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Abstract

Predicting off-target effects in CRISPR-Cas9 system using Graph Convo-
lutional Network

CRISPR-Cas9 is a powerful genome editing technology that has been widely applied in target

gene repair and gene expression regulation. One of the main challenges for the CRISPR-Cas9

system is the occurrence of unexpected cleavage at some sites (off-targets) and predicting them

is necessary due to its relevance in gene editing research. Very few deep learning models have

been developed so far that predict the off-target propensity of single guide RNA (sgRNA) at

specific DNA fragments by using artificial feature extract operations and machine learning tech-

niques. Unfortunately, they implement a convoluted process that is difficult to understand and

implement by researchers. This thesis focuses on developing a novel graph-based approach to

predict off-target efficacy of sgRNA in CRISPR-Cas9 system that is easy to understand and

replicate by researchers. This is achieved by creating a graph with sequences as nodes and by

performing link prediction using Graph Convolutional Network (GCN) to predict the presence

of links between sgRNA and off-target inducing target DNA sequences. Features for the se-

quences are extracted from within the sequences.

CERCS: B110 Bioinformatics, P175 Systems Theory, P176 Artificial Intelligence

Keywords: CRISPR-Cas9, Off-target, Synthetic Biology, Deep Learning, Graph Neural Net-

work, Link Prediction
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Kokkuvõte

Sihtmärkide ennustamine CRISPR / Cas9 süsteemis Graph Convolutional
Network abil

CRISPR-Cas9 on võimas genoomi redigeerimise tehnoloogia, mida on laialdaselt kasutatud

sihtgeenide parandamisel ja geeniekspressiooni reguleerimisel. CRISPR-Cas9 süsteemi üks pea-

misi väljakutseid on ootamatu lõhustumise ilmnemine mõnes kohas (väljaspool sihtmärke) ja

nende ennustamine on vajalik, kuna see on asjakohane geenide redigeerimise uuringutes. Siiani

on välja töötatud väga vähe süvaõppemudeleid, mis prognoosivad ühe suunava RNA (sgRNA)

sihtmärgivälist kalduvust konkreetsete DNA fragmentide suhtes, kasutades tehisfunktsiooni-

de väljavõtte toiminguid ja masinõppe tehnikaid. Kahjuks need rakendavad keerulist protses-

si, mida on raske mõista ja rakendada teadlaste poolt. See lõputöö keskendub uudse graafikul

põhineva lähenemisviisi väljatöötamisele, et prognoosida sgRNA sihtmärgivälist efektiivsust

süsteemis CRISPR-Cas9, mida teadlased hõlpsasti mõistavad ja paljundavad. See saavutatakse,

luues graaf, milles on järjestused sõlmpunktidena, ja viies lingi ennustamine läbi graafiku kon-

volutsioonivõrgu (GCN), et ennustada seoste olemasolu sgRNA ja sihtmärkidest väljaspool in-

dutseerivate sihtmärk-DNA järjestuste vahel. Järjestuste omadused eraldatakse järjestuste seest.

CERCS: B110 Bioinformaatika, P175 Süsteemiteooria, P176 Tehisintellekt

Märksõnad: CRISPR-Cas9, Sihtväline, Sünteetiline bioloogia, Sügav õppimine, Graafiline

närvivõrk, Lingi ennustamine
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1 Introduction

Genome engineering is the ability to engineer biological systems that allows the modification

of genome and transcription products on target sites. Proteins including zinc fingers [1], [2] and

transcription activator-like effectors (TALEs) [3], [4] are the first gene editing molecules but

demand strenuous engineering of multiple proteins for diverse genomic sequences and might

introduce superfluous genetic elements including drug resistant markers, bacterial origins of

replication and multiple cloning sites [5], [6].

The RNA-guided Cas9 nuclease from Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR) adaptive immune system, based on bacterial adaptive immune system, is a

powerful genome editing technology that has been widely used in target gene repair and gene

expression regulation. Cas9, a nuclease from the type II system, found in Streptococcus pyo-

genes, is most widely used [7]–[9].

CRISPR-Cas9 system can be conditioned to precise sites by providing three important com-

ponents in gene editing process:

1. sgRNA (sequence of 20 nucleotides in length) needs to be complementary with its target-

ing genome sequence,

2. PAM (3 nucleotides motif on the target sequence and a prerequisite for Cas9 protein

cleavage) needs to be located around the target site, and,

3. Cas9 protein cleaves the target DNA at the site, three bases upstream of PAM, under the

guidance of sgRNA sequence.

The most common PAM type is NGG, where N represents any base of Adenine (A), Cy-

tosine (C), Guanine (G) and Thymine (T) [10], [11]. CRISPR-Cas9 genome editing has been

implemented in plants [12], bacteria [13] and mammals [14].
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1.1 Motivation

One of the main challenges for CRISPR-Cas9 system is the occurrence of unexpected cleavage

at some sites, termed as ”off-targets” [15], [16]. During CRISPR-Cas9 gene editing, sgRNA

can influence other regions resulting in unintended cleavage of DNA sequence. Mismatches

between 20 nucleotides of sgRNA in the PAM-distal end and target sequences can generate

off-target effects due to the sequence homology of the target loci. Off-target mutations could

lead to major problems when applying CRISPR-Cas9 gene editing, as they could cause double-

stranded breaks (DSB) in DNA by resulting in loss of gene functions as shown in figure 1.1.

The focus of study is to reduce these off-target mutations by accurately predicting them in

CRISPR-Cas9 gene editing. With the rapid expansion of off-target data, the existing methods

are difficult to implement in extracting features and cannot satisfy enough accuracy in predicting

off-target mutations at the gene editing level [17]. Very few deep learning (DL) models like

DeepCRISPR [18], CNN Std [19], AttnToMismatch CNN [20] and CnnCrispr [21] have used

DL algorithms to predict off-target efficacy of sgRNA but implemented a complex process of

feature pre-processing that is difficult to understand and implement by researchers.

1.2 Goal

The purpose of this thesis is to introduce a novel graph-based approach in predicting the off-

target mutations in CRISPR-Cas9 system. The main objectives of this research are:

1. To develop a graph-based approach for off-target prediction in CRISPR-Cas9 system that

is easy to understand and implement by researchers,

2. To use a powerful neural network model for performing representation learning of net-

work graphs created from off-target dataset,

3. To provide features for sequences (nodes) in the graph by extracting sequence-based fea-

tures,

4. To handle the imbalance issue in the off-target dataset, and,

5. To make use of python library for machine learning that enables researchers to easily

identify patterns and implement graph machine learning.
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Figure 1.1: Off-target mutations in CRISPR-Cas9 gene editing [22]

1.3 Contributions

To implement an easy and efficient method in predicting off-target mutations in CRISPR-Cas9

gene editing, this study proposes a graph-based approach that is easy to understand and imple-

ment by researchers. The main contribution of this work can be summarized as follows:

• This study makes use of the off-target dataset from CnnCrispr [21], created by the authors

of DeepCRISPR [18].

• Many in-built functions provided by StellarGraph [23] API are used to create network

graphs from off-target dataset and to perform link prediction.

• A data science approach of using DL algorithm is taken to perform link prediction on the

created network graph
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• In contrast to previous off-target predicting DL models that used Convolutional Neu-

ral Network (CNN), this study makes use of Graph Convolutional Network (GCN) [24]

model to perform unsupervised learning on the off-target network graph.

1.4 Outline

In this chapter, a brief introduction about CRISPR-Cas9 gene editing and off-target mutations in

CRISPR-Cas9 system has been discussed. In the next Chapter, the discussion is about different

methods developed by researchers to predict off-target mutations and about graph analysis, that

gives an overview of network graphs, Graph Convolutional Network (GCN) and link prediction

method. Chapter 3 provides a detailed review of architectures and performances of the previ-

ously developed DL models to predict off-target efficacy of sgRNA. Chapter 4 provides details

about creating network graphs from off-target dataset, extracting sequence-based features, han-

dling data imbalance using cluster data sampling and performing link prediction using GCN

model. Chapter 5 contains the results and discussion of this research. Finally in chapter 6, a

concluding statement to this work is provided.
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2 Background

In this chapter, a detailed analysis of different off-target predicting methods developed by re-

searchers will be discussed in detail in section 2.1. Section 2.2 will briefly explain about graph

analysis by introducing graph neural network and link prediction.

2.1 Off-target prediction in CRISPR-Cas9 system

Predicting off-target mutations is necessary due to its relevance in gene editing research. Many

prediction methods have been developed to predict the off-target propensity of single guide

RNA (sgRNA) at specific DNA fragments using artificial feature extraction operations and ma-

chine learning (ML) techniques [11], [18]–[21], [25], [26]. Algorithm-based computational

approaches and in vitro/vivo biochemical assays are two different methods methods developed

by researchers that can be categorized into biased and unbiased detection methods. Figure 2.1

gives an overview of different off-target predicting methods implemented by researchers.

2.1.1 Unbiased off-target detection methods

Off-target effects on the whole genomic level can be detected by unbiased detection methods,

which are categorized into in vitro genome-wide assays and in vivo genome-wide assays.

2.1.1.1 In vitro genome-wide assays

Digested genome sequencing (Digenome-seq) [27] is a widely used method to detect genome-

wide off-target sites at which insertions or deletions were induced with frequencies below 0.1%.

It is a robust, unbiased, cost-effective and sensitive method. Digenome-seq requires high read

depth and cannot be applied for screening more sgRNA.
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Figure 2.1: Overview of different methods implemented in predicting off-target mutations in
CRISPR-Cas9 gene editing

Selective enrichment and identification of tagged genomic DNA ends by Sequencing (SITE-

seq) [28] is a technique in which all the Cas9 cleavage sites are mapped and requires minimum

next-generation sequencing (NGS) read depth on illumina platform compared to Digenome-seq.

Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) [29]

can detect off-target sites that are diminished due to Single Nucleotide polymorphism (SNP)

and does not need reference genome. For CIRCLE-seq, enormous amount of genomic DNA is

required in circularization step restricting its application in off-target detection. Inadequacy of

proteins associated with higher-order chromatin structure causes detecting cleavage sites more

than detected in live cells using in-vivo methods.

Many off-targets identified by in vitro detection methods could not be refurbished in vivo.

2.1.1.2 In vivo genome-wide assays

Cell-based genome-wide assays are developed to identify real off-targets. Integrase Defective

Lentiviral Vectors (IDLV) [30] is the first tool developed to detect genome-wide off-targets

in zinc finger nucleases (ZFN) by getting shipped along with the gene-editing system and by

integrating with the DSB. Linear double stranded IDLV genomes present in the nucleus of

15



transduced cells get ligated into DSB by non-homologous end joining (NHEJ), tagging the un-

detectable DSB. Dissemination of IDLV can be identified by carrying out PCR which results

in identifying the off-target effects. IDLV has an off-target identifying efficiency of 0.1% and

cannot evaluate various off-target sites [31].

Chromatin immunoprecipitation and high throughput sequencing (Chip-seq) [32] allows de-

tection of off-target sites by binding DNA-binding proteins and histone modifications at base-

pair resolution. Chip-seq uses endonuclease dead Cas9 (dCas9) and sgRNA complex instead of

Cas9-gRNA complex which modifies the specificity in identifying off-targets [33], [34].

Breaks labelling, enrichments on streptavidin and next-generation sequencing (BLESS) [35]

is adaptable, precise and significant in identifying DSB when compared with the other tech-

niques and can also be used to detect endogenous and exogenous DSB. BLESS uses biotinylated

DNA to label genomic DNA which allows high-specificity enrichment of samples on strepta-

vidin beads, mapping sequence-based DSB to nucleotide resolution. BLESS depends upon a

reference genome and identifies off-targets only during the “labelling” stage [36].

In Genome-wide unbiased identification of DSB enabled by sequencing (GUIDE-seq) [36],

the double stranded oligodeoxynucleotides (dsODN) are integrated in DSB, which is later pur-

sued by NHEJ DNA repair pathway. Off-target effects can be identified by amplifying the inte-

grated dsODN. GUIDE-seq does not prevent the cytotoxic effects produced during the transmis-

sion of exogenous tag dsODN [37] and employs multiple PCRs to amplify regions of interest.

Linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS)

[38] detects genome-wide “prey” DSB to a fixed “bait” DSB by identifying chromosomal

translocation in cultured mammalian cells. This detects genome-wide recurrent DSB made

by off-target activity of engineered nucleases. LAM-HTGTS is limited to identifying DSB that

translocate as translocation events due to DSB are very rare when compared to DSB that arise

due to local deletions and insertions.
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2.1.2 Biased off-target detection methods

Methods include careful designing of sgRNA for definite targeting of CRISPR-Cas9 system

by predicting off-target effects and by minimizing off-target effects using in silico methods by

generating ample data on off-target sites using CRISPR systems under different strategies [39]–

[41]. In silico methods include algorithmic-based models that are categorized into scoring-

based models and alignment-based models.

2.1.2.1 Alignment-based Methods

Conventional algorithmic models, in which off-target effects are detected using sequence ho-

mology by aligning sgRNA to the reference genome [22]. Bowtie [42] can detect upto one

mismatch by aligning DNA sequence reads to larger genomes.

CRISPR-Cas9 target online predictor (CCTop) [43] uses Bowtie [42] and can predict up to

five mismatches. CCTop calculates an aggregate score using a hypothetical formula for target

sites by focusing more on the position and mismatch counts.

CRISPR-Cas9 Off-target Prediction and Identification Tool (CROP-IT) [44] aligns the tar-

get sequence with the reference genome, divides the sequence into three segments and grades

the sequence with different weights. CROP-IT utilizes whole-genome chromatin state informa-

tion and predicts both Cas9 binding as well as cleavage sites.

Cas-OFFinder [45] searches for potential off-target sites and allows variations in PAM se-

quences recognized by Cas9. It is not limited by the number of mismatches.

CasOT [46], an on-target predicting tool, can detect up to 6 mismatches from 12 nucleotides

closer to the PAM region and can be identify the region of off-targets as intron or exon.

Most of these models can detect upto only one mismatch and are prone to experimental

variation due to the cutting efficiency variation of sgRNA.
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2.1.2.2 Score-based Methods

Algorithmically designed models that calculate scores and ranks sgRNA based on the detection

of off-target effects are developed. MIT (Hsu-Zhang) score [11] is developed to identify po-

tential off-target sites for every sgRNA by calculating a weight matrix depending on mismatch

positions in target 20-base pair (bp) and by considering mean distance between two bases of

mismatches and number of mismatches.

Cutting frequency determination (CFD) score [25] uses GUIDE-seq [36] and is integrated

with sgRNA designing tools like GuideScan [47] and CRISPOR [48]. CFD is considered as a

ubiquitous score for off-target evaluation by multiplying the frequency of bases in each position

of the sgRNA spacer sequence.

CRISPR target Assessment (CRISTA) [49] is an algorithmic model that uses machine learn-

ing (ML) to identify the propensity of genomic sites to be cleaved by a given sgRNA and shows

that occurrences of bulges should be included in the prediction process.

Researchers from Microsoft and Broad Institution developed Elevation [26], a two-layer

regression model that predicts the individual off-target score for sgRNA as well as aggregate

score for sgRNAs. Elevation considers the sequences as well as the epigenetic information of

the DNA and integrates it into a website for further research. Elevation method demonstrated

to be an efficient tool in identifying all the potential off-target sites and identifies off-target sites

for human exome (GRCh38) but does not work with different organisms [22].

These Models only calculate scores and are vulnerable to experimental variation due to the

variation in cutting efficiency of sgRNA.

2.1.3 Learning-based models for off-target prediction

Continuous learning-based prediction models are required for effective prediction of off-targets

due to variation in cutting efficiency of sgRNA. ML, core of artificial intelligence (AI) has been

gradually applied to sgRNA off-target activity prediction [50], off-target site prediction [26]

and sgRNA design optimization [51]. For example, CFD [25] uses the support vector machine

(SVM) classifier to select the subset of features from 586 features. CRISPRpred [52] uses SVM
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to predict on-target activity. WU-CRISPR [53] uses SVM model to select functionally active

sgRNAs for all known genes in the human and mouse genomes. To predict sgRNA activity

for prokaryotes, gradient-boosting regression (GBR) tree has been used [54]. ML models like

CRISPRater [55] and CRISPR-Scan [56] are trained by a simple linear regression model.

Many ML models based on sequence features were used to calculate scores of off-target ef-

fects. Based on these scores, the performance of sgRNA are ranked. sgRNA with high cleavage

efficiency and low off-target propensity are selected for performing CRISPR-Cas9 gene editing.

Traditional ML algorithms have been gradually applied to predict off-target sites in score-based

and alignment-based models. However, these algorithms cannot take raw features from large,

annotated datasets and use them to identify hidden patterns buried inside these datasets. Most

of these models achieved an average performance for sgRNA design as the feature extraction

process is labour-intensive. Also, these models performed well only on a training dataset but

not on testing dataset [17].

Compared to traditional ML models, deep learning (DL) models offer valuable analysis of

experimental data, learn complex patterns and extract important features from large datasets

which produce scientific support for bioinformatics. DL is the current hotspot in the field of

ML that performs training and test tasks using neural network architectures [57]. DL models

are packaged into frameworks like TensorFlow [58], Pytorch [59] and Keras [60] which enable

researchers to focus on building and training neural networks without any difficulty [61].

Sequence-based DL models have achieved many performance breakthroughs in genomics

research when compared to many classical ML models [57]. For example, AutoBioSeqpy [62]

used CNN and bi-directional long short-term memory (biLSTM), a sub-class of Recurrent Neu-

ral network (RNN), to classify biological sequences of proteins, DNA and RNA. Another exam-

ple could be DeepCRISPRpf1 [63], which incorporated chromatin accessibility in a DL frame-

work based on CNN to predict the activity of AsCpf1 sgRNA.

In CRISPR-Cas9 system, many sequence-based DL models have predicted on-target effi-

cacy of sgRNA. CRISPRLearner [64] used CNN model to learn sequence determinants and

predicted on-target cleavage efficiency of sgRNA. DeepCRISPRas9 [65], a DL framework

based on one convolution layer, predicted sgRNA activity in human cells and was used for de-
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signing genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes.

CNN 5layers [66] predicted on-target activity of sgRNA for wild type and mutant Cas9 in

prokaryotes using CNN. DeepHF [67], constructed using biLSTM, measured sgRNA activity

for three SpCas9 variants and obtained indel rates for 20,000 genes.

Very few DL models like DeepCRISPR [18], CNN Std [19], AttnToMismatch CNN [20]

and CnnCrispr [21] have been developed by researchers to measure the off-target propensity of

sgRNA in CRISPR-Cas9 system due to the limited availability of off-target data. All these mod-

els have used CNN to predict sgRNA off-target activity by implementing automatic recognition

of sequence features. However, these models implemented a complex process of feature extrac-

tion and off-target prediction, that is difficult to be understood and replicated by researchers.

2.2 Graph Analysis

2.2.1 Network Graph

Graphs are set of non-euclidean data structures that can model a set of objects (as nodes) and

their relationships (as edges). A graph (G) is a pair (N, E) specified by the set of nodes (N)

and set of edges (E). Graphs are used to denote large number of systems and many underlying

relationships in fields of proteomics [68], image analysis [69], scene description [70], [71],

software engineering [72], [73] and natural language processing [74]. For example, graphs

are used to estimate probability of chemical compound causing some diseases by modeling the

chemical compound as a graph, the atoms in the chemical compounds as nodes and the chemical

bonds linking the atoms as edges [75]. Graphs are also used to capture interactions between

bio-molecules like RNA, DNA and proteins [76] and to represent transcription networks of an

organism.

2.2.2 Graph Convolutional Network (GCN)

Traditional ML models, like SVM, work with graphs using a pre-processing phase which con-

verts graph information to simpler representation, like vector of reals. This could result in loss

of important information and could lead to unpredictable performance of the model [75]. Stan-

dard neural networks, like CNN and RNN, cannot handle graph inputs efficiently as they stack

features of the nodes in specific order which is very redundant when computing. Graph cannot
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be traversed by all the possible orders of the input by standard neural networks as they consider

dependency information of edges between two nodes as a feature of nodes.

Graphs need to be traversed by all the possible orders of the input. Neural networks that

operate on graphs were first introduced in 2005 [77]. Graph Neural Networks (GNN) are deep

learning methods that can be used to collectively aggregate information from graph structure

based on CNN and graph embeddings. GNN models are considered to be more efficient graph

analysis when compared to standard neural networks. They can produce output that is invariant

to the input order of the nodes, propagate the dependency information by updating the hidden

states of nodes as a weighted sum of states of their neighborhoods and can generate graphs from

non-structural data [78], [79]. GNN models can work with node-focused applications without

any pre-processing steps. GNN models have been applied in biological systems for calculating

molecular fingerprints in computer-aided design [80], protein interface prediction and protein-

protein interaction network [81], breast cancer sub-type classification [82] and poly-pharmacy

side effects prediction [83].

There are several variants of GNN models that learn representations with high quality by

making modifications in the propagation step. This step obtains the hidden states of nodes in

a graph. Convolution operation in propagation step is a spectral approach which is defined by

calculating spectral decomposition of graph laplacian in the fourier domain [78].

Graph Convolutional Network (GCN) [24], a convolution-like propagation rule on graphs,

was introduced by using a single weight matrix per layer that dealt with varying node degrees

through an appropriate normalization of the adjacency matrix. GCN alleviates over-fitting prob-

lem with very wide node degree distributions by limiting the layer-wise convolution operation

and uses original graph structure to denote relations between nodes as shown in figure 2.2.

GCN is a powerful neural network architecture for deep learning on graph G,

G = (V,E) (2.1)

where, V is the vertices/nodes and E is the edges/links in a graph.
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Figure 2.2: Network architecture of Graph Convolutional Network (GCN) model [24]

GCN takes the matrix representation of input feature matrix (X) and adjacency matrix (A)

as inputs. Input feature matrix (X) is described as,

X = N ∗ F 0 (2.2)

where, N is the number of nodes and F 0 is the number of input features for each node.

Adjacency Matrix (A) is the matrix representation of the graph described as,

A = N ∗N (2.3)

where, N is the number of nodes in the graph.

A hidden layer in the GCN can be described as,

H i = f(H i−1, A) (2.4)

where, H0 is the input feature matrix and f is the propagation. Each hidden layer H, represents

the N × F of the feature matrix, with each row being a feature representation of a node. Using

the propagation rule f at every layer, these features are aggregated to form the next layer’s fea-

tures to make them increasingly abstract at each consecutive layer.

22



The adjacency matrix (A) is then transformed by adding it with an identity matrix (I) to add

a self-loop to each node, as the aggregated representation of a node does not include its own

features unless the nodes have a self-loop.

Â = A+ I (2.5)

Node degree (number of edges connected to the nodes) of the transformed adjacency matrix

(Â) is calculated. The transformed adjacency matrix (Â) and feature matrix (X) are normalized

by the computed node degree to avoid any issues for stochastic gradient algorithms that are

sensitive to the change of scale of feature vectors when performing the matrix multiplication of

the adjacency matrix and the feature matrix. Thus, the propagation rule would look like this,

f(X,A) = z(D− 1
2 × Â×D− 1

2 ×X) (2.6)

z are non-linear function (ReLu function). Multiplying the normalized feature matrix (X) with

transformed adjacency matrix (Â) normalized with diagonal node degree (D− 1
2 ) will take the

average of neighbouring node features.

2.2.3 Link Prediction

Graph analysis using ML can be divided into two main classes, called nodes classification and

link prediction. Link prediction predicts an attribute of links or edges in a graph by predicting

whether a link or edge that is not in a graph should exist using binary classification. Features of

the nodes are important in identifying the link between the pair of sequences. The train and test

sets of links and the corresponding graphs (without these links) are prepared to train a link pre-

diction model. StellarGraph API [23] provides many in-built classes such as “EdgeSplitter” and

“FullBatchLinkGenerator” which can be used to work on nodes and links for link prediction.

2.2.3.1 EdgeSplitter Function

“EdgeSplitter” class, provided by StellarGraph, is used to randomly sample the edges by keep-

ing all the sequences in the train and test set, instead of taking a subset of sequences [23].

edge splitter test = EdgeSplitter(G) (2.7)

This will return a train graph (that shows whether a link should exist between two sequences)
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for training the model and a test graph for evaluating the performance of the model. Both the

train graphs and test graphs will have the same number of nodes. The number of links between

the nodes will differ as some of the links will be sampled for training and testing the classifier.

2.2.3.2 FullBatchLinkGenerator Function

“FullBatchLinkGenerator” class, provided by StellarGraph, is used to create link generators for

the train and test link examples to the model. The “flow” method supplies the links as a list of

nodes. The link generators will feed the list of nodes obtained from “flow” method and feed it

to the Keras model, along with the corresponding binary labels which indicate the nodes true or

false links in the form of features array and sparse adjacency matrix.

train gen = FullBatchLinkGenerator(G train,method = ”gcn”) (2.8)

train flow = train gen.flow(edge ids train, edge labels train) (2.9)

Final link classification layer takes a pair of node embeddings produced by the GCN model

as input and produces corresponding link embeddings by applying a binary operator and passes

it through a dense layer. The input and output tensors of the GCN model for link prediction are

exposed using the GCN.in out tensors method provided by StellarGraph [23].

x inp, x out = gcn.in out tensors() (2.10)

The x out value is a TensorFlow tensor that holds a 16-dimensional vector for the nodes re-

quested when training or predicting. Predictions are reshaped from (X,1) to (X). The prediction

layers are stacked into a keras model and the loss is specified [23].

2.3 Summary

In this chapter, biased, unbiased and learning-based methods to predict off-target mutations in

CRISPR-Cas9 system were briefly discussed. This chapter has also introduced and provided

more information about graph convolutional network (GCN) [24] and link prediction. The next

chapter will provide a detailed analysis on different DL models used for off-target prediction.
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3 Related Works

In this chapter, the network architecture, feature extraction and performance of sequence-based

DL models developed to predict off-target efficacy of sgRNA will be discussed and reviewed in

detail.

3.1 DeepCRISPR

3.1.1 Network Architecture

DeepCRISPR [18] applied the rules of auto-encoders to predict off-target propensity and target

cleavage site of sgRNA by extracting epigenetic and sequence features of DNA. The architec-

ture of DeepCRISPR model consists of:

• Two pre-trained deep convolutional denoising neural network (DCDNN)-based encoders

(used as parent network) to train unlabelled sequences in unsupervised manner to learn an

efficient feature representation of the unlabelled data using encoding and decoding which

will be fitted for building the model,

• One merged layer, and,

• CNN layers to predict efficacy of sgRNA.

The training process learned the weights of CNN network and tuned the weights of parent

network, creating two different “baby networks” and their weights are used for predicting off-

target efficacy of sgRNA as shown in figure 3.1.

3.1.2 Feature Extraction

20-bp of unlabelled sgRNA sequences with NGG PAM extracted from coding and non-coding

regions with different epigenetic information curated from 13 human cell types are given as
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Figure 3.1: Network architecture of DeepCRISPR model [18]

input for the model. sgRNA sequences and their possible off-target sequences, treated as se-

quence pairs, are encoded using two-part encoding. These sequence-pairs are fit into parent

network for feature extraction and the outputs of this network are combined and provided as

input for CNN.

3.1.3 Dataset

Dataset used for this research consists of human sgRNA whole genome off-target data detected

by Digenome-seq [27], IDLV [30], BLESS [35], GUIDE-seq [36] and HTGTS [38]. The dataset

consists of 30 sgRNA from two different cell types (HEK293 cell line with 18 sgRNA and

K562T cell line with 12 sgRNA) with maximum of six nucleotide mismatches using Bowtie.

As the off-target dataset is heavily imbalanced, bootstrapping sampling is done from minor

samples to obtain same number of samples as major samples, alleviating the data imbalance.

Classification and regression models are used off-target prediction. Classification was done to

classify the off-targets (labelled as ‘1’) from other sequences (labelled as ‘0’) and regression to
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detect targeting efficacy measured with indel frequency detected by different assays.

3.1.4 Results

The results of DeepCRISPR are compared with the results of MIT [11], CCTop [43], CROP-

IT [44] and CFD [25] on this dataset. DeepCRISPR outperformed all the other models with

improved performance to reduce false positives in predicting off-targets. It is also concluded

that using classification model for off-target prediction is more preferred as regression model

which is used for predicting binding affinities require more data for training.

3.1.5 Review

DeepCRISPR extracts epigenetic features of DNA to predict off-target propensity and target

cleavage site of sgRNA. Epigenetic features are highly volatile and have hypothetical depen-

dency on cell state and cell type, which limits its application to selective cell types and cross-

species prediction [17]. It is unclear if the epigenetic features will have any specific impact on

the model prediction results. DeepCRISPR uses the largest dataset available to train the model

but the article of DeepCRISPR did not provide a detailed information about test data and test re-

sults [21]. The number of negative samples is much larger than the number of positive samples

in the off-target dataset. The authors of DeepCRISPR performed multiple experiments but they

did not remove common data between training and testing datasets in their first experiment. For

other experiments, some of the labelled and unlabelled data were observed to be similar during

pre-training of unlabelled data [84]. On comparing the training and test loss curves, over-fitting

and under-fitting issues were observed which lead to poor performance of the model [66].

3.2 CNN Std

3.2.1 Network Architecture

Deep standard CNN (CNN Std) [19], uses deep CNN and deep feedforward neural network

(FNN) to predict off-target mutations by constructing a two-dimensional matrix using sequence-

based features. The architecture of CNN Std consists of:

• Convolutional layer to extract matching information of sgRNA-DNA sequence pairs,
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• Batch normalization (BN) layer with ReLu as activation function to reduce internal co-

variate shift and allow higher learning rates,

• Global max-pooling layer to verify the mismatches modelled by BN layer,

• Two fully connected dense layers with a dropout layer used on the last dense layer to

randomly mask portions of the output to avoid over-fitting, and,

• A final output layer consisting two neurons connected to previous layers.

FNN model contains the architecture of input layer, several hidden layers and output layer

with softmax as activation function to convert each neuron output into probability. For both

FNN and CNN models, best performance under 5-fold stratified cross-validation, adam algo-

rithms (to optimize cross-entropy loss function) and mini-batch gradient descent (to reduce

gradient variance) are adapted as shown in figure 3.2.

Figure 3.2: Network architecture of CNN Std model [19]

3.2.2 Feature Extraction

CNN from computer vision is adapted by processing the sgRNA-DNA sequence pair with the

length of 23-bp (3-bp PAM adjacent to the 20 bases) into a 4 x 23 matrix, using “XOR” coding

design, instead of a 2-dimensional image with colour channels. Each base, (Adenine, Cytosine,

Guanine and Thymine), in sgRNA and target DNA sequences are encoded as one of the four

one-hot vectors [1,0,0,0], [0,1,0,0], [0,0,1,0] and [0,0,0,1]. The mutated information in the

sgRNA-DNA sequence pair is encoded by deriving a 4-length vector. This vector is dervied by
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encoding mismatched bases with OR operator. This encoded code matrix of the sgRNA-DNA

sequence pair is used for the CNN-based models and the vectorized form of this matrix is used

for the traditional ML models and deep FNN.

3.2.3 Dataset

CRISPOR [48] off-target dataset is used for training, testing and validation. This dataset con-

tains 26034 presumed off-targets including 143 validated off-targets, having a mismatch count

of upto four with one of the PAM like NAG/NGA/NGG. For additional evaluation, GUIDE-

seq [36] off-target dataset containing 28 off-targets among 403 potential off-target sites is used,

which is excluded from CRISPOR dataset during training.

3.2.4 Results

On the CRISPOR [48] dataset, FNN 3layer and CNN Std achieved the best performance under

stratified 5-fold cross-validation and demonstrated progress over traditional ML models like

GBR, random forest (RF) and logistic regression (LR). Comparing the performance of these

models with other off-target predicting tools like, MIT [11], CCTop [43], CROP-IT [44] and

CFD [25], both these models outperformed all the other tools. On GUIDE-seq [36] dataset,

CNN Std achieved the highest true positive rate demonstrating the best generalization perfor-

mance among other prediction models.

3.2.5 Review

CNN Std achieved high accuracy by constructing 2-dimensional input matrix of sequence-

based features using “XOR” coding design. CNN Std had a poor performance due to over-

fitting and under-fitting issues. DeepCRISPRas9 [65] and CNN Std have similar network ar-

chitecture, of using only one multi-scale convolution layer, but the input size of DeepCas9 is

different (30 nucleotides). CNN can abstract features by convolution. CNN Std attempted to

downsize the fully connected layer by utilizing a maximum pooling layer with window size 5x1

and stride 5. But it is not possible to perform down-sampling for 23x1 feature maps [66].
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3.3 AttnToMismatch CNN

3.3.1 Network Architecture

Attention-based transformer, a DL neural network architecture is used by AttnToMismatch CNN

[20] for off-target specificity prediction of CRISPR-Cas9 system. As shown in figure 3.3, the

architecture of AttnToMismatch CNN consists of:

• Embedding layers to encode each position of the sgRNA and DNA sequence pair into a

vector representation and encode into a matrix,

• A transformer layer with encoder and decoder parts to produce output with dimension

same as the input,

• CNN layer with two Conv2d and two Maxpooling layers interleaved, and,

• Two fully connected dense layers with a dropout layer used on the last dense layer to

randomly mask portions of the output to avoid over-fitting, and,

• A fully connected layer with softmax function to predict probability of sgRNA as positive

or negative samples.

5-fold cross validation and leave-3-sgRNAs-out scenario are done to evaluate the model.

3.3.2 Feature Extraction

Base-pairs from each position of the aligned sgRNA and DNA sequences are extracted forming

16 different types. Depending on the length of the input sequence from the dataset, 20 bp are

extracted. Raw feature importance is the average loss score obtained by calculating eventual

losses and mean square losses for regression by perturbing each input feature across all the

samples. Raw feature importance is then normalized by summing all the feature importance

values and provided as weights for the model.

3.3.3 Dataset

Off-target dataset was created by collecting 656 off-target sites used in DeepCRISPR [18] model

as positive samples and around 165000 sgRNA-DNA mismatch pairs from Cas-OFFinder [45]

as negative samples.
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Figure 3.3: Network architecture of AttnToMismatch CNN model [20]

3.3.4 Results

On comparing the performance of AttToMismatch CNN model with other models like RF and

GBT, AttToMismatch CNN outperformed other models by a margin of 10% and around 20%

margin in the 5-fold cross validation and leave3-sgRNAs-out scenarios. This model improves

true positive rate and reduces the false positive rate with the application of embedding and

transformer layer in encoding extracted sequence features into vectors.

3.3.5 Review

The process of encoding the sequence features into vectors is inspired by the word embedding

technique in the natural language processing (NLP). The off-target dataset used in this study

is highly imbalanced and the authors have mentioned that they have over-sampled the positive

samples in every mini-batch making it equal to negative samples. But the authors of AttToMis-

match CNN did not give detailed information of how they over-sampled the positive samples.

The negative samples of the off-target dataset constructed using the Cas-OFFinder [45] is very

similar to the positive samples used from the DeepCRISPR [18] model. Input perturbation com-

ponent used for identifying the feature importance did not show any difference for the features
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other than the first and second positions of 5’ end of the sgRNA. For extracting the features from

the sgRNA-DNA sequence pair, the authors used 20 base-pairs from the sequence-pairs leaving

the PAM region, which is very crucial for predicting off-targets in CRISPR-Cas9 system.

3.4 CnnCrispr

3.4.1 Network Architecture

CnnCrispr [21] constructed Glove vector (GloVe) embedding model by extracting sequence

information of sgRNA and corresponding DNA sequence in the form of a co-occurrence matrix

and predicted the off-target propensity of sgRNA using CNN and biLSTM. As shown in figure

3.4, the architecture of this model consists of:

• An embedding layer accepts 2-dimensional vector matrix of GloVe model created from a

co-occurrence matrix,

• biLSTM network with 5 convolution layers and 2 full connection layers to extract context

features from input,

• Batch Normalization and Dropout layers to prevent model over-fitting, and,

• Output layer with softmax and sigmoid functions as activation functions to obtain results

of classification and regression model.

Adam algorithm is used to optimize loss function and initial learning rate is set to 0.01 for

training the model.

3.4.2 Feature Extraction

Similar to the AttToMismatch CNN [20] model, the features are extracted by aligning the

sgRNA-DNA sequences forming 16 different types of base-pairs set with a unique index value.

The sgRNA-DNA sequence-pair are encoded for GloVe embedding. A pre-processed co-occurrence

matrix is created from the sequence-pairs and trained using the GloVe model to learn word vec-

tors and produce embedded word vector representation of the base-pairs.
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Figure 3.4: Network architecture of CnnCrispr model [21]

3.4.3 Dataset

CnnCrispr was trained on the off-target dataset of DeepCRISPR [18] model (HEK293 cell line

with 18 sgRNA and K562T cell line with 12 sgRNA) with 80% of the samples for training and

20% for testing processes.

3.4.4 Results

Performance of the model decreased when the Dropout and BatchNormalization layers were

removed, as these layers improved the performance and prevented over-fitting. A comparative

study is done on the DeepCRISPR [18] off-target dataset by comparing the performance of

CnnCrispr with other models like CFD [25], MIT [11] and CNN Std [19]. CnnCrispr outper-

formed all the models by achieving good results. Similar to the AttToMismatch CNN model

[20], leave-1-sgRNA-out and 29-fold cross-validation scenarios were performed to validate the

model’s performance. CnnCrispr outperformed all the other models in both the scenarios.
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3.4.5 Review

CnnCrispr implemented the concept of word embedding technique to encode the sequence fea-

tures into the vector model as performed in the AttToMismatch CNN [20] model. The authors

have avoided the unknown influence of artificial feature construction on the prediction results

by using the GloVe vector model, which created a co-occurrence matrix for the base-pairs. This

extracted the sequence information of the sgRNA and corresponding DNA sequences, provid-

ing a detailed analysis of the position of nucleotides in the sgRNA-DNA sequence pairs. Use

of the GloVe embedding model to extract the sequence information is a novel and innovative

approach. However, the application of CnnCrispr model by researchers for off-target prediction

is limited due to its complexity in the feature extraction process.

3.5 Summary

In this chapter, a detailed review of different DL models that were developed to predict the off-

target efficacy of the sgRNA in CRISPR-Cas9 gene editing was provided. In the next chapter,

the implementation of the graph-based approach to predict the off-target effects in CRISPR-

Cas9 gene editing will be briefly discussed.
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4 Graph Theory to Predict Off-targets

This chapter focuses on the implementation of a graph-based approach to predict the off-targets

in CRISPR-Cas9 system. Section 4.1 provides the details of the off-target dataset used in this

study. Section 4.2 explains about creating the network graphs from the off-target dataset. Two

different case studies of feature extraction methods have been discussed in section 4.3. Section

4.4 explains about performing the cluster data sampling to handle the imbalance issue in the

dataset. Section 4.5 explains about how to perform link prediction using StellarGraph to predict

off-targets.

4.1 Off-target Dataset

Data used in this study is created by the authors of DeepCRISPR [18] model and has been

used for off-target prediction by the AttnToMismatch CNN [20] and CnnCrispr [21] models.

Data is obtained by curating the human sgRNA whole-genome off-target profile data detected

by Digenome-seq [27], IDLV [30], BLESS [35], GUIDE-seq [36] and LAM-HTGTS [38].

This dataset includes 29 unique sgRNAs by concatenating data from two different cell types:

HEK293 cell line and its derivatives (18 sgRNAs) and K562T (12 sgRNAs), accounting for a

maximum of six nucleotide mismatches. This dataset is included in the attachments provided

in the CnnCrispr [21] article. Information about this dataset can be found in ”Supplementary

Materials” section under ”Appendices”, with the file name as “off-target data”. This dataset

contains the labels of off-target producing sites as ”1” and the labels of other sites as ”0” as

shown in the figure 4.1.

The obtained dataset is validated against null values. The length of sgRNA and target se-

quences is validated to be of same length (23 nucleotides in each sequence). A case-sensitive

validation is also performed to verify if the sgRNA and DNA sequences do not contain any char-
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Figure 4.1: Off-target dataset used in this study

acters other than upper-cased A, C, G and T, referring to the nucleotides, Adenine, Cytosine,

Guanine and Thymine respectively.

4.2 Graph Creation

After validating the dataset, a network graph is created using StellarGraph API [23]. “Nodes”

and “Edges” are required to generate network graph from the off-target dataset. All the unique

sequences in the dataset including sgRNA and target DNA sequences are made as nodes in the

graph. The relationship between the sgRNA and DNA sequences are made as edges for the

graph. An edge will have a start node and a destination node or target node. All the sgRNA

sequences will be set as start nodes and all the target DNA sequences that are identified as po-

tential off-target sites will be set as target nodes for the edges in this graph. The graph contains

29 clusters based on the 29 unique sgRNA sequences forming links with their corresponding

potential off-target sites.

OT and NOT are the target DNA sequences that are differentiated based on the labels in the

dataset corresponding to the result of off-targets set by the authors of CnnCrispr. All the target

sequences that are identified as potential off-target sites (with label as ’1’ from the dataset) are

named as “OT” and target sequences that are not identified as off-targets (with label as ’0’) are

named as “NOT” as shown in figure 4.2. The naming of the sequences is done:

1. To create the graph with only positive links (links between sgRNA and its corresponding

potential off-target (OT) sequences).

2. To create balanced clusters containing equal number of OT and NOT sequences for every

sgRNA cluster using cluster data sampling
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The sequence names, OT and NOT, are discarded during link prediction and not saved as labels

for nodes. This is done to make sure that the GCN model can accurately predict the presence

and absence of links between the sequences by using only the features extracted from these

sequences and not based on these sequence names. All the unique sequences in the graphs are

numerically encoded forming unique sequence id for each of these sequences. The sequence

id for these sequences are generated by alphabetically sorting all the sequences (including the

sgRNA, OT and NOT sequences) in a pandas dataframe and then numerically encoding the se-

quences using label encoding.

Figure 4.2: Creating network graph from off-target dataset

Network graph containing 29 clusters representing 29 sgRNA sequences with potential off-

targets (OT) and a subgraph of 1 sgRNA cluster with its corresponding potential off-targets

(OT) is created and drawn using NetworkX [85]. This graph and subgraph can be seen in figure

4.3. The labels of the nodes are the unique sequence ids generated for the sgRNA and target

sequences. Node with the label “804” in the center is the sequence id for a sgRNA sequence

and its neighbor nodes are its corresponding off-target sequences.

4.3 Feature Extraction

As all the sequences are numerically encoded, features for these sequences need to be provided,

which will enable the GCN model to embed these sequences in a graph. Performance of the

model is tested by giving two different types of features extracted from within the sequences -
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Figure 4.3: Network graph and sub-graph of off-target dataset

position and occurrences of nucleotides in the sequence to identify the sequences in the graph.

4.3.1 Case study 1: Nucleotide Occurrence

The occurrences of nucleotides in a sequence is extracted. Occurrences of nucleotides can

be determined by providing different size of k-mers. The k-mers are the substrings of length k

contained within a biological sequence. The choice of k-mers have different effects on sequence

assembly. Features are extracted from within the sequences by providing different k-mer sizes.

k values of 1, 2 and 3 are provided to get the occurrences. For example, as shown in figure 4.4,

the features will be A, C, G and T for k-mer size of 1. Number of features for the sequences in

this case depend on the k values of 1, 2 and 3 as 4, 16 and 64 respectively.

Figure 4.4: Extracting features for nodes using occurrences of nucleotides in sequences with
different k-mer sizes of 1, 2 and 3.)
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4.3.2 Case study 2: Nucleotide Position

Features for the sequences are generated by considering the position of the nucleotides in the

sequences. For every sequence, 92 different features are extracted depending on the possibility

of 4 nucleotides occurring at 23 positions in the sequence. Based on the presence and absence

of nucleotides in the position, the values are entered as 1 and 0, respectively as shown in Figure

4.5.

Figure 4.5: Extracting features for nodes using position of nucleotides in the sequences

4.4 Cluster Data Sampling

As the dataset is highly imbalanced, the GCN model needs to be trained and tested on a bal-

anced graph, where the OT and NOT samples are balanced in every sgRNA cluster in the graph

as shown in the figure 4.6 (b). Unlike, the leave-sgRNA-out scenario, that was tried in previous

models to remove the imbalance between samples, cluster data sampling is done to balance the

OT and NOT sequences in each sgRNA cluster. This is achieved by randomly sampling NOT

sequences with equal amount of OT sequences present in a sgRNA cluster. By this, it can be

verified that all the sgRNA clusters will have equal amount of OT and NOT sequences.

The cluster is also sampled in imbalanced scenarios as shown in Figure 4.6 (a) and (c), where

the NOT sequences are randomly sampled depending on the amount of OT sequences present in

a sgRNA cluster. For imbalanced towards NOT scenario (imbalanced NOT clusters), as shown

in figure 4.6 (c), NOT sequences are randomly sampled with twice the amount of OT sequences

present in every sgRNA cluster. Similarly, for imbalanced towards OT scenario (imbalanced OT
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(a) (b) (c)

Figure 4.6: Cluster data sampling of OT and NOT sequences in Imbalanced OT (a), balanced
(b) and imbalanced NOT (c) clusters

clusters) as shown in figure 4.6 (a), NOT sequences are randomly sampled with almost half the

amount of OT sequences present in every sgRNA cluster. In all the three scenarios, the count

of sgRNA and OT sequences remain unchanged and only the NOT sequences are randomly

sampled depending on the amount of OT sequences present in every sgRNA cluster. The total

amount of sgRNA, OT and NOT sequences used for this research in all three scenarios can be

found in ”Table I” added under ”Tables” section in Appendices.

4.5 Off-target Prediction

4.5.1 Off-target Graph

A network graph from the off-target dataset is created as mentioned in section 4.2, by forming

the nodes and edges. For nodes, a pandas dataframe is created. All the sequences (sgRNA,

OT and NOT) are taken as nodes and encoded with sequence ids. Sequence-based features

are extracted from within the sequences as mentioned in section 4.3 and set as column names

and column values for the nodes dataframe. For edges, the sequence id of the sgRNA and

its corresponding potential off-target sequences are taken in another pandas dataframe. Using

StellarGraph API [23], a graph is created by giving these two dataframes as nodes and edges.
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4.5.2 ”Edgesplitter” Function

Once the graph is created, link prediction is performed to predict whether a link or edge in a

graph should exist. This is done by performing binary classification using the in-built functions

provided by the StellarGraph [23]. “EdgeSplitter” function is used to apply a binary operator

to classify the relationship between sgRNA and target sequences as positive and negative links,

”1” and ”0”, respectively. ”1” denotes that the link exists between the sgRNA and target se-

quences. ”0” denotes the absence of link between the sgRNA and target sequences.

“EdgeSplitter” function will carefully split the input graph (with 626 positive edges) into

train graph (with 501 positive edges) and a test graph (with 125 positive edges) with a 80:20

train-test split. The train graph (with 501 positive edges) is further split into node embedding

set(with 401 positive edges) and temporary test set (with 100 positive edges) using a second

80:20 train-test split. This temporary test set (with 100 positive edges) is again split into link

embedding set (with 80 positive edges) and an independent test (with 20 positive edges) using

a third 80:20 train-test split. Figure 4.7 shows an overview of how the “EdgeSplitter” function

splits the input graph into multiple units.

Figure 4.7: Link Prediction to predict off-target efficacy of sgRNA

Every individual set created from the input graph (with 626 positive edges) will have a

unique functionality:

• Node embedding set (with 401 positive edges) is used to compute node embeddings.

GCN model will learn about all the sequences (nodes) in the graph. This set will have

only positive edges.
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• Link Embedding set (with 80 positive edges and 80 negative edges) is used to compute

link embeddings on positive and negative edges that were not used for computing se-

quence (node) embeddings. GCN model will use the information gained from node

embedding and understand why a positive or negative link exist between the sequences

(nodes).

• Independent test set (with 20 positive edges and 20 negative edges) is used to verify the

performance of the GCN model in classifying the positive and negative links between the

sequences (nodes) in the graph. This set contains positive and negative edges that are not

used in the node embedding and link embedding processes.

• A final test graph (with 125 positive edges and 125 negative edges) is used to evaluate

the performance of the GCN model. AUC values under ROC curves (auROC) and AUC

values under PRC curves (auPRC) values are calculated to measure the performance of

the model. This graph contains positive and negative edges that are not used in the node

embedding, link embedding and in the independent test set.

The split ratio used in this study is the state-of-the-art values provided by the StellarGraph

[23]. ”Table II” added under ”Tables” section in Appendices provides the split count of positive

and negative edges for each set from the input graph used for this research.

4.5.3 GCN Model

GCN [24] model is created using StellarGraph [23]. GCN layers are stacked with the graph

convolution and dropout layers. Two GCN layers with 16 units each are used with the rate of

dropout for the input of each layer set to 30%. The output of each GCN layer is activated using

ReLu activation. Adam algorithm is used to optimize the loss function with learning rate set

to 0.01 for training the model. The output of the model will be binary classification of 1 and

0 (1 denoting the presence and 0 indicating the absence of links between sgRNA and target

sequences). ”FullBatchLinkGenerator” function provided by StellarGraph library will provide

the feature array and normalized adjacency matrix to the GCN model. The performance of the

model is evaluated by learning node and link embeddings.
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4.5.4 Node Embedding

For node embedding, StellarGraph provides an option to compute based on random walks based

node embedding. A biased random walk is generated from the off-target graph with fixed ran-

dom walk parameters of p (”1/p” probability of returning to source node) and q (”1/q” probabil-

ity of moving to a node away from source node) set to 1. The model learns about the sequences

(nodes) co-occurring in short random walks represented closely in the embedding space.

4.5.5 Link Embedding

Link embeddings are calculated by applying a binary operator on the sgRNA and OT sequences

of each link. StellarGraph provides the option to evaluate the performance of the model us-

ing different binary operators - Hadamard, average, L1 and L2. Sequence representations are

obtained from node embedding and a binary classifier is used to predict if a link should exist

between any two sequences in a graph.

4.5.6 Performance Evaluation

With node and link embeddings, a logistic regression classifier with 10-fold cross validation

(CV) is trained on the embeddings of positive and negative edges to predict a binary value

indicating if a link between the sequences should exist or not. The model is trained end-to-end

using binary cross entropy between link probabilities and true link labels for 10 epoch values

and evaluated using the test set. Finally, the model is applied to the independent test graph to

predict only the positive links in the graph. Area under the receiver operating characteristic

(auROC) and area under the precision-recall curve (auPRC) metrics are calculated to measure

the performance of the model.

4.6 Summary

This chapter provided a detailed information about creating network graphs from off-target

dataset, extracting sequence-based features, sampling sequences on balanced and imbalanced

clusters using cluster data sampling and implementing link prediction to predict links between

sgRNA and off-target producing target sequences. Next chapter will discuss the performance

of this model.
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5 Results and Discussion

In this chapter, performance of the GCN model in predicting the off-target efficacy of sgRNA is

validated. A brief discussion about the performance of the model is provided in the end of this

chapter.

5.1 Computing auROC and auPRC values

StellarGraph is not able to perform link prediction on the entire dataset as it is highly imbal-

anced. Hence, the performance of GCN model is validated on balanced and imbalanced clusters

created using cluster data sampling. The performance of the model is validated by calculating

the area under the receiver operating characteristic (auROC) and area under the precision-recall

curve (auPRC) metrics. As the NOT sequences are randomly sampled, the auROC and auPRC

values tend to change for every run. Hence, the experiment is run multiple times and the mean

of auROC and auPRC values are calculated.

Figure 5.1: Mean auROC values computed for link prediction analysis
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auROC and auPRC are performance metrics that can be used to evaluate the performance

of the GCN model in predicting the positive edges. The higher the values are, the better the

performance will be in predicting the positive links in the graph. An auROC value 0.5 and

below corresponds to the worst performing model and a value of 1.0 corresponds to the best

performing model.

As shown in figure 5.1, the model performs well when the nucleotide occurrences extracted

from sequences are given as features with k value as 1. GCN is able to achieve auROC value of

0.959 when the dataset is balanced. Under the imbalanced datasets, the model has an auROC

value of 0.976 and 0.987, when the dataset is imbalanced towards OT and NOT sequences,

respectively. The auPRC values of balanced, imbalanced OT and imbalanced NOT clusters

were found to be 0.961, 0.988 and 0.976, respectively, as shown in figure 5.2. GCN performs

very well in imbalanced towards NOT scenario (imbalanced NOT clusters), where the number

of NOT sequences are more than OT sequences.

Figure 5.2: Mean auPRC values computed for link prediction analysis

It could be observed from both the figures 5.1 and 5.2, that the performance of the model

decreases when the k-mer size is increased. For k-mer sizes of 2, the auROC values and auPRC

values in balanced clusters were found to be 0.889 and 0.874, respectively. When the clusters

are imbalanced towards OT sequences, the model scores 0.931 and 0.928 of auROC and auPRC

values. When the clusters are imbalanced towards NOT sequences, the model scored auROC

and auPRC values of 0.914 and 0.907, respectively. In this scenario, the model performed well

when there are more OT sequences than NOT sequences in every sgRNA clusters.
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Similarly, for k-mer size of 3, the performance of the model further decreased. Under bal-

anced conditions, the auROC and auPRC values were found to be 0.888 and 0.870, respectively.

When the clusters are imbalanced, the auROC values were found to be 0.893 and 0.888 and the

auPRC values were found to be 0.881 and 0.873 for imbalanced towards OT and NOT se-

quences, respectively. No significant difference was observed with respect to the cluster data

samples.

When providing the position of nucleotides in the sequences as features, the model per-

formed very well. In balanced clusters, the model scored auROC and auPRC values of 0.925

and 0.927, respectively. When the cluster is imbalanced towards OT sequences, the model

scored 0.877 and 0.879 of auROC and auPRC values respectively. When the model is imbal-

anced towards NOT sequences, the model scored 0.884 and 0.865 of auROC and auPRC values

respectively.

”Table III” added under ”Tables” section in Appendices contains the auROC and auPRC

values calculated for all the feature types. ”Figures I-IV” added under ”Figures” section in

Appendices show the binary accuracy and loss curves plotted for link prediction using occur-

rences (with k-mer sizes of 1, 2 and 3) and position of nucleotides in sequences as features for

balanced, imbalanced NOT and imbalanced OT clusters.

5.2 Comparison of auROC values with other models

The auROC values obtained by GCN model for balanced and imbalanced clusters are com-

pared with the results of other off-target predicting models performed by the authors of Cn-

nCrispr [21]. These models include models like MIT [11], DeepCRISPR [18], CNN Std [19],

CnnCrispr [21] and CFD [25] as shown in figure 5.3.

This comparison is significant to understand how well GCN has performed in predicting

off-target mutations. The authors of CnnCrispr [21] used 29-fold cross validation method of

leave-1-sgRNA-out scenario to handle the data imbalance issue. All these models have been

trained and tested on the same off-target dataset.
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Figure 5.3: Comparison of auROC values with other predictive models

From the figure 5.3, it can be observed that the GCN model managed to perform well when

compared to other model. With nucleotide position as feature, GCN was able to perform better

than scoring-based models such as CFD and MIT and managed to perform better than Deep-

CRISPR. This is astounding as the feature extraction with this feature type is very straight-

forward and does not require manual effort. The performance of GCN is almost equal to the

performance of CNN Std model that was trained and tested with the leave-1-sgRNA-out sce-

nario. With nucleotide occurrence of k-mer sizes of 1 as feature, GCN outperformed all the

other models. Table IV added in Appendices contains the auROC values of all the models.

5.3 Discussion

To predict the efficacy of sgRNA, link prediction method is used, in which the existence of

links between sgRNA and target DNA sequences is predicted. GCN model is used to validate

the off-target efficacy of sgRNA in both feature types. Performance of GCN is extremely good,

when nucleotide occurrences with k-mer size of 1 are given as features for the sequences in

the network graph. The complexity of sequence-based feature extraction when the nucleotide

position is given as feature is very less. it is observed that GCN performs well on train and

test graphs. By increasing the k-mer sizes, it can be observed from auROC and auPRC metrics

that the performance of the model decreases and when providing the position of nucleotides as

feature, the model performs comparatively better.
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StellarGraph API provided many in-built functions which was used to perform off-target

prediction using link prediction method by automating the process of splitting the edges into

different train and test graphs and to perform 10-fold cross validation using logistic regression

to compute the auROC and auPRC values. However, StellarGraph did not allow usage of whole

dataset, as the off-target dataset is highly imbalanced, negative samples (NOT sequences) were

115 times more than positive samples (OT sequences). Hence, cluster data sampling is done

to create balanced and imbalanced clusters. In the imbalanced clusters, for imbalance NOT

clusters, the NOT sequences were sampled with twice the count of OT sequences and for im-

balance OT clusters, NOT sequences were sampled with half the count of OT sequences, thus

creating controlled imbalanced clusters. NetworkX is used to create network graph and to visu-

alize the clusters in the off-target graph.

The key takeaways from this research work are:

• A graph-based approach to predict off-target mutations in CRISPR-Cas9 gene editing

using link prediction, which is easy to implement and replicate by researchers, is possible.

• Graph Convolutional Network (GCN) [24] can be used to predict off-target efficacy of

sgRNA by predicting links between sgRNA and off-target inducing target DNA sequences

as it has achieved an auROC value of above 0.85 proving that the performance is excellent.

• Sequence-based features, like position and occurrences of nucleotides in a sequence, can

improve the performance of the GCN model in analysing the graphs with high accuracy.

• The imbalance in off-target dataset can be handled using cluster data sampling, where the

sequences can be randomly sampled and balanced for every sgRNA cluster.

• StellarGraph [23] provides a user friendly API to create network graphs and perform

graph validation using GCN model. This can be used by researchers to automate the

creation and normalization of adjacency and feature matrices.

5.4 Summary

This chapter discussed the performance of GCN model in predicting off-target efficacy of

sgRNA in CRISPR-Cas9 gene editing. A concluding statement will be provided in the next

chapter.
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6 Conclusion

In this approach, a novel graph-based approach to predict the off-target efficacy of sgRNA is

introduced. Almost all the DL models that predicted off-target effects of sgRNA, have used

convolutional neural network (CNN) in their architecture. This is the first time, a graph neural

network has been implemented for off-target prediction. The existence of links between sgRNA

and its potential off-target sequences can be predicted by using link prediction method. Link

prediction is performed using StellarGraph which made the computation process much easier.

Graph convolutional network (GCN) model is able to achieve high AUC values under ROC

curves (auROC) and AUC values under PRC curves (auPRC) values when predicting off-targets.

Unlike the previous deep learning models that were created to predict off-target effects, this

approach is easy to understand and replicate for off-target prediction research.
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Appendices

Appendix 1: Tables

Table I: Sequences in balanced and imbalanced clusters created using clus-

ter data sampling

Table II: Positive and negative edges created using ”Edgesplitter” function

provided by the StellarGraph
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Table III: Mean auROC and auPRC values computed for different feature

types for link prediction

Table IV: Comparison of mean auROC values of GCN model with other

off-target predicting models
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Appendix 2: Figures

Binary accuracy and loss curves plotted for link prediction using occur-

rences (with k-mer sizes of 1, 2 and 3) and position of nucleotides in se-

quences as features

Figure I: Nucleotide occurrence with k-mer size of 1 for balanced (a), imbalanced NOT

(b) and imbalanced OT (c) clusters

(a) (b) (c)

Figure II: Nucleotide occurrence with k-mer size of 2 for balanced (d), imbalanced NOT

(e) and imbalanced OT (f) clusters

(d) (e) (f)
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Figure III: Nucleotide occurrence with k-mer size of 3 for balanced (g), imbalanced NOT

(h) and imbalanced OT (i) clusters

(g) (h) (i)

Figure IV: Nucleotide position for balanced (j), imbalanced NOT (k) and imbalanced OT

(l) clusters

(j) (k) (l)

62



Appendix 3: Supplementary Materials

Material I: Source Code

The codes are now available in the following GitHub repository:

https://github.com/Prasoonk02/GCN-CRISPR

Please send a mail to prasoonk02@gmail.com for access.

Material II: Dataset

Data used in this study is included in the published articles “DeepCRISPR” and “CnnCrispr”.

The corresponding supplementary information files can be found below:

DeepCRISPR - https://doi.org/10.1186/s13059-018-1459-4

CnnCrispr - https://doi.org/10.1186/s12859-020-3395-z

The data can be downloaded from CnnCrispr [21] and the file name is “off-target data”.
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