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Annotatsioon 

Primaarproduktsioon on globaalse maapealse süsinikuringe ja kliimamuutuste põhikomponent. 

Antud uurimuses hinnati primaarproduktsiooni muutusi, kasutades boreaalse ökosüsteemi 

tootlikkuse simulaatori (BEPS) mudelit, et kontrollida Soontaga piirkonna näitel mudeli jõudlust 

Eesti hemiboreaalsetes metsades. Mudeli käitamiseks kasutati kombinatsiooni kaugseirest 

(lehepinnaindeks, clumping indeks) ja meteoroloogilistest andmetest (temperatuur, kiirgus, 

õhuniiskus, sademed ja tuulekiirus). Tulemuste kinnitamiseks kasutati Soontaga uurimisjaamas 

mõõdetud primaarproduktsiooni andmeid. Hinnati ka uurimisala ruumilist sobivust. Tulemused 

näitasid, et sobiva, usaldusväärse ja kvaliteetse andmestiku olemasolul jälgib BEPS-mudel edukalt 

primaarproduktsiooni sesoonseid muutusi ja aastatevahelisi variatsioone hemiboreaalses metsas.  

 

Märksõnad: primaarproduktsioon, BEPS-mudel, lehepinnaindeks, ruumiline sobivus, 

hemiboreaalne mets 

CERCS- P510 (Füüsiline geograafia, geomorfoloogia, mullateadus, kartograafia, klimatoloogia) 

Abstract 

Gross Primary Productivity (GPP) is the core component of terrestrial carbon cycle as well as the 

global carbon cycle and earth climate research. In this study, GPP estimation was performed by 

Boreal Ecosystem Productivity Simulator (BEPS) model to explore BEPS model’s performance 

for Estonian hemi-boreal forests on an example of the Soontaga area. The model was run by using 

the combination of remote sensing (leaf area index (LAI), clumping index) and meteorological 

data inputs (temperature, radiation, humidity, precipitation and windspeed). The results were 

validated against the tower measured GPP at Soontaga. The spatial representativeness of the site 

was evaluated as well. It was found that BEPS model track the GPP changes with season and inter-

annual variation very well in a hemi-boreal region given that good, reliable quality input data are 

provided.  

Keywords: GPP, BEPS, LAI, spatial representativeness, hemi-boreal forest.  

CERCS- P510 (Physical geography, geomorphology, pedology, cartography, climatology) 
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Abbreviation 

Abbreviation Details 

APAR Absorbed Photosynthetically Active Radiation 

BEPS Boreal Ecosystem Productivity Simulator 

CO2 Carbon Dioxide 

EC Eddy Covariance 

EO Earth Observation 

GPP Gross Primary Productivity 

LAI Leaf Area Index 

LUE Light Use Efficiency 

NPP Net Primary Productivity 

RMSE Root Mean Square Error 
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1. Introduction 

The terrestrial carbon (C) cycle is one of the most important focus areas in research on global 

climate change (Feng et al., 2007). It includes the exchange of carbon among the terrestrial 

biosphere, pedosphere, geosphere, and atmosphere of the Earth. Plants absorb carbon from the 

atmosphere through photosynthesis and store it in biomass (leaves, branches, trunks, and roots). 

Photosynthesis is the way for the terrestrial ecosystem to sequester carbon dioxide (CO2). During 

this process, it also releases the carbon back into the atmosphere through autotrophic respiration 

(Xiao et al., 2019). 

In the terrestrial C cycle, the key component is gross primary production (GPP) along with 

respiration (Feng et al., 2007). GPP can be defined as the total amount of carbon uptake by 

vegetation through photosynthesis which is the largest global carbon flux (Li et al., 2016) and 

which drives several ecosystem functions such as respiration and growth (Beer et al., 2010). GPP 

is the basis for food, fiber, and wood production and by this way it is contributing to human welfare 

as well as representing a key component of the carbon cycle (Xiao et al., 2019). One of the major 

processes of controlling land-atmosphere CO2 exchange is completed by GPP and it provides the 

capacity of terrestrial ecosystems to partly offset anthropogenic CO2 emissions (Beer et al., 2010). 

GPP consists of Net Primary Productivity (NPP) and autotrophic respiration (Liu et al., 1999). 

NPP defines the difference between accumulated photosynthesis and accumulated autotrophic 

respiration through green plants per unit time and space (Feng et al., 2007). NPP refers to the total 

amount of carbons added to plant biomass per unit of space and time. Productivity is very vital to 

ecology as well as carbon storage by land ecosystems and it can play an important role in limiting 

the rate of atmospheric CO2 increase (Feng et al., 2007). 

Understanding the controlling mechanism of terrestrial GPP is very important as well as 

understanding its accurate estimation process (Li et al., 2016). Significant change arises in the 

atmospheric CO2 concentration if any fluctuation occurs in terrestrial GPP, because GPP is directly 

connected to the carbon cycle and global climate change (Anav et al., 2013; Prentice et al., 2000). 

By continuous monitoring and accurate GPP estimation the long-term sustainability of terrestrial 

ecosystem services can be ensured. Accurate estimation helps to address topics which are affecting 
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the global carbon cycle together with determining the size of the terrestrial carbon sink, vegetation 

dynamics prediction, and forests and grasslands management (Shi et al., 2017). Accurate 

estimation of GPP of terrestrial ecosystems for regions, continents as well as the globe can help to 

improve our understanding about the conditions of the terrestrial biosphere and facilitate the 

policymaker for better climate policymaking (Wu et al., 2010). 

Despite its importance, there are persisting uncertainties and inconsistencies in GPP estimation 

between different models (Li et al., 2016). One possible reason for the inconsistency in the 

estimation of GPP is insufficient model parametrization or structural model errors which leads to 

GPP overestimation (Beer et al., 2010). On the other hand, underestimation of GPP may be caused 

by not including the positive effects of nitrogen disposition (Li et al., 2016). Despite being a widely 

used product, MODIS GPP product is generally underestimating GPP by about 34% across all 

biomes (Zhu et al., 2018). Another possible reason for uncertainty is quality or deficiency of input 

data that have a great impact on the accuracy of estimation results (Feng et al., 2007). GPP 

estimation may have significant errors because of coarse resolution of climate inputs (Shi et al., 

2017). For example, according to Feng et al. (2007), it is evident that LAI accuracy has a 

significant impact on NPP estimation as well as GPP estimation. 

Several approaches have been developed to estimate spatial and temporal variations in terrestrial 

GPP: (1) light use efficiency (LUE) models, (2) process-based ecosystem models, and (3) machine 

learning upscaling models (Li et al., 2016). Feng et al., (2007) suggested three types of models, 

which are generally used to estimate terrestrial NPP as well as GPP: (1) statistical models, (2) 

parametric models, and (3) process-based models. 

Another GPP estimation technique is the eddy covariance (EC) technique, which can estimate net 

𝐶𝑂2 exchange under the ecosystem scales and that can be used for GPP calculation (Wu et al., 

2010). In eddy covariance process, it measures the energy fluxes, water, and carbon which are in 

between the atmosphere and surface with a very high temporal (hourly, half hourly) frequency. 

For this reason, eddy covariance can provide invaluable prospects while evaluating the process-

based models (Zhang et al., 2012).  

The light use efficiency (LUE) model can effectively explain the spatial and temporal GPP 

dynamics. This model provides a straight proportionate relation between biological production and 
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the amount of photosynthetically active radiation, which is absorbed by the vegetation canopy 

(APAR) (Wu et al., 2010). But in LUE estimation, the problem arises with the plant's functional 

verity, and the estimation can be affected by temperature, soil water content, vapor pressure deficit 

(VPD), and leaf phenology parameterization (Xiao et al., 2005). Besides, if the climate inputs of 

LUE models are in coarse resolution, it may cause error in GPP estimation and create hindrance 

in the way of acquiring the large-scale fine-resolution GPP estimates (Shi et al., 2017). Statistical 

models and parametric models are two simple and easily usable models. However, these two 

models can have strong limitations as they might not have proper theory and full, detailed 

understanding about the function of the given ecosystem (Feng et al., 2007). 

Process models generally integrate the mechanisms to simulate numerous plant functional 

processes including photosynthesis, autotrophic respiration and transpiration, and various plant 

physiological processes together with photosynthesis, autotrophic respiration and transpiration 

(Feng et al., 2007). Process-based ecosystem models are also directly linked to other Earth system 

model's components as well as they can simulate historical and future global climate change 

projection in a systematic way (Li et al., 2016). On the other hand, in a process-based model, 

computing resources are challenging the modelers to trade-off between model execution time steps 

and spatial resolution. Despite some limitations, process-based models were found to provide more 

reliable results than other types of models (Feng et al., 2007). 

Boreal Ecosystem Productivity Simulator (BEPS) model is a carbon-water coupled process model 

developed for Canadian boreal forest conditions, which is based on remote sensing inputs. The 

BEPS model consists of an advanced canopy radiation sub-model for quantifying the effects of 

canopy architecture on the radiation distribution and photosynthesis in the canopy (Feng et al., 

2007). BEPS computes the total photosynthetically active radiation, which was absorbed by the 

canopy in each pixel. Also, with this model, it is possible to analyze light use efficiencies for GPP. 

BEPS integrates the input data and produces an output of GPP in the form of NPP and other carbon 

and water cycle components such as autotrophic respiration and evapotranspiration (Liu et al., 

1999).  

Observing and considering the spatial representativeness of the study area helps to get better 

understanding about the annual GPP and carbon stock (Ma et al., 2019). There may be a mismatch 
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between spatial footprint area of the tower-based and satellite observations which generates a lot 

of challenge for directly comparing the point with pixel (Román et al., 2009). The gamma variance 

model has been identified an effective tool to explore the spatial variability of land surface and to 

assess the spatial representativeness and suitability of individual sites for comparison with satellite 

observations (Román et al., 2009). Using this approach, spatial characteristics of the study site can 

be then compared against the greater surrounding area and extend to a satellite pixel resolution. 

(Román et al., 2009) 

1.1 Objective of the Study 

The BEPS model has been originally developed and found very useful for estimating GPP of boreal 

forests. There are no existing, published studies with BEPS model tested over Estonia or in hemi-

boreal region in general. The objective of this study is to evaluate potential suitability of BEPS 

model and input remote sensing data for GPP estimation over hemi-boreal forests using the 

available GPP measurements from the Soontaga flux tower site. The following steps are taken to 

achieve this objective: first, the spatial heterogeneity of the Soontaga site is assessed with 30 m 

resolution remote sensing data. Next, the BEPS model is evaluated by comparing GPP estimates 

with the tower measurements under different weather conditions (dry/wet) over several years 

(2016-2019). The study period covering several years, and different weather conditions shall 

provide sufficiently different scenarios to assess the full performance of BEPS model and its 

overall suitability for hemi-boreal region. 

1.2 Research Questions 

The research questions for this study are: 

a. How spatially heterogenous is the Soontaga flux tower area? 

b. How much reliable GPP information can be simulated by the BEPS compared to estimates 

obtained with the tower eddy covariance measurements taken at the Soontaga site? 

c. How well can the BEPS model track the GPP changes with season and inter-annual 

variation? 
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2. Materials and Methods 

2.1 Study area description 

The Soontaga flux tower (58°01'24 "N, 26°04'15"E) is located in a dry hemi-boreal forest 

dominated by Scots pine (Pinus sylvestris) (Krasnova et al., 2019). Soontaga area is a coniferous 

forest site of Vaccinium type where the stand age was approximately 60-210 years with the 

maximum canopy height of 30 m and the existing second layer of Picea abies with average height 

of 15 m. Mean annual temperature was 7.2℃, with mean annual sum of precipitation about 728 

mm in 2019 (Estonian Environment Agency (KAUR)). The location of the study area and tower 

is shown in Figure 1. 

Figure 1. Study area map with 2 km rectangle buffer around the tower (The background image in 

panel 2 is the Landsat image used for the spatial representativeness analysis in section 3.1). 
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2.2 Spatial representativeness of flux tower area 

Gamma variance model has been identified as an effective tool for assessing the spatial 

representativeness (Román et al., 2009). Following Román et al. (2009) and Wang et al. (2012, 

2014), the surface heterogeneity was evaluated using the surface albedo retrievals from a 30 m 

spatial resolution Landsat data as an input to the model. The surface albedo has been obtained by 

the narrowband-to-broadband conversion (Liang et al., 2003; Smith, 2010):  

𝐴 =  
0.356𝑝1 + 0.130𝑝3 + 0.373𝑝4 + 0.085𝑝5 + 0.072𝑝7 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072
 

(eq. 1) 

where 𝑝𝑖 are respective Landsat 7 bands. The spatial representativeness at different scales was 

assessed by calculating the gamma variance with 500 m, 1 km, 1.5 km, and 2 km footprint areas 

centered at the flux tower (Figure 2). 

The gamma variance estimator, 𝑦𝐸(ℎ) was used to attain half the average square difference 

between albedo values, which are within a specific distance, classes, or bins and these are defined 

by the multiplication of 30 m (Román et al., 2009): 

𝑦𝐸(ℎ) =  0.5
∑(𝑍𝑥𝑖 − 𝑍𝑥𝑖)

2

𝑁(ℎ)
 

(eq. 2) 

Here, 𝑍𝑥𝑖 refers the surface albedo at the pixel location of 𝑥; and 𝑍𝑥𝑖+ℎ corresponds to the surface 

albedo at another pixel which should be within a lag distance h. The maximum lag distance which 

is used in each gamma variance is constrained by the half maximum distance of the given subset 

and have to be a factor of the minimum lag (i.e., 30 𝑚) as a thumb rule (Román et al., 2009). Thus, 

for a 1.0 𝑘𝑚2 subset ℎ𝑚𝑎𝑥 = 690 𝑚, for a 1.5 𝑘𝑚2 subset ℎ𝑚𝑎𝑥 = 1050 𝑚, 2 𝑘𝑚2subset 

ℎ𝑚𝑎𝑥 = 1410 𝑚. 

2.3 BEPS model description 

The BEPS model consists of an advanced canopy radiation sub-model for quantifying the effects 

of canopy architecture on the radiation distribution and photosynthesis in the canopy (Feng et al., 

2007). BEPS computes the total photosynthetically active radiation, which was absorbed by the 

canopy (Liu et al., 1999). The sunlit and shaded leaf separation approach strategy (Chen et al., 
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1999) has been used in the BEPS model (Liu et al., 2002). The stratification strategy is preferred 

in the BEPS model over other strategies (Bonan, 1995) because it captures the key radiation 

variation inside the canopy allows effective temporal integration (Chen et al., 1999) during a given 

time. 

The total GPP can be calculated with the separation of sunlit and shaded leaf groups based on the 

daily canopy (Liu et al., 2002):  

𝐺𝑃𝑃 =  (𝐴𝑠𝑢𝑛 𝐿𝐴𝐼𝑠𝑢𝑛  +  𝐴𝑠ℎ𝑎𝑑𝑒  𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒) (eq. 3) 

In Eq. (3), the subscripts' sun' and 'shade' denote sunlit and shaded components, A is the daily 

mean of photosynthesis rate, and LAI is leaf area index. The GPP output unit of BEPS model is 

g Cm−2 per day. 

Mean photosynthesis rate A can be obtained with Eq. (4) where the calculation is carried separately 

for sunlit and shaded leaves (Liu et al., 1999): 

  

𝐴 =  
1.27

2(g𝑛 − g𝑚𝑖𝑛)
(

a1/2

2
(g𝑛

2 − g𝑚𝑖𝑛
2) + c1/2(g𝑛 − g𝑚𝑖𝑛) −

2𝑎g𝑛 + 𝑏

4𝑎
𝑑

+
2𝑎g𝑚𝑖𝑛 + 𝑏

4𝑎
𝑒 + (

𝑏2 − 4𝑎𝑐

8𝑎3/2
) ln

2𝑎g𝑛 + 𝑏 + 2𝑑𝑎1/2

2𝑎g𝑚𝑖𝑛 + 𝑏 + 2𝑒𝑎1/2
 ) 

(eq. 4) 

Here, 𝐴 is the minimum of Rubisco-limited photosynthesis rate 𝐴𝐶  and light limited photosynthesis 

rate 𝐴𝐽 in µ𝑚𝑜𝑙 𝑚−2 𝑠−1. 

For 𝐴𝑐: 

𝑎 =  (𝑘 +  𝐶ₐ)2,  

𝑏 =  2(2𝛤 +  𝐾 –  𝐶ₐ)𝑉𝑚  +  2(𝐶ₐ +  𝐾)𝑅𝑑,  

𝑐 =  (𝑉𝑚– 𝑅𝑑)  

For 𝐴𝑗: 
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𝑎 =  (2.3𝛤 +  𝐶ₐ)2, 

𝑏 =  0.4(4.3𝛤 −  𝐶ₐ)𝐽 + 2(𝐶ₐ +  2.3𝛤)𝑅𝑑,  

𝑐 =  (0.2 𝐽 – 𝑅𝑑)2.  

For both: 

𝑑 =  (𝑎𝑔𝑛 2 + 𝑏𝑔𝑛  +  𝑐)1/2, 

𝑒 =  (𝑎𝑔2
𝑚𝑖𝑛

 +  𝑏𝑔𝑚𝑖𝑛  +  𝑐)
1/2

 (Liu et al., 2002).  

In the calculation, the 𝑅𝑑 refers to the daytime leaf dark respiration in  µ𝑚𝑜𝑙 𝑚−2 𝑠−1(Liu et al., 

2002). Besides, the enzyme kinetics function is in Pa which is represented by K, Γ is in in Pa unit 

and it represents the 𝐶𝑂2 compensation point when the dark respiration is absent (Zhang et al., 

2012). Here, J is the electron transport rate, and its unit is  µ𝑚𝑜𝑙 𝑚−2 𝑠−1. The 𝑉𝑚 denotes the 

maximum carboxylation rate in  µ𝑚𝑜𝑙 𝑚−2 𝑠−1 unit (Liu et al., 2002). According to Liu et al. 

(1999), inside the calculation procedure, both parameters, Γ and K are temperature-dependent, the 

stomatal conductance is assumed zero and minimum is denoted as 𝑔𝑚𝑖𝑛. The stomatal conductance 

is in  µ𝑚𝑜𝑙 𝑚−2 𝑠−1 unit and it is dependent upon radiation, air temperature, air humidity and soil 

water condition during the day (Liu et al., 1999). 

Being a two-leaf model (Chen et al., 2012), the BEPS needs to calculate GPP separately for sunlit 

(𝐿𝐴𝐼𝑠𝑢𝑛) and shaded (𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒) leaves: 

𝐿𝐴𝐼𝑠𝑢𝑛 =  2 cos 𝜃(1 − exp (−0.5Ω𝐿𝐴𝐼/𝑐𝑜𝑠𝜃) (eq. 5) 

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒  =  𝐿𝐴𝐼 − 𝐿𝐴𝐼𝑠𝑢𝑛  (eq. 6) 

Here, 

𝜃 =  
1

2
[
1

2
(

𝜋

2
+ 𝜃𝑛𝑜𝑜𝑛)]  =  

𝜋

8
+

3

4 
𝜃𝑛𝑜𝑜𝑛 

 (eq. 7) 

𝜃𝑛𝑜𝑜𝑛 =  
𝜋

180
[𝑙𝑎𝑡 − 23.5 ∗ sin(𝑗𝑢𝑙𝑖𝑎𝑛𝑑𝑎𝑦 −  81) ∗ 2 ∗

𝜋

365
]   (eq. 8) 



   

 

14 | P a g e

Here, θ represents solar zenith angle, 𝜃𝑛𝑜𝑜𝑛 stands for solar zenith angle at noon and lat represents 

latitude, Ω represents clumping index. Clumping index describes the aggregation of the foliage 

elements within a canopy. The random distribution would equal 1; clumping index with values 

less than one indicates more clumped vegetation (Nilson, 1971). 

2.4 Input data for the BEPS 

The input data required for BEPS are leaf area index (LAI), land cover, clumping index, and daily 

meteorological data (Feng et al., 2007).  

The LAI input data was acquired from MODIS 4-day MCD15A3H.006 collection with 500m 

resolution for four years period (from 2016 to 2019). This data was generated using the algorithm 

which chooses the "best" pixel offered by both MODIS sensors located on NASA's Terra and Aqua 

satellites and the data was scaled with factor for 0.1. After downloading the MODIS LAI, the 

original LAI values were interpolated linearly to daily steps. The LAI values used for the model 

cover the time range from January 2016 to December 2019. The MODIS LAI values were observed 

to occasionally reach up to maximum value of 6 which is not realistic for the tower area. But LAI 

value of 3 was previously found to be a maximum value at a comparable Scots pine stand in 

Järvselja, Estonia (Pisek et al., 2011). The input LAI values were capped at value of 3 to provide 

a more realistic scenario to be encountered at the Soontaga site. Evergreen needleleaf land cover 

type class and the value of 0.69 as the clumping index provided for the location in the global map 

by He et al. (2012) were used in this study.  

The necessary meteorological data for the BEPS model include temperature, humidity, radiation, 

precipitation, and wind speed information (Liu et al., 1997). In this study all the input 

meteorological data are required with an hourly step. All the meteorological data used in this study 

were collected directly from the tower site and provided by the Department of Natural and Exact 

Sciences, Institute of Ecology and Earth Sciences, University of Tartu. The missing meteorological 

values were interpolated and converted to the hourly values from half hourly values. 
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2.5 Tower GPP calculations 

Tower GPP values were obtained from eddy-covariance 𝐶𝑂2 fluxes using nighttime-data-based 

flux partitioning method in REddyProcWeb online tool (Wutzler et al., 2018; Reichstein et al., 

2005). Nighttime (Rg < 10 W𝑚−2) net ecosystem exchange (NEE) values are fully represented by 

nighttime ecosystem respiration (ER) and GPP is set to zero. Here, calculated daytime GPP is 

obtained as a difference between measured daytime NEE and modeled daytime ecosystem 

respiration (ER). Lloyd & Taylor (1994) regression model were fitted to the nighttime ER data 

using air temperature as the driving factor. Model parameters estimated from the nighttime data 

with a sliding 7-days window and daytime air temperature were then used to model daytime ER 

(Lloyd & Taylor, 1994). 
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3. Results and Discussion 

3.1 Spatially heterogeneity analysis of the flux tower area 

Figure 3 presented the geostatistical assessment of the site heterogeneity assessed at three different 

scales (0.5 km, 1 km, 1.5 km, 2 km). The gamma variance for the 0.5 km footprint area (the 

nominal spatial resolution of the satellite input data) around the tower plateaus at 0.0003. 

According to Wang et al. (2017), if the gamma variance levels off at value less than 0.0005, the 

site can be deemed spatially representative. The Soontaga area within the 500 m distance from the 

tower can be considered spatially homogeneous and the tower footprint (20.88 ha) as well as the 

nominal resolution of the used remote sensing data. On the other hand, the gamma variance values 

for the distances of 1 km, 1.5 km and 2 km level off at values > 0.0005 (Figure 3). Based on the 

gamma variance values, the Soontaga site might not be representative of greater area (≥ 1km) as 

the gamma variance is over the suggested homogeneity threshold by Wang et al. (2017). It shall 

be also noted that the MODIS 500 m resolution products are actually generated from multi-angular 

observations that may come from a larger area (Wang et al., 2017) and could be thus influenced 

by the heterogeneity at and the greater area around the Soontaga tower. 
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Figure 2. Spatial representativeness assessment map of Soontaga area. 

Figure 3. Gamma variance of surface albedo derived from Landsat 7 image taken on 1.07.2018. 
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3.2 BEPS model validation and comparison  

The flux tower measurements were used to validate the BEPS result for each year. Table 1 provides 

the general performance overview of the GPP values obtained with the BEPS model and with the 

eddy covariance data measured at the site. Very close match is observed in 2017 and 2019. There 

was an excellent agreement (only 0.33% difference) in total GPP obtained with BEPS (1293.28 

g Cm−2) and tower measurements (1288.96 g Cm−2) in 2019 with the root mean square error 

(RMSE) of 1.47. Similarly, only a 3.96% difference was observed in 2017, with GPP estimated 

by BEPS at 1214.34 g Cm−2and, tower GPP 1166.23 g Cm−2and RMSE of 1.51. Compared to the 

tower measurements, the BEPS model overestimated GPP by 16.98% in 2018 with RMSE of 2.42 

and underestimated it by 23.12% with RMSE of 2.20 in 2016.  

Table 1. Annual total GPP from tower-based observations, BEPS model; RMSE and percentage 

difference.  

Year GPP Tower 

(g C m−2) 

GPP BEPS 

(g C m−2) 

RMSE Difference (%) 

2019 1288.96 1293.28 1.47 0.33 

2018 1143.96 1377.97 2.42 16.98 

2017 1166.23 1214.34 1.51 3.96 

2016 1447.61 1175.71 2.18 -23.12 

More detailed comparison between tower values and BEPS and analysis of the factors affecting 

the performance and model agreement for each year is provided below.  

3.3 Comparison of GPP values obtained with BEPS and EC tower measurements 

The possible uncertainties in the tower based GPP estimations are discussed first, followed with 

the possible uncertainties in BEPS GPP calculation.  

As discussed in Section 2.2, there may be a possible footprint mismatch between the tower eddy 

covariance measurements and scale resolution of BEPS input data. The eddy covariance tower 

data, that are used for the tower GPP estimates, generally represent fluxes with a footprint of 

typically 1 km × 1 km (Zhang et al., 2012). The footprint of Soontaga flux tower is 20.88 ha 

(Krasnova, prs. comm.), while the remote sensing data that are used to drive the BEPS model (LAI, 
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clumping index) are provided at nominal 500 m resolution. The tower GPP estimates also have an 

uncertainty introduced during calculation steps (Liu et al., 2016). Mathematical methods are 

employed within the eddy covariance technique used to convert the measured 𝐶𝑂2 flux to GPP 

(Zhang et al., 2012). A manual mathematical conversion can sometimes cause uncertainties and 

fluctuation in the tower GPP values (Reichstein et al., 2005). 

The meteorological or weather condition of the specific year can have impact on the BEPS model’s 

performance. The bellow table provides an overview about the warm/cold and dry/wet condition 

of the years used in this study.  

Table 2. Yearly seasonal conditions. 

Year  Total yearly 

temperature sum 

(℃) 

Total yearly 

precipitation 

(cm) 

Warm/cold Dry/wet 

2019 72633.9 59.07 Warm  Wet 

2018 71684.24 32.90 Warm Dry 

2017 62117.7 49.52 Cold Wet 

2016 66358.75 47.40 Cold Wet 

 

Based on meteorological data in Table 2, 2019 was the relatively warm and wet year compared to 

the other years included in this analysis. The site had enough water to support the process but at 

the same time high temperature causes high evaporation rate. The two opposite effects had kind of 

neutral effect and the GPP production was normal. There was a good match between BEPS and 

tower estimates throughout most of the seasonal course in 2019 (Figure 4). Compared to GPP 

values obtained with tower eddy covariance measurements, BEPS underestimated GPP from 

January to April and November to December. The Figure 8 shows that the LAI input values for 

BEPS are mostly zero during the first few months (till middle of April) as well as the last two 

months of the year. Since this is an evergreen needleleaf site, the actual LAI values were higher 

and allowed the photosynthesis process to start under suitable conditions which was captured by 

the eddy covariance measurements. In contrast, close to zero input LAI values provided to BEPS 

did not allow to match observed tower GPP values during these periods.  
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The GPP BEPS values were higher than the tower estimates from the middle of May to the middle 

of June 2019 (Figure 4). Compared to the beginning and towards the end of the year discussed 

above, input LAI values for BEPS did not suffer from underestimation during this period. The 

sharp increase in BEPS GPP values around 10 May coincides with the moment when the maximum 

LAI value, as provided by the MODIS LAI product, is reached. The period from the middle of 

May till the end of June may point to opposite effect compared to the start of the season. While 

the MODIS LAI product underestimated LAI over the site at the beginning of the season and 

consequently underestimated the GPP, the overestimated GPP by BEPS from the middle of the 

May till the beginning of July was caused by the apparent LAI overestimation in the MODIS LAI 

product during this section of the growing season. The maximum LAI for Scots pine stands was 

observed to be reached later in the season at the beginning of July (Heiskanen et al., 2012), 

compared to the earlier dates observed by the MODIS LAI product (Figure 8). This is also 

supported by an excellent agreement between the BEPS and tower based GPP estimates later in 

the season despite the similarly high MODIS LAI values are observed well till the end of August, 

which also agrees with the observations for Scots pine stands by Heiskanen et al. (2012).  

Figure 5 is used to crosscheck the LAI impact. The model was tested with constant LAI values of 

2 and 1 (Figure 5) as an input throughout the whole year. These two figures demonstrate a closer 

agreement between GPP BEPS and GPP estimates using tower observations from the beginning 

of the season till the beginning of July, confirming the LAI overestimation during the period by 

the MODIS LAI product was the cause of the disagreement between the BEPS and tower based 

GPP estimates.  

The sudden, concurrent drops in GPP values predicted by both BEPS and tower observations are 

caused by the cloudy conditions, which limited the incoming irradiation below optimal levels for 

GPP production (Figure 9). 
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Figure 4. BEPS model and eddy covariance tower measurements in 2019. 

 

Figure 5. Eddy covariance tower measurements of GPP and predicted by BEPS in 2019 with 

setting LAI input as a constant at value of 1 and 2. 

Daily BEPS GPP values are plotted against the tower GPP values in Figure 6. The Figure 6 shows 

a strong linear relationship reasonably close to 1:1 line with R square value of 0.89.  
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Figure 6. Comparison between BEPS and tower daily GPP estimates in 2019 (The solid line is 1:1 

line and dashed one is a liner fit regression line).  

 

Figure 7. Radiation and temperature impact on BEPS GPP in 2019. 
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Figure 8. Seasonality impact on BEPS GPP in 2019. 

Figure 9. Effect of lower irradiation periods on the daily GPP fluctuation in 2019. 
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lower GPP production according to the tower-based measurements as there is less water to support 

the process because of dry weather and high temperature caused high evaporation. The BEPS GPP 

was matching the tower GPP very well at the very beginning and at the end of the growing season 

in 2018. BEPS model provided much higher GPP estimates compared to the tower GPP estimates 

for majority of the growing season period. The BEPS GPP course matches the radiation and 

temperature profiles very well (Figure 12) and when there is higher temperature it results in lower 

GPP predicted values. Figure 13 indicates low precipitation or dryness is behind the low BEPS 

GPP values. But similarly to 2019, the over-estimated LAI from the MODIS LAI product caused 

the over-estimation in the result of BEPS GPP from May to the third week of August. The first 

peak of BEPS over-estimation started from 7 May which matched the sudden increase in MODIS 

LAI values beyond the threshold LAI value of 3 which lasted with few exceptions till 17 August. 

The pronounced, sudden drops in both BEPS and tower based GPP estimates matched with big 

drop in LAI values in the MODIS product on 18 June (LAI value 0.9) and 24 July (LAI value 1.3) 

(Figure 13). Results from the 2018 season confirm clear, very high sensitivity BEPS to LAI input. 

GPP estimations by BEPS and tower-based observations show very good agreement during the 

main season where the MODIS product contains more realistic values that would better agree with 

the expected situation at the site (e.g., 24 July; LAI = 1.3). 

Figure 10. BEPS model and eddy covariance tower measurements in 2018. 
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Daily BEPS GPP values are plotted against the tower GPP values in Figure 11 with R square value 

of 0.754.  

 

Figure 11. Comparison between BEPS and tower daily GPP estimates in 2018 (The solid line is 

1:1 line and dashed one is linear fit regression line). 

Figure 12. Radiation and temperature impact on BEPS GPP in 2018. 
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Figure 13. Seasonality impact on BEPS GPP in 2018. 

Based on the meteorological data, the year 2017 was a relatively cold and wet year (Table 2) with 

much higher precipitation rate in autumn (Estonian Weather Service). There was again a very good 

match between the BEPS and tower based GPP values in 2017. Compared to tower-based 

estimates, the BEPS model over-estimated the yearly GPP sum by 3.96%. There was a close 

relationship with a very little difference between BEPS and tower estimates throughout the whole 

year (Figure 14). There are occasional small differences during the period from the last week of 

May to the third week of August (Figure 14). The GPP predictions by BEPS closely follow the 

seasonal temperature profile (Figure 16). Also, higher precipitation has a clear effect on higher 

GPP values (Figure 17). Similarly, to the situations in 2018 and 2019, the occasional small 

differences in BEPS GPP from last week of May to third week of August were caused by the 

apparent LAI overestimation by the MODIS LAI product during this part of the growing season. 

The differences in GPP (Figure 14) match with the timing of LAI saturation (Figure 17).  
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Figure 14. BEPS model and eddy covariance tower measurements in 2017. 

The daily BEPS GPP values are plotted against the tower based GPP values (Figure 15) with a 

strong, close to 1:1 line relationship with a very good R square value of 0.86.  

 

Figure 15. Comparison between BEPS and tower daily GPP estimates in 2017 (The solid line is 

1:1 line and dashed one is linear fit regression line). 
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Figure 16. Radiation and temperature impact on BEPS GPP in 2017. 

Figure 17. Seasonality impact on BEPS GPP in 2017. 
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The expected GPP rate was higher for 2016 as it had cold, and wet weather condition based on 

Table 2. The results were less convincing compared to other years with the 23.12% 

underestimation of the annual sum of GPP estimates by BEPS compared to tower-based estimates. 

While there was a close relationship with a very little difference between BEPS and tower 

estimates in the second half of the growing season (Figure 18), there was an unrealistic drop in 

BEPS GPP retrievals from the middle of the June till the third week of July. This drop in GPP 

values was caused by the missing humidity values during that period (Figure A2 in the Annex). 

Additionally, more clear evidence can be seen if the daily BEPS GPP values are plotted against 

the tower GPP values with the dropped humidity input data and without the dropped humidity 

input data. With all days of year included in Figure 19, it shows a diverging relationship from the 

1:1 line and the R square value is 0.7, while the omission of days with missing humidity inputs 

improves the R square value to 0.81. 

On the other hand, the GPP BEPS was over-estimated with very high values from the last week of 

May to second week of June. It was caused by the apparently over-estimated MODIS LAI values 

at the very beginning of the growing season when the LAI compared to the probable actual LAI 

values at the site. At the beginning of the year till half of February the LAI values were 0 (Figure 

21) which resulted in zero value GPP estimates from BEPS at the beginning of the year to mid-

February (Figure 18). But, except from the LAI impact and the humidity input issue, second half 

of the year showed BEPS GPP values to provide a close match with the expected, tower-based 

observations. GPP also matches well with low temperature (Figure 20) and high precipitation 

(Figure 21) during this period.  
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Figure 18. BEPS model and eddy covariance tower measurements in 2016. 

 

Figure 19. Comparison between BEPS and tower daily GPP estimates in2016 (The solid line is 

1:1 line and dashed lines are linear fit regression lines with and without dropped values). 
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Figure 20. Radiation and temperature impact on GPP in 2016. 

Figure 21. Seasonality impact on GPP in 2016. 
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4. Conclusion 

GPP estimation is very important topic for global climate change as evidenced by numerous 

studies carried over different regions. Different strategies and models can be applied to achieve a 

good performance. The BEPS model has been previously applied in Canada (Liu et al., 2002), 

various region of China (Li et al., 2016), select sites around Europe (Zhang et al., 2018), USA 

(Zhang et al., 2012). In this study, the BEPS model was tested for estimating GPP in a hemi-boreal 

region in Estonia to evaluate its performance and reliability for future use.  

Zhu et al. (2018) noted that the GPP estimation by BEPS model causes 34% of underestimation 

for grassland ecosystem biomes in temperate, tropical, and alpine sites. To reduce the 

underestimation problem, Zhu et al. (2018) recommended using the long-term remote sensing and 

meteorological data which should be used with consideration of different seasonal courses and 

especially a drought. However, in the present study BEPS model performed well and provided less 

significant underestimation or overestimation for hemi-boreal forest.  

The objective of this study has been achieved and research questions were answered with proper 

analysis and evidence. Based on the analysis of BEPS, GPP results for different years on Estonian 

hemi-boreal conditions, it can be concluded BEPS is a robust and efficient tool for GPP estimation 

in the region. From the perspective of BEPS model’s tracking of the GPP changes with season and 

inter-annual variation, it is found BEPS model can track the changes very well even during extreme 

weather condition like drought, given the model is provided with reasonable input values.  

It shall be noted that BEPS is particularly sensitive to the quality and reliability of input LAI values. 

Feng et al. (2007) also found that LAI accuracy had a significant impact on NPP estimation as well 

as GPP estimation in China. From the analysis in this study, it is shown that the reliability of 

MODIS LAI product had a substantial effect on the quality of GPP estimates by the BEPS model 

in the hemi-boreal region as well. Regarding other factors, the analysis also showed that the BEPS 

is correctly responding particularly to the changes in humidity and incoming radiation. The use of 

unbiased, non-interpolated meteorological data along the correct LAI, clumping index input shall 

lead to good quality GPP estimates by the BEPS model over Estonia, the possible next step.
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Summary 

Estimating hemi-boreal forest productivity with a process-based BEPS model and multi-

source Earth Observation data 

Author- Fariha Harun 

Gross primary productivity (GPP) plays a major role in the field of global carbon cycle as well as 

climate change (Feng et al., 2007). Accurate and continuous GPP estimation is very important to 

provide an idea about the terrestrial ecosystem’s sustainability in the long term (Shi et al., 2017).  

The aim of this study is to evaluate potential suitability of Boreal Ecosystem Productivity 

Simulator (BEPS) model for GPP estimation over hemi-boreal forests using the available GPP 

measurements. 

This study sought to answer three research questions: 

a. How spatially heterogenous is the Soontaga flux tower area? 

b. How much reliable GPP information can be simulated by the BEPS compared to estimates 

obtained with the tower eddy covariance measurements taken at the Soontaga site? 

c. How well can the BEPS model track the GPP changes with season and inter-annual 

variation? 

BEPS was originally tailored for Canadian boreal forest conditions with an input from remote 

sensing data (Chen et al., 1999; Feng et al., 2007). MODIS leaf area index (LAI), land cover, 

clumping index and daily meteorological information were used as model inputs in this study.  

This study was performed at Soontaga Flux tower area (58°01'24 "N, 26°04'15"E), which is a dry 

hemi-boreal forest in Estonia, over the period of 2016 to 2019. First, the spatial representativeness 

of the flux tower area was evaluated using the surface albedo retrievals from a 30 m spatial 

resolution Landsat data as an input to the gamma variance model. The Soontaga area was found to 

be spatially representative within 500 m radius from the flux tower, the nominal resolution of the 

MODIS remote sensing data products used in this study. 

Next, based on the analysis of BEPS GPP result for different years on Estonian hemi-boreal 

conditions, it can be concluded BEPS is a robust and efficient tool for GPP estimation in the region. 
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From the perspective of BEPS model’s tracking of the GPP changes with season and inter-annual 

variation, it is found from the analysis that, BEPS model can track the changes very well even 

during extreme weather conditions such as drought, given the model is provided with reasonable 

input values. BEPS model was found to be particularly sensitive to the quality and reliability of 

input LAI values. Regarding other factors, the analysis also showed that the BEPS is correctly 

responding particularly to the changes in humidity and incoming radiation. The use of unbiased, 

non-interpolated meteorological data along the correct LAI, clumping index input shall lead to 

good quality GPP estimates by the BEPS model over Estonia, the possible next step.
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Kokkuvõte 

Hemi-boreaalse metsa tootlikkuse hindamine protsessipõhise BEPS-mudeli ja mitme 

allikaga Maa vaatlusandmete abil 

Autor-Fariha Harun 

 

Primaarproduktsioon mängib ülemaailmses süsinikuringes ja kliimamuutustes suurt rolli (Feng et 

al., 2007). Täpne ja järjekestev primaarproduktsiooni hindamine on väga oluline, andmaks 

ettekujutust maismaaökosüsteemide jätkusuutlikkusest pikas perspektiivis (Shi et al., 2017). 

Antud uurimuse eesmärk on hinnata boreaalse ökosüsteemi tootlikkuse simulaatori (BEPS) mudeli 

potentsiaalset sobivust primaarproduktsiooni hindamiseks hemiboreaalsetes metsades, kasutades 

olemasolevaid mõõtmistulemusi. 

Antud töös püstitati kolm uurimisküsimust: 

a) Milline on Soontaga uurimismasti ala ruumiline heterogeensus? 

b) Kui täpselt ja usaldusväärselt saab hinnata primaarproduktsiooni BEPS-mudeliga, 

võrreldes turbulentse kovariatsiooni meetodil saadud mõõtmistulemustega Soontaga 

uurimisjaamast?  

c) Kui hästi jälgib BEPS-mudel primaarproduktsiooni sesoonseid muutusi ja aastatevahelisi 

variatsioone? 

BEPS-mudel kohandati algselt Kanada boreaalsete metsatingimuste jaoks, kasutades kaugseire 

sisendandmeid (Chen et al., 1999; Feng et al., 2007). Antud uurimuses kasutati mudeli 

sisendandmetena lehepinnaindeksit, maakasutust, clumping indeksit ja igapäevaseid ilmaandmeid. 

Käesolev uurimus viidi läbi ajavahemikul 2016–2019 Soontaga gaasivoogude mõõtmiseks 

kasutatava uurimismasti alal (58°01'24"N, 26°04'15"E), mis esindab kuiva hemiboreaalset metsa 

Eestis. Esmalt hinnati uurimismasti ala ruumilist sobivust, kasutades gamma dispersioonimudeli 

sisendina pinnaalbeedo väljavõtteid 30-meetrise ruumilise lahutusvõimega Landsat andmestikust. 

Leiti, et Soontaga piirkond on ruumiliselt representatiivne 500 m raadiuses uurimismastist, mis on 

selles uuringus kasutatud MODIS-kaugseire andmetoodete nominaalne lahutusvõime. 
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Teiseks uuriti BEPS-mudelit kasutades primaarproduktsiooni muutusi mitme aasta lõikes Eesti 

hemiboreaalsetes tingimustes. Tulemustest saab järeldada, et Soontaga piirkonnas on BEPS tõhus 

ja võimekas vahend primaarproduktsiooni hindamiseks. Uurides BEPS-mudeli võimekust jälgida 

primaarproduktsiooni sesoonseid muutusi ja aastatevahelisi variatsioone, leiti, et sobilike 

sisendväärtuste olemasolul suudab mudel muutusi väga edukalt jälgida isegi ekstreemsete 

ilmastikutingimuste, näiteks põua korral. Leiti ka, et BEPS-mudel on eriti tundlik lehepinnaindeksi 

sisendväärtuste kvaliteedi ja usaldusväärtuse suhtes. Analüüs näitas, et BEPS-mudel reageerib 

korrektselt ka muude tegurite muutuste osas, eriti õhuniiskuse ja sissetuleva kiirguse puhul. 

Järgmiseks sammuks antud teema uurimises võiks olla erapooletute ja interpoleerimata 

meteoroloogiliste andmete ning korrektsete lehepinna- ja clumping indeksi kasutamine 

sisendandmetena BEPS-mudelisse. See võimaldaks anda korrektse ja usaldusväärse hinnangu 

Eesti primaarproduktsioonile. 
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Annex: 

Annex 1: Yearly wind speed from 2016 to 2019 in daily average values 

 

Figure A1. Daily average wind speed at Soontaga flux site during the period 2016-2019. 
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Annex 2: Daily humidity values with comparison of yearly data from 2016 to 2019 

 

Figure A2. Daily humidity at Soontaga flux site during the period 2016-2019. 
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Annex 3: Daily radiation values  

 

Figure A3. Daily average of radiation values at Soontaga flux site during the period 2016-2019. 
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Annex 4: Low irradiation impact on BEPS GPP and Tower GPP for 2018. 

 

Figure A4. Effect of lower irradiation periods on the daily GPP fluctuation in 2018. 
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Annex 5: Low irradiation impact on BEPS GPP and Tower GPP for 2017 

 

Figure A5. Effect of lower irradiation periods on the daily GPP fluctuation in 2017. 
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Annex 6: Low irradiation impact on BEPS GPP and Tower GPP for 2016. 

 

Figure A6. Effect of lower irradiation periods on the daily GPP fluctuation in 2016.  
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Annex 7: GPP production during growing season (Comparing BEPS GPP and Tower 

GPP) 

Year  

(Mid-April-Mid- 

September) 

GPP BEPS (g Cm−2) GPP Tower (g Cm−2) Difference (%) 

2019 1176.51 1055.50 1.21 

2018 1256.78 920.01 3.37 

2017 1043.11 920.05 1.23 

2016 900.30 916.11 -0.16 
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