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1. INTRODUCTION

Pregnancy is something that most women will go through during their lives, so it
potentially affects half of the world’s population. The placenta mediates nutrients
and waste products between the mother and the fetus during pregnancy. It is
essential for a successful pregnancy outcome that the placental unit is working as
intended, growing and adapting to fetal needs through pregnancy. The placenta
expresses many different protein-coding genes with various purposes to function
as required, some of which also reach the maternal bloodstream. It is still not fully
known how the regulation of all these genes and proteins is carried out at the
exact times it is needed. However, when the placental gene expression profiles
have strayed from the norm, pregnancy complications can occur.

Early pregnancy complications such as ectopic pregnancies or miscarriages
often result in the loss of pregnancy. Even though late pregnancy complications
have better outcomes, there is still danger to maternal and fetal life. Many of these
have also been linked to placental dysfunction, such as preeclampsia (PE) and
fetal growth restriction. Preeclampsia occurs in up to 5% of pregnant women
worldwide, claiming about 63,000 maternal lives each year in the middle- and
low-income countries, where healthcare is not always available (Burton et al.,
2019). Only palliative care is possible during the pregnancy as the removal of the
placenta is the only known cure for PE. However, the sooner PE is diagnosed, the
better the chances to keep the symptoms under control until birth. For this, high-
risk women need to be identified as early as possible in the pregnancy. There are
known risk factors for PE, such as nulliparity, body mass index, and previous PE
history, that are considered when assessing the risk for PE. Genetic risk factors
would have an added value as these are determined only once and retain the
information for subsequent pregnancies. Not many robust genetic risk factors
have been determined for PE so far.

Expression quantitative trait loci (€QTLs) are variants that modify the target
gene expression. In the Genotype-Tissue Expression (GTEx) project (Aguet et
al., 2020), analyzing 49 tissues revealed over 5 million variants that affect at least
one gene in at least one tissue. Many eQTLs are also tissue-specific, making it
necessary to study the variants in the tissue of interest. Even though eQTLs are
well studied in readily available tissues such as blood, pregnancy-related tissues,
such as the placenta, have only recently been started to be addressed. Identifying
placental eQTLs could provide additional insight into placental gene expression
regulation as well as provide a list of new candidate genes and variants for various
pregnancy complications.

The main aim of the current thesis was to describe the regulatory effect of
e¢QTLs on placental transcriptome and the link to pregnancy complications.
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2. LITERATURE REVIEW

2.1. Human pregnancy
2.1.1. Pregnancy course

Human pregnancy lasts on average for about 40 weeks. The pregnancy is initiated
by the fusion of an egg and a sperm in the fallopian tube. During the first two
weeks, the resulting embryo moves from the tube into the uterus, where the
embryonic trophoblast cells begin to invade into the maternal decidua (James
et al., 2012). These invading trophoblasts create the basis for the placenta.

The pregnancy is divided into three trimesters, each focusing on different fetal
development and growth stages. As the embryo develops, the conditions needed
for optimal growth change. In the first trimester (up to 11" gestational week), the
embryo is growing in a hypoxic environment until the remodeling of decidual
spiral arteries occurs (Jauniaux et al., 2000; Rodesch et al., 1992). Until then, the
primary source of nutrition for the embryo comes from the secretions of the endo-
metrial glands (Burton et al., 2002). Therefore, during this period, maternal circu-
latory factors do not reach the embryo in large quantities. However, the substances
secreted by the placenta and the embryo still reach the maternal bloodstream even
at this time. (Huppertz et al., 2008; Michelsen et al., 2019) All fetal structures and
major organs start their development already during the first trimester.

At the start of the second trimester, the placenta has developed into a fully
functional organ, and maternal blood is used as the primary source of nutrition
for the fetus (Aplin et al., 2020; Jauniaux et al., 2000). Other fetal organs continue
their development in the second and third trimesters. In the third trimester, the
fetus goes through rapid growth, gaining weight. In addition, the nervous system,
lungs, and metabolism mature to adjust to life out of the uterus.

2.1.2. Placenta, a pregnancy-specific organ
at the maternal-fetal interface

The placenta is a unique organ (Table 1). It is the only organ present only at a
specific time point in human life — pregnancy. It is constantly changing to meet
the needs of the growing embryo, reaching full-thickness by the fourth gestational
month but continuing to grow in circumference through pregnancy. The central
role of the placenta is to mediate maternal and fetal needs. Nutrients and oxygen
are moved through the placenta, from the mother to the fetus, with waste pro-
ducts, and secreted proteins moved in the opposite direction (Aplin et al., 2020;
Jauniaux et al., 2000; Michelsen et al., 2019).
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Table 1. Examples of some notable features of the human placenta

Features Reference

Evolutionarily new endocrine organ, present only in (Burton & Fowden, 2015;
mammals Cross et al., 2003)

It is a temporary organ (Burton & Fowden, 2015;

Fox & Sebire, 2007)
Contains new cell types (Burton & Fowden, 2015;
a) syncytiotrophoblast that is the only true multinuclear ~ Cross et al., 2003; Fox &
syncytium Sebire, 2007)

b) extravillous trophoblasts that are capable of invading
maternal decidua deeper than other mammals

Organ function-specific genes, proteins, and miRNA (Liang et al., 2007; Rawn
families & Cross, 2008)

General hypomethylation of the genome compared to (Ehrlich et al., 1982;
postnatal somatic and fetal cells Schroeder et al., 2013)
The placental genome is prone to changes, including (Coorens et al., 2021;
somatic mutations, genomic chromosomal instability Kalousek & Dill, 1983;
with confined placental mosaicism Kasak et al., 2015, 2017)
The placental microbiome is nearly absent (de Goffau et al., 2019;

Leiby etal., 2018)

The primary cell type in the placenta that makes it functional is trophoblasts.
During the invasion phase, cytotrophoblast (CTB) differentiates into two dif-
ferent types: multinuclear syncytiotrophoblast (STB) and mononuclear, highly
invasive extravillous trophoblast (EVT). By the third gestational week, the
placenta has vascularized villi bathed in the maternal blood in the intervillous
space (Figure 1.) (Demir et al., 1989; Te Velde et al., 1997). Placental villi consist
of layers of CTB and STB cells covering the fetal blood vessels (Fox & Sebire,
2007). Remodeling of the spiral arteries widens and relaxes them locally, so in-
creased blood flow into the placenta is possible. Incomplete remodeling is thought
to be one of the underlying causes of maternal hypertension, preeclampsia (PE),
and fetal growth restriction (Staff, 2019).

The human placenta is hemochorial, which means the chorionic villi come
into direct contact with maternal blood. Even among the same type of placentas
among mammals, the human placenta has a profound trophoblast invasion, even
up into a third of the maternal myometrium. A similar pattern has also been found
in gorillas and chimpanzees, but not in Old World monkeys (Carter, 2011). The
most commonly used model animal, the mouse, has reasonably different morpho-
logy from a human placenta despite being hemochorial (Figure 2.) (Hemberger
et al., 2020). The absence of a perfect model is one of the reasons researching the
placenta is complex.
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The placenta releases different hormones, microRNAs (small single-stranded
RNAs), cell-free DNA, extracellular vesicles, and other products into the maternal
blood stream at specific time points during pregnancy. Different estrogens and
progesterone are produced by the placenta, as well as some placenta-specific
peptide hormones like human chorionic gonadotropin (hCG) (Bonduelle et al.,
1988; Rull et al., 2008), human placental lactogen (hPL) (Kliman et al., 1986;
Mainnik et al., 2010), human placental growth hormone (PGH) (Alsat et al., 1997),
and others (Costa, 2016; Fox & Sebire, 2007). According to Human Protein Atlas
(proteinatlas.org, (Uhlen et al., 2015)), there are 91 genes with expression
enriched for the placenta (>4 times higher mRNA levels than in any other tissue).
Among these are some well-known genes like pregnancy-specific glycoprotein
family (PSGI-9), pappalysin 1 and 2 (PAPPAI-2), fms-like tyrosine kinase 1
(FLTI), placental alkaline phosphatase (ALPP), insulin-like growth factor 2
(IGF2), and others. Predominantly placenta-expressed genes are expressed
mainly by trophoblast cells and are integral to trophoblast differentiation and
function (Handwerger & Aronow, 2003; Szilagyi et al., 2020). The placental
products can affect the maternal physiology and response to pregnancy and, there-
fore, potentially the pregnancy outcome. For example, placenta-derived soluble
Flt-1 (sFlt-1) rises in the maternal serum about five weeks before developing PE
(D. E. Clark et al., 1998; Levine et al., 2004).

2.2. Pregnancy complications
2.2.1. General overview

Pregnancy affects the whole maternal body causing anatomic, hormonal, and
metabolic changes in several organs. When the maternal body is not able to adapt
to the changes, complications can occur. Many obstetrical complications have
been linked to the placenta, either by insufficient or excessive invasion (Brosens
et al., 2011; Burton & Jauniaux, 2018; Jauniaux et al., 2018). Depending on the
timing, these can be broadly divided into two groups — early and late pregnancy
complications.

Early pregnancy complications such as ectopic pregnancy, miscarriage, and
molar pregnancy are severe and incompatible with pregnancy continuation. If not
removed, ectopic and molar pregnancies can become life-threatening for the
mother (Rehman & Muzio, 2019). A brief overview of selected early pregnancy
complications can be found in Table 2.

Even though late pregnancy complications manifest in the second half of the
pregnancy, the cause can be already present in early pregnancy. For example, PE
and fetal growth restriction are thought to be mainly caused by inadequate placental
invasion (Burton & Jauniaux, 2018; Staff, 2019). In general, late pregnancy
complications are less severe but can become life-threatening to the child and the
mother in some cases.
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2.2.2. Preeclampsia - a placental disease in late pregnancy

Preeclampsia (PE) is a syndromic pregnancy complication characterized by de
novo onset of hypertension accompanied by other maternal organ damage symp-
toms. No one symptom is specific for PE, but the collection of symptoms is used
for the diagnosis. Current diagnostic criteria endorsed by the International Society
for the Study of Hypertension in Pregnancy (ISSHP) are as follows:

Gestational hypertension (systolic BP >140 and/or diastolic BP >90 mmHg)
with one or more new-onset conditions >20™ gestational week:

a) Proteinuria

b) Other maternal organ dysfunction (acute kidney injury, elevated trans-
aminases indicating liver damage, neurological complications, hematological
complications)

c) Uteroplacental dysfunction (fetal growth restriction, abnormal Doppler
analysis, stillbirth) (Brown et al., 2018)

Preeclampsia affects about 4.6% of pregnant women globally, but regional
differences can be vast (Abalos et al., 2013). In Estonia, the incidence of PE in
2019 was about 1.7%, according to Estonian Health Statistics and Health Research
Database (www.statistika.tai.ee/). Advances in health care have reduced PE-
related mortality among mothers in high-income countries (0.03% in the UK) but
remains an issue in the middle- and low-income countries accounting for 63 000
maternal deaths per year (Burton et al., 2019).

Currently, the clinical focus is finding the high-risk women, surveillance and
managing the emerging symptoms, and delaying preterm delivery unless mater-
nal health is at risk. Some at-risk women benefit from low-dose aspirin treatment
started at 16-20" week of gestation to reduce the incidence of PE or the severity
of the symptoms (Brown et al., 2018). When the low-dose aspirin treatment was
started at 11-14™ week for high-risk women, the reduction of preterm PE was
over 60% (Rolnik et al., 2017). The end of pregnancy and departure of the placenta
is currently the only definitive cure for PE.

Within PE, two distinct subtypes are differentiated according to the time of
presentation of symptoms (Lisonkova & Joseph, 2013). The common consensus
is that early-onset PE (EOPE) manifests from 20™ to 34™ gestational week and late-
onset (LOPE) from 34™ week onward (Tranquilli et al., 2013). EOPE tends to
have more severe symptoms and results more often in preterm delivery. The two
subtypes of PE are also thought to have differing pathologies. Whereas insufficient
placental invasion is the leading cause of early PE, late-onset PE is believed to be
caused by the aging of the placenta (Ness & Roberts, 1996, Figure 3).
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Figure 3. Pathways to the development of preeclampsia (PE). Adapted from (Aplin et al.,
2020; Staff, 2019). ER, endoplasmic reticulum; FGR, fetal growth restriction; STB,
syncytiotrophoblast
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2.2.3. Diagnostic and prognostic biomarkers of pregnancy
complications

In Estonia, screening for fetal chromosomal and gross anatomical abnormalities
is carried out during the first trimester visits from the 11" to 14™ gestational week.
The risk for early PE can also be assessed during the first trimester by utilizing
serum PAPP-A, placental growth factor (PIGF), and uterine artery Doppler
combined with maternal characteristics and medical history in an algorithm by
the Fetal Medicine Foundation (FMF) (O’Gorman et al., 2016; Tan et al., 2018).
The FMF algorithm has been in use in Estonia since 2019.

Some less established biomarker screenings for late pregnancy have been
proposed for a few pregnancy complications (Table 3). National Institute for
Health and Care Excellence (NICE) guidance recommends additional use of
commercial PIGF/sFlt-1 ratio or the Triage PIGF test for excluding the mani-
festation of both early and late PE up to four weeks in the second or third trimester
(Herraiz et al., 2018; NICE, 2016). Fetal fibronectin can be used to assess
immediate risk for preterm birth in the next 48 hours (NICE, 2015).

The clinical risk factors for gestational diabetes (GD) include high fasting
blood sugar, glycosuria, excessive weight gain, pre-pregnancy body mass index
(BMI) 225 kg/m?, prior GD, familial diabetes, previous newborn >4500g, and
polycystic ovary syndrome are associated with GD. The presence of any of these
demand a glucose tolerance test (GTT) at 24-28 gestational weeks to detect
abnormal carbohydrate metabolism and GD (Hod et al., 2015). Blood pressure
measurement and urine test at every visit after 20™ gestational weeks are used to
discover gestational hypertension or PE. Small- (SGA) and large-for-gestational-
age (LGA) newborns are diagnosed most commonly after birth according to sex-
adjusted growth curves. Still, they can be predicted during pregnancy by esti-
mating the fetal weight by fundal height measurements and/or during the ultra-
sound scan (Sildver et al., 2015) (Table 3).

2.3. Genetics of late pregnancy complications

2.3.1. Challenges in the genetic research
of pregnancy complications

Researching pregnancy complications offers some unique challenges. To start, in
most diseases, the influence of the individual’s genetic makeup together with
environmental factors is studied. In pregnancy, there is a third counterpart — the
fetal genome. This also complicates the choice of study subjects; either the mother,
fetus, or both should be studied (Rull et al., 2012).
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Most pregnancy complications have been acknowledged to be multifactorial,
affected by maternal and fetal genetics and lifestyle. However, the exact pro-
portions have not been identified for all complications at this time. For PE, it has
been estimated that maternal genetic factors account for 35-38% and placental
20-21% to a combined heritability of 55-59% (Cnattingius et al., 2004; Steint-
horsdottir et al., 2020). The heritability of SGA and LGA is not established.
However, combined genetic contributions have been proposed to account for up
to 50% of the birth weight variation (Clausson et al., 2000).

An additional challenge is the approach of analysis. One option is to inves-
tigate candidate genes where a hypothesis of effect can be easily constructed from
previous knowledge. However, the selection is limited by the current under-
standing of the disease pathophysiology. Genes may be selected based on sig-
naling or biochemical pathways. The main drawback of this approach is that not
all contributors to the disease pathophysiology might be known already. Previ-
ously, candidate gene based studies have had low reproducibility, possibly due to
small sample sizes. Another method can be used to overcome this aspect —
genome-wide association studies (GWAS). GWAS offers a hypothesis-free
analysis of the whole genome, enabling the identification of novel candidate
genes. However, a significant drawback of this method is the need for extensive
sample sets to detect significant associations after correcting for multiple testing.
Collecting large sample sets of pregnancy-related tissues such as placental samples
has been more complex than simple blood samples.

2.3.2. Genetics of preeclampsia

As the disease, so is the genetics of PE complex. Hundreds of genes and variants
have been associated with PE. However, only a small portion of the finds have
been replicated in separate studies. The genetic background of PE might partly
be shared with other traits such as elevated diastolic blood pressure (DBP) and
high BMI (Gray et al., 2021). However, genetic risk scores for hypertension or
DBP were not found to be predisposing PE, indicating still different underlying
pathways (Smith et al., 2016).

Another complicating factor of PE genetics is the sub-types of PE. There is a
consensus that EOPE and LOPE have different genetic backgrounds (Burton et al.,
2019; Oudejans et al., 2007), but a few studies have proposed other genetically
distinct PE subsets (Leavey et al., 2015, 2016). Using aggregate data from several
gene expression microarray-based studies, Leavey et al., 2016 proposed three
distinct PE subgroups — canonical”, immunological”, and maternal” PE. How-
ever, the gene expression profiles of immunological” and maternal” PE patients
were not as distinct from controls as canonical” PE patients. This also illustrates
the importance of group selection for conducting studies on PE, especially with
smaller sample sizes. The collection of a more distinct PE group might reduce the
noise and improve the results.
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2.3.2.1. Candidate gene studies for preeclampsia

Traditionally, PE candidate genes have been selected from various affected
pathways, including endothelial function (e.g., renin-angiotensin system, FLT1),
the oxidative stress and thrombophilia pathways, hemodynamics, immune response
(e.g., IL-10, TNF-a, HLA-G), and lipid metabolism (Thakoordeen et al., 2018;
Williams & Broughton Pipkin, 2011). However, many of the candidate gene
studies have conflicting results.

Most studies so far have been conducted on maternal samples. These are more
readily available as maternal blood samples are taken routinely during pregnancy.
Another reason to prefer maternal samples is that they are less invasive than
placental or fetal samples that can be taken during pregnancy. Therefore, maternal
samples have a higher potential for later clinical use.

A study using maternal samples focusing on approximately 2000 cardio-
vascular candidate genes (including 27 429 variants) was recently conducted
(Gray et al., 2018). Only one variant (rs9478812) in the PLEKHG1 gene reached
statistical significance in the multiethnic meta-analysis (OR=1.40, 95% CI 1.23—
1.60, P=5.9x10"7). The gene is expressed in most tissues and has been previously
associated with blood pressure, body weight, and neurological disorders, but the
exact function of PLEKHG] is still largely unknown.

Placental stanniocalcin-1 (STCI), a glycoprotein hormone that regulates
calcium homeostasis in fish (Wagner et al., 1986), is a relatively new candidate
gene for PE. It has been shown to exhibit trimester-specific dynamics and higher
levels in term PE placentas. Maternal serum levels of STC1 have also been shown
to have increased in post-PE pregnancy samples (Uuskiila et al., 2012). The
hormone expression increases in hypoxic conditions in the BeWo cell line,
possibly to protect the placenta against low oxygen in PE (Abid et al., 2020). STC!
expression has been shown to increase in the endometrium in the mid-secretory
phase and is dysregulated in endometriosis and polycystic ovary syndrome
(Aghajanova et al., 2016; Khatun et al., 2020).In animal models, several re-
productive phenotypes have been linked to STC1, such as ovarian function (Deol
et al., 2000), implantation (Song et al., 2009), gestation, and lactation (Deol et al.,
2000; Varghese et al., 2002). STC1 seems to have a diverse functionality in
mammals, and the evidence for importance in pregnancy is increasing.

FLT1I, on the other hand, is one of the best-known candidate genes for PE. As
the sFIt-1 inhibits angiogenesis in the placental vasculature through trapping
VEGF-A, it is a clear candidate for PE pathophysiology (Shibuya, 2013). The
soluble form of Flt-1 is not expressed in many other tissues besides the placenta,
but for example, the avascularity of the cornea is maintained by sFIt-1 (Ambati
et al., 2006). Placenta-derived sFlt-1 is known to increase in maternal serum
slightly before and during a presentation of PE symptoms (Levine et al., 2004;
Maynard et al., 2003). The gene expression levels in the placenta have also been
shown to rise in PE (Uuskiila et al., 2012). The genetics behind FLT! isoform
splicing are still poorly known. One region in FLT/ intron 13 has been shown to
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regulate the alternative splicing of the gene but only had a modest effect on sFlt-
1 isoform abundance (Thomas et al., 2010).

2.3.2.2. Linkage studies for preeclampsia

The first genome-wide scan for susceptibility loci in PE was conducted using
linkage analysis of 15 Australian families (Harrison et al., 1997). The study iden-
tified a region on chromosome 4q that was associated with PE. Four more linkage
studies have been conducted on family sets from Iceland (Arngrimsson et al.,
1999), Australia/New Zealand (Moses et al., 2000), Netherlands (Lachmeijer et
al., 2001), and Finland (Laivuori et al., 2003). Arngrimsson et al. and Moses et
al. identified both a region on chromosome 2 associated with PE. Moses et al. and
Laivuori also detected nominal significance for the 4q region identified by
Harrison et al. However, other regions among these studies did not replicate.

2.3.2.3. Genome-wide studies for preeclampsia

A handful of GWA studies have been conducted for PE in maternal samples
(Table 4); however, very few variants have reached significance, and none have
been replicated in independent datasets (Burton et al., 2019). A HAPO study (137
cases, 2986 controls) (Zhao et al., 2013), as well as an earlier study (177/116)
(Zhao et al., 2012), did not identify any significant single nucleotide variants
(SNVs) after correction for multiple testing. Another GWAS (538/540) identified
a single independent signal near the /INHBB gene (Johnson et al., 2012). Most
recent maternal GWAS applying 12,150 PE cases and 164,098 controls impli-
cated two variants near ZNF831 and F'TO genes. Both variants have been previ-
ously implicated with blood pressure levels, and the F7O variant also with several
other metabolic traits (Steinthorsdottir et al., 2020).

As genome-wide studies in maternal samples have not brought expected
success, more studies have been conducted in placental samples (Table 4).
Recently, the first PE GWAS was conducted in placental tissue (4,380/310,238),
identifying only one variant (rs4769613) near the FLT! gene with genome-wide
significance despite the large sample size (McGinnis et al., 2017). Another recent
GWAS included Central Asian placentas in addition to European samples and
confirmed the previously detected association between late-onset PE and FLT1
variant rs4769613 (linkage disequilibrium (LD) SNP rs4769612 was used in the
study) (Steinthorsdottir et al., 2020). FLTI is a known PE candidate gene as the
soluble form of the encoded protein rises sharply in maternal serum in response
to PE. The genetic background for this increase is still not thoroughly known.
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Without using extensive datasets, it is clear that it is difficult to identify any clear
associations with PE as the syndrome is so varied. However, large datasets for
placental tissues are not common, so defining a distinct subgroup could help
analyze candidate genes also in smaller sample sets

2.4. Direct effect of genetic variation
on gene expression levels

2.4.1. Expression quantitative trait loci - eQTLs

Single nucleotide variants in the genome that affect the expression of specific
genes are historically called expression quantitative trait loci (eQTLs, Farrall,
2004) and just eSNVs or eVariants. The first study to assess the genetic variants
affecting gene expression genome-wide was done in yeast only 20 years ago
(Brem et al., 2002) and in mammals a year later (Schadt et al., 2003). The largest
project to map such variants to date in humans is The Genotype-Tissue Expres-
sion (GTEx) Project. The GTEx project has mapped over 4 million eQTLs
affecting gene expression in at least one of the 49 tested tissues (Aguet et al.,
2020). These variants have been shown to modulate the expression of 94.7% of
all protein-coding genes.

eQTLs can be divided into two subtypes based on their distance from the
affected gene (Figure 4). Nearby variants (cis-eQTLs) are located up to 1Mb
from the gene; however, the definition can vary among different studies. Trans-
e¢QTLs, on the other hand, can be located even on another chromosome, the effect
on gene regulation mediated by three-dimensional links or intermediate genes.
Most cis-eQTLs tend to be less tissue-specific than trans-eQTLs; among both, the
specificity follows a U-curve with a higher percentage of both tissue-specific and
highly universal variants (Aguet et al., 2020).

Other, more specific types of eQTLs have also been proposed. Dynamic eQTLs
exhibit temporal influence on gene expression, only regulating the mRNA levels
in specific time periods. During differentiation from induced pluripotent stem cell
(iPSC) to cardiomyocytes, a linear dynamic eQTL effect was found for 550 genes
(Strober et al., 2019). Additionally, 693 genes were suggested to exhibit nonlinear
eQTL effects, with 28 having the highest effect in the middle. Similarly, during
iPSC differentiation to endoderm, about 30% of identified eQTLs were stage-
specific (Cuomo et al., 2020). However, dynamic eQTL analysis has been limited
primarily to in vitro studies due to the inaccessibility of in vivo tissue samples.
Such dynamic cis-eQTLs in early development might appear to act in trans later
in life (Umans et al., 2020). Another subtype of dynamic eQTLs is a response or
conditional eQTLs that only have an effect in certain conditions, usually to a
response to an extrinsic stimulus. Change in the set of identifiable eQTLs has
been shown in monocytes after stimulation, imitating innate immune response
(Fairfax et al., 2014).
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Variants having an allele-specific effect on gene expression variance instead
of the mean value have been proposed (dispersion QTLs, dQTLs), possibly
affecting disease penetrance (Sarkar et al., 2019). However, the detection of such
variants needs massive datasets due to the considerable influence of non-genetic
background.

o up to 1Mb
ChrA | | expression

-
trans-eQTL AN

‘.-\/ -
ChrB or ChrA >1Mb from gene —~_

Figure 4. Both cis- and trans-eQTLs can affect gene expression.

2.4.2. eQTLs and human disease

The first eQTL screen done in a mouse also identified that some eQTL loci are
linked to murine obesity subtypes (Schadt et al., 2003). The authors also proposed
that combining gene expression, genotype, and clinical data could help identify
underlying pathways. Since then, combining GWAS and eQTL data from appro-
priate tissue has become a common practice (Cookson et al., 2009, Table 5). As
most variants identified in GWAS are intragenic, it can be challenging to deter-
mine the functional relevance to the disease (Maurano et al., 2012). As more and
more eQTL studies are conducted in various tissues, these results are integrated
with GWAS data. Without additional information on the variants, usually closest
genes to the GWAS variant were prioritized. However, a study demonstrated that
among 104 identified functionally relevant genes after eQTL data integration for
five GWAS traits, even as much as two-thirds were not the nearest gene (Z. Zhu
et al., 2016).

Several studies have demonstrated enrichment of eQTLs among variants
identified in GWAS, both in the whole catalog and in specific diseases or traits
(Table 5)(Aguet et al., 2020; Peng et al., 2017; Vifuela et al., 2020). Overall, the
GTEx project identified cis-eQTLs have a 1.46-fold enrichment among GWAS
catalog variants. Some studies have also used eQTL data to prioritize candidate
genes from GWAS data to further investigate diseases such as osteoarthritis and
Crohn’s disease (Marigorta et al., 2017; Tachmazidou et al., 2019). Whether the
co-localization is due to pleiotropic effects or mediated by gene expression changes
is unclear in many cases. Defining the cause is made more challenging by diffi-
culty determining the causative variant among many in high LD.
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2.5. Summary of the literature review

The placenta is a unique, transient organ in human pregnancy delivering oxygen
and nutrients to the fetus. In addition, the placenta acts as an endocrine organ,
synthesizing macromolecules that modify the course of gestation. It has been
shown that in several pregnancy complications, such as fetal growth restriction
and PE, the placental transcriptome profile is significantly changed. PE is a serious
complication that affects up to 5% of pregnant women, posing a risk for maternal
and fetal health. Many candidate genes have been identified for PE, but few have
been replicated in independent sample sets. FLT! is a well-known PE candidate
gene that codes sFlt-1, a soluble molecule that reaches maternal serum rising few
weeks before PE symptoms. Even for FLT], the exact genetic causes behind the
gene expression changes are not well known.

Genetic variation associated with specific gene expression changes is one of
the proposed processes behind the precise placental expressional dynamics. Such
variants, commonly called expression quantitative trait loci or eQTLs, have been
identified in many tissues. Many of the variants are tissue-specific and the data
cannot be transferred to other tissues. Previously, it has been noted that many
eQTLs co-localize with GWAS loci, suggesting their role in risk for disease
development. Identifying placental eQTLs could provide further insight into
pregnancy gene expression dynamics as well as pregnancy complications. How-
ever, only a few studies have conducted placental eQTL analyses so far.
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3. AIMS OF THE PRESENT STUDY

The general aim of this thesis was to explore and describe the landscape of
placental genetic regulation of gene expression through expression quantitative
trait loci (eQTLs) and their role in the development of pregnancy complications.
The specific aims of this thesis were:

1. To investigate eQTLs of candidate genes for preeclampsia, STCI and FLTI.

2. To identify and characterize robust placental eQTLs in the placental tissue.

3. To compile the current knowledge of placental eQTLs identified for candidate
genes and in transcriptome-wide association studies.
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4. MATERIAL AND METHODS

4.1. Ethics

The protocols of REPROMETA (full study name: REPROgrammed fetal and/or
maternal METAbolism) and HAPPY PREGNANCY (full study name: Develop-
ment of novel non-invasive biomarkers for fertility and healthy pregnancy)
studies were reviewed and accepted by the Ethics Review Committee of Human
Research of the University of Tartu, Estonia (permissions no 146/18, 27.02.2006;
150/33, 18.06.2006; 158/80, 26.03.2007; 221/T-6, 17.12.2012; 286/M-18,
15.10.2018).

Ethical approval for the Avon Longitudinal Study of Parents and Children
(ALSPAC) was obtained from the ALSPAC Ethics and Law Committee and the
Local Research Ethics Committees. Consent for biological samples was collected
in accordance with the Human Tissue Act (2004). Informed consent for the use
of data collected via questionnaires and clinics was obtained from participants
following the recommendations of the ALSPAC Ethics and Law Committee.

The Finnish Genetics of Preeclampsia Consortium (FINNPEC) study protocol
was approved by the coordinating Ethics Committee of the Hospital District of
Helsinki and Uusimaa. The Southern Finnish participant study was approved by
the local ethical review committee at the Helsinki University Hospital.

All subjects provided written informed consent. All procedures and methods
have been carried out in compliance with the guidelines of the Declaration of
Helsinki.

4.2, Study subjects

4.2.1. Recruitment and characteristics of REPROMETA and
HAPPY PREGNANCY sample sets

Participants of both REPROMETA (supported by HHMI#55005617 and ETF9030
grants) and HAPPY PREGNANCY (supported by SLOMR12214T grant) studies
were recruited at the Women’s Clinic of Tartu University Hospital, Estonia
(20062011 and 2013-2015, respectively). All participants were of Caucasian
ancestry.

The REPROMETA study (n=377) focused on recruitment of extreme cases of
selected pregnancy complications (preeclampsia (PE, n=53), gestational diabetes
(GD, n=50), small- (SGA, n=72) and large-for-gestational-age newborns (LGA,
n=97)) and uncomplicated pregnancies (NORM, n=105). The family trios or duos
were recruited before or shortly after delivery at the Women’s Clinic. Epidemio-
logical data, reproductive history, and parental lifestyle were obtained from self-
reported questionnaires filled shortly after recruitment by both parents. Pregnancy
outcome data was acquired from the medical records. Placental samples were
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available for 366 cases. REPROMETA infant growth data was collected from
questionnaires filled by the parent or the general practitioner at 6 (n=233) and
12 months (n=216).

Individuals in the HAPPY PREGNANCY cohort study (n=2334) were
recruited prospectively during their first antenatal visit at the Women’s Clinic.
The patients were asked to fill three questionnaires throughout their pregnancy
concerning epidemiological data, reproductive history, parental lifestyle, and
additional pregnancy course and outcome data collected from the medical records.
Placental samples were available for 1768 singleton cases.

HAPPY PREGNANCY consisted of PE (n=44), SGA (n=129), LGA (n=141),
GD (n=102), preterm (n=58), and NORM (n=1294) pregnancies.

The exact number of individuals utilized from each sample set has been noted
in each study (Juhanson et al., 2016; Kikas et al., 2019, 2020) (Table 6). Some
individuals were excluded from the studies due to lack of DNA or other targeted
materials or genotyping failure.

Table 6. Sample sets used in the studies

Sample set Ref. 1 Ref. 2 Ref. 3
Juhanson et al., Kikas et al., Kikas et al.,
2016 2020 2019

Estonian cohorts
REPROMETA (REPROgrammed fetal and/or maternal METAbolism)

Maternal DNA 50 PE/316 NPE 40 PE/253 NPE n.a.
Maternal plasma 50 PE/316 NPE n.a. n.a.
Paternal DNA n.a. 42 PE/227 NPE n.a.
Placental DNA 50 PE/316 NPE 52 PE/227 NPE 336
Placental RNA-seq n.a. n.a. 40
Placental genotyping n.a. n.a. 40
HAPPY PREGNANCY
(Development of novel non-invasive biomarkers for fertility and healthy pregnancy)
Placental DNA n.a. 44 PE/1724 NPE 408
Maternal serum n.a. 18 PE/135 NPE n.a.

Collaboratory cohorts
FINNPEC (Finnish Genetics of Preeclampsia Consortium)

Maternal DNA 547 PE/513 NPE n.a. n.a.

Umbilical cord DNA 378 PE/496 NPE n.a. n.a.
ALSPAC (Avon Longitudinal Study of Parents and Children)

Placental DNA n.a. n.a. 7669

C, controls; n.a., not applicable; NPE, non-preeclampsia; PE, preeclampsia
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4.2.1.1. Clinical subgrouping in REPROMETA and
HAPPY PREGNANCY sample sets

Cases with known fetal anomalies, chromosomal abnormalities, inherited diseases,
and pre-existing diabetes mellitus, chronic hypertension, or chronic renal disease
were excluded from the studies.

NORM group was defined as pregnancies uncomplicated by previously men-
tioned conditions with a newborn between 10™ and 90" percentile on the growth
curves calculated based on data from Estonian Medical Birth Registry growth
standards (Sildver et al., 2015). SGA and LGA pregnancies had a newborn either
<10™ or over 90" percentile, respectively, on the growth curves. PE cases were
defined as hypertensive (systolic blood pressure >160mmHg and/or diastolic
blood pressure >110mmHg) and had proteinuria of >5g in 24 hours or neuro-
logical symptoms (Brown et al., 2018). PE was further subdivided into early-
onset (symptoms before 34™ gestational weeks) and late-onset PE (after 34™
gestational weeks). GD was diagnosed when 75g oral glucose tolerance test
(GTT) performed at 24-28 weeks of gestation indicated either a fasting venous
plasma glucose level of >5.1 mmol/l and/or at 1h and 2h later plasma glucose
level of >10.0 mmol/l and >8.5 mmol/l glucose, respectively (International
Association of Diabetes and Pregnancy Study Groups Consensus Panel, 2010).
Pregnancies with birth before the 37" gestational week were considered preterm.

4.2.2. Collaborative replication sample sets - ALSPAC, FINNPEC

The Finnish Genetics of Preeclampsia Consortium (FINNPEC) study recruited
preeclamptic and control participants in 5 university centers in Finland (Helsinki,
Turku, Tampere, Kuopio, and Oulu) in 2008-2011 (Jaédskeldinen et al., 2016).
The controls were recruited for each PE patient by inviting the next available
patient to give birth at the same hospital with no PE. Only individuals meeting the
REPROMETA diagnostic criteria for PE and NORM groups were included in the
analyses. PE patients were further divided into EO-PE (n=165) and LO-PE (n=382)
subgroups.

In total, 547 PE patients and 513 controls were included in the study. For fetal
samples (n=EO-PE, n=88; LO-PE, n=290; NORM, n=496), the DNA was extracted
from cord blood.

The Avon Longitudinal Study of Parents and Children (ALSPAC) initially
recruited 14,541 pregnant women residents in Avon, United Kingdom, with
expected delivery dates from April 1, 1991, to December 31, 1992 (Boyd et al.,
2013; Fraser et al., 2013) (http://www.alspac.bris.ac.uk). For all recruited cases,
medical data from obstetric and perinatal records were documented. From the
initial pregnancies, 14,062 resulted in live births. Gestational age at the delivery
was recorded the nearest gestational week. The study analyzed 7,669 newborns
with available genotype data. Please note that the ALSPAC study website
contains details of all the available data through a fully searchable data dictionary
and variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-data/.
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4.2.3. Placental and blood sampling in REPROMETA and
HAPPY PREGNANCY studies

Placental sampling in REPROMETA and HAPPY PREGNANCY studies was
conducted within one hour after cesarean section or vaginal delivery by trained
nurses following the same protocol. In the meanwhile, placentas were kept at
+4 °C. A full-thickness block of 2 cm was taken from the middle region of each
placenta, avoiding the umbilical cord insertion site, large vessels, and any visible
or palpable infarction, hematoma, or damage. In the HAPPY PREGNANCY
study, this step was repeated for each quadrant of the placenta. Placental samples
were washed with 1x PBS to remove maternal blood and subsequently divided
into sections for DNA and RNA extraction. Tissue for RNA extraction (1 g or
100 mg in REPROMETA or HAPPY PREGNANCY study, respectively) was
placed into 10 ml or 1 ml RNAlater (AM7021; Thermo Fisher Scientific). Samples
were kept in RNAlater for 1-3 days at +4 °C and then stored at —80 °C until RNA
extraction. The rest of the tissue sample was placed into a dry tube and stored at
—80°C until DNA extraction.

Maternal blood sampling in the REPROMETA study was conducted on the
day of the delivery. The blood sample was aliquoted and stored at —80 °C
immediately after collection. Maternal plasma was extracted from the same sample
during aliquoting.

Maternal serum samples from HAPPY PREGNANCY individuals were col-
lected during routine blood tests throughout pregnancy and stored at —80 °C.

4.3. Utilized resource: placental whole-genome datasets
4.3.1. Placental RNA-Seq dataset

The REPROMETA placental RNA sequencing dataset was first published by
Sdber et al., 2015. The dataset included 40 term placentas from various pregnancy
outcomes (PE, SGA, LGA, GD, NORM, n=8 each).

RNA from the placental sample (200-300mg) was extracted using the Trizol
protocol and purified with RNeasy MinElute columns (74204; Qiagen, German-
town, MD, USA) according to the manufacturer’s protocol. NanoDrop ND-1000
UV-Vis spectrophotometer (Applied Biosystems, Foster City, USA) was used to
determine the purity and concentration of isolated total RNA. RIN (RNA integrity
number) was estimated by Agilent 2100 Bioanalyzer (Agilent Technologies, USA).

Total RNA with high purity was used for rRNA depletion (Ribo-Zero rRNA
Removal Kit, MRZH11124; Illumina, San Diego, CA, USA) and library prepa-
ration with Nextera Technology (FC-121-1030; Illumina). Total RNA sequencing
was conducted in Finland Institute for Molecular Medicine (FIMM) Sequencing
Core Laboratory on Illumina Hiseq2000 using 46 bp paired-end reads. Initial data
refinement was performed with RNA-Seq pipeline v.2.4 (FIMM; Helsinki,
Finland). Human genome assembly (GRCh37.p7/hg19) from Ensembl v67 was
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used as a reference. The initial dataset included gene expression data for 53,893
genes. Gene expression was quantified by HTSeq analysis (as raw read counts)
and later normalized for read depth using DESeq package for R. Only non-
mitochondrial genes with sufficient expression levels (>100 normalized read
count) were considered in the analysis (n=11,733).

4.3.2. Placental whole-genome genotyping dataset

The same 40 samples with available RNA sequencing data also underwent whole-
genome genotyping (Kasak et al., 2015). The DNA of the placental samples was
extracted using a NucleoSpin Tissue kit (Macherey-Nagel, Germany) according
to the manufacturer’s instruction. The genotyping was conducted with Illumina
HumanOmniExpress-12-v1 BeadChip at the institutional genotyping core facility
(Estonian Genome Center; http://www.geenivaramu.ee/en). The array included
>733,000 SNPs with a median spacing of 2.1 kb. Samples were genotyped with
an average overall call rate >99% per individual per genotype.

Variants deviating from Hardy-Weinberg Equilibrium (HWE; P<1x10°°) or
with no minor alleles in our dataset were excluded from subsequent analyses. In
total, 661,354 SNVs were included in the eQTL analysis.

4.4. Locus-based genetic analysis methods

The study designs in Refs 1-3 included varied methods for genotyping genetic
variants and quantifying gene and protein levels. A quick overview of different
targeted methods used is given in Table 7.

4.4.1. Genotyping

To determine variants possibly affecting STC1, 13 tag-SNVs (Table 7) from the
genic (12,893 bp) and promoter (2,672 bp, 5’ upstream) region were selected that
captured additional 22 variants (r*>0.9). The variants were identified based on
genotyping data from the 1000 Genomes Project (http://www.international
genome.org/) for UTAH residents with Northern and Western European ancestry
(CEU) as input for Haploview Tagger software (version 4.2) (Barrett et al., 2005).

The 13-plex primers (Table S3 in Ref. 1) for the PCR and the extension were
designed using MassARRAY® Assay Design 3.1 software. Positive and negative
control samples and duplicate samples were included in every assay plate to
assess the genotyping quality. The genotyping call rate was determined to be
>95%, and all identified genotypes were in HWE (p>0.05). All 13 variants were
genotyped for 366 REPROMETA maternal samples. REPROMETA placental
samples (n=366) and FINNPEC maternal (n=1060) and fetal samples (n=874) were
genotyped for three variants (rs12678447, rs3758089, rs3758086).
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Table 7. Summary of utilized methods for locus-based analyses in the current thesis

Analysis target Sample set Samples,n Method Study
rs11135775,1s9969426, REPROMETA 366 multiplex geno- Ref. 1
rs12681669, 1s11779426, maternal DNA typing with
rs423432, rs76369571, Sequenom
1512678447, rs578094, MassArray®
rs1438453, rs3758089, assays
rs1369836, rs3758087,
rs3758086
rs12678447,1s3758089, REPROMETA  366/1060/874 multiplex geno- Ref. 1
rs3758086 placental DNA/ typing with
FINNPEC Sequenom
maternal DNA/ MassArray®
FINNPEC assays
umbilical cord
DNA
STCl1 REPROMETA 366 ELISA Ref. 1
maternal plasma
STC1 REPROMETA 120 TagMan® Gene Ref. 1
placental RNA Expression
Assay
rs4769613, rs12050029 REPROMETA  329/1768/562 TagMan® SNP  Ref. 2
placental DNA/ Genotyping
HAPPY Assay
PREGNANCY
placental DNA/
REPROMETA
maternal and
paternal DNA
sFlt-1 HAPPY 153 B-R-A-H-M-S™ Ref. 2
PREGNANCY sFlt-1 Kryptor™
maternal serum assay
FLTI REPROMETA 69 TagMan® Gene Ref. 2
placental RNA Expression
Assay
rs1150707, rs10044354, REPROMETA 366 multiplex geno- Ref. 3
rs11678251 placental DNA typing with
Sequenom
MassArray®
assays
ZSCANY9, UBC, ERAP2, REPROMETA 24/gene TagMan® Gene Ref. 3
ALPG, LNPEP, ALPP placental RNA Expression
Assay
rs11678251 HAPPY 408 TagMan® SNP  Ref. 3
PREGNANCY Genotyping
placental DNA Assay
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Three variants [rs1150707 (ZSCANY c.568+1990 C>T); rs10044354 (ERAP2
2.96984791 C>T) and rs11678251 (ALPG c.-318 G>A)] were genotyped using
Sequenom MassArray® platform in a REPROMETA placental dataset (n=366)
to validate the eQTL associations (Table 7). The variants were chosen based on
the low false discovery rate (FDR), larger than two-fold expression difference
between the heterozygote and major homozygote carriers, and link to protein-
coding gene. The primers for the 3-plex were similarly designed using the provided
software.

All multiplex genotyping was conducted using Sequenom MassArray® plat-
form (Sequenom, San Diego, CA, USA) according to the manufacturer’s protocol
in all cases.

Singleplex genotyping of selected variants was conducted using pre-made
Tagman assays.

The rs11678251 (ALPG c.-318 G>A) variant was genotyped in the HAPPY
PREGNANCY placental samples (n=408) using a Tagman assay (ID
C_ 27838320_10, Applied Biosystems, Foster City, CA, United States) (Table 7).

Two variants (154769613 T/C, rs12050029 A/G) previously associated with
PE were genotyped using Tagman assays (Applied Biosystems, Foster City, USA;
Assay ID: C_ 32231378 10, C__ 1445411 10) in combined REPROMETA
and HAPPY PREGNANCY placental sample set (n=2,097) and REPROMETA
parental sample set (n=562) (Table 7).

4.4.2 Tagman-assay based expression quantification

The expression levels of ZSCAN9 (Hs00196838 ml), ERAP2 (Hs01073631_ml)
and ALPG (Hs00741068 gl), as well as the neighboring genes ALPP
(Hs03046558 s1), ERAP1 (Hs00429970 m1), and LNPEP (Hs00893646 m1l),
were determined using Tagman RT-qPCR gene expression assays according to
manufacturer’s protocol (Table 7). The housekeeping gene Ubiquitin C (UBC,
Hs00824723 m1) was used as a reference gene. Twenty-four individuals were
chosen for each gene to represent genotypes for previously identified variants
(rs1150707, rs10044354, rs11678251) equally when possible.

4.5. Biomarker analysis from maternal blood

Maternal plasma levels of STC1 protein were determined using enzyme-linked
immunosorbent assay (ELISA) implemented by DuoSet ELISA kit (DY2958;
R&D Systems) according to the manufacturer’s protocol (Table 7). STC1 levels
were measured in 366 samples. All the measurements were performed in duplicate
with each plate, including a reference sample for variability assessment. The
estimated average intra-assay variability for processed ELISA plates (n=10) was
4%, and respective inter-assay variability 7%. The details of the ELISA protocol
have been discussed in Uuskiila et al., 2012.
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A set of commercially measured sFlt-1 levels in HAPPY PREGNANCY
maternal plasma samples (n=153) was utilized for analyses (Table 7). Serum
concentrations were retrospectively measured with a commercial immunoassay,
B-R-A-H-M:-S sFlt-1 Kryptor assay (Thermo Fisher Scientific) by the service
provider Synlab Germany (Leinfelden, Germany). The measurement was done in
immunofluorescent automated sandwich assays implemented on the KRYPTOR
compact PLUS platform (#BM0106172) and using B-R-A-H-M:S reagents for
the sFlt-1 assay (#845.075). Only samples drawn before term (<37" gestational
week) and >1 week prior delivery were included in the analysis as sFlt-1 levels
sharply increase before delivery (Palm et al., 2011)

4.6. Bioinformatics and statistics
4.6.1. Whole transcriptome cis-eQTL analysis and validation

The analysis focused on proximal cis-eQTLs (=100 kbp from the gene start/end
coordinates) as this region is likely to contain significant and functionally relevant
eQTL hits (Veyrieras et al., 2008). Variant and gene coordinates were extracted
using BioMart (Ensembl v54). Association analysis for eQTL discovery was
conducted in Matrix eQTL package for R (Shabalin, 2012) using linear regression.
The analysis was adjusted by the pregnancy outcome group (NORM, PE, SGA,
LGA, GD), labor activity, and newborn sex. The test included 353,599 variants
for a total of 659,826 tests. Nominal P-values were corrected for multiple testing
using a built-in Benjamini and Hochberg method in Matrix eQTL. A statistically
significant eVariant-eGene association was defined as FDR<(0.05. For each
identified eQTL, the proportion of gene expression variability explained by the
variant was calculated (R?).

In the RT-qPCR validation of selected variants, the analysis was conducted
similarly with an additional covariate of gestational age.

4.6.2. Genetic association testing

In brief, all genetic association testing was carried out in PLINK, version 1.07 or
1.9 (Purcell et al., 2007) either using an additive model with linear (newborn,
maternal, or birth parameters) or logistic regression (case-control analyses). For
each analysis, appropriate cofactors were included. All meta-analyses were
combined under a fixed-effects model in PLINK or R.

Mann-Whitney U test (MW) was used parallel with linear regression for testing
the difference of maternal STC1 hormone and placental STC! expression levels
between minor allele carriers and major homozygote carriers of STC/ variants
(Ref. 1).

Association testing in REPROMETA with newborn parameters and three
eQTLs (rs1150707, rs10044354, rs11678251) was implemented using both
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additive and recessive models. Testing with infant postnatal growth was con-
ducted only under the recessive model. (n=7,669) cohorts. For the ALSPAC cohort,
a proxy variant rs744873 was used in the analysis, obtained from the genome-
wide array dataset (Boyd et al., 2013) (Ref. 3).

Analysis of preference in allele transmission from the rs4769613 T/C
heterozygous parents was conducted using the y* test (Ref. 2).

Analysis of 154769613 and placental FLTI expression utilized previously
available RT-qPCR data (FLTI and UBC levels) for 23 PE and 46 non-PE
REPROMETA samples (Sdber et al., 2015). Gene expression levels were calcu-
lated using the 274" method. FLTI mRNA expression and sFlt-1 serum levels
were transformed using log2 to resemble a normal distribution better. The dif-
ference in median FLTI or sFlt-1 between PE and non-PE individuals was
assessed using the Student t-test (Ref. 2).

4.6.3. Functional profiling of placental eGenes

Functional profiling analysis of eGenes identified in at least two of the three studies
was conducted in the g:Profiler web server (version e100_eg47 pl4 7733820
(Reimand et al., 2016)). Terms were considered statistically significant at an
adjusted P-value <0.05.

4.7. Literature search on placental
expression-modifying variants

A literature search was conducted in PubMed using query: human and (placenta*)
and (gene expression” or transcriptome”) and ( SNP”” or SNV” or polymorphism”
or eQTL”) not review and (y_10 [Filter])” (time of accession 31.08.2020). Articles
that were not relevant (non-human subjects, no reported association testing
between genetic variants and gene expression) were excluded. Only journal
articles written in English were included.
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5. RESULTS

5.1. Candidate gene studies of genetic variants
modulating placental gene expression and
their link to pregnancy complications

Two genes were selected for further investigation to determine the genetic
variants coding for expression changes in PE. STC/ is a novel candidate gene for
preeclampsia with no known expression-modulating variants. The second gene,
FLTI, is a known gene implicated in PE with only recent insight into potential
variants affecting its expression.

5.1.1. The effect of genetic variants in
the Stanniocalcin-1 locus (Ref. 1)

The first study (Juhanson et al. 2016) aimed to comprehensively characterize STC1
hormone and STCI gene expression in human pregnancies, including in preg-
nancies complicated with PE.

5.1.1.1. Placental and maternal variants affect gene and
protein expression

Three placental genetic variants (rs126788447, rs3758089, rs3758086) were tested
for correlation with STCI gene expression. One variant, rs126788447, signifi-
cantly affected the placental gene expression working as an eQTL (linear regres-
sion adjusted to the delivery mode and pregnancy complication group, P=0.014,
Figure 5B). Another variant, rs3758089, showed lower STC/ expression in TT
individuals, but the link was not statistically significant (P=0.067). Placental
STC1 gene expression in REPROMETA samples (n=120) was not affected by
maternal lifestyle (e.g., maternal age, gestational weight gain, etc.) or birth para-
meters (e.g., gestational age, newborn weight, etc.) (Supplementary Figure 4 in
Ref. 1).

Maternal STC1 hormone levels in REPROMETA maternal plasma samples
(n=366) were similarly investigated with respective maternal variants. Variant
rs3758089 (linear regression (LR) P=0.014, Mann-Whitney U (MW) test P=0.027)
was significantly associated with maternal serum levels of STC1, but rs126788447
had a significant association only with the MW test (P=0.034) (Figure 5A). As
maternal STC1 levels were additionally affected by PE (MW P<0.01), delivery
mode (MW P=0.01), smoking status (MW P=0.02), maternal age in non-PE
individuals (LR P=0.05), and pre-pregnancy BMI (LR P<0.01) in PE individuals,
these were included in the analysis as cofactors.
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Figure 5. Maternal (A) and placental (B) variants in the STC/ gene affect the serum
hormone levels and placental gene expression, respectively. Linear regression testing
association between genetic variants and maternal STC1 levels were adjusted for the
presence of preeclampsia, delivery mode, maternal age, smoking status, and pre-
pregnancy BMI. Tests for gene expression were adjusted for the study group and delivery
mode. LR, linear regression; MW, Mann-Whitney U test

5.1.1.2. STC1 levels and genetic variants affect PE risk

Maternal STC1 hormone level was significantly affected by PE status even after
adjusting for other variables (delivery mode, smoking status, maternal age, and
pre-pregnancy BMI, P=1.8x10°°). In contrast, placental mRNA levels were not
significantly different in PE or non-PE individuals (P=0.49, Ref. 1 Figure S4A).
However, it is not certain if maternal circulating STC1 is a reaction to PE or is a
part of PE pathophysiology.

As the genetic variants regulated STC1 protein and gene expression levels, it
was also investigated if the genetic variants might affect the risk for developing
PE. Maternal variants rs12678447 and rs3758089 were associated with PE risk
in REPROMETA mothers (P=0.05, OR=2.8, 95% CI 0.99-7.85; P=0.01, OR=4.7,
95% CI 1.39—15.96, respectively) (Table 8). To further investigate the association,
the PE individuals were further divided into subgroups based on the time of the
PE diagnosis, early-onset PE (<34™ gestational weeks, EOPE), and late-onset PE
(>34™ gestational week, LOPE). Only LOPE risk was associated with rs3758089
remained significant (P=0.04, OR=4.5, 95% CI 1.06—19.41, Table 8). Additional
samples from the FINNPEC sample set (n=1220) were included in the meta-
analysis with the REPROMETA samples under the fixed effects model. How-
ever, neither genetic variants reached statistical significance in the expanded
dataset (P<0.1, Table 8).
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5.1.2. The effect of genetic variants in
the fms related receptor tyrosine kinase 1 locus (Ref. 2)

The second study (Kikas et al., 2020) aimed to replicate the identified association
and further investigate the variant effect on placental gene expression, maternal
serum expression, and birth parameters.

5.1.2.1. Variant rs4769613 near FLT1 as a risk factor for PE

The C-allele of placental variant rs4769613 was significantly overrepresented in
preeclamptic (n=96, 52.1%) compared to non-preeclamptic placentas (n=2001,
43.6%, P=0.02). The CC homozygous genotype showed a similar tendency
(26.0% vs. 18.5%, P=0.06) (Table 2 in Ref. 2).

Analysis between variant alleles and PE risk identified an association in both
REPROMETA (P=0.02, OR=1.91) and HAPPY PREGNANCY (P=0.04, OR=1.64)
sample sets which was enhanced in the meta-analysis of the two datasets
(P=0.002, OR=1.75) (Figure 6). Additional meta-analysis was carried out with
previously reported data from five cohorts included in the published GWAS study
(McGinnis et al., 2017). The combined meta-analysis improved the previously
reported result (P=3.8x107'?, OR=1.22) (Figure 6). However, parental genotypes
of 154769613 did not show any association with PE risk in REPROMETA samples.

Study OR (CI195%) P-value

REPROMETA 1.91(1.10-3.32) 0.022 L i
HAPPY PREGNANCY 1.64 (1.03-2.61) 0.036 » ]
Meta-analysis 1.75(1.23-2.49)  0.002 —_—

McGinnis et al., 2017 1.21(1.14-1.28) 54x10"" HEM

Combined meta-analysis  1.22 (1.15-1.29) 3.8x10"?

1 15 2 25 3 35
OR

Figure 6. Association of rs4769613 placental genotypes with risk for developing PE.
Meta-analysis with Estonian sample sets REPROgrammed fetal and/or maternal META-
bolism (REPROMETA), and Development of novel non-invasive biomarkers for fertility
and healthy pregnancy (HAPPY PREGNANCY) included 96 preeclampsia (PE) cases
and 2001 non-PE pregnancies. The combined meta-analysis included 5 European cohorts
from the published genome-wide association study meta-analysis (PE cases, n=4476;
non-PE, pregnancies, n=312239, Table S4 in Ref. 2) in addition to the Estonian sample
sets. Association testing was carried out using logistic regression adjusted to newborn sex
and gestational age.
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Notably, the placental risk variant is specific to PE and is not associated with other
tested late pregnancy complications (gestational diabetes, small- and large-for-
gestational-age newborns) neither in REPROMETA nor HAPPY PREGNANCY
sample sets. Overall, the variant was not associated with birth and newborn para-
meters such as weight, length, placental weight, and gestational age. However,
pregnancies with CC-genotype placentas developed PE about two weeks later
than CT- and TT-genotype carriers (P<0.05).

5.1.2.2. Variant rs4769613 near FLT1 represents
a potential conditional eQTL

To further investigate the effect of the placental risk variant on phenotype, the
placental FLT1 gene expression and maternal serum levels of sFlt-1 were targeted.
Even though no linear association was found with either, the FLTI expression was
significantly higher in PE placentas with the CC-genotype compared to CT/TT-
genotype (P=0.05) (Figure 7, Figure 2 in Ref. 2). The same trend was not present
in non-PE placentas, indicating possible conditional gene expression regulation
in preeclamptic pregnancies.

NPE placentas PE placentas
P=0.05
31 3

P=NS

e

i

o

pP=2.2x10*

N

—

BEE 8o ghofe—

Bage

o

]

—
|

N

O o}
|

—

placental FLT1 gene expression
log2fc(UBC)

NPE PE CcC CT/TT CcC CT/1T
n=46 n=23 n=8 n=38 n=6 n=17

Figure 7. Placental gene expression of FLT1 is upregulated in preeclampsia placentas (PE)
compared to non-preeclampsia placentas (NPE), especially in PE placentas with CC-
genotype. The changes in median levels of FLTI between groups were tested with the
Student t-test.
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5.1.3. Review of placental eQTLs in candidate
gene based studies (Ref. 4)

As a part of the doctoral thesis, a systematic analysis was conducted of placental
eQTLs identified in candidate gene analyses. The search query and filtering
principles have been detailed in the Methods. It was found that in the last decade,
only ten studies have been carried out that met the criteria (Table 9). However,
the design of these studies for eQTL analysis is quite diverse, and some included
placental samples also from complicated pregnancies (most commonly PE). The
tissue samples themselves also vary by site, either including full-thickness placenta
or more specific regions, making it hard to conclude the universality of these
results in the placenta. Almost all these associations represent cis-eQTLs, either
in genic (eGenes ABCG2, FKBP5, CXCR3, STC1, HIF1A4, P21, LEPR) or nearby
regulatory regions (SERPINA3, FLTI) with only one variant located on another
chromosome (miR-518b). No variants have been identified as eQTLs in other
tissues except for SERPINA3 and LEPR eVariants, according to the GTEx
database. However, rs1360780 and rs9436746 also regulate the mRNA splicing
of FKBP5 and LEPR, respectively.

5.1.4. Take home message from candidate genes studies
of genetic variants modulating placental gene expression and
their link to pregnancy complications

For the first time, the maternal and fetal modulators of maternal plasma STC1
and placental STC1 expression were characterized in pregnancy. The link between
STC1 levels and PE was confirmed, and two new genetic PE risk variants,
rs12678447 (A/G) and rs3758089 (T/C), in the STC! gene were identified.

Placental variant rs4769613 near the FLTI/ gene is the only genetic PE-
specific risk factor validated in several independent cohorts. No association with
PE risk was found with maternal or paternal rs4769613. The variant possibly
represents a conditional eQTL, affecting enhancer response due to unfavorable
placental conditions. However, no effect was seen on maternal serum levels of
sFIt-1.

The two studies provided excellent in-depth analyses of the candidate genes
and provided novel placental eQTLs. As the number of candidate gene studies
addressing expression-modulating variants is limited, these were a needed
addition to the knowledge base.
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5.2. Whole-genome screening of placental eQTLs (Ref. 3)

I aimed to map placental variants that affect gene expression and potentially
pregnancy course. To investigate robust eQTLs in the placenta, we included
samples from different pregnancy outcomes (PE, SGA, LGA, GD, NORM, n=8
each group) from available datasets (Kasak et al., 2015; Sober et al., 2015) and
focused on nearby variants, i.e., cis-eQTLs. The region of interest for cis-eQTLs
was limited to 100 kbp from the start or end of the gene to exclude possible
sporadic associations, including the intragenic region, only genes with a median
expression >100 normalized read counts were included and associations with
FDR<5% were considered significant. Details of the study design have been
discussed in paragraph 5.2.4. and in Table 11. The final analysis included 11,733
genes and 353,599 variants.

5.2.1. Distribution of eQTLs in the placenta

The study identified 199 eSNV-eGene associations, including 88 independent
variants (LD 1°<0.8) affecting 63 placental genes. Variants were detected across
the genome, excluding only four smaller chromosomes (chrl8, 20, 21, and Y,
Figure 8A, Figure S2 in Ref. 3). On average, the proportion of gene expression
explained by the eQTLs was 0.52 (R? range 0.45-0.77, Figure 8B).

ZSCANY gene had the most eQTLs (seven independent signals) associated
with its expression levels. This gene was also the top two result among protein
coding eGenes (FDR P=9.7x107), only marginally surpassed by RPL9 (FDR
P=9.7x10"") (Table 3 in Ref. 3). Three top protein coding eGenes with expression
change >2 fold (ZSCANY9, ERAP2, ALPG) were selected for further validation in
an independent sample set (Figure 3 in Ref. 3). Only ALPG did not reach the
statistical significance level during validation, possibly due to lower minor allele
frequency.

Placental eGenes were had primarily moderate to high gene expression in the
placenta (Figure 8C), but only two (PSG7, ALPG) had placenta enriched protein
expression according to the Human Protein Atlas (proteinatlas.org) (Figure 1 in
Ref. 3). Identified eGenes were associated with a wide array of functional
categories, most commonly with cellular transport (n=10) and cell structure
(n=10) (Table 5 in Ref. 3). Almost 10% of eGenes were linked to immunity-
related functions, known to be important in pregnancy maintenance.

Among the identified eGenes, 13 (10 protein coding, 3 pseudogenes) were
previously undetected by other genome-wide investigations into placental eQTLs
(Table 10). In addition to ZSCAN9Y, novel eGene TLDCI was also among the top
protein coding eGenes (FDR P=4.1x10"*). The GTEx database did not report four
genes (RBPJ, TCIM, TPRN, THUMPD?) out of 13 as eQTLs in any other tissue.
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Figure 8. Genome-wide placental eQTL analysis outcomes. A) Manhattan plot of
identified P-values from the discovery analysis. The P-values of selected eSNPs-eGene
pairs are shown in green (discovery) and blue (validation analysis). The red line indicates
the chosen statistical significance threshold (FDR 5%). B) The proportion of eGene
expression (R?) explained by the detected eSNPs. C) The expression levels of identified
placental eGenes (in read counts). Modified from Ref. 3.

5.2.2. Associations with pregnancy complications and
newborn parameters

All identified placental eQTLs were tested for association with pregnancy
complications, but none reached statistical significance following multiple testing
correction. Top variants selected for validation were also analyzed for a link to
newborn and birth characteristics in REPROMETA samples. ERAP2 and ZSCANY
variants were not associated with any parameter, excluding nominal connection
of ZSCANDO variant rs1150707 and placental weight with the recessive model
(P=0.04, Table 4 in Ref. 3). In contrast, ALPG variant rs11678251 was associated
with several parameters, including birth weight, placental weight, chest circum-
ference, and postnatal child weight and height at 6 months (Figure 9). These links
were further explored in two additional cohorts — HAPPY PREGNANCY and
ALSPAC. However, the result was not replicated in the other sample sets, and
only head and chest circumference reached nominal significance in the meta-
analysis.
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Figure 9. Association of ALPG rs11678251 with newborn and child growth parameters.

5.2.3. Comparison of published genome-wide placental eQTL
association studies (Ref. 4)

Three hypothesis-free genome-wide eQTL mappings have been conducted to
date (Delahaye et al., 2018; Peng et al., 2017; Kikas et al., 2019). These studies
detected 3218, 985, and 199 cis-eVariant-gene links with 3218, 615, and 63 genes
affected (eGenes), respectively. As the study design differs in each analysis, the
raw results cannot be compared robustly. In addition, Peng et al. only reported
one cis-eQTL per gene. However, the number of identified eQTL associations
reflected the stringency of the study design and the sample size (Table 11).

Only 18 eGenes were detected in all three studies (Table 12), and additional
367 eGenes overlapped in at least two of the studies. These robust eGenes were
enriched for several gene ontology (GO) terms, including “transmembrane trans-
porter”, “ATPase activity”, and immunity-related Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways, such as “allograft rejection” or “graft-versus-host
disease” (Figure 2C in Ref. 4).
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Table 12. An overview of placental eGenes identified in all three genome-wide eQTL
studies, based on Ref 4 (Kikas et al., 2021)

Gene Phenotypes associated with Refs
the gene variants and/or
function
Chronic kidney disease (Choma et al., 2016; B. Han et al., 2019)
Obesity (Friihbeck et al., 2020)
AQPI1 Survival in cancers (Chetry etal., 2018; Thapa etal., 2018; L.
Zhu et al., 2019)
Sperm function (Laforenza et al., 2017)
Cancer treatment efficacy (Sun et al., 2020)
Cancers (Shen & Lin, 2019)
ATGI10
age of menopause (Bae et al., 2019)
Amyotrophic lateral sclerosis  (Vats et al., 2018)
CYREN  Immune response to smallpox  (Kennedy et al., 2012)
vaccine
Cancer (X.D. Lietal., 2019)
CEP72
Drug response (Geng et al., 2018; Stock et al., 2017)
DCTN5 Favorable prognosis in (Q. Wang et al., 2018)
melanoma
DDXII Warsaw Breakage Syndrome (van der Lelij et al., 2010)
Cancers (J. Liet al., 2019; Park et al., 2020)
Cancers (C. Lietal., 2020; Wu et al., 2020)
Arterial stiffness, hypertension (Logan et al., 2020; Zee et al., 2018)
Immune-related diseases (Cortes et al., 2013; Kuiper et al., 2014;
ERAP2 Yin et al., 2015)
Preeclampsia (Seamon et al., 2020)
Susceptibility to infectious (Saulle et al., 2020)
diseases
FAMI184 An.kylosing spondylitis (Robinson et al., 2016)
Glioblastoma (Stangeland et al., 2015)
GUCYIB2 Bipolar disorder (Djurovic et al., 2010)
HEATR5A Preeclampsia (Jacobo-Baca et al., 2020)
HTR7P1 NA
Inflammatory bowel disease (Frenkel et al., 2019)
IP6K3 Hashimoto’s thyroiditis (Br¢i¢ et al., 2019)
Late-onset Alzheimer’s disease (Crocco et al., 2016)
PSG7 Trophoblast differentiation (Camolotto et al., 2010)
PSMD5 Colorectal tumor progression  (Levin et al., 2018)
SPSB2 Indicator of oocyte aneuploidy  (Fragouli et al., 2012)
ZNF100  Ovarian cancer survival (Glubb et al., 2017)
TRIM66  Cancers (Cao et al., 2020; Chen et al., 2015; Zhan
etal., 2015)
WDR91 Neuronal development in mice (K. Liu et al., 2017)

Full gene names are available in Abbreviations.



Peng et al. demonstrated enrichment of placental eQTLs among GWAS loci for
birth weight, childhood obesity, and adult diseases in general. The highest enrich-
ment was detected among GWAS loci linked to metabolic traits (e.g., total
cholesterol), neurological (e.g., Alzheimer’s disease), and immunological diseases
(e.g., asthma). This enrichment was not replicated in the other studies, but a
fraction of placental eQTLs (1-3%) were listed as GWAS loci for adult disorders
in similar categories. Variants near ERAP2, an eGene detected in all the studies,
have been previously linked to various diseases, such as PE, hypertension, and
immune-related diseases (Table 12).

5.2.4. Take home message from genome-wide eQTL screening
in the placenta

My study was one of the first genome-wide studies to address placental eQTLs,
identifying almost 200 robust variants in the near vicinity of genes expressed in
the placenta. Placenta-specific eQTLs are of interest as these could be potential
candidates for further research in pregnancy complications. For example, ALPG
eQTL exhibited a potential effect on newborn and child weight in the initial
analysis. Placental eQTLs could also have implications for adult diseases and
traits, as all placental genome-wide eQTL studies so far have demonstrated co-
localization of placental variants with GWAS loci.

A list of about 400 robust placental eGenes was enriched for several GO terms,
including allograft rejection” that could be linked to maternal tolerance of the
fetus. However, the designs of the three studies varied greatly, and therefore some
eGenes could have been overlooked.
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6. DISCUSSION

6.1. Expression quantitative trait loci as unrecognized
genetic risk factors for human disease

Historically, considerable focus in genetic studies on human rare diseases has
been on exonic variants. As these can result in a change in protein structure, the
link to the phenotype is easily predicted and possible to experimentally validate.
Reasons behind associations with variants in non-coding regions are more
challenging to pin down and are often excluded from the analysis from the start.
However, the coding variants make up only about 0.5% of all short sequence
variants mapped in the human genome (Marian, 2020). With the emergence and
widespread use of genome-wide association studies (GWAS), more intergenic
variants have been linked with various diseases and traits. About 80% of asso-
ciated variants in complex diseases are located in non-coding regions (Suzuki et
al., 2019). In parallel, more information is becoming known about these regions
enabling more accurate variant effect prediction.

Disease-linked variants in non-coding regions are thought to exert their effect
through either enhancers/suppressors or causing instability in the mRNA. Several
studies have shown an enrichment of expression quantitative trait loci (eQTLs)
among GWAS loci (Table 5), providing the missing link between single nucleotide
variants and associated phenotypes. As many eQTLs are tissue- or even cell-type
specific, the data could also provide additional information about the cell types
and tissues central to the pathophysiology of the disease. For example, a study
applying eQTL effect directions derived from analyses conducted in fractioned
immune cell populations, identified an involved cytokine pathway significantly
activated in CD4+ T cells in rheumatoid arthritis data set (Ishigaki et al., 2017).
Identifying eQTLs in the tissue of interest is crucial because of tissue-specificity,
using data from other tissues will not produce an accurate result.

Even though more studies have been published in recent years focusing on
placental variants affecting gene expression, the subject is still underexplored.
Placental function has been previously implicated in adult health through fetal
programming in utero (Bonnin et al., 2011; Longtine & Nelson, 2011), a concept
known as the Developmental Origins of Health and Disease (DOHaD) (Barker &
Osmond, 1986). It has been also demonstrated that genes specifically expressed
in the second trimester are associated with adult health outcomes (Uuskiila et al.,
2012). Placental eQTLs have a part in regulating the uterine environment through
placental gene expression and potentially affecting fetal programming. Many of
the eGenes identified in all genome-wide placental eQTL studies were associated
with adult diseases, most commonly cancer (n=10/18) but also several complex
diseases such as hypertension (ERAP2) and obesity (AQPI11). Also, GWAS loci
for adult traits as well as birth weight and childhood obesity are enriched among
placental eQTLs (Peng et al., 2017, 2018). Still, it is unlikely that a single eQTL
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could strongly affect fetal growth as the trait is highly multifactorial and dependent
on non-genetic factors such as maternal nutrition (Warrington et al., 2019).

Apart from affecting the newborn’s future health, placental eQTLs also can
affect the risk for pregnancy complications. I identified few nominal associations
among placental eQTLs with risk to gestational diabetes, small-for-gestational-
age newborns, and large-for-gestational-age newborns. The lack of robust asso-
ciations may be due to the eQTL analysis design. As different phenotypes included
had known differences in gene expression profiles, the pregnancy complication
group was used as a cofactor. This could have led to filtering out variants with
stronger links to any pregnancy complication. Conducting further analysis would
be warranted to investigate these links between eQTLs and pregnancy compli-
cations. Some identified placental eQTLs have already been previously asso-
ciated with pregnancy complication risk. Placental eQTL rs2549782, a missense
variant in ERAP2, has been associated with PE in Australian and African Ameri-
can populations (Hill et al., 2011; Johnson et al., 2009). Additionally, variant
rs9478812 that was strongly linked to PE in a recent study (K. J. Gray et al., 2021)
is located in the intron of a robust placental eGene PLEKHGI. However, the
variant itself is only in mild linkage disequilibrium with identified eVariants
(rs7738394 (Kikas et al., 2019), rs55646755 (Peng et al., 2017) r*=0.1 in CEU
population, Ensembl v103 http://www.ensembl.org/). Several studies con-
centrating on candidate genes have identified additional placental eQTLs,
including for STCI (Ref. 1) and FLTI (Ref. 2). The FLT1 variant rs4769613 had
a robust link to PE risk.

6.2. Limiting factors in current placental eQTL studies and
further studies

Genome-wide placental eQTL analyses have provided a list of potential candidate
genes and variants that can be focused on in future research of pregnancy compli-
cations. However, the current list of robust eGenes is relatively short due to
different study designs and small sample sizes. Moreover, the identified variants
for most eGenes were unique among the studies. This is most likely due to small
statistical power as about 400 individuals would be needed for adequate power
for genome-wide cis-eQTL analysis (power 0.8 for variants with MAF>5% and
effect size >standard deviation) (Dong et al., 2021, https://bwhbioinfo.
shinyapps.io/powerEQTL/). A meta-analysis of all three current placental eQTL
studies, and any future ones, could increase the analysis power and the list of
robust results. Currently, the genome-wide eQTL studies were unable to replicate
the variants identified in placental candidate gene studies. This suggests there is
still a need for fine-mapping of candidate gene genetic modulators as these types
of studies usually have more power to detect more minor effects.

In addition, as demonstrated by Ref. 2, not all eVariants are detectable in all
sample sets if the effect is brought on by some trigger (i.e., conditional eQTLs)
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or a particular timepoint in development (i.e., dynamic eQTLs). Future analyses
focusing on certain clinical sample sets or placental samples from the first and
second trimester of pregnancy could provide additional insight into placental
regulation in normal and complicated pregnancies.

As described previously, the placenta consists of various cell types already in
early pregnancy (Y. Liu et al., 2018; Vento-Tormo et al., 2018). When using a
whole-thickness sample, it cannot be separated which cells are the original source
of the signal. Opposite effects on gene expression in different cell types might
complicate the detection of associations. This limitation could be tackled in two
ways in future studies. First, separating cells by type, followed by DNA and RNA
extraction and analysis. However, this approach is work- and funding-intensive.
The second option would be to take the known proportions of placental cell types
into account when conducting the analysis using available tools (Jew et al., 2020;
Newman et al., 2015). Recently, methylation profiles for five main placental cell
types were generated to be used as reference for deconvolution (Yuan et al.,
2021), but no reference of placental cell composition based on gene expression
has been published to date.

Another complicating factor is confined placental mosaicism. Placental tissue
includes many clonal populations of trophoblast cells due to fast proliferation in
placental development. It has been shown that the placenta can include chromo-
somal aberrations, copy number variants (CNV), and single nucleotide substi-
tutions that are not present in the fetus (Coorens et al., 2021; Kasak et al., 2015).
The placental genomic landscape was comparable to childhood cancer regarding
mutation burden (Coorens et al., 2021). Each bulk sample taken from a single
placenta can represent a clonal expansion. On average, placental samples included
145 substitutions, and almost half of the samples included a CNV. The effect of
placental somatic changes on the transcriptome is still unexplored. As even gross
chromosomal changes present do not change placental gene expression linearly
(Bianco et al., 2016; Lim et al., 2017; Rozovski et al., 2007), comprehensive
studies are needed to address the topic.

6.3. Clinical implications of the study -
the potential of applying novel genetic risk factors
to screen and identify high-risk pregnancies

Many genes have been associated with PE, either by gene or protein expression
changes. However, the genetic reasons behind the alterations are often still
unknown. Identifying the cause can provide insight into the pathology of PE and
potentially provide targets for treatment.

The assessment of FLT1 variant rs4769613, first identified by McGinnis et al.
and replicated in the Estonian cohort in the current doctoral project, could be a
valuable addition to the current risk assessment protocol for PE. The FLT] variant
is the first PE-associated genetic marker that has been consistently associated
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with PE in several independent sample sets from different populations (Kikas et
al., 2020; McGinnis et al., 2017; Steinthorsdottir et al., 2020). The C-allele of the
variant increases the odds of developing PE 1.2 times. Notably, the variant is
linked to late-onset PE in particular and does not affect the risk of other late preg-
nancy complications, making the interpretation more straightforward. Currently,
the main obstacle to adding fetal variants as biomarkers is obtaining fetal genomic
material.

Until recently, fetal DNA was only obtainable through amniocentesis or
chorionic villus sampling. These are invasive procedures that carry a 0.1-0.2%
risk of fetal loss (Odibo & Acharya, 2020). For this reason, these are only used if
either first-trimester screening shows a high risk for aneuploidy or after an
abnormal ultrasound. In recent years, non-invasive prenatal testing (NIPT) has
been incorporated into a clinical routine in Estonia that allows testing the fetal
genome from maternal blood. The method is based on detecting cell-free fetal
DNA (cffDNA) that originates from the placenta. CffDNA was first detected in
the maternal serum in 1997 (Dennis Lo et al., 1997). Currently, it is used in clinics
to detect common chromosomal abnormalities (trisomies 21, 13, 18) and micro-
deletion syndromes (e.g., 22q11.2 and 1p36 deletions). However, it has been
shown to be able to determine fetal single nucleotide variants for monogenic
diseases (L. S. Chitty et al., 2011; Lyn S. Chitty et al., 2013; Zhang et al., 2019).
As the methods for cffDNA extraction constantly improve, in future, genotyping
fetal genetic risk variants could be done during routine blood draw.

Most biomarkers used in current clinical practice for PE risk assessment are
reactionary to some fault in pregnancy, such as hypertension or sFIt-1 rise in PE.
Both of these are present only slightly before the onset of PE. On the other hand,
fetal genetic risk could be already determined in the first trimester with NIPT.
Using placental and maternal factors in a combined manner would enable more
precise classification of high-risk pregnancies as early as possible.
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7. CONCLUSIONS

The current doctoral thesis investigated placental genetic variants that modify
gene expression and could be potential risk factors for pregnancy complications.
The results can be summarized as follows:

L.

Systematic assessment of preeclampsia-associated hormone stanniocalcin-1
determined that STC1 levels were modified by several maternal characteris-
tics, e.g., maternal smoking and delivery mode. Fetal variant rs12678447 was
identified as an eQTL, modifying placental STC/ mRNA expression. How-
ever, only maternal rs12678447 was associated with late-onset preeclampsia
in a meta-analysis combining Estonian REPROMETA and Finnish FINNPEC
sample sets.

. Placental variant rs4769613 located upstream of FLTI was confirmed to

increase preeclampsia risk during pregnancy. The FLTI variant was not
associated with any other late pregnancy complication or newborn parameters.
In preeclamptic placentas, rs4769613 CC homozygotes had significantly
increased FLTI gene expression than CT/TT genotype carriers. The variant
did not have any effect on the levels of sFlt-1 in the maternal serum.

. Third ever placental eQTL screen was conducted focusing on variants in the

immediate vicinity of genes. Utilizing several filters to exclude spurious results,
199 variant-gene associations were detected. These affected the expression of
63 eGenes, of which 13 were previously unknown for the placenta. Among
the identified placental eVariants, few had a suggestive association with either
pregnancy complication or newborn parameters.

. Robust eGenes that were identified in at least two studies (n=417) were enriched

9% C¢

for several GO terms such as “transmembrane transporter”, “organelle mem-
brane” but also “allograft rejection”. This illustrates that the identified eGenes
are not random. The current data is a good starting point for further research
into placental eQTLs and their effect on pregnancy and prenatal develop-
mental programming.
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SUMMARY IN ESTONIAN

Platsenta geeniekspressiooni ning raseduse kulgu méjutavad
tthenukleotiidsed variandid

Platsenta on unikaalne organ, mis eksisteerib inimkehas ainult raseduse ajal.
Platsental on oluline roll ema ja loote vahelise toit- ja jidkainete vahetuses, lisaks
toodab platsenta mitmesuguseid makromolekule, mis mdjutavad raseduse kulgu.
Platsenta tekib juba esimesel trimestril, kui tsiitotrofoblasti rakud tungivad ema
endomeetriumi, ning saab kiipseks pérast 11. rasedusnidalat. Platsenta arengu-
héired vdivad tekitada erinevaid tiisistusi — liiga siigava invasiooni korral tekib
placenta accreta, mille korral platsenta ei eraldu péarast lapse siindi ning siinnitus
tiisistub tugeva verejooksuga. Liiga vdhese invasiooni korral tekib loote kasvu-
peetus, preeklampsia ning suureneb risk platsenta enneaegseks irdumiseks.
Platsenta kasv ja areng peab olema tipselt reguleeritud, et viltida tiisistuste teket
raseduse jooksul.

Preeklampsia (PE) avaldub raseduse teisel poolel uustekkelise arteriaalse
vererdhu tdusuna, millele lisanduvad ema organite kahjustuse voi platsentaarse
puudulikkuse stimptomid. Paljudel juhtudel lisandub proteinuuria, kuid voib
esineda ka maksakahjustus, neuroloogilised siimptomid, loote kasvupeetus ja
teised siimptomid. PE esineb Eestis alla 2% (1.7% 2019. aastal), kuid mitmel pool
maailmas on esinemissagedus kuni 5% rasedate naiste hulgast. Ténu tervishoiu
arengule on arenenud maades PE suremus madal, kuid see on jatkuvalt korge
arengumaades, kus igal aastal sureb PE tottu {ile 60 000 naise. Preeklampsia
tekkeks on véga oluline platsenta roll. On teada, et platsenta geeniekspressiooni
profiil muutub suurel maéral PE korral. Platsenta eemaldamine on ainuke 15plik
ravi PE puhul ning rasketel juhtudel tuleb esile kutsuda enneaegne siinnitus,
millega kaasnevad riskid lapsele.

Uheks platsenta geeniekspressiooni vdimalikuks regulaatoriks on geeni-
ekspressiooni mdéjutavad geneetilised variandid (expression quantitative trait
loci, eQTL, eVariant). Selliste variantide geeniekspressiooni mojutavat efekti on
ndidatud paljudes inimese kudedes. Suurimaks sellekohaseks uurimuseks on
GTEx projekt, mis sisaldab andmeid umbes 5 miljoni variandi kohta 49 koes.
Platsenta koes on eQTL-sid iilegenoomselt uuritud vaid kahe teadustdd raames.
Kuna aga suur osa variante mdjutavad ekspressiooni vaid kindlates kudedes, on
oluline eQTL-sid uurida just huvipakkuvas koes. Usaldusvéirsete platsenta
eGeenide tuvastamine vOimaldab paremini moista platsenta diinaamika regu-
latsiooni ning pakub uusi kandidaatgeene rasedustiisistuste uuringuteks.

Kéesolevas doktoritods on antud lithililevaade inimese rasedusest, platsentast
ning sagedasematest rasedustiisistustest. Pikemalt on késitletud preeklampsia
geneetikast ning koondatud on praegused teadmised eQTL-idest platsentas hai-
guste kontekstis.
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Antud doktoritdd pohieesmérk oli kirjeldada platsenta geneetiliste variantide
mdju geeniekspressiooni regulatsioonile ning rasedustiisistuste tekke riskile.
Selleks sonastasime kolm spetsiifilist eesmérki:

1. Uurida preeklampsia kandidaatgeenide, STC1 ja FLT1, ekspressiooni mdju-
tavaid geneetilisi variante.

2. Leida ja iseloomustada iilegenoomsel uuringul eQTL-d platsenta koes.

3. Koostada terviklik iilevaade kirjanduses tuvastatud platsenta eQTL-dest nii
kandidaatgeenide kui lilegenoomsetes uuringutes.

Uuritavad ja meetodid

Esimese kahe eesmaérgi tditmiseks kasutati emadelt ja platsentadest voetud proove
eesti REPROMETA (REPROgrammed fetal and/or maternal METAbolism) ja
HAPPY PREGNANCY (Development of novel non-invasive biomarkers for
fertility and healthy pregnancy) valimitest. Mdlemad valimid koguti koostdos
Tartu Ulikooli Kliinikumi naistekliinikuga vastavalt 2006-2011 ning 2013-2015.
REPROMETA uuringu puhul kaasati indiviidid uuringusse rasedustiisistuse
avaldumise (preeklampsia, PE; gestatsiooniea kohta suured ja véiksed vast-
siindinud, LGA, SGA; gestatsiooni diabeet, GD; vdi ilma kaasuva tiisistuseta
kontrollid, NORM) ajal vahetult enne vi pérast siinnitust. HAPPY PREGNANCY
uuringusse kaasati naised, kes poordusid rasedusaegsele jilgimisele esimesel
visiidil ning kelle raseduse kulgu jélgiti kuni siinnituseni. Doktorit60s teostatud
uuringu jaoks jagati indiviidid HAPPY PREGNANCY valimis sarnaste pohi-
mdtete jérgi alagruppideks kui REPROMETA valimis.

PE diagnoositi juhtudel, kui siistoolne vererdohk >140 mmHg ja/voi diastoolne
vererdhk >90 mmHg, millele lisandus proteinuuria >3g 24 tunni uriinis voi
neuroloogilised siimptomid. PE-ga indiviidid jagati varase (<34. gestatsiooni-
nidalat) ja hilise algusega PE (>34. gestatsiooninéddalat) alagruppidesse vastavalt
siimptomite tekke ajale. GD diagnoositi kui gliikoosi taluvustestil oli vereplasma
glitkoosi tase enne glitkoosi manustamist >5.1mmol/l ja/vdi >10.0mmol/1 ja /voi
>8.5mmol/l vastavalt 1ja 2 tundi parast 75g gliikkoosi manustamist. LGA ja SGA
diagnoositi kui vastsiindinu kaal oli vastavalt >90 vdi <10 protsentiili lapse soole
jaraseduskestusele kohandatud kasvukoveral (Sildver ez al., 2015). NORM juhud
defineeriti kui rasedused, kus ei esinenud eelnevalt mainitud rasedustiisistusi.

Uuringud oli eelnevalt heaks kiitnud Tartu Ulikooli Inimuuringute Eetika-
komitee (protokollid 146/18, 27.02.2006; 150/33, 18.06.2006; 158/80, 26.03.2007;
221/T-6, 17.12.2012; 286/M-18, 15.10.2018)

Lisaks Eesti valimitele oli kaasatud doktoritdé raames tehtud uuringutesse
FINNPEC (kogutud 2008-2011 Soomes, Jadskeldinen et al., 2016) ning ALSPAC
(kogutud 1991-1992 Uhendkuningriigis, (Boyd et al., 2013; Fraser et al., 2013))
valimid.

Statistiliseks analiiiisiks kasutati programmi PLINK (Purcell ef a/., 2007) jaR
paketti Matrix eQTL (Shabalin, 2012).
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Uurimisto6 tulemused ja jareldused

. STC1 hormooni tase ema veres seostus siinnitusviisi ja suitsetamisega nii PE
kui ka ilma PEta mittetiisistunud raseduste korral. Ema vanus seostus hor-
mooni tasemega ilma PE-ta raseduste korral ning raseduseelne KMI ainult
PEga tiisistunud raseduste korral. STC! geeni ekspressiooni tase seostus loote
variandiga rs12678447. Nii Eesti REPROMETA kui Soome FINNPEC vali-
mite meta-analiiiisis seostus ainult emapoolne rs12678447 preeklampsia riski
tdusuga (Sansside suhe 1.38).

. Uuringu tulemusena kinnitus FL7/ geenist {ilesvoolu asuva variandi rs4769613
seos PE riskiga. Teiste testitud rasedustiisistuse ega lapse siinniparameetritega
eelnimetatud variant ei seostunud. FLT! ekspressiooni tase oli oluliselt
korgem neis PE tiisistunud rasedustest périnevatest platsentades, mis kandsid
rs4769613 CC genotiitipi vorreldes CT ja TT genotiiiibi kandjatega. FLT1
variandi méédramine voib olla abistavaks markeriks kliinikus kasutatavates
preeklampsia riski ennustamise mudelites.

. Doktoritdo projekti raames lédbiviidud iilegenoomsel platsenta eQTL-de uurin-
gus tuvastasin 199 usaldusviirset geenildhedast varianti, mis m&jutavad 63
geeni ekspressiooni platsentas. Neist 13 olid kirjeldatud platsentas eGeenina
esmakordselt. Moned platsenta eQTL-dest seostusid pilootvalimis ka rasedus-
tiisistuse voi lapse slinniparameetritega.

. Kolme seni lébiviidud platsenta eQTL-de uuringu alusel on 16 valku
kodeerivat geeni, mis on tuvastatud labivalt kdigis kolmes uuringus. Vahemalt
kahes uuringus tuvastatud eGeene oli 417 ning nende funktsionaalsete radade
analiilisil ilmnes rikastatus mitmete GO radadega, niiteks ,,transmembraanne
transporter”, ,,organelli membraan” ning ,transplantaadi dratdukereaktsioon”.
Doktoritd6 raames koostatud iilevaade on hea ldhtepunkt tulevastele uurimus-
toodele platsenta eQTL-dest, nende mdjust rasedusele ning {lisasisesele
programmeerimisele.
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