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Abstract

Developing a computational workflow for eQTL analysis on the X chromo-
some

Despite advances in sequencing technology and computational biology which led to identifying

underlying causes for complex traits, utilization of X chromosome data lags behind the auto-

somes. This can be attributed to the inherent complexities of analyzing X chromosome data

and extra data processing steps needed before the analysis. The aim of this thesis was to de-

velop a computational workflow for the inclusion of X chromosome analysis and improve the

shortcomings in order to supplement the existing eQTL analysis methods. We demonstrated

that after adjustment of X chromosome dosage differences between females and males, existing

workflows can be used to uncover potential causal variants for complex traits and diseases. Us-

ing RNA-seq data from human lymphoblastoma cell lines obtained from GEUVADIS project

we performed statistical fine mapping and colocalization analysis with external databases. Re-

sults show significant associations of PLP2 gene with respiratory and cardiovascular functions.

CERCS:

B220 Genetics, Cytogenetics

P170 Computer science, numerical analysis, systems, control

Keywords:

GWAS, eQTL, X chromosome, Fine mapping, BCFtools
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Kokkuvõte

X kromosoomil põhineva eQTL analüüsi arvutusliku töövoo väljatöötamine

Hoolimata edasiminekutest DNA sekveneerimise tehnoloogias ja arvutusbioloogias, mille abil

on identifitseeritud komplekssete tunnuste põhjused, on X kromosoomi data analüüs autosoomi-

dest maha jäänud. Selle põhjuseks võib tuua lisasammud X kromosoomi data töötlemisel enne

analüüsimist ning X kromosoomi data analüüsimise keerukuse. Antud töö eesmärk oli täiustada

olemasolevaid eQTL analüüsimeetodeid, arendades X kromosoomi kaasav arvutuslik töövoog

ja parandada puudusi. Me näitasime, et peale X kromosoomi doosi erinevuse korrigeerimist

meeste ja naiste vahel, on võimalik kasutada olemasolevaid meetodeid potentsiaalsete komp-

lekssete tunnuste ja haiguste põhjuslike variantide tuvastamiseks. GEUDAVIS projektist saadud

inimese lümfoblastoma rakuliini RNA-seq datat kastades sooritasime statistilise peen kaardis-

tamise ning kolokalatsiooni analüüsi väliste databaaside abil. Tulemused näitavad statistiliselt

olulisi seoseid PLP2 geeni ning respiratoorsete ja kardiovaskulatoorsete funktsioonidega.

CERCS:

B220 Geneetika, tsütogeneetika

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

Märksõnad:

GWAS, eQTL, X kromosoom, Peen kaardistamise, BCFtools
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Introduction

Advances in molecular genetics led to the fast-paced identification of genes that are associated

with human diseases. Traditionally research focused on single gene single disease model, where

finding the gene responsible for abnormal phenotype was the goal. In fact, many well-studied

diseases are transmitted in various monogenic (Mendelian) ways. Cystic fibrosis is caused

by an autosomal recessive mutation in the CTFR gene, sickle-cell anemia is associated with an

autosomal dominant mutation in the beta hemoglobin gene and an X-linked mutation in the gene

responsible for the production of dystrophin leads to Duchenne syndrome. [1] Nevertheless,

most traits are thought to be complex. Complex phenotypes arise from the accumulation of

individually small effects of multiple genes and environmental factors. This is one of the main

drivers of variation in population but also serves as a feedback mechanism to diminish adverse

effects in the case of mutation in genes associated with the trait. [2]

The majority of the disorders arise when regulatory mechanisms can not compensate for the

change (loss) of function caused by mutations. Most prevalent diseases such as diabetes, heart

diseases, obesity, etc. are classified as complex diseases. [3] The very nature of complex traits

makes it difficult to find associated regions in the genome that would explain the phenotype. The

most resorted method for discovering these associations is Genome-Wide Association Studies

(GWAS). In spite of generating a large amount of data, GWAS has its shortcomings which I

will discuss further. Additionally, the existence of a certain variant in the genome does not

always mean it will have any observable effect on the phenotype of interest. Expression of

the variant or effect of the variant on the expression of another locus usually determines the

outcome. Hence, eQTL analysis which focuses on the variance of gene expression is often

performed after GWAS.

Despite the advances in computational biology, analyzing sex chromosomes remains chal-

lenging due to experimental constraints and the additional effort needed for data processing.

This has resulted in the omittance of sex chromosomes from GWAS and post GWAS studies.
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[4] It is crucial that we develop analysis methods that include sex chromosomes, especially the

X chromosome that has been shown to carry loci associated with many known human diseases.

This work aims to supplement existing eQTL analysis methods by developing a computational

workflow that includes X chromosome analysis and improves on inherent shortcomings such as

differences between males and females in the dataset.

The thesis is structured in the following way. Chapter 1 describes the literature on the topic

and summarizes the problem in hand. Chapter 2 discusses the methods used in the study and

brings out the results. The results are further discussed and summarized in Chapter 3.
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1 Literature review

1.1 GWAS

First introduced in 2005, Genome-Wide Association Studies (GWAS) in which a collection of

genetic variants are tested to link genotype to the observed phenotype, has revolutionized the

study of complex disorders. [5] As the cost of genome sequencing came down exponentially,

the number of GWAS published increased rapidly. [6] Benefits that came from it include the

discovery of new drug targets, estimating disease susceptibility, and practical applications in

personalized medicine fields such as adjusting the dosage of administered drugs based on the

patient’s genotype. [7] GWAS can also find associations with low frequency and rare variants.

Predictably, the number of associations found significantly increases with the number of sam-

ples analyzed. This inevitably increases the cost associated with GWAS. As a result, most stud-

ies make use of genome-wide single nucleotide polymorphism (SNP) arrays and subsequent

statistical imputation of unobserved genotypes using the reference panel. Moreover, GWAS

only explains a fraction of the heritability of complex traits. [8] Most GWAS hits pinpoint to

noncoding regions of the genome hence making it challenging to find the causal variant, hence

the gene of interest. [9] Producing multiple association hits with a given trait further increases

the challenge of identifying the causal variant. Considering all the limitations of GWAS focus

has been shifting to post-GWAS research to further illuminate the genetic mechanism behind

the complex diseases.

1.2 eQTL

With the increased availability of transcriptomic data which catalogs the mRNA levels in dif-

ferent cell and tissue types, eQTL analysis has been proposed to be the next step after GWAS.

eQTL is defined as a locus that explains variance in expression levels of a gene. An SNP that
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has been found to be associated with a trait in GWAS has a 3 times higher chance of being

associated with gene expression, hence to be an eQTL [10]. Based on the enrichment of asso-

ciated SNPs in different tissue and cell types eQTL analysis also allows identifying the causal

cell type of the complex disease. Hu et al.. demonstrated that CD4+ T-cells are causal cell

types for rheumatoid arthritis while B-cells are related to Lupus Erythematosus [11]. Funda-

mentally, eQTL analysis bridges the gap between the genetic variation and disease by profiling

the intermediate phenotypes in the shape of SNP −→ gene expression −→ trait (Figure 1.1).

Figure 1.1: Flow from genetic variation to a trait. Variation in genetic code shows its effect
on a trait through many intermediate phenotypes. This figure summarizes the road from Single
Nucleotide Polymorphism to the hypothetical disease state.

eQTLs are classified as cis-eQTLs that act on local genes (+- 1MBP <) and trans-eQTLs that

act on distant genes. Cis-regulatory variance derives from variation in regulatory regions where

transcription factor binds while trans variation is generally the result of variation in transcription

factor itself. Research suggests that most genes are regulated by cis-eQTLs and they tend to

have larger effect sizes [12]. In the most simplistic way, eQTL analysis discovers the linear

regression equation that relates the expression to the genotype. Using the equation of

Yi = B0 +B1Xi + εi (1.1)

we can estimate a phenotype Y from the expression level X while accounting for basal expres-
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sion of B0, slope B1 and error εi (Figure 1.2).

Figure 1.2: Linear regression graph of eQTL [13]. Trait value associated with variant increases
proportionally to the number of alles of interest the individual possesses.

1.3 Genotype imputation

Although the cost of whole-genome sequencing has decreased many folds in recent years, it is

yet not feasible to sequence thousands of people for analysis. Instead, researchers use SNP ar-

rays with the size of 100000 to 1000000 variants. Considering the fact that more than 10 million

estimated genetic variants exist, a typical study only covers a small fraction of the genome. This

limited data is still helpful and can uncover many associations. A 2006 paper by Burdick et al.

suggested a method for inferring the rest of the missing data computationally [14]. Now known

as genotype imputation, this method makes use of a reference panel of haplotypes or geno-

types and allows to evaluate associations of SNPs that are not directly genotyped. The main

principle of imputations is that stretches of chromosomes are genetically linked and inherited

together. This assumption holds for related and unrelated individuals with a significant differ-

ence being the much shorter shared haplotype stretch for unrelated individuals. [15] After the

haplotype is identified by genotyped SNPs missing variants can be filled with different algorith-

mic approaches such as heuristic, expectation-maximization, or more complicated Markovian
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coalescent models. Figure 1.3 depicts the simplified representation of genotype imputation.

Figure 1.3: Genotype imputation. Graphical representation of a hypothetical imputation of
haplotypes froma reference panel

There are two main classes of genotype imputation tools. The first class includes tools

that use all observed variants to impute missing SNPs and are resource-intensive. IMPUTE

[16], MACH [17], and fastPHASE/BIMBAM [18] are examples of this class. The second more

computationally efficient software only uses markers near the imputed genotype to make a

prediction. Well-known examples include PLINK [19], TUNA [20], and BEAGLE [21]. These

tools provide remarkable accuracy of over 90 percent [15]. Whenever a variant can not be

imputed with high confidence, most of the mentioned tools provide probability scores for the

identity of the genotype. Obtained partial information can still be effectively used in association
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analysis.

There are several use cases of genotype imputation. It increases the power of GWAS studies.

On average 10% more peaks can be obtained on loci of interest after imputation. [22] It can

also accelerate genetic fine-mapping research. After obtaining an association signal, genotype

imputation allows us to zoom in and test for association in nearby SNPs. This procedure aids

in identifying the potential causal variants. Furthermore, genotype imputation facilitates the

meta-analysis of different cohorts. When different chips are used for genotyping, imputation

can equate the set of SNPs across studies. Results then can be combined together to increase

the power of analysis by increasing the sample size. [23]

1.4 Statistical fine mapping

GWAS helps to identify a region on the genome that has the possibility of containing a causal

variant. This is only the first step and additional statistical analysis should be performed to

differentiate causal variants from the variants that are correlated with causal variants due to

proximity. Most of the SNPs on microarray chips are variants that have a large linkage dise-

quilibrium (LD) with the causal variants in their neighborhood. [24] LD can be defined as the

together inheritance of the alleles within a haplotype more than it would be suggested by ran-

dom chance. [25] Often LD patterns between SNPs are complex and it is not easy to identify

the causal SNP. Statistical fine-mapping can help us unravel the causal variants. For performing

fine mapping we need an association of region on the genome with a trait found in previous

studies and the assumption that a casual variant exists. Firstly associations are discovered using

GWAS. Hits over a threshold significance value (P-value < generally 5∗10−8) [26] are selected

and the locations of these lead SNPs are tagged for fine mapping. A sample workflow for fine

mapping is shown in the Figure 1.4 below.

Other than LD several other criteria can influence the power of fine mapping. Two main

examples are SNP density and sample size. Sample size can be increased with a costly method

of sampling more individuals or combining data from different studies at the cost of losing

statistical power. For increasing SNP density we can use genotype imputation. An important

factor while imputing genotype sit to choose an appropriate reference panel for the dataset at

hand. Expectedly, the less accurate the imputation is, the less significant associations we will

detect. [22]

Once significant SNPs are selected by fine-mapping we can proceed to decode their bi-
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Figure 1.4: Fine mapping workflow. A representation of a genotype fine-mapping workflow
which starts with GWAS analysis.

ological functions. Databases such as Gene Ontology [27] and ENCODE [28] can provide

information about the enrichment of functional annotations. Generally, annotations are catego-

rized into protein-coding and non-coding sequences. SNPs in coding regions can directly affect

the conformation of the resulting protein while non-coding variation can have an effect on gene

regulation. Non-coding annotations can be classified as, promoters, terminators, enhancers,

transcription factor binding sites, epigenetic modification sites and etc.
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1.5 X chromosome issues

Sexual dimorphism can be observed in many complex traits. Autoimmune disorders, cardio-

vascular diseases, and behavioral conditions demonstrate sex bias. Studies show that loci on the

X chromosome have a higher probability of showing expression variance based on sex when

compared to loci on autosomes. [29] Chromosome X is the 8 largest human chromosome with

a length of 156 megabase pairs and 1669 discovered genes. [30] This accounts for around 5%

total number of human genes. According to the Online Mendelian Inheritance in Man (OMIM)

database, 7% of the diseases with known mechanisms are X-linked (Figure 1.5). [31]

Although the importance of the X chromosome in deciphering complex traits is well demon-

strated by the above-mentioned facts, when it comes to analysis X chromosome is often ex-

cluded by researchers. The X chromosome has the least number of associations found in distinct

loci in published GWAS studies after the Y chromosome. [4] Given its size and the number of

genes it contains which is in turn similar to chromosome 7, it is very likely that we have yet to

discover most of the associations on the X chromosome. Authors generally report a few com-

mon reasons for the exclusion of the X chromosome. Low coverage of chromosome X in mi-

croarray assays, lower genotyping accuracy compared to autosomes, and relatively challenging

nature of analysis and interpretation of the data are some of them. Most of the new microarray

assays now include a wide overage of the X chromosome. It is true that making sense out of

the X chromosome data requires additional effort because of a higher rate of missing data, a

higher frequency of chromosomal abnormalities, and dosage difference between male and fe-

male samples. Clustering algorithms generally perform worse on the X chromosome leading

to lower accuracy scores. [4] Genotype imputation protocols for X chromosome are very sim-

ilar to autosomes. The prime source of complexity comes from the dosage difference between

males and females. Although most available imputation tools can in principle compensate for

it are generally omitted from the software. In addition, the hemizygosity of males results in a

decrease of the sample size by a quarter. [22] Combining all these reasons and the probability of

obtaining enough publishable material only using autosomal data without spending extra effort,

results in sex chromosomes lagging behind autosomes in research.
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Figure 1.5: X chromosome associated complex traits.
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2 Methods and result

We based the imputation and quality control stage of my project on the eQTL catalogue’s gen-

impute workflow developed by my supervisor Dr. Kaur Alasoo and added the ability to incor-

porate chromosome X to the workflow. [32] Figure 2.1 describes the summary of the work done

in consecutive steps.

2.1 Preparing VCF files for eQTL analysis

Generally, genomics data is stored in Variant Call Format (VCF) format. VCF is a compressed

tab-separated text file. It stores meta-information such as headers, sample IDs, and positions

on the genome. Individual identification numbers are stored on rows while columns correspond

to data such as the genotype of the individual at a given SNP. Figure 2.2 shows sample data

stored in VCF format for genomic analysis. One of the most effective ways of working with

VCF files is using BCFtools software. BCFtools is a freely available utility set that allows us to

manipulate VCF files efficiently. [33]

Before performing statistical analysis on sequencing data, quality control measures need to

be taken. For quality control steps we have used PLINK 1.9 software. Firstly we converted VCF

files to plink files. We used the “–make-bed” flag of plink. The next step involved imputing the

sex of the samples using PLINK. Following the separation of the X chromosome from the rest

of the data we excluded pseudoautosomal regions - regions that are shared between X and Y

chromosomes - from the next steps. We designated heterozygote haploid genotype to “missing”

via PLINK. At this point, we extracted the list of female samples which will be used later on

quality control steps. It is worth noting that we had to change the file names for the chromosome

X multiple times during the process to ensure compatibility with the different tools we are using.

Subsequently, we used the Genotype harmonizer command-line tool [35] to align our data with

1000 genomes project data which we used as reference. [36]
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Figure 2.1: Summary of the project workflow.
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Figure 2.2: Sample genomic data stored in VCF format. [34]

Prior to proceeding to genotype imputation, we used the Eagle2 algorithm for haplotype

phasing. [37] Haplotype phasing is the process of inferring haplotypes from given genotype

data. Afterward, we used Minimac software for imputing genotypes in our project. [38] Min-

imac is a computationally efficient variant of the MaCH algorithm. It takes a VCF file as an

input and outputs a VCF file with imputed genotypes. We used a reference panel from the 1000

Genomes project for our imputation. Following completing all the steps we used the merge

function of BCFtools to firstly merge together dosage adjusted male samples to female samples

and then X chromosome to the rest of the chromosomes. We filtered variants with missingness

over 5% and minor allele frequency of less than 1 percent. We removed the coordinates of vari-

ants that passed quality control and used it to filer our data file to only contain quality control

passed variants using BCFtools again.

I used VCF files from the GEUVADIS study [39] for preparing GEUVADIS data for eQTL

analysis I first separated it into chromosomes. I used “bcftools view -r chr ” to split files. Since

genomics files are very big in size, this step is necessary to avoid memory constraints and allow

parallelization of the workflow. Despite having genotype data GEUVADIS files lacked dosage

information for samples. We needed dosage information since qtlmap workflow used on the

next steps depends on it to determine the number of alternative alleles in eQTL analysis. A given

person can have a dosage of 0 if they lack the allele of interest, 1 if they are heterozygotes, and 2

if they are homozygotes. In spite of being very useful in manipulating VCF files, BCFtools does

not have a straightforward way to calculate dosage based on genotype and add a dosage field
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to files. I developed a script to tackle this problem and infer dosage from the genotype (Figure

2.3). This script altered the column named “GT” (genotype) to contain dosage information in

the format of “GT:DS”. I used this script on all autosomes subsequently.

Figure 2.3: Dosage from genotypes python script. This script calculates dosage from genotypes
and add it to the GT column converting it to GT:DS format. The script is only applicable for
autosomes and X chromosomes of females.

Before proceeding to the X chromosome I filtered VCF files based on sex to 2 different

files. Although there are multiple ways that dosage difference between male and female can

be addressed in our project we decided to multiply the dosage of male samples by a factor

of 2. Having double the number of X chromsomescompared to males does not translate into

having double the gene expression amount in females. During embryonic development, by

the process called X inactivation, females transcriptionally disable one of their X chromsomes.

Each copy is silenced in roughly the amount of cells. Subsequently females have mosaic of

cells with different copy of X chromosome inactivated. This results in having the same dosage

as males when it comes to loci found on X chromsome. Cite here Doubling male dosage in

our workflow makes sure that the dosage balance is maintained throughout the analysis. [40]

I developed a python script that can be used as a command-line tool to take a VCF file as an
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input, manipulate the GT column which contains genotype information. The script does not

alter genotype information while multiplying male dosage coefficients by 2. Similar to the

autosomes it then adds a dosage field to the genotype column creating a column formatted as

“GT:DS”. Afterward, it outputs a VCF file with altered dosage information. Figure 2.4 shows

the script I used to multiply male dosages.

Figure 2.4: Dosage Multiplier python script. This script calculates dosage from genotypes
and add it to the GT column converting it to GT:DS format. The script is only applicable for
autosomes and X chromosomes of males.

Following the completion of dosage adjustment, I added headers back to the VCF files using

“reheader” flag of BCFtools. I proceeded to reorder and index X chromosome files for males

and females using “index” flag of BCFtools. I merged these files together as one before pro-

ceeding to create a single dosage adjusted file that included all chromosomes using the “merge”

function.

2.2 QTLmap analysis

I submitted processed and QTLmap ready VCF files to Dr. Alasoo for eQTL fine-mapping

analysis with sex as a covariate. I received a file that contains genetic variants that are likely

to causally regulate gene expression. After filtering results that I received from him for the X
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chromosome there are remaining 1884 eQTLs. They shared between 91 fine mapped credible

sets. T perform colocalization analysis with complex traits and diseases I used two different

GWAS datasets. FinnGen data can be accessed at https://r4.finngen.fi/top hits and GWAS cat-

alog data at https://www.ebi.ac.uk/gwas/docs/file-downloads. FinnGen dataset contained 668

associations on the X chromosome and the GWAS catalog had 1255 associations. The result

of the colocalization analysts gave us 1 colocalization with FinnGen data and 7 with GWAS

catalog. They are summarized in Table 2.1.

To further validate our eQTL signals we compared PLP2 hit to OpenTargets Genetic portal

[41]. We compared our results to Phenome-wide association study of variant number 49171812

which take an SNP as an input and test its association against a large number of phenotypic

variants. As seen from the PheWAS of PLP2 in Figure 2.5, the signal has been confirmed with

multiple previous studies and is significantly associated with respiratory functions such as vital

capacity, forced expiratory volume, and cardiovascular traits such as platelet distribution width.

Table 2.1: Colocalization of GEUVADIS eQTLS with FinnGen database and GWAS catalog.
First 7 rows show the colocalization with GWAS catalog and the last row depicts colocalization
with FinnGen data.

Variant
Position GWAS trait GWAS

p-value eQTL gene eQTL
pip value

23773407

ribose-5-phosphate
measurement,
ribulose-5-phosphate
measurement

5.000000e-07 ENSG00000233785 0.089159

49171812
platelet component
distribution width 9.000000e-10 PLP2 0.500153

49187155 mean platelet volume 4.000000e-12 PLP2 0.500153

55528377
self reported
educational attainment 1.000000e-09 KLF8 0.001232

55552777
mean corpuscular
volume 3.000000e-08 KLF8 0.000281

119433739 osteitis deformans 1.000000e-07 SLC25A43 0.043446

155491696
factor VIII
measurement 3.000000e-09 TMLHE 0.001712

53406445 E4 OBESITY HYPER 8.818000e-08 HSD17B10 0.039949
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Figure 2.5: PLP2 PheWAS. Phenome-wide association study of variant number 49171812. Tri-
angles over the red line (p-value < 5%) represent significant associations
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3 Discussion and conclusions

With the advance in the inclusion of more and more X chromosome SNPs in microarrays, we

have access to large amounts of under-utilized data. By developing a robust genotype impu-

tation workflow for the X chromosome we can take advantage of existing pipelines built for

autosomes to analyze the X chromosome as well. In this project, we started to build this work-

flow and made significant advances towards its completion.

The single most important hurdle in utilizing X chromosome data is dosage dissimilarity

between males and females. Existing software such as BCFtools does not provide a method

to add and manipulate dosage data to VCF files. I have developed command-line tools to add

dosage information to datasets while multiplying male dosage by two on the X chromosome to

compensate for their heterozygosity. I used GEUVADIS data set for demonstrating the ability

of the developed pipeline. The resulting dataset was. fully compatible with qtlmap workflow

which is designed to work with autosomes.

After statistical fine-mapping, I demonstrated overlap between our eQTLs and two major

databases in FinnGen and GWAS catalog. In total, we achieved 7 overlapping hits. We fur-

ther validated the signal by cross-checking with the OpenTarget platform which summarises

previous studies. Discovered associations were related to vital traits such as respiratory and

cardiovascular functions demonstrating the potentially very useful information waiting to be

discovered in underused X chromosome data.

It is worth noting that GEUVADIS data was collected just from human lymphoblastoid

cells. [39] By utilizing different tissues and cell lines in eQTL catalogue [32] analysis can be

expanded. It is likely that this will result in more significant associations discovered which then

can be verified in laboratory settings. By identifying causal variants and decreasing the number

of potential targets for drugs and therapies, computational workflows give an opportunity to

focus research and funds to candidates with more likelihood of success

Theoretically, all aforementioned steps can be performed manually one after another. How-
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ever, this would take an immense amount of time and organization. It is very easy to make

a mistake while dealing with many similar file names and different formats. This kind of ap-

proach would also take a lot of time since you have to run every single step one by one after each

other. For reproducibility of the research and running pipelines in parallel in high-performance

computing clusters (HPC), we used Nextflow workflow manager. [42] We integrated our scripts

into one modular pipeline. Not only it allows parts of our project to be used separately and

modified to fit the needs of researchers but it also makes our project very easily reproducible

and faster to run. This step was not fully completed due to time constraints and further effort is

needed to integrate pipelines within nextflow environment.
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