤3.2)

Supplementary Figure S3. Confusion matrix of logistic regression on TCZ monotherapy group. IR=insufficient 
responder (DAS28 >3.2), R=sufficient responder (DAS28 ≤3.2).
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Supplementary Figure S4. ROC curves of performance of final logistic regression model on test set MTX 
combination therapy and on TCZ monotherapy group. Features included in the model: TJC28, HAQ, BMI, 
smoking, ESR, DMARD/corticosteroid use. Sensitivity in both groups was determined at its highest point for which 
the specificity was at least 0.60.

Table S2. Logistic regression on complete dataset (MTX combination + TCZ monotherapy).

 Estimate St. error P-value 

Intercept -3.15 0.73 <1.73 x 10-5 

Treatment (MTX combi) 0.86 0.82 0.29 

Riskfactor 0.04 0.02 0.02

Treatment x riskfactor# 0.03 0.02 0.09 

# Interaction term between predictors. Predictors included in calculation risk factor: BMI, HAQ, smoking, ESR, 
TJC28, DMARD/cortico use. 
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DISCUSSION AND FUTURE PERSPECTIVES

The main objective of this thesis was to develop a prediction model to identify early 
rheumatoid arthritis (RA) patients prior to treatment that will insufficiently respond to 
MTX therapy. Secondary aims were: 1) to examine new potential epigenetic and metabolic 
biomarkers for insufficient response, 2) to externally validate a previously developed 
prediction model, 3) to assess if prediction could be improved using machine-learning 
algorithms compared to classical multivariable logistic regression. The main findings to 
these aims are presented in Figure 1. In order to identify potential epigenetic biomarkers, 
we first assessed whether stored blood samples could be used for epigenetic analyses. 

STABILITY EPIGENETIC MARKERS UPON STORAGE

From a longitudinal study in 90 individuals we observed that global DNA methylation 
and DNA hydroxymethylation are stable over at least 18 months when stored at -80°C. 
At -20°C a slight decrease (-6.1%) in DNA methylation stability was observed in stored 
DNA samples. Global DNA hydroxymethylation on the other hand was more stable in 
DNA samples compared to stored blood samples after 6 months, independent of storage 
temperature. Freezing and thawing of blood or DNA samples did not influence the stability 
of global DNA methylation or DNA hydroxymethylation up to at least 3 cycles, which is in 
accordance with a results of a study by Li et al. [1]. Even though, stored samples can be 
used for association studies, fresh samples are still preferred over stored samples as these 
deliver higher DNA yield [2,3]. However, if fresh samples are not available, we recommend 
the usage of DNA samples stored at -80°C for global epigenetic association studies. 
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DETERMINANTS OF INSUFFICIENT RESPONSE TO MTX

Potential epigenetic and metabolic biomarkers for response
In this thesis, we observed baseline differences in global DNA methylation (chapter 3),  
baseline DNA methylation at genomic positions (chapter 4) as well as in baseline 
metabolite concentrations (chapter 5) between good and poor responders  (Figure 1). We 
showed that higher global DNA methylation was significantly associated with insufficient 
response to MTX after correction for multiple testing, which was validated with a second 
technique. 
 Overall, observed effect sizes were medium to small. In the EWAS study, the 
largest standardized effect size of top hits in the EWAS study could be translated to 0.8 
change in SD ΔDAS28 per one SD difference in baseline DNA methylation (BACH2 gene) 
(chapter 4), which is similar to a cohen’s d between good and poor responders of 0.64. 
The largest difference in baseline metabolite levels between good and poor responders 
was <2 log2 fold change, which can be translated to a cohen’s d of 0.76 (chapter 5). In 
the metabolomics and EWAS studies, numerous tests were conducted in parallel on the 
same group of patients and strict correction for multiple testing may have hampered the 
finding of significant hits. Overall, considering the small to medium effect sizes observed 
and the fact that RA is a complex multidisciplinary disease, we consider it unlikely that one 
of these biomarkers can be used as single predictor for treatment since RA is a complex 
multidisciplinary disease [4,5]. 
 In chapter 5 we showed that a combination of 3 metabolites (decreased 
homocystine, increased glycerol-3-phosphate and increased 1,3-diphosphoglyceric 
acid/2,3-diphosphogelyceric acid [1,3/2,3-DPG]) together constructed a receiver operating 
characteristic (ROC) curve with high area under the curve (AUC) of 0.81 (95% confidence 
interval: 0.72-0.91). Even though these results are promising, results were obtained from 
a relatively small group with enhanced contrast (41 poor vs 41 good responders), hence 
external validation is required. When validated, their contribution to the full prediction 
model could be examined. 
 Global DNA methylation results investigated in this thesis were already confirmed 
and internally validated by a second technique. In fact, results of chapter 3 suggest an 
additive role for baseline global DNA methylation to the previous published prediction 
model [6], since the standardized effect size of global DNA methylation (β= 0.15) was similar 
to that of erythrocyte folate (β= -0.17) and BMI (β= 0.14) in the same model (chapter 3) 
and baseline erythrocyte folate levels and global DNA methylation only weakly correlated 
(R=0.34, p=0.00061; chapter 3); hence, baseline global DNA methylation like erythrocyte 
folate is an independent predictor for insufficient response to MTX. Both low erythrocyte 
folate and high BMI were previously identified as predictors for insufficient response to 
MTX in RA patients [6] and were validated as predictors in chapter 6. Whether baseline 
global DNA methylation can actually improve the predictive power of the model should 
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be determined by investigating whether adding this predictor to the validated prediction 
model [7] significantly and independently improves its diagnostic accuracy. 
 Since epigenetic markers are reversible, treatment could hypothetically also 
induce epigenetic changes. Provided that this happens during the first few weeks from 
treatment, epigenetic changes could potentially be used to predict response at a later 
time point. MTX inhibits methionine-adenosine transferase (MAT) and dihydrofolate 
reductase (DHFR) in 1-carbon [8–10], which indirectly results in the inhibition of the methyl 
donor S-adenosyl methionine (SAM). For this reason, MTX was expected to decrease 
global DNA methylation during MTX treatment. However, we did not observe any 
changes in global DNA methylation over the first 3 months of treatment and a minor 
increase in DNA hydroxymethylation was not related to response (chapter 3). In contrast 
to this hypothesis, others observed an increase in global DNA methylation during the first 
months of MTX treatment in T lymphocytes and monocytes [11–13]. The fact that we did not 
observe any differences may be explained by differences in cell types assessed, or the fact 
that patients in our study also received folic acid during MTX treatment. Patients taking 
folate were excluded in the study of Kim et al., while the folate status in the other two 
studies was not reported [12,13]. Since 2013, RA patients are recommended to take folic acid 
during MTX therapy in order to reduce adverse events [14]. Because MTX is an anti-folate, 
folic acid acts on the same pathway as MTX. Thus, folic acid could hypothetically relieve 
MTX’s inhibition of methyl group donation. The relationship between MTX, folic acid and 
their effect on global DNA methylation could be further investigated in in vitro studies. 
Until this relationship is better understood, results over time should be interpreted with 
care. 
 In contrast to DNA methylation, we do not have any indications that global DNA 
hydroxymethylation is a potential predictor of response to MTX in RA. No baseline 
differences were observed in relation to response, nor at – and over 3 months in whole 
blood leukocytes (chapter 3). Others observed increased expression of baseline ten-
eleven translocation (TET) enzymes in T lymphocytes and monocytes of RA patients 
compared to healthy controls [12]. Nonetheless, in that same study also no baseline 
differences in global DNA hydroxymethylation were observed. TET enzymes facilitate 
oxidation of DNA methylation into DNA hydroxymethylation, which is the first step in the 
demethylation process. TET mediated demethylation of promoter regions is important 
for gene expression and differentiation. For example, differentiation of naïve CD4 cells 
into regulatory T cells as well as stable expression of T regulatory require TET mediated 
demethylation of enhancer regions in Foxp3 [15–17]. 
 In this thesis, differentially methylated positions (DMP) assessed in the EWAS study 
(chapter 4) were not significant after correction for multiple testing. Nevertheless, some 
CpGs in or near identified genes (BRD2, PLEKHO1, BACH2, DOCK2) could be interesting 
targets for future studies as these have been associated with IL-6 production, leukocyte 
differentiation and regulation, which are all important events in the pathogenesis and 
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development of RA [18–24]. So far, only two other EWAS studies have been performed in 
relation to MTX response. In T-lymphocytes of RA patients, 2 baseline DMPs were identified 
in relation to MTX response at 6 months using the 450 k array after extensive filtering of 
probes to reduce multiple comparisons [25]. These DMPs were situated in the ADAMTSL2 
gene, involved in TGF-β regulation [26] and the BTN3A2 gene, related to adaptive immune 
responses[27,28]. Even though, we were not able to replicate these results in PBMCs (chapter 4),  
decreased ADAMTSL2 expression was observed in fibroblast-like synoviocytes (FLS) after 
MTX treatment [29]. Besides baseline differences, early epigenetic changes upon MTX 
treatment were assessed in a 450 k array study on whole blood leukocytes of RA patients [30].  
Here, the investigators identified 6 DMPs at 4 weeks of MTX treatment that correlated with 
DAS28 and/or changes in DAS28 components SJC28 and CRP over 6 months [30]. In the 
same study, no significant differences were observed at baseline. 

Potential links between epigenetic and metabolic findings 
Even more interesting than these single DMPs are some potential links between epigenetic 
and metabolic findings that require further investigation. First of all, two underlying 
metabolic processes identified in relation to MTX treatment response in chapter 5 were 
glycolysis and the Warburg effect. Under normal circumstances, ATP production depends 
on oxygen and is primarily produced through the mitochondrial oxidative phosphorylation 
(OXPHOS) pathway. Under hypoxic circumstances, ATP is produced through the less 
efficient glycolysis pathway resulting in lactate production, which does not require 
oxygen. However, in cancer cells a switch from the OXPHOS pathway to glycolysis was 
observed despite the presence of oxygen (aerobic glycolysis). This phenomenon is called 
the “Warburg effect” [31–33]. The last years, a substantial body of literature already described 
upregulation of glycolysis in relation to RA development [34–37]. Also, cell specific metabolic 
signatures and metabolic changes in relation to immune cell responses were investigated 
in the field of ‘immunometabolism’ [34,38–41]. The fact that different immune cells comprise 
different metabolic signatures can be used to specifically target pro-inflammatory cells 
and thereby restore the balance between pro- and anti-inflammatory cells. Targeting the 
‘immunometabolism’ is therefore currently a widely discussed new treatment option in 
RA [38,39,42]. Hypothetically, these altered metabolic processes could also influence current 
treatment responses.
 In this thesis, we observed some potential interesting links between epigenetic 
differences and the Warburg effect/glycolysis that were both related to MTX response. 
First of all, the Warburg effect is regulated through transcription factor HIF1- α. In chapter 
4, we identified a potential differentially methylation region (DMR) comprising 6 CpGs in 
the ubiquitin carboxyl-terminal hydrolase 19 (USP19) gene, which encodes an enzyme 
that rescues HIF1- α degradation [43]. HIF1- α in turn binds and suppresses the proximal 
promoter of cytochrome c oxidase subunit 5B (COX5B), encoding an enzyme in the 
mitochondrial electron transport chain (OXPHOS), which was also identified as potential 
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DMR comprising 2 CpGs in chapter 4 and favours glycolysis. Moreover, Cronstein and 
colleagues described that MTX indirectly inhibits NF-kB in T-cells via the induction of 
long intergenic non-coding RNA p21 (lncRNA-p21) [10]. LncRNA-p21 in turn upregulates 
HIF1- α under hypoxic circumstances [10]. Moreover, a targeted DNA methylation study 
in regulatory T cells showed increased DNMT expression accompanied by elevated DNA 
methylation in an upstream enhancer of the FoxP3 region upon MTX treatment. This 
resulted in increased expression FoxP3 and CTLA-4 and restored the suppressive function 
of T regulatory cells [44,45], yet CTLA-4 expression can also decrease glycolysis in T-cells 
[46]. Finally, a study in fibroblast-like synoviocytes (FLS) showed that methotrexate could 
significantly reduce hexokinase-2 (HK2) expression which is important for glycolysis 
[29,47]. These studies suggest that immunometabolism in RA could be accompanied by 
epigenetic changes and together may result in cellular phenotypes that are associated to 
insufficient response to MTX treatment. Such metabolic and epigenetic interplay has also 
been earlier described in cancer [48,49] and requires further investigation in RA as well as in 
relation to therapy response.  
 Hitherto, the field of epigenetic biomarkers in relation to RA response is still at the 
beginning. Meanwhile, the field is still evolving; new platforms are already available that 
can distinguish DNA methylation from DNA hydroxymethylation at genomic positions [50]. 
This may reveal new insights on differentially expressed genes as DNA methylation and 
hydroxymethylation could have distinct regulatory roles [51]. A study in osteoarthritic (OA) 
chondrocytes already showed multiple differentially DNA hydroxymethylated positions 
in key OA genes that could be distinguished from healthy chondrocytes [52]. Also, the 
increased TET enzyme expression levels that were observed at baseline in RA PBMCs 
compared to healthy controls [12] could be related to increased hydroxymethylation at 
specific genomic positions which was not assessed. Generally speaking, more epigenetic 
studies are required to better understand underlying differences related to treatment 
response in RA. To do so, material and cell type considerations are required, as described 
below. 

Tissue considerations for epigenetic studies
The use of whole blood for DNA methylation association studies and specifically in RA 
requires some considerations. First of all, whole blood is a cell mixture consisting of 
granulocytes (i.e. neutrophils, eosinophiles, basophiles and mast cells) and PBMCs (i.e. 
lymphocytes, monocytes and macrophages). Due to the different cellular functions, 
different cell types comprise different DNA methylation signatures [53,54], hence adjustment 
for cell type composition in association studies is highly important. Since cell type 
composition measurements are not always available, a widely used measure described by 
Houseman et al. could be used to predict cell types from DNA methylation signatures [55].  
Importantly, this method uses a reference-based algorithm which is based on sorted cell 
type methylation patterns of only six healthy male donors[54]; hence, this method is not 
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perfect. For future studies, a recently developed package: tensor composition analysis 
(TCA), which is able to reveal cell-type specific associations from bulk methylation data 
may be a better alternative [56].  Secondly, RA is an infiltrative disease where leukocytes 
(including: granulocytes, CD4+, CD4- T-lymphocytes, B-lymphocytes) migrate from 
peripheral blood towards the synovium due to increased expression of adhesion 
molecules and chemokines [57–59]. In the synovium, these cells produce proinflammatory 
cytokines resulting in a constant state of inflammation affecting the joints [57]. Sorted cells 
from biopsies of the site of action (e.g. infiltrated T lymphocytes or synovial fibroblasts) 
may therefore be better representatives of the disease pathogenesis compared to PBMCs 
and may therefore be better predictors for response to MTX. In fact, even similar cell types 
from different locations in the body could have different methylome signatures, which 
stresses the importance of the place of biopsy taken [60]. On the contrary, also baseline 
differential methylated positions in peripheral blood isolated T – lymphocytes have been 
related to response to MTX [25] and peripheral blood naïve T – lymphocytes and fibroblast 
like synoviocytes in RA were observed to share hypermethylated sites [61]. This suggests 
that peripheral blood lymphocytes could still be useful although results from sorted cells 
are probably more specific. On-going single cell analyses therefore may give more insight 
in the role of specific cellular subsets and underlying processes [62,63].  
 In addition, DNA methylation and hydroxymethylation are only a subset of epigenetic 
modifications. Other modifications that could influence gene regulation are for instance 
histone modifications [64] and microRNAs which were predictive for insufficient response 
to MTX [65–69], etanercept [70] and Infliximab [71]. Epigenetic modifications can in turn affect 
pre-mRNA splicing [72,73], resulting in alternative splicing variants. For instance a partial 
retention of intron 8 (8PR)/wild-type in the FPGS, leading to abrogated FPGS enzyme 
required for MTX-polyglutamation formation was associated with MTX resistance in acute 
lymphoblastic leukemia (ALL) and non-response to MTX in RA patients [74,75]. Also for these 
epigenetic markers, above-mentioned suggestions should be taken into consideration. 

Integration of -omic analyses
In this thesis, we primarily discussed epigenetic and metabolic predictors and how these 
could be intertwined in pathways in relation to treatment response. However, ideally, not 
only epigenetic and metabolomic data are combined, but instead data of multiple –omic 
fields (genomics, epigenomics, transcriptomics, proteomics and metabolomics) should all 
be integrated in multi -omics analyses, providing a full picture of interactions between 
underlying processes and networks in relation to MTX response. This has already shown 
promising results in the COMBINE study in relation to anti-TNF response [76] and in the 
prediction of adalimumab and etanercept response using integration of DNA methylation 
and RNA sequencing results [77]. At the same time, larger cohorts should be formed. Either 
in the form of meta-analyses: combining patient results, or by the inclusion of many more 
patients in centralized consortia. An example of such a consortium is the “Maximising 
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Therapeutic Utility for Rheumatoid Arthritis (MATURA)” consortium in the UK that consists 
of national collaborations to examine biomarkers for drug response in RA patients [78].

PREDICTION MODELS FOR INSUFFICIENT RESPONSE 

Validation and integration of prediction models
In the end, results from integrated analyses could lead to better understanding and maybe 
lead to specific markers that can be used as biomarkers or used in prediction models. In 
this thesis, a previously developed prediction model was validated in an external cohort 
(chapter 6) and logistic regression could equally well predict insufficient response to 
MTX compared to machine-learning algorithms. From chapter 6 and 7, we can conclude 
that clinical parameters (e.g. DAS28, TJC28) were strongest predictors for insufficient 
response to MTX in RA, followed by BMI, HAQ and smoking. ABCB1 genotype previously 
identified did not contribute to the predictive power of the model in the current thesis 
when validated in a larger cohort (chapter 6). The contribution of ABCB3 genotype on the 
other hand was debatable (chapter 6), and the LASSO algorithm did select this feature 
for prediction in chapter 7. However, the model performed equally well when ABCB3 
genotype was replaced for ESR/CRP concentrations, which are easier to assess in a clinical 
setting. 
 To date, results from targeted SNP analyses have been inconsistent and results 
of GWAS studies have been disappointing in the prediction of insufficient response 
to MTX in RA patients [79–81]. Most evidence for a relation between SNPs and treatment 
efficacy has been observed for SNPs in ATIC, DHFR, FPGS, MTHFR, MTR, SLC19A1/RFC1 
and TYMS genes [79]. However, in the largest GWAS study so far (N=1424 RA patients), no 
SNPs reached genome-wide significance in relation to changes in DAS28 over 6 months 
nor in relation to changes in single DAS28 components (SJC28, TJC28, CRP) [82]. Also, in a 
study on the MATURA consortium, the authors compared 11 methods on the ability to 
predict treatment response in RA patients using genome-wide SNP data. Again, SNPs only 
contributed very little to the predictive power of the model compared to a model with 
clinical variables alone [83]. Experts in the field agree that SNPs are probably not going to 
be single predictors for response [79,83], yet they could potentially be combined with other 
predictors for instance by using polygenic risk scores [84]. Especially, models that assumed 
a more complex underlying genetic architecture and models created on large (simulated) 
sample sizes achieved slightly better [83], although other predictors seem much stronger as 
was also observed in this thesis (chapter 6 and 7). So far, in this thesis we have validated 
two prediction models for insufficient response that can be tested in a clinical setting. 
Both models (with and without laboratory predictors) were uploaded in Evidencio [85]. A 
prediction model is always a trade-off between sensitivity and specificity and the choice for 
best cut-off value depends on the clinical goal. In this thesis, we aimed to identify as many 
insufficient responders as possible (sensitivity= 81%), with a reasonable high specificity 
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(at least > 60%) (chapter 7). However, another cut-off value could be chosen with higher 
specificity, allowing good responders to safely start MTX therapy while some insufficient 
responders will be missed. This would still be a win in comparison to the current “trial 
and error” treatment strategy in which every patient starts MTX for at least 3 – 6 months 
until they appear to be insufficient responders. These patients could potentially benefit 
from immediate step-up treatment with for instance abatacept [86] or JAK-inhibitors [87–89]. 
Whether or not to step-up treatment prior to MTX initiation should always be a shared-
decision between clinician and patient, weighing the risk of potential adverse events and 
potential benefit of step-up treatment [90–93]. 
 Such a shared-decision between clinician and patient could also improve patient 
adherence to treatment [94]. Lack of treatment adherence complicates the search 
for biomarkers to treatment response in RA [95], since patients that do not take their 
medication are falsely reported as non-responders. Important factors for non-adherence 
are disease duration and higher disease activity [95,96]. On the contrary, good counselling 
by the clinician and patient education could improve adherence [97] as well as low disease 
activity, which stresses the need for quick control of the disease activity [98]. Predictive 
scores for insufficient response according to a prediction model could support shared-
decision making between clinician and patient as described in chapter 6. A low score 
for prediction of insufficient response could maybe help clinicians to prescribe MTX with 
more certainty and win patient’s trust in treatment and in that way improve adherence. 
Similarly, patients that are predicted good responders may feel more urges to adhere to 
their medication to reach the predicted goal.

IMPLICATIONS AND FUTURE STUDIES

From this thesis we can conclude that it is unlikely that single predictors are strong enough 
to predict MTX treatment response in such a complex disease as RA. It would probably 
be better to capture the whole “pathogenic signature” combining –omic results to get 
a good understanding of underlying processes that could predict someone’s response 
to treatment. Even though, logistic regression performed equally well in prediction of 
insufficient response compared to machine-learning algorithms in case of our clinical 
prediction model, machine-learning algorithms are still preferred when integrating 
larger datasets and more complex (non-linear) relationships and could therefore be used 
for the integration of -omic datasets [99–101] or system biology, which includes dynamic 
interactions between genes, proteins and metabolites to gain a better understanding 
of an organism [102]. Moreover, integration of data from electronic health records with 
–omic data using machine learning algorithms (translational bioinformatics) could 
facilitate the translation to clinical implementation [103,104]. Finally, while the search for 
more accurate biomarkers continues we have developed two prediction models for 
insufficient response to MTX in RA of which the first one was internally [6] and externally 
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validated [7]. The second model was enhanced using machine-learning methods, where 
we used internal cross-validation and the model was tested on an unseen data set. In 
spite of the fact that both prediction models are ready to be tested in a clinical setting, 
the latter only contains clinical variables and is therefore easiest to execute. For instance 
in a directive approach, where a control group (standard of care) could be compared to 
a prediction model guided group that either start MTX (standard of care) for predicted 
responders or MTX + bDMARD for predicted insufficient responders [105].  
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ENGLISH SUMMARY

Methotrexate (MTX) is first-line therapy in Rheumatoid Arthritis (RA). Despite its relatively 
high response rates and safety, up to 40% of RA patients do not benefit from MTX and 
require step-up treatment with biologic or targeted synthetic disease modifying anti 
rheumatic drugs (b/ts DMARDs). Up to now, treatment response can be determined the 
soonest at 3 to 6 months from treatment initiation. Since early control of the disease 
activity results in better long-term outcomes, insufficient responders would benefit 
from sufficient treatment from the start. To identify insufficient responders prior to 
MTX treatment initiation there is a need for determinants of insufficient response. 
This would allow the use of personalized medicine in which MTX is only prescribed in 
case patients have a high chance of successful response and if not they could step-up 
treatment directly from the start. In the first part of this thesis we assessed epigenetic and 
metabolic determinants for insufficient response to MTX. In the second part, we validated 
a previously developed prediction model for insufficient response to MTX in RA and we 
assessed the use of machine-learning algorithms compared to conventional multivariable 
logistic regression in such clinical prediction models.

Part I 
Regarding a role for DNA methylation as biomarker in response to MTX, in chapter 2 
we first investigated whether stored samples could be used for epigenetic association 
studies.  We showed in a longitudinal study (n=90) that global DNA methylation and 
hydroxymethylation where stable when assessed in blood or DNA samples stored 
up to 18 months at -80°C. DNA methylation in DNA samples stored at -20°C showed a 
slight decrease after 18 months, while the stability of DNA hydroxymethylation was 
independent of temperature and more stable in DNA samples compared to blood. 
Freezing and thawing up to 3 cycles of blood and DNA samples stored at -80°C did not 
affect the stability. Hence, DNA samples stored at -80°C can be used best for global DNA 
(hydroxy)methylation association studies. 
 The association between global DNA (hydroxy)methylation and MTX response in 
leukocytes of 294 RA patients was assessed in chapter 3. We observed that higher baseline 
global DNA methylation was significantly associated with insufficient response to MTX. 
This finding was confirmed with a second technique. Global DNA hydroxymethylation on 
the other hand was not associated with MTX response at baseline or at- and over the first 
three months of treatment. Since MTX inhibits 1-carbon metabolism that provides methyl 
groups for DNA methylation, MTX was expected to reduce DNA methylation over time, 
which we did not observe. In fact, others found the opposite result. This can be explained 
by the fact that whole blood was assessed, which is a composite of different cell types, 
that comprise different methylomes or by the prescription of folic acid 24 hours after MTX 
therapy to reduce adverse events, which acts on the same pathway and could interfere 
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with MTX’s actions on DNA methylation. However, the relationship between erythrocyte 
folate, MTX and their effect on global DNA methylation is not completely understood 
and should be further investigated in in vitro studies. Baseline global DNA methylation 
was only weakly correlated with erythrocyte folate at baseline and therefore acted as 
independent predictor for insufficient response to MTX. In future studies, baseline global 
DNA methylation can be further assessed as predictor for insufficient response in the full 
prediction model. 
 The assessment of global DNA methylation was taken a step further in an epigenome-
wide association study (EWAS), where we investigated differences in DNA methylation at 
genomic positions (DMP) or regions (DMR) in 69 RA patients in relation to response to MTX 
(chapter 4). As there were no large differences observed in DNA methylation in relation 
to response and many tests (>850,000) were performed in relation to the limited number 
of patients, no genome-wide significant hits were observed. Still, some DMPs identified 
in or near genes related to the pathogenesis of RA (i.e. BRD2, PLEKHO1, BACH2, DOCK2) 
could be interesting to further investigate in future studies. Also, DMRs in genes related 
to the expression of HIF1-alpha (i.e. USP19, COX5B) are interesting as this is an important 
regulator of glycolysis and the Warburg effect, two metabolic processes that have been 
upregulated in RA. 
 In chapter 5 we aimed to identify metabolic determinants that could discriminate 
41 insufficient responders to MTX from 41 good responders to MTX in an untargeted 
metabolomics study. Single metabolites that could best discriminate these two response 
groups were: homocystine, glycerol-3-phosphate and 1,3/2,3-biphosphoglyceric acid. 
However, these findings should first be confirmed in a larger patient group as the group 
size was limited and findings were not significant after correction for multiple testing. 
Underlying metabolic events identified in relation to MTX response were glycolysis and 
the Warburg effect. 
 Taken together the results of the EWAS and metabolomics study, these suggest that 
underlying epigenetic and metabolic pathways/events could play a role in MTX response 
rather than single determinants. Integration of multiple -omic studies is required to gain 
more insight into underlying processes that may explain the difference in response to 
MTX in RA. A better understanding of underlying events could contribute to a more 
specific search for new biomarkers that can be added to a prediction model for insufficient 
treatment response. 

Part II
In the second part of this thesis, we externally validated a previously developed 
prediction model for insufficient response (chapter 6). The model included baseline 
DAS28, health assessment questionnaire (HAQ), erythrocyte folate, BMI, smoking and two 
single nucleotide polymorphisms (SNPs) in MTX transporter genes ABCB1 and ABCC3. The 
two SNPs did not sufficiently contribute to the predictive power of the model and were 
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excluded to facilitate clinical implementation of the model. Interaction terms between 
HAQ and erythrocyte folate and HAQ and BMI improved the predictive power of the model 
and were therefore included. From the final model a receiver operating characteristic 
(ROC) curve was constructed with a high area under the curve (AUC) of 0.75 and 95% 
confidence interval (CI) of 0.69 – 0.81. Subsequently, the model was uploaded in the 
online tool Evidencio for clinical use and to facilitate the possibility for other researchers to 
externally validate the model on their own dataset. 
 In chapter 7 we compared the use of multivariable logistic regression to machine-
learning algorithms in the prediction of insufficient response to MTX in RA. We showed 
that logistic regression equally performed to advanced machine-learning algorithms. 
Importantly, the dataset consisted of straightforward linear relationships. In case of higher 
dimensional data and non-linear interactions the use of machine-learning algorithms is 
recommended. Apart from the algorithms, the approach that is used in machine learning 
including: 1) the intention to predict results 2) the use of internal cross-validation and 3) 
feature reduction, lead to more validated, generalizable prediction models and enhance 
clinical implementation. The final model in chapter 7 performed better on the MTX 
(combination) therapy group (for which it was developed) than on a RA patient group 
starting toculizumab (TCZ) monotherapy, suggesting that the model predicts response 
specifically to MTX (combination) therapy. The following baseline clinical predictors 
were included in the final model: DAS28/tender joint count 28 (TJC28), HAQ, erythrocyte 
sedimentation rate (ESR)/C-reactive protein (CRP), BMI and smoking. The AUC of the ROC 
constructed from the final model was 0.78 (95% CI = 0.69-0.87), and this model was also 
uploaded in Evidencio. 
 This thesis contributed to the search of new biomarkers and the prediction of 
insufficient response to MTX to move towards personalized medicine in RA. We identified 
high baseline global DNA methylation as potential determinant of insufficient response 
to MTX. Other single epigenetic and metabolic determinants that were identified in this 
thesis first require external validation. Results of integrated –omic studies could give more 
insight in underlying events related to MTX insufficient response, such as glycolysis and the 
Warburg effect identified as suggestive underlying events in this thesis. These could lead 
to a more specific direction of where to find potential new determinants for insufficient 
response. Furthermore, previously developed prediction model for insufficient response 
to MTX in RA was externally validated. This model together with a new clinical model 
that was optimized using a machine-learning approach were integrated in an online 
tool Evidencio and can be tested in a clinical study for shared-decision making between 
clinician and patient to enable personalized medicine. 
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NEDERLANDSE SAMENVATTING

Methotrexaat (MTX) is de eerstelijnsbehandeling in rheumatoïde artritis (RA) patiënten. 
Ondanks de hoge veiligheid van MTX en het gegeven dat het bij de meeste patiënten 
goed aanslaat, heeft tot 40% van de patiënten geen baat bij het gebruik van MTX en is 
additionele behandeling nodig met biologische of synthetische medicijnen (biological/
targeted synthetic disease-modifying antirheumatic drugs: b/tsDMARD’s). Op dit 
moment kan de werking van het MTX niet eerder dan 3 tot 6 maanden na de start van 
de behandeling bepaald worden. Aangezien vroege controle van de ziekteactiviteit 
leidt tot betere lange termijn uitkomsten, zouden onvoldoende responders van MTX er 
baat bij hebben om direct vanaf het begin een intensievere behandeling te starten. Om 
voorafgaand aan de MTX behandeling te bepalen wie er onvoldoende gaat reageren, 
moeten eerst determinanten/voorspellers van onvoldoende response geïdentificeerd 
worden. Aan de hand van deze determinanten is gepersonaliseerde geneeskunde 
mogelijk waarin MTX alleen wordt voorgeschreven aan patiënten met een hoge kans op 
een succesvolle respons. Aan patiënten met een lage kans op succesvolle respons op MTX 
kan de behandeling direct vanaf het begin verzwaard worden met additionele therapie. In 
het eerste deel van dit proefschrift hebben we epigenetische en metabole determinanten 
onderzocht voor onvoldoende respons op MTX. In het tweede deel hebben we een eerder 
ontwikkeld predictiemodel gevalideerd voor onvoldoende respons op MTX bij RA en 
hebben we het gebruik van machine-learning algoritmen vergeleken met conventionele 
multivariabele logistische regressie in dergelijke klinische predictiemodellen.

Deel I
Met betrekking tot een rol voor DNA methylering als biomarker voor respons op MTX, 
hebben we in hoofdstuk 2 onderzocht of DNA (hydroxy)methylering stabiel is wanneer 
opgeslagen bij -20°C en -80°C, zodat het gebruikt kan worden voor epigenetische 
associatie studies. We hebben in een longitudinale studie (n=90) laten zien dat globale 
methylering en hydroxymethylering stabiel zijn in bloed en DNA monsters opgeslagen 
voor 18 maanden bij -80°C. DNA methylering bepaald in DNA monsters opgeslagen bij 
-20°C lieten na 12 maanden een lichte afname zien, terwijl de stabiliteit van globale DNA 
hydroxymethylering onafhankelijk was van de opslag temperatuur maar stabieler is in 
opgeslagen DNA monsters vergeleken met bloed monsters. Het herhaaldelijk vriezen en 
dooien van bloed en DNA monsters opgeslagen bij -80°C had geen invloed op de stabiliteit 
van globale DNA (hydroxy)methylering tot ten minste 3 cycli. Derhalve concluderen wij 
dat voor epigenetische studies het best DNA opgeslagen kan worden bij -80°C.
 In hoofdstuk 3 is onderzocht of globale DNA (hydroxy) methylering voor start 
van methotrexaat therapie geassocieerd is met de respons. Hogere baseline globale 
DNA methylering was significant geassocieerd met onvoldoende MTX respons. Deze 
bevinding werd bevestigd met een tweede techniek. Globale DNA hydroxymethylering 
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was daarentegen niet geassocieerd met MTX respons. Aangezien MTX het 1- 
koolstofmetabolisme remt, dat methylgroepen levert voor DNA methylering, werd 
verwacht dat DNA methylering zou afnemen na behandeling met MTX. In onze studie 
zagen we daarentegen geen significante veranderingen in DNA methylering tijdens de 
behandeling met MTX. Deze resultaten kunnen verklaard worden door het feit dat wij 
naar volbloed gekeken hebben dat uit verschillende soorten bloedcellen bestaat, die 
elk verschillende methyleringsprofielen bevatten. Ook foliumzuur wat 24 uur na MTX 
therapie wordt voorgeschreven om bijwerkingen te verminderen in onze patiënten 
zou de methylering beïnvloed kunnen hebben. De relatie tussen foliumzuur, MTX en 
hun gezamelijke effect op globale DNA methylering is echter niet volledig duidelijk 
en zou verder onderzocht kunnen worden in in vitro studies. Baseline globale DNA 
methylering was slechts zwak gecorreleerd met erythrocyt folaat en fungeerde daarom 
als onafhankeijke voorspeller voor onvoldoende respons op MTX. Baseline globale DNA 
methylering zal in toekomstige studies verder onderzocht kunnen worden als voorspeller 
voor onvoldoende respons in het volledige predictiemodel.
 Globale DNA methylering werd nader onderzocht in een epigenoom-brede 
associatiestudie (EWAS). In deze EWAS hebben we gekeken naar differentieel 
gemethyleerde posities (DMP) en regio’s (DMR) in het genoom van 69 RA patiënten 
in relatie tot MTX respons (chapter 4). We vonden geen grote verschillen in DNA 
methylering tussen responders en non-responders op MTX. Vanwege het grote aantal 
tests (> 850.000) dat werd uitgevoerd in verhouding tot het beperkte aantal patiënten, 
werden geen significante hits waargenomen na correctie voor meervoudig testen. 
Toch kunnen sommige DMP’s interessant zijn om nader te onderzoeken in toekomstige 
studies, bijvoorbeeld DMPs die in of nabij genen liggen die eerder gerelateerd zijn aan de 
pathogenese van RA (BRD2, PLEKHO1, BACH2, DOCK2). Ook zijn DMR’s in genen gerelateerd 
aan de expressie van HIF1-alfa (USP19, COX5B) interessant omdat dit een belangrijke 
regulator is van glycolyse en het Warburg-effect, twee metabolische processen die 
verhoogd zijn in RA patiënten.
 In hoofdstuk 5 hebben we een metabolomics-studie uitgevoerd om metabole 
determinantent te identificeren die onvoldoende responders op MTX (N=41) van 
goede responders (N=41) zouden kunnen onderscheiden. Metabolieten die deze twee 
responsgroepen het beste konden onderscheiden waren: homocystine, glycerol-3-fosfaat 
en 1,3/2,3-difosfoglycerinezuur. Deze bevindingen zullen echter eerst in een grotere 
patiëntengroep bevestigd kunnen worden, aangezien de groepsgrootte beperkt was en 
de bevindingen niet significant waren na correctie voor het uitvoeren van meervoudige 
testen. Onderliggende metabole routes die werden geïdentificeerd in verband met 
MTX-respons waren glycolyse en het Warburg-effect. De resultaten van de EWAS- en 
metabolomics-studie samengenomen, suggereren dat onderliggende epigenetische en 
metabole routes een rol zouden kunnen spelen bij MTXrespons in plaats van op zichzelf 
staande determinanten. Integratie van meerdere -omic studies is vereist om meer inzicht 
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te krijgen in onderliggende processen die het verschil in respons op MTX bij RA kunnen 
verklaren. Een beter begrip van onderliggende gebeurtenissen zou kunnen bijdragen aan 
een specifiekere zoektocht naar nieuwe biomarkers die kunnen worden toegevoegd aan 
een predictiemodel voor onvoldoende respons op MTX behandeling.

Deel II
In het tweede gedeelte van dit proefschrift hebben we eerst een eerder ontwikkeld 
predictiemodel voor onvoldoende respons op MTX behandeling extern gevalideerd 
(hoofdstuk 6). Het predictiemodel bevat de volgende variabelen: baseline DAS28, 
een gezondheidsbeoordelingsvragenlijst (HAQ), erytrocytfolaat, BMI, roken en twee 
enkele nucleotide polymorfismen (SNP’s) in MTX-transportgenen ABCB1 en ABCC3. De 
twee SNP’s droegen onvoldoende bij aan de voorspellende kracht van het model en 
werden uit het predictiemodel gehaald om de klinische implementatie van het model te 
bevorderen. Interactietermen tusen HAQ en erytrocytfolaat en HAQ en BMI verbeterden 
de voorspellende kracht van het model en werden daarom juist in het model opgenomen. 
Op basis van het uiteindelijke model werd een Receiver Operating Characteristic (ROC) 
curve geconstrueerd met een groot oppervlakte onder de curve (‘area under the curve’; 
AUC) van 0,75 en een 95% betrouwbaarheidsinterval van 0,69 - 0,81. Vervolgens werd het 
model geüpload in de online tool Evidencio voor klinisch gebruik en om het voor andere 
onderzoekers mogelijk te maken om het model extern te valideren op hun eigen dataset. 
Vervolgens hebben we in hoofdstuk 7 het voorspellend vermogen van multivariabele 
logistische regressie met machine-learning algoritmen vergeleken bij het voorspellen 
van onvoldoende respons op MTX bij RA. We hebben aangetoond dat logistische 
regressie even goed de response op MTX voorspelt als geavanceerde machine-learning 
algoritmen. Belangrijk is dat de dataset bestond uit eenvoudige lineaire relaties. In het 
geval van hoger dimensionale gegevens en niet-lineaire interacties wordt het gebruik 
van machine-learning algoritmen aanbevolen. Over het algemeen leidt machine learning 
tot beter gevalideerde en generaliseerbaardere predictiemodellen wat bevorderend is 
voor klinische implementatie. Dit komt met name doordat machine-learning modellen 
gemaakt worden met als doel om een uitkomst te voorspellen en doordat er gebruik 
gemaakt wordt van interne validatie. Het best presterende model in hoofdstuk 7 
presteerde beter op de MTX (combinatie) therapiegroep (waarvoor het werd ontwikkeld) 
dan op een RA-patiëntengroep die startte met toculizumab (TCZ) monotherapie, wat 
suggereert dat het model specifiek de respons op MTX (combinatie) therapie voorspelt. 
De volgende klinische baseline voorspellers werden opgenomen in het uiteindelijke 
model: DAS28/aantal pijnlijke gewrichten 28 (tender joint count 28: TJC28), HAQ, 
erythrocytbezinkingssnelheid (BSE) / C-reactief proteïne (CRP), BMI en roken. De AUC van 
de ROC geconstrueerd op basis van het uiteindelijke model was 0,78 (95% BI = 0,69-0,87), 
en dit model werd ook geüpload in Evidencio.
 Dit proefschrift heeft bijgedragen aan de zoektocht naar nieuwe biomarkers en het 
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voorspellen van onvoldoende respons op MTX en is een stap richting gepersonaliseerde 
geneeskunde in RA. We identificeerden baseline globale DNA-methylering als mogelijke 
determinant voor onvoldoende respons op MTX. Andere afzonderlijke epigenetische en 
metabole determinanten die in dit proefschrift werden geïdentificeerd, vereisen eerst 
externe validatie. Resultaten van geïntegreerde –omic studies zouden meer inzicht 
kunnen geven in onderliggende gebeurtenissen gerelateerd aan onvoldoende respons op 
MTX, zoals glycolyse en het Warburg-effect welke werden geïdentificeerd als suggestieve 
onderliggende gebeurtenissen in dit proefschrift. Deze zouden in een specifiekere 
richting kunnen wijzen waar potentiële nieuwe determinanten voor onvoldoende respons 
kunnen worden gevonden. Daarnaast, werd het eerder ontwikkelde predictiemodel 
voor onvoldoende respons op MTX bij RA extern gevalideerd. Dit predictiemodel en een 
nieuw klinisch model dat werd geoptimaliseerd met behulp van een machine-learning 
benadering, werden beiden geïntegreerd in een online tool Evidencio. Deze kunnen 
worden getest in een klinische studie voor gedeelde besluitvorming tussen arts en patiënt 
om gepersonaliseerde behandeling mogelijk te maken.



!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"



Appendices

Curriculum vitae
PhD portfolio

List of publications
Dankwoord

Chapter 10





10

Appendices

187

CURRICULUM VITAE

Helen Gosselt was born 9th of June 1991 in Utrecht. 
She grew up in Breukelen together with her brother 
Maarten and sister Isabel. In 2009 she graduated 
from the secondary school RSG Broklede where 
she had attended bilingual VWO. Hereafter, she 
started Biomedical Sciences at the Vrije Universiteit 
in Amsterdam. During her bachelor studies she 
became interested in oncology research. After 
graduation she travelled through Asia whereafter 
she started her Masters in Oncology at the Vrije Universeit. During her Master 
she got the opportunity to write a literature study at the NKI and performed 
a research internship at the Hubrecht Institute in Utrecht in the group of Jop 
Kind. After travelling for another 2 months in Central America she started 
her PhD in the department of Clinical Chemistry at the Erasmus MC and 
Amsterdam UMC under supervision of dr. Sandra G. Heil, prof.dr. Robert 
de Jonge and prof.dr. Johanna M.W. Hazes, resulting in this thesis. During 
her PhD project she supervised five students performing their research 
internships in the Erasmus MC or VUmc.



Chapter 10

188

Description 
Required courses

Organizer EC

Scientific Integrity (2017) 
CC02 Biostatistical Methods I: Basic Principles (2017) 
Biomedical English Writing (2018) 

0.30
5.70
2.00

Other courses

Basic Course on ‘R’ (2016) 
Ensembl Gene Browsing workshop (2017) 
CPO-course: Patient Oriented Research (2017) 
Epigenetics Bootcamp (2017) 

CE08 Repeated Measurements (2018) 
SNP Course: SNPs and Human Diseases (2018) 
Data science for healthcare (2018) 
Career support workshop (2020) 

Molmed
Molmed

Columbia University-   
 New York

Molmed
Amsterdam Center for 
Business Analytics VU

1.80
0.60
0.30
1.00

1.70
2.00
2.00
0.15

Conferences

7th Clinical Epigenetics Meeting 2017 (2017)  1.00

Molmed Day 2017 (2017) Molmed 0.30

EULAR 2017 (2017) EULAR 1.00

38th European Workshop for Rheumatology Research (2018)  1.00

Molmed Day 2018 (2018) Molmed 0.30

EULAR 2018 (2018) EULAR 1.00

PEMED 2018 - Personalized and  
Precision Medicine International Conference (2018)

 
 

1.00
 

Molmed Day 2019 (2019) Molmed 0.30

NVKC - voorjaarscongres - pitch (2019) NVKC 1.00

PACE Consortium Meeting (2019) The Generation R Study Group 1.00

2019 ACR/ARP Annual Meeting (2019) American College of 
Rheumatology

1.00
 

NVKC najaarscongres – pitch (2020) NVKC 1.00

Teaching activities

Supervision student (HBO), 5 months full time (2017) 
Supervision student (HBO), 6 months parttime (2018) 
Supervision Master student (VUmc), 4 months part time (2018) 
Supervision Master student (VUmc), 6 months part time (2019) 
Supervision Master student (VUmc), 2 months part time (2019) 

 2.00
1.00
1.00
1.00
0.50

Total EC 32.95

ERASMUS UNIVERSITY ROTTERDAM
PHD PORTFOLIO

Helen Gosselt



10

Appendices

189

List of publications

In this thesis

Gosselt, H. R., van Zelst, B. D., de Rotte, M. C., Hazes, J. M., de Jonge, R., & Heil, S. G. 
(2019). Higher baseline global leukocyte DNA methylation is associated with MTX 
non-response in early RA patients. Arthritis research & therapy, 21(1), 157.

Gosselt, H. R., Griffioen, P. H., van Zelst, B. D., Oosterom, N., de Jonge, R., & Heil, S. G. (2020). 
Global DNA (hydroxy) methylation is stable over time under several storage conditions 
and temperatures. Epigenetics, 1-9.

Gosselt, H. R., Vallerga, C. L., Mandaviya, P. R., Lubberts, E., Hazes, J. M., de Jonge, R., & 
Heil, S. G. (2021). Epigenome wide association study of response to methotrexate in early 
rheumatoid arthritis patients. Plos one, 16(3), e0247709.

Gosselt HR, Muller IB, Jansen G, van Weeghel M, Vaz FM, Hazes JMW, Heil SG, de 
Jonge R. Identification of Metabolic Biomarkers in Relation to Methotrexate Response 
in Early Rheumatoid Arthritis.  Journal of Personalized Medicine. 2020; 10(4):271.  
https://doi.org/10.3390/jpm10040271x

Gosselt, H. R., Verhoeven, M. M., de Rotte, M. C., Pluijm, S. M., Muller, I. B., Jansen, G., 
... & Hazes, J. M. (2020). Validation of a Prognostic Multivariable Prediction Model for 
Insufficient Clinical Response to Methotrexate in Early Rheumatoid Arthritis and Its Clinical 
Application in Evidencio. Rheumatology and Therapy, 1-14.

Gosselt HR, Verhoeven MMA, Bulatović-Ćalasan M, Welsing PM, de Rotte MCFJ, Hazes 
JMW, Lafeber FPJG, Hoogendoorn M, de Jonge R. Complex Machine-Learning Algorithms 
and Multivariable Logistic Regression on Par in the Prediction of Insufficient Clinical 
Response to Methotrexate in Rheumatoid Arthritis. Journal of Personalized Medicine. 2021; 
11(1):44. https://doi.org/10.3390/jpm11010044

Other publications

de Jonge, R., Muller, I. B., Gosselt, H. R., & Jansen, G. (2019). Therapeutic drug monitoring 
of methotrexate in disease. Research Outreach, (110), 161-164.

Kevin Stroek, Allerdien Visser, Helen R. Gosselt, Catharina P.B. van der Ploeg, 
Nitash Zwaveling-Soonawala, Annemieke C. Heijboer, Annet M. Bosch, A.s. Paul 
van Trotsenburg, Anita Boelen, Mark Hoogendoorn, Robert de Jonge. Newborn 
screening for congenital hypothyroidism: man versus machine. Under revision



Chapter 10

190

Dankwoord

“Time flies, but not memories.” - Ika Natassa

De jaren zijn voorbij gevlogen en ik heb het ontzettend naar mijn zin gehad. Helaas komt 
aan alle leuke dingen een eind, maar in het geval van mijn proefschrift heb ik daar vrede 
mee. Ik heb het gelukkig niet alleen hoeven doen en ik wil daarom ook iedereen die heeft 
bijgedragen aan dit proefschrift of op een andere manier betrokken is geweest en steun 
heeft geleverd in de komende pagina’s bedanken.

Allereerst wil ik alle patiënten bedanken die hebben deelgenomen aan de studies die 
beschreven staan in dit proefschrift en alle anderen die betrokken waren bij het opzetten 
van de studies. Zonder jullie materiaal en inzet was dit proefschrift er niet geweest. 

Dan mijn promotieteam. Allereerst, Prof. Dr. R. de Jonge, beste Robert, ik wil je heel erg 
bedanken voor je positieve instelling en enthousiasme. Je zag alleen maar mogelijkheden 
en gaf mij veel vrijheid om te doen wat ik leuk vond. Naast de inhoudelijke discussies 
waar ik veel van heb geleerd, was er ook altijd ruimte voor een grapje. Bedankt voor de 
kansen die je mij hebt geboden om continu iets nieuws te leren en knopen door te hakken 
wanneer nodig. 

Prof. dr. J.M.W. Hazes, beste Mieke, wij zagen elkaar misschien niet vaak, maar ik heb 
de overleggen die wij hadden als erg waardevol ervaren en ik wil je bedanken voor je 
scherpe, klinische inzichten. 

Dr. S.G. Heil, beste Sandra, ik wil je bedanken voor je goede begeleiding en sturing. Ik 
kon altijd bij je binnenlopen met vragen. Ook wil ik je bedanken dat jij mij zo veel kansen 
gegeven hebt om naar het buitenland te gaan. In mijn eerste jaar nam je mij al mee 
naar Düsseldorf en mocht ik naar Madrid en New York voor congres. Later mocht ik naar 
Genève, Atlanta en hebben we samen de toerist uit gehangen in Parijs, waar ik erg van 
genoten heb! Verder liet jij mij inzien dat een PhD eindig is en dat het belangrijk is om 
na te denken over mijn persoonlijke ontwikkeling en vervolg carrière. Daar ben ik je erg 
dankbaar voor.   

Alle collega’s van de klinische chemie afdeling in Rotterdam. In het bijzonder, Pieter en 
Bertrand, bedankt voor al jullie tijd en inzet. Jullie kennis op het lab is bijzonder waardevol 
en ik ben erg dankbaar dat ik van de beste heb mogen leren! Maja, Pooja, Natanja, bedankt 
voor alle gezelligheid die jullie meenamen naar de afdeling. De DNA groep, ik weet dat 
jullie altijd erg druk waren, toch was er altijd een gaatje om mijn experimenten tussendoor 
te plannen, bedankt daarvoor! Ik wil alle studenten bedanken die ik in het ErasmusMC heb 



10

Appendices

191

mogen begeleiden: Marit, Savannah en Jordan. Verder iedereen die in onze hoek in de 
flexruimte kwam buurten of koffie kwam drinken, maar in het bijzonder Johanna, Eline, 
PimPim, Daniël en Stephanie: bedankt voor alle gezelligheid en ontspannen momenten. 

Collega’s op de reumatologie afdeling van het ErasmusMC, bedankt voor jullie klinische 
input en dat ik bij jullie mocht aanhaken bij verschillende reumatologie congressen.

Alle co-auteurs, hartelijk dank voor de prettige samenwerking en jullie feedback op de 
manuscripten die mij een betere onderzoeker hebben gemaakt. In het bijzonder wil ik 
dr. M.C.F. de Rotte, dr. M. Bulatović-Ćalasan, dr. S.M.F. Pluijm en dr. G. Jansen bedanken. 
Maurits, wat ben ik blij dat ik op jouw werk mocht voortborduren en wat heb ik veel 
geleerd! Maja, jouw visie hebben mijn stukken naar een hoger niveau getild, heel erg 
bedankt daarvoor. Saskia, hartelijk bedankt dat ik met statistische vragen of vragen 
over de methodologie bij je terecht kon. Gerrit, het is onvoorstelbaar hoeveel jij van het 
MTX metabolisme weet en van alle biochemische processen die daar bij betrokken zijn. 
Bedankt dat je deze kennis met mij wilde delen! Pooja, Costanza and other colleagues 
from internal medicine, thank you for sharing all your knowledge and enthusiasm about 
methylation arrays. Verder wil ik prof. dr. Floris Lafeber, dr. Paco Welsing, dr. Janneke 
Tekstra en Maxime Verhoeven van het UMC Utrecht en dr. Frédéric Vaz en dr. Michel van 
Weeghel van het Nederlandse Metabolomics Centrum Amsterdam UMC bedanken voor 
de prettige samenwerking.

‘Team Artificial Intelligence’ hartelijk bedankt! Met name Prof. dr. M. Hoogendoorn, Mark, 
hartelijk bedankt voor de inhoudelijke discussies over alle mogelijkheden van machine-
learning. Daarnaast wil ik ook de studenten Pablo en Tom bedanken. Het was erg leerzaam 
om jullie te mogen begeleiden aangezien jullie degenen waren die mij alles hebben 
bijgebracht over het toepassen van machine-learning algoritmes. 

Collega’s in Amsterdam, Ittai, Marry, Renske en Maartje, ik voelde mij snel thuis bij jullie in 
Amsterdam en het was fijn om met jullie te kunnen sparren! Ook mijn kamergenootjes 
in Amsterdam, bedankt dat jullie mij in mijn laatste jaar zo open ontvangen hebben. Het 
was van korte duur en corona bracht het tot een abrupt einde, maar het was gezellig om 
bij jullie in de kamer te zitten!

Prof. dr. R. Mathôt en dr I. Bartelink, beste Ron en Imke, hartelijk bedankt voor jullie 
enthousiasme en tijd voor het bouwen van complexe NONMEM modellen. Ik had jullie 
graag eerder in mijn promotietraject ontmoet, maar ben blij dat het project in goede 
handen voortgezet wordt. 

Alle leden van de promotiecommissie, hartelijk dank voor het beoordelen van mijn 
proefschrift en voor de bereidheid om zitting te nemen in de promotiecommissie. 
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Dan mijn paranimfen, Tania en Rutchanna. Rutchanna, tijdens onze reis in India had ik 
nooit verwacht dat jij degene zou zijn die mij op mijn werkplek in het ErasmusMC zou 
verwelkomen, wat een toeval! Bedankt dat ik altijd bij je terecht kon voor een luisterend 
oor. Tania, het feest was compleet toen jij bij ons de flexruimte binnen kwam lopen. De 
productiviteit ging misschien iets omlaag, maar dat heeft onze PhDs nooit in de weg 
gestaan. Jullie passie voor zoetigheden en knuffels heb ik nooit begrepen. Gelukkig 
deelden wij wel een gezamenlijke passie voor goede koffie, wat er toe leidde dat we 
met onze eigen french press over de afdeling paradeerden en veel tijd in de garden 
doorbrachten. Ook na werktijd hebben we veel tijd samengebracht en ik heb erg genoten 
van de tripjes met jullie naar onder andere de Efteling, kamperen op Texel, yoga met alpaca’s 
en schilderen met chocola in het chocolademuseum, bedankt! 

Lieve vriendinnen, Jette, Nina, Wieneke, Ava, Karlijn, jullie zijn toppers. Jette, na al die jaren 
zitten we weer naast elkaar, maar nu op kantoor in plaats van in de schoolbanken. Bedankt 
dat je mij in het L-A-M team opgenomen hebt!
 
Dames van 2010: Lara, Véronique, Sanne, Lucia, Ileen, Heleen, Dos, Sabine, Koos, Anouk, 
Vivian bedankt dat jullie zo’n fantastische groep vriendinnen zijn. Hier heb ik maar twee 
woorden voor: what else! 

De zaterdagactiviteitengroep: Alexander, Alon, Sander, Eva, Vincent, Jamie, Jorrit, Noedeng, 
Thijs, Lisa, Sofie, Thijmen. Jullie wil ik bedanken voor alle toffe en creatieve maandelijkse 
activiteiten (van boetseren tot blokarten en motorcrossen), waardoor ik op zaterdag in 
ieder geval verplicht was te ontspannen.

Lieve schoonfamilie: Joke & Laurens, Anne & Olivier, Jasper & Manon, bedankt voor al jullie 
interesse en steun! Ik ben ontzettend dankbaar dat ik nu sinds augustus ook officieel 
onderdeel uitmaak van de Conijnen-familie.

Pa en ma, ik kan mij geen betere ouders wensen. Bedankt voor jullie betrokkenheid, 
vertrouwen en steun! Lieve Raymond & Marlyn, jullie zijn niet meer weg te denken, 
bedankt dat jullie er zijn. Maarten en Isabel, ik ben super trots dat jullie mijn broer en zusje 
zijn. Maarten, bedankt dat ik op jouw scriptie mocht oefenen met academisch schrijven, 
een win-win situatie! Isabel, bedankt voor je eindeloze geduld en dat ik altijd even mocht 
bellen om te ventileren. 

Lieve Lucas, bedankt dat je al ruim 13 jaar aan mijn zijde staat. Ik ben trots dat ik je na een 
jaar vertraging eindelijk mijn man mag noemen. Met jou aan mijn zijde is het hele leven 
EPIC! 


